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Abstract

A scheme for determining symmetries for certain families of first order ODEs,
without solving any differential equations, and based mainly in matching an ODE
to patterns of invariant ODE families, is presented. The scheme was implemented in
Maple, in the framework of the ODFEtools package and its ODE-solver. A statistics
of the performance of this approach in solving the first order ODE examples of
Kamke’s book [1] is shown.
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Nature of mathematical problem
Analytical solving of first order ordinary differential equations using symmetry methods.

Methods of solution
Matching ODEs to the patterns of a pre-determined set of invariant ODE families.

Restrictions concerning the complezity of the problem

The computational scheme presented works when the input ODE has a symmetry of one of the forms
considered in this work. This set of symmetry patterns can be extended, but there are symmetry
patterns for which the ideas of this work cannot be applied.

Typical running time

The methods being presented were implemented in the framework of the ODEtools Maple package.
On the average, over Kamke’s [1] first order non-trivial examples (see sec. 4), the ODE-solver of
ODEtools is now spending ~ 5 sec. per ODE when successful, and ~ 20 sec. when unsuccessful.
When considering only ODEs of first degree in 3/, these timings drop by 50 %. The timings of this
paper were obtained using Maple R5 on a Pentium 200 - 128 Mb. of RAM - running Windows95.

Unusual features of the program

The computational scheme being presented is able to find symmetries by matching a given ODE to
the patterns of a varied set of invariant ODE families. When such a symmetry exists, the routines
can explicitly determine it, without solving any differential equations, and use it to return a closed
form solution without requiring further participation from the user. The invariant ODE families
that are covered include, as particular cases, more than 70% of Kamke’s first order examples, as
well as many subfamilies for which there is no standard classification. Many of these subfamilies
cannot be solved by using other methods nor by ODE-solvers of other computer algebra systems.
The combination of this symmetry & pattern matching approach with the standard classification
methods of the ODEtools package succeeds in solving 93 % of Kamke’s first order examples.



LONG WRITE-UP

1 Introduction

One of the most remarkable aspects of Lie’s method of symmetries for differential equations
(DEs) is its generality: roughly speaking, all solving schemes for DE’s can be correlated to
particular forms of the corresponding symmetry generators [2,3]. However, from a practical
point of view, the problem of determining symmetry generators for a given n*order ODE is
not trivial: one needs to solve a related determining n**order PDE in n+1 variables for the
components of the infinitesimal symmetry generator (infinitesimals) [4].

The usual strategy for tackling this determining PDE consists of restricting the cases handled
to the universe of ODEs having point symmetries, so that the infinitesimals depend on just
two variables, and then the determining PDE splits into a system of PDEs. Although the
solving of such a PDE system may be a major problem in itself [5], the hope is that one will
be able to solve it by taking advantage of the fact that it is overdetermined. For first order
ODEs, however, this strategy of splitting the determining PDE is inapplicable, so that in
this case most of the computer algebra implementations of Lie methods just do not work.

A computational alternative to this situation was presented in two recent works [6], where
the authors explore different ideas for finding particular solutions for an unsplit determining
PDE, and use these ideas to tackle first and second order ODEs. Although the performance
obtained with that approach is good indeed !, those works did not explore the fact that,
by imposing certain restrictions on the form of the infinitesimals, these can be determined
directly in closed form. In such cases, the search for symmetries can be reduced to matching
an ODE to (pre-determined) invariant ODE patterns.

Bearing all this in mind, this paper presents an approach for finding symmetries based on the
matching of a first order ODE to the patterns of a selected set of invariant ODE families. Nine
different symmetry patterns were considered. Concretely, the scheme consists of analyzing
an input ODE in order to determine if it belongs to one of these nine ODE families, and if so
determine the symmetry, all without solving any auxiliary differential equations. Due to the
simplicity and generality of the scheme, it appears to us appropriate for a computer algebra
implementation in the framework of ODE solvers and we have implemented it in Maple R5.
Other relevant features of the scheme are:

e the determination of the symmetries of the types considered, when they exist, is systematic;

e the scheme works at a remarkably high speed (see sec. 4);

e a good variety of first order ODEs is covered, including families not solved by other
methods or ODE-solvers (see sec. 3 and 4) and 73% of the examples in Kamke’s book.

1 Symmetries for more than 85% of Kamke’s first order ODE examples were found by looking for
particular solutions to Eq.(2) in [6].



The exposition is organized as follows. In sec. 2, symmetry methods for first order ODEs are
briefly described. In sec. 3, the body of this work, the computational schemes for obtaining the
aforementioned symmetries of various different types are presented and some examples are
given. Sec. 4 contains statistics concerning the performance of the new scheme in determining
symmetries for the first order ODE examples of Kamke’s book, as well as a brief discussion
about the symmetries of these examples and their use as a testing arena for ODE-solvers.
Finally, the conclusions contain general remarks about this work and its possible extensions.

2 Symmetry methods for 1**order ODEs

Generally speaking, given a first order ODE,

yl = (I)(.’L‘,y), (1)

the key point of Lie’s solving method is that the knowledge of a (Lie) group of transformations
leaving Eq.(1) invariant reduces the problem of finding the equation’s solution to solving
a line integral or a quadrature [2,3]. Despite the subtleties which arise when considering
different cases, we can summarize the computational task of finding a Lie symmetry of
Eq.(1), as the finding of a pair of functions {£(z,y), n(z,y)} satisfying

77z+(77y_§z)q)_€yq>2_§q)z_77q>y:0 (2)

Once a solution to Eq.(2) is found, one can either look for the canonical coordinates, say
{r,s(r)}, of the associated Lie group, to be used to reduce Eq.(1) to a quadrature; or,
alternatively, one can work directly with the original variables and use the expressions found
for {£(y, x), n(y,x)} to build an implicit form solution in terms of a line integral [2]:

/dy—fbda:

T = constant (3)

Despite the generality and apparent simplicity of this scheme, the problem is that there are
no general rules which might help in solving Eq.(2), and hence Lie methods are generally
viewed as not useful for tackling first order ODEs?.

