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ABSTRACT

We consider two methods for the decomposition of Boolean and multi-valued
functions into functions with fewer arguments. Shestakov’s method (which we
call double decomposition) expresses a function f(zy,...,z,) as a composite
function h(gi(u1,...,u),92(v1,...,vs)), where the union of U = {us,...,u,}
and V = {vy,...,v,}is theset X = {zy,...,2,}. The independently developed
method of Luba and Selvaraj (which we call single decomposition) expresses a
function f(zi,...,2,) as a composite function h(ui, ..., t,, g(v1,...,vs)). The
latter method has been formalized by Brzozowski and Luba using “blankets,”
which are generalizations of set systems. In this paper, we use the same blanket
approach to formalize Shestakov’s decomposition method. We compare the
two methods, and verify that double decomposition is equivalent to two steps
of single decomposition. Recently, Brzozowski and Lou extended the single
decomposition methods to multi-valued functions. Using the same approach,
we also extend Shestakov’s method to the multi-valued case.

1. Introduction

Decomposition of Boolean and multi-valued functions has been studied by many
authors since the 1950’s [1-11]. For a more detailed discussion of this work and its
applications see [3]. The present paper is concerned mainly with the methods of Luba
and Selvaraj [7] and Shestakov [10, 11].

We use the following conventions. Ordered n-tuples are denoted by unsubscripted

letters and their components by subscripted letters, for example, = (z1,...,z,). If
s = (81,...,8,) is an ordered n-tuple, then S = {s1,...,s,} is the corresponding set.
Also, if S = {s1,...,5,} is a set of elements explicitly represented in that order, then
s = (81,...,8,) is the corresponding n-tuple.

*This research was supported by the Natural Sciences and Engineering Research Council of
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Luba and Selvaraj developed an approach to Boolean function decomposition
using set systems and their generalizations [7]. They express a function f(z) in the
form h(u, g(v)), where ¢ = (z1,...,2,), u = (u1,..., %), v = (v1,...,0,), UUV = X
and g is a Boolean function. Very similar methods were discovered independently by
Shestakov [11], who expresses a Boolean function f(z) in the form h(g1(u),g2(v)),
where u, v, and = are as above, U UV = X, and g; and g, are Boolean functions.
The method of Luba and Selvaraj has been formalized by Brzozowski and Luba in [3],
and extended to the multi-valued case by Brzozowski and Lou in [2]. In this paper,
we formalize Shestakov’s method using blanket algebra as it is described in [3], and
also extend it to the multi-valued case. The reader is assumed to be familiar with
the work in [2, 3]; here we give only a very brief summary of the main ideas in those
papers.

The following statements are given only informally; they are defined below. If a
function f(z) can be expressed as h(u, g(v)) then the pair (h, g) is a single separation
of f. A single separation is a single decomposition if each of h and g has fewer inputs
than f. Similarly, if f(z) can be expressed as h(gi(u),g2(v)), then (h,g1,92) is a
double separation of f. It is a double decomposition of f if each of h, g1, and g, has
fewer inputs than f. We will show later that a double separation is equivalent to the
composition of two single separations.

2. Set Functions and Blankets

We will be considering both Boolean and multi-valued functions in the remaining
sections. In the following, F is a finite nonempty set, the underlying set of possible
values for each variable, and D = 2¥ — {(#}. The set D is partially ordered by set
inclusion. In the Boolean case E = {0,1}.

For k > 0, an element of D* will be called a set vector. The inclusion partial
order is extended to D*: For t,t' € D",

t Ct'if and only if ¢; C ¢ for all 4, 1 <7 < k.

The intersection of two elements ¢ and #' from D* is the component-by-component
set intersection. This intersection tNt' = (¢, N}, ..., txNE}) is empty if one (or more)
of its components is empty; otherwise, it is an element of D*. A subset T of D* is
said to be compatible if Myert # 0. If T' is compatible then the greatest lower bound
of T' exists and is equal to ;e t. We denote the glb of T' as shown below to stress
the fact that the ¢lb is equal to the intersection only if the intersection is nonempty.

g T =[ 1,er t.

We will be using a matrix notation for the representation of multi-valued functions.
A px (n + m) set matriz M is a matrix with elements from D. Each row ¢ of such
a matrix is a set vector of length n + m, i.e., an (n + m)-tuple, where the first »



components, denoted by ¢, are input values and the last m components, denoted
by t', are output values. We associate an ordered n-tuple z of input variables with
the first n columns of the matrix; also X is the corresponding set of input variables.
Similarly, y and Y are the tuple and set of output variables associated with the last
m columns on M.

