
On the Scalability of Monitoring and Debugging
Distributed Computations: Vector-Clock Size

Paul A.S. Ward
pasward@ccnga.uwaterloo.ca

Shoshin Distributed Systems Group
Department of Computer Science

University of Waterloo

Abstract

The vector-clock size necessary to characterize causality in an arbitrary
distributed computation is equal to the number of processes in that compu-
tation. However, in practice the vector-clock size necessary may be much
smaller. The vector-clock size is not strictly bounded by the number of pro-
cesses, but rather by the dimension of the partial order induced by the com-
putation. While the dimension theoretically can be as large as the number of
processes, in practice we have found it to be much smaller. In this paper we
quantify exactly how small the dimension, and hence the vector-clock size
required, is over a range of typical distributed computations. We have found
that typical distributed computations, with as many as 300 processes, have
dimension less than 10. In order to achieve this quantification we developed
several novel theorems and algorithms which we also describe.

1 Introduction

An important problem in distributed systems is monitoring and debugging dis-
tributed computations. What makes this problem hard is that events in the com-
putation can be concurrent. The events form a partial order, not a total one. A
process-time diagram which shows this partial order of execution can therefore be
very useful in monitoring or debugging such computations. An example of a tool

1

2 Paul A. S. Ward

Figure 1: Sample POET Process-Time Diagram

that provides such a display is POET [29, 18]. An example of a POET display,
presenting a portion of a point-to-point broadcast, is shown in Figure 1.

There is a significant limitation in POET and in any similar system. Such sys-
tems are limited to displaying only a small portion of the execution of at most a
few-hundred communicating sequential processes.1 For our purposes we require
a tool that can work with a far greater numbers of processes. If the reader has
difficulty imagining such a need, consider visualizing the execution of a parallel
database engine over a few-hundred-processor machine. Each processor will exe-
cute a few-hundred database processes, communication processes, database-access
agents, and so forth. It rapidly enters the realms of the tens or hundreds of thou-
sands of concurrently executing processes.

In this paper we will specify first what the problems are with respect to the scal-
ability of distributed debugging and monitoring, including detailing the necessary
partial-order theory. In Section 3 we will describe the theorems and algorithms we

1While we will use the term “process” or “sequential process,” out of deference to convention,
the reader should consider it to be simply any sequential entity. We use the term “sequential entity”
to represent any sequential portion of the computation that we wish to monitor or debug. The com-
putation as a whole is parallel, distributed or concurrent, whatever the case may be. However, the
entities that make up that parallel, distributed or concurrent computation are themselves sequential.
These sequential entities may be processes, threads, semaphores, monitors, shared-memory accesses,
or something altogether different. The key property of any such sequential entity is that its behaviour
is a total order. Concurrency is then between such sequential entities. We may, from time to time,
also use the term “trace” for a sequential entity, as that is the term POET uses. The POET system
was developed from the ground up as a target-system-independent tool. This is why we in no way
specify in further detail what the sequential entity represents other than that the entity behaves as a
total order. POET deals with the partial order of the computation as a partial order. It neither knows,
nor cares, what the sequential entities are.

Vector Clock Size 3

developed to determine the dimension bound of distributed computations and, by
inference, the vector-clock size. We then discuss the results we achieved from this
after executing the algorithms over several computations in various parallel, con-
current and distributed environments. Finally we indicate what work needs to be
completed to achieve scalability in distributed debugging and monitoring.

2 The Scalability Problems

We presume the, by now, standard model of distributed systems, initially defined
by Lamport [19]: a distributed system is a system comprising multiple sequential
processes communicating via message passing. The sequential processes consist of
three types of events: send, receive and unary, totally ordered within the process. A
distributed computation is the union of all of the events across all of the processes.
The set of all events is usually referred to by

�
. The set of events within a given

process is referred to by
���

where � uniquely identifies the process. An individual
event is referred to by �

�� where � identifies the process and � identifies the event’s
position within the process.

The Lamport “happened before” relation is defined as follows:

Definition 1 (happened before: �	� ��
��) “happened before” is the smallest
transitive relation satisfying

1. �
�� �
���� if �����

2. �
�� �
� �� if �

�� is a send event and � �� is the corresponding receive event.