2 The same happens with high order linear ODEs, for which particular solutions are also symme-
tries, so that their determination is usually considered as difficult as solving the original problem.



3 Symmetries and first order ODE patterns

The starting point of this work is the observation that, in some cases, the knowledge of the
form of the invariant ODE family associated to a certain symmetry pattern allows one to
determine symmetries for all members of the family by just performing algebraic operations.
For example, the general Bernoulli ODE

y' = f(z)y+ h(z)y* (4)

where f and h are arbitrary functions of z, is the invariant ODE family associated to the
symmetry pattern:

e(1 — a) /f(x)dx]

[£=0, n=y" (5)

and in this case the symmetry parameters, that is, f(z) and «, can be obtained from a given
Bernoulli ODE just by inspection.

The idea then was to consider the possible determination of symmetries by just performing
algebraic operations, but for more general invariant ODE families. For example, Eq.(5) is a
particular case of the symmetry pattern

[£=0, n=F(z)G(y)] (6)

to which corresponds the invariant ODE family

(7)

where F, G and H are arbitrary functions of their arguments. The ODE family Eq.(7), for
instance, includes as particular cases ODEs of type separable, linear, Bernoulli, some Riccati
and Abel subfamilies, etc., but mainly many other ODEs for which there is no classification
nor specific solving methods available. As we show below, determining if a given ODE is of
the form of Eq.(7), including in that calculating F and G, is as systematic (though not so
straightforward) as in the Bernoulli ODE example above.

We then started considering whether it would be possible to set up a computational scheme
for first order ODEs, based on Lie’s theory, but organized, as in the simplest cases, just
around some matching pattern routines. At this point, two questions arose:

1. The knowledge that the ODE matches the required pattern may or may not allow one to
get the symmetries performing only algebraic operations. For example, the general Riccati



ODE

y' = fol) v’ + fi(z)y + folz) (8)

is the invariant ODE family associated to the symmetry pattern

[€=0, n=F(z)(y+H ()" (9)

but to determine F and H in terms of fy, f; and f; for a given Riccati ODE one needs
to solve an auxiliary second order linear ODE with variable coefficients, equivalent and as
difficult to solve as the original ODE;

2. From a practical point of view, the efficacy of a first implementation of the ideas being
presented would depend on a convenient selection of a set of symmetry patterns and related
invariant ODE families.

After analyzing the symmetries of Kamke’s 576 first order ODE examples and taking into
account practical issues (see discussions in sec. 3), our selection for the set of symmetry
patterns to consider at first was:

[£=F(2)G(y), n=10], [£=0, n=F(z)G(y)]

[§ = F(z) +G(y), n=10], [£=0, n=F(z) +G(y)]

[§ = F(z), n=G(=)], [£=F(y), n=G()] (10)
(£ =F(z), n=6@)], (£ =F(y), n=G(z)]

E=az+by+c, n=fz+gy+h|

where F and G are arbitrary functions and {a, b, ¢, f, g, h} are arbitrary constants. For the
first eight symmetry patterns, it was possible to set up a matching pattern routine, mainly
determining whether or not a given ODE matches one of the related invariant ODE families,
and if so directly return the symmetry by performing only algebraic operations. For the
pattern [ =axz+by+c, n = fx+gy+h|, we took advantage of the natural splitting of the
determining PDE into an overdetermined linear system of algebraic equations. Concerning
the patterns [ = F(z) + G(y), n =0] and [ =0, n = F(x) + G(y)], they do not contribute
to solving Kamke’s examples, but we added them for generality; we noted that the related
invariant ODE families have practically no intersection with those of the other patterns.

As an additional remark, for ODEs of types separable, linear and inverse-linear®, their
pattern and corresponding symmetry are easy to determine so that a little subroutine for
them was prepared separately, and the computer routines for the patterns of Eq.(10) work
assuming that the given ODE is not of one of these types.

3 We classify here an ODE as inverse linear when by changing variables z — y*(z*), y(z) — z*,

the resulting ODE in y* is linear.



3.1 The symmetry patterns [ = F(x) G(y), n =0] and [ =0, n = F(z) G(y)]

Starting with the symmetry pattern [ = F(z) G(y), n = 0], the purpose is to determine
whether a given ODE has a symmetry of this form, and if so, to determine F(z) and G(y).

In order to avoid integrals in the pattern for the invariant ODE family, we rewrite the
symmetry in terms of new arbitrary functions f and g, without loss of generality, using

F(x) = f; ' and G(y) = exp([ g(y)dy):
eJ 9wy

fr,n=m (11)

The related invariant ODE family is then given by *:

/ fo
y =o(z,y) = 12
V= @+ TW) -
where J is an arbitrary functions of y. Now, any member of the family satisfies:
1 .0°(In(®) _ 9() Ty — 94T (y) (13)

2 QOxoy fz

that is, the combination of operations in the left-hand-side of the above will lead to an
expression in which the variables separate by product®. For such an ODE, the factors in
Eq.(13) containing x give F, and ¢ can be expressed in terms of ® and F by taking the
appropriate derivative:

F I (5s) = o) (19)

The separability of Eq.(13), together with Eq.(14) being an expression only depending on
y, are the existence conditions for a symmetry of the type under consideration, or in other
words, they classify an ODE as member of family Eq.(12). These conditions are necessary,
and also sufficient since the only solution ® to Eq.(14) is the right-hand-side of Eq.(12).

