Lock-Free Distributed Objects: A Shared Spreadsheet *

Christopher R. Palmer and Gordon V. Cormack

Department of Computer Science
University of Waterloo
Waterloo, Ontario

{crpalmer,gvcormack}@plg.uwaterloo.ca

Abstract

A Lock-Free Distributed System is a purely-replicated environment (replication with no
central authority) in which updates are performed with no inter-object communication. All
replicated copies of an object take on a common state when there are no messages in transit.
Such a system is often used for groupware applications and operation transformations are a
popular technique in this field. We broaden the scope of operation transformations by using a
lock-free concurrency system to specify a distributed spreadsheet. The resulting spreadsheet
is highly fault tolerant and the interactive performance is independent of the speed and the
quality of the underlying network. To specify the concurrent semantics of the spreadsheet, an
abstract data type is defined and a general model of a subset of the operations is proposed.

1 Introduction

In the most general sense, an object is a store that has well-defined access methods. That is, an object
may assume any of a (potentially infinite) set of values X and only some predefined set of operations,
O, may cause the state of the object to change.

A lock-free distributed object is a purely-replicated object that assumes a common state at every site
whenever there are no messages in transit. We also require that any updates to the object be performed
with no network communication. All updates must be performed locally and only notification of the
update is distributed to the other sites. A purely-replicated system is a distributed system in which
there is no central authority and each site maintains a complete copy of the distributed object. We have
named these systems “lock-free” to emphasize the difference between them and those that use some form
of network synchronization such as semaphores or “locks.” There are numerous advantages to lock-free
systems over their traditional counterparts. The speed of the network does not affect the interactive
performance of the system, and since local updates to the object are independent of the network, the
network may even fail without impeding the user’s ability to operate with the object. Similarly, any
number of the distributed nodes may fail because each copy of the object may be updated independently.

There are many other techniques that may be used to design a distributed spreadsheet. One possible
solution is to use a client/server approach. There is a single copy of the object at a server site and clients
use the network to access and update the object. Client/server solutions have a single point of failure
and usually require network transmission for every update. It is possible to allow sequences of updates
to be grouped together into a transaction. A transaction may only be processed if it does not conflict
with a higher priority transaction. Many spreadsheet operations update the state of the entire object
and consequently, transactions are infeasible. On the other hand, there are algorithms for providing
consistency in a purely-replicated system. It is possible to use a distributed semaphore or a central
locking authority. But, a central authority provides the same problems as the client/server model and
there is no known algorithm for efficiently handling distributed semaphores [10]. It is also possible to use
a causal ordering [7] or even a totally ordered communication system. That is, each update is augmented

*University of Waterloo Technical Report CS-98-04

with a clock and all sites perform the updates in an order that agrees with the causal ordering and/or
the total order. This approach is difficult to implement, reduces the possible parallelism inherent in a
replicated architecture and causes undo delay in message processing [1].

There has been recent research in operation transformations. If an object has a set of possible update
functions, O, then an operation transform is a mapping O x O — O. Operation transformations were
pioneered by Ellis and Gibbs who proposed their dOPT algorithm [4]. It has been pointed out that this
algorithm is in fact flawed (for example, see [8] or [9]). A corrected version of dOPT that handles the
special case of two communicating processes (point-to-point communication) has also been devised [3].
It does not seem possible to directly repair dOPT handle the more general case of n communicating
processes. Instead, there have been algorithms proposed which are motivated by dOPT.

Cormack has proposed A Calculus for Concurrent Update (CCU) [2]. This algorithm appears to be
the most general. We will make use of this algorithm to design a lock-free distributed shared spreadsheet.
Because we are using a consistency model that allows for lost messages, the distributed system is highly
fault-tolerant. As we claimed before, local operations are not affected by a network failure. When
the network failure occurs, updates will not be delivered between affected nodes. When the fault is
corrected and the network is reconnected, there will be a period of time in which sites see a large
number of concurrent operations. They will have no other ill-effects due to the network outage. In the
process of designing such an object, we have developed a preliminary classification of different operation
transformations which should assist others attempting similar work.

The remainder of this paper is organized as follows. In section 3, a formal model of a spreadsheet
is proposed. This model is augmented in section 4 to define a concurrent model for the spreadsheet.
Finally, we present our transformation classes in section 5. However, before delving into the spreadsheet,
we present a brief overview of the concurrency control algorithm that we employ.

