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Abstract

Subdivision curves and surfaces begin with a polygonal network of points and edges (and, for surfaces,
faces) having a relatively coarse structure. Each type of curve and surface is defined by a set of subdivi-
ston rules that replace the coarse network by a finer network to which the rules could again be applied.
The subdivision curve or surface is the limit of repeated application.

In this paper we explore the possibilities for reversing the subdivision process using least-squares tech-
niques. We begin with a fine network that did not necessarily come from a set of subdivision rules.
We wish to find an approzimation to a coarser network that could have produced the finer network by
the application of given subdivision rules. Since the finer network may not be produced exactly by the
coarser network we find, we must also find the errors.

The approach taken borrows strongly from the framework of wavelets and multiresolution analysis with
certain important differences. Firstly, we do not assume that we know either what scale functions or
what wavelet functions might underlie our networks. We are allowed only to work with the coefficients
of the scale functions, which we identify with the data points, and the coefficients of the wavelet
functions, which we associate with the errors. Secondly, we assume that we have been given the data
at the finest scale of resolution and we may only “coarsen” it. Our objective s to represent this data
as a sequence of sets of error coefficients and a final network of points representing scale coefficients.
The representation can subsequently be used for compression or for multiresolution display. Thirdly,
since we begin and end in a finite setting, our use of the tools of wavelets will be centered around
data fitting and discrete inner products rather than the usual focus of function approzimation and
continuous inner products. This results in new wavelets for B-splines, for example, that have smaller
compact support and simpler representations than those previously used for multiresolution curves and
surfaces.
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1. Introduction

Subdivision curves and surfaces begin with a polyg-
onal network of points. In the case of curves, the
network merely encodes the sequence of point-point
edges. In the case of surfaces, the network provides
the edges and faces of a polyhedral topology. In con-
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ventional usage a subdivision curve or surface begins
with a coarse network structure consisting of relatively
few points. To this is applied a set of rules that re-
place the coarse network by a finer network. The set
of rules could again be applied to this finer network.
In the limit of repeated application, the rules yield
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curves or surfaces of some provable continuity (except
at exceptional points). In practice, of course, the rules
are repeated only a finite number of times to yield
a network containing a large number of points that
represent a fine approximate sampling of the limit.

In this paper we explore the possibilities for revers-
ing the subdivision process. We begin with a fine net-
work that did not necessarily come from a set of subdi-
vision rules, and we wish to find an approximation to
a coarser network that could have produced the finer
network by the application of given subdivision rules.
This implies that the coarse network would not nec-
essarily return the fine network under the use of the
subdivision rules. However, we can reconstruct the fine
network with appropriate corrections derived from er-
ror terms. This will structure our approach along lines
familiar to the users of wavelets. A fine set of data will
be decomposed into a coarse approximation and error
information. The fine data can subsequently be recon-
structed from the coarse data and the error.

The framework of wavelets and multiresolution
analysis is used; however, with certain important dif-
ferences. We shall not assume that we know what scale
functions underlie our data. Further, even if the scale
functions were known, we would not necessarily want
to find the conventional wavelets that are associated
with them. We shall work only with the coefficients of
the scale functions, which we identify with the data
points, and the coefficients of the wavelet functions,
which we associate with the errors.

We assume that we have been given the data at the
finest scale of resolution; for example, from a scanning
or ranging process. We are interested in decomposing
this data into a multiresolution cascade of error coef-
ficients and a final set of scale coefficients, and we are
interested in doing this in the context of some given
subdivision rule. Since we begin and end in a finite
setting, our use of the tools of wavelets will be cen-
tered around data fitting and discrete inner products
rather than the usual focus of function approximation
and continuous inner products.

We shall give a general approach to achieving our
goals for curves and tensor product surfaces for which
the error terms represent the best least squares error.
This approach will be particularly efficient when the
subdivision rules are regular and repetitive.

In Section 2 we shall review basic matrix notation
for subdivision rules. In Section 3 we shall review the
connection of these matrices to wavelets. In Section
4 we introduce the least squares problem of interest,
and in Section 5 we review the normal equations. In
Section 6 we outline an approach to the construction
of orthogonal complements for subdivision matrices.