Once the problem of classifying an ODE as member of this family and finding a symmetry
for it is solved, the ODE’s solution, in terms of F and G, is given by

1 dx yj(a) _
¢ =g /7w * [ g =" (15)

4 These invariant families associated to given symmetries can be obtained in various ways, all of
them equivalent to solving Eq.(2) for ® - the right-hand-side of the ODE; see [3].
5 When Eq.(13) is zero, the ODE as a whole is already separable.




where J can be expressed in terms of F, G and ® from Eq.(12).

Ezxample:
y+b 2
v = 0a,y) = - WOl (16)
(@+a) (1+ (y+b)° (z +a)sin(y))
For this ODE Eq.(13) gives an expression in which the variables separate by product
1 0°(In(®))  ((y+0b)cos(y) + 2 sin(y)) (z + a)* an

®2  Qzdy (y +b)°

So F = (z + a)?, and from Eqgs. (14) and (11) G = e(-=1/+Y) that is, an expression only
depending on y. Hence, this ODE has the symmetry [§ = F(z)G(y), n = 0], and from
Eq.(15) its solution is given by:

()

r+a

Cy — /sin(z)e(z}rb)dz + =0 (18)

Concerning the symmetry pattern [§ = 0, n = F(z) G(y)], and its related invariant ODE

family,
Z ( /%d a+H(x)F(a )) (19)

where H is an arbitrary function of z, we note that if a given ODE has a symmetry of
the form [£(z,y), n(z,y)], then, by changing variables as in x — y*(z*), y(z) — z*, the
resulting ODE will have a symmetry of the form [n(y*, z*), £(y*, 2*)]. Hence, by transforming
Eq.(19) using this change of variables, the resulting ODE will have a symmetry of the form
€ = G(z*)F(y*), n = 0], which can thus be determined using the scheme just outlined.
Changing the variables back, we obtain the symmetries for Eq.(19).

3.2 The symmetry patterns [ = F(z) + G(y), n=10] and [§ =0, n = F(x) + G(y)]

The ODE family invariant under [ = F(z) + G(y), n = 0] is given by

v=0tn=((6, ) G s - I0) G F@] e




where F, G and J are arbitrary functions of their arguments. To determine if a given ODE
matches the pattern above, we first note that Eq.(20) satisfies®:

0? Frx

" (") = 50+ 7w .

Hence, by differentiating the reciprocal of the right-hand-side of Eq.(21) w.r.t y, we arrive
at an expression where the variables separate by product:

u [<q> > (qu))_l] - & (22)

Thus, for a given ODE, the separability of Eq.(22) is a necessary condition for the existence
of a symmetry of form [ = F(x)+ G(y), n = 0]. A sufficient condition can be formulated by
noting that the determining PDE for the problem,

Fo® +G,P° + (F(x) + G(y)) @, =0 (23)

involving the unknowns F and G, can be rewritten in terms of F(z) + G(y)

% ((}“(x) +G(v)) @) + @28% (f(x) + g(y)) =0 (24)

Now in Eq.(22), the factors depending on z give the reciprocal of F,,, from where we obtain
F(x) + G(y) just dividing Eq.(21) by the expression found for F,,. The solution for any
member of the family Eq.(20), in terms of F + G, is then given by

i da r
O+ /m n /J(a)da —0 (25)

where J can be expressed in terms of F + G, G, and ® from Eq.(20).

Concerning the symmetry pattern [ = 0, n = F(z) + G(y)], and its related invariant ODE
family,

= dy x x
/= (7 [ ot + M) 00+ (@) (20

6 In Eq.(21), when the left-hand-side is zero, the ODE is already of type “inverse-linear”.



where H is an arbitrary function, if a given ODE has a symmetry of this form, by changing
variables z — y*(z*), y(x) — z*, the resulting ODE will have a symmetry of the form
€ = G(z*) + F(y*), n = 0], which can then be determined using the scheme just outlined.

Ezxample:

Changing variables x — y*(z*), y(z) — z*, we obtain

’y*.’I)*2
3y* (z*2 4+ y*?) arctan @_) +y2(1—3a) + 22 (1 —22%)

* I

Yy =02, y") =

For this ODE, Eq.(22) gives an expression in which the variables separate by product
0 0? - o
d— (¢! =—— 29

Hence, from Eqs.(21) and (22),

*2 *2
4y 1
2 ) gy* = 3 (30)

F(z*) +G(y") = T ”

Using these values, Eq.(24) is identically satisfied, so that Eq.(28) has the symmetry

1 1
€= —5+25 =0 ()

and hence Eq.(27) has the symmetry [ = 0,7 = y~2 + 272]. Finally, using Eq.(25) and
changing variables back, the solution to the original ODE Eq.(27) is given by:

Ci + 2 (—Qy + 2z arctan (%) + 1) =0 (32)
3.3  The symmetry patterns [§ = F(x), n =H(z)] and [€ =G(y), n= T (y)]
The invariant ODE family associated to [ = F(x), n = H(z)] is given by:

Y = ®(z,y) = ﬁ (’H(x) +K (y - /%d:ﬂ» (33)

10



where F, H and K are arbitrary functions of their arguments. To determine F(z) and H(x)
we first build an expression depending on x and y only through K

Q (y - /7;_8 dx) = % = % (34)

At this point, the cases @}y # 0 and (), = 0 must be considered separately. When @, # 0,
we can obtain the ratio H(z)/F(z) just by taking

(35)

From the knowledge of T we can obtain an explicit expression for F as follows. In the
determining PDE Eq.(2) for the problem,

Hy — Fo® — F(2)®, — H(z)P, =0 (36)

we remove H and introduce Y using Eq.(35)

