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Abstract
The standard Clough-Tocher split-domain scheme constructs a surface element with quadratic
precision. In this paper, I will look at methods for improving the degrees of freedom in Clough-
Tocher schemes. In particular, I will discuss modifications to the cross-boundary construction
that improve the interpolant from quadratic precision to cubic precision.
Keywords: Scalar Data Fitting
Abbreviated title: Cubic precision Clough-Tocher interpolation

The Clough-Tocher method [1] is a standard technique for constructing a piecewise polynomial,
C"! surface that interpolates the positions and normals of a function above a triangulation of the
plane. To obtain a consistent mixed partial derivative at the vertices of the triangulation, each
domain triangle (macro-triangle) is split into three sub-triangles (mini-triangles). For each mini-
triangle, the Clough-Tocher scheme constructs a cubic Bézier patch that meets the interpolation
and continuity conditions.

After reviewing some background material, I will present the Clough-Tocher technique and then
give Farin’s modification to this method. Both of these schemes have quadratic precision. Next,
I will state the cross-boundary technique of Foley and Opitz, and show how to integrate it into a
Clough-Tocher scheme to yield a cubic precision method. I will then present a new variation of
Farin’s method, which also has cubic precision. After presenting these four schemes, I use isophote
plots and shaded to compare them. Finally, I will discuss some iterative techniques, and mention
some other Clough-Tocher like schemes.

1 Background

In this section, I will give the relevant background on functional Bézier patches. I will present the
barycentric form of Bézier patches, and I will treat the control points as if they were points in a
three space (although in the functional case, you only need to work with the z-coordinate of each
point). For a more complete introduction to triangular Bézier patches, see, for example, Farin’s
book [4].

A triangular Bézier patch of degree n specified in barycentric coordinates relative to a domain
triangle ADgD; D5 is given by

P(t)= Y, PguBl(),

i k>0
i+j+k=n
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Figure 1: C?! continuity for two cubics: the shaded panels must be coplanar.

Figure 2: Clough-Tocher control points. The dashed line segments and the “barred” points are on
the mini-triangle of the neighboring macro-triangle.

where

n Z’ijk.

Biix®) = fim®

Here (u,v,w) are the barycentric coordinates of ¢ relative to the domain triangle. The points P,
are the control points of the patch. The z and y coordinates of these points are given by

iDo + jD1 + kDo
-Pz]k [13, y] — )
n
where P[z,y] refers to the z,y coordinates of the three space point P. Thus, the only degrees of
freedom are the z-coordinates of the control points.

Clough-Tocher schemes construct networks of patches that meet with C'* continuity. To achieve
C! continuity, we must first have C° continuity, which is easily obtained by constructing neighboring
patches to have the same boundary control points. For C* continuity, consider Figure 1. Two cubics
meet with C! continuity if each pair of shaded panels in this figure are coplanar.
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2 Clough-Tocher

Given a triangle APy P; P, (whose projection into the z-y plane forms the domain triangle A DgD; D5)
with normals Ny, N1, and N,, and using the labeling of the control points from Figure 2, the Clough-
Tocher construction fits three cubic patches to the data, setting the z-values of the control points
with the following steps: For ijk € {012,120,201},

1. Set V; to P,
2. Set T;; to lie in tangent plane at V;.
3. Set I;; to lie in tangent plane at V;, or equivalently to I;; = (V; + T3; + Tix)/3.

4. Set C; to be coplanar with T, T); and the corresponding C' point on the other side of the
V;Vi, boundary.

5. Set I;5 to lie in the plane spanned by C}, C}, and I;;.
6. Set S to (_[02 + _[12 + _[22)/3

The first three steps are required to interpolate the data (P; and N;). Step (iv) creates a C! join
across the external boundaries. And steps (iii), (v), and (vi) are required to obtain C continuity
across the interior boundaries. The only degrees of freedom in this construction are in step (iv).

The standard Clough-Tocher scheme sets each C; by placing it in the plane spanned by T}, Ti;
and the vector I;; — E—I— It1 — Iy, where m and Iy, are the corresponding points on the other side
of the boundary. This creates a cross-boundary tangent vector field that is linearly varying in one
domain direction, and quadratically varying in the remaining directions. This choice of direction
is not unique; we can choose any domain direction (other than the one parallel to the boundary)
in which to have linear variation; we just have to ensure that the same direction is chosen for both
patches. Also note that when the data are sampled from a quadratic function, the cross boundary
variation is linear in all domain directions.