In the Boolean case a row vector t of M represents a “function cube”, since
its entries are {0}s, {1}s, and {0, 1}s, representing logic 0s, 1s, and “don’t cares,”
respectively. This terminology is also extended to the multi-valued case, where all the
entries are singleton sets—representing particular values, the entire set E of all the
possible domain values—representing the complete don’t care, or nonempty proper
subsets of E—representing partial don’t cares.

The set of rows of a set matrix M is denoted by F. A set matrix is said to be
consistent if 1t satisfies the following condition: For any set T' of rows from F',

if {t, |t € T} is compatible, then {¢" | ¢ € T'} is compatible.

From now on we consider only consistent set matrices.

We refer to an element (eq,...,e,) of E™ as a minterm. On the other hand,
a set vector of the form e = ({e1},...,{en}) C D", is called a singleton vector.
The set of all such singleton vectors will be denoted by ¥". By a slight abuse of
terminology, we also refer to the elements of ¥ as minterms. To simplify our notation,
we write (er,...,e,), or even e; ... ey, for e when this does not cause confusion. The
interpretation of a (consistent) set matrix M is as follows. It defines a multi-valued
function f = fu, called set function, which is of the form f : ¥* — D™. For any set

vector e € X",
f(e) = |_|FX26 tT?

where Fx5. = {t € F | t, D e}, and, if Fx>. is empty, f(e) is defined to be (E,..., E)
(m Es). In other words, the glb of the empty set of vectors is interpreted as m Es.
A minterm e € X" is involved in a function cube t € F,if t| O e. We call e
relevant to f if e is involved in some vector ¢ € F'.
By convention, to simplify matrix M we leave out any row which has (E,..., E)
(m Es) as its output.

In the following, we briefly give the definitions and notation used in connection with
blankets; for more details see [3].

A blanket on a set S is a collection f = {By,..., B} of nonempty and distinct
subsets of S, called blocks, whose union is S. We write 3 = {B;} when it is possible
to avoid referring to the number of blocks in f.

The product 3*3" of two blankets is defined by
Bx3 = ne{Bi N B, | B; € pand B; € ﬁ/}

where ne{S;} = {S;} — {0} for a set {S;} of subsets of S.



For two blankets 3 and 3’ on S, we write 8 < ' if for each B; in 3 there exists a
B; in ' such that B; C B;.

Assume the rows in F' are numbered 1,...,p. We will be dealing with blankets
on F, but we will refer to them as blankets on the set {1,...,p}, for convenience.
For an r-element subset U of the input set X, we define tij to be the r-tuple of input
values from ¢ corresponding to the input variables in U. Define the input blanket [y
corresponding to U to be By = ne{Fy>.}, where e € X7, and

Fyye ={t € F|t] De}.
We also define the output blanket By of f as fy = ne{Fy>.}, where e € ¥™ and
Fys. ={tc F |t De}.

3. Double Separation of Boolean Functions

Let X = {zi,...,2,} be the set of input variables of a Boolean function f. Let
U and V be two subsets of X such that U UV = X. Without loss of generality,
we relabel the variables z1,..., 2, so that U = {z1,...,z,} and V = {&,_411, ..., 20}
Thus for an n-tuple z, the tuple of the first r components is z¥ and the tuple of the
last s components is V. In the next three sections, we assume E = {0,1} and hence

% = {0}, {1}}.

Definition 3.1. Let f be a Boolean function, with n > 0 inputs and m > 0 outputs,
and let (U, V) be as above. Assume that f is specified by a set F of function cubes.
Let g1 be a Boolean function with v inputs and p outputs, let g, be a Boolean function
with s inputs and q outputs, and let h be a Boolean function with p + q inputs and
m outputs. The triple (g1,g2,h) is a double separation of f with respect to (U,V),
if, for every minterm b € L™ relevant to f, g1(bY) € TP, go(bY) € B9, the vector
(g1(8Y), g2(bY)) is relevant to h, and

£(8) 2 h(g1(87), g2(B")). (1)

The separation described in [3] is a special case of the above separation where
function g; is the identity function.

Definition 3.2. Under the conditions stated above, let W be a subset of X with
k elements. Let g be a Boolean function with k inputs. Then a blanket 3 on F
corresponds to g with respect to W if the following condition s satisfied: Two tuples
t and uw of F' appear together in some block of 3 if there exist two minterms d and e
relevant to f such that d C tEV, e C uEV, and g(d) = g(e).