2 A Calculus for Concurrent Update

Central to CCU is the ability to define transformations on the update operations that define “equivalent”
updates and consequently have the same behaviour as some canonical model of the concurrent operations.
We assume that there are n sites, each of which has a unique site identifier, s;, and each site maintains
a fully-replicated copy of the distributed object that takes on states X and has update functions O. We
assume that there exists a communications medium that never corrupts messages but may result in lost
messages or out of order delivery of messages.

To define the meaning of a set of concurrent updates, two fully-defined transformations (these trans-
formations are functions O x O — O) must be provided. The two transformations are: f/g, read f after
g, which defines a function that is equivalent to f after g has been applied concurrently; f\g, read f
before g, which is the dual of f/g, and is defined by f/g(g(z)) = g\f(f(z)) for all states z € X. It is
with these two functions that we will build non-canonical update sequences.

We use a vector based clock to define Lamport’s happens before relation [7] and a total order that is
consistent with this causal relationship. If the it" component of a time vector represents the number of
operations, generated by site s;, that have been processed, we can define the happens before relation as
T1CT2ifT1 CT2and T1 # T2 where:

T1= (a1, *,an) C (b1, - ,bp) =T2ifa; <b;forall1 <i<n
A total order which is consistent with the causal order is implemented by:
(al,---,an) < (bl,---,bn) if a; < b; or a3 = by and (az,---,an) < (bz,---,bn)

Given an update sequence g1, g2, -+, gm (where ¢ < j implies that g; occurs before g; in the total
order) and an initial state x, we define the effect of the update sequence on the object to be the state
gm(- - (g2(g1(x)))---). If there are m concurrent updates, fi, f2,-- -, fm, then the canonical model of
these updates is defined to be the sequence fi, fo/f1, -, fm/(fm-1/(---/f1--+)). It is important to
remember this canonical sequence because we will define transformations f/g to give it meaning.

The task of the CCU algorithm is to process any of the m! different update sequences that could
be generated from m concurrent events. The order that the updates are received and processed should
have no effect on the final state of the object. That is, a combination of / and \ transformations will

e --> @function(el, ..., en)
e --> cell

e —-=> range

e --> literal

cell —-> [rowref, colref]

range --> {cell, cell}

rowref --> row | :row

colref --> col | :col

Figure 1: Spreadsheet Expressions

be applied to the updates at each site so that the constructed update sequence is equivalent to the
canonical sequence, above. This algorithm is presented in [2]. Because the final state is modeled by the
canonical update sequence, there is a simple technique for making a sequence of updates atomic. If a
site temporarily stops processing remote events, the set of updates that it generates will be consecutive
in the total order.

CCU differs from the other known algorithms because it does not require that the elementary opera-
tions on an object have an inverse. While it is possible to define inverse functions by saving the state of
the store, this is not always reasonable (for example, updating the Ozford English Dictionary makes the
cost of inverse functions prohibitive). It is for this reason that we feel CCU is the most general known
algorithm that addresses the lock-free distributed consistency problem.

3 A Spreadsheet Model

Spreadsheets are simple objects which most people have used at some point in their lives. A spreadsheet
is a store that organizes information into rows and columns. The entries in this two dimensional object
are cells. A cell holds text, numbers and even complex formulas. To ease formula writing, it is possible to
define symbolic names to represent areas of the spreadsheet. These areas are referred to as ranges of cells
and serve as basic units when writing formulas. A rich library of functions gives the user the ability to
specify complex relationships among cells and form the heart of the spreadsheet. To provide aesthetically
pleasing output, the appearance of entire columns may be defined while still allowing individual cells
to specify an alternative display format for their contents. In addition to simply storing literal values
and formulas, there are operations which make editing the spreadsheet easier. It is always possible to
insert and delete both rows and columns while ensuring that all formulas in the spreadsheet continue
to reference the same cells after the update operation. A copy operation is provided that provides two
different cell referencing modes. A reference to a cell may either be fized in that copying the formula
will keep the same reference or relative in that copying the formula will update the reference to the same
relative position vis-a-vis the destination cell.

All of these operations are provided in a public domain spreadsheet called sc. We define a fairly
general spreadsheet but make use of the semantics of sc when there are multiple possible interpretations
(such as references to cells that have been deleted). The typical convention for references to a cell is
to use one or more letters (defined by the sequence A, B, ---, Z, AA, ---) to represent the column and
a non-negative number to represent the row. While this is convenient for users, it is not amenable to
mathematical notation. Instead, we use non-negative numbers for both the row and column references.
It is now possible to define a spreadsheet as an abstract data type.

