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Abstract. Uniqueness constraints such as keys and functional dependencies in the relational model are a core concept in information systems technology. In this technical report, we identify a boundary between efficient and intractable kinds of uniqueness constraints suitable for object relational data models. The efficient subclass of the constraints is a strict generalization of both keys and relational functional dependencies. We present a complete and efficient procedure that solves the membership problem for this subclass. To motivate our results, we review some applications of our procedure in query optimization and schema evaluation.

In addition, we formulate the problem in terms of a description logic (DL). DLs are a family of languages for knowledge representation that have many applications in information systems technology. Thus, in addition to enhancing earlier work on uniqueness constraints, we integrate the results in the larger body of work on DLs.
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1. Introduction

Capturing and reasoning about data dependencies has proven to be an important capability in information systems technology, with many applications in database design, data integration, query optimization, plan generation, and so on. Historically, data dependencies have been captured by means of constraints. Relational databases, in particular, have a long history of using (relational) functional dependencies (FDs) [Cod72] and inclusion dependencies (INDs) [Fag81] in query optimization and in relational schema synthesis and evaluation. However, while typing and inheritance constraints in object relational databases (ORDBs) appear to be sufficient manifestations of inclusion dependencies in practical applications, the exploration of functional dependencies or more general kinds of uniqueness constraints (UCs) is still far from its potential. This is exactly the problem addressed in this technical report.


It has recently been established that reasoning about arbitrary uniqueness constraints in models with complex objects is intractable [KTW00b]. On the other hand, all known efficient procedures that decide whether a functional dependency is implied by a database schema allow only keys or relational functional dependencies in the schema [IW94, BW94, CKV90]. The main contribution of this work is identifying a boundary between efficient and intractable problems for uniqueness, inheritance and typing constraints in cyclic schemas. In particular, we present a notion of regular uniqueness constraints that: (a) strictly generalize both keys and relational functional dependencies, (b) have an efficient decision procedure, even when combined with typing and inheritance constraints, and (c) have the property that their slight generalization leads to an intractable problem.

In addition to extending relational and key FDs to regular UCs, we also generalize FDs in the orthogonal direction by allowing database schemas to contain so‑called asymmetric uniqueness constraints. These constraints are a natural extension of inter‑relational functional dependencies [GM91] and a form of coupled functional dependencies [CK85] and union functional dependencies [CV83] from the relational to object relational model. We further generalize the problem by allowing embedding of arbitrary (not necessarily regular) uniqueness constraints inside queries (or views).


This work can also be viewed in the context of description logics (DLs) which are a family of knowledge representation schemas that have found myriad applications in information systems technology [Bor95]. The applications derive from using DLs as a formal means of capturing such artifacts as database schemas, views and queries. DLs have their foundations in the field of artificial intelligence, and have been studied for a long time in that context. However, only recently have they been recognized as valuable tools in capturing database constraints. 

While a number of DLs have now been explored in the context of databases, very few dialects have considered language constructs that can capture even the notion of a key. Notably, however, a concept constructor for functional dependencies has been introduced in a DL called Classic/FD [BW97]. Our work continues to explore this constructor and its interaction with other “foundational” constructors relating, for example, to the above‑mentioned facility of ORDBs for expressing typing and inheritance constraints. Thus, on one side, we contribute to the integration of DLs with databases, and on the other, we use the benefits provided by the clear and concise semantics of DLs to study uniqueness constraints in the object relational context.

To preview an example application of our work, consider an object relational UNIV database schema for a hypothetical administrative database for a university presented in Figure 1(a). In addition to the “natural” STRING and NUMBER classes, the schema contains class OBJECT and two of its subclasses PROFESSOR and DEPARTMENT. There are also five attributes Name, Enum, Boss, Head and Dept. The schema further includes a list of three uniqueness constraints that might seem a bit cryptic



Figure 1: Using uniqueness constraints in query rewriting.

at this moment but have simple semantics: Enum and Name are primary and candidate keys in class PROFESSOR respectively, while Name is a primary key in the DEPARTMENT class. 

Given such a schema, the results of our work can be used for example to establish that a request for all distinct names of professors that work for the head of their department and their boss names, sorted by professor names, and then boss names presented in Figure 1(b) can be semantically optimized and rewritten into a formulation in Figure 1(c)
. The example and the illustrated three types of optimizations will be further discussed in Subsection 2.1 after we introduce necessary definitions.

In the rest of this section, we review some practical applications of uniqueness constraints and present a general motivation for this work. The rest of the technical report is organized as follows. Section 2 provides the necessary definitions, including the regularity condition, and begins to illustrate how a database schema can be captured via a set of constraints in the presented description logic. Given the definitions, Subsection 2.1 offers two detailed examples of how the results of the report could be used in semantic query optimization and schema evaluation applications. Our main algorithm is presented in Section 3. Then, in Sections 4 and 5, we consider its runtime complexity and generality. Our summary comments follow in Section 6.

1.1 General Motivation
To illustrate the utility of uniqueness constraints in an ORDB environment, consider the problem of duplicate elimination in query optimization. In its simplest form, the distinct keyword can be safely removed from queries of the form 

select distinct x.A1, x.A2, …, x.Ak, …

from C as x, …

   …

if attributes A1 through Ak are known to uniquely determine objects in the class C. With the identity function, Id, one can employ the (description logic) notation used in [KTW00b] to capture such a constraint by writing

C < (fd C: A1, A2, …, Ak ( Id). 

This form of uniqueness constraint in an ORDB corresponds to the notion of a key constraint in the relational model. However, unlike the relational model, attribute values of objects in the ORDB model are also objects, possibly with their own values. This gives rise to so‑called path functions that “navigate” through a number of objects and their attributes. For example, “Dept.Head.Name” could be a path function representing names of heads of the departments of objects in some PROFESSOR class. If path functions can be used in place of attributes, uniqueness constraints become more expressive [Wed92]. For example, path functions enable one to capture and reason about such common sense facts as “no student can be enrolled in two different courses that meet at the same time” [BW94]. 

For some path functions Pf1 through Pfk, a simple key uniqueness constraint of the form

C < (fd C: Pf1, Pf2, …, Pfk ( Id) 

justifies removing the distinct keyword from queries of the form

select distinct x.Pf1, x.Pf2, …, x.Pfk, …

from C as x, …

   …

Intuitively, the constraint expresses the fact that there are no two distinct objects in C that “agree” on the values of the path functions Pf1 through Pfk; that is, it is not the case that the same object is obtained by navigating through the path function Pfi starting from any two objects in C, for all 1 ( i ( k. Thus, for example, the distinct keyword can be safely removed from

select distinct P.Name, P.Dept

from PROFESSOR as P, …

   …

if it is true that no two professors have the same name and work for the same department; that is if the constraint 

PROFESSOR < (fd PROFESSOR: Name, Dept ( Id).

is true. 

More generally, the constraint 
C < (fd C: Pf1, Pf2, …, Pfk ( Pf )

expresses the fact that if any pair of (not necessarily distinct) objects in C agree on the path functions Pf1 through Pfk, they must then also agree on the path function Pf. (Note that the constraint expresses a relational FD if every path function is exactly a non-Id attribute.) Such constraint enables one to remove the distinct keyword from a family of queries with the form

select distinct x.Pf
from C as x, …

where x.Pf1 = Param1 and … and x.Pfk = Paramk
   …

since there can be at most one result for such queries. In addition, the UC can also help in obtaining efficient access plans for queries that have the structure

select distinct x.Pf1, …, x.Pfk, x.Pf
from C as x, …

   …

Indeed, one only has to ensure that values of x.Pf1 through x.Pfk are distinct, since otherwise, the uniqueness constraint would imply that all k + 1 values are the same.


Our examples have so far involved uniqueness constraints that are symmetric in the sense that the constraints apply to pairs of objects occurring in a common class. This technical report also considers more general asymmetric uniqueness constraints that apply to pairs of objects from possibly distinct classes, that is, when class on the left‑hand‑side of the constraint differs from the one that follows the fd constructor. These constraints allow one to capture such facts as “professors do not share their offices with any other employees”:

PROFESSOR < (fd EMPLOYEE: Office ( Id),

or such notions as an ISOLATED_BRANCH in a bank database which is defined as the only branch in its city:

ISOLATED_BRANCH < (fd BRANCH: Address.City ( Id).

As one can see from the notation used above, asymmetric uniqueness constraints naturally arise in our framework due to our decision to express constraints in a manner consistent with the idea of concept construction that is fundamental in description logics. Moreover, as mentioned above, asymmetric uniqueness constraints nicely abstract inter‑relational functional dependencies [GM91] and a form of coupled functional dependencies [CK85] and union functional dependencies [CV83] in the relational model. 


In addition to their use in reasoning about duplicate elimination [Wed92, KTW00a], there are many other problems in query optimization and in semantic query optimization [HZ80, Kin81] that benefit from an ability to reason about uniqueness constraints. These include 

· moving query variables in and out of the exists clause [KTW00a];

· determining minimal covers of selection and join conditions [ASU79];

· automatic insertion of “cut” operators [DW89, Men85, MW91, Wed92];

· order optimization [SSM96]; and

· enabling the use of so‑called path indices [BW97, Wed92].

In addition, there are a number of applications in schema design and evaluation [Ber76, BDB79, TF82]. (Later on, we present an application of our work to a problem in schema evaluation; in particular, for diagnosing a kind of object normal form originally proposed in [Bis89].)


It is important to note that all above‑mentioned applications of the uniqueness constraints require an efficient procedure for the associated membership problem
: is a given uniqueness constraint logically implied by a database schema.


Solution of the membership problem for relational FDs is well known [Ull82]. A decision procedure that deals with simple key uniqueness constraints was proposed in [Wed89, Wed92]. It was then further improved to an efficient procedure that deals with key uniqueness constraints in which the consequent has to be a prefix (not necessarily just Id) of one of the antecedents [IW94, BW94]. Our work in turn develops a low-order polynomial time procedure for the above-mentioned regular UCs that generalize both keys and relational FDs by allowing the consequent to be a prefix of an antecedent followed by an extra attribute at the end. The generalization is strict; e.g. the uniqueness constraint

PROFESSOR < (fd PROFESSOR: Dept.Head ( Boss),

where Boss is the extra attribute following the prefix Id of the Dept.Head path function, is neither relational nor key UC (the constraint states that department head functionally determines Boss attribute for professors). Moreover, we show that further natural generalization of the regular UCs by allowing two extra attributes at the end of the consequent instead of one leads to intractability. 

Overall, our work combines UCs with typing and inheritance constraints into the common framework of description logics, and presents an efficient way of solving the membership problem in this context.


DLs have helped to address many problems in the area of information systems [Bor95]. Among their advantages are a clear and concise semantics and their intuitive capacity for constructing descriptions of sets of objects. Another advantage is a growing body of algorithmic results that relate to the problem of deducing so-called subsumption relationships between descriptions. For example, the existence of efficient subsumption algorithms has enabled Classic, a DL dialect, to be used for “industrial grade” applications [WWB93]. Among many other applications, DLs have been used for database schema design [BS92], for merging multiple information sources [LSK95], as an abstraction of queries [BGN89] and in query optimization [BJN94]. Deducing a subsumption relationship from a number of others in description logics mirrors deducing a constraint from a set of constraints in the database world. We use this parallelism to solve our membership problem via DL mechanisms (and in particular, a variation of the notion of the description graph introduced in [BP94]).

Note that the DL language used in this work is more limited in its expressiveness than common database query languages such as SQL (a property shared by all tractable DL languages). However, we can still use DLs to reason about the parts of the queries that they can capture [BJN94], a strategy that appears to not “spoil” the utility of DL subsumption algorithms [Bor95].

Finally, although we have given a broad survey of applications for our work, further examples will be presented throughout the remainder of the technical report that will provide additional motivation for our results. As we go along, our definitions of new constructs and, more generally, our discussion of the material in depth enables us to present more detailed examples and to outline applications of the results of the report with greater precision.

