An Efficient Algorithm for Computing the ith Letter of
p"(a)

Jeffrey Shallit and David Swart *

Abstract

Let ¥ be a finite alphabet, and let ¢ : 3* — 3* be a homomorphism, i.e., a mapping
satisfying p(zy) = ¢(z)p(y) for all 2,y € £*. Let a € ¥, and let ¢ > 1, n > 0 be
integers. We give the first efficient algorithm for computing the ith letter of ¢™(a). Our
algorithm runs in time polynomial in the size of the input, i.e., polynomial in logn,
log ¢, and the description size of ¢. Our algorithm can be easily modified to give the
distribution of letters in the prefix of length ¢ of ¢"(a). There are applications of our
algorithm to computer graphics and biological modelling.

1 Introduction

Let ¥ be a finite alphabet. A homomorphism is a map ¢ from %* to £* such that p(zy) =
o(z)p(y) for all z,y € X*. Let a € X; we define p°(a) = a, and ¢'(a) = p(p'~!(a)) for i > 1.
For ¢ € ¥* and a € X, let |z| denote the length of #, and let |z|, denote the number
of occurrences of the letter a in z. We define the the depth d of a homomorphism ¢ to be
the cardinality of its domain %, and the width w of a homomorphism ¢ to be the maximum
value of |p(a)| over all a € X.
Consider the following problem:

Given a homomorphism ¢ : ¥* — ¥* integers n > 0 and 7 > 1, and a letter
a € X, efficiently calculate the ith letter of ¢"(a).

In this paper, we present the first algorithm which solves this problem in time bounded by
a polynomial in the size of the input data. More precisely, the running time of our algorithm
1s polynomial in log n, log i, w, and d. Our model of computation is the familiar “naive bit
complexity” model; see, for example, [1]. In this model, adding together two n-bit integers
uses O(n) bit operations, while multiplying two n-bit integers uses O(n?) bit operations.

*Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1. Email:
shallitQuwaterloo.ca, dmswart@uwaterloo.ca . Research supported by a grant from NSERC.

G
%
X

]

1 1
T
:

DDI:]
T r:
DD[j
DDI:]
gl
i

[EEpERE

S + S i
“777‘\u L 77—}_1 g o
d; [O Ot O
1 M 1 M
[EEpEpE O o O O

O

i

.
Ot

O
[qj:‘[,

A 3

2
o
i

5

Shth

Figure 1: Geometric interpretations of strings produced by DOL-systems [T7].

Let p be the prefix of ¢"(a) of length 7. Our algorithm is easily modified to return the
distribution of the first ¢ letters in ¢™(a) as the Parikh vector p = (my)pex, where my, = |plp.

Before proceding further, we discuss some properties of the letters of ¥ with respect
to a homomorphism . A letter b is accessible from a if ¢"(a) = wibw, for some strings
wy, wy € ¥* and for some n > 0. A letter a is mortal if ¢p™(a) = € for some n > 0. We say a
18 ¢mmortal if 1t 1s not mortal.

Iterated homomorphisms have been previously studied in the form of deterministic con-
text free Lindenmayer systems, or DOL-systems [13]. A DOL-system is a 3-tuple G = {%, ¢, z}
where ¥ is a finite alphabet, ¢ is a set of production rules, and z € ¥* is the initial word or
aziom. The language of a DOL-system G is defined as Lg = {¢™(2) : n > 0}.

A word of a DOL-language can be interpreted as instructions in a “turtle language” to
draw an image [12]. Many have used DOL-systems to generate fractals and to model biological
systems such as the branching structure of a tree [2, 7, 8]; see Figure 1. In this context, our
new algorithm allows us to efficiently calculate the structure of small twigs, without having
to calculate the structure of the entire tree.

Another application of our algorithm is the efficient computation of the ith letter of a
fixed point of a homomorphism, which was stated as an open problem in [10]. Let a be a
letter such that ¢(a) = az, where @ is a string containing at least one immortal letter. Then
¢ has a unique fixed point starting with a, of the form

p*(a) = azp(z) @*(z) () -

We can efficiently compute the ith letter of such a fixed point by using binary search to
determine which factor the ith letter lies in, and then using our algorithm to find the appro-

priate letter within a factor. Such a binary search uses an efficient subroutine for computing
|zp(z)p?(z) - - - ™(x)|, which is given in the algorithm SUPERPOWER below in Section 5.3.
This paper is based on results in the second author’s M.Math. thesis [11].

