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Abstract

Let � be a �nite alphabet� and let � � �� � �� be a homomorphism� i�e�� a mapping
satisfying ��xy� � ��x���y� for all x� y � ��� Let a � �� and let i � 	� n � 
 be
integers� We give the �rst e�cient algorithm for computing the ith letter of �n�a�� Our
algorithm runs in time polynomial in the size of the input� i�e�� polynomial in logn�
log i� and the description size of �� Our algorithm can be easily modi�ed to give the
distribution of letters in the pre�x of length i of �n�a�� There are applications of our
algorithm to computer graphics and biological modelling�

� Introduction

Let � be a �nite alphabet� A homomorphism is a map � from �� to �� such that ��xy� �
��x���y� for all x� y � ��� Let a � �� we de�ne ���a� � a� and �i�a� � ���i���a�� for i � 	�

For x � ��� and a � �� let jxj denote the length of x� and let jxja denote the number
of occurrences of the letter a in x� We de�ne the the depth d of a homomorphism � to be
the cardinality of its domain �� and the width w of a homomorphism � to be the maximum
value of j��a�j over all a � ��

Consider the following problem


Given a homomorphism � 
 �� � ��� integers n � � and i � 	� and a letter
a � �� e�ciently calculate the ith letter of �n�a��

In this paper� we present the �rst algorithm which solves this problem in time bounded by
a polynomial in the size of the input data� More precisely� the running time of our algorithm
is polynomial in log n� log i� w� and d� Our model of computation is the familiar 
naive bit
complexity� model� see� for example� �	�� In this model� adding together two n�bit integers
uses O�n� bit operations� while multiplying two n�bit integers uses O�n�� bit operations�
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Figure 	
 Geometric interpretations of strings produced by D�L�systems ����

Let p be the pre�x of �n�a� of length i� Our algorithm is easily modi�ed to return the
distribution of the �rst i letters in �n�a� as the Parikh vector p � �mb�b��� where mb � jpjb�

Before proceding further� we discuss some properties of the letters of � with respect
to a homomorphism �� A letter b is accessible from a if �n�a� � w�bw� for some strings
w�� w� � �� and for some n � �� A letter a is mortal if �n�a� � � for some n � �� We say a
is immortal if it is not mortal�

Iterated homomorphisms have been previously studied in the form of deterministic con�
text free Lindenmayer systems� or D�L�systems �	��� A D�L�system is a ��tuple G � f�� �� zg
where � is a �nite alphabet� � is a set of production rules� and z � �� is the initial word or
axiom� The language of a D�L�system G is de�ned as LG � f�n�z� 
 n � �g�

A word of a D�L�language can be interpreted as instructions in a 
turtle language� to
draw an image �	��� Many have used D�L�systems to generate fractals and to model biological
systems such as the branching structure of a tree ��� �� ��� see Figure 	� In this context� our
new algorithm allows us to e�ciently calculate the structure of small twigs� without having

to calculate the structure of the entire tree�

Another application of our algorithm is the e�cient computation of the ith letter of a
�xed point of a homomorphism� which was stated as an open problem in �	��� Let a be a
letter such that ��a� � ax� where x is a string containing at least one immortal letter� Then
� has a unique �xed point starting with a� of the form

���a� � ax��x����x����x� � � � �

We can e�ciently compute the ith letter of such a �xed point by using binary search to
determine which factor the ith letter lies in� and then using our algorithm to �nd the appro�
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priate letter within a factor� Such a binary search uses an e�cient subroutine for computing
jx��x����x� � � ��n�x�j� which is given in the algorithm SuperPower below in Section ����

This paper is based on results in the second author�s M�Math� thesis �		��

� Previous Work

Several authors have discussed the complexity of decision problems involving D�L�systems�
For example� Jones and Skyum ��� gave a polynomial time algorithm for solving the D�L
membership problem
 given G and x� is x � G� Their result is somewhat orthogonal to
ours� for in their situation the input is x� z� and �� and they want to decide if there exists
n with x � �n�z�� Note that jxj could be as large as wnjzj� where w is the width of �� This
quantity is doubly exponential in log n� Later� Jones and Skyum ��� gave a DSPACE�log� n�
algorithm to solve the D�L membership problem�

The growth function fG of a D�L�system G is de�ned by fG�n� � j�n�z�j� Salomaa ���
showed that the growth function of any D�L�system is either polynomial or exponential�
With respect to a homomorphism �� we say a string x � �� grows polynomially if j�n�x�j �
O�nc� for some constant c� Otherwise� we say x grows exponentially� There is an e�cient
algorithm to determine if a letter grows exponentially �	���

� The BasicTreeDescent Subroutine

We �rst discuss a simple method to calculate the ith letter of �n�a�� called BasicTreeDes�
cent� This algorithm is similar to one found by Jones and Skyum ���� While its running
time is not necessarily polynomial in log n� log i� w� and d� we use BasicTreeDescent to
calculate the ith letter of �n�a� for the cases in which n is polynomial in log i� w� and d�

For an integer n and a letter a � �� we view the sequence of words a� ��a�� ���a�� � � ��
�n�a� as labels of the levels of an ordered tree� More precisely� the derivation tree of �n�a� is
the ordered tree of height n� with a as its root� such that every non�leaf node b has children
labeled with the letters of ��b�� Instead of computing �n�a� by repeatedly applying � to
each successive string� we calculate the ith letter of �n�a� by descending n levels down the
derivation tree to the appropriate letter� The only di�culty lies in determining which subtree
to descend�

Let Length��� n� a� i� be a procedure which returns the value j�n�a�j and let ��a� �
z � z�z� � � � zj��a�j� BasicTreeDescent uses Length to compute j�n���z��j� j�n���z��j� � � �
and by adding� computes j�n���z��j� j�n���z�z��j� � � � until a value t is determined such that

j�n���z�z� � � � zt���j � i � j�n���z�z� � � � zt�j�

Once t has been calculated� the algorithm adjusts the values of n� a� and i to n� 	� zt� and
i � j�n���z�z� � � � zt���j respectively and thus descends one level in the derivation tree� Of
course� if n � �� the algorithm simply returns a�
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During the execution of the Basic Tree Descent algorithm� we descend exactly n levels�
Each time we do so� we calculate the length of at most w strings� Since the running time is
at least linear in n� BasicTreeDescent is only useful to us when n itself is bounded by a
polynomial in log i� w� and d�

� Our Improved Algorithm

The idea behind our new algorithm is to avoid descending n levels in the derivation tree
for the cases where n is not bounded by a polynomial in log i� w� and d� by exploiting the
recursive nature of the homomorphism� Basically� we descend the derivation tree until we
encounter a letter for the second time and then shortcut to the node where this repeated
letter occurs last� We continue descending� taking shortcuts whenever possible until we reach
the ith letter of the bottom level�

��� Finding a Repeated Letter

We discuss some notation concerning the path taken down the derivation tree� Let a� be
the root of the derivation tree� Let aj be the letter encountered after descending j levels
and set xj� yj such that ��aj��� � xjajyj� Therefore� after descending l levels� the sequence
of letters encountered during the tree descent is a�� a�� � � � � al and the sequences of strings
x�� x�� � � � � xl and y�� y�� � � � � yl describe the branches of the tree which were not followed�

We begin our algorithm by descending the derivation tree until we encounter some letter
al for the second time� where l is the number of levels we have descended thus far� Let l� q
be the level containing the previous occurrence of al� We need only descend d levels before
encountering such a letter al since j�j � d� More precisely� al � al�q for some l � d�

By descending l levels� we have calculated new values for n� a� and i� which yield the
same results� namely i � j�n���x���

n���x�� � � ��
n�l�xl�j� n � l� and al� We have also dis�

covered strings x and y and an integer q such that �q�a� � xay� Speci�cally� x and y are
�q���xl�q��� � � ���xl���xl� and yl��yl��� � � ��q���yl�q��� respectively�

��� Jumping Ahead

Once a repeated letter a is found� the remainder of the algorithm calculates the last occur�
rence of the letter a in the tree descent and then either invokes the BasicTreeDescent
algorithm or restarts our algorithm with new values of n and i�

Setting s and r such that n � sq�r and r � q� we use the strings x� y� and the integers q� r�
and s to describe �n�a�� We know �q�a� � xa y and ��q�a� � �q�x�xa y �q�y�� Continuing
this way� we see that

�sq�a� � ��s���q�x� � � ��q�x�xa y �q�y� � � ���s���q�y��
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Finally� applying �r to both sides yields

�n�a� � ��s���q�r�x� � � ��q�r�x��r�x�� �z �
X�

�r�a�� �z �
X�

�r�y��q�r�y� � � ���s���q�r�y�� �z �
X�

�

LetGenericLength be a procedure which returns
P

t�j�s j�
qj�r�x�j� Rather than using

the word x itself as input� we use the Parikh vector x to indicate the distribution of letters
in x� that is� x � �mj���j�d� where mj � jxjaj�

Using GenericLength���x� q� r� s� t� i� and Length��� n� a� i�� we determine which of
X�� X�� or X� the ith letter falls in and we handle these three cases separately�

Case �� If x contains an exponentially growing letter� then Lemma � below states that
n � O�d log i� and therefore� we can safely call BasicTreeDescent�

Otherwise� x grows polynomially� Using GenericLength� we do a binary search for a
value of t such that the ith letter lies in the subword �tq�r�x�� more precisely�

j��s���q�r�x� � � ���t���q�r�x�j � i � j��s���q�r�x� � � ��tq�r�x�j�

Once t is found� we set n � �t � 	�q � r and i � i � j��s���q�r�x� � � ���t���q�r�x�j� As we
prove in Lemma 	� below� adjusting the values of i and n this way lets us descend to the
point in the derivation tree where the letter a occurs last�

Case �� Since we have already calculated the length of X�� we need only set i� i�jX�j�
set n � r� and then call BasicTreeDescent� We call BasicTreeDescent� since now
n � r � q � d�

Case 	� Similarly to Case 	� we use GenericLength to do a binary search for a value
t� such that the ith letter lies in the the subword �tq�r�y�� that is�

j�r�y��q�r�y� � � ���t���q�r�y�j � i� � j�r�y��q�r�y� � � ��tq�r�y�j�

where i� � i� jX�X�j� Once the value of t is found� we rewrite �n�a� as

��s���q�r�x� � � ���t���q�r�x���t���q�r�a���t���q�r�y� � � ���s���q�r�y��

Since we wish to reduce i by the number of letters to the left of the substring ��t���q�r�a��
we set i� i� j��s���q�r�x� � � ���t���q�r�x�j� and n� �t� 	�q � r�

If y is polynomially growing� then Lemma 	� below shows that the letter a is not en�
countered again� Hence� we continue descending the tree until the next shortcut is taken or
until the bottom is reached�

Otherwise� y grows exponentially� By Lemma � below� n � O�d log i� and therefore we
call BasicTreeDescent�
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��� Outline of Our Algorithm

The following pseudocode �nds the ith letter of �n�a�� We assume that 	 � i � j�n�a�j�

procedure Find��� n� a� i��
a� � a�

for �l� 	 to �� ��executes for � d iterations
z � ��a� � z�z� � � � zj��a�j�
�nd smallest index t such that i � j�n���z�z� � � � zt���j�
i� i� j�n���z�z� � � � zt���j� n� n� 	� a� zt�
xl � z� � � � zt��� al � zt� yl � zt�� � � � zj��a�j�

if �n � d� then return BasicTreeDescent��� n� a� i��
else if �aj � al for some j � l� then

q� l� j� s� bn�qc� r� n� sq�
x� Parikh vector of �q���xl�q��� � � ���xl���xl�
y� Parikh vector of yl��yl��� � � ��q���yl�q����
S� � GenericLength���x� q� r� s� �� i�� ��Length of X��
S� � Length��� r� a� i� S��� ��Length of X��

if �i � S�� then ��Case 	
if �x grows exponentially� then return BasicTreeDescent��� n� a� i��
use GenericLength to do a binary search for t such that

j��s���q�r�x� � � ���t���q�r�x�j � i � j��s���q�r�x� � � ��tq�r�x�j
i� i� GenericLength���x� q� r� s� t� 	� i��
n� �t� 	�q � r�
return Find��� n� a� i��

else if �i � S� � S�� then ��Case �
return BasicTreeDescent��� r� a� i� S���

else �� Case �
use GenericLength to do a binary search for t such that

j�r�y��q�r�y� � � ���t���q�r�y�j � i� S� � S� � j�r�y��q�r�y� � � ��tq�r�y�j
i� i� GenericLength���x� q� r� s� t� 	� i��
n� �t� 	�q � r�
if �y grows exponentially� then return BasicTreeDescent��� n� a� i��
else return Find��� n� a� i��
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� Length and GenericLength

Before moving on to the analysis of Find� we discuss details concerning the subroutines
it calls� In particular� we show how GenericLength computes

P
t��s j�

jq�r�a�j� how
Length computes j�n�a�j� as well as providing a run�time estimate for these routines�

��� Length

Let � � fa�� a�� � � � adg� We de�ne the incidence matrix of � as M��� � �mij���i�j�d� where
mij � j��aj�jai� By multiplying the incidence matrix of � by itself k times� we get a matrix
whose mij entry equals the number of ai�s in �k�aj�� that is� M���k � M��k� for k � ��

Let a be the Parikh vector of a� HenceM���a is equal to the Parikh vector of ��a�� The
sum of the values in M���a equals the length of ��a�� that is�

j��a�j � eTM���a�

where e is the column vector whose entries are all 	�s�
We take some measures to avoid unnecessary calculations which may increase the running

time of Length�
The well�known binary method of exponentiation �e�g�� �	�� provides a method for raising

a matrix to the nth power with O�log n� matrix multiplications�
Note that� for our purposes� it su�ces to report j�n�a�j � i without having to actually

calculate j�n�a�j� Accordingly� after every matrix M��k� is calculated� we check whether the
number of immortal letters in �k�a� is less than i� Let v be the vector indicating the immortal
letters of �� Then we proceed by calculating whether vM��k�a � i� If not� Length stops
the calculation and reports that j�n�a�j � i�

If a is a slowly growing letter and other letters grow exponentially� then matrix entries
may grow too large� Lemma � below shows that this problem of quickly growing letters is
solved if we restrict � to the letters accessible from a�

To summarize� when Length is executed� it constructs the incidence matrix M����
and then uses the binary method of exponentiation to calculate M��n� while taking the
precautions noted above� If M��n� is �nally calculated� then Length returns j�n�a�j �
eTM��n�a�

We are now ready to formally de�ne Length� Since the binary method of matrix ex�
ponentiation will be used for other calculations� we write the method as the subroutine
Power�

procedure Power��� n�a� i�
�� Returns M��n� restricted to the letters accessible from a� making sure that the sum of
�� the immortal letters of M��n�a is less than i�

Y � the identity matrix�
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Z �M��� restricted to the letters accessible from a�
v� column vector indicating the immortal letters of ��

�� calculate Y to be Zn

while �n � �� do
if �n 	 	 mod �� then

Y � Y Z�
if �vTY a � i� then return nil�

n� bn��c�
if �n � �� then

Z � Z��
if �vTZa � i� then return nil�

return Y �

The following is the pseudocode for the procedure Length� We assume n � �� and
i � 	�

procedure Length��� n� a� i�
�� returns j�n�a�j� if j�n�a�j � i� �	� otherwise�

e� column vector of all 	�s�
a� Parikh vector of a�

�� calculate M��n� restricted to the letters accessible from a
Z � Power��� n�a� i��

�� return the result
if ��Z � nil� or �eTZa � i�� then return �	�
return eTZa�

��� Analysis of Power and Length

Before discussing the running time of Length� we prove a theorem about the size of the
numbers that Power deals with� We start with two technical lemmas�

In the following lemma� let Im be the function that takes a string and deletes the mortal
letters from it�

Lemma � If �� a� i� w� and d are de
ned as before� and jIm��k�a��j � i for some integer

k � �� then j�k�a�j � wdi�
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Proof� If k � d� then j�k�a�j � wk � wd and so the statement is true for any i� Hence we
assume k � d�

Applying �d to a mortal letter produces the empty string� Then applying �d to �k�d�a�
is equivalent to applying �d to the immortal letters of �k�d�a�� More precisely�

�k�a� � �d�Im��k�d�a���

On the other hand� applying �d to an immortal letter produces a string of size at most wd�
Thus�

j�k�a�j � wdjIm��k�d�a��j�

Notice jIm��k�d�a��j � jIm��k�a��j � i� Therefore�

j�k�a�j � wdi�

Lemma � If �� a� i� w� and d are de
ned as before� and b is accessible from a� then j�k�b�j �
wdj�k�a�j�

Proof� Since b is a letter accessible from a� then for some l � d� �l�a� contains a b� Hence
�k�b� is a substring of �k��l�a�� and therefore�

j�k�b�j � j�l��k�a��j�

Applying �l to any string increases the size by at most a factor of wl� Hence�

j�k�b�j � wlj�k�a�j�

And since l � d�
j�k�b�j � wdj�k�a�j�

We now prove our bounds on the entries of incidence matrices calculated by Power�

Lemma � If M��l� is a matrix calculated during the execution of Power� then each entry

of M��l� is less than dw	di��

Proof� If l � 	 then each entry of M��l� is bounded by w�
Otherwise M��l� is calculated by multiplying M��j� and M��k� where vTM��j�a � i

and vTM��k�a � i� By Lemma 	� eTM��k�a � wdi� and then by Lemma �� the sum of any
column of M��k� is less than w�di� Also� the sum of any row of M��j� is less than dw�di�
Therefore� each entry in M��l� is bounded by w�di
 dw�di � dw	di��
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Finally� we discuss the running time of Length�

Theorem � The procedures Power and Length run in O��log n�d��d log w � log i��� bit
operations�

Proof� The calculation of eTZa in Length takes less time than the matrix multiplications
in Power so we restrict our attention to the running time of Power�

By Lemma �� no entry of Y and Z in Power is greater than dw	di�� Hence� we need to
do O�log n� multiplications of d 
 d matrices with entries of size � O�d log w � log i� bits�
The total time taken by the matrix multiplications is O��log n�d��d log w � log i����

In Power� the checks which are done after each matrix multiplication involve at most
d� multiplications and additions� which requires only O�d��d logw � log i��� bit operations
for each check�

Hence� both Power and Length run in O��log n�d��d log w� log i�� bit operations�

��� SuperPower

Before we discuss how GenericLength returns the value of
P

t�j�s j�
qj�r�x�j� We describe

an instrumental idea used in GenericLength
 the ability to calculate matrices of the form
Cn � I�A� � � ��An�� e�ciently� An inductive argument shows that if B �

h
A

I

O

I

i
� then

Bn �
h
An

Cn

O

I

i
�

The following subroutine called SuperPower uses the binary method of exponentiation
to compute Bn and hence Cn�� in log n matrix multiplications�

procedure SuperPower�A� n�x� i�
�� returns Cn�� � I�A � � � ��An� making sure that the sum of the entries of Cn��x

�� is less than i

B�
h
A

I

O

I

i
�

D� the identity matrix of the same order as B�

x� �
h
x

�

i
�

e� � column vector of 	�s of the same order as x��

�� calculate D to be Bn

while �n � �� do
if �n 	 	 mod �� then

D� DB�
if �e�TDx� � i� then return nil�

n� bn��c�
if �n � �� then

	�



B� B��
if �e�TBx� � i� then return nil�

�� Cn is in the lower left quadrant of D and
�� An is in the upper left quadrant of D
return �Cn �An��

We prove a lemma concerning the size of the numbers that SuperPower deals with�

Lemma � If � 
 �� � �� is a homomorphism of depth d and width w� and A � M��k�
restricted to the letters accessible from a non�empty word x for some k� and Bl is a matrix

calculated by SuperPower�A� n�x� i�� then each entry of Bl is less than �dw
dki��

Proof� The matrix B �
h
A

C

O

I

i
� is the same as the incidence matrix for the homomorphism

�� 
 ��� � ���� where �� � fa�� a�� � � � � ad� a��� a
�
�� � � � � a

�
dg� and �� is de�ned by
 ���aj� �

�k�aj�� and ���a�j� � aja
�
j for all j � d�

SuperPower computesM���n� similar to the way Power computesM��n� but with a
few di�erences� namely� there is no regard for which letters are immortal or for which letters
are accessible from x� We address these issues �rst�

Since e�TBlx� � eTCl��x� then e�TBlx is non�decreasing with respect to l� Therefore�
SuperPower correctly returns nil when e�TBlx� � i without any problems caused by the
deletion of mortal letters�

By our assumption� the set of letters fa�� a�� � � � � adg is accessible from x and we see that
the set fa��� a

�
�� � � � � a

�
dg is not� However� the entries in B

l corresponding to these inaccessible
letters are always either 	 or � and hence are not in any danger of growing too large�

Now that the above concerns are handled� an argument analogous to Lemma � shows
that each entry of Bl is less than d�w�	d�

i�� where w� and d� are the width and depth of ��

respectively� Since w� � wk and d� � �d� then each entry of Bl is less than ��d��wk�	��d�i� �
�dw
dki��

��� GenericLength

GenericLength begins by constructingM���� Using Power� it calculates Y � M��tq�r��
and A � M��q�� SuperPower is then used with A to compute the matrix Cn �
M���� � M��q� � � � � � M���s�t���q�� Finally� we calculate eTYCnx to obtain the valueP

t�j�s j�
jq�r�x�j�

Because we are stopping the subroutines when a matrix becomes too large� it is necessary
to handle the case where t � � and s � 	 separately since the matrix M��q� may have larger
entries than desired� If this is the case� then we simply calculate Y � M��r�� and return
the value of eTYx�

		



procedure GenericLength���x� q� r� s� t� i�
�� returns

P
t�j�s j�

jq�r�x�j� if
P

t�j�s j�
jq�r�x�j � i�

�� returns �	� otherwise�
e� column vector of all 	�s�

if �s� 	 � t� then
return ��

else if �s� 	 � t � �� then
Y� Power��� r�x� i�� ��M��r�
if �Y � nil� then return �	�

else
Y� Power��� tq� r�x� i�� ��M��tq�r�
if �Y � nil� then return �	�
A� Power��� q�x� i�� ��M��q�
if �A � nil� then return �	�
C� SuperPower�A� s� t� 	�x� i����M�����q� � � � ��M���s�t���q�
if �C � nil� then return �	�
Y� YCn� ��M��tq�r� � � � ��M���s���q�r�

if �eTYx � i� then return �	�
return eTYx�

We end this section by proving a theorem about the running time of GenericLength�

Theorem � GenericLength runs in O��log n�d��d� logw � log i��� time�

Proof� The longest possible execution of GenericLength calculates the matrix Y by
using SuperPower when t � s and s �� 	� Recall that sq � r � n and hence qt� r � n�
Therefore� by Theorem �� the running time of Power called within GenericLength is
O��log n�d��d logw � log i����

An argument analogous to Theorem � shows that SuperPower runs in

O��log n�d��dk log w � log i���

bit operations� But k � q � d�
Hence the running time of GenericLength takes worst case

O��log n�d��d� logw � log i���

bit operations�
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� Correctness and Analysis of the New Algorithm

We �rst prove the correctness of Find� and then discuss its running time�

Theorem � Find��� n� a� i� returns the ith letter of �n�a��

Proof� We proceed by induction on n� When n � d� the algorithm calls BasicTreeDes�
cent thus returning the correct answer� Otherwise� we assume that our algorithm works
for values less than n� It remains to show that every time the value of n is reduced that a
and i are modi�ed in such a way that the ith letter of �n�a� is the same�

The �rst part of the procedure descends the derivation tree one level at a time� Each time
n is decreased by 	� the values for a� and i are zt and i � j�n���z�z� � � � zt���j respectively�
since the ith letter of �n�a� lies in the subtree of zt�

When a repeated letter a is found� we calculate the values for q� r� s� x and y such that
for any t � s�

�n�a� � ��s���q�r�x� � � ��tq�r�x��tq�r�a��tq�r�y� � � ���s���q�r�y��

Accordingly� for both Case 	 and Case �� i � i � j��s���q�r�x� � � ���t���q�r�x�j� and n �
�t� 	�q � r�

Therefore� each time n is reduced� the values for a and i are also modi�ed correctly�
Hence Find returns the ith letter of �n�a��

Theorems � and � already tell us the running times of the subroutines Length and
GenericLength�

Lemma 	 The procedureBasicTreeDescent uses O�nw�log n�d��d log w�log i��� bit op�
erations�

Proof� We obtain the result by multiplying the running time of Length by nw�

We need to show that whenever BasicTreeDescent is called� n is polynomial in log i�
w� or d� In our algorithm� we call BasicTreeDescent when n � d� when n � r � q � d�
or when x or y grows exponentially� The following lemma shows that when x or y grows
exponentially� then n is a polynomial in d and log i�

Lemma 
 Let a � �� and u� v � �� such that �q�a� � uv for some q � d� If the ith letter

of �n�a� lies in the substring �n�q�v�� and u contains an exponentially growing letter b� then
n � O�d log i��

Proof� If �d�b� contains less than � exponentially growing letters� then �j�b� contains at
most one exponentially growing letter for all j � �� which is impossible� Hence there are at
least � exponentially growing letters in �d�u�� Therefore j�n�u�j grows at least as fast as cn

where c � ���d�
Since� cn�q � j�n�q�u�j � i� then we know �n�q� log c � log i� Hence n � �log i���log c��

q� But 	� log c � O�d� and q � d� Consequently� n � O�d log i��
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We apply Lemma � to Case 	 by setting u � x and v � ay� For Case �� we know a grows
exponentially whenever y does� Hence� we apply Lemma � with u � xa and v � y�

We have running times for the subroutines that Find calls� but Find also calls itself�
The following shows that Find recursively calls itself at most d times by showing that each
of the d letters can be the repeated letter of our algorithm at most one time�

Lemma �� Let q� r� and t be integers such that r � q� and �q�a� � xay for some x� y � ��

and a � �� If x grows polynomially and i � j�tq�r�x�j� or if y grows polynomially and

i � j�tq�r�xa�j� then descending the derivation tree of ��t���q�r�a� to the ith letter encounters
the letter a exactly once at the root�

Proof� Consider the case where x grows polynomially and i � j�tq�r�x�j� Descending q
levels takes us into the subword x� Hence� our descent takes an earlier branch than the path
to the letter a in xay at level q�

Since no a is encountered before the tree descent leaves the path to the a at level q� a
second a can only be encountered after leaving this path� But encountering another a would
imply that a and hence x is exponentially growing� a contradiction�

Otherwise y grows polynomially and i � j�tq�r�xa�j� Similarly� we descend q levels into
the subword y� If our descent encounters an a after leaving the path to the letter a in xay
at level q� then we know y grows exponentially� another contradiction�

Finally� we state our main result
 the running time of Find is polynomial�

Theorem �� The number of bit operations used by Find is

O��d � log i�w�log n�d	�d log w � log i�� � �log n��d	�d� logw � log i����

Proof� Let L be the running time of Length� and G� the running time ofGenericLength�
At worst case� the 
for� loop of Find executes d times� calculating the length of the

strings of subtrees w times� before one of the three cases is reached� Handling the cases
takes at worst case O�log nG�L� time� This gives one instantiation of Find a running time
of