2. Definitions

Definition 1 (DL basics) A description logic has two kinds of descriptions: concept descriptions D that describe subsets of an underlying domain (, and path functions Pf that describe total functions over (
. Descriptions are in turn either primitive concepts PC, primitive attributes A or are constructed from argument descriptions with the use of concept and attribute constructors. (We assume that the number of distinct primitive attributes is recursively enumerable.)

For example, the concept description “(all Name STRING)” uses concept constructor all, primitive attribute Name and a primitive concept STRING to capture all objects in the domain that have a name of type STRING. In this work, we distinguish between two types of primitive concepts—classes and queries. As their names indicate, we expect classes to be used to capture constraints on classes in a database schema, while queries would be used to capture queries (and views) that are expressed with constraints on classes.

Definition 2 (grammar) This work deals with descriptions that can be generated from the following grammar (where “A” denotes a primitive attribute).



PC  ::=  C 



(primitive concept: class)




| Q



(primitive concept: query)



D  ::=  C



(class)




|  (all A C)


(attribute value restriction)

|  (fd PC: Pfs ( Pf )

(functional dependency)



Pf  ::= Id



(identity)




|  A.Pf



(attribute composition)



Pfs  ::=  (  |  Pfs Pf


(path function sequence)

Length of a path function Pf, denoted Len(Pf ), is defined as the number of primitive attributes inside the Pf.

The above grammar would be consistent with a fragment of the Classic/FD DL were we to restrict any path functions occurring in fd concept constructor to correspond to either Id or to a primitive attribute followed by Id. Also note that Id is the only path function of length 0, and any primitive attribute A denotes a path function of length 1.

Definition 3 (semantics) Semantically, given an underlying domain (, an interpretation I = ((, ·I( assigns a (not necessarily distinct) subset of ( to each primitive concept, and a subset of ( ( ( encoding a total function over ( to each primitive attribute. The interpretation of constructed descriptions is defined by the following rules.
· (all A D)I  =  { x ( ( | AI(x) ( DI }

· (fd PC: Pf1 ⋯ Pfm ( Pf )I  =  { x ( ( | (y ( PCI: 
[Pf1I(x) = Pf1I(y) ( … ( PfmI(x) = PfmI(y)] ( Pf I(x) = Pf  I(y) }

· IdI =  { (x, x) | x ( ( }

· (A.Pf )I  =  { (x, y) | x ( (  ( Pf I(AI(x)) = y }

We overload the ‘.’ by allowing composition of path functions Pf1 and Pf2 to be denoted by “Pf1.Pf2”. The composition stands for a natural concatenation of the two path functions. (Strictly speaking, Pf1.Pf2 can be defined as Pf2 if Pf1 = Id and A.(Pf.Pf2) if Pf1 = A.Pf. It is not hard to show that composition is associative.)

In addition, while we formally require Id at the end of path functions to simplify our algorithms, for simplicity we omit the trailing Id’s in our examples and general discussions. Thus, for example, Boss.Name would denote Boss.Name.Id.


Figure 2: The UNIV terminology.
Definition 4 (terminology and arbitrary membership problem for UCs) Let PC and D denote a primitive concept and a description respectively. A subsumption constraint PC < D is satisfied by an interpretation I if PCI is a subset of DI. A finite set T of these constraints is called a terminology. T logically implies a subsumption constraint PC < D (which we refer to as posed question), written T ⊨ PC < D, if and only if, for any possible interpretation I satisfying each member of T, I satisfies PC < D. (Clearly, if PC < D ( T then T ⊨ PC < D.) If D is an fd description, the problem of determining whether T ⊨ PC < D is called an arbitrary membership problem for UCs.

To illustrate how a database schema can be captured by a terminology, recall the schema presented in Figure 1 (a) and consider its representation via the UNIV terminology in Figure 2. The terminology consists of three groups of constraints—those that capture restrictions on classes OBJECT, PROFESSOR, and DEPARTMENT. Consider the second group of constraints. The first subsumption constraint in the group is an instance of an inheritance constraint, and the next three constraints express typing restrictions on properties of PROFESSOR (in addition to the inherited typing restriction on attribute Name). In particular, note that Boss property is recursive. The last two constraints of the group capture uniqueness constraints; in this case, primary and candidate key constraints. 

In particular, UNIV terminology implies that department name of a professor determines the professor’s department. Formally, UNIV logically implies subsumption constraint

PROFESSOR < (fd PROFESSOR: Dept.Name ( Dept).

This illustrates the kind of subsumption constraint that will concern us in the rest of the report. In particular, we consider the problem of determining if a constraint of the form

PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf )

is a logical consequence of a given terminology T, where PC1 and PC2 are the same primitive concepts. We shall refer to such constraints as symmetric uniqueness constraints, as opposed to asymmetric uniqueness constraints for which PC1 and PC2 are distinct. All previous work of which we are aware that has considered efficient decision procedures for membership problems with uniqueness constraints in the context of models with complex objects requires all uniqueness constraints to be symmetric. This work however allows asymmetric UCs in the terminology. In addition, previous work requires uniqueness constraints in the schema to be key UCs, which implies that Pf has to be a “prefix” of some path function Pfi (1 ( i ( m). Our procedure in turn extends the constraints and allows Pf to be either a prefix of Pfi or a prefix composed with another attribute:

Definition 5 (regularity) An fd description D = (fd PC: Pf1 ⋯ Pfm ( Pf ) is called regular if there exists 1 ( i ( m and path functions Pfprefix, Pfsuffix and Pfdiff such that Pfi = Pfprefix.Pfsuffix, Pf = Pfprefix.Pfdiff and Len(Pfdiff) ( 1. 

In other words, D is regular if Pfi = A1.A2.⋯.Ak.Id (for some k ( 0 and primitive attributes A1 through Ak), and Pf either has the form A1.A2.⋯.At.Id or A1.A2.⋯.At.A for some 0 ( t ( k and a primitive attribute A. Uniqueness constraints with regular fd descriptions on the right‑hand‑side are called regular uniqueness constraints. Note that if (fd PC: Pf1 ⋯ Pfm ( Pf ) is regular, m ( 1. Also note that in addition to key UCs, relational FDs are captured by regular UCs as well: if consequent of a UC is a single attribute it must be regular. 

In addition to the asymmetricity and regularity extensions of UCs, we allow arbitrary uniqueness constraints with m ( 1 if at least one of the primitive concepts is a query. Moreover, if both primitive concepts are queries, we also allow m to be 0. Note that constraint Q < (fd Q: ( Pf ) expresses the fact that any two objects in Q agree on the path function Pf, or in other words, that Pf is a constant in Q. Therefore, from now on, we assume the following restrictions on the membership problem.

Definition 6 (regular membership problem for UCs) An arbitrary membership problem for UCs T ⊨ PC < D is called regular if all uniqueness constraints of the form “PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf )” inside T satisfy the following two restrictions:

· if both PC1 and PC2 are classes, the constraint must be regular
, and
· if at least one of the primitive concepts is a class, m ( 1.

The only restriction that we impose on the posed question is that it must be symmetric.

As discussed in Section 5, relaxing the regularity restriction in the above definition would lead to intractability of the membership problem. The second restriction in Definition 6 is necessary to preserve the first: if we allowed a constraint of the form Q < (fd C: ( Pf ) in terminology, it would imply that all objects in concept C agree with all objects in query Q on Pf, which in turn implies a non-regular constraint C < (fd C: ( Pf ). Finally, our restriction on the posed questions to be symmetric comes from the way our procedure in Section 3 efficiently represents pairs of objects by single nodes in a tree. Without the restriction, the procedure would be more complicated and not as efficient.

From now on, unless specified otherwise, we assume that all considered terminologies and posed questions satisfy the properties stated in the above definition.

2.1 Example Applications

To review some of the ways in which an efficient means of deducing symmetric uniqueness constraints can be used in query optimization, recall a formulation in Figure 1(b) of a request for all distinct names of professors that work for the head of their department and their boss names, sorted by professor names, and then boss names.

The algorithm presented in this work can be used to optimize the above query in three different ways. Each optimization illustrates a particular area of application of the results in the work in semantic query optimization—optimization of the order by clause, 
eliminating of the distinct keyword, and moving variables from inside of the exists clause to outside. (The last optimization allows the possibility of using any DEPARTMENT index to “bind” D prior to any PROFESSOR index to “bind” P or B.) A query optimizer can perform these optimizations by first augmenting the UNIV terminology with the additional subsumption constraints in Figure 3.


Figure 3: Constraints to be augmented to UNIV for processing of query Q.

The new query primitive concept Q serves as an abstraction of the result of the query; the three all constraints correspond to the from clauses, the first six fd constraints correspond to the equations inside the where clauses, and the last fd constraint just states that query results are uniquely determined by all of the query variables. In other words, one can think of Q as a primitive concept containing all query results such that every object in Q defines a binding for a professor P, a professor B, and a department D.

Two things should be noted about the way we are capturing equations. First, since Q is a query, we can use non-regular uniqueness constraints, and therefore, can represent an arbitrary equation with functional relationships in both directions. Second, while two uniqueness constraints do not fully capture an equation, they do capture enough information in order to be able to perform various optimizations, including the ones discussed here. 

After the augmentation of terminology, the optimizer can then remove B.Name from the order by list, eliminate the distinct keyword, and remove the exists clause if the following three respective constraints are a logical consequence of the modified UNIV terminology.

Q < (fd Q: P.Name ( B.Name)

Q < (fd Q: P.Name B.Name ( Id)

Q < (fd Q: P B ( D)

Note that the constraints immediately above are relatively similar. This observation suggests that the algorithm for reasoning about such constraints should be incremental: given similar problems, the algorithm should be able to reuse the work it performed on preceding problems in order to answer the subsequent problems. 

After the optimizations are applied, the query would be rewritten into the resulting form presented in Figure 1(c).


Further recall that we allow uniqueness constraints on queries to contain no antecedents. This capability becomes useful when queries are parameterized or have constants. For example, if the above query also had the condition D.Name = Param for some parameter Param, we could capture this by the constraint Q < (fd Q: ( D.Name), which in turn would allow us to deduce that all query results have the same department D and its head B.


Next, to review how an efficient means of deducing symmetric uniqueness constraints can be useful in schema evaluation, consider the diagnosis of an object normal form proposed by Biskup [Bis89]. His notion of strong object normal form requires a relation schema to satisfy two conditions: first, that the schema has a unique minimal key; and second, that the schema is in Boyce-Codd normal form (BCNF). (A relation schema is in weak object normal form when it satisfies the latter condition only; that is, if and only if it is in BCNF.)


Now consider the class PROFESSOR of the UNIV terminology to be an understanding in description logic of a PROFESSOR relation with attributes Name, Enum, Boss and Dept. We can confirm that PROFESSOR is not in strong object normal form by asking the following sequence of questions that focus on the particular requirement of having a unique minimal key.


UNIV ⊨ PROFESSOR < (fd PROFESSOR: Name Enum Boss Dept ( Id)


UNIV ⊨ PROFESSOR < (fd PROFESSOR: Name Enum Boss ( Id)


UNIV ⊨ PROFESSOR < (fd PROFESSOR: Name Enum ( Id) 


UNIV ⊨ PROFESSOR < (fd PROFESSOR: Name ( Id) 


UNIV ⊨ PROFESSOR < (fd PROFESSOR: ( Id)

(Since only the last question is not true, we have that attribute Name is a minimal key.)


UNIV ⊨ PROFESSOR < (fd PROFESSOR: Enum Boss Dept ( Id)

(Since this is true, we have that Name is not a unique minimal key, and the result follows.)

Again note that all fd concept constructors in posed questions occur within symmetric uniqueness constraints in this application. As before, we are presented with a sequence of similar posed questions, which again suggests the requirement for the membership problem algorithm to be incremental. This is particularly true if one were to proceed to check if PROFESSOR is in BCNF (and, therefore, in at least weak object normal form) since diagnosing BCNF is likely to require a much larger number of checks for fd constraint membership.