(Y + @, —Y(z) D) F(z)+ (T(z)+P) F, =0 (37)

from where F is given by

T(@) @~ T, -0\
Flz) = e/< *+ Y@ ) ‘ (38)

Setting the integration constant C; = 1 without loss of generality and using this result in
conjunction with Eq.(35), we obtain #(x). The necessary and sufficient conditions for the
existence of the symmetry here are summarized as:

wl(@)=r o (M) o

As for the other case, when @), = 0, we note that () satisfies

F(x)
H()

Qy = - Qx (40)

which implies that ), = 0 too, so @ is a constant C. The right-hand-side of the invariant
ODE family Eq.(33) is then restricted to the solution @ of (see Eq.(34))

(by
it SN (41)
(I)yy

11



hence Eq.(33) - the invariant ODE family - becomes

Y

Ch

Yy =®=A(z)+ B(z) e (42)

where A and B are arbitrary functions. For a given ODE of this type, A and B can be deter-
mined by inspection, and the determining PDE for the infinitesimals [F(z), ()] naturally
splits up into a system of two equations for F and H:

O A i L BT (43)
B
H, — Fy A— F(x)A, =0 (44)

This system is easily solved for F(z) as

A
_[A A
/cldx = dx
i e
N B

F(z) Cy / Be 9 arscy (45)

where Cy and Cjs are arbitrary constants. Plugging back this result for F into Eq.(43) we
obtain . We note here that the family of infinitesimals above parameterized by Cy and Cj
is wider than what is necessary to integrate Eq.(42). So, without loss of generality, we choose
Cy = 0 and C5 = 1, to finally obtain

e—/%daﬁ
=—F—

F(z) , H(zx)=AF(x) (46)

Once the problems of classifying an ODE as member of this family and determining a sym-
metry for it are solved, the ODE solution in terms of F and H (A and B) is given by:

Case @y, =0

A(z) .
y:/A(x)dac—Cl In 02—/e/ o B(z)dz | " (47)

12



Case @y #0

i H(z) o dx
Kla- _ =
Cy —|—/< (a /T(x) dx)) da 7o) 0 (48)
where from Eq.(33) K = ®F(z) — H(x).
Concerning [ = G(y), n = J(y)], and its related invariant ODE family

) J(y)

o Gy)+ K (x—/%dy),

as with the other symmetry patterns, we can determine if a given ODE belongs to this family
and then find a symmetry for it by changing variables © — y*(z*), y(z) — z*, and using
the procedure explained above.

Ezample: a symmetry of the form [§ = F(x), n = H(z)] for Kamke’s first order ODE 8/
y' = f(az + by) (50)

For this ODE, Eq.(35) leads to a constant expression:

Q@ _ H@) _a
Qy -~ F(x) b (51)

Since the conditions Eq.(39) are satisfied, Eq.(38) gives the first infinitesimal £ = F(z) = 1;
hence n = H(z) = —a/b, and using Eq.(48) the solution to the ODE follows as

b

y
Cl+/a+bf(ax+bz)dz_x:0 (52)

Ezample: an ODE with symmetry of the form [ = G(y), n = J (y)]

2
' Y

= 23

Y sin(y —x) — 22+ 2zy (53)

Changing variables x — y*(z*), y(z) — z*, we obtain

*2 %, % : * *
—y** 4+ 2x*y* — sin(y* — x¥)
2 (54)

y*' = ®(z*, )

m*

13



For this ODE, Eq.(35) gives

Qw* _ _7‘[($*) _
Q- Fay ! (53)

So, from Eq.(38), F = 2*? and H = z*?. Since Eqs.(39) are satisfied, Eq.(54) has the
symmetry [ = 2*?, n = 2*?] and hence Eq.(53) has the symmetry [¢ = 4%, n = y?]. Finally,
using Eq.(48) and changing the variables back, the solution to Eq.(53) is given by:

1

"

1

3.4 The symmetry patterns (£ = F(z), n = G(y)] and [ = G(y), n = F(z)]

Differently from the cases treated in the previous subsections, by changing variables z —
y*(z*), y(x) — z*, we have that

€=G(y), n=F()] = [£=FW"), n=G(z")]

so, this change of variables will not transform the problem of finding [£ = G(y), n = F(x)]
into that of finding [§ = F(x), n = G(y)] since & remains depending on the dependent
variable and 7 on the independent one; to handle both problems in general, two different
schemes are required. There is however one situation in which a single scheme can determine
a symmetry of any of these two types. Since this scheme is simple and suitable for extensions,
we concentrate the discussion on it at first and only discuss the general cases in the next
subsection.

3.4.1 A scheme for ODEs with functions or non-integer powers involving both z and y

To start with, by rewriting the symmetry [§ = F(z), n = G(y)] in terms of new functions
f(z) and g¢(y) as [ =1/ fz, n = —1/g,], we obtain the invariant ODE family as:

e
Gy

Y

(K (f(z)+9(y) — 1) (57)

where f, g and K are arbitrary functions of their arguments. A departure point for matching
a given ODE to the pattern above is based on the following observation: if the ODE contains
functions or non-integer powers involving both x and y, then, from Eq.(57), a necessary

14



condition for the existence of the symmetry is that at least one of these functions - say M -
is a function of f(z) + ¢(y), and then the ratio

M, [
Yo _Jo 58
M, " g, (58)

is an expression where the variables x and y separate by product. This separability is thus
a necessary condition for the existence of the symmetry. Now, recalling that [ = 1/f,, n =
—1/g,], the factors in Eq.(58) containing z give £~!, and the factors containing y give —7.
Finally, a sufficient condition for [£, 1] to be a symmetry is that it satisfies Eq.(2).