Two events are concurrent if they are not in the “happened before” relation:

�
���� � ������ �

������� ���� � �� ����
��

The “happened before” relation defines a partial order over the set of events in the
distributed computation. It is this partial order that the POET tool displays and it is
this display that we wish to be able to scale. There are essentially two aspects that
must be dealt with to achieve scaling of these partial-order displays. We must be
able to handle more traces (that is, sequential processes), and we must be able to
handle more events within traces. It is a subset of the first of these issues that we
address in this paper.

Scaling with respect to the number of traces is a hard problem. There are sev-
eral fundamental challenges that must be dealt with to achieve such scaling. First,
since we wish to display the partial order of execution, we find ourselves limited
by the typical 20-inch computer monitor and by human cognition. Such a screen
is limited to displaying approximately 50 traces. While we could achieve more
traces with some perhaps more-compact trace arrangement or a larger screen, the
number is ultimately constrained by screen size. Human cognition presents a more

4 Paul A. S. Ward

fundamental limitation in this regard. Any user of such a monitoring/debugging
tool cannot be expected to extract meaningful information out of a few thousand
traces even if they could all be displayed in one screen. Some forms of abstrac-
tion are needed to overcome this problem. While some work has been done in this
area [5, 28, 13, 14, 15, 16, 17], it is still quite limited. This is, unfortunately, beyond
the scope of this paper.

There is a second problem, equally hard, in scaling with respect to the number
of processes that is the focus of this paper. In order to build partial-order displays
efficiently it is necessary to be able to compare any two events to determine their
precedence, if any (that is, whether or not they are an element in the “happened
before” relation). This precedence information is also of substantial value to any
user of such a display. Indeed, it is one of the primary reasons for using such a
tool. This also requires efficient comparison of events to determine their status in
the “happened before” relation. In order to perform such an efficient comparison
visualization tools typically use vector clocks, usually of the Fidge/Mattern vari-
ety [3, 5, 6, 7, 20, 23]. These vector clocks do not scale well with respect to the
number of processes. In order to understand the problem of scaling vector clocks it
is necessary to first cover a little partial-order theory and then describe the problem
in formal terms.

2.1 Some Partial-Order Terminology

The following partial-order theory is due to Trotter [30, 31]. While we will not give
detailed partial-order theory here, we will review a few of the important definitions.
A partially-ordered set (or poset, or partial order) is a pair

���������
where

�
is a set

and
�

is a reflexive, antisymmetric and transitive binary relation on
�

. A subposet
is a poset whose set is a subset of

�
, and whose relation is the restriction of

�
to the subset. An antichain is any completely unordered poset. The width of a
poset is the longest antichain contained in that poset. In the context of a distributed
computation, the width must be less than or equal to the number of processes.

An extension,
����� � �

, of a partial order
���������

is any partial order that satisfies

�
	��
������� � �
	��
����� �

If
�

is a total order, then the extension is called a linear extension. A realizer of
a partial order is any set of linear extensions whose intersection forms the partial
order. We are now in a position to define the dimension of a partial order

Definition 2 The dimension of a partial order is the cardinality of the smallest
possible realizer.

We are now in a position to formally describe the problem with the scaling of the
size of the vector clock.

Vector Clock Size 5

2.2 The Vector-Clock Size Problem

One of the features of Fidge/Mattern timestamps is that they are a vector of size
equal to the number of processes in the distributed computation. This vector size is
not going to scale with an increase in the number of processes. With a few hundred
processes it requires on the order of 1,000 bytes per event. To increase to a few
thousand would require 10,000 bytes per event which is getting beyond the realm
of the reasonable. To go to tens of thousands of processes would require on the
order of 100,000 bytes per event. This is not feasible.

In 1991, Charron-Bost [3] showed the mathematical justification for vectors
of size equal to the number of processes. To compare any two events to deter-
mine causality it is necessary to have a vector (or equivalent) whose size is the
size of the dimension of the partial order that the distributed computation induces.
This dimension can be as large as the number of processes in the distributed com-
putation. Specifically, crown S

�

� is a partial order with dimension equal to its
width. Charron-Bost turned crown S

�

� into a point-to-point distributed computa-
tion, though in essence it remained the same.