A polynomial time general procedure that uses our algorithm to diagnose strong object normal form is presented in Appendix A. As in the example above, the procedure first finds a minimal key K of some class C by posing a sequence of questions with decreasing number of attributes in the fd constructors. Next, the procedure looks for another key that does not contain at least one attribute in K. If and only if such second key is not found, the minimal key K is unique and the algorithm proceeds to check whether C is in BCNF. This is accomplished by posing yet another sequence of questions that are formed based on the attributes of K.

3. A Decision Procedure for Regular Membership Problems

Our overall approach to having the flexibility needed for these applications is similar to the standard chase algorithm for the fd membership test; we define a data structure, a variation of a description graph, that “grows” according to a given terminology, a primitive concept and the antecedents in the posed question. Adding a subsumption constraint to the terminology or a path function to the antecedents simply causes further growth.

In this section, we use description graphs that are trees and are treated as finite state automatons that accept precisely the set of possible consequent path functions. We call such description graphs acceptor trees. Thus, an acceptor tree obtained for a given terminology T, a primitive concept PC and a collection of path functions {Pf1, …, Pfm} will accept a path function Pf  precisely when

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf ).

Definition 7 (acceptor tree) An acceptor tree G is a tree (N, E, n( consisting of a set of nodes N, a set of directed edges E, and a distinguished node n ( N (not necessarily the root of the tree). Each node n( in N has two labels: (1) a finite set Cls(n() of primitive concepts, and (2) a finite set Pfs(n() of path functions. The root node is denoted Root(G). Each edge is labeled with a primitive attribute A, and we write (n1, A, n2( to denote an edge from n1 to n2 labeled A. Given an acceptor tree G (= (N, E, n() and a node n1 in G, the root path function of n1 in G, denoted RootPf(n1, G), is recursively defined as Id if n1 = Root(G) and as RootPf(n2, G).A.Id otherwise, where (n2, A, n1( is in E.

Informally, RootPf(n1, G) is the path function that consists of the primitive attributes labeling the sequence of edges from the root of G to n1. 






Figure 4: Example acceptor tree.

Definition 8 (acceptance) We say that G (= (N, E, n() accepts a path function Pf1 if and only if either of the following conditions hold:

· Pfs(n) contains a “prefix” of Pf1 (i.e. there exists Pf2 ( Pfs(n) and Pf3 such that Pf1 = Pf2.Pf3), or
· Pf1 has the form “A.Pf2” and there exists (n, A, n(( ( E such that the acceptor tree (N, E, n(( accepts Pf2.

For example, consider acceptor tree G with distinguished node n in figure Figure 4. G accepts path functions Boss, Boss.Name, and in general any other path function that starts with Boss. However, note from our definitions that G does not accept Name, despite the existence of both the edge labeled Name and the node to which it points. The reason to allow this relates to the need to remember deductions that will be relevant to subsequent fd membership problems that are similar to the previous ones (as illustrated by the example applications outlined above). In particular, note that G does say (in the sense formally characterized in Lemma 1 below) that a professor must have a name that must be a string. It will turn out that, by first resetting all Pfs labels to be empty sets, G can be reused to search for the existence of other functional constraints satisfied by professors.

Definition 9 (initial acceptor tree) Let PC, {Pf1 , …, Pfm} and T denote a primitive concept, a set of path functions and a terminology, respectively. Then the initial acceptor tree, denoted Init(PC, {Pf1, …, Pfm}) (= (N, E, n(), is the acceptor tree with a single node ({n}, (, n( where Cls(n) and Pfs(n) are initialized to {PC} and {Pf1, …, Pfm}, respectively. 

Definition 10 (decision procedure) The propagation of an acceptor tree G (= (N, E, n() relative to T, written Prop(G, T ), transforms G by an exhaustive application of the following rewrite rules.
P1. (composition) If there exist n1 ( N and Pf1 (= A.Pf2) ( Pfs(n1), then remove Pf1 from Pfs(n1). If Id ( Pfs(n1) then:

(a) Find n2 ( N such that (n1, A, n2( ( E. If no such node exists then add a new node n2 with both its Cls and Pfs labels initialized to (, and add (n1, A, n2( to E.

(b) Add Pf2 to Pfs(n2).

P2. (inheritance) If there exist n1 ( N and “PC1 < C2” ( T such that PC1 ( Cls(n1) and C2 ( Cls(n1), then add C2 to Cls(n1).

P3. (typing) If there exist (n1, A, n2( ( E and “PC1 < (all A C2)” ( T such that PC1 ( Cls(n1) and C2 ( Cls(n2), then add C2 to Cls(n2).

P4. (uniqueness) If there exist n1 ( N, PC1 and PC2 that belong to Cls(n1) and constraint “PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf )” in T such that:

(a) m ( 1 implies that (N, E, n1( accepts Pfj, for all 1 ( j ( m, and
(b) (N, E, n1( does not accept Pf,

then add Pf  to Pfs(n1).

(The following rule is optional; it can be added to simplify implementation, and has very little impact on our analytic results.)


Figure 5: Evaluating Prop(Init(PROFESSOR, {Name}), UNIV).

P5. (simplification) If there exists n1 ( N with at least one child and such that Id ( Pfs(n1), then remove all other nodes reachable from n1 along with their incident arcs.

Intuitively, each node in the tree represents a pair of surrogate objects that agree on path functions in the node’s Pfs label. In addition, each object belongs to all concepts in the node's Cls label. Each rewrite rule of Prop deduces additional constraints on the objects represented by the nodes and changes the tree structure and labels accordingly. When procedure terminates, it would have deduced all constraints on the objects.

Procedure Prop is incremental as it allows to reuse the tree (or significant parts of it) when a number of similar questions is posed. In particular, most of the tree could be reused when terminology and query objects are the same across the questions as in our examples in the Section 2.1. The reusable part of the tree increases if the path functions in the posed questions are similar as well. For a full discussion of the incremental nature of the procedure, we refer the reader to [Khi99].

Observe that all transformations preserve the tree structure when provided with a tree as input. This can be seen in the example of computing Prop in Figure 5 above. The example presents the sequence of changes made to the acceptor tree G = Init(PROFESSOR, {Name}) relative to terminology UNIV, i.e. the set of subsumption constraints appearing in Figure 2. Note that the final state of G is an acceptor tree with distinguished node Root(G) that accepts any path function Pf. And therefore, by the results established later in the section, it will follow that

UNIV ⊨ PROFESSOR < (fd PROFESSOR: Name ( Pf )

for any path function Pf.

Observe that the regularity condition is important to ensure that Prop terminates. For an example of a case in which Prop would not terminate if we allowed arbitrary uniqueness constraints on classes, consider the following terminology T,

{C < (all A C), C < (fd C: B ( A.B)},

and the effect of a call of the form Prop(Init(C, {B}), T ). Here, the acceptor tree grows indefinitely.


The detailed proofs of the following Theorems 1 through 3 can be found in Appendices C through E respectively. Here we only present outlines of the proofs. 

Theorem 1 (termination) Let G denote an arbitrary finite acceptor tree (i.e. an acceptor tree with finite number of nodes and edges) that may contain query names only inside Cls(Root(G)), and let T denote a terminology. Then Prop(G, T ) terminates.

The proof is based on the fact that due to the regularity condition, all nodes in the graph are within one-edge reach from a finite number of other nodes—those that are originally in the graph, those that are created by rule P1 based on the path functions in the Pfs labels of the original graph, and those that are formed from the consequents of the uniqueness constraints on queries. (Since query names are never added to the Cls labels during Prop, there is only a finite number of nodes formed from these consequents.) After proving that the number of nodes in the graph never exceeds a certain finite number, and after taking into account that removal of the nodes is carefully controlled by the optional rule P5, it can be shown that each of the rules can fire at most a finite number of times.

Theorem 2 (soundness) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Then
T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf )

if Prop(Init(PC, {Pf1, …, Pfm}), T ) accepts Pf.

Proof of soundness is based on the following lemma that identifies an invariant maintained by the Prop procedure.

Lemma 1 (invariant) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Also, let G0 (= (N0, E0, n() denote the initial acceptor tree Init(PC, {Pf1, …, Pfm}) and [G1, …, Gk] a (necessarily finite) sequence of acceptor trees (Gi = (Ni, Ei, n(, 1 ( i ( k) obtained by a sequence of applications of rewrite rules defined by Prop(G0, T ). Then, for all 0 ( i ( k:

(1) for all n( ( Ni , and Pf ( Pfs(n(): 
T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n(, Gi).Pf );

(2) for all n( ( Ni , and PC ( ( Cls(n(): T ⊨ PC < (all RootPf(n(, Gi) PC (); and

(3) for all n( ( (Ni ∩ Ni-1): RootPf(n(, Gi-1) = RootPf(n(, Gi).
The lemma is proved  by induction on i: after showing that (1) through (3) hold for G0, it is established that every rule of Prop preserves each of the properties of the lemma. Soundness then follows from the first property.

Theorem 3 (completeness) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Then,
Prop(Init(PC, {Pf1, …, Pfm}), T ) accepts Pf
if T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf ).

The overall strategy for the proof is to assume that the output tree Tr of  Prop(Init(PC, {Pf1, …, Pfm}), T ) does not accept Pf, and to construct a (description) graph from which we would extract an interpretation I that satisfies all constraints in T and does not satisfy constraint “PC < (fd PC: Pf1 ⋯ Pfm ( Pf )”. The desired interpretation I will be obtained by: (1) viewing the set of all nodes in the graph as domain (, (2) the interpretation of a primitive concept PC ( as the set of all nodes with PC ( occurring in their Cls labels, and (3) the interpretation of an attribute A as the set of pairs of nodes connected by an edge labeled A. 

First, our construction “joins” two identical copies of Tr by “merging” all isomorphic nodes with Id in their Pfs labels. Thus, after the merge, such nodes will have two parents, one from each tree. The roots of the two trees now represent two objects violating the subsumption constraint: the roots “agree” on the path functions Pf1 through Pfm since by the rule of composition, the path functions correspond to paths in Tr ending at nodes with Id in their Pfs labels. At the same time, the roots “disagree” on Pf since the path in Tr corresponding to Pf does not end at a node with Id in its Pfs label (recall that Pf is not accepted by Tr). 

After the merge, the construction extends the resulting graph with additional “missing” nodes and edges to represent attribute values for all nodes in the graph. This ensures that interpretation of every attribute is a total function. In addition, to ensure that I satisfies every constraint in T, we apply rules of Prop after each step.

4. Runtime Complexity

In this section we consider the runtime complexity of an invocation Prop(G0, T ) where G0 denotes Init(PC, {Pf1, …, Pfl}) for some primitive concept PC and a set of path functions {Pf1, …, Pfl} and T denotes a terminology. We refer the reader to Appendix B for full discussion of the runtime complexity and for pseudo-code of a suggested implementation. Here we outline the main points.

Since query names are never added to the original graph, any constraints with a query name other than PC on the left‑hand‑side are never applied during Prop. Therefore, it is sufficient to consider T as a union of two sets of constraints—those that do not contain query names (T () and those that contain query PC (T ((). (If PC is a class name, T (( is empty.) In addition, let m, q and k denote the encoding lengths of {Pf1 , …, Pfl}, T (, and T (( respectively.
 

An efficient implementation of procedure Prop is based on a few observations:

· Every node in the acceptor tree will be within a one-edge reach from a node formed by “expanding” Pf1 through Pfl or formed due to the uniqueness constraints in T ((. Thus, since there are at most O(m + q) of such nodes in the acceptor tree, the total number of nodes in the tree is O((m + q) ∙ k).

· Nothing can be deduced about an ancestor based on typing information of a descendent.

· Uniqueness constraints will never apply to leaf nodes (except possibly for root).

The above observations enable us to implement Prop in O((m + q) ∙ k2) time. We show in Appendix B that the estimate is tight and suggest an improvement of the runtime by justifying the following underlined additions to rules P2 and P3:

P2'. (inheritance) If there exist n1 ( N and “PC1 < C2” ( T such that PC1 ( Cls(n1), C2 ( Cls(n1), and Id ( Pfs(n1), then add C2 to Cls(n1).

P3'. (typing) If there exist (n1, A, n2( ( E and “PC1 < (all A C2)” ( T such that PC1 ( Cls(n1), C2 ( Cls(n2), and Id ( Pfs(n2), then add C2 to Cls(n2).