Example: Kamke’s first order ODE 85

a b
/a1, 1-b SR
y -2y " H ( - + b) 0 (59)

This ODE contains the arbitrary function A (% + yb—b) and the ratio of its partial derivatives
separates by product as in Eq.(58):

a b
H(5+5)e _ yar (60)
e b -
H(Z+2)), vz
from where a pair of infinitesimals satisfying Eq.(2) is given by
x y
e 61
e=Zm=-1% (61)

To understand what is behind this way of orienting the search for the symmetry, we note
that the invariant ODE family associated to a given pair of infinitesimals can be written as

Il(fananl) = K(IO(fan)) (62)

where 7, is the first extension of 7, Iy and I; are the differential invariants of orders zero and
one associated to the symmetry group, and K is an arbitrary function of Iy. For example, in
the case under consideration, { =1/f;, n=—1/g, and

e

Iy = f(z)+9g(y), L= —m

(63)

Since there are no functions in /; simultaneously containing x and y, if a given ODE contains
such functions, at least one of them must come from I and thus be a function of (f + g).

15



Equivalent situations happen with other symmetry patterns too. For instance, when looking
for symmetries of the form [ = G(y), n = F(z)], rewriting the symmetry pattern as [ =
9y, N = —f3], where g(y) and f(z) are arbitrary functions, Ij is given by

Iy = f(z) +9(y) (64)

Hence, if a given ODE has this type of symmetry and contains functions involving both z
and y, one of them - say M - will satisty M,/M, = f,/g, and lead to the symmetry by
separating the factors depending on x and on y.

Ezxample:
y' = —tan (arctan (g) +H (x2 + y2)> (65)

Here H depends on both x and y and the ratio of its partial derivatives separates by product

() _ fo _

HE D)y o v (6)

from where we get a pair of infinitesimals of the form [£ = G(y),n = F(z)] satistying Eq.(2):

=y, n=—a] (67)

Now, the two invariant ODE families, respectively associated to [§ = F(z),n = G(y)] and
€ = G(y),n = F(z)], can be written in terms of an I of the form f(z) + g(y). Therefore,
when there are functions or non-integer powers present in the given ODE, a scheme for
finding symmetries of both types can be summarized as follows:

(1) Select, in the given ODE, all functions and non-integer powers containing x and y;
(2) Loop over each of these mappings (M) by performing the following operations:
(a) calculate the ratio R = M, /M,;
(b) when R separates by product, select the factors - say X - depending on z;
- if [X, —X/R)] satisfies Eq.(2), return a symmetry of type [ = F(z), n = G(y)];
- if [-R/X,1/X] satisfies Eq.(2), return a symmetry of type [£ = G(y), n = F(z)].

More symmetries from the differential invariant of order zero

In the specific case in which Ij is of the form A(z) + B(y), steps (2.2a) and (2.2b) of the
scheme just outlined directly lead to symmetries of the form [F(z), G(y)] and [G(y), F(z)].
Now,

16



1) there are other symmetry patterns for which [y has the form A(z)+ B(y) and the knowl-
edge of R and X (steps (2.2a) and (2.2b)) leads to the appropriate symmetry;

2) there are various ODE families for which I depends on z and y but not in the form of a
sum of functions. In these cases R will not separate by product but its determination will
lead to symmetries as well.

As an example of 1), consider the symmetry pattern

€= F(=)G(y), n=1] (68)

If we rewrite this symmetry in terms of new functions f(z) and g(y) as [—gy/fz, 1], 1o and
the invariant ODE family are given by

Iy=f(z) + g(y),

i Js
V=R o (69)

where K is an arbitrary function. Here R of step (2.2b) gives

o (E(L)y _ g,

K(o). 1~ ¢ (70)

from where the symmetry is [—R, 1].

As an example of 2), consider the symmetry pattern and its equivalent format

hy
£=1 1= F) +yH@)] = =1, 1= T ()
Iy and the related invariant ODE family are given by
Y iC))
=5~ ™
= h(z) K(Ip) + 10 T v (72)
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where K is an arbitrary function. Here, step (2.2b) of the scheme summarized in the previous
subsection gives a ratio which is not separable by product

_ (K (1o))y _ h(z) . _1
B= R, = F@ tyhe (73)

but its determination leads to a symmetry of the form [1, —1/R]. Moreover, in this case the
factors - say X - depending on z give the ratio itself, so that this symmetry is also of the
form [-R/X,1/X]. Hence, by removing the test for separability in step (2.2b), the scheme
will automatically find symmetries for the invariant family Eq.(72) too.

Example: Kamke’s first order ODE /33

(zy +y+22z)° —day—4z> —4a=0 (74)

After isolating y', the routine detects the mapping (x,y) — v/zy + 22 + a involving both z
and y, whose partial derivatives give the ratio R (not separable by product)

R (Vry+22+a)y, 2 (75)

(Vzy+22+a);, y+2z

so that, after checking the cancellation of Eq.(2), according to step (2.2b) the scheme returns

=1 n=—5.] (76)

3.4.2  The symmetry pattern [§ = F(z), n = G(y)] (the general case)

We now turn to the formal problem of determining symmetries of the form [ = F(z), n =
G(y)], that is, symmetries for ODEs belonging to the invariant family Eq.(57) in the general
case. One of the first things we noticed is that our trials to exploit the knowledge of the form
of the invariant ODE were unsuccessful. We then used the diffalg [8] and standard form [9]
packages - two Maple packages for reducing PDE systems to a canonical form by basically
adding integrability conditions and removing redundancies. After processing the problem
using these packages, it was possible to solve the resulting system of PDEs in closed form,
but the resulting intermediate and final expressions were huge in size. So, we worked on
formulating the problem and a computational sequence of calculations so as to have almost
reasonable-sized expressions in all steps. To start with, we considered a general first order
ODE written as

y = e?@Y) (77)
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where ¢(z,y) is an arbitrary function. The system of PDEs representing the problem of
finding the infinitesimals consists of Eq.(2), together with two equations indicating the re-
strictions to the functional dependence of the infinitesimals & and 7,