Using this standard Clough-Tocher cross-boundary field, it is easy to deduce that the Clough-
Tocher technique has quadratic precision from the following observations: (1) the boundaries are
constructed with cubic precision; (2) the C; are set with quadratic precision; and (3) the patches
constructed are the only cubic patches meeting each other C! continuity having a linearly varying
cross-boundary derivative.

3 Farin

Farin used the degrees of freedom in the Clough-Tocher scheme to minimize the C? discontinuity
across the macro-triangle boundaries by solving a small linear system of equations for each bound-
ary [3]. Farin’s approach is to initially fit a single cubic to the macro-triangle (Figure 3). Since the
boundary control points of this triangle are determined by the data at the corners, only the center
point C needs to be set. Farin sets C' to obtain quadratic precision point [2]:

C=(Tw+Toz+ T+ T2+ Tio+To1)/4— (Vo + V1 + V3)/6.
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Figure 3: Control points of a cubic. The dashed line segments show a neighboring patch.

This patch will meet its neighbors with only C° continuity. To achieve C? continuity, Farin subdi-
vides this patch to get initial settings of all the control points of Figure 2, and then adjusts each
C; point to minimize the C? discontinuity across the corresponding macro-boundary.

Farin derived the following formulas, for minimizing the error in the two C? conditions.! First,
express V[z, y] and V3[z, y] in barycentric coordinates relative to the neighboring triangle:

VZ[a}ay] = ’ELV3[1E,:I/]—|—’II}V1[£I},:I/]—|—’IDVO[§I},:I/]
V3[l',y] = uVZ[a:ay]+vVO[$ay]+wV1[iBay]

Then compute the z-coordinate of C2 and Cy as follows (all control points should be interpreted
as the z-value of the point):

ri = dlg+ 9l — uls —wliy
re = dlgs + wlo — ulos — vl
r3 = vTp +wTyg
a1 = 2(v?+w?)
a2 = —2(v+ wd)
agy = 2(w*+9%)
s1 = 2(vry+ wrs)
sg = —2(wry+ vrs)
D = 2uajs+ ulass +an;
Cy = (usi+uaisrs+ u’sy + r3ay1)/D

Cz = (C_'z - ’l)TOl - ’leo)/’u

After computing Cy and C; in a similar fashion, Farin then continues the Clough-Tocher construc-
tion given above from step (v).

! There are minor errors in the formulas in both the Farin paper [2] and the Farin-Kashyap paper [5] which are
corrected here.
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Although an improvement over the standard Clough-Tocher technique, Farin’s scheme also
has quadratic precision, since it first constructs the quadratic precision point, then splits, and
then minimizes the C? discontinuity between the mini-triangles and associated quadratic precision
patches (Figure 5(a)).

3.1 Kashyap

Kashyap [9] further analyzed the Clough-Tocher interpolant [9], and considered several variations
of the method. Kashyap’s paper provides a good survey of Clough-Tocher interpolants, discussing
the following methods:

e The C° quadratic precision patch that fits a single cubic to each macro-triangle;
e The original C* Clough-Tocher interpolant;
e The Farin-Kashyap [5] C" interpolant that has cubic precision;

e The Farin [3] C?! interpolant that attempts to minimize the C? discontinuity across macro-
triangle boundaries;

e A new C! scheme for minimizing the C? discontinuities across mini-triangle boundaries; note
that this scheme reproduces a subspace of cubic polynomials, but not all cubic polynomials;

e An iterative scheme that repeatedly minimizes the C? continuity across macro- and mini-
triangle boundaries, using the previously constructed surface as a starting point at each step.

These schemes are all trying to achieve several goals: C! continuity, minimization of C? discon-
tinuity, and cubic precision. However, none of the above schemes has both C! continuity and cubic
precision. In the next two sections, I will present two methods for achieving both of these goals.

4 Foley-Opitz

Foley and Opitz developed an alternative cross-boundary field [7]. Their construction builds a
hybrid cubic, which is a rational blend of three cubic Bézier surfaces, each of which interpolates
the corner data. One patch is used to obtain the desired cross-boundary behavior along one of the
boundaries. The rational blend they used ensures that the resulting surface will interpolate the
data at all three corners, and have the desired cross-boundary behavior along all three boundaries.