2 Previous Work

Several authors have discussed the complexity of decision problems involving DOL-systems.
For example, Jones and Skyum [4] gave a polynomial time algorithm for solving the DOL
membership problem: given G and z, 1s © € G? Their result is somewhat orthogonal to
ours, for in their situation the input is z, z, and ¢, and they want to decide if there exists
n with = ¢"(z). Note that |z| could be as large as w"|z|, where w is the width of ¢. This
quantity is doubly ezponential in logn. Later, Jones and Skyum [5] gave a DSPACE(log” n)
algorithm to solve the DOL membership problem.

The growth function fg of a DOL-system G is defined by fg(n) = |¢"(z)|. Salomaa [9]
showed that the growth function of any DOL-system is either polynomial or exponential.
With respect to a homomorphism ¢, we say a string @ € £* grows polynomially if |p™(z)| =
O(n®) for some constant c. Otherwise, we say @ grows exponentially. There is an efficient
algorithm to determine if a letter grows exponentially [13].

3 The BASICTREEDESCENT Subroutine

We first discuss a simple method to calculate the ith letter of ¢™(a), called BASICTREEDES-
CENT. This algorithm is similar to one found by Jones and Skyum [5]. While its running
time is not necessarily polynomial in log n, log ¢, w, and d, we use BASICTREEDESCENT to
calculate the ith letter of ¢™(a) for the cases in which n 4s polynomial in log ¢, w, and d.

For an integer n and a letter a € X, we view the sequence of words a, ¢(a), ¢*(a), -+,
©"(a) as labels of the levels of an ordered tree. More precisely, the derivation tree of ¢™(a) is
the ordered tree of height n, with a as its root, such that every non-leaf node b has children
labeled with the letters of ¢(b). Instead of computing ¢"(a) by repeatedly applying ¢ to
each successive string, we calculate the ith letter of ¢™(a) by descending n levels down the
derivation tree to the appropriate letter. The only difficulty lies in determining which subtree
to descend.

Let LENGTH(¢p,n,a,?) be a procedure which returns the value |¢"(a)| and let p(a) =
Z = 2123 Zp(a)|- BASICTREEDESCENT uses LENGTH to compute @™ ' (z1)|, [¢" (22)],- - -
and by adding, computes | 1(z1)], "1 (2122)|, - - - until a value ¢ is determined such that

|90n_1(z122 cez)] <i < |g0"_1(z1Z2 e z).

Once t has been calculated, the algorithm adjusts the values of n,a, and 72 to n — 1, z;, and
i — |@" (2122 - - 2¢-1)| respectively and thus descends one level in the derivation tree. Of
course, if n = 0, the algorithm simply returns a.

During the execution of the Basic Tree Descent algorithm, we descend exactly n levels.
Each time we do so, we calculate the length of at most w strings. Since the running time is
at least linear in n, BASICTREEDESCENT is only useful to us when n itself is bounded by a
polynomial in log ¢, w, and d.

4 Owur Improved Algorithm

The idea behind our new algorithm is to avoid descending n levels in the derivation tree
for the cases where n is not bounded by a polynomial in log ¢, w, and d, by exploiting the
recursive nature of the homomorphism. Basically, we descend the derivation tree until we
encounter a letter for the second time and then shortcut to the node where this repeated
letter occurs last. We continue descending, taking shortcuts whenever possible until we reach
the 2th letter of the bottom level.

4.1 Finding a Repeated Letter

We discuss some notation concerning the path taken down the derivation tree. Let ag be
the root of the derivation tree. Let a; be the letter encountered after descending j levels
and set x;,y; such that p(a;_1) = z;ja;y;. Therefore, after descending [levels, the sequence
of letters encountered during the tree descent is ag, as,---,a; and the sequences of strings
Ty, Lo, -+, x; and yi,ys, -+, y; describe the branches of the tree which were not followed.

We begin our algorithm by descending the derivation tree until we encounter some letter
a; for the second time, where [is the number of levels we have descended thus far. Let [— ¢
be the level containing the previous occurrence of a;. We need only descend d levels before
encountering such a letter a; since |%| = d. More precisely, a; = a;_, for some | < d.

By descending [levels, we have calculated new values for n,a, and ¢, which yield the
same results, namely i — [p" 1 (z1)@" % (2s) - - - " (2;)|, » — I, and a;. We have also dis-
covered strings « and y and an integer ¢ such that ¢?(a) = zay. Specifically, z and y are
P17 (@1mgi1) - p(@i-1)zr, and yup(yi-1) - - 9971 (y1—g41) respectively.