In Section 7 we use the special form of these orthog-
onal complements to solve for the error coefficients.
Remarks on error are presented in Section 8. Several
curve subdivision rules are presented in Section 9. Pe-
riodic rules are covered in Section 10. Tensor-product
surfaces are covered in Section 11. We close by pre-
senting some examples of our approach in Section 12.

We concentrate here on the mechanics for revers-
ing subdivision rules using least-squares techniques.
The end product of our work will be a multiresolu-
tion decomposition of given data into a sequence of er-
ror (detail) information and a base set of coarse data.
We are presenting here only a technique that starts
from suitable subdivision rules, costs linear time, and
achieves the decomposition. Explorations of the use
of the technique for compression or multi-level design
and rendering are outside the intended scope of this
work.

2. Subdivisions and Matrix Notation

The most compact introduction to wavelets and mul-
tiresolution analysis we can provide is . Our notation
will, however, be adapted from that of 5, a paper fo-
cusing upon the special case of cubic B-spline subdi-
vision. For a more thorough introduction to B-spline
wavelets, refer to 2.

We begin with subdivision curves. These start as a
vector of fine points, cf, that have been provided as
data. To each of these is applied a subdivision rule to
produce a new point

k+1 k+1 k \
¢ :Zpi,j ¢j (1)
J
The totality of such rules yields a larger number of
points. Thus, from a matrix point of view

[Pk+1] [Ck] _ [Ck+1] (2)
where the matrix P**! is m x n with m > n.

If we knew the matrix and the right hand side of
equation (2), we would find the vector of coarse points
C* optimally by solving the equation in the best least
squares sense. The result would satisfy the equation
only if the fine points, C**!, were the result of sub-
dividing the coarse points by the rules P**'. If the
subdivision rules did not produce the fine points, the
equation could be corrected as follows:
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where the columns of the m x m —n matrix Q¥*!

form
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an eztension of the column vectors of P**! to a basis
for the m-dimensional vector space. Many extensions
are possible; we need only adjoin linearly independent
columns. However, the extension corresponding to the
best least squares approximation requires the columns
of Q%! to be orthogonal to the columns of P**!; that
is, to be a basis for the null space of the transpose of
P*¥t1, For any extension Q*t!, the vector Q*t!E*
will express the error correction C*t! — p¥+tick If
Q! is an orthogonal extension, the error correction
expresses the best least squares error.

Tangentially, some further observations can be
made about subdivision schemes from this matrix
view. The matrix P**! defines the subdivision rules
as transformations on the points C*. In order to be ge-
ometrically meaningful ¢, these transformations must
produce affine combinations of the C*, which implies
that all row sums of P**! are 1. The matrix Q**!
must define a vector combination of the E¥, since the
second term in the sum appearing in equation 4 con-
stitutes a displacement of the points represented by
the first term.

Finally, note that the main requirements on Q*1?
is that it have full column rank and satisfy orthogo-
nality, Q¥+17 pr+1
specify Q1!
umn of Q*1?

= 0. These requirements can only
up to an arbitrary multiple. Each col-
can be scaled individually as we choose.
This scaling, of course, influences the magnitude of
the error coefficients, E*. This, in turn, influences our
judgment on whether to suppress an error coefficient
for the purposes of compression. We shall come back
to this point in Section 8.

3. Wavelet Connections

The points ¢} are interpreted as coefficients of a ba-
sis of functions ¢] for a space V" (kv = k,k + 1).
Furthermore, V¥ C V*t!, The basis qﬁf for V* can
be completed to a basis for V¥T! by adding indepen-
dent functions ¥ . The functions ¢ are known as scale
functions, and the functions 3 are called wavelets or
wavelet functions. Taken all together, V*,¢", ¢* for
k = k,k+1, if repeated for a succession k = 1,2,3,...,
form a multiresolution system. With respect to an in-
ner product, if the ¢ and the ¢ are mutually orthog-
onal (<¢f7¢7> = 5i7.i (K‘ = kvk + 1)7<¢57¢§> =
0, <th¥, k> = d¢,r) the multiresolution system is said
to be orthogonal. If only <¢¥, 4> = 0 holds, the sys-
tem is semiorthogonal. A third category of system is
biorthogonal (refer to ® for a definition). Biorthogonal
systems will not concern us here.