The limitation of the Charron-Bost proof is in the nature of what crown S
�

�

represents. It represents a distributed computation in which each process sends a
message to all other processes except the left neighbour of the sending process.
In practical terms, this is not a realistic distributed computation. In addition, the
more likely computation, in which each process broadcasts a message to all other
processes, has dimension 2. It is therefore the objective of this paper to determine a
bound on the dimension of actual distributed computations, rather than theoretical
ones that are doubtful to ever occur in practice. This bound would represent a more
accurate requirement for the size of timestamps necessary to capture causality.

Before we describe how we compute the dimension bound, and what our results
are for typical distributed computations, we wish to justify that there are in practice
alternate timestamps that are more compact than Fidge/Mattern vector clocks. We
will also discuss work related to our own.

2.2.1 Ore Timestamps

There is an alternate timestamp to the Fidge/Mattern vector clock, whose size is
bounded by the dimension, not the width, of the partial order. This is the Ore
timestamp [21, 27]. Given a realizer for partial order

� � � ���
the timestamp asso-

ciated with each
	 � �

is simply the vector of its position in the various linear
extensions that form the realizer. It is then straightforward to see that causality be-
tween two events,

	
and

�
can be determined by comparing the various elements

in the vectors of the two events. If they are all less, then precedence is established.
If some are less and some are greater then concurrency is established. While this
timestamp has an essentially offline nature, and it is beyond the scope of this paper
to correct this deficiency, it does indicate that timestamps whose size is bounded

6 Paul A. S. Ward

by the dimension, not the width, of the partial order are not only possible in theory
but exist in practice.

2.2.2 Related Work

Before proceeding to describe how we computed dimension bounds, we will briefly
describe some of the work related to our own. There are essentially two categories
of related work. The first group are those who are developing systems for visualiz-
ing parallel and distributed systems in a process-time fashion. Such work includes
network visualization tools [22], GOLD [24], ParaGraph [11] and our own system,
POET [29, 18]. Other than our own, these systems tend to use vector clocks or
variants within the computation, rather than have the information sent to a central
server which computes the vector-timestamps for visualization purposes. These
systems tend to take the approach of just using what is presently available, and not
being concerned with substantial scalability. The first of these systems uses causal
message ordering to ensure an appropriate visualization. This is known to be

� ����� �
in the number of processes [4], and so clearly is not going to scale. The GOLD sys-
tem uses dependency vectors, developed by Fowler and Zwaenepoel [9], which will
again be size

� ��� �
by the time they are attached to individual events. ParaGraph

has the ability to provide space-time diagrams, but there is no attempt to determine
causality. It is merely a visualization, based on possibly badly synchronized local
clocks, and it is up to the user to trace the dependencies. Indeed, the authors ac-
knowledge that the size would not scale well beyond 128 processes, as the display
becomes too cluttered. Our own system uses Fidge/Mattern timestamps.

The second group are those who are trying to reduce the vector-clock size, but
in the context of maintaining vector clocks by the processes involved in the compu-
tation. The primary work in this area is a technique by Singhal and Kshemkalyani [25].
The problem with the technique offered is that an

� ��� � �
matrix is required at each

process to recover the vector, which, in the context of event precedence in a debug-
ging environment, would imply a moving from

� ��� �
vector associated with each

event to
� ����� �

set of data associated with each event.
Finally, there are no performance results that we are aware of concerning the ac-

tual behaviour of the various systems in the context of large numbers of processes.
In this respect, this work is unique.

3 Bounding the Dimension

Computing the exact dimension of a partial order is known to be NP-hard for any
partial order of dimension greater than two [12]. We therefore approached the
problem by attempting to simply bound the dimension. For our purposes, an order-
of-magnitude difference between the dimension bound and the number of traces
would be sufficient to justify proceeding. It was then necessary to develop an al-

Vector Clock Size 7

gorithm to achieve a reasonable bound in a reasonable amount of time. Rather
than take the direct approach of generating linear extensions and then determin-
ing if they formed a realizer we chose an indirect route based on the concept of
non-forced pairs.2

Definition 3 (Non-forced pair)
� 	 �
���

is a non-forced pair of partial order
���������

if
	 � �

and
������� ��� �
	��
����� �

is a partial order.

