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Abstract

In this paper we present a numerical method for the valuation of derivative securities which have
a payoff dependent upon the amount of time during the life of the contract that some underlying
variable lies within a specified range. We concentrate in particular on the examples of Parisian
options and delayed barrier options, but our approach is easily adapted to other cases such as
switch options and step options. Available analytic pricing formula are based on the assumption
that the underlying variable is monitored continuously. In contrast, we consider discrete (e.g. daily
or weekly) sampling. Given that path-dependent option values are known to be generally very
sensitive to sampling frequency, this is an important advantage of our numerical approach.



1 Introduction

Recently there has been some interest in the valuation of derivative securities for which the payoff
depends on the amount of time during the life of the contract that some underlying variable such
as an asset price or interest rate lies within a specified range. Switch options and corridor options
have been examined by Pechtl (1995). Switch options have a payoff of some predetermined amount
multiplied by the fraction of the contract life for which the underlying asset lies above or below a
given level. Corridor options are similar, the distinction being that the payoff depends on the time
spent by the underlying asset between an upper and a lower bound. As Pechtl observes, corridor
options can be seen as the difference between two switch options. Interest rate range notes (see
Turnbull (1995)) are floating rate contracts for which the interest paid depends on the amount of
time that a particular market interest rate lies within specified limits. Linetsky (1996) provides
an excellent general overview of developments in the area and a detailed analysis of step options.
These are an extension of barrier options. Rather than having an immediate knock-out as soon
as an asset price reaches a barrier, these contracts provide for a more gradual reduction in the
option payoff, the amount of the decrease depending on the amount of time that the underlying
asset spends beyond the barrier. Parisian options (Chesney, Jeanblanc-Picqué, and Yor (1997);
Chesney, Cornwall, Jeanblanc-Picqué, Kentwell, and Yor (1997)) are another variation of barrier
options. In these contracts, the knock-out (or knock-in) provision applies if the underlying asset
remains continuously beyond a barrier for a pre-specified amount of time. Cumulative Parisian
options (referred to here and in Linetsky (1996) as delayed barrier options) are similar except that
the barrier provision is defined in terms of the total amount of time spent beyond the barrier.

As Linetsky (1996) notes, there are at least a several reasons why these two modifications of
standard barrier options have been introduced. First, it is well known that it can be quite difficult to
apply traditional delta hedging techniques in the case of standard barrier options because both the
option payoff and the option delta are discontinuous at the barrier at observation times.! Second,
it has been suggested that market participants have attempted to temporarily manipulate prices
of underlying assets so as to trigger barrier events. Because the time required to do so is longer
in the case of Parisian and step options, such contracts are clearly less vulnerable to this sort of
manipulation.

Although analytic or quasi-analytic solutions for pricing these various types of options (switches,
range notes, steps, Parisians, delayed barriers) have been provided in the references cited above,
it is also desirable to have a numerical method available. Existing analytic solutions are all based

on the assumption that the underlying asset price follows geometric Brownian motion, i.e. it is

!This has led authors such as Bowie and Carr (1994) and Derman, Ergener, and Kani (1995) to propose alternative
static strategies to hedge at least approximately (and exactly in some special cases).



lognormally distributed.? The existence of the “volatility smile” for vanilla options indicates that it
is worth investigating alternative distributional assumptions. For instance, Cox (1996) argues that
the constant elasticity of variance (CEV) process is more consistent with the smile than geometric
Brownian motion due to the embedded negative correlation between volatility and stock price
changes. It is also worth noting in this regard that Boyle and Tian (1997) report significant pricing
differences for barrier options between CEV and lognormal models, even when implied volatilities (in
terms of vanilla options) are the same. As departures from lognormality usually preclude analytic
techniques, numerical methods must be developed to handle such cases. Another limitation of
analytic approaches is that they typically are available only for cases where the underlying variable
is continuously monitored, but in practice most contracts are discretely monitored. Moreover,
there are often very large differences in path-dependent option values between the two cases (see,
e.g. Cheuk and Vorst (1996)). The ability to incorporate discrete monitoring is another potential
advantage of a numerical approach. Yet another possible benefit is the ability to handle cases where
barriers are time-varying.®

The main objective of this paper is to provide a general numerical approach for pricing options
with a payoff which depends on the amount of time during the contract life for which the under-
lying asset value lies within a specified range. For expositional simplicity, we deal only with the
cases of discretely monitored Parisian and delayed barrier options under the usual Black-Scholes
assumptions. Extensions to other types of contracts such as switch options and step options are
straightforward, as is an examination of the CEV process case. The outline of the paper is as
follows. Section 2 formulates the option pricing problems to be examined. Section 3 describes the

numerical algorithm. Section 4 presents some illustrative computations. Section 5 concludes.