Since the spaces are nested, we have
k41 k41 :
Zp.,, i (4)
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and conversely
¢f+l _ Z k+1¢] n Zbk+1 (6)

k+1 E+1 _k+1 k+1
blz 7pt] 3 i,l

any element of V¥t we can write
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This provides the decomposition process

c;c = Zcf'l'laffl (8)
i
ef = > citlpt (9)

i

whereby Ej cf qﬁf is the approximation
of Eicf‘l'lqﬁf‘l'l in V¥ and EZ cf+1bfj’1 is the cor-
responding error in W¥ = V**!' \ V¥, The ¢ are the

scale coefficients, and the e are the error (or detail)
coefficients. In matrix terms,

for some coefficients a;

. Thus, for
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This provides the reconstruction process
1 k k+1 k k41 |
* Zc]pn:]l- +Ze£qt-l!- (12)
J
which in matrix format is simply equation (4).

The equations above lead to a matrix view of what
constitutes a semiorthogonal system:

ko k k41 k41 K41 k41
<¢i7d)j> = Zpr,i r 7ZqS,j s

ZZ Py (o el (13)
_ |:Pk+1Ti| [<I>k+1] [Qk+1]

where ®*1! is the Gram matriz formed by the scale
functions for V¥t and the inner product <-,-> . Ma-
trix equations for orthogonal multiresolution systems
can be obtained similarly.

o
I

4. Least Squares

Assume that a subdivision rule, P*t?

points (not necessarily generated by that rule),
have been specified. Then the following hold:

, and a set of fine
C«k-|-l7

1. C* provides the best least squares solution to
[P [c*] = [c**] (14)
if and only if C* satisfies the normal equations:
[P’““TP'““} [c*] = {P’““T} [c*']  (15)

2.If C* is produced as in equation (15) and if the
columns of Q*t! form a basis for the nullspace of

Pk+1T, then the equations

[Q*] [E"] = [¢*'] -

are compatible.
3. The overdetermined system (16) may be solved in
the least squares sense via the normal equations

[@"]" [@*+] [£*]
= [@*]" ([e*] -

In view of the compatibility of (16), however, the
solution will exactly satisfy the equation system,
and this solution can be obtained equivalently from
any subselection of the rows of Q! that forms
a nonsingular matrix, Qk“, with a correspond-
ing selection of the elements of the residual vector

Ck-|—l _ Pk+lck.

[P [C*]  (16)

[P [6*])

Another observation is also important:

4. Subdivision matrices P*t!

are usually banded and
characterized by columns that are shifted versions
of a single column (except for a few initial and final

columns).

cubic B-spline subdivision gives a good example ?

10 0 0 0 0 0 0 0]
1t o000 0 000
02200 0 000
0o to 0 000
001 Lo 0 000
00+ 2 1 0 000
: (18)
000 0 2 roo
000 0 0oL 200
000 0 0+t 2o
000 0 00 % 2o
000 0 000 ;1%
00 0 0 0 0 0 0 1]
5. Normal Equations
The normal-equation matriz Pk+1TPk+1, see equa-

tion (15), is symmetric and positive definite. This, to-
gether with the form of typical subdivision matrices
(simple entries, row sums equal to one, largest abso-
lute values at the center of each column’s nonzero en-
tries with values decreasing strongly in the rows above
and below), implies that the matrix can be found ex-
plicitly, that it is banded, diagonally dominant, highly
repetitive, has simple entries, and may be solved ef-
ficiently and accurately via simple Gaussian elimina-
tion, via the corresponding (LU) factorization, via a
Cholesky factorization, or via an LDLT factorization.
No row/column rearrangement is needed in any of
these approaches 7.

Other methods of solving the least squares problem
(14) that avoid the normal equations entirely are by
way of the QR factorization of P*1!
sponding elimination process, which is based upon ele-
mentary orthogonal transformations such as those due
to Householder. Any of these factorizations or elimi-
nation processes will cost an amount of work that is
linear in the size of C**1. There are various trade-offs.

or via the corre-

In the context of curves and tensor-product surfaces,
the use of the LDLT factorization is advised for rea-
sons to be given below.