An equivalent definition is
�
	��
���������
	 ��� 	 � � ����
������ � 	 ��� � � � � � ��� 	 � �

where
���
	

is the set of all non-forced pairs of the partial order
���������

. The
significance of non-forced pairs, as regards dimension, is in the following theorem,
due to Rabinovitch and Rival [31].

Theorem 1 Any set of linear extensions of a partial order that reverses all non-
forced pairs is a realizer of that partial order.

A non-forced pair
�
	 � � �

is said to be reversed by a set of linear extensions if one
of the linear extensions in the set contains

� � 	
. There is a stronger form of

Theorem 1 that we make use of for our algorithm.

Theorem 2 If
��� ��� �

is a subposet of
� � � ���

that contains all of the non-forced
pairs of

���������
then the dimension of

��� ��� �
is identical to that of

���������
.

In simpler terms, it is sufficient to simply reverse the non-forced-pair events. All
other events of the computation may be ignored. Note also, that it is not strictly
necessary for the extensions to be linear. They merely have to reverse the non-
forced pairs.

The approach we have then taken to the problem of bounding the dimension
is to first compute all of the non-forced pairs of the partial order (a polynomial-
time problem) and then create extensions that reverse these non-forced pairs (an
NP-hard problem to find a minimal-cardinality set).

3.1 Computing Non-Forced Pairs

While it is possible to use the given definition of non-forced pairs to compute the
set of all non-forced pairs, any such algorithm would be very inefficient. To achieve
reasonable performance in the computation it is necessary to develop an association
of non-forced pairs with the relations that hold for the partial order. To this end, we
define the sets ������ �!#"%$'&)(+*),�,��+&-! � � � and .',����/!��+ �!#"%$0&)(+*),�,��+&1! � � � .
Definition 4 (leastConcurrent) The set of events that are leastConcurrent to an
event e are those events that are concurrent with e and which have no predecessor
which is also concurrent with e.

2Also known as critical pairs

8 Paul A. S. Ward

In formal terms:

� �
� ������ �!#"%$'&)(+*),�,��+&-! � � � ��� � �

��� � ��� � �����	 ��
� ��� � � ��
� ��� ��

We likewise define the set of events that are greatestConcurrent to event e

��� � .',�����!��+ �!#" $'&)(+*),�,��+&1! � � � ��� ��� ��� � � � � � � �� ��
� ��� � � ��� ����
�

This then leads to the following theorem:

Theorem 3

�
	 � � � �����
	 ��� 	�� ������ �!#"%$'&)(+*),�,��+&-! ����� � � � .',�����!��+ �!#"%$'&)(+*),�,��+&-! �
	 �

Proof: Necessary: Assume
� 	 �
��� � � �
	

. If
	 �� ������ �!#"%$'&)(+*),�,��+&-! ����� then,

because
	 � �

,
�
+� � 	 � � � � . This implies that

�
+� � 	 � � �� �
which

contradicts
�
	 � � � � ���
	

. Likewise, if
� �� .',����/!��+ �!#"%$0&)(+*),�,��+&1! � 	 � then

�
 � �
� � � � 	 . This then implies that

�
 � � � � 	 �� � which again contradicts�
	��
���������
	
.

Sufficient: Assume
	 � ������ �!#" $'&)(+*),�,��+&1! ��� � � � � .',�����!��+ �!#"%$'&)(+*),�,��+&-! �
	 � .

Show �
+� � 	 � � � �
. If � � 	

then � �� � because
	�� ������ �!#"%$'&)(+*),�,��+&-! ����� .

Also, if � � 	
then

� �� � since if it did, by transitivity
� � 	

which contradicts	�� ������ �!#"%$'&)(+*),�,��+&-! ����� . Therefore �
 � � 	 � � � �
. Likewise we may show� � � � 	 � � . If

� � � then
	 �� � because

� � .',�����!��+ �!#" $'&)(+*),�,��+&1! �
	 � .
Also, if

� � � then � �� 	
since if it did, by transitivity

� � 	
which contradicts� � .',�����!��+ �!#"%$'&)(+*),�,��+&-! �
	 � . Therefore �
 � � ��� 	 � � . �

This theorem enabled the development of the following algorithm:

For each event y in computation {
lC <- leastConcurrent(y)
for each event x in lC {
gC <- greatestConcurrent(x)
if (y in gC) {

output (x,y) is NFP
}

}
}

Some comments should be made about this algorithm. First, it is not obvious from
the above why we perform the computation in what appears to be the reverse order.
That is, we take each event as a possible second element of a non-forced pair,
rather than a first element. The reason has to do with the relative cheapness with
which we can compute the ������ �!#"%$'&)(+*),�,��+&-! set versus the comparative expense
of computing the .',����/!��+ �!#"%$0&)(+*),�,��+&1! set. As we are still working with the POET

tool, we have access to Fidge/Mattern timestamps for each event. An important

Vector Clock Size 9

property of these timestamps is that they give the set of events that are the greatest
predecessors to the event for which they form the timestamp. What this means is
that we can quickly compute the � ���� �!#"%$0&)(+*),�,��+&1! set of an event as follows

leastConcurrent(e) {
lC <- timestamp(e) + 1;
for all x in lC {

if (!(x||e))
lC <- lC - x;

}
for all x in lC

for all y in lC {
if (x -> y)

lC <- lC - y;
}

return lC;
}

In words, to compute � ���� �!#"%$0&)(+*),�,��+&1! � � � we start with the timestamp of � , that is,
those events that are the greatest predecessors to � on their respective traces. We
advance this timestamp by one; that is, we increment each element of the times-
tamp. This now represents a set of events that are either concurrent or successors
to � . We refer to this set as the set of potentially least concurrent events of � . We
remove from this set any event that is not concurrent with the event � and any event
that is preceded by some other event within the set. This leaves those events that
are ������ �!#" $'&)(+*),�,��+&1! � � � .

The .0,�����!��+ �!�"%$'&)(+*),�,��+&1! � � � set is more expensive to calculate. To compute it
we start with the greatest predecessors (i.e. the Fidge/Mattern timestamp) of � and
then iterate along each trace until we reach a successor event to � , or we come to the
last event in that trace. This yields the potentially greatest concurrent set. We then
remove all events in this set that precede any other events in the set. This leaves the
.',����/!��+ �!#"%$0&)(+*),�,��+&1! set.

In the .0,�����!��+ �!�"%$'&)(+*),�,��+&1! � � � calculation there are two optimizations that may
be performed. The first is to use a binary search on the trace, rather than iterating
through each event. The second is to attempt to avoid calculating it at all where
possible. Specifically, when we have a first event of a potential non-forced pair, we
already know what the matching second event must be (as we used it to compute
the first event). Rather than compute the .',�����!��+ �!#"%$'&)(+*),�,��+&-! �
	 � set immediately,
we first check to see if

	
is concurrent with the successor of

�
on the same trace

as
�

. This is a very fast check to perform, since we can index into this successor
event. If

	
is concurrent with this successor of

�
then we know that

�
cannot be

in the .',����/!��+ �!#"%$0&)(+*),�,��+&1! � 	 � set, so there is no need to compute the set. This
optimization reduces the need to compute the .',�����!��+ �!#"%$'&)(+*),�,��+&-! set by an order
of magnitude or more.

10 Paul A. S. Ward

3.2 Reversing Non-Forced Pairs

Reversing the non-forced pairs to achieve the minimum number of extensions is
NP-hard. We prefer instead a reasonably efficient algorithm that gives a satisfactory
upper bound on the minimum number of extensions necessary. To achieve this we
developed a two-phase algorithm. First we select the desired extension into which
to place the current non-forced pair and then we insert it in that extension.

The first phase may seem strange, since, even under the stronger non-forced
pair theorem, the extensions of the subposet of the computation that contains all
non-forced pairs must contain all of the events of that subposet. Under our algo-
rithm, the “extensions” that we develop only contain a subset of the events of the
subposet. In other words, the extensions that we develop are skeletal extensions
that reflect the reversal of some of the non-forced pairs. However, although we do
not insert all of the events of the subposet, we know that it is possible to insert
all of the events within any given extension that we are building. The reason it is
possible is that the non-forced pairs are concurrent in the original partial order, and
so although they add constraints to the extension, they in no way conflict with the
original partial order. Those events of the subposet that are not inserted into the
extension could be so inserted, but they would not be reversed, and it is this rever-
sal that we care about. In essence, we are building skeleton extensions that contain
as many non-forced pair reversals as possible. Other events from other non-forced
pairs are capable of fitting, but will not be reversed, and so we ignore their addition.