Theorem 3.3. Let f(z) be a Boolean function with the set F' of rows and let (U, V)
be a pair of subsets of X satisfying U UV = X. For every pair (By,,B34,) of blankets
satisfying the conditions stated below, there is a double separation (g1, g2, h) such that
By, corresponds to g1 with respect to U, and By, corresponds to g, with respect to V.



o /QUS/BQU
o By < B,,, and

o /Bgl*/ggz S /BY-

Proof. Suppose 3, and 3, satisfying the conditions of the theorem are given. Fol-
lowing the method in [3], we can construct g; and g» from f,, and f3,,, respectively.
See the examples in Section 4 for more details.

Next we construct the truth table for a function A with p+ ¢ inputs and m outputs.
Consider © = ziz, with z; € ¥? and z, € X% Define F, —,, to be the block of 3,
that is assigned the value z;, and Fj,—,, to be the block of 3,, that is assigned the
value @y, If Fy_y N Fy—p, = B # 0, assign block B to z. Otherwise omit z from
the table for h. By the condition 3, %8, < By, we know that B is contained in some
block B of the output blanket By. Thus we know that ()5t exists. Assign h(z)
this value.

The proof that the above construction is correct closely follows the proof in [3]
and 1s omitted.

The converse of the above theorem is also true if U and V are disjoint; the proof
is again similar to the one in [3]. As we pointed out earlier, the separation in [3]
is a special case of the separation described here. Thus the counterexample for the
converse of the theorem in that paper also serves as a counterexample here when U
and V are not disjoint.

Now we shall prove that double separation is equivalent to two single separations
performed in sequence.

Proposition 3.4. Let f be a Boolean function and let (g1, 92, k) be a double separa-
tion of f. Let r, q and m be as before. Then there exists a function h' with r + q
inputs and m outputs such that (gs,h') is a single separation of f and (g1,h) is a
single separation of h'.

Proof. We define b’ as follows. For & = cx’ where ¢ € X" and ¢’ € X9, if there exists
a minterm b relevant to f such that ¥ = ¢ and g,(b") = ', then we know that
1 = g1(c) exists and h(z;,2") also exists. In this case, we define h'(z) = h(z,2').
Otherwise z is not present in the table for A’. Now for every minterm b relevant to f,

F(8) 2 h(ga(b7), g2(b7)) = B (B, g2(b7)).

Thus (g2, k') is a single separation of f.
Let the set of outputs of go be V’. Then the input set of A’ is U UV’ and for every
minterm d relevant to A/,

B (d) = B'(dV,d"") = h(gs(dV),d"").

Thus (g1, k) is a single separation of h’. In fact the D in the definition is replaced by
strict equality here.



4. Examples of Separations

Let f be a Boolean function with five inputs and two outputs specified by the
matrix in Table 1. Note that ® is a short hand for {0,1} and the {} is omitted for
all other entries. This example is taken from [11].

Table 1: Matrix defining f.

Row =z ®y =3 =4 x5 Y1 Y2
1 0 O 1 0 1 0 1
2 0 1 1 & @ 1 1
3 1 & 0 0 1 d 0
4 » 1 & 1 0 ¢ 1
5 1 1 1 0 & 0 1
6 0o & 0 & 1 0 0
7 0 0 1 1 1 1 0
8 1 & 0 1 1 ® 1

Example 4.1. First we use Shestakov’s method. Suppose we have U = {xy, x4, 23},
and V = {z3, 24, 25}. Then

000 001 010 011 100 110 111

001 010 011 100 101 110 111

/BV = {376a Za 6787 2757 172757 2747 277}7

and
01 10

00 1011
By = {3,6; 1,4,5.8; 3,7; 2,4,8},
where, for clarity, we omit the {} for each block B; and write B; instead. Also,
the minterms corresponding to each block are indicated above each block. Now, let
By =1{2,3,4,8;1,4,5,6,7}, By, = {3,6; 1,2,4,5; 6,8; 2,7}. We can check that these
two blankets satisfy the conditions of Theorem 3.3. We encode [3,, with one variable

and f3,, with two variables. One such encoding is as follows:

0 1
P =1{2,3,4,8;1,4,5,6,7},

00 01 10 11

/392 = {37—67 1727475; 67—87 277}

Using this encoding, we construct the tables for g1, g» and then h. The matrices
for the functions are given in Tables 2—.