Again, cubic B-spline subdivision provides a conve-
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nient example for a normal-equation matrix:

2+ 0 0 0 0 0 00
par 830 0 0 00
0 o 28 55 L 0 0 00
0 135 35 55 15 a1 O 00
00 5 % % 15 o 00
(19)
00 5 15 3 16 a1 00
00 0 5 16 5 i35 198 O
00 0 0 L 2 2B ALy
0 0 0 0 0 3 82l
0 0 - 0 0 0 0 0 I 2]

More specifically, the subdivision rules of interest to
us are those which have most columns in a standard
form containing p nonzero elements that begin at row
A for the first occurrence of these standard columns
and are shifted by 7 rows for each successive column:

TA4iTseee s TAfiT+pu—1 fOI‘iZO,l,... (20)

The matrix is allowed to have a few initial and fi-
nal columns with g or less nonzero elements each,
where the elements have different values from and/or
are not shifted by the same amounts as the standard
columns. For the matrix of equation (18), for instance,
A =4,7 =2, =5, and all but the first three and last
three columns are of standard form.

Since the (1, ) element of the normal-equation ma-
trix is given by the inner product of columns ¢ and j
of the matrix P**!, equation (20) implies that most
such elements are

p—1

Z Tatir4yTA+iT+y (21)

=0

And in turn, for a standard row i of the normal-
equation matrix, the element is zero unless

e I

This means that, except for a certain number of initial
and final rows, each row of the normal-equation matrix
will consist of exactly the same 2 L“—:lJ + 1 numbers
given by equation (21).

All entries of the normal-equation matrix can be ob-
tained in advance for the subdivision rules under con-
sideration, so we do not have to count their cost. The
process of computing C* will require applying pr+rT
to C**! to produce an intermediate vector G¥*!. This
process looks like the application of a finite filter and
involves g multiplications and additions for each el-

ement of GFt! (except a few at the beginning and
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end):

Adit+p—1
f"’l = E ﬂu,c.';+1 fori=0,1,... (23)
y=A+iT

The total effort will be O(2mpu) elementary floating
point operations. Since p is typically small compared
to m, at least in the initial stages of recursive de-
compositions of C*t! into C* and E*, the band-
width of the normal-equation matrix will be small
compared to its size, which is exactly the situation for
which an LDLT factorization is advised 7. The use
of this factorization to solve a banded system, with
right-hand side given by G¥*!, band width given by
L”T_IJ, and band elements given by equation (21), will

cost O (n(t”—:lJ2 +8 L”T_lJ + 1)) elementary float-

ing point operations. Thus, overall, finding C* will
incur a cost that is linear in m; that is, linear in the
size of CF*!, (This counts both the cost of produc-
ing the factors L and D as well as the forward- and
back-solution processes. One could save a considerable
portion of this, at the cost of n x L”T_IJ storage, by

computing the factors in advance.)

6. Orthogonal Complements

The second part of the process is to find the elements
of E* whereby the error C*t! — P¥*t1C* may be ex-
pressed. For this we must extend the matrix P*t! by
adding linearly-independent columns Q**! such that
Q’“"'ITPH'1 = 0. As will be seen, there is an addi-
tional bonus in constructing the columns of Q**' to
have a regular pattern of shifted columns with as few
nonzero entries as possible, imitating the structure of
P**1 as well as that of wavelets with shifted structure
and minimal support.

The essential trick in finding such a matrix column
is to concentrate on the general, shifted column of
P¥*t1_If the order of the nonzero elements of such
a column is reversed and the signs of these elements
are alternated, then any column containing the result-
ing nonzero entries will be orthogonal to every column
of P¥*! with which it overlaps in an even number of
row positions (i.e. 0,2,4,...). The cancellation pat-

tern that results can easily be seen from the following
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example:
Pk-|—l Qk+1
0

TA+irT TA+iT+4
Tatir+l  —TAtir+3 (24)
TAt+ir+2  TAtir42
TAt+ir+3  —TMAtir+1l
TA4ir+4 T4ir

0

Since most common subdivision rules essentially dou-
ble the number of points, reflecting an underlying two-
scale relationship between the scale functions at level
k and those at level k + 1, the usual shift amount,
7, is 2. This means that a column of Q**!
laps one of the general columns of P**! by an even
number of row positions will overlap all the other gen-
eral columns by an even number of row positions. The
few special columns at the beginning and end of P*+!
must be handled separately. We have used Maple 8
successfully to solve orthogonality equations for these
columns in the subdivision rules that we have investi-

that over-

gated.