With these modifications, Prop runs in O((m + q) ∙ k)  time! 

In addition, we make the following interesting observation in Appendix B: if all uniqueness constraints in the problem are restricted to a generalization of relational UCs that allows path functions to be either primitive attributes or Id, the runtime of the procedure becomes O(m + q + k) just as in the case of the relational FD theory (even with our generalization of the relational UCs and inheritance).

5. Generality

Recall from our comments in Section 1 that existing polynomial procedures for deciding the membership problem in the schemas with complex objects assume that any UC in a database schema is a key UC. In terms of our definition of regular uniqueness constraints, this corresponds to limiting Len(Pfdiff) to 0, i.e. Pfdiff = Id. (Recall that a constraint PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf ) is regular if there exist some path functions Pfi (1 ( i ( m), Pfprefix, Pfsuffix and Pfdiff such that Pfi = Pfprefix.Pfsuffix and Pf = Pfprefix.Pfdiff.) A natural question to ask is what happens when the condition is slightly relaxed; that is, what happens when one allows the upper bound on the length of Pfdiff to be 2 instead of the current value of 1 studied in this technical report. (And let us call a uniqueness constraint that satisfies this relaxed condition nearly regular.) Interestingly, the following shows that this slight generalization is really a complete generalization that could in principle endow our Prop procedure with the ability to cope with a terminology containing arbitrary uniqueness constraints.

Proposition 1 Let T1 denote an arbitrary terminology and PC < D a subsumption constraint free of any occurrence of a primitive attribute not occurring in T1. Then an application of the following rewrite rule to each constraint in T1 obtains a T2 in which all uniqueness constraints are nearly regular and for which T1 ⊨ PC < D  if and only if  T2 ⊨ PC < D.
Replace “PC1 < (fd PC2: Pfs ( B1.B2.⋯.Bk)”, where k > 2, by the set of constraints

  

“PC1 < (fd PC2: Pfs ( B1.E2)”, 

“PC1 < (fd PC2:  B1.E2 ( B1.B2.E3)”, 

… 

“PC1 < (fd PC2: B1.B2.⋯.Bk-2.Ek-1 ( B1.B2.⋯.Bk)”, 

where E2, E3, …, Ek-1 are primitive attributes not occurring in the given terminology.
The above proposition should be considered along with the recently established fact that reasoning about arbitrary uniqueness constraints in models with complex objects is intractable. In particular, [KTW00b] shows an equivalence of a membership problem for a description logic DLClass with a problem of answering queries in DatalognS, a deductive query language with limited use of successor functions. Compared to the DL in this work, DLClass (a) only allows classes as primitive concepts; (b) has minor syntactic extensions such as and and more general all constructors that do not add any expressiveness to the language; and (c) allows arbitrary uniqueness constraints. Relying on known complexity results about DatalognS, [KTW00b] shows that the membership problem for DLClass is DEXPTIME-complete. 

It follows that the slight extension of regularity condition to near-regularity leads to an exponential problem. Thus, overall, restriction of Len(Pfdiff) not to exceed 1 appears to be as general as possible.


Consider another possible extension of the regular uniqueness constraints—the natural generalization of coupled functional dependencies [CK85] and union functional dependencies [CV83] to use path functions instead of attributes. Even though some forms of this generalization can be captured by our asymmetric uniqueness constraints, extending regular uniqueness constraints to fully capture such generalization would actually lead to an undecidable problem. Indeed, if we just consider the extension of symmetric regular uniqueness constraints, and allow two objects to agree on different path functions, the extended constraints would have the form

PC < (fd PC: (Pf1 Pf1(( ⋯ (Pfk Pfk(( ( (Pf Pf ((),

where (Pfi Pfi(( are pairs of path functions on which a pair of objects in PC have to agree. In other words, the constraint is satisfied by an interpretation I if and only if for any two objects o1 and o2 in PCI, PfiI(o1) = Pfi(I(o2) for 1 ( i ( k implies that Pf I(o1) = Pf (I(o2). An extension of our regularity condition would then require an existence of 1 ( i ( k such that Pf (resp. Pf (), possibly without its last attribute, is a prefix of Pfi (resp. Pfi().


Then however, constraint PC < (fd PC: (B1.B2 B1.B2( ( (B1.B2 A() is equivalent to the equational constraint PC(B1.B2 = A) for any concept PC and attributes A, B1 and B2. It is not hard to show [BW97] that equational constraints of the above form are as expressive as arbitrary constraints of the form PC(Pf1 = Pf2) for any path functions Pf1 and Pf2. However, it is well known that the problem of logical implication with arbitrary equational constraints is undecidable [BW94].

6. Conclusions

In summary, we have considered the membership problem of whether a possibly cyclic database schema consisting of inheritance, typing and uniqueness constraints logically implies a symmetric uniqueness constraint. From this perspective, we have identified a very interesting regularity property of uniqueness constraints. From theoretical point of view, we have shown that the regularity condition is a dividing line between tractable and intractable problems. At the same time, from practical perspective, regular UCs have the nice quality of generalizing both relational and key uniqueness constraints. Moreover, the generalization is strict. Our further contributions can be summarized as follows:

· We have generalized the problem to also allow asymmetric UCs in the schema.

· We have further generalized the problem to allow arbitrary uniqueness constraints on queries/views and even uniqueness constraints with no antecedents which nicely abstract constants and parameters.

· We have presented a sound and complete procedure Prop that solves the regular membership problem for UCs. 

· We have discussed the runtime of Prop and have suggested a very efficient implementation.

· We have shown that a slight relaxation of the regularity condition leads to an arbitrary membership problem for UCs, which is known to be intractable [KTW00b].

· We have developed our algorithm in terms of description logics, thus exploring the fd constructor in more detail and contributing to further integration of DLs and databases.

· We have illustrated a number of applications of the membership problem in both semantic query optimization and schema evaluation fields, and have shown how these optimizations would work with description logics.

Appendix A. Diagnosing Object Normal Form

This appendix presents one possible application of procedure Prop in schema analysis. In particular, we present a polynomial time algorithm that determines whether a database schema is in (strong) object normal form (ONF) as defined in [Bis89]. Although diagnosing BCNF can require exponential time, the addition of a unique minimal key constraint by Biskup makes it possible to check for ONF in polynomial time; and the ability of our Prop procedure to reason about regular constraints, and not just key UCs, allows us to employ it to efficiently diagnose ONF.

Biskup considers a (relational) database schema as a sequence ((R1, F1(, …, (Rm, Fm() where Ri are distinct relations and Fi are sets of FDs with all their attributes in the corresponding Ri. Without loss of generality, we assume that Ri has attributes A1, …, An and 

Fi = {X1 ( A1(, …, Xk ( Ak(}

where Xj are sets of attributes. 

A database schema is said to be in ONF if and only if it is in BCNF and every relation schema has a unique minimal key [Bis89]. In our discussion, however, we consider the problem of determining whether a schema is in ONF in terms of our DL. Thus, we will consider a terminology T with a set of constraints of the form

Ci < (all A1 VALUE),

…

Ci < (all An VALUE),

Ci < (fd Ci: X1 ( A1(),

…

Ci < (fd Ci: Xk ( Ak(),

Ci < (fd Ci: A1 ⋯ An ( Id),
where VALUE is an arbitrary concept for allowed values of attributes, and relations are considered as concepts with the appropriate number of attributes and the appropriate fd constraints directly derived from the F‑sets. Also note that we use Id as an equivalent of a key in the relational model.

A concept Ci is then said to be in BCNF if for every FD Ci < (fd Ci: X ( A) implied by T, if all attributes in X ∪ {A} are attributes of Ci and A ( X, then X is a key of Ci. Also note that a key of a concept Ci is now defined as a set X of attributes of Ci such that T ⊨ Ci < (fd Ci: X ( Id). With this straightforward translation of a database schema into a terminology in our DL, we can now present an algorithm to determine whether such a terminology is in ONF; that is, if every concept in T is in BCNF and has a unique minimal key.


The search space for our algorithm is a tree defined as follows. Given a finite set of primitive attributes {A1, …, An}, each node in the tree has a label att (for “attributes”) that contains a permutation of a non‑empty subset of these attributes. The root contains sequence (A1, …, An) for an arbitrary permutation of the attributes. Every node with k (k > 1) attributes in the label has k children nodes where the label of the i-th node is obtained by removing the i-th attribute from the label of the parent. The leaves have a single attribute in their labels. The general form for such a tree is illustrated in Figure 6 below.

The algorithm explores the search space by traversing the nodes of the tree top-down in the following manner: if T ⊨ C < (fd C: att_value ( Id), where att_value is the sequence of attributes in the att label of the current node, then go to the first child of the current node (or output the current node if it is a leaf); otherwise, go to the right sibling of the current node and if there are no right siblings, stop and output the parent of the current node as the result of the traversal. Note that since T ⊨ C < (fd C: A1 A2 ⋯ An ( Id) is always true by our construction of T, there will always be a parent to return when the traversal stops due to non‑existence of a right sibling. Also note that the problem of whether or not T ⊨ C < (fd C: att_value ( Id) is efficiently solved by our Prop procedure.

Suppose a node with label (A1(, A2(, …, Al() is returned, and let us denote the set with these attributes by att_result; that is, att_result = {A1(, A2(, …, Al(}. Then, by the traversal algorithm, att_result is a key of C and there is no subset of att_result that is a key. Thus, att_result is a minimal key. The algorithm now checks (1) whether att_result is the unique minimal key and, if yes, (2) whether C is in BCNF. If the answer to question (2) is also “yes” then C is in ONF; in any other case it is not in ONF. 

To answer question (1), the algorithm uses our Prop procedure to check whether T ⊨ C < (fd C: A1 ⋯ A1( ⋯ Ai-1( ⋯ Ai+1( ⋯ Al( ⋯ An ( Ai() for all 1 ( i ( l. If at least one, say j-th, of these FDs is logically implied by T, then att_result is not the unique minimal key, since there is another key ( possible_key = {A1, …, A1(, …, Aj-1(, …, Aj+1(, …, Al(, …, An} ) which is not a superset or subset of the att_result. (Note that possible_key cannot be a subset of att_result, since otherwise, att_result would contain all n attributes, and therefore, the node containing the attributes of possible_key in its label would be already checked during the traversal and diagnosed as not being a key.) On the other hand, if none of the FDs are logically implied by T, then att_result is the unique minimal key. Indeed, if there were another minimal key not containing an Aj( as one of its attributes for some 1 ( j ( l, then its superset ({A1, …, A1(, …, Aj-1(, …, Aj+1(, …, Al(, …, An}) would be a key as well, contrary to the assumption that 

T ⊭ C < (fd C: A1 ⋯ A1( ⋯ Aj-1( ⋯ Aj+1( ⋯ Al( ⋯ An ( Aj().












Figure 6: The tree used for the algorithm that determines whether a concept C with primitive attributes A1 through An is in ONF.

If att_result is the unique minimal key, the algorithm proceeds to answer question (2). It follows directly from the definition of BCNF that C is in BCNF if and only if any FD that is logically implied by T has the following form:

C < (fd C: X Y ( Aj),

where 1 ( j ( n, X ⊆ att_result, Y ∩ att_result = (, and if Aj ( X ∪ Y , T ⊨ C < (fd C: X Y ( Id).


Therefore, to answer question (2), the algorithm checks whether T ⊨ C < (fd C: Zi,j ( Aj) for all 1 ( i ( l, 1 ( j ( n, where Zi,j is the set of all attributes of C except for Ai( and Aj. (The checks are again conducted by our Prop procedure.) If at least one of the FDs is logically implied by T, then C is not in BCNF. Indeed, we would have a constraint T ⊨ C < (fd C: Zi,j ( Aj) where Aj ( Zi,j = X ∪ Y, and T ⊭ C < (fd C: Zi,j ( Id) since Zi,j does not contain Ai( (recall that {A1(, A2(, …, Al(} is the unique minimal key of C). On the other hand, if none of the FDs are logically implied by T, then C is in BCNF. Indeed, if there were an FD (fd C: X Y ( Aj) such that Aj ( X ∪ Y  and T ⊭ C < (fd C: X Y ( Id), then there would exist an i (1 ( i ( l) such that Ai( ( X. But then, T would logically imply C < (fd C: Zi,j ( Id) contrary to our assumption.