A spreadsheet may be modeled using unconstrained arrays. A spreadsheet is a triple S =< C, F, M >
where C is a two dimensional array of cells, F' is a one dimensional array of per-column formatting
information and M is a mapping between names and ranges of cells. The cell at position row and col is a
triple Crow, col] =< I, e, f > where [is a (potentially empty) string label, e is an expression defined by a
simple grammar (figure 1) and f is a set of per-cell flags. The expression language used in this paper does
not necessarily correspond to any existing spreadsheet language. Instead, the expression language tends
to correspond to the parsed operator tree that would be derived from any actual spreadsheet formula
language. Cell references of the form [: row,: col] indicate that the row and/or column number is fixed.
Cell references of the form [row, col] indicate that the row and/or column number is “relative” to the
current cell. To be completely general, we allow fixed references to be independently attached to the row

and the column numbers.

While the formatting information is particularly useful for users, differences in formatting do not
impact on the definition of a spreadsheet. The only exception to this rule is the ability to lock cells. We
assume that the per-cell formatting information includes the attribute islocked(C[row, col]) to record
these locks.

We now define a the basic set of operations which we outlined, above. This is not necessarily an
exhaustive list as there are differences among spreadsheets. This is a complete list of the functionality
of sc. We define a spreadsheet to have the following operations:

set(cell,value) - Replace the contents of the cell at location cell with the triple: value =<1,e, f >.

format(column, format) - Replace the formatting information for the column with the new formatting
information format.

insert(row,nrows, col, ncols) - Insert rows and/or columns by adding nrows before row and adding
ncols before col. Update the references so that they continue to point to the same cells.

delete(row, nrows, col, ncols) - Delete nrows beginning with row and ncols beginning with col. Update
the references so that they continue to point to the same cells.

copy(sre,dest,value) - Copy the cell at position src, which is value = C[src|, to dest updating the
relative references in v at the destination. We add the walue parameter to this operation as our
only concession required to define reasonable concurrent semantics.

de fine(name,range) - Create a mapping from a name to a specific range of the spreadsheet.

unde fine(name,range) - Remove a mapping from a name.

We formally define the behaviour of the following subset of the operations: format, set, delete and
copy. We ignore the name definition facilities because they are trivial in sc and even more complicated
name definition systems are still easy to model. We discuss the format operation because of the simplicity
of the concurrent semantics. These semantics will provide a gentle introduction to the more complicated
definitions. The two operations, set and copy are fundamental and may not be ignored. Finally, we have
chosen to define delete and not insert because there is an obvious parallel between them, and delete has
slightly more interesting concurrent semantics. The definitions appear in figure 2.

4 Concurrent Semantics

To produce a distributed lock-free spreadsheet, we need to augment the spreadsheet definitions with
concurrent semantics. Since we are using the CCU algorithm, we must define for all pairs of functions, f
and g, the two transformations f/g and f\g. Technically, we should prove that, for each pair of transfor-
mations and any spreadsheet S, f/g(g(S)) = g\f(f(S)). We will generally ignore this requirement; the
reader can easily verify this condition for the majority of the transformations that we define. Instead, we
concentrate our effort on defining reasonable semantics for f/g. That is, we want f/g(g(S)) to reasonably
model the two concurrent updates f and g.

An identity function is used to assist the definition of the concurrent semantics, but this operation
is not strictly necessary. It could be replaced with delete(0,0,0,0), which will leave the spreadsheet
unchanged. We have adopted the ident function because it tends to make the definitions more compre-
hensible.

Defining the formatting information for a column provides a gentle introduction to the concurrent
semantics. It is obvious that changing the format of a column is essentially independent of the other
operations. We must answer the question, “what does it mean, to some other concurrent operation, to
change the formatting information for a column?” For set and copy, the answer is “nothing”. It not does
matter whether or not you change the format of the column while you are also copying or modifying a
cell because these updates are truly independent. Thus, we can quickly and conveniently define these
transformation:

format / £ = format \ f = format (f !'= delete and f != format)
f / format f \ format f (f !'= delete and f !'= format)

However, delete and format operations are not entirely independent. If we assumed these operations
to be independent and blindly applied the original format operation, we may end up affecting a different,