Using these observations, we arrive at the following
extension for the cubic B-spline subdivision matrix of
equation (18):

-1 0 00 0 0 0
1 0 000 0 0
-3 X 00 0 0 0
-1 00 o0 0 0
-= 2 00 0 0
0-1-1 00 0 0
0o+ 2 10 0 0
. (25)

0 0 0 0-2-1 0

0 0 00 3 -4

0 0 00 o0-1 1%

0 0 o0 o 1 -2
0 0 00 0 0 1

L 0 0 00 0 0 —1]

Note that the subdivision matrix of equation (18)
is the same one used by Finkelstein and Salesin in
5. However, our matrix Q*t! is significantly simpler
than the one presented in that paper. More surpris-
ingly, since the columns of Q**! provide the represen-

tation of the level-k wavelets, ¥ ¥, in terms of the scale
functions at level k+1, (]5:»““ , and since the scale func-
tions in question for this example are cubic B-splines,
we see that (25) defines wavelets that (except for the
special ones at the extremes of the domain) have the
same support as the level-k scale functions. Since Chui
2 proves that the minimal-support B-spline wavelet
must have support that is essentially twice that of the
B-splines at the corresponding level, we have some ex-
plaining to do.

The reason for the unusually compact wavelets we
are defining lies in the form of semiorthogonality we
are using. Since we do not assume that we know the
underlying scale functions, we have constructed Q**!
to satisfy

[P’““T} [@*'] =0 (26)

which agrees with equation (14) only if the Gram ma-
trix ®*1! is the identity. This, in turn, implies that
we must be using a different inner product than the
usual one. In 2, as in most literature on wavelets, the
inner product used is

(frg) = / " Ho)alz)dz (27)

In our case, the inner product is defined implicitly to
yield the following relationships:

k41 k+1 s
(¢t 854" ) yy = 00 (28)
which defines the inner product on V*t! by

<f79>k+1 = vagv
¥

where (29)

F= feit
nd

ngﬁbf/-l-l
"

The inner product is flagged with “k 4+ 1” because it
is a different inner product for each space V¥1! in the
nested spaces of the multiresolution analysis.

Q
I

This inner product is, in fact, the inner product that
is conventionally used for discrete, finite-dimensional
data fitting. This is certainly a reasonable inner prod-
uct to use in our case. The alternative of using (27)
is consistent with the view that the components of
C*t1 are coefficients for the basis elements {qﬁf"’l}
of a function space. Our view, however, must be that
the components of C*t! are points; that is, the sam-
pled values of some unknown function, since they are
assumed to be provided by some form of measuring
process.

© The Eurographics Association 1997
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7. Solving for the Error Coefficients

The system (16) is an overdetermined, yet consistent,
system of equations. This means that any selection of
the rows of system (16) that produces a nonsingular
submatrix of Q**! may be solved for E*. The result
will not depend on which selection of rows is taken.

The subdivision rules of primary interest to us are
those for which the matrix Q**! has a selection of rows
that yield a triangular submatrix, for then the vector
E* can be obtained without any significant further
matrix factorization. So far, this has been true of all
subdivision rules we have looked at.

The selection of rows of Q*t!, just as the construc-
tion of Q**! and the construction of Pk+1TPk+1,
be made in advance of having any sets of data, and so

accounts for no computational cost.

can

An appropriate row-selection from the matrix of
(25), for example, would be the matrix Q¥ given
by:

1 0 0 0 0 0 07
0-1-2 0 o0 00
0 0-2-1 o0 00
0o 0 o0-1-1 00
) (30)
1 1
1 1
0 0-3 3
K 0 0 0 1]

This matrix represents the selection of the second
row of Q¥*!, followed by rows 6,8,10,... and ending
with the next to last row. Correspondingly, elements
2,6,8,10,...,m—1 of the residual vector must be cho-
sen to constitute the equations that must be solved for

E*.