O�wdL � �log n�G��

We know Find recursively calls itself at most d times before reaching the base case and
calling BasicTreeDescent with n � d log i� The running time of BasicTreeDescent
then is

O�nwL� � O�d�log i�L��

Hence the total running time of Find is

O�d�wdL � �log n�G� � wd�log i�L��

Rearranging and substituting for G and L gives us the �nal running time�
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Table 	
 Performance of Find and BasicTreeDescent in seconds

Find n � 	��� Find n � 	������ BTD n � 	���
� d w i�	�� 	�	 	�� i�	�� 	�	 	�� i�	�� 	�	 	��

exp � � ��	� ���� ���� ��	� ���� ���	 ���� ���� ���	
	� ���� ���� 	�	� ���� ���� ���� ���� 	���� 	����

�� � ���� 	���� 	���� ���� 	���� 	���� 	����� �	���� ������
	� ���� 	���� 	��	� ��	� 	���� 	���� 	�	��� ������ �		���

poly � � ��		 ���� ���� ��	� ��	� ���� ���	 ��	� ����
	� ���� ���� ���� ���� ���	 ���� ���� 	��	� �����

�� � ���� ���� ���� ���� ���� ���� ����� ����� �����
	� ���� ���� ���� ���� ���� ���� ����� 		��	� �����

mix � � ���� ��	� ��	� ��	� ��	� ���� ���� ��		 ��	�
	� ��	� ���� ���� ���� ���� ���� ���� ���� ����

�� � ���� ���� ���� ���� ���� ���� ����� ����� �����
	� ���� ���� 		��� ���� ���� 	��	� 	�	��� 	�	��� 	�����

The most signi�cant di�erence between the running times of Find and BasicTreeDes�
cent is that there is only a �log n�� term in the running time of Find whereas there is a
factor of n in the running time of BasicTreeDescent�

The upper bound we obtained in Theorem 		 overstates the actual running time obtained
in practice� For most typical input data� Find is rarely called more than once� It makes
sense� then� to implement these procedures and analyze the actual running time of Find for
varying n� i� d� and w�

Table 	 reports the performance of Find with n � 	���� and n � 	������� The running
times of BasicTreeDescent with n � 	��� are included for comparison� Each row of the
table corresponds to a homomorphism with varying values of w and d and with alphabets
of exponentially growing letters� polynomially growing letters� or both� For each homomor�
phism� we calculated the 	��th� the 	����th� and the 	������th letter of each string�

These results show a number of details concerning the performance of Find on various
inputs� The running times of both Find and BasicTreeDescent have a high dependence
on d� In practice however� d is not very large �typically less than 	� letters��

Notice that BasicTreeDescent does not perform as well as Find does when n � 	����
For even larger n� the BasicTreeDescent would have an even worse performance com�
pared with Find� For example� obtaining the ith letter of ���������a� using BasicTreeDes�
cent would have taken about a day for each calculation� This shows that our new algorithm
enables us to calculate letters of strings produced by homomorphisms which were not ob�
tainable before� particularly those produced with large values of n�

	�



� Extensions

Our algorithm may be easily extended to calculate how many times each letter in � occurs
in the pre�x of �n�a� of length i� The procedures Length and GenericLength compute
the lengths of strings which precede the ith letter of �n�a�� In the process of calculating
these lengths� we already compute the Parikh vector of these strings� Computing the total
distribution of the letters which precede the ith letter entails only summing the corresponding
Parikh vectors each time we reduce i� By subtracting two Parikh vectors for pre�xes of
di�erent lengths� we can also e�ciently compute the letter distributions of subwords�

� Open Problem

It would be interesting to extend these results to e�ciently compute the ith letter of strings
produced by the iterated application of a �nite�state transducer� An example of such a string
is the well�known Kolakoski sequence ���


K � ����������������������� � � �

which has the property that the sequence of run�lengths of K is the same as K itself� A
procedure to e�ciently calculate the letter distributions for pre�xes of these strings would
help in studying the long range distribution of such sequences ����
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