A spreadsheet is a pair S=<C, F> where C is 2D array of cells, F is

a 1D array of column formats and a cell is the triple <1,e,f>.

set([r, cl, value) is
Clr,c] = value (not islocked(C[r,c]l)
error (islocked(C[r,c])

format(c, f) is
Flc] = £

copy([fr,fcl, [tr,tc], <1l,e,f>)
error (islocked(C[tr,tc])
Cltr,tc] = <1,fix(e),f> (not islocked(C[tr,tcl))
where fix(e) is defined as
fix(literal) = literal
fix(ef(el, ..., en)) = @f(fix(el), ..., fix(en))
fix({celll, cell2}) = {fix(celll), fix(cell2)}
fix([r,c]) = [r’,c’]

where
r’=r (isfixed(r))
r’ = r+(tr-fr) (not isfixed(r) and tr-fr+r >= 0)
r’ =0 (not isfixed(r) and tr-fr+r < 0)
c’ =c (isfixed(c))
c’ = c+(tc-fc) (not isfixed(c) and tc-fc+c >= 0)
c’ =0 (not isfixed(c) and tc-fc+c < 0)

delete(row, nrow, col, ncol) is

error (islocked(C[r,c]) for some r in row ..
for some ¢ in col ..
Otherwise:
Clrow+i,c] = Cl[row+nrow+i,c] for all c, i >= 0
Clr,col+i] = C[r,col+ncol+i] for all r, i >= 0
Flcol+i] = Flcol+ncol+il] for all i >= 0
Clr,cl.e = fix(C[r,c].e) for all r, c

row+nrow-1 or
col+ncol-1)

Prune the last nrow rows and ncol columns of C and ncol columns of F.

where we define fix as
fix(literal) = literal
fix(ef(el, ..., en)) = ef(fix(el), ..., fix(en))
fix({celll, cell2}) = {fix(celll), fix(cell2)}
fix([r, c]) = [r’, c’]

where
r’=r (r < row)
r’ = r-nrow (r >= row+nrow)
c’ =c (c < col)
¢’ = c-ncol (c >= col+ncol)

Figure 2: Spreadsheet Definitions

and wrong, column. We need to correct the format operation to ensure that it is applied to the same
column after the delete operation has been applied. Therefore, we derive the following definition:

format(c, f) / delete(fr,nrows,fc,ncols) = format(c, f) \ delete(fr,nrows,fc,ncol) =
ident (fc <= ¢ < fc + ncols)
format(c, f) (c < fc)

format (c-ncol, f) (c >= fc + ncols)

If a column formatting operation occurs concurrently with a delete (which may or may not affect
the columns of the spreadsheet), there are only a few cases that need to be considered. If the column
being modified is concurrently deleted, the format operation can no longer be reasonably applied and it
is mapped to the identity function. On the other hand, if the delete is “to the left” of the formatting
request, the column number will need to be shifted to the left by the number of deleted columns. Finally,
if the delete is “to the right” of the formatting request, it doesn’t change the area of the spreadsheet on
which the format operation was based.

We have defined all of the transformations on the format operation except for the transformations
over a second, concurrent, format request. What does it mean for two format operations to happen
concurrently? If they are changing different columns of the spreadsheet, there is no interaction between
the two operations. On the other hand, if two users attempt to change the format of the same column,
we need to devise some means of handling this conflict. We make use of the total order and the fact that
CCU guarantees that all sites will have an update sequence that models this total order. So, we simply
define the result of the concurrent format operations to be the one which occurs later in the total order:

format(cl, f1) / format(c2, f2) = format(cl, f1)
format(cl, f1) \ format(c2, £f2)
format(c1, f1) (c1 '= c2)
ident (c1 = c2)

Before we define more transformations, there are some general rules that we can extract from the
process of definition these transformations. There are some pairs of operations which are truly indepen-
dent. No transformation is required when these operations occur concurrently. There are other pairs of
operations where it is the last operation at a location which “wins” and all others get masked. The last
type of transformation was the deletion of rows and columns. The deletion request changes the relative
position of the format operation. We can consider type of transformation as updating the context in
which the operation is being applied. When the concurrent deletion has occurred, it has changed the
context of the spreadsheet in a such a way that the format request has had its meaning changed. So,
when events are not independent and they do not mask each other, we need to look at how the operations
interact over the spreadsheet.