4.2 Jumping Ahead

Once a repeated letter a 1s found, the remainder of the algorithm calculates the last occur-
rence of the letter a in the tree descent and then either invokes the BASICTREEDESCENT
algorithm or restarts our algorithm with new values of n and «.

Setting s and r such that n = sq+r and r < ¢, we use the strings z,y, and the integers ¢, r,
and s to describe ¢™(a). We know ¢%(a) = zay and p?¢(a) = ¢¥(z)z ay ¢?(y). Continuing
this way, we see that

Finally, applying ¢" to both sides yields

" (a) = @I (g) o T (1) o7 ()) @7 (y) ™ (y) - DI ().

Let GENERICLENGTH be a procedure which returns 37, ;. |9*7(z)|. Rather than using
the word z itself as input, we use the Parikh vector x to indicate the distribution of letters
in z, that is, x = (m;)1<j<a, Where m; = [z|,;.

Using GENERICLENGTH(¢, X, ¢,7,$,t,7) and LENGTH(p,n,a,%), we determine which of

X, Xo, or X3 the ith letter falls in and we handle these three cases separately.

Case 1: If x contains an exponentially growing letter, then Lemma 9 below states that
n = O(dlog ¢) and therefore, we can safely call BASICTREEDESCENT.

Otherwise, x grows polynomially. Using GENERICLENGTH, we do a binary search for a
value of ¢ such that the ith letter lies in the subword ¢**"(z), more precisely,

|¢(s—1)q+r($) . S0(t+1)q+r(:,3)| <i< |¢(s—1)q+r($) cee @M ()]

Once ¢ is found, we set n < (¢ + 1)g+ 7 and ¢ « ¢ — |g0(3_1)q+’“(w) e go(t+1)q+’“(w)|. As we
prove in Lemma 10 below, adjusting the values of ¢ and n this way lets us descend to the
point in the derivation tree where the letter a occurs last.

Case 2: Since we have already calculated the length of X, we need only set ¢ + ¢ — | X/],
set n < 7, and then call BASICTREEDESCENT. We call BASICTREEDESCENT, since now
n=r<q<d.

Case 3: Similarly to Case 1, we use GENERICLENGTH to do a binary search for a value
t, such that the ith letter lies in the the subword "t (y), that is,

" (1)@ (y) - - I ()| < < " ()T (y) - " (y)],

where i’ =i — | X;X2|. Once the value of ¢ is found, we rewrite ¢"(a) as
SO(s—l)q+r(:,3) . SO(t+1)q+r(:,3)So(tJrl)qur(a)go(t+1)q+r(y) . So(s—l)qur(y)‘

Since we wish to reduce i by the number of letters to the left of the substring @147 (q),
we set 2 «— ¢ — |g0(3_1)q+’“(w) e go(t+1)q+’“(w)|. and n < (¢t 4+ 1)g + r.

If y is polynomially growing, then Lemma 10 below shows that the letter a is not en-
countered again. Hence, we continue descending the tree until the next shortcut is taken or
until the bottom is reached.

Otherwise, y grows exponentially. By Lemma 9 below, n = O(dlog¢) and therefore we
call BASICTREEDESCENT.

4.3 Outline of Our Algorithm
The following pseudocode finds the ith letter of ¢"(a). We assume that 1 < i < |p"(a)|.

procedure FIND(¢,n,a,1);
ag < a;

for (I + 1 to 00) [/executes for < d iterations
z ¢ pla) = 2122+ Zlp(a));
find smallest index ¢ such that ¢ > |¢" (2129 2:_1)|;
P i— " Nzza o zmo)l; néen—1; aé z;
Ty Zuecc Ze—1s QLS Zes o YIS Zed1 o Zlp(a)]s

if (n < d) then return BASICTREEDESCENT(¢, n, a,1);
else if (a; = a; for some j <) then
g l—yg; s« [n/ql; ren—sq
x < Parikh vector of ¢ (z1_g11) -+ - @(T1_1) 21
y ¢ Parikh vector of yio(yi—1) - - 09 (Y1_g11);
S1 + GENERICLENGTH(p,x,q,7,5,0,7); //Length of X;.
Sy «+ LENGTH(p,r,a,i— S1); //Length of X,.