The Foley-Opitz cross-boundary construction is similar to that of Farin, except rather than
minimize the C? discontinuity, they set up a system of equations that by construction will set the
center point to have cubic precision. Letting (u,v,w) and (@, 0, %) be defined as in the previous
section, and using the labeling in Figure 3, Foley and Opitz use the following formulas for C' and
C (again, all formulas give z-coordinates):

C = ( Ts— 02V — 20wTy; — 20uTyy — w?Tho — u2Tho +

Ts1 — v2To1 — 2vwTyo — 2wuTys — w2V — uszl)/(Zwu—}— 2vu)
C = ( Ty —0*Vy— 209Ty, — 20aToz — 9*Tyo — @ Ts0 +

Toy — ©°Toy — 209T1 — 204Ty5 — 92Vy — 4°T31) /(200 + 201)
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Figure 4: If the data at all six V; comes from a cubic, then the Foley-Opitz and the modified Farin
scheme have cubic precision over the shaded triangle.

Foley and Opitz show that if the four P; and the four N; are all sampled from a single cubic function,
then the two Bézier patches constructed with their method will reproduce this cubic function.

The Foley-Opitz cross-boundary construction can be integrated into a Clough-Tocher scheme
by first constructing a cubic patch using their technique, and then subdividing this patch to obtain
one of the cross-boundary points. For efficiency reasons, we will not want to perform a complete
subdivision; instead, we can just directly compute the C; point that results from the subdivision.
E.g., from the equations above, compute C5 as

Cy=(Two+Tor +C)/3.

Once all three C; have been computed, we continue the Clough-Tocher construction from step (v).

This technique has cubic precision for the same reason that the Foley-Opitz hybrid patch has
cubic precision: If the data comes from a cubic, then by construction, this selection of C' will
reconstruct that cubic. If the construction of the C across all three macro-triangle boundaries
produces the same cubic, then this technique will create the subdivided patches of this cubic.
Note, however, that the data at six points of Figure 4 must come from a common cubic for the
Foley-Opitz method to have cubic precision over the shaded region.

5 Modified Farin

Farin’s scheme minimizes the C? discontinuity between the mini-triangles along neighboring macro-
triangle boundaries (Figure 5(a)). We can modify Farin’s scheme to have cubic precision by first
fitting three patches to the macro-triangle, each of which minimizes the C? discontinuity across one
boundary (Figure 5(b)). We then split each patch to get the needed cross-boundary control points
for the mini-triangles, and then complete the Clough-Tocher construction.

The modification is simple. The only change is that in Farin’s equations, one should use T5q,
T2, Too and Ty, instead of I12, I11, Io2 and Ip; respectively (with a similar change from I to T’).

This modified scheme has cubic precision, since (roughly speaking) if data shown in Figure 4
comes from a cubic, then the original cubic will have no C? discontinuity, and thus will be chosen
by the minimization process.

This modified-Farin scheme is similar to using Foley-Opitz cross-boundaries, since both con-
struct a quadratically varying cross-boundary field, and make use of the degrees of freedom in the
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(@ (b)

Figure 5: Minimizing the C? error; (a) Farin minimizes across mini-triangle boundaries; (b) mini-
mization across macro-triangle boundaries.

Clough-Tocher scheme to obtain cubic precision. Note also that the modified Farin method can be
used in the Foley-Opitz hybrid-patch construction.

6 Evaluation

As one test data set, I looked at the following Franke function [6]:

fi(zy) = Ze—<<9z—2)2+<9y—2)2>/4+§e—(9m+1>2/49—<9y+1)2/1o+
L —(@e-1+0u-3)/4 _ 1 ~(00-ap~(oy-1
5

To visualize the constructed surfaces, I plotted isophotes [8]. If F'(u,v) is our surface, N(u,v) is
the normal to F, and v is a fixed direction, then the isophote condition is

< N(u,v),v > = ¢ = const.

IL.e., an isophote is a curve on the surface where the normal to the surface along the curve forms
a fixed angle with a given direction. In Figure 6, I have graphed the projection of the isophotes
of the surfaces constructed by each method for a sampling of f; over the region [0,1] x [0, 1]. The
isophotes are plotted for angles of 5, 15, 25, 35, 45, 55, 65, 75, and 85, with v being parallel to the
z-axis.