2 Formulation

We begin by considering the discrete Parisian option pricing problem. It can be formulated as a
two dimensional partial differential equation (PDE) using a similar approach to that described in
Wilmott, Dewynne, and Howison (1993) for valuing Asian and lookback options. We consider the
option to be a function of a new deterministic state variable J, which is the current running sum
of the number of successive observations where the underlying asset price S is over (under) the
barrier for an up (down) option. We define a Parisian up option as an option where the counter J

is incremented on an observation date if S is above the barrier, and reset to zero if it is below the

2To derive a closed form solution for the value of interest rate range notes, Turnbull (1995) assumes that interest
rates are normally distributed, implying that bond prices are lognormal.

#Kunitomo and Ikeda (1992) examine the valuation of barrier options where the barriers are exponential functions
of time. More general cases require numerical methods. Neither Chesney, Jeanblanc-Picqué, and Yor (1997) (for
Parisian options) nor Linetsky (1996) (for step options) consider cases of time-varying barriers.



barrier. A Parisian down option is similarly defined, except that the counter is incremented if S is
below the barrier, and reset to zero if it is above the barrier.

A Parisian knock-in option is an option which pays off a positive amount only if S is above
(below) the barrier for a specified number of observation dates for an up (down) option. A Parisian
knock-out option ceases to have value if S is above (below) the barrier for the required number
of observations for an up (down) option. In the following, we let J* be the critical number of
observations before the option is either knocked-in or knocked-out. For an up option, the time

evolution of J is given by

W tim SYH(S — §9)0(t — £:) — JAH(S* — S)d(t — t:) (1)
dt A—00 ;

where S* is the barrier value, ¢t denotes time, ¢; indicates an observation date, &(-) is the delta

function, and

0 <0
Hz) = {1 z>0
0 <0
Ho(e) = {1 z;O

Similarly, the time evolution of J can be defined for a down option as

dJ . X - *
= :4£&%pﬂ5—Sw@—m%nMH(S—SM@—m (2)

Equation (1) can be integrated over a time interval spanning an observation date ¢; to give (for an
up option)

J(S,t7)+1 S>S*

J@JU:{O G- 5 (3)

where tT =t+e¢andt” =t —€ (¢ > 0; ¢ — 0). For a down option, we obtain (from equation (2))

J(S,t)+1 S<s8*

Jwinz{o S > g* )

Consequently, equations (1-2) specify that J = J(S,t) is a counter which tracks the number of
successive observations for which the underlying asset price lies above (below) the barrier. The
counter J is reset to zero if the asset price falls below (above) the barrier at an observation date.
This is illustrated in Figure 1 for an up option. We can now consider a Parisian option under the

usual Black-Scholes assumptions that markets are frictionless, that there is a constant interest rate
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FIGURE 1: [llustration of the value of counter J at various observation times for a Parisian up
option. The counter is incremented when the underlying asset price is above the barrier, and reset
to zero if it falls below the barrier.

r, and that S evolves according to:
dS = pSdt + oSdz (5)

where p is the expected rate of return on S, o is the volatility, and z is a Wiener process. The

evolution of J is given by:

dJ
dJ = Zdt . (6)

Let U = U(S, J,t) denote the price of an option. Then, following standard arbitrage arguments
(see, e.g. Wilmott, Dewynne, and Howison (1993)), the following PDE is obtained for the option
value: 5 s
dJ o*S
Ui+ —U
P TRC

It is convenient to convert equation (7) into an equation forward in time by substituting 7 =T — ¢

Uss+rSUs —rU =0 . (7)



where T is the expiry date of the option to give:

2 Q2
U, = ‘ZZ—‘ZUJ +Z 25 Uss +rSUs — rU (8)

where ‘fl—{ can be written in terms of 7 =T — ¢:

(9)

dJ | limyo0 35 H(S — S*)0(m — 1) — JAH™(S* — S)é(r —7;)  for an up option
dt | limyeo 3 H(S* — S)8(r — 1) — JAH (S — §*)d(r — ;) for a down option

The term ‘Z—{UJ in equation (8) is zero except at observation times 7;. As 7 — 7; equation (8)

reduces to o7
U, ——U;~0 . 10
T a7 (10)
If 77 = 7, + e and 7~ = 7; — € then equation (10) specifies mathematically that the solution is

constant along characteristics. The financial implication of this is that the option value is continuous

across the sampling date.* This can be written as

Ues,Jt, vy =U(S,J~,17) (11)
where
Jt+1 S§>5*
J = tLez (12)
0 S <S*
for an up option and
Jt+1 S<5*
g={ 2T es (13)
0 S > S*

for a down option.