if (1 <S;) then //Casel
if (z grows exponentially) then return BASICTREEDESCENT(¢,n, a,1);
use GENERICLENGTH to do a binary search for ¢ such that
[l () - QDT ()| < 4 < [l () - HT ()]
i < i— GENERICLENGTH(p,x,q,7,8,t+ 1,%);
n+ (t+1)g+r;
return FIND(p,n, a,);
else if (i < 57 + S») then //Case 2
return BASICTREEDESCENT(p, 7, a,i — S1);
else // Case 3
use GENERICLENGTH to do a binary search for ¢ such that
" ()™t (y) - UV (y)| < i = S — 8o e ()™ (y) - " (y))]
i < i— GENERICLENGTH(p,x,q,7,8,t+ 1,%);
n+ (t+1)g+r;
if (y grows exponentially) then return BASICTREEDESCENT(p, n, a,);
else return FIND(¢,n, a,1);

5 LENGTH and GENERICLENGTH

Before moving on to the analysis of FIND, we discuss details concerning the subroutines
it calls. In particular, we show how GENERICLENGTH computes > .., |79t (a)|, how
LENGTH computes |¢™(a)|, as well as providing a run-time estimate for these routines.

5.1 LENGTH

Let ¥ = {a1, as, - - aq}. We define the incidence matriz of ¢ as M(p) = (mij)1<ij<d, where
mi; = |¢(a;)|a;. By multiplying the incidence matrix of ¢ by itself k& times, we get a matrix
whose m;; entry equals the number of a;’s in ¢*(a;), that is, M(p)* = M (") for k > 0.

Let a be the Parikh vector of a. Hence M(p)a is equal to the Parikh vector of ¢(a). The
sum of the values in M (p)a equals the length of ¢(a), that is,

p(a)| = e"M(p)a,

where e is the column vector whose entries are all 1’s.

We take some measures to avoid unnecessary calculations which may increase the running
time of LENGTH.

The well-known binary method of exponentiation (e.g., [1]) provides a method for raising
a matrix to the nth power with O(log n) matrix multiplications.

Note that, for our purposes, it suffices to report |™(a)| > ¢ without having to actually
calculate |p™(a)|. Accordingly, after every matrix M (") is calculated, we check whether the
number of immortal letters in ¢*(a) is less than i. Let v be the vector indicating the immortal
letters of ¥. Then we proceed by calculating whether v M (p*)a < i. If not, LENGTH stops
the calculation and reports that |¢"(a)| > 3.

If a 1s a slowly growing letter and other letters grow exponentially, then matrix entries
may grow too large. Lemma 2 below shows that this problem of quickly growing letters is
solved if we restrict ¥ to the letters accessible from a,

To summarize, when LENGTH is executed, it constructs the incidence matrix M(yp),
and then uses the binary method of exponentiation to calculate M (™) while taking the
precautions noted above. If M(¢™) is finally calculated, then LENGTH returns |¢"(a)| =
el M(¢")a.

We are now ready to formally define LENGTH. Since the binary method of matrix ex-
ponentiation will be used for other calculations, we write the method as the subroutine
POWER.

procedure POWER(p,n,a,1)
// Returns M (™) restricted to the letters accessible from a, making sure that the sum of
// the immortal letters of M(p™)a is less than .

Y + the identity matrix;

Z + M(y) restricted to the letters accessible from a;
v ¢ column vector indicating the immortal letters of ¢;

// calculate Y to be Z"
while (n > 0) do
if (n =1 mod 2) then
Y « Y7
if (vIY'a > i) then return NIL;
n « |[n/2];
if (n > 0) then
7« 7%
if (vIZa > i) then return NiL;

return Y;

The following is the pseudocode for the procedure LENGTH. We assume n > 0, and

1> 1.

procedure LENGTH(¢p, n, a, 7)
// returns |o™(a)l, if |¢"™(a)| < i; —1, otherwise.

5.2

e < column vector of all 1’s;
a < Parikh vector of a;

// calculate M (™) restricted to the letters accessible from a
Z < POWER(p,n,a,i);

// return the result

if ((Z = NI1L) or (eTZa > 7)) then return —1;
return e’ Za;

Analysis of POWER and LENGTH

Before discussing the running time of LENGTH, we prove a theorem about the size of the
numbers that POWER deals with. We start with two technical lemmas.

In the following lemma, let Im be the function that takes a string and deletes the mortal
letters from it.

Lemma 1 If ¢, a,%,w, and d are defined as before, and [Im(p"(a))| < i for some integer
k>0, then |p"(a)| < wii.

Proof. If k < d, then |p"(a)| < w* < w? and so the statement is true for any i. Hence we
assume k > d.

Applying ¢? to a mortal letter produces the empty string. Then applying ¢? to p*~4(a)
is equivalent to applying ¢ to the immortal letters of p*~¢(a). More precisely,

©"(a) = ¢ (Tm(p"*~(a)).