My —&—&8Pe—mpy=0 & =0 n,=0 (78)

We also set up a set of inequations entering our problem, given by

A(@,y) = ¢uy #0, B(z,y) = dyy + ¢, #0, C(z,y) = bpup— b5, #0,
6:8 7é 01 77?/ 7é Oa

(79)

respectively meaning that we assume Eq.(57) is not separable, nor linear, nor inverse-linear,
and that we are only interested in the cases in which & effectively depends on z and 7 on y.
The calculations are rather long and the intermediate steps present no particular interest.
The results we obtained and the computational sequence of calculations we worked on can
be summarized as follows.

Case 1

This case happens when

D = 24, + ¢ Ay — Agdy + (dz0y + 2A)AJA — 34, A, =0 (80)

Here, the necessary and sufficient conditions for the existence of a symmetry of the form

(£ = F(x), n=G(y)] are

By =3A%2 + [(¢2 +20)A — 2A4,,]A # 0
By = [24,, + (2B — ¢2)A]A — 342 = 0 (81)
E3 = [(28Az + 4¢$A)A3 — ((byA + Ay)El]El — 8A4E1’$ =0

When these conditions are satisfied, the symmetry is given by

Ay — ¢ A)A3 A—-A
1 = exp (/ 4~ ¢:4) 2A21(¢y W B dy>

(82)
B 4A3%n

£= o

Case 11
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This case happens when D, defined in Eq.(80), is different from zero, and

(64,Ay,D + [6A,DB — 3¢2A,D — 2A,, D, + (42D, — 2D, B)A]A) A

+[(34D, — 9A,D)A, — 3D*|A, + AD,D =0 (83)

Here, the necessary and sufficient conditions for the existence of a symmetry are

Ey = [2Ay + (2B — ¢2)AJA — 3A2 #£ 0
Es =4A%D — D? 4 ([24,4, — (62 + 2C)AJA — 3A2)E, = 0 (84)
Es= —AE;yD + [(Eyy — ¢yD)A +3A,D + (Ap, — 3A,)E4)E, =0

When these conditions are satisfied, the symmetry is given by

— ( / (Aps — Ay)Es — (Ay + A,)D dy)

2AD (85)

_Eum

£=-7

Once the classifying rule for members of the invariant family Eq.(57) and for their symmetries
are obtained, the corresponding ODE’s solution in terms of £ and 7 is given by Eq.(3).

3.5 The symmetry pattern [ =ax+by+c, n=fx+gy+ h

We finally consider the symmetry pattern [ =ax +by+c¢, n = fz+ gy + h|. First of all,
to obtain the related invariant ODE family y' = ®(z,y), we need to solve for ® the related
determining PDE

f+(g—a)®—b9° - (ax +by+c) P, — (fx+ 9y +h) P, =0 (86)

The characteristic strip associated to this PDE is given by

dy _ dx . dd
—fr—gy—h —az—-by—c —f—®g+da+bd2

(87)

The system above, which should be tackled by first solving dy/dx = F(x,y), to obtain y as
a function of z, and then solving d®/dz = G(z,y(x), ®), does not yield a solution since we
were not able to obtain an explicit solution y(z) for the first ODE. As an alternative, it is

20



possible to solve Eq.(86) for the unknown constants (a, b, ¢, f, g and h), arriving at a set
of existence conditions for a solution plus expressions for a, b, ¢, f, ¢ and h in terms of ®.
We note however that this formal solving of the problem involves fifth order derivatives of ®
and expressions of huge size, turning the approach very inefficient, if not just impracticable.
We then followed the approach used in [6], which mainly consists of considering the natural
splitting of Eq.(86) into a linear system of algebraic equations’ for a, b, ¢, f, g and h.

Ezrample: Kamke’s first order ODE number 189

n(m+1)

T My —ay"™ — ™MD = (88)

For this ODE, Eq.(86) splits into an overdetermined algebraic system of twelve equations

0=anf, 0=cbm, 0 = anh,
0=0t*m, 0=ba?, 0 = 2b?%a,
(89)
0=0, 0=bg—am—a), 0=alcmn—cm+ cn),
0=/, 0=ab(n —m+mn), 0=a(g —a—ng—am+ amn + an)
which has as solution
b=0, ¢=0, f=0, h=0, a=a, g=am+a (90)
from where a symmetry for Eq.(88) is given by
== n=y(m+1)] (91)

4 Tests and performance

The set of schemes here presented was implemented in Maple R5, in the framework of the
ODEtools package [6]. The implementation consists of two separate routines for each of the
symmetry patterns discussed in sec. 3, respectively accomplishing the following tasks:

(1) determine whether a given ODE has such a symmetry, and if so calculate it;
(2) use the symmetry to integrate the given ODE, taking advantage of the form of the
invariant ODE family.

T This splitting of Eq.(86) is obtained by taking the coefficients of = and ¥.
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We have tested this Maple implementation extensively, to confirm the correctness of the
returned results and to produce statistics concerning the classification of Kamke’s first order
ODE examples according to their symmetries. Such statistics can be used as a guideline for
adding more symmetry patterns to the solving scheme, as well as for extending Kamke’s test
suite with ODEs belonging to more varied invariant ODE families.