The set operation includes similar transformations. We already know that changing the value of a
cell and changing the per-column formatting information are independent. What does it mean for a
delete and a set update to occur concurrently? As with the transformation of the format operation
over the delete operation, the position of the set must be updated to correct for the change in relative
contexts. This is not the only change that needs to be reflected. The formula being stored into a cell is
also based on this incorrect context. We must recursively apply the context transformation to references
in the formula. We have the definition:

set([r,c], v) / delete(fr, nrow, fc, ncol) = set([r,c], v) \ delete(fr, nrow, fc, ncol) =
ident (fr <= r < fr+nrow or fc <= ¢ < fc+ncol)
set (fix([r,c]), f(v)) (otherwise)
where fix(<1l, e, f>) = <1, fix(e), £>
fix(literal) = literal
fix(ef(el, ... en) = @f(fix(el), ..., fix(en))
fix({celll, cell2}) = { fix(celll), fix(cell2) }
fix([r,c]) = [drow(r), dcol(c)]

where drow(r) = r (r < fr+nrow)
= r-nrow (r >= fr+nrow)
dcol(c) = ¢ (c < fc+ncol)

= c-ncol (c >= fc+ncol)

The transformation for two concurrent set operations is analogous to two formatting operation. The
last operation updating a cell will be the “winner”. That is:

set([rl,c1],vl) / set([r2,c2], v2)
set([rl,c1],vl) \ set([r2,c2], v2) =
ident ([r1,c1] = [r2,c2])
set([rl,c1], vl) ([r1,c1] !'= [r2,c2])

set([r1,c1], vi1)

This leaves only the concurrent application of a set and a copy operation. At the destination of the
copy operation, the event that is later will mask the earlier event. Once again, we have a definition
modeled on the transformations for two format operations. There is, however, a problem. What does
it mean to change the source of the copy concurrent to the copy itself? One possible interpretation is
to adhere strictly to the total order. If the set operation occurs before the copy operation, the copy
operation should actually copy the new value and not the original value. This interpretation makes the
most mathematical sense but doesn’t seem to model the user’s intention. The strict definition assumes
that the user wanted to copy whatever was contained in the cell when in reality they probably meant to
copy the specific contents of the cell. Thus, we define the semantics in a manner analogous to the pair
of set operations:

set([r,c], v1) / copy([sr,sc], [dr,dc], v2) = set([r,c], v1)
set([r,c], v1) \ copy([sr, sc], [dr, dc], v2) =

ident ([r,c] = [dr,dcl)

set([r,c], vl1) ([r,c] '= [dr, dcl)

copy([sr,sc], [dr,dc]l, v1) / set([r,c]l, v2)

copy([sr,sc], [dr,dc], v1) \ set([r,c], v2) =
ident ([r,c] = [dr,dcl)
copy([sr,sc], [dr,dc],vl) ([r,c] != [dr,dc])

copy([sr,sc], [dr,dc], vl)

Hidden in this definition, there is the one concession we were forced to make when defining the
sequential semantics of the spreadsheet operations. To preserve the contents of the copied cell, we
augmented the arguments to the copy operation to include it. This is necessary to define copy/set
operating on the same cell.

Instead of completing the copy transformations, we defer the discussion of copy/delete and copy\delete
because they are the most complex. Instead, we turn our attention to the delete transformations.
Concurrently deleting rows and/or columns will always “win” over the other three operations. Changing
the format of a cell or storing a new value in a cell cannot possibly affect the context of the deletion.
Thus:

delete / f = delete \ f = delete (f !'= delete)

The situation is slightly more complicated when dealing with two concurrent deletion requests. We
will only discuss the deletion of rows because rows and columns are symmetric. As with the other
operations, we may have to translate the row positions to reflect the changes in context. We need to
extend this translation slightly because we may have overlapping deletions. If we have already deleted
part of the requested area, we simply crop the new area to this previously deleted boundary. Finally, we
have defined delete in terms of a first row to delete and the number of rows to delete. To transform the
number of rows, we project the first row beyond the deleted area into our new context and look at the
number of rows between undeleted row and the start of the deleted range in this new context:

delete(frl, nrowl, fcl, ncoll) / delete(fr2, nrow2, fc2, ncol2) =
delete(frow(frl), frow(fri+nrowl)-frow(frl), fcol(fcl), fcol(fcl+ncoll)-fcol(fcl))
where frow(r) = r’ and fcol(c) = c’ with

r’=r (r < fr2)

r’ = fr2 (fr2 <= r <= fr2+nrow2)
r’ = r - nrow2 (r > fr2+nrow2)

c’ =¢ (c < fc2)

c’ = fc2 (fc2 <= ¢ <= fc2+ncol2)
c’ = ¢ - ncol2 (c > fc2+ncol?2)

delete(frl, nrowl, fcl, ncoll) \ delete(fr2, nrow2, fc2, ncol2) =
delete(frl, nrowl, fcl, ncoll) / delete(fr2, ncol2, fc2, ncol2)