On the other hand, applying ¢¢ to an immortal letter produces a string of size at most w?.

Thus,
[¢*(a)] < w[Im(¢*%(a))]
Notice [Tm(p*%(a))| < [Im(p"(a))| < i. Therefore,

0" (a)| < wi.

Lemma 2 If ¢, a,i,w, and d are defined as before, and b is accessible from a, then |p*(b)| <
w?lp*(a)].

Proof. Since b is a letter accessible from a, then for some [< d, ¢'(a) contains a b. Hence
©*(b) is a substring of ¢*(¢'(a)) and therefore,

" (B)] < [@'(¢"(a))]-

Applying ¢! to any string increases the size by at most a factor of w'. Hence,

0" (b)] < w'|p®(a)l.

And since [< d,
" (B)] < w’le*(a)l.

We now prove our bounds on the entries of incidence matrices calculated by POWER.

Lemma 3 If M(y') is a matriz calculated during the ezecution of POWER, then each entry
of M (') is less than dw*di?.

Proof. If [=1 then each entry of M(!) is bounded by w.

Otherwise M (') is calculated by multiplying M(¢?) and M (") where vI M (pi)a < i
and vI M(¢p")a <i. By Lemma 1, eT M(¢*)a > w?i, and then by Lemma 2, the sum of any
column of M (") is less than w?%. Also, the sum of any row of M(p?) is less than dw??.
Therefore, each entry in M(¢') is bounded by w?? x dw?®i = dw*¥i2. |

Finally, we discuss the running time of LENGTH.

Theorem 4 The procedures POWER and LENGTH run in O((log n)d*(dlogw + logi)?) bit
operations.

Proof. The calculation of e Za in LENGTH takes less time than the matrix multiplications
in POWER so we restrict our attention to the running time of POWER.

By Lemma 3, no entry of Y and Z in POWER is greater than dw??:?
do O(logn) multiplications of d x d matrices with entries of size < O(dlogw + log¢) bits.
The total time taken by the matrix multiplications is O((log n)d*(dlog w + log)?).

In POWER, the checks which are done after each matrix multiplication involve at most
d? multiplications and additions, which requires only O(d?(dlogw + log:)?) bit operations
for each check.

Hence, both POWER and LENGTH run in O((log n)d*(dlog w + log4)) bit operations. ™

. Hence, we need to

5.3 SUPERPOWER

Before we discuss how GENERICLENGTH returns the value of 3, ., %" (2)|. We describe
an instrumental idea used in GENERICLENGTH: the ability to calculate matrices of the form
C,=I1+A+. ...+ A" efficiently. An inductive argument shows that if B = H‘ (I)} , then
B" = ¢, 9.

The following subroutine called SUPERPOWER uses the binary method of exponentiation
to compute B™ and hence C,,;; in log n matrix multiplications.

procedure SUPERPOWER(A,n,x,1)
// returns C,.yy =14+ A + ...+ A" making sure that the sum of the entries of C,11x
// is less than i

B<—H‘ (I)};

D <« the identity matrix of the same order as B;
< (3]
e’ < column vector of 1’s of the same order as x';

// calculate D to be B"
while (n > 0) do
if (n =1 mod 2) then
D « DB:
if (e7Dx’ > 4) then return NIL;
n « |[n/2];
if (n > 0) then

10

B + BZ%
if (e7Bx’ >) then return NIL;

// C, is in the lower left quadrant of D and
// A™ is in the upper left quadrant of D
return (C,, + A");

We prove a lemma concerning the size of the numbers that SUPERPOWER deals with.

Lemma 5 If ¢ : ¥* — ¥* is a homomorphism of depth d and width w, and A = M)
restricted to the letters accessible from a non-empty word x for some k, and B! is a matriz
calculated by SUPERPOWER(A, n,x,1), then each entry of B! is less than 2dw3™3?.

Proof. The matrix B = {‘é (I)}, is the same as the incidence matrix for the homomorphism

o X — ¥, where ¥ = {a1,a0,---,aq4,d],a},---, a4}, and ¢ is defined by: ¢'(a;) =
©*(a;), and ¢'(a};) = a;a} for all j < d.

SUPERPOWER computes M (¢"™) similar to the way POWER computes M(¢") but with a
few differences, namely, there is no regard for which letters are immortal or for which letters
are accessible from x. We address these issues first.

Since eB!x’ = eTC;;x, then eTB!x is non-decreasing with respect to I. Therefore,
SUPERPOWER correctly returns NIL when e’7B!x’ > i without any problems caused by the
deletion of mortal letters.