Thus, the above algorithm solves the problem of deciding whether a database schema is in ONF in polynomial time. Note also that since our Prop procedure deals with a more general object relational environment, we can easily extend the allowed database schema to the object relational case with minor modifications to the algorithm and the proofs above. First, we can replace VALUE in all constraints by other concepts in T. In particular, we can allow recursive schema (unlike the relational model in Biskup). Secondly, since Prop allows constraints of the form C1 < C2 in T, we can have inheritance constraints in the terminology. Finally, we can also allow arbitrary regular fd constraints in T in place of just relational functional dependencies of the form C < (fd C: A1 ⋯ An ( A).

Appendix B. Runtime Complexity

In this section we consider the runtime complexity of an invocation Prop(G0, T ) where G0 denotes Init(PC, {Pf1, …, Pfl}) for some primitive concept PC and a set of path functions {Pf1, …, Pfl} and T denotes a terminology. Since query names are never added to the original graph, any constraints with a query name other than PC on the left‑hand‑side are never applied during Prop. Therefore, it is sufficient to consider T as a union of two sets of constraints—those that do not contain query names (T () and those that contain query PC (T ((). (If PC is a class name, T (( is empty.) In addition, let m, q and k denote the encoding lengths of {Pf1 , …, Pfl}, T (, and T (( respectively.

An efficient implementation of procedure Prop is based on a few of observations:

· Due to the regularity condition, all nodes in the acceptor tree will be within a one-edge reach from at least one of the nodes formed by “expanding” Pf1 through Pfl or possibly some consequents of the uniqueness constraints in T ((. Thus, since there are at most O(m + q) of such nodes in the acceptor tree, the total number of nodes in the tree is O((m + q) ∙ k).

· Nothing can be deduced about an ancestor based on typing information of a descendent. Indeed, typing constraints only “propagate” downward, inheritance constraints only operate within a node, and uniqueness constraints only depend on the typing information of the node that they apply to.

· P1 guarantees that all leaves in the tree will contain Id in their Pfs labels (except for the original tree when rule P1 has not expanded any paths yet). Thus, uniqueness constraints will never apply to the leaf nodes but only to O(m + q) nodes formed by expansions of Pf1 through Pfl and possibly some consequents of the uniqueness constraints in T ((.

The above observations enable us to use an event-driven implementation which first adds all classes that subsume PC to Cls label of the root in O(k + q) time, sets up certain data structures to start monitoring possibly applicable uniqueness constraints in O(k + q) time, and then utilizes a job queue to “expand” all necessary path functions. Whenever a new edge is added to the graph, the procedure would propagate the typing constraints down the edge and then deduce the rest of the classes in the new node by applying all possible inheritance constraints. (Note that the Cls will remain unchanged afterwards by the second observation above.) These two operations would take O(k) time for each of the O((m + q) ∙ k) new nodes plus O(q) time for all nodes. Next, unless the node is the last one along the path, the procedure sets up all uniqueness constraints that the new node should start monitoring based on the classes in its Cls label, and updates the progress for other nodes that were “waiting” for this new edge to be added. Given an efficient indexing of the uniqueness constraints in the terminology, both operations would take O(t) time for each UC / node pair where t is the encoding length of the UC. Thus, the total time for these operations is O((m + q) ∙ k) + O(q) where the first part comes from O(m + q) nodes and O(k) uniqueness constraints that apply to them and the second part comes from the O(q) constraints that might apply to the root. Finally, since the job queue contains exactly one job for each UC that fires and each of the l (= O(m)) original path functions, maintaining it does not exceed O((m + q) ∙ k) + O(q) + O(m) time.


It follows that the total time Prop takes is O((m + q) ∙ k2). Observe that our analysis of runtime assumes efficient constant time implementations of such operations as

· adding a concept to a Cls label, 

· determining whether a given concept is in a Cls label,

· adding a node, 

· adding an edge between two nodes, and 

· checking for existence of an outgoing edge with a given label from a given node.

A technique for such an efficient implementation is described in the appendix of [BW94]. (Note that while the appendix describes a simple array implementation for the last three operations, the first two operations can be implemented in the same way as the last two.)


The following list of 5 ∙ k + 8 subsumption constraints is a pattern for a terminology Texample that demonstrates that the implementation suggested above obtains the best runtime complexity for our Prop procedure.

PC < C; 



PC < (fd PC: ( A(q.B();

C  <  (all A C );


C  <  (all A( C );

C  <  (all B C );


C  <  (all B( C );


C  <  Ci,

1 ( i ( k;



C  <  (all Bi  C ),
1 ( i ( k; 
C  <  (all Bj( C ),
1 ( j ( k;


C  <  (fd C: B ( Bi),
1 ( i ( k;
C  <  (fd C: B( ( Bj(),
1 ( j ( k;



C  <  (fd C: A.B1 ⋯ A.Bk ( B);
C  <  (fd C: A(.B1( ⋯ A(.Bk( ( B().

In particular, consider an acceptor tree G obtained by the evaluation of

Prop(Init(PC, {Am.B}), Texample),

where Ar denotes an path function A.A.⋯ .A containing r copies of the primitive attribute A. It is not difficult to see that the number of nodes occurring in G is O((m + q) ∙ k), and that the inheritance rule will apply to each of these nodes O(k) times.


While O((m + q) ∙ k2) is a tight bound on the runtime complexity of the procedure, we can further improve the complexity with two small modifications of rules P2 and P3. From our observations in the beginning of the section, it is not necessary to deduce any typing information about the leaf nodes in order to solve a membership problem. Thus, consider the following modifications of the rules P2 and P3 (the parts that have been added are underlined):

P2'. (inheritance) If there exist n1 ( N and “PC1 < C2” ( T such that PC1 ( Cls(n1), C2 ( Cls(n1), and Id ( Pfs(n1), then add C2 to Cls(n1).

P3'. (typing) If there exist (n1, A, n2( ( E and “PC1 < (all A C2)” ( T such that PC1 ( Cls(n1), C2 ( Cls(n2), and Id ( Pfs(n2), then add C2 to Cls(n2).

With these modifications, our implementation needs to make sure  that no typing information is propagated to the leaf nodes. Then, since the number of non‑leaf nodes is only O(m + q), the total time spent on processing of the inheritance and typing constraints decreases to O((m + q) ∙ k). Therefore, overall, the modified Prop procedure runs in O((m + q) ∙ k)  time! 

Observe that if all uniqueness constraints inside terminology and the posted question are restricted to a generalization of relational UCs that allows path functions to be either primitive attributes or Id, all nodes in the acceptor tree, except possibly for the root, have to be leaves. Therefore, just as in the case of the relational FD theory, the runtime of the procedure becomes O(m + q + k) (even with our generalization of the relational UCs and inheritance).

Finally, note that when the acceptor tree is reused for a sequence of similar questions (the incremental nature of the procedure is discussed in [Khi99]), certain extra care has to be taken if the modified procedure is used. In particular, one has to keep track of the leaf nodes for which the typing information is not expanded and make sure that when those nodes become internal, the necessary typing information is propagated. In addition, Prop could adapted to answer various typing questions [Khi99], in which case again, similar extra precautions have to be taken if the modified version of Prop is used.

Next, we present a pseudo-code for the modified Prop. The pseudo-code uses the following functions and data structures:

· head(Pf ) denotes either Id if Pf = Id, or the first attribute of a path function Pf otherwise.

· tail(Pf ) is only applicable to path functions that are not Id and denotes the path function without its first attribute; that is, tail(Pf ) = Pf (, where Pf = A.Pf (.

· Node newChild(n, A) creates a new edge outgoing from node n and labeled with attribute A. First, a new node n( with empty Cls and Pfs labels is constructed. Then, the edge between n and n( labeled A is added, and the function returns the new child n(.

· Node findChild(n, A) returns the child of node n reachable from n by an edge labeled A. If no such child exists, null is returned. (Note that there is never more than one edge labeled with the same label and outgoing from the same node.)

· WaitingL is a data structure used to record all nodes and path functions that those nodes have to “accept” before some constraint can fire on a node. It is organized as a table that contains three columns: one with nodes, one with path functions, and one with references to the pairs of uniqueness constraints and nodes. We assume that WaitingL can be indexed by its first column, denoted WaitingL1, or by its first column and the head of the path function in the second column, denoted WaitingL2.

· WaitingU is used to keep track of progress at satisfying all preconditions for a uniqueness constraint to fire on a node. It is organized as a table that records all pairs of nodes and uniqueness constraints that can fire on those nodes. The table contains four columns: one with unique identifiers of uniqueness constraint/node pairs, one with node, one with number of antecedent path functions inside the uniqueness constraint, and one with the last path function inside the constraint. The last column of WaitingL is a foreign key to the first column of WaitingU. WaitingU can be indexed by the first column, denoted WaitingU1.

· JQ is a job queue containing pairs of nodes and path functions that have to be added to the Pfs labels of those nodes.

In the following, we assume that the parameter dn to Prop is a node with one primitive concept in its Cls label and some path functions in the Pfs label. We also assume that dn is the single node in the tree. In other words, dn is obtained from an invocation of Init.

Prop(dn) {



if Id ( Pfs(dn) return;

// trivial case when any path function is accepted

inheritance(dn);

// infer all classes that dn belongs to


setupUCs(dn);


// start monitoring UCs applicable to the root


if PC in Cls(dn) is a query name
// process UCs with no antecedents



for each “PC < (fd PC Pf )” ( T



add (dn, Pf ( to JQ;


for each Pf in Pfs(dn) {

// prepare to expand input path functions



remove Pf from Pfs(dn);



add (dn, Pf ( to JQ;


}


while JQ is not empty {

// main loop



remove (n, Pf ( from JQ;



expand(n, Pf );


}

}

inheritance(n) {


for all “PC1 < PC2” ( T such that PC1 ( Cls(n)



if PC2 ( Cls(n)




add PC2 to Cls(n);

}

typing((n1, A, n2() {


for all “PC1 < (all A PC2)” ( T such that PC1 ( Cls(n1)



if PC2 ( Cls(n2)




add PC2 to Cls(n2);

}

setupUCs(n) {



// node n starts monitoring possibly applicable UCs


for all “PC1 < (fd PC2 Pf1 ⋯ Pfm Pf )” ( T such that 

PC1 ( Cls(n) and PC2 ( Cls(n) {



create new identifier k;



for i from 1 to m {




add (n, Pfi, k( to WaitingL;



}



add (k, n, m, Pf ( to WaitingU;


}

}

expand(n, Pf ) {



// expanding Pf by the rule of composition


curNode ( n;



// initialize current node


while (head(Pf ) ( Id and Id ( Pfs(curNode)){

// apply P1 until we reach the end of Pf







// or come across a node with Id


child ( findChild(curNode, head(Pf ));



if (child = null) {




child ( newChild(curNode, head(Pf ));




if tail(Pf ) ( Id {
// do not process leaves





typing((curNode, head(Pf ), child ();





inheritance(child);





setupUCs(child);




}




updateProgress((curNode, head(Pf ), child ();



}



curNode ( child;



Pf ( tail(Pf );


}


if (Id ( Pfs(curNode))
// accept all “waiting” path functions that end at 



accept(curNode);
// curNode and its descendents 

}

updateProgress((n1, A, n2() {


for each (n1, Pf, k( ( WaitingL2 where A = head(Pf ) {



replace (n1, Pf, k( in WaitingL by (n2, tail(Pf ), k(;


}

}

accept(n) {


// accept descendents (post‑order traversal)


for each child child of n


if Id ( Pfs(child)




accept(child);


// accept n itself


add Id to Pfs(n);  // accept(n) is invoked only if Id ( Pfs(n)


for each (n, Pf, k( ( WaitingL1 {



get (k, n(, m, Pf (( from WaitingU1;



decrement m;



if (m = 0) {




add (n(, Pf (( to JQ;



}


}

}

Appendix C. Termination
Theorem 1 (termination) Let G and T denote an arbitrary finite acceptor tree that may contain query names only inside Cls(Root(G)) and a terminology, respectively. Then Prop(G, T ) terminates.