A delayed barrier option is triggered when the underlying asset price stays above (below) the
barrier for a total number of observations J = J*, in contrast to a Parisian option where the
barrier is triggered only if the observations are consecutive. In the delayed barrier case, equation
(9) becomes
dJ _ { >, H(S — S*)§(r — ;) for an up option (14)
dt >, H(S* — S)d(r — ;) for a down option

“See Section 8.3 of Wilmott, Dewynne, and Howison (1993) for more detailed arguments along these lines in the
context of vanilla options where discrete dividends are paid by the underlying asset.



Consequently, the value of J~ in equation (11) for a delayed barrier up option is

Jt+1 S>5*
D , (15)
Jt S <S5
whereas for a delayed barrier down option
JT+1 S<65*
=] T es (16)
JT S>8*

We now describe the payoff and boundary conditions. Denoting the exercise price by K, the

terminal payoff conditions are

U.(S J* O) max(S - K, O) for a call
’ J = y T = -
max(K - S, 0) for a [)llt

U(s,J#J*7=0) = 0 am
for an in option and

US,J=J"7=0) = 0
max(S — K,0) for a call

(18)
max(K — S,0) for a put

U(S,J # J*,7=0) = {

(19)

for an out option. The intuition here is straightforward. We simply determine whether or not the

option has been knocked-in or knocked-out according to the value of J relative to J* and then

apply the usual call and put option payoffs for states where the option is potentially exercisable.
We now consider the boundary condition at J = J*, S < oo, when 7 > 0. For an in option, we

solve equation (8) ignoring the Uy term:

025?
2

U, = Uss +rSUs —rU ; J=J" . (20)

This, of course, just reflects the fact that this option has been knocked-in and so we really have a

standard put or call here. For an out option, we apply the Dirichlet condition

US,J=J1)=0; 0<S <00 (21)



to incorporate the knocked-out status of the option. Similarly, when J = J*, S — oo we have

S 1 11
U(S — 00, J = J*,7) = oracal (22)
0 for a put
for an in option and
US—o00,J=J7)=0 (23)

for an out option. Finally, we consider the boundary condition where J # J*, S — oo. Initially

(7 =0), we have

U(S = o0, J£J",7=0)=0 (24)
for an in option and
S f 11
U(S—>oo,J7éJ*,T=0)={ oracat (25)
0 for a put

for an out option. These conditions are also used when 7 > 0 except at observation times 7;, when
the boundary conditions at S — oo, J # J* are reset according to conditions (11). Note that no
reset takes place at J = J*.

It is worth concluding this section by noting how this setup can be easily generalized to other
contexts. Different types of securities can be valued by simply changing the payoff and boundary
conditions suitably. For example, discretely monitored switch or step options may be priced by
making the terminal payoff an appropriate function of J. Parisian options or delayed barrier options
with double barriers can be handled by changing the way the counter variable J is incremented
(through redefining the H and H~ functions) and the payoff functions and/or boundary conditions.
Changing the H and H~ functions over time would allow us to examine situations where the
specified range in the contract is time-varying. The CEV process case can be dealt with simply by
changing 0252 to 025% (where « is a parameter) in equation (8). It is easy to handle cases where the
underlying asset pays either a continuous dividend yield or a discrete dollar dividend. There is no
requirement that observation dates be equally-spaced, so weekend effects with daily sampling pose
no difficulty. Finally, the same basic methodology can readily be adapted to higher dimensional
settings (though obviously at a cost of much greater computational complexity). Examples might

include stochastic volatility models and options on more than one asset.

3 The Numerical Algorithm

Away from observation dates, equation (8) has no J dependence. From equations (11-16), we can
see that information is required only at specific values of J, in particular at J = 0,1,2,...,J*.