By our assumption, the set of letters {a;, as, -+, aq} is accessible from = and we see that
the set {a}, a},---,a,} is not. However, the entries in B! corresponding to these inaccessible
letters are always either 1 or 0 and hence are not in any danger of growing too large.

Now that the above concerns are handled, an argument analogous to Lemma 3 shows
that each entry of B! is less than d’w'*?i?, where w’ and d’ are the width and depth of ¢’
respectively. Since w’ < w* and d’ = 2d, then each entry of Bl is less than (2d)(w*)*(?9);? =
2dwdk42. [

5.4 GENERICLENGTH

GENERICLENGTH begins by constructing M(¢). Using POWER, it calculates Y = M (1),
and A = M(p?). SUPERPOWER is then used with A to compute the matrix C, =
M%) + M(p?) + -+ + M(go(s_t_l)q). Finally, we calculate eTYC,x to obtain the value
SR)

Because we are stopping the subroutines when a matrix becomes too large, it is necessary
to handle the case where t = 0 and s = 1 separately since the matrix M(¢?) may have larger
entries than desired. If this is the case, then we simply calculate Y = M (¢"), and return
the value of eTYx.

11

procedure GENERICLENGTH(p,X,q,7,$,t,1%)

[/ returns Yo ic, [@? (2)], i Ticje, 717 ()] < i,
// returns —1, otherwise.
e < column vector of all 1’s;

if (s —1<t) then
return 0;

else if (s — 1 =1t =0) then
Y < POWER(p,7,x,1); [/ M(e")
if (Y = NiL) then return —1;

else
Y « POWER(p, tq+ r,x,i); /I M(p™FT)
if (Y = NiL) then return —1;
A — POWER(p, q,X,%); //M(p?)

if (A = NIL) then return —1;
C < SUPERPOWER(A,s —t — 1,x,4);//M(pV9) + ... + M(pt~19)
if (C = NIL) then return —1;
Y « YC,.; J/M(ptt7T) 4 s M (pleVatr)

if (eTYx > i) then return —1;
return e”Yx;

We end this section by proving a theorem about the running time of GENERICLENGTH.
Theorem 6 GENERICLENGTH runs in O((log n)d®(d?logw + log 1)?) time.

Proof. The longest possible execution of GENERICLENGTH calculates the matrix Y by
using SUPERPOWER when t < s and s # 1. Recall that s¢ + r = n and hence gt + r < n.
Therefore, by Theorem 4, the running time of POWER called within GENERICLENGTH is
O((log n)d?(dlogw + logi)?).

An argument analogous to Theorem 4 shows that SUPERPOWER runs in

O((log n)d®(dklog w + log i)?)

bit operations. But k = ¢ < d.
Hence the running time of GENERICLENGTH takes worst case

O((log n)d*(d* log w + log i)*)

bit operations. [

12

6 Correctness and Analysis of the New Algorithm

We first prove the correctness of FIND, and then discuss its running time.
Theorem 7 FIND(p,n,a,i) returns the ith letter of ¢™(a).

Proof. We proceed by induction on n. When n < d, the algorithm calls BASICTREEDES-
CENT thus returning the correct answer. Otherwise, we assume that our algorithm works
for values less than n. It remains to show that every time the value of n is reduced that a
and ¢ are modified in such a way that the ith letter of ¢"(a) is the same.

The first part of the procedure descends the derivation tree one level at a time. Each time
n is decreased by 1, the values for a, and 7 are z; and i — |¢" (2129 - - z:_1)| respectively,
since the ith letter of ¢™(a) lies in the subtree of z.

When a repeated letter a is found, we calculate the values for ¢, v, s, and y such that
for any t < s,

™ (a) = T () L M ()T ()" (y) - - - T ().

Accordingly, for both Case 1 and Case 3, i + i — |~V (g) ... D7 ()] and n

(t+1)g+r.
Therefore, each time n is reduced, the values for a and i are also modified correctly.
Hence FIND returns the ith letter of ¢"(a). u

Theorems 4 and 6 already tell us the running times of the subroutines LENGTH and
GENERICLENGTH.

Lemma 8 The procedure BASICTREEDESCENT uses O(nw(log n)d®(dlog w+log)?) bit op-
erations.

Proof. We obtain the result by multiplying the running time of LENGTH by nw. [

We need to show that whenever BASICTREEDESCENT is called, n is polynomial in log ¢,
w, or d. In our algorithm, we call BASICTREEDESCENT when n < d, when n =r < ¢ < d,
or when z or y grows exponentially. The following lemma shows that when z or y grows
exponentially, then n is a polynomial in d and log .