Solving for the vector E* can be done in linear time,
and the back-solution computation looks essentially
like the application of a finite filter of length 2 to the
vector subselected from C*t! — P**1C* This is a fit-
ting place to remark that, while both the decompo-
sition and reconstruction processes we are describing
have linear cost, the decomposition process is the more
expensive. Reconstruction involves only the processing
of the vector C* by the rows of P*t!; that is, by ap-
plying a filter of at most length 3 in our example, and
processing the vector E¥ by the rows of Q¥T!, again a
filter of at most length 3 in our example. In common
applications (e.g. compression, multi-level rendering),
fast reconstruction is desirable.

© The Eurographics Association 1997

8. Remarks on Error

A frequent use of multiresolution representations is for
the purpose of compression. In this use, the original
data C**! is represented as a telescoping series

ck+l = pk+igk | Qk+1Ek (31)
pkt1 (Pkc,k—l + QkEk—l) + Qk+1Ek

The information (for some N) represented by C*~
and E¥~7,..., E* is stored instead of C**!, and com-
pression is achieved by discarding bits from the se-
quence {Ek_)‘}.

If E¥~* is replaced by E**+ A*™* it is easily seen
that C*t! is changed by

PrHLLL pEmAF2 Qk=At1 A=) (32)
This change is bounded by
PSR PR QF g AR (33)

In particular, if the infinity matrix and vector norms
are used (maximum absolute row sum of a matrix and
maximum absolute element of a vector 7), and if we
arrange to scale the columns of the ) matrices so that
|| @*=" ||= 1, then magnitude of the change to any
component of C¥*! will be no larger than the max-
imum magnitude of change made to any component
of the E vectors, in view of the fact that the infinity
norm of P*t!is 1 (the rows of P*t1 represent affine
combinations).

9. Curve Subdivision Rules

We have experimented with four common curve subdi-
vision rules: the cubic B-spline rule that we have used
as an example above, Faber subdivision *, Chatkin sub-
division 1, and Dyn-Levin- Gregory subdivision ® (con-
sidered in Section 10).

The subdivision matrix, P**!, of the Chaikin rule
is:

(1000 ---00 07
2100--000
2200--000
0210---000
0:20---000
002%1...000 (34)
0000---3220
0000---021%
0000---01%2
(0000 ---00 1]
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the Chaikin normal-equation matrix is:

-
'S

4
5 3 0
4 10 4
3 9 s

4 10
0 5 %
0 0 0
0 0 0

[0 0

a suitable extension, )

0 0
-3 p o
Pesoo
0 5 3
03 -3
0 0 0
0 0 0
0 0 0
L 0 0 0

and a possible submatrix, Q

i
o0 o0
21
02t o
2 1

H
=
O e

[
o

o ©olw co|
o O

-
'S

O <o|
|

k+1 s,
b

o o o o <
o o o o <
o o o o <

L I )

o o O %= ..,
O W= W W

=]

=]

o O wiv L,
O ww w=
Wi W= o

(35)

(36)

(37)

formed by selecting row 1 and every even row begin-

ning with 4.

The subdivision matrix

10
1 1
3 3
01
1
03

of the Faber rule is:

w= O o O

o o o ©
o o o ©

O W=
=]

(38)
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the normal-equation matrix of the Faber rule is:

(=)
1

(=R NI
o o o ©
o o o ©
o o ©

S O w= A
NN TN T

o o o ©
o o o ©
o o o ©
[N RN T

I N T
Blotm= O O

a suitable orthogonal extension is:

I
o O © NIE o e
I

S NE = NE o O
= RO O O O
o o ©o o o O
o o ©o o o o

(40)

o o o <

o o o <o

o o o <

o O W= =
|

Wi - N O

and a possible submatrix, Qk‘i'l, is simply the nega-
tive of the identity, corresponding to selecting the even
rows of (40) starting at the second.