The proof of the theorem will rely on the following additional definitions and observations. Let {Pf1, …, Pfm} denote a set of path functions, T a terminology and PA(T ) the set of all primitive attributes occurring in T. We define Prefix({Pf1, …, Pfm}) and Boundary({Pf1, …, Pfm}, T ) as the respective sets of path functions:

{Pf ( | ( Pf (( and 1 ( i ( m: Pf (.Pf (( = Pfi}; and

Prefix({Pf1, …, Pfm})  ∪  {Pf (. A.Id | Pf ( ( Prefix({Pf1, …, Pfm}) ( A ( PA(T )}.

It is a straightforward consequence of our definitions that for any regular description (fd PC: Pf1 ⋯ Pfm ( Pf ) occurring in T, Pf ( Boundary({Pf1, …, Pfm}, T ). 

Given an acceptor tree G (= (N, E, n() and a terminology T, we define acceptor tree prefix and boundary, written ATPrefix(G) and ATBoundary(G, T ), as the respective sets:

Prefix({Pf1.Pf2 | ( n( ( N: Pf1 = RootPf(n(, G) ( Pf2 ( Pfs(n() ∪ {Id}}); and

Boundary({Pf1.Pf2 | ( n( ( N: Pf1 = RootPf(n(, G) ( Pf2 ( Pfs(n() ∪ {Id}}, T ).

Observation C.1 G will have a finite number of nodes if and only if ATBoundary(G, T ) is finite (independent of choice of terminology T). This follows from the facts that the latter contains RoofPf(n(, G).Id (= RoofPf(n(, G)) for every node n( in G, Pfs(n() is finite, and the number of primitive attributes in T is also finite.

Observation C.2 During an invocation of Prop, only rule P4 (uniqueness) can add a path function to ATBoundary(G, T ).

Lemma C.1 Let G0 (= (N, E, n() and T denote an arbitrary finite acceptor tree and a terminology, respectively, and let [G1, G2, … ] denote a sequence of acceptor trees obtained by a sequence of applications of rewrite rules defined by Prop(G0, T ). Then, for every i ( 0,
ATBoundary(Gi, T ) ⊆ ATBoundary(G0, T ) ∪ Sb,

for Sb = Boundary({Pf ( | PC1 < (fd PC2: Pf1( ⋯ Pfl( ( Pf () ( T }, T ) where at least one of the primitive concepts PC1 and PC2 is a query name.

Proof. We prove by contradiction that RootPf(n(, Gi).Pf is in ATBoundary(G0, T ) ∪ Sb for every i ( 0, n( occurring in Gi, and Pf ( Pfs(n() ∪ {Id}.

Let i denote the smallest integer such that Gi (= (Ni, Ei, n() contains the first node n1 with Pf ( Pfs(n1) ∪ {Id} such that RootPf(n1, Gi).Pf ( ATBoundary(G0, T ) ∪ Sb. Clearly i > 0, and by Observation C.2, it follows that the i-th update must have been an application of rule P4 in which Pf was added to Pfs(n1). Without loss of generality, let us assume that the i‑th update is applied to some constraint “PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf )” in T with PC1 and PC2 in Cls(n1).

First, note that neither PC1 nor PC2 can be a query name. Indeed, since none of the rules of Prop adds a query name to a Cls label of a node, if PC1 and/or PC2 were a query name, n1 would have to be Root(Gi-1). Then, however, RootPf(n1, Gi).Pf = Pf and Pf ( Sb.

Thus, both PC1 and PC2 must be class names which in turn implies that the fd description is regular. It follows that

(a) there exist 1 ( j ( m and path functions Pfprefix, Pfsuffix and Pfdiff such that Pfj = Pfprefix.Pfsuffix, Pf = Pfprefix.Pfdiff and Len(Pfdiff) ( 1,

(b) (Ni​‑1, Ei​‑1, n1( accepts Pfk, for 1 ( k ( m, and

(c) (Ni​‑1, Ei​‑1, n1( does not accept Pf.

Conditions (a) and (b) imply that there exist path functions Pf (, Pf (( and Pf ((( such that:

(d) Pf (.Pf ((.Pf ((( = Pfj = Pfprefix.Pfsuffix, and

(e) there exists a node n2 ( Ni​‑1 reachable from n1 such that RootPf(n2, Gi​‑1) is the same as RootPf(n1, Gi‑1).Pf (, and Pf (( ( Pfs(n2).

By choice of i and condition (e), we have that

RootPf(n2, Gi​‑1).Pf ((( ATBoundary(G0, T ) ∪ Sb,

and therefore, by condition (e) again, RootPf(n1, Gi​‑1).Pf (.Pf (( ( ATBoundary(G0, T ) ∪ Sb. But then, conditions (a), (c) and (d) imply that Pfprefix ( Prefix({Pf (.Pf ((}) – {Pf (.Pf ((}, and therefore, that RootPf(n1, Gi​‑1).Pfprefix ( ATPrefix(G0) ∪ Sp, where 

Sp = Prefix({Pf ( | PC1 < (fd PC2: Pf1( ⋯ Pfl( ( Pf () ( T })

with PC1 and/or PC2 being a query name. Thus, since Len(Pfdiff) ( 1 and Pf = Pfprefix.Pfdiff, it follows that RootPf(n1, Gi​‑1).Pf ( ATBoundary(G0, T ) ∪ Sb. Finally, since the i-th update does not modify any ancestors of n1, RootPf(n1, Gi​‑1) = RootPf(n1, Gi​), and therefore, RootPf(n1, Gi).Pf ( ATBoundary(G0, T ) ∪ Sb—contrary to assumptions.

■

Proof of termination. To prove termination, note that finite size of the terminology T, Observation C.1 and the fact that we have started with a finite acceptor tree imply that ATBoundary(G0, T ) ∪ Sb is finite. Therefore, by Lemma C.1, ATBoundary(Gi, T ) is also finite, and Observation C.1 again implies that Gi is finite. Moreover, by definition of ATBoundary(G, T ), the number of nodes in Gi cannot exceed the cardinality of ATBoundary(Gi, T ) which in turn is not greater than the cardinality of ATBoundary(G0, T ) ∪ Sb.

Next consider what happens when we disallow any application of rule P5. Observe that rules P2, P3 and P4 can “fire” at most a finite number of times since (1) the number of nodes is bounded by the cardinality of ATBoundary(G0, T ) ∪ Sb, (2) no node is ever removed by an application of rules other than rule P5, and (3) each rule may apply at most once to a given combination of a node and a subsumption constraint in T. Therefore, the total number k of attributes installed by rule P4 in the Pfs labels of nodes is finite, and this in turn ensures that rule P1 can fire at most a finite number of times (since each application decrements k). Thus, the sequence Seq of applications of rules P1 through P4 is finite.

Now consider the introduction of an application of rule P5 on some node n in Seq at position j. Clearly, no application of rule P4 occurs after position j in Seq on node n (condition (b) of rule P4 cannot be satisfied), and no application of rule P1 after position j in Seq will result in the addition of a new child of n. Since an application of any rule after position j on a descendent of n must be removed from Seq, since rule P5 itself cannot reapply to node n, and since the application of rule P5 does not make preconditions of other rules true, the resulting sequence must remain finite and the theorem follows.

■

Appendix D. Soundness

Theorem 2 (soundness) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Then
T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf )

if Prop(Init(PC, {Pf1, …, Pfm}), T ) accepts Pf.

To prove this theorem, we start by introducing a number of inference axioms in the following lemma. A proof that each is sound is straightforward and omitted.

Lemma D.1  For any terminology T, primitive concepts PC and PCi (1 ( i ( 3), non-negative integers m and k, and path functions Pf, Pf (, Pfj or Pf j( (1 ( j ( max(m, k, 3)):

(1)  T ⊨ PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pfj) , for 1 ( j ( m;

(2)  T ⊨ PC < (all Id PC);

(3)  If T ⊨ PC1 < (all Pf PC2) and T ⊨ PC2 < PC3 , then T ⊨ PC1 < (all Pf PC3);

(4)  If T ⊨ PC1 < (all Pf1 PC2) and T ⊨ PC2 < (all Pf2 PC3), then 

T ⊨ PC1 < (all Pf1.Pf2 PC3);

(5)  If T ⊨ PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf ) , then 

T ⊨ PC1 < (fd PC2: Pf1 ⋯ Pfm ( Pf.Pf ();

(6)  If T ⊨ PC1 < (all Pf PC2), T ⊨ PC1 < (all Pf PC3) and 

T ⊨ PC2 < (fd PC3: Pf1 ⋯ Pfm ( Pf () , then

T ⊨ PC1 < (fd PC1: Pf.Pf1 ⋯ Pf.Pfm ( Pf.Pf ();

(7)  If T ⊨ PC < (fd PC: Pf1 ⋯ Pfk ( Pfj(), for 1 (  j (  m , and 
T ⊨ PC < (fd PC: Pf1( ⋯ Pfm( ( Pf ) , then T ⊨ PC < (fd PC: Pf1 ⋯ Pfk ( Pf ).
The following lemma introduces an invariant preserved by the Prop procedure and is essentially the backbone of the proof of soundness that follows the lemma.

Lemma D.2 (Lemma 1 revisited) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Also, let G0 (= (N0, E0, n() denote the initial acceptor tree Init(PC, {Pf1, …, Pfm}) and [G1, …, Gk] a (necessarily finite) sequence of acceptor trees (Gi = (Ni, Ei, n(, 1 ( i ( k) obtained by a sequence of applications of rewrite rules defined by Prop(G0, T ). Then, for all 0 ( i ( k:

(1) for all n( ( Ni , and Pf ( Pfs(n(): T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n(, Gi).Pf );

(2) for all n( ( Ni , and PC ( ( Cls(n(): T ⊨ PC < (all RootPf(n(, Gi) PC (); and

(3) for all n( ( (Ni ∩ Ni-1): RootPf(n(, Gi-1) = RootPf(n(, Gi).
Proof. Property (3) can be verified by a simple inspection of the rules comprising our Prop procedure. We prove properties (1) and (2) by induction on i.

For the basis case, G0 consists of a single node n with labels Cls(n) and Pfs(n) initialized to {PC} and {Pf1, …, Pfm}, respectively. Property (2) is therefore an immediate consequence of Lemma D.1(2). Lemma D.1(1) implies

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pfj)

for 1 ( j ( m, and since RootPf(n, G0).Pfj = Pfj, (1) must also hold. 

Now assume the lemma holds for all i < l ( k, and consider each of the five rules that might have obtained Gl. (The rules themselves are reproduced for convenience.)

P1. (composition) If there exist n1 ( N and Pf1 (= A.Pf2) ( Pfs(n1), then remove Pf1 from Pfs(n1).  If Id ( Pfs(n1) then:

(a) Find n2 ( N such that (n1, A, n2( ( E.  If no such node exists then add a new node n2 with both its Cls and Pfs labels initialized to (, and add (n1, A, n2( to E.

(b) Add Pf2 to Pfs(n2).

Observe that no primitive concept is added to any Cls label by the rule of composition. Thus, (2) must hold for Gl by the inductive assumption and (3). Also, by the inductive assumption,

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n1, Gl-1).A.Pf2).

And since the rule ensures that RootPf(n2, Gl) = RootPf(n1, Gl).A.Id and by (3) we have

RootPf(n1, Gl).A.Id = RootPf(n1, Gl-1).A.Id,

it follows that

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n2, Gl).Pf2).

Thus, property (1) must also hold for Gl.

P2. (inheritance) If there exist n1 ( N and “PC1 < C2” ( T such that PC1 ( Cls(n1) and C2 ( Cls(n1), then add C2 to Cls(n1).