Lemma 9 Let a € %, and u,v € ¥* such that ¢(a) = uv for some q < d. If the ith letter
of " (a) lies in the substring " 4(v), and u contains an exponentially growing letter b, then

n = O(dlog).

Proof. If p?(b) contains less than 2 exponentially growing letters, then ¢7(b) contains at
most one exponentially growing letter for all 7 > 0, which is impossible. Hence there are at
least 2 exponentially growing letters in p%(u). Therefore |p™(u)| grows at least as fast as ¢*
where ¢ = 21/4,

Since, ¢ < |p"4(u)| < 4, then we know (n—q)log ¢ < logi. Hence n < (logi)/(log c)+
q. But 1/log ¢ = O(d) and ¢ < d. Consequently, n = O(dlog). [

13

We apply Lemma 9 to Case 1 by setting v = x and v = ay. For Case 3, we know a grows
exponentially whenever y does, Hence, we apply Lemma 9 with v = za and v = y.

We have running times for the subroutines that FIND calls, but FIND also calls itself.
The following shows that FIND recursively calls itself at most d times by showing that each
of the d letters can be the repeated letter of our algorithm at most one time.

Lemma 10 Let q, v, and t be integers such that r < q, and %(a) = zay for some x,y € L*
and a € . If & grows polynomially and i < | (z)|, or if y grows polynomially and
i > |t (za)|, then descending the derivation tree of @Y+ (a) to the ith letter encounters
the letter a exactly once at the root.

Proof. Consider the case where z grows polynomially and i < |¢**"(z)|. Descending q
levels takes us into the subword z. Hence, our descent takes an earlier branch than the path
to the letter a in zay at level q.

Since no a is encountered before the tree descent leaves the path to the a at level ¢, a
second a can only be encountered after leaving this path. But encountering another a would
imply that a and hence is exponentially growing, a contradiction.

Otherwise y grows polynomially and ¢ > |p**"(za)|. Similarly, we descend ¢ levels into
the subword y. If our descent encounters an a after leaving the path to the letter a in zay
at level ¢, then we know y grows exponentially, another contradiction. [

Finally, we state our main result: the running time of FIND is polynomial.

Theorem 11 The number of bit operations used by FIND is
O((d + log #)w(log n)d*(dlog w + log i)* + (log n)*d*(d? log w + log ©)?).

Proof. Let L be the running time of LENGTH, and G, the running time of GENERICLENGTH.

At worst case, the “for” loop of FIND executes d times, calculating the length of the
strings of subtrees w times, before one of the three cases is reached. Handling the cases
takes at worst case O(log nG + L) time. This gives one instantiation of FIND a running time

of
O(wdL + (logn)G).

We know FIND recursively calls itself at most d times before reaching the base case and
calling BASICTREEDESCENT with n < dlog:. The running time of BASICTREEDESCENT
then 1s

O(nwL) = O(d(log i) L).

Hence the total running time of FIND is
O(d(wdL + (logn)G) 4+ wd(log ¢)L).
Rearranging and substituting for G and L gives us the final running time. [

14

Table 1: Performance of FIND and BASICTREEDESCENT in seconds

FIND n = 1000 FIND n = 1000000 BTD n = 1000

Y| d| wl =100 104 10¢ || =100 104 10% || +=100 10* 10¢
exp| 5| 2 0.17 0.25 0.33 0.19 0.27 041 3.87 4.40 4.71
10 0.47 0.75 1.17 0.42 0.59 0.86 9.90 10.35 10.65
30 | 2 7.67 16.58 19.27 7.59 16.83 19.93 || 164.97 214.80 263.64
10 7.24 10.89 14.13 7.19 10.78 14.09 || 151.58 200.73 211.40
poly | 5| 2 0.11 0.22 0.36 0.17 0.19 0.27 4.31 4.15 3.93
10 0.26 0.30 0.53 0.40 0.41 0.46 9.75 18.19 42.05
30 | 2 5.08 5.76 6.32 5.45 6.04 6.35 20.24 23.65 25.47
10 4.79 496 6.27 5.33 5.62 5.68 59.30 116.15 76.08
mx| 5| 2 0.08 0.12 0.19 0.14 0.15 0.03 4.68 3.11 3.17
10 0.18 0.23 0.26 0.24 0.33 0.34 7.82 8.34 7.54
30 | 2 2.67 3.09 3.36 3.34 3.70 4.04 | 4552 4797 49.54
10 6.67 9.39 11.98 6.78 9.53 12.10 || 151.26 161.09 159.70

The most significant difference between the running times of FIND and BASICTREEDES-
CENT is that there is only a (logn)? term in the running time of FIND whereas there is a
factor of » in the running time of BASICTREEDESCENT.