10. Periodic Subdivision Rules

The discussion so far has concentrated on open curves.
Dyn-Levin-Gregory subdivision is given as a periodic
rule to be applied to closed curves. Such curves are
usually provided by subdivision rules whose P matri-
ces have rows/columns that wrap around periodically;
for example, the Dyn-Levin-Gregory matrix (with the
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authors’ parameter w set to %) is:

[0 1 0 0 0 - 0 0 0
1 9 9 1
0 0 1 0 0 - 0 0 0
1 9 9 1
0 0 0 1 0 - 0 0 0
1 9 9
0 0 —i6 1is 16 ° 0 0 0
: : : (41)
9 9 1
0 0 0 0 0 - 6 16 — 16
0 0 0 0 0 - 0 1 0
1 1 9 9
0 0 0 0 0 - 0 0 1
9 1 1 9
1 0 0 0 0 - 0 0 0
9 9 1 1
L ﬁ E _R 0 0 . 0 0 _E_

and the closed-curve version of the Chaiken rule is:

2 1 00 0 0
2 00 0 0
0 2 1+ 0 0 0
0 &+ 2 0 0 0
0 0o 2 1 0 0
o (42)
0 0 0 O 2 1
0 0 0 O : 2
0 0 0 0o 2
L 2 0 0 0 0 %]

The normal-equation matrix is also cyclic. For ex-
ample, the Dyn-Levin-Gregory normal-equation ma-

trix is:
6 y—B a 0 0 0 0 a—fB 77
¥y § y—B8 a0 0 0 0 a-p
-6 v & y—B a0 0 0 0 «
a—f v & y—B o« 0 0 0 0
(43)
0000 a-f v 6 v—B «
a0 0 0 0 a-f v 6 ~v-P
-8 a0 0 0 0 a-B v 6§ 7~
L y8 a0 00 0 a-p 5 &l
wherea:ﬁ,ﬂ:%,’y:%,and(s:%,

Such matrices can be broken into LDLT factors as in
the case of open curves. The factors do not have the
banded structure of the open-curve normal-equation
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matrices, but their structure does contain only a small,
fixed number of nonzero entries for each row, in regular
positions, which is just as good as a purely banded
structure. The profile of the upper triangular factor of
(43), for example, is:

XX X X 0 0 0 -0 XX X7
0XX XX 00 --0XXX
00X XX X 0--0XXX
000 0O0O0O0--0XXX
000 000 0--XXXX| (44
0000000 --XXXX
0000000 --XXXX
0000000 --XXXX
000 0O0O0O0--0XXX
000 0O0O0TO0--00XX
L0000 0 0 0 000 XJ

The general row in (44) has four entries in a band
along the diagonal and three entries in the last three
columns. Consequently, the generation of these num-
bers and the backsolution process costs linear time.
This is characteristic of the case with periodic P ma-
trices: their corresponding normal-equation matrices
are periodic and essentially banded in the style of (43),
while their LDLT factors are banded with an addi-
tional number of final columns that are full.

The Q-extension of a periodic matrix is also easy
to find. There are no special columns, so the sign-
alternation and shifting for alignment of even numbers
of elements, as explained in Section 6, can be carried
out easily (and periodically). The orthogonal exten-
sion of (41), for example, is:

r 9 9 1 1 7
2 2 _1 9 o0 0 0-—3k
0 -1 0 0 0 0 0 0
1 9 9 1
S T e S 0 0 0
0 0 -1 0 0 0 0 0
1 9 9 1
0 0 0 -1 0 0 0 0
1 9 9
0 o0-3L 2 8 0 0 0 }
A I )
9 9 1
0 0 0 0 0 2 21
0 0 0 0 0 0 -1 0
1 1 9 9
0 0 0 0 0 0 0 -1
9 1 1 9
L-1 0 0 0 o0 0 0 0]

The best subselection of rows to take from this matrix,
of course, consists of all rows having only the entry —1.
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Not all subselections are quite so convenient. The
periodic, cubic B-spline P matrix is:

r 1 3 1 -
12 L0 0 0 0
1 1
o L L o 0 0 0
1 3 1
0 5 2 3 0 0 0
1 1
0 0 3 % 0 0 0
1 3
o 0 3 % 0 0 0
. . . (46)
0 0 0 0 21
0 0 0 0 o + 1
1 1 3
1 000 0o + 2
1 0 0 0 0o 0 %
s o000 0 0 %
L+ 1 0 o0 0 0 0]
The Q-extension is:
-1 1 -
-1-1 90 o 0 0 0
1 3 1
12 L oo 0 0 0
1 1
0o-1-1 9 0 0 0
1 3 1
o L 2 1 0 0 0
1 1
o o-1-1 0 0 0
oo (47)
0 0 0 0 : 3 3
0 0 0 0 0-1 -1
1 1 3
1 0 0 0 o L 2
1 1
-1 0 0 o0 0o o0-1
L 2 + 0 0 0 0 %]