For completeness, we must define the transformation of two concurrent copy operations which should
be familiar:

copy([srl,sc1],[drl,dc1],vl) / copy([sr2,sc2],[dr2,dc2],v2)

copy([srl,sc1], [drl,dcl1],vl) \ copy([sr2,sc2], [dr2,dc2],v2)
ident ([dr1l,dc1] = [dr2,dc2])
copy([r1,c1],[drl,dc1],vl) ([dr1l,dc1] != [dr2,dc2])

copy([sr1,sc1], [drl,sr1],vl)

The only transformations left to define are copy/delete and copy\delete. We will again have to change
the context of the source and destination cells in the copy operation. We will borrow the drow and
dcol functions defined in set/delete. However, unlike the set transformations, the relationship between
the formula and the context is more complex. When copying cells, the copy operation itself defines a
transformation on the formula. We derive the transformation for copy/delete by taking the definition
of the transformations applied by copy and delete and then solve the required equivalence f/g(g(S)) =
g\f(f(S)). The definition that we derive is:

copy([sr, sc], [dr, dc], <1,e,f>) / delete(fr, nrow, fc, ncol) =

ident (fr <= dr < fr+nrow and fc <= dc < fc+ncol)
copy ([drow(sr), dcol(sc)], [drow(dr), dcol(dc)], <1, fix(e), £>)
(otherwise)

where

crow(r) = r (isfixed(r))

crow(r) = r + dr - sr (not isfixed(r))

ccol(c) = ¢ (isfixed(c))

ccol(c) = ¢ + dc - sc (not isfixed(c))

fix(literal) = literal
fix(@f(el, ..., en) = @f(fix(el), ..., fix(en))
fix({celll, cell2}) = { fix(celll), fix(cell2) }
fix([r,c]) = [r’, c’]

where

r’ = r + drow(crow(r)) - crow(r) + delta_r(r)

¢’ = ¢ + dcol(ccol(c)) - ccol(c) + delta_c(c)

where
delta_r(r) = (dr-sr) - (drow(dr)-drow(fr)) (mot isfixed(r))
delta_r(r) =0 (isfixed(r))
delta_c(c) = (dc-sc) - (dcol(dc)-dcol(fc)) (not isfixed(c))
delta_c(c) = 0 (isfixed(c))

copy(src, dst, v) \ delete(fr, nrow, fc, ncol) =
copy(src, dst, v) / delete(fr, nrow, fc, ncol)

Here, crow and ccol perform the translation that would have been applied by the original copy and,
once again, drow and dcol perform the transformation in positions resulting from the delete operation.
The definition of " and ¢’ serve two purposes: 7y = r+drow(crow(r))—crow(r) corrects a fixed reference
by storing the required change in cell position in the transformed formula. The final correction, delta_r(r)
is defined as the change in the transformation that will be applied when the final copy operation is actually
invoked.

While it is reasonable to trust that the other definitions satisfy the requirements of the CCU algorithm,
the definition of copy/delete may seem unbelievable. We present the following proof that the definition
is correct (satisfies the requirements of the CCU algorithm). The last part of the proof makes the
relationship between delta_r and crow clear.

Theorem 1 (Correctness of copy/delete)
If cpy = copy([sr, sc], [dr,dc],v) and del = delete(fr, nrow, fec, ncol) are concurrent operations then
cpy/del(del(S)) = del\cpy(cpy(S)) for any spreadsheet S.

Proof: By definition, del\cpy(cpy(S)) = del(cpy(S)). Let cpy/del = copy([sr’, sc'], [dr', dc'], v"). There
are two conditions that we must verify. First, that [dr’, dc'] is the same destination cell as in del(cpy(S)).
We have previously outlined this argument. Applying the delete operation moves the cell [dr,dc] to
[@r',dc’]. By definition of drow and dcol, that is [dr’, dc'] = [drow(dr), dcol(dc)].