Since Pfs labels remain unchanged, (1) must hold for Gl by the inductive assumption and property (3). Also, by the inductive assumption,

T ⊨ PC < (all RootPf(n1, Gl-1) PC1);

and by (3), the precondition that “PC1 < C2” ( T and Lemma D.1(3), it follows that

T ⊨ PC < (all RootPf(n1, Gl) C2).

Thus, property (2) must also hold for Gl.

P3. (typing) If there exist (n1, A, n2( ( E and “PC1 < (all A C2)” ( T such that PC1 ( Cls(n1) and C2 ( Cls(n2), then add C2 to Cls(n2).

(A similar line of argument to the previous case applies by substituting a reference to Lemma D.1(4) in place of Lemma D.1(3).)

P4. (uniqueness) If there exist n1 ( N, PC1 and PC2 that belong to Cls(n1) and constraint “PC1 < (fd PC2: Pf1( ⋯ Pfh( ( Pf ( )” in T such that:

(a) h ( 1 implies that (N, E, n1( accepts Pfj(, for all 1 ( j ( h, and

(b) (N, E, n1( does not accept Pf (,

then add Pf (  to Pfs(n1).

Since no primitive concept is added to any Cls label by the rule of uniqueness, property (2) must hold for Gl by the inductive assumption and property (3). 

If h = 0, the fact that property (1) must also hold for Gl is a straightforward consequence of Lemma D.1(6) and properties (2) and (3). Next, consider the case when h ( 1.

From condition (a) of P4, property (3) and definition of acceptance, there must exist nodes nj and path functions Pfj path, Pfj label and Pfj tail, for each 1 ( j ( h, such that

Pfj( = Pfj path.Pfj label.Pfj tail,



       (1)

RootPf(nj, Gl) = RootPf(n1, Gl).Pfj path, and

       (2)

Pfj label occurs inside label Pfs(nj).


       (3)

The inductive assumption together with (2) and (3) then imply that

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n1, Gl).Pfj path.Pfj label)

must hold for each 1 ( j ( h. Then, from (1) and Lemma D.1(5), we have that

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n1, Gl).Pfj(), for each 1 ( j ( h.
       (4)

Now, the fact that PC1 and PC2 belong to Cls(n1) together with properties (2) and (3) imply that

T ⊨ PC < (all RootPf(n1, Gl) PC1), and

T ⊨ PC < (all RootPf(n1, Gl) PC2).

Then Lemma D.1(6) and the fact that “PC1 < (fd PC2: Pf1( ⋯ Pfh( ( Pf ()” occurs in T imply 

  T ⊨ PC < (fd PC: RootPf(n1, Gl).Pf1(  ⋯  RootPf(n1, Gl).Pfh(  ( RootPf(n1, Gl).Pf ( ), (5)

and finally

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( RootPf(n1, Gl).Pf ()

follows by (4), (5) and Lemma D.1(7). Thus, (1) continues to hold following the addition of path function Pf ( to Pfs(n1).

P5. If there exists n1 ( N with at least one child and such that Id ( Pfs(n1), then remove all other nodes reachable from n1 along with their incident arcs.

Since there is no modification to any Cls or Pfs labels, both (1) and (2) must continue to hold on Gl.

■

Proof of soundness. To prove soundness, let now G denote the acceptor tree computed by

Prop(Init(PC, {Pf1, …, Pfm}), T ),

and let Pf denote an path function accepted by G. Then G must contain a node n and there must exist path functions Pf ( and Pf (( such that Pf = RootPf(n, G).Pf (.Pf (( and such that Pf ( occurs in Pfs(n). Thus, property (1) of Lemma D.2 and Lemma D.1(5) imply

T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf ).

■

Appendix E. Completeness
Theorem 3 (completeness) Let PC, {Pf1, …, Pfm} and T denote an arbitrary primitive concept, a set of path functions and a terminology, respectively. Then,
Prop(Init(PC, {Pf1, …, Pfm}), T ) accepts Pf
if T ⊨ PC < (fd PC: Pf1 ⋯ Pfm ( Pf ).

While the proof presented here contains most of the necessary details, it does appeal to intuition on a couple of occasions (for example, by not exactly defining the notion of a path in a graph) in order to simplify the presentation and to allow one to follow the general line of argument more easily.

Proof of completeness. The overall strategy is to assume that

Prop(Init(PC, {Pf1, …, Pfm}), T ) 

does not accept Pf, and then to construct an interpretation that satisfies all constraints in T and does not satisfy  constraint “PC < (fd PC: Pf1 ⋯ Pfm ( Pf )”. Our construction starts from the output of procedure Prop(Init(PC, {Pf1, …, Pfm}), T ), and considers a “merge” of two identical copies of the resulting tree. The roots of the two trees will represent two objects violating the subsumption constraint, while the rest of the structure will provide the remaining details for an interpretation. After the above‑mentioned merge “joins” all isomorphic nodes that have Id in their Pfs labels, we extend the resulting (description) graph with additional “missing” nodes and edges to represent the attribute values of all the nodes in the graph to ensure that the constructed interpretation of every attribute is a total function. Finally, the desired interpretation I is obtained by: (1) viewing the set of all nodes as the domain (, (2) the interpretation of a primitive concept PC ( as the set of all nodes with PC ( occurring in their Cls labels, and (3) the interpretation of an attribute A as the set of pairs of nodes connected by an edge labeled A.

To obtain I, we first construct an infinite sequence SD of (finite) description graphs that starts with acceptor trees

G‑2 = Init(PC, {Pf1, …, Pfm}) = (N‑2, E‑2, dn( and

G‑1 = Prop(G‑2, T ) = (N‑1, E‑1, dn(
 

(we assume that this invocation of Prop includes the simplification rule). Note that assuming m ( 1 (the case when m = 0 will be discussed at the end of the proof), and due to the composition rule, G‑1 contains at least one node with Id inside its Pfs label. Therefore, G‑1 must contain more than one node, since otherwise, the only node in the tree, i.e. its root, would contain Id inside its Pfs label, and thus, the tree would accept any path function contrary to the assumption that it does not accept Pf. Moreover, due to the simplification rule, only leaves of G‑1 contain Id in their Pfs labels. Finally, due to the composition and simplification rules, these nodes do not contain any other path functions in their Pfs labels, and all other nodes in the graph have empty Pfs labels.

Next, a copy of tree G-1 is constructed, say G‑1( = (N‑1(, E‑1(, dn((, and the following merge of the two trees obtains graph G0 = (N0, E0, dn(: 

CS0. Initialize N0 with N‑1 ∪ N‑1(, E0 with E‑1 ∪ E‑1(, and the distinguished node with dn. Next, for all n1 ( N‑1 and n1( ( N‑1( such that RootPf(n1, G‑1) = RootPf(n1(, G‑1() and Id is in the Pfs label of both nodes, and for an edge (n(, A, n1(( ( E‑1(, remove the edge from E0, add edge (n(, A, n1( to E0, and remove node n1( from N0.

Note that there must exist a parent for each such node n1(; or in other words, edge (n(, A, n1(( always exists in the above rule, since otherwise, n1( would be the root node of G‑1(. Then however, G​‑1(, and therefore, G‑1, would accept any path function, including Pf, contrary to the assumption. 

It follows that G0 consists of exactly three non‑empty parts. Part 1 contains all nodes (and their outgoing edges if any) that are in N‑1 and that do not have Id in their Pfs labels; part 2 contains all nodes (and their outgoing edges) that are in N‑1( and that do not have Id in their Pfs labels; and part 3 contains all nodes that are in N‑1 and that have Id in their Pfs labels. Moreover, since Id only appears in the Pfs labels of the leaves of G‑1, part 3 only contains leaf nodes. Finally, due to the structure of G‑1 that we outlined above, nodes in parts 1 and 2 have empty Pfs labels, while nodes in part 3 only contain Id in their Pfs labels. Graph G0 is illustrated in Figure 7(a) at the end of the proof.


The idea of the construction that follows is to add “missing” attributes to G0 in a way that eventually ensures that the interpretation of each primitive attribute is a total function. Since nodes in the graphs will be the objects in (, and edges will define the interpretation of attributes, each node must have an (outgoing) edge for every attribute in at least one graph. Generally however, we cannot create arbitrary new edges between nodes that already exist in the graph since that might lead to violations of fd constraints in T. Thus, for every node n1 and every primitive attribute A, we create a new node n2, and an edge (n1, A, n2( unless it already exists; deduce the class(es) that n2 must “belong” to; and proceed by creating nodes and edges outgoing from n2. All three parts of G0 grow with this process.

More formally, let SD = [G​​‑2, G‑1, G0, G1, …, Gi = (Ni, Ei, dn(, … ] denote the infinite sequence of description graphs constructed as follows. G‑2, G‑1, and G0 are constructed as defined above. Next, at step i (i ( 1), in order to obtain Gi, we add a number of nodes and edges to graph Gi‑1 and invoke procedure Prop( that exhaustively applies only rules P2 and P3 to the resulting graph. Let Ni( (resp. Ei() denote the set of new nodes (resp. edges) that we add at step i, and let SPA = [A1, A2, … ] denote a sequence of all primitive attributes
. Since we are going to add a countably infinite number of nodes with countably infinite number of outgoing edges, we use a “triangular” construction to keep the graph resulting at each step finite. Thus, we define construction step i (i ( 1), denoted by CSi, as follows: 

CSi. For all n1 ( Ni‑1 and Aj ( SPA (1 ( j ( i): if there is no n2 in Ni‑1 such that (n1, Aj, n2( is in Ei‑1, add a new node n2 to Ni( and edge (n1, Aj, n2( to Ei(. Gi is then defined as Prop(((Ni‑1 ∪ Ni(, Ei‑1 ∪ Ei(, dn(, T ).

Since Prop( does not modify any nodes or edges, Ni = Ni‑1 ∪ Ni( and Ei = Ei‑1 ∪ Ei(. Also note that termination of every step as well as finiteness of every graph Gi (i ( 1) is guaranteed by the facts that G0 is finite, and there is at most a finite number of applications of inheritance and typing rules to a finite number of nodes and edges that are added at each step.

Finally, we define the interpretation I as follows:

· ( = N0 ∪ 
[image: image1.wmf]U
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Ni(;

· PCI = {n ( ( | ( Gi (i ( 0) such that n ( Ni and PC ( Cls(n) inside Gi} for any primitive concept PC; and

· AI = {(n1, n2) | ( Gi (i ( 0) such that n1, n2 ( Ni and (n1, A, n2( ( Ei} for any primitive attribute A.

In order to distinguish different invocations of Prop( procedure during the construction process, we use a subscript to denote the step at which the procedure is executed. Thus, Propi( (i ( 1) denotes the invocation of Prop( at step i. In addition, we denote the invocation of Prop that constructed graph G‑1 as Prop0.

Let us now make a number of assertions (and present their proofs) about the nature of this construction and the resulting interpretation I.

Assertion 1. No step i for i ( 1 adds/removes any primitive concepts to/from Cls sets of nodes in Ni‑1. 

This assertion is a consequence of the facts that every construction step just adds new nodes and edges outgoing from already existing nodes, and only rules of inheritance and typing are applied during the execution of Propi(. First, note that neither of the rules can remove a primitive concept from a Cls set of a node. In addition, note that invocation of Propi‑1( (or Prop0 if i = 1) must have exhaustively explored all rules that could possibly add a class name to a node in Ni‑1. Thus, the only rules that might be applicable during the invocation of Propi( are rules of typing that add new class names to the Cls sets of the newly created children (in Ni(). After that, neither inheritance nor typing rules that apply to nodes in Ni( can possibly affect or depend on Cls sets of other nodes. Therefore, Propi( cannot possibly add new primitive concepts to a Cls set of a node in Ni‑1.

In particular, this assertion implies that if i is the smallest non-negative integer such that a node n is in Ni, n ( PC (I for our constructed interpretation I if and only if PC ( ( Cls(n) in Gi.

Assertion 2. For every node n1 ( (, and every Ai ( SPA, there is at least one node n2 ( ( such that (n1, n2) ( AI.