This is shown in Figure 2. Consequently, at most J* + 1 lines of constant J are required. Typically,



FIGURE 2: Numerical domain for Parisian and delayed barrier options. At most, J* + 1 lines of
constant J are required.

since J* is quite small, (e.g. < 20), this means that the pricing problems at hand consist of a small
number of one dimensional problems which exchange information only at observation dates.
Several different solution methods are possible. For instance, it may be feasible in some situa-
tions to use an analytic solution for the one dimensional PDE between sampling dates and then to
generate a new initial condition at each sampling date. However, to maintain as much generality
as possible, we do not explore this type of approach here, relying on a fully numerical technique.
Within the set of numerical alternatives one possible approach would be to use a standard finite
element or finite difference algorithm to solve each of the independent one dimensional PDEs, with
initial and boundary conditions given in equations (17-25). At each observation date, the jump
conditions (11) would be applied. This is shown schematically for a Parisian option in Figure 3.
Yet another possibility is to employ a two dimensional finite element or finite difference technique.
Due to superior grid spacing flexibility, the finite element approach is the preferred choice here.

The illustrative computations below were in fact calculated using a two dimensional finite ele-
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FIGURE 3: Jump conditions for a Parisian option at observation times. Left: up option, right:
down option.

ment method, described in detail in Forsyth, Zvan, and Vetzal (1997) and Forsyth, Vetzal, and
Zvan (1997). This approach was selected because it was very simple to modify the general two
dimensional finite element method for the types of problems considered here, though if one was
particularly concerned with computational speed it would probably be better to solve a set of one
dimensional PDEs between the sampling dates.

Note that discontinuities may be introduced at observation times. This means that it is more
efficient to use a fully implicit method than either an explicit method or a Crank-Nicolson method,
since the time step size required to preclude the formation of spurious oscillations in the numerical
solution becomes very small for these latter two approaches. See Zvan, Vetzal, and Forsyth (1997,
1998) for a much more detailed discussion of this point. Our algorithm also incorporated an
automatic time step size selector, as described in Zvan, Vetzal, and Forsyth (1997). In practice,
we also use a normalized computational domain, by defining a new variable y = J/J*, so that the
maximum value for y = 1, independent of J*. The jump conditions at observation times are then

altered. For example, equation (12) becomes

(26)

_ _Jyt+Ay S>57
Yo S < 5

with Ay = 1/J*. The other jump conditions are modified in a similar fashion.



4 Numerical Examples

We consider both Parisian and delayed barrier options, using the common data given in Table 1.
Since only a fixed number of nodes are required in the J direction, we carried out convergence

studies by increasing the number of nodes in the S direction. A non-uniform grid was employed

with very fine spacing near the barrier S = S*.

TABLE 1: Common data for the numerical examples.

o
T
Time to expiry

Barrier observation times

Exercise price
Barrier location

.25
0.05
0.5 years
daily
(1/250 of a year)
$100
$120

Table 2 demonstrates the convergence of the solution for the price, delta = Us and gamma =
Ugsg for a Parisian option with J* = 10. The automatic time step size selector was adjusted so that

TABLE 2: Convergence of Parisian call option, J* = 10 days. The number of nodes is fized in the
J direction (11 nodes for J* =10 days). Variable grid spacing is used in the S direction. The fine

grid run also uses smaller time steps.

Nodes
(S direction) Quantity S =100 S =110 S =120

221 price 3.1547 2.9904 1.3855
delta 0.061958 —0.097592 —0.20120
gamma, —0.013847 —0.015508 0.0016005

Smaller time steps

441 price 3.1585 2.9942 1.3840
delta 0.062142 —0.097818 —0.20252
gamma, —0.013870 —0.015553 0.0014075

approximately twice as many time steps were taken for the fine grid case. As a result, the differences
between the find and coarse grid numbers reflect the effects of both time and space discretization
errors. The solution appears to be adequately resolved with 441 nodes in the S direction. This grid
spacing and these time step parameters are used in all subsequent calculations. As an additional
check on the accuracy of the numerical results, we considered a Parisian option with J* = 1. In

this case, a Parisian option becomes simply a discrete barrier option, with daily sampling. Figure 4

10




shows the results for gamma = Ugg for both the grid sizes (and time step parameters) given in
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FIGURE 4: Comparison of fine and coarse grid results for Gamma (Uss) for a knock-out Parisian
call option, which is knocked-out if there is a single observation over the barrier of $120. This
is actually a standard discrete barrier option with daily observation. It is a worst case for the
discretization errors. The plots of the option value U and delta (Ug) for the two different grid sizes
are indistinguishable. The fine grid used 441 nodes and the coarse grid used 221 nodes (as in Table
2). The fine grid run also used smaller time steps, so this figure indicates the effect of both time
and space discretization errors.