To understand the second phase we must define what it means to insert a non-
forced pair into an extension. It means that we can add the events of the non-forced
pair, such that they are reversed, and that it violates neither the partial order, nor
the additional constraints that the reversal requires. It may also be the case, if the
insertion algorithm is not optimal, that it rejects the non-forced pair even though it
did not violate these conditions, but rather violated some aspect of the structure in
which the extension was kept.

It is, perhaps, helpful to consider a simple example. Suppose we have a partial
order consisting solely of two concurrent events, � and

�
. It has non-forced pairs� � � � �

and
� � � � � . Once

� � � � �
has been inserted into an extension, that extension

must reflect the constraint
� � � . As such

� � � � � cannot be inserted into that
extension, since it would require the extension to reflect � � �

.
We say that an extension accepts a non-forced pair if the non-forced pair may

be inserted into that extension. An extension rejects a non-forced pair if it does not
accept it. Finally, since insertion into an extension may fail, the first phase must
have a strategy for selecting an alternate extension in which to place the non-forced
pair. We can now describe the specific algorithms used for the two phases.

The algorithm we used for the extension-selection phase is a simple greedy
one. We insert the current non-forced-pair events into the first extension that will
accept it. In the event that all current extensions reject the non-forced pair, we
create a new extension, containing no events, that must, by definition, accept the

Vector Clock Size 11

non-forced pair. The non-forced pair is inserted into the new extension. Thus the
first-phase algorithm is

insert(x,y) {
// Insert in the first extension that will accept
for (i = 0; i < numberExtensions; ++i)

if (insert(extension[i], x, y))
return;

// None accepted; create a new extension
create(extension[numberExtensions]);
insert(extension[i], x, y);
++numberExtensions;
return;

}

For the second phase of the algorithm, we had to define a method for inserting non-
forced pairs into an extension. The initial algorithm that we developed was a greedy
one that worked on the principle “place the event before the first event it must
precede.” While this approach produces some promising results, it also produces
some spectacularly bad ones. We therefore decided to develop an optimal solution
to this second phase. We maintain a directed acyclic graph for each extension. To
add a non-forced pair we add the two events in turn and then determine if the graph
is still acyclic. If it is acyclic we have accepted and inserted the non-forced pair.
If it is not, we reject the non-forced pair, and remove the evidence of the addition.
This method proved to be acceptable, as we can see in the next section.

4 Results and Observations

We have executed our dimension-bound algorithm over several dozen distributed
computations covering over half-a-dozen different parallel, concurrent and dis-
tributed environments and a range of 3 to 300 traces. The environment types are
self-debug (POET is capable of monitoring itself, as it is a distributed system),
the Open Software Foundation Distributed Computing Environment [8], the � C++
shared memory concurrent programming language [1, 2], the Hermes distributed
programming language [26] and the Java programming language [10]. Various of
the raw results are shown in Tables 1, 2 and 3.

The quick summary is that the dimension bound that we discovered over this
range of computations and environments was always 10 or less. For computations
of trace count greater than 20 there is a minimum of an order of magnitude differ-
ence between the dimension and the number of traces. When the number of traces
is greater than 100, it is usually a factor of 15 or greater. To help visualize what
these results imply, we created a graph, shown in Figure 2, which plots dimension
as a function of the number of traces. The two graphs shown are the same, but with

12 Paul A. S. Ward

Number of Number of Number of Dimension
Events Traces Non-Forced Pairs Bound

45 5 12 3
90 19 27 2

121 20 61 4
249 40 124 3
291 42 164 3
467 42 183 4
297 44 237 4
499 70 443 5
501 72 496 6
833 110 1490 9
817 112 1378 8
928 114 1738 7
902 115 1402 8

1560 159 3579 10

Table 1: Dimension Results for OSF DCE Computations

differing scales. The x-axis is the number of traces while the y-axis is the dimen-
sion bound. We also plot two additional lines. First we show the “dimension = 10”
line, as all results were less than or equal to that value. Second, we show the “di-
mension = width” line, which illustrates the increase in Fidge/Mattern vector-clock
size as the number of traces increases.