The second condition is more difficult. 'We must verify that if [r,c] is a cell reference in v which
becomes [r, "] by the sequence del/cpy(cpy(S)) then cpy/del(del(S)) will also result in a reference of

[r",c"]. Let [r',c'] be the transformation of [r, c] as specified in cpy/del. Let fiz be the transformation
function used in the definition of copy. We will show that fiz(r') = r'"" = drow(crow(r)). For simplicity,
we assume that dr' — sr’ +r > 0. If this is not the case, intermediate results will contain negative cell
references but when the final copy operation is applied this will be caught and handled correctly.

If r is a fixed reference then copy/delete defines delta_r(r) = 0 and copy defines fiz(r) = crow(r) =r.
Thus, fiz(r') =" =r + drow(crow(r)) — crow(r) = r + drow(r) — r = drow(r) = drow(crow(r)) = r".
That is, fixed references are transformed correctly.

If r is a relative reference then, when applying cpy/del, by the definition of fiz, we have:

fix(r') = 1 + dr’-sr’
= 1’ + drow(dr) - drow(sr) [def copy/delete]
= (r + drow(crow(r)) - crow(r) + dr-sr - (drow(dr)-drow(sr))) +
drow(dr) - drow(sr) [def r]
= r + drow(crow(r)) - crow(r) + dr-sr
= drow(crow(r)) [def crow(r)]

Finally, a similar argument holds to show that column references are preserved under the two trans-
formations. Thus, cpy/del(del(S)) = del\cpy(cpy(S)) for any spreadsheet S.

Looking beyond the transformations and returning to the spreadsheet abstract data type, we may now
outline the additional transformations that would be required. It should be obvious that the semantics
involving the insert operation are very similar to those with delete. The concurrent semantics of a
delete and an insert operation are slightly more complex because the deletion may mask the insertion
in the rows and/or the columns modified. The only other operations that we have not defined are name
definition services. The simplest technique for handling the name definition services is to make unde fine
operations mask de fine operations and the semantics are then similar to those presented above.

5 Classifying Transformations

It would be desirable to be able to classify all of the possible transformations in order to partition them
into related groups. This eases the process of deriving the transformations and simplifies the task of
verifying their validity. It is, of course, not possible to define such a taxonomy. Instead, we extract from
our concurrent semantics four basic classes of transformations which seem to apply to specific types of
functions. The basic classes are pairs of functions that commutate, bully functions, masking functions
and functions that affect the relative position of updates.

Commutative Functions When two functions commute, it is trivial to handle the concurrent seman-
tics. This is exploited in [6] to reduce the number of operations that must be undone. For an
operational transformation system, it involves an identity transformation. That is, if f and g
commute, we define f/g = f\g = f and g/f =g\f=g9.

Bully Functions Closely related to the commutative functions, there are functions which always “win”
against other functions. These functions are very much like the commutative functions except that
the relationship holds in only one direction. It may not matter whether or not we have concurrently
applied some function, g, when we apply the bully function f. In the spreadsheet, the delete function
was a bully function. The transformations are simply f/g = f\g = f. There is no natural analogy
to a text buffer for these types of functions. However, if you consider a text buffer augmented with
a locking operation, the locking operation is a bully function [5].

Masking Functions Masking functions are those functions where the earlier (conflicting) applications
do not contribute to the final state of the object. For example, if two users set the value of a cell
concurrently, it is only the last update that affects the final state of the spreadsheet. Making use
of the total order, these transformations are of the form:

f(x1,y1) / g(x2,y2) = f(x1,y1)
f(x1,y1) \ g(x2,y2) =
ident (x1 = x2)
f(x1l,y1) (x1 !'= x2)

Masking functions will generally be idempotent functions (functions such that f(f(z)) = f(z)). As
a special case of the concurrency, two users may generate the same request and this will behave like
an idempotent function.

Relative Functions Relative functions are functions which change the relative context in a simple,
linear fashion. In terms of the spreadsheet, deletions offset row and column references. In terms
of either a text buffer or a spreadsheet, update operations are relative to insertions and deletions.
Typically there are up to three possible cases to handle. First, the operation may be nullified (eg:
inside the deleted region). If the operation is not nullified then it will either be offset by the relative
change or it will be preserved.