For the purpose of the test, instead of working with the whole set of Kamke’s 576 examples,
we previously discarded ODEs of type separable, linear, inverse-linear and Bernoulli: their
recognition and solution are straightforward and they are not the main target of this work.
Also, all the examples which are unsolvable in the sense that the class is too general and
Kamke provides only a discussion, e.g. the general Abel ODE number 50, were excluded as
well® . To perform the tests, we used the six files containing the Maple input for Kamke’s
examples available in the web at http://dft.if.uerj.br/odetools.html (see [6]).

4.1 Classification of Kamke’s first order ODE examples

The classification we obtained for Kamke’s 576 first order ODEs is shown below divided into
three tables. In each table, we followed the division by Kamke into ODEs of: first, second,
third, and higher degree on 3'; respectively organized as the examples: 1 to 367, 368 to 517,
518 to 544 and 545 to 576. The first table contains the total number of ODEs of easy and of
unsolvable types aforementioned and excluded from the test:

Degree in 7/

Class 1 2 | 3 | higher Totals
separable 44 132 | 11 8 95
linear 29 |10 0 30
inverse linear 7 010 0 7
Bernoulli 29 10 |0 1 30
unsolvable 12 1 3 | 0 1 16
Total of excluded ODEs | 121 | 36 | 11 10 178

Table 1. Kamke’s ODEs excluded from the tests: 178 of 576.

In the above, all ODEs missing x or y are classified as separable. Also, the high degree
ODEs 442 and 557, respectively classified above as “linear” and “Bernoulli”, appear as such
after isolating y'. The second table shows the standard classification for the remaining 398
Kamke examples which conformed our test suite. There are ODEs matching more than one

8 The ODEs we classified as unsolvable are those numbered in Kamke’s book as 50, 55, 56, 74, 79,
82, 111, 202, 219, 250, 269, 331, 370, 461, 503 and 576.
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classification (we called rational ODEs all those for which the right-hand-side can be written
as a rational function of x and y, no matter what other type they are):

Degree in 3
Class 1 2 3 | higher Totals
Abel 61 0 |0 0 61
Clairaut 0 10 | 3 3 16
Riccati 61 0 |0 0 61
dAlembert 36 | 48 | 4 7 95
exact 28 0 0 0 28
homogeneous 99 | 53 | 3 4 159
rational 139 | 56 | O 2 197
None 27 | 11 | O 6 44
Total of ODEs | 246 | 114 | 16 22 398

Table 2. Classification of Kamke’s 398 ODEs used in the test.

The third table is concerned with these 398 ODEs and shows the total number of them
having linear symmetries or matching any of the invariant ODE patterns discussed in sec. 3:

Degree in 3’
Class 1 2 | 3 | higher Totals
[F(z) G(y), 0] or [0, F(z)G(y)] | 25 | 0 | O 0 25
[F (), H(z)] or [G(y), T(y)] | 30 |16 1 | 3 50
[F(z),G(y)] or [G(y), F(z)] 54 | 48 | 3 9 114
linear symmetries 102 | 78 | 12 11 203
Total of ODEs 132 | 88 | 13 14 247

Table 3. Classification of the 398 ODEs according to the schemes of sec. 3

From the results above, it can be seen that the set of schemes here presented finds symmetries
for 247 ODEs, thus providing solutions for 62% of these 398 Kamke examples. These 247
solved examples include 30 ODEs of Abel type, 18 of Riccati type and 9 of “no” type. If we
add the ODEs of easy type of Table 1., we arrive at a symmetry-based scheme for classifying,
finding symmetries and returning answers for 73% of the whole set of Kamke’s examples.
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4.2 The testing arena

We note that more than one half of these 398 Kamke examples have linear symmetries, and
most of them are of the form [ = ax, n = y] (« is a non-zero constant). In Table 3., these
examples appear also classified as having symmetries of the form [F(z), G(y)].

Concerning the symmetry patterns [F(z) + G(y), 0] and [0, F(z) + G(y)], it is curious that
there are no Kamke examples having these types of symmetries. Also, we detected only
one example (Kamke’s ODE 488) with a non-linear symmetry of the form [G(y), J(y)]. A
similar situation happens with the symmetry pattern [G(y), F(z)]: in the 560 solvable ODEs
of Kamke’s suite, we detected only ten (numbers: 86, 339, 365,446, 451, 511, 512, 515, 555
and 561) having symmetries of this type, and all these symmetries are also linear of the form
[€ = ay, n = z]. In the same line, disregarding ODEs already having linear symmetries and
those of Table 1., in Kamke’s suite we detected only seven ODEs (numbers: 16, 33, 201, 212,
366, 394 and 574) having symmetries involving arbitrary functions, 37 ODEs (9% of 398)
with symmetries involving radicals and 61 ODEs (15% of 398) - most of them of Riccati type
- with symmetries involving exponentials, logarithms, trigonometric or special functions.

All this makes us think that, as a testing arena for computer algebra implementations of
ODE-solvers, Kamke’s set of examples is good but in some sense incomplete. Actually, if on
one hand we have a test suite with symmetries associated to invariance under scaling, rota-
tions, etc. which are usual in nature, on the other hand it would be interesting to have more
examples with polynomial non-linear symmetries, symmetries involving functions (standard
and arbitrary) and more varied symmetry patterns in general. The origin of these limitations
may perhaps be found in that Kamke’s examples are from a time when computers were not
available. Then, disregarding the ODEs of Table 1., apart from some examples involving
tricky changes of variables, most of the remaining 398 examples are not so difficult to solve
for nowadays computer algebra ODE-solvers.

4.8 Test of the ODE-solver of ODEtools with the 1°* order Kamke examples

Although the main purpose of this paper is to present a computational scheme for deter-
mining symmetries for some first order ODE families, it is interesting to see how odsolve -
the ODE-solver of ODEtools - perform when the new routines are merged with the old ones.
The resulting solving strategy is basically as follows?