No subselected matrix (? is triangular, However, the
following matrix is almost triangular (only two Gaus-
sian elimination steps are needed to triangularize it):

o o W=
o W= =
|
Wi R o
w= o o

(48)

S ==,

= e =

W= o= O

11. Tensor-Product Surfaces

For a tensor-product surface, the subdivision process
given by equation (2) becomes

[Pf“] [Ck] {P}I%HT} _ [Ck+1] (49)

where Pf"’l is mrp X ng, P}f{"l is mpr X ng, C*isng x
nr, and C*tlis mr x mg. Completing each P matrix
by a corresponding ¢ matrix yields

PprH1ok+1 c* F* Pk+1T »
[PEFQIT] ok gk Q§+1T (50)
R

where QIE‘H is mp X mr —nr and Qg"’l is mRr X mp —
nr. Accordingly, the relationship between coarse and
fine levels is composed of four terms, corresponding to
the terms found in the literature for tensor-product
wavelets so that:

] = [PE"] [c¥] [PA"]
+[ei) [6 [P )
+[PE] 7] [ai]

+ Q5] (] [os]
Finding coarse versions of C**! may proceed with

some flexibility. A left coarse version is produced by
solving

(1217 [p+]) [04] = [PE7) " [4] (s2)

column by column for C§. The corresponding error is
given by:

(l@s+1" (@) [B2]
= [@4"]" ([e*] - [Pt™] [ct])
which may be found by solving
(@] [Bt] = [c*"'] - [Pe™] [cr]  (59)

where Q’E‘H is the submatrix selected from Q'{H as
described in Section 7. In terms of the four tensor-
product wavelet terms

of = [e*) [Pk ]+ 1) [e57] o9

[Gk] {P}’;HT} 4 [Hk] {QEHT}

Ck-|—l

(53)

Ef

Similarly a right coarse version of
by solving

[ck] ([P&+]" [PE*']) = [¢**'] [PE*']  (50)

row by row. The corresponding error, Ef, may be
found in a way corresponding to E¥. The fully coarse
version of C**t!, CF, is obtained by finding the left
coarse version of CF, or the right coarse version of CF.

may be found

12. Examples

Several examples are offered here. Figure 1 shows a
free-hand curve that is made coarse through several
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levels by the reverse of cubic B-spline subdivision
and then reconstructed. The reconstruction “with-

out wavelets” was made by ignoring all error terms,
Q"' E*, and using only scale terms, P*t1C*,

Figure 2 shows a grey-scale image of a fox. Figure 3
shows the same image after two levels of being made
coarse through the reverse of tensor-product, cubic B-
spline subdivision. Figure 4 is the full reconstruction of
the image, and Figure 5 is the reconstruction without
wavelets (i.e., without including the error terms).

Figure 6 shows data taken from range data of a bust
of Victor Hugo. Since we have been taking subdivision
rules in as simple a form as possible, we have had to
reduce this data somewhat. A typical subdivision rule
will transform m;j points into my41 points. If we are
given data that is not exactly mi41 points, we must
adjust the number somehow. This is a typical prob-
lem familiar from wavelet and FFT decompositions.
We have simply reduced the Victor Hugo data by re-
moving all rows from the top of the head downward as
needed, and by deleting every other column from the
back of the head (where detail is slight and so much
data unnecessary.) Thus the data covers the front of
the bust with twice the density of that in the back. Fig-
ure 7 shows the result of coarse approximation in one
direction only via tensor-product, cubic B-spline sub-
division. Figure 8 shows coarse approximation for two
levels in two directions. Figure 9 is the reconstructed
original data fully reconstructed from the surface of
Figure 8, and Figure 10 shows a reconstruction that
did not include the error (wavelet) terms.
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515 Points 259 Points 131 Points
(Original)
67 Points Full Reconstrution Without Wavelets

Figure 1: Free-hand curve

Figure 2: Original foz image (259 x 259)
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Figure 4: Fully reconstructed fox image (259 x 259)
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Figure 7: Hugo data approzimated one level in one direction (131 x 131)
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