6 Future Research

We have presented the concurrent semantics for a spreadsheet but have avoided any discussion of the
required infrastructure. This infrastructure must include functionality to create new distributed objects,
to acquire a copy of an existing distributed object and to manage a general network topology. Further
research is needed into these areas. These topics actually form two specific research tasks. First, there are
the network issues. Treating the network as a distributed directed graph (using CCU) may be an effective
solution. More thought is needed into the exact ramifications of using CCU to define the network layer
used by CCU. Second, there are a set of CCU “meta-operations.” It is possible to solve the requirements
of the meta-operations in a specific setting, but it is not clear what defines a canonical set of meta-
operations. In addition, while it is easy to solve the problems in a specific setting, the simple solutions
require some form of global synchronization (among at least half the nodes). This is contrary to the
design of the distributed object and thus there is a need to develop distributed, concurrent semantics for
the meta-operations. That is, the correct solution to this problem appears to be in defining a concurrent
object that includes in its store the original distributed object and defines transformations on top of the
definitions provided by the base object.

There is also a strong need for an integrated environment for creating concurrent objects. Given
that there are some simple classes of functions that adhere to basic types of transformations, it may
be possible to automate a large portion of the definition process. Also, it is inconvenient to define
the concurrent semantics using a general purpose language such as C. A simple specification language,
possibly similar to the one used in this paper, would greatly assist anyone designing new objects. Due
to the volume and potential complexity of the concurrent semantics, there is a definite need to make
this process simpler to manage. By making the definition process simpler, it then becomes easier to
experiment with new transformations. This ability to experiment is critical in allowing the definition of
the concurrent semantics for other interesting objects.

7 Conclusions

An operation transformation algorithm, CCU, was used to develop a shared, distributed, lock-free spread-
sheet. This spreadsheet has semantics which are considerably more complex than known operation
transformation based systems. The concurrent semantics that were developed maintain a reasonable in-
terpretation of the user’s original intention. None of the semantics were sacrificed to ease they definition.

Due to the nature of a lock-free distributed system, local changes to the spreadsheet may always be
applied. As these changes are assumed to be distributed over a potentially unreliable network, a highly
fault tolerant system has been developed. Every node is able to operate in isolation and thus the system
is immune to network outages and any number of nodes may fail without affecting those that remain.

The definition of the transformations that implement the concurrent semantics are mostly contained
within four general classes of transformations. We isolated these transformation classes with the intention
of making it easier and simpler to think about the transformations and to assist the development of
transformations for new objects.

All transformations were based on a simple model of the public domain spreadsheet sc. A spreadsheet
abstract data type was proposed and formal semantics were defined for a subset of the spreadsheet
operations. This subset of operations was rigorously defined as being representative of the complete
definitions. Consequently, we have defined a formal model of a spreadsheet with some rigour.

10

References

1]

[10]

David Cheriton and Dale Skeen. Understanding the limitations of causally and totally ordered
communication. In Proceedings of the 14th Symposium on Operating Systems Principles, pages
44-57, Asheville, NC, December 1993.

Gordon V. Cormack. A calculus for concurrent update. Technical Report CS-95-06, University of
Waterloo, 1995.

Gordon V. Cormack. A counterexample to the distributed operational transform and a corrected
algorithm for point-to-point communication. Technical Report CS-95-08, University of Waterloo,
1995.

C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In J. Clifford, B. Lindsay,
and D. Maier, editors, Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 399—407,
Portland, OR, June 1989. ACM SIGMOD Record, 18:2.

Lin Hu. Handling lock operations in distributed real-time cooperative editing systems. Technical
Report TR-96-12, RMIT, Melbourne, Australia, 1995.

Alain Karsenty and Michel Beaudouin-Lafon. An algorithm for distributed groupware applications.
In Proc. 13th IEEE Int. Conf. on Distributed Computing Systems, pages 195-202, Pittsburg, PA,
May 1993. Los Alamitos, CA: IEEE Comp. Soc. Press.

Leslie Lamport. Time, clocks, and the ordering of events in a distrubuted system. Communications
of the ACM, 21(7):558-565, July 1978.

Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenh&user. An integrating, transformation-
oriented approach to concurrency control and undo in group editors. In ACM Computer-Supported
Cooperative Work. ACM, November 1996.

Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving convergence,
causality-preservation and intention- preservation in real-time cooperative editing systems. In ACM
Transactions on Computer-Human Interactions, New York, NY, 1998. To be published.

Andrew S. Tannenbaum. Modern Operating Systems. Prentice Hall, Upper Saddle River, NJ, 1992.

11