The upper bound we obtained in Theorem 11 overstates the actual running time obtained
in practice. For most typical input data, FIND is rarely called more than once. It makes
sense, then, to implement these procedures and analyze the actual running time of FIND for
varying n, ¢, d, and w.

Table 1 reports the performance of FIND with » = 1000, and n» = 1000000. The running
times of BASICTREEDESCENT with n = 1000 are included for comparison. Each row of the
table corresponds to a homomorphism with varying values of w and d and with alphabets
of exponentially growing letters, polynomially growing letters, or both. For each homomor-
phism, we calculated the 100th, the 10000th, and the 1000000th letter of each string.

These results show a number of details concerning the performance of FIND on various
inputs. The running times of both FIND and BASICTREEDESCENT have a high dependence
on d. In practice however, d is not very large (typically less than 10 letters).

Notice that BASICTREEDESCENT does not perform as well as FIND does when n = 1000.
For even larger n, the BASICTREEDESCENT would have an even worse performance com-
pared with FIND. For example, obtaining the ith letter of p'°°"°°(a) using BASICTREEDES-
CENT would have taken about a day for each calculation. This shows that our new algorithm
enables us to calculate letters of strings produced by homomorphisms which were not ob-
tainable before, particularly those produced with large values of n.

15

7 Extensions

Our algorithm may be easily extended to calculate how many times each letter in ¥ occurs
in the prefix of ¢™(a) of length ¢. The procedures LENGTH and GENERICLENGTH compute
the lengths of strings which precede the ith letter of ¢"(a). In the process of calculating
these lengths, we already compute the Parikh vector of these strings. Computing the total
distribution of the letters which precede the ith letter entails only summing the corresponding
Parikh vectors each time we reduce i. By subtracting two Parikh vectors for prefixes of
different lengths, we can also efficiently compute the letter distributions of subwords.

8 Open Problem

It would be interesting to extend these results to efficiently compute the ¢th letter of strings
produced by the iterated application of a finite-state transducer. An example of such a string
is the well-known Kolakoski sequence [6]:

K =12211212212211211221211- ..

which has the property that the sequence of run-lengths of K is the same as K itself. A
procedure to efficiently calculate the letter distributions for prefixes of these strings would
help in studying the long range distribution of such sequences [3].

References

[1] E. Bach and J. Shallit. Algorithmic Number Theory. MIT Press, 1996.
[2] F. M. Dekking. Recurrent sets. Adv. in Math. 44 (1982), 78-104.

[3] F. M. Dekking. What is the long range order in the Kolakoski sequence? In R. V.
Moody, ed., The Mathematics of Long-Range Periodic Order, NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., Vol. 489, Kluwer, 1997, pp. 115-125.

[4] N. D. Jones and S. Skyum. Complexity of some problems concerning L systems. Math.
Systems Theory 13 (1979), 29-43.

[6] N. D. Jones and S. Skyum. A note on the complexity of general DOL membership.
SIAM J. Comput. 10 (1981), 114-117.

[6] W. Kolakoski. Elementary Problem 5304. Amer. Math. Monthly 72 (1965), 674. Solution
in 73 (1966), 681 682.

[7] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and Plants. Lecture
Notes in Biomathematics, Vol. 79, Springer-Verlag, 1989.

16

8]

P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-
Verlag, 1990.

A. Salomaa. On exponential growth in Lindenmayer systems. Proc. Konin. Neder.

Akad. Wet. Series A 76 (1973), 23-29.

J. Shallit. Number theory and formal languages. In D. A. Hejhal, J. Friedman, M. C.
Gutzwiller, and A. M. Odlyzko, eds., Emerging Applications of Number Theory, IMA
Volumes in Mathematics and Applications, Vol. 109, to appear.

David Swart. Calculating the ith Letter in an Iterated Homomorphism M.Math. Thesis,
Department of Computer Science, University of Waterloo, 1998 (in preparation).

A. L. Szilard and R. E. Quinton. An interpretation for DOL systems by computer
graphics. The Science Terrapin 4 (1979), 8-13.

P. Vitanyi. Lindenmayer Systems: Structure, Languages, and Growth Functions. Math-
ematical Centre Tracts, Vol. 96, Mathematisch Centrum, Amsterdam, 1980.

17