Indeed, let j be the smallest non-negative integer such that Gj contains n1 (such j exists since n1 ( (). If there is an edge (n1, Ai, n2( in Ej for some node n2 in Nj, (n1, n2) must be in AiI by the definition of I. Otherwise, a new node n2 and edge (n1, Ai, n2( are created by the construction step max(i, j + 1), and thus again, (n1, n2) must be in AI.

Assertion 3. For every node n1 ( (, and every Ai ( SPA, there is at most one node n2 ( ( such that (n1, n2) ( AI.


The statement follows from the facts that G‑1 is a tree; no construction step adds a new edge if there already exists an edge with the same label and outgoing from the same node; and no edge is ever removed or modified during the construction steps CSi for all i ( 1.

Assertion 4. I is a valid interpretation.
This assertion is a straightforward consequence of Assertions 2 and 3 since they ensure that primitive attributes are total functions on (.

Assertion 5. The distinguished node of G0 is in PCI, and I satisfies T.

The first part of the assertion follows directly from Assertion 1, since PC is in the Cls set of the distinguished node of G-2 and remains there throughout the construction process (distinguished node remains unchanged as well).

Next, consider the second part of the assertion. There are three kinds of constraints in T:

(a) PC1 < C2;

(b) PC1 < (all A C2); and

(c) PC1 < (fd PC2: Pf1( ⋯ Pfk( ( Pf ().

Let us assume that I does not satisfy a constraint of kind (a). Then, there must exist a node n such that n is in PC1I and not in C2I. Therefore, by Assertion 1 and definition of I, there must exist the smallest non‑negative integer i such that graph Gi contains n, PC1 is in Cls(n), and C2 is not in Cls(n). Then, however, Propi( (or Prop0 if i = 0) would have added C2 to Cls(n), and therefore, by Assertion 1 (or by construction of G0 if i = 0), n must also belong to C2I contrary to the assumption.


Next, let us assume that I does not satisfy a constraint of the form (b). Then, there must exist two nodes n and n( such that n is in PC1I, (n, n(( is in AI, and n( is not in C2I. Therefore, by Assertions 1 and 4 and definition of I, there must exist the smallest non‑negative integer i such that graph Gi contains nodes n and n( and edge (n, A, n((, PC1 is in Cls(n), and C2 is not in Cls(n(). Then, however, Propi( (or Prop0 if i = 0) would have added C2 to Cls(n(), and therefore, by Assertion 1 (or by construction of G0 if i = 0), n( must belong to C2I, contrary to the assumption.


Finally, let us assume that I does not satisfy a constraint of the form (c). First, consider the case when k ( 1. Then, there must exist nodes n, n(, n1, …, nk, nk+1, and nk+1( such that 

(1) n and n( are in PC1I and PC2I respectively; 

(2) Pfi(I(n) = Pfi(I(n() (= ni) for 1( i ( k; and

(3) Pf (I(n) (= nk+1) and Pf (I(n() (= nk+1() are distinct.

Therefore, by Assertions 1 and 4 and definition of I, there must exist the smallest non‑negative integer j such that graph Gj contains nodes n, n(, n1, …, nk, nk+1, and nk+1(, contains a path pi (resp. pi() from node n (resp. n() to node ni that passes through the edges labeled with attributes of the path function Pfi( (for all 1 ( i ( k), and where PC1 is in Cls(n) and PC2 is in Cls(n(). However, since by our construction, the only nodes that have more than one parent are the nodes in the part 3 of graph G0, n and n( must belong to the union of parts 1 and 2 of G0. Moreover, for every path function Pfi( (1 ( i ( k), there must exist its prefix Pfi(( such that there is a path that leads from node n (and n() to a node, say ni(, in part 3 of G0 and that passes through edges with labels corresponding to the attributes of Pfi(( (see Figure 7(b)).


Note that n and n( must be distinct nodes, since otherwise, they would “agree” on the path function Pf (, i.e. nk+1 and nk+1( would have to be the same. Without loss of generality, let us assume that n is in part 1 of G0, i.e. n ( N‑1. Then, our construction of G0 implies that n( must belong to N‑1( and be isomorphic to n. (Note that nodes in part 3 of G0 have parents that are isomorphic nodes in G‑1 and G‑1(, and parents of isomorphic parents are also isomorphic.) It follows that G‑1 contains a node n with both PC1 and PC2 in its Cls label. Moreover, (N‑1, E‑1, n( accepts Pfi( for 1 ( i ( k. Therefore, Prop0 would ensure that (N‑1, E‑1, n( also accepts Pf (. Then, due to the rules of composition and simplification, there would also exist a path in G‑1 that (a) starts from node n; (b) ends at a node with Id in its Pfs label; and (c) passes through the edges with labels corresponding to attributes of a prefix of Pf (. Therefore, due to our construction of G0, nodes n and n( would have to also agree on a prefix of Pf (, contrary to condition (3) above.


In the case when k = 0, since no step during the construction process adds a query name to a Cls label, the only pair of nodes that can possibly not satisfy the constraint consists of Root(G‑1) and Root(G‑1(). However, since these are isomorphic by our construction, both PC1 and PC2 must belong to Root(G‑1). Therefore, again, Prop0 would ensure that (N‑1, E‑1, n( accepts Pf (, which in turn obtains contradiction.

Assertion 6. The distinguished node of G0 is not in (fd PC: Pf1 ⋯ Pfm ( Pf )I.

First, note that by the discussion following the definition of the construction step CS0, neither dn nor dn( (= Root(G‑1()) contains Id in its Pfs label, and therefore, neither of the nodes is removed by the step CS0. Furthermore, since Pfs label of the distinguished node dn contains path functions Pfi (1 ( i ( m) in G‑2, by the rule of composition and by construction of G0, dn and dn( agree on the paths in G0 that pass though edges with labels corresponding to the attributes of some prefixes of the path functions Pfi (for all 1 ( i ( m). Therefore, by definition of the interpretation I, PfiI(dn) = PfiI(dn() (1 ( i ( m). (Note that this condition is trivially satisfied if m = 0.) In addition, both nodes contain PC in their Cls labels, and therefore, both belong to PCI. 

On the other hand, since G‑1 does not accept the path function Pf, nodes dn and dn( do not agree on a path in G0 that passes through edges with labels corresponding to attribute names in any prefix of Pf. Moreover, since our construction steps CSi for i ( 1 do not add any nodes with more than one parent, by the definition of I, Pf I(dn) ( Pf I(dn(). Therefore, the statement of the assertion follows.

Therefore, by Assertions 4, 5 and 6, we constructed an interpretation I that satisfies T and contains a node (dn) that is in PCI but not in (fd PC: Pf1 ⋯ Pfm ( Pf )I. In other words, I satisfies T and does not satisfy constraint PC < (fd PC: Pf1 ⋯ Pfm ( Pf ).

Two final notes are in order. First, the result of the theorem also holds if we consider the invocation of Prop0 without the simplification rule. The only change would involve “merging” the descendents of the nodes that have Id in their Pfs labels. (The merged descendents would form a forest of trees in part 3 of G0, and would only slightly complicate the proof.) 

Second, in the case when m = 0, the construction in the proof would still work and remain the same if there is a node in G‑1 with Id in its Pfs label. However, if m = 0, this is not necessarily the case. Then, part 3 does not exist, and our construction would be “expanding” two unconnected isomorphic trees with root nodes that belong to PCI and that do not agree on any paths, including Pf. Thus, the constructed interpretation clearly violates the constraint “PC < (fd PC: ( Pf )”. At the same time, just like the arguments in the case when m ( 1, it can be shown that the interpretation would satisfy the terminology T. The proof would be analogous to the one presented above and simpler in certain cases due to the special form of the graph. (For example, discussion of case (c) in Assertion 5 becomes trivial.)

■


(a) Graph G0.


(b) Two nodes that agree on paths corresponding to the path functions Pf1( through Pfk(.

Figure 7: Construction of the interpretation I in the proof of completeness.
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(a) Init(PROFESSOR, {Name}).
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Pfs: {Id}
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Pfs: (





Cls: (
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Cls: {STRING}


Pfs: {Id}
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(d) By composition.





Cls: {STRING}
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Cls: {NUMBER}


Pfs: {Id}
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(b) By composition.
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Cls: (


Pfs: {Id}





Cls: {PROFESSOR}


Pfs: {Id}





(f) By simplification.
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C < (fd … )	uniqueness constraint








inheritance





Cls: {PROFESSOR}


Pfs: {Name.Id}





(e) By typing and uniqueness.
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Nodes outside of the boundary of G0 are created by CSj (j ( 1)





some highlighted paths pi and pi( (1 ( i ( k)
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paths corresponding to Pf1( ⋯ Pfk(





Part 3





Part 2





Part 1





…





…





…





…





OBJECT < (all Name STRING)





PROFESSOR < OBJECT


PROFESSOR < (all Enum NUMBER)


PROFESSOR < (all Dept DEPARTMENT)


PROFESSOR < (all Boss PROFESSOR)


PROFESSOR < (fd PROFESSOR: Enum ( Id)


PROFESSOR < (fd PROFESSOR: Name ( Enum)





DEPARTMENT < OBJECT


DEPARTMENT < (all Head PROFESSOR)


DEPARTMENT < (fd DEPARTMENT: Name ( Id)











…





n





(c) By typing and uniqueness.





Name





Cls: {PROFESSOR}


Pfs: (





Cls: {PROFESSOR}


Pfs: {Enum.Id}





…





nodes of G�1 with {Id} as their Pfs labels





paths corresponding to Pf1 ⋯ Pfm





nodes of G�1( with empty Pfs labels





nodes of G�1 with empty Pfs labels





Cls: {STRING}


Pfs: (





Cls: {PROFESSOR}


Pfs: {Id}





Cls: {PROFESSOR}


Pfs: (








PROFESSOR < (fd PROFESSOR: Enum ( Id)


PROFESSOR < (fd PROFESSOR: Name ( Enum)


DEPARTMENT < (fd DEPARTMENT: Name ( Id)








Boss





Name





(a) The UNIV database schema.





Head





DEPARTMENT





Boss





Name





Enum





Dept





STRING





OBJECT





NUMBER





PROFESSOR





select P.Name, B.Name


from PROFESSOR as P, PROFESSOR as B, 


DEPARTMENT as D 


where P.Boss = B


and     P.Dept = D 


and     D.Head = B


order by P.Name








(c) A desirable rewrite of Q





select distinct P.Name, B.Name


from PROFESSOR as P, PROFESSOR as B 


where P.Boss = B


and exists (select *


		 from DEPARTMENT as D


		 where P.Dept = D 


 and     D.Head = B)


order by P.Name, B.Name





(b) Q: an object relational query.





Q < (all P PROFESSOR)


Q < (all B PROFESSOR)


Q < (all D DEPARTMENT)


Q < (fd Q: P.Boss ( B)


Q < (fd Q: B ( P.Boss)


Q < (fd Q: P.Dept ( D)


Q < (fd Q: D ( P.Dept)


Q < (fd Q: D.Head ( B)


Q < (fd Q: B ( D.Head)


Q < (fd Q:  P B D ( Id)








att: (An)








� We assume that the reader is familiar with the SQL/OQL syntax that we use throughout the technical report for our query examples.


� The term “membership problem” was used by [BB79] to describe the same implication problem in the relational model where database schemas and posed questions were assumed to consist of a collection of relational FDs.


� DL languages are somewhat divided over the issue of whether or not attribute descriptions should denote partial or total functions. We follow [BP94] in opting for the latter case in order to avoid complications that would otherwise arise relating the semantics of some of our constructors [BDN94].


� It is well known that the restriction of having a single consequent inside FDs does not reduce the expressiveness of functional dependency constraints.


� Recall that regularity condition implies that m ( 1.


� For convenience, given a set of attributes X = {A1, …, An}, we write (fd C: X ( A) to denote (fd C: A1 … An ( A). The same applies when we use more than one set name inside an fd constraint.


� Note that notation is adjusted so that path functions inside the rule do not conflict with path functions inside the statement of the lemma.


� Note that neither of the steps of our construction will change the distinguished node.


� Recall that our assumption that the set of primitive attributes is recursively enumerable ensures that such a sequence exits.
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