In addition to testing with distributed computations, we created, using the testbed
environment (which enables us to create arbitrary point-to-point partial orders), a
series of broadcast patterns of varying sizes and crown patterns. The results from
our program for these patterns are shown in Table 4. This helps to illustrate the
quality of our algorithm. The dimension of point-to-point broadcast is 3, for any

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

"trace-dimensions.dat"
x

10

0

50

100

150

200

250

300

0 50 100 150 200 250 300

"trace-dimensions.dat"
x

10

Figure 2: Dimension as a Function of Number of Traces

Vector Clock Size 13

Number of Number of Number of Dimension
Events Traces Non-Forced Pairs Bound

15 7 38 2
2687 59 2360 4
3252 66 3044 4
2612 66 2032 3

49791 95 6622 3
3272 96 5906 4
7426 109 10019 6
7928 112 6969 3

35266 112 6675 4
30048 120 7999 3

Table 2: Dimension Results for Java Computations

size broadcast. Our algorithm achieved this optimal bound.3

5 Further Work

There are two broad themes that we are actively pursuing with regard to this work.
The first is the development of better vector clocks. In particular, Ore timestamps
are, in their current definition, offline in nature. That is, they work on the partial
order as a whole entity, which typically presumes a completed computation. We re-
quire an online equivalent that has the size properties of the Ore timestamp without
the offline nature.

The second broad theme we are pursuing is scaling the monitoring system in

3As a side note we would comment that our greedy algorithm for non-forced pair insertion yielded
a dimension bound of

�����
for these point-to-point broadcasts. We said it could produce spectacu-

larly bad results!

Environment Number of Number of Number of Dimension
Events Traces Non-Forced Pairs Bound

self-debug 405 3 10 2
self-debug 9693 5 23 2

� C++ 360 12 156 2
� C++ 1750 12 853 5
Hermes 1888 125 1323 5
Hermes 1944 127 1429 5
Hermes 4164 267 4403 7
Hermes 4086 297 21401 6

Table 3: Dimension Results for Various Environments

14 Paul A. S. Ward

Pattern Number of Number of Number of Dimension
Events Traces Non-Forced Pairs Bound

Crown S
�

� 6 3 3 3
Crown S

�

� 10 5 5 5
Broadcast-5 13 5 20 3
Broadcast-10 28 10 90 3
Broadcast-20 58 20 380 3
Broadcast-40 118 40 1560 3

Table 4: Testbed Results for Various Partial Orders

the context of visualization. As we discussed in Section 2, it is not sufficient to
simply show the user several thousand traces and expect such a display to be of
any value. Nor is it reasonable to expect the user to manually perform some type
of clustering. The whole basis of displaying the partial order needs to be rethought
when we consider a substantial increase in the trace count.

Acknowledgments

The author would like to thank IBM for supporting this work and David Taylor for
many useful discussions regarding this work.

About the Author

Paul Ward is a Ph.D. candidate in the Department of Computer Science at the
University of Waterloo. His Internet address is pasward@ccnga.uwaterloo.ca.

References

[1] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R.
Zarnke. � C++: Concurrency in the Object-Oriented Language C++. Software
— Practice and Experience, 22(2):137–172, February 1992.

[2] Peter A. Buhr and Richard A. Stroobosscher. � C++ Annotated Reference
Manual, Version 4.6. Technical report, Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, July 1996.
Available via ftp from plg.uwaterloo.ca in pub/uSystem/uC++.ps.gz.

[3] B. Charron-Bost. Concerning the Size of Logical Clocks in Distributed Sys-
tems. Information Processing Letters, 39:11–16, July 1991.

[4] B. Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, Asyn-
chronous and Causally Ordered Communication. Submitted to Distributed
Computing.

Vector Clock Size 15

[5] Wing Hong Cheung. Process and Event Abstraction for Debugging Dis-
tributed Programs. PhD thesis, University of Waterloo, Waterloo, Ontario,
1989.

[6] Colin Fidge. Logical Time in Distributed Computing Systems. IEEE Com-
puter, 24(8):28–33, 1991.

[7] Colin Fidge. Fundamentals of Distributed systems Observation. Technical
Report 93-15, Software Verification Research Centre, Department of Com-
puter Science, The University of Queensland, St. Lucia, QLD 4072, Australia,
November 1993.

[8] Open Software Foundation. Introduction to OSF/DCE. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1993.