Table 2. Plots of the price U and delta = Ug are indistinguishable for the coarse and fine grid runs,
and hence are not shown. Figure 4 indicates that the errors for Usg are very small, with the only
observable error being a slight underestimation of the peak value of Ugs on the coarse grid. It is
worth emphasizing that the represents a worst case scenario for the errors. The gamma is harder
to estimate than either the delta or the price, since it has such a sharp peak. Moreover, the peak
is sharpest with more frequent sampling. Fine grid results are shown in all the following figures.
The two panels of Figure 5 plot the price of a knock-out call option of the Parisian and delayed
barrier types, for various values of J*. The solution profiles exhibit broadly similar patterns.

11
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FIGURE 5: Knock-out call option wvalue for various values of J*. Left: Parisian option; right:
delayed barrier option.

Observe that when J* = 1, these two options are exactly the same contract, and as noted above,
they are equivalent to a standard discrete barrier option with daily monitoring. Note that the
option payoff with J* = 1 is not discontinuous at the barrier — it has positive value when §
exceeds the barrier value of $120 because we assume that the next observation time is one day from
the current time, implying that there is still some probability of S dropping below the barrier before
knock-out. For J* > 1, the delayed barrier option is worth less than the corresponding Parisian
option, the difference increasing with J*. This is because it is less probable that the underlying
asset will remain above the barrier for a number of consecutive days than for a total number of
days over the contract life. In other words, there is a lower knock-out probability for the Parisian
option, so it is more valuable.

Figure 6 plots the deltas for the Parisian and delayed barrier options. These change quite
rapidly near the barrier value of $120, especially for the J* = 1 case. Of course, this merely
demonstrates again the well-known difficulties in using delta hedging strategies for barrier options
as small changes in the underlying asset price can imply potentially large hedging errors. It is worth
noting, however, that these effects are mitigated somewhat when J* > 1: the larger is the value
of J*, the less steep are the slopes of the graphs near the barrier. This is particularly true for the
Parisian option case. Another measure of possible hedging problems is provided in Figure 7, which
plots the option gammas. The sharp peaks near the barrier are again indicative of such problems.
The differences between the Parisian and delayed barrier option cases when J* > 1 are perhaps

most apparent here, as the peak gets noticeably smoother (and shifts lower and to the right) for

12
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FIGURE 6: Delta (Us) of knock-out call option for various values of J*. Left: Parisian option;
right: delayed barrier option.
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FIGURE 7: Gamma (Uss) of knock-out call option for various values of J*. Left: Parisian option;
right: delayed barrier option.



the Parisian option in particular. Note that even though both of these types of options (especially
the Parisian) are evidently easier to hedge near the barrier than standard discrete barrier options,
this is not necessarily true for all values of the underlying asset price. For instance, the relatively
large negative value of gamma near S = 110 when J* is, say, 20, indicates possible hedging losses
were S to move rapidly, even for a delta-neutral portfolio.

Finally, the three panels of Figure 8 plot the value, delta, and gamma of a knock-in Parisian
call option for different values of J*. The solution profiles for the option value are broadly similar,
declining with J* in an obvious reflection of the lower knock-in probability associated with higher
values of J*. Again, the standard discrete barrier option case of J* =1 poses the biggest hedging

problem near the barrier of $120. This is most evident from the plot of the gamma of the option.

5 Conclusion

This paper has described a general numerical method for pricing derivative securities with a payoff
dependent on how much time an underlying variable lies within a certain range before the contract
matures. The particular examples considered were discretely monitored Parisian and delayed barrier
options. It was shown that such options (particular the Parisian type) were easier to hedge than
standard discrete barrier options when the underlying asset price is near the barrier. It was also
demonstrated that this is not necessarily the case for other values of the underlying asset price.
The method described here is simple to adapt to handle other types of contracts such as step
options and switch options, as well as more complex contractual provisions such as time-varying
barriers, irregularly-spaced monitoring dates, and an additional asset. It is also straightforward
to incorporate dividends (either in the form of a continuous dividend yield or as a discrete dollar
payment). Finally, we note that since our methods are based on the general framework for path-
dependent options described in Wilmott, Dewynne, and Howison (1993), it is also possible to use
techniques similar to those described in this paper to value other types of derivative securities such

as Asian options and lookbacks. We leave these applications to future research.

14
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