In this figure, I have overlayed the isophote plots with the sampling of f; that I used to fit the
Clough-Tocher surfaces. Both positions and normals were sampled from f;. This sampling was
taken on a jittered grid (if taken on a uniform grid, the Foley-Opitz method and the modified Farin
method produce identical surfaces). Since the goal of this work is to compare the cross-boundary
techniques, no surface patches were computed for the outer layer of data (which would require a
boundary condition to compute some of their interior points).

What we see in these isophote plots is that all of these Clough-Tocher methods tend to reveal
the boundaries of the sampling triangles. While particularly true of the standard Clough-Tocher
method, some of the triangle boundaries are apparent with the other three methods.

The following can be readily seen from these plots:
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e All three improvements give significantly better results over the standard Clough-Tocher
technique. The isophotes do not follow the triangle edges as closely, and are smoother.

e The Foley-Opitz method and the modified Farin method produce better results than the
original Farin method. In particular, the isophotes are smoothed in several regions, and two
false peaks have disappeared. See, however, the note below.

e The Foley-Opitz method and the modified Farin method produce nearly identical results.
Although there are some differences, these are fairly minor.

While the isophotes reveal many of the flaws in a surface, there are other surface quality metrics
that should be considered. In particular, from the isophote plots, the Foley-Opitz method and
the modified Farin method appear to be always superior to the original Farin method. However,
shaded images (Figure 7) reveal while overall the modified Farin’s method is better than the the
original Farin technique, there are spots on the surface where the original Farin method produces
better shaped surfaces.

7 Iterative techniques

It is interesting to note that while the Foley-Opitz method and the modified Farin method produce
surfaces that are generally of higher quality than the original Farin method, there are times when
the original Farin method does a better job. This results from an oddity in the C? minimization
methods: While both the original Farin method and the modified Farin method both attempt to
reduce the C? discontinuity between patches, neither succeeds, since in their minimization equa-
tions, both methods use control points that are modified after the minimization is performed (e.g.,
Farin’s method used the I;5 to compute the C; to minimize the C? error, and it then uses the C; to
find new settings of the I;» to satisfy the C! condition across the internal boundaries), and thus,
the C? error is not actually minimized.

Farin notes this “non-minimization” in his paper, and suggests an iterative process where, after
constructing the entire patch, you use the constructed control points (the I;» of Figure 2) to re-
minimize the C? equations, and reconstruct the interior points. Farin and Kashyap discuss this
idea further, showing that a further reduction in the C? discontinuity is possible [5]. Note that we
could also start this process by minimizing the C'? discontinuity across the macro-triangles.

Later, Kashyap investigated minimizing the C? discontinuity between mini-triangles within a
macro-triangle [9]. He then set up an iterative process, minimizing at each step the C? error across
macro-triangle boundaries and across mini-triangle boundaries.

However, while this iterative process will reduce the C? discontinuity between mini-triangles,
we lose the cubic precision of the modified Farin method, at least in a local sense. Cubic precision
is retained in the global sense since if the entire data set is sampled from a cubic polynomial, then
the modified Farin method will produce patches with no C? discontinuity across macro-boundaries
(and the iteration terminates after one step). Whether cubic precision or minimization of the C?
discontinuity is more important will probably depend upon the individual application.
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Figure 6: Isophotes. Top: The Franke function. Middle left: Standard Clough-Tocher. Middle
right: Farin’s method. Bottom left: Foley-Opitz cross-boundaries. Bottom right: Modified Farin
method
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Figure 7: Shaded images. Upper left: Franke Function. Upper right: Standard Clough-Tocher.
Lower left: Farin’s method. Lower right: modified Farin’s method.

8 Other Clough-Tocher Schemes

The Clough-Tocher 3:1 split idea has been used in non-functional settings. Several researchers
have generalized the method to parametric data (see the paper of Mann et al. for a survey of
such schemes [11]). Note that in the parametric setting, quartic patches must be used (instead of
cubic), and these parametric methods suffer from shape defects similar to those in the functional
Clough-Tocher scheme. Unfortunately, cubic precision is more difficult to obtain in the parametric
setting, and the improvements discussed in this paper are not easy to generalize to the parametric
setting.

The idea of using the free parameters to minimize the C? discontinuity was also used by Liu
and Schumaker to create a Clough-Tocher interpolant over the sphere [10]. Essentially, this is the
same technique as the modified Farin’s, but it is applied to the spherical setting rather than the
functional setting.
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