[9] Jerry Fowler and Willy Zwaenepoel. Causal Distributed Breakpoints. In Pro-
ceedings of the 10th IEEE International Conference on Distributed Comput-
ing Systems, pages 134–141. IEEE Computer Society Press, 1990.

[10] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996. Available at http://java.sun.com/docs/books/jls/.

[11] M. T. Heath and J. A. Etheridge. Visualizing the Performance of Parallel
Programs. IEEE Software, pages 29–39, September 1991.

[12] Thomas Kunz. Personal communication.

[13] Thomas Kunz. Abstract Behaviour of Distributed Executions with Applica-
tions to Visualization. PhD thesis, Technische Hochschule Darmstadt, Darm-
stadt, Germany, 1994.

[14] Thomas Kunz. Visualizing Abstract Events. In Proceedings of the 1994 CAS
Conference, pages 334–343, October 1994.

[15] Thomas Kunz. Automatic Support for Understanding Complex Behaviour. In
Proceedings of the International Workshop on Network and Systems Manage-
ment, pages 125–132, August 1995.

[16] Thomas Kunz. High-Level Views of Distributed Executions. In Proceedings
of the 2nd InternationalWorkshop on Automated and Algorithmic Debugging,
pages 505–512, May 1995.

[17] Thomas Kunz. Evaluating Process Clusters to Support Automatic Program
Understanding. In Proceedings of the 4th Workshop on Program Comprehen-
sion, pages 198–207, March 1996.

16 Paul A. S. Ward

[18] Thomas Kunz, James P. Black, David J. Taylor, and Twan Basten.
POET: Target-System Independent Visualisations of Complex Distributed-
Application Executions. In The Computer Journal, volume 40, pages 499–
512, 1997.

[19] Leslie Lamport. Time, Clocks and the Ordering of Events in Distributed
Systems. Communications of the ACM, 21(7):558–565, 1978.

[20] F. Mattern. Virtual Time and Global States of Distributed Systems. In M. Cos-
nard et al., editor, Proceedings of the International Workshop on Parallel and
Distributed Algorithms, pages 215–226, Chateau de Bonas, France, Decem-
ber 1988. Elsevier Science Publishers B. V. (North Holland).

[21] O. Ore. Theory of Graphs. Number 38. Amer. Math. Soc. Colloq. Publ.,
Providence, R.I., 1962.

[22] Guru Parulkar, Douglas Schmidt, Eileen Kraemer, Jonathan Turner, and An-
shul Kantawala. An Architecture for Monitoring, Visualization, and Control
of Gigabit Networks. IEEE Network, pages 34–43, September/October 1997.

[23] Reinhard Schwarz and Friedemann Mattern. Detecting Causal Relationships
in Distributed Computations: In Search of the Holy Grail. Distributed Com-
puting, 7(3):149–174, 1994.

[24] Joseph L. Sharnowski and Betty H. C. Cheng. A Visualization-based Envi-
ronment for Top-down Debugging of Parallel Programs. In Proceedings of
the 9th International Parallel Processing Symposium, pages 640–645. IEEE
Computer Society Press, 1995.

[25] M. Singhal and A. Kshemkalyani. An Efficient Implementation of Vector
Clocks. Information Processing Letters, 43:47–52, August 1992.

[26] R. E. Strom et al. Hermes: A Language for Distributed Computing. Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[27] James Alexander Summers. Precedence-Preserving Abstraction for Dis-
tributed Debugging. Master’s thesis, University of Waterloo, Waterloo, On-
tario, 1992.

[28] David J. Taylor. The Use of Process Clustering in Distributed - System Event
Displays. In Proceedings of the 1993 CAS Conference, pages 505–512, Jan-
uary 1993.

[29] David J. Taylor. Event Displays for Debugging and Managing Distributed
Systems. In Proceedings of the International Workshop on Network and Sys-
tems Management, pages 112–124, August 1995.

Vector Clock Size 17

[30] William T. Trotter. Graphs and Partially-Ordered Sets. In R. Wilson and
L. Beineke, editors, Selected Topics in Graph Theory II, pages 237–268. Aca-
demic Press, 1983.

[31] William T. Trotter. Combinatorics and Partially Ordered Sets: Dimension
Theory. Johns Hopkins University Press, Baltimore, MD, 1992.