(1) If the ODE is of type separable, linear, inverse-linear or Bernoulli, return an answer in
terms of integrals;

(2) if the ODE is in exact form, or belongs to a solvable subfamily of type Abel or Riccati
then return an answer in terms of integrals;

9 For ODEs of high degree this strategy is slightly different.
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(3) if the ODE has linear symmetries or matches any of the invariant ODE family patterns
discussed in sec. 3, then return an answer built using these symmetries;

(4) otherwise, try looking for a pair of infinitesimals as a particular solution for the deter-
mining PDE Eq.(2) as explained in [6].

The new routines enter in step (3), and the performance of the strategy above with all of
Kamke’s 560 solvable examples jumps from the aforementioned 73 %, using only the routines
presented in this paper, to 93 % of examples solved. This performance is summarized as
follows

Average time
Degree in 3y’ | ODEs | Solved | solved fail
1 355 323 2.2 sec. 9.9 sec.
2 147 140 8.8 sec. 61.1 sec.
3 27 26 7.2 sec. 17 sec.
higher 31 30 13.4 sec. 25.2 sec.
Total: 560 519 ~ 5 sec. ~ 20 sec.

Table 4. Kamke’s first order ODEs, solved by odsolve: 93%

It is interesting to mention that, at least with Kamke’s examples, the symmetry approach
is complementary with the standard methods for classifiable ODEs, thus resulting in such a
high performance. Actually, the total number of ODEs solved using symmetry methods but
before inserting the new routines in the ODE-solver was also high: 90%. The number and
classification of Kamke’s 1%® order ODEs still not solved by odsolve is now:

Class Kamke’s numbering

rational | 452, 480, 485

Riccati | 22, 25

Abel 37, 42, 43, 45, 47, 48, 49, 145, 146, 147, 151, 169, 185, 205, 206, 234, 237, 253,
257, 265

NONE | 80, 81, 83, 87, 121, 128, 340, 350, 367, 395, 460, 506, 510, 543, 572

Table 5. Kamke’s 1°* order solvable ODEs for which odsolve fails: 7%

One of the relevant differences between the new and the old symmetry schemes of odsolve
is that the new schemes are systematic. Another difference is in the timings. For ODEs
of the types discussed in sec. 3, the new routines are working more than 10 times faster
(average over Kamke’s examples) than the Maple R5 routines for finding symmetries as
particular solutions to Eq.(2). This fact resulted in the replacement, in the Maple version
under development, of the corresponding R5 routines by the new ones presented in sec. 3.
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5 Conclusions

This paper presented a set of schemes for finding symmetries for various first order ODE
families, as well as its computer algebra implementation in Maple R5, in the framework of the
ODEtools package. This implementation proved to be a valuable tool for tackling first order
ODEs, as shown in sec. 4, resulting in a concrete step towards classifying and correspondingly
solving first order ODEs according to their symmetries. Moreover, this symmetry scheme
enlarges the ODE solving power of computer algebra systems. Actually, none of the examples
presented in this paper - half of them from Kamke’s book - can be solved by any of Macsyma
2.3, Mathematica 3.0, MuPAD 1.4, or the Reduce package CONVODE.

One of the interesting aspects of classifying ODEs by their symmetries is that the classifica-
tion has a concrete geometrical meaning. Also relevant, in the symmetry approach presented,
solutions to rather general ODE families are obtained just using matching-pattern schemes,
as in the easier linear, separable, etc. cases. It is also not difficult to imagine the addition
of new routines related to other symmetry patterns, in order to extend further the ODE-
solving power. All this leads us to believe that symmetry approaches based on matching
pattern routines will play a relevant role in future computer algebra ODE-solvers.

It is curious that, apparently, none of the ODE-solvers of Mathematica, Macsyma, Reduce
or MuPAD are tackling first order ODEs by systematically looking for their symmetries.
Perhaps that is due to the usual belief that symmetry methods are of no help in solving first
order ODEs. In contrast, we recall that the symmetry classification scheme here presented
leads to the solution to 73% of the first order Kamke’s examples, and when combined with
standard classification schemes this performance jumps to 93%. Also, the fact that the sym-
metries are found using matching pattern routines resulted in a very fast ODE-solver, taking
on the average ~ 5 sec. in each solved example, and &~ 20 sec. in each unsolved one. We
are actually not aware of such a high performance by any ODE-solver not using symmetry
methods with first order ODEs. Concerning Maple R5, the situation is a bit different: this
system is already looking for symmetries for first order ODEs as particular solutions to the
determining PDE Eq.(2). We note however that the routines here presented work remark-
ably faster, and the search for the symmetries is systematic. These features motivated the
replacement, in the Maple version under development, of corresponding routines for first
order ODEs by the ones presented in this work.

We also note that the ideas here discussed cannot be used to solve all types of ODEs one
can imagine. For example, they cannot be used to systematically find symmetries for Riccati
or Abel ODEs but for some subfamilies, so that a combination of symmetry schemes with
standard schemes seems to be the way to achieve the best performance. Concerning what
would be the best combination of methods, a testing arena should be chosen first and the
result will depend on this choice. A collection of testing examples related to real problems,
as found in Kamke’s book, appears to be an appropriate choice. On the other hand, as
commented in sec. 4, this book appears to us an incomplete testing arena, and to have the
required testing suite, extensions of the examples of Kamke’s book are necessary.
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Finally, some of the ideas presented here for first order ODEs can be considered in the
framework of high order ODEs and first order PDEs as well. We are presently working in
some prototypes in these directions'® and expect to succeed in obtaining reportable results
in the near future.
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