Table 2: Finding function g;.

r1 T2 T3 5_U 591 zZ1
0 0 0 6 1.4,5,6,7 1
0 0 1 1,7 1,4,5,6,7 1
0 1 0 4,6 1,4,5,6,7 1
0 1 1 2.4 23,48 0
1 0 0 3.8 2.3,4,8 0
1 1 0 3,48 2,3.4,8 0
1 1 1 45 1,4,5,6,7 1

To get g1, we find, for each input combination, the corresponding block B of By.
Then we get the block of B,, that contains B and assign the output to be the encoding
of that block of By, . For ezample, for zizszs = 000, the block of Py is 6, which is
contained in 1,4,5,6,7. Hence g1(000) is assigned the value 1 here. The rest of the
construction of g1 and gs follows similarly.

Table 3: Finding function gs.

T3 T4 Ts Bv By, zy 23
0 0 1 3.6 3,6 0 0
0 1 0 i 1,245 0 1
0 1 1 6.8 68 1 0
1 0 0 2.5 1,245 0 1
1 0 1 1,25 1,245 0 1
1 1 0 2.4 1,245 0 1
1 1 1 2.7 3.7 11

To construct function h = h(z1, 22, z3), we first find block B of B,, corresponding
to input z and block B’ of B,, corresponding to inputs zpz3. Next we calculate the
product B = B+B'. The output is then the greatest lower bound of the outputs of the
rows contained in B. For example, for z1zoz5 = 001, the corresponding block of B, is
B =2,3,4,8 and the corresponding block of B,, is B' = 1,2,4,5. The product of the
two blocks is B = 2,4. Hence the output is glb{11, ®1} = 11. The rest of the table
for h follows similarly.

Example 4.2. Now we use the method described in Proposition 3.4 to construct a
function h' for single separation.

In Table 5, we list the possible input combinations (1, %2, x3, 22, 23) to function
B, then z; = gi(®1,®2,23), and finally the two outputs of h(z1, za, z3) which are the



Table 4: Matrix defining h.

zZ1 Zy 23 Ba, iﬁgz Y1 Y2
0 0 O 3 ® 0
0 0 1 2.4 1 1
0 1 0 8 d 1
0O 1 1 2 1 1
1 0 0 6 0 0
1 0 1 1.4.5 0 1
1 1 0 6 0 0
1 1 1 7 1 0

outputs of h'.

Note that those input combinations for h' which do not correspond to a minterm
b are omitted. For example, according to the tables for g1, g2, and h, the input
combination 00001 is possible and it would correspond to minterm b = 00010; however
b is not relevant to f, and thus input 00001 is not in the table for h'.

We can check that the pair (g2, h') is a single separation of f, and that the pair
(g1, h) is a single separation of I'.

5. Decomposition Method Using Tables

We now describe Shestakov’s method for finding the blankets 3, and f3,,; this
is the “table reduction” method [11]. The relation between this method and the
construction we used earlier will also be shown. This method can be used to do both
single and double separations. We shall use it to derive a single separation first then
proceed to derive a double separation. Note that our single separation will be of the
form h(gi(u),v), so the usual roles of U and V are reversed.

The function specified by Table 1 will be used. We label the blocks of By and By
by the integer corresponding to the binary input combination. Hence, for example,
block Bj is missing from [y as (z1,z2,23) = (1,0,1) is not present in the matrix

defining f.

We construct a block multiplication table where the rows are labeled B; and
columns are labeled Bj. In order to define the entries in the table, we need the
following definitions.



Table 5: Matrix defining A'.

Ty T2 T3 Z2 23 21 Y1 Y2
0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0
0 0 1 0 1 1 0 1
0 0 1 1 0 1 0 0
0 0 1 1 1 1 1 0
0 1 0 0 0 1 0 0
0 1 0 0 1 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 1
1 0 0 0 0 0 ® 0
1 0 0 1 0 0 1
1 1 0 0 0 0 ® 0
1 1 0 0 1 0 1 1
1 1 0 1 0 0 ¢ 1
1 1 1 0 1 1 0 1

Definition 5.1. Let W be a subset of X with k elements. Let B be a block in the
blanket Bw. Then b € ¥ exemplifies B if b C (iep tKV and b € ﬂteB/tKV for any
other block B' of Bw.

For example, if W = U for the function of Table 1, then 000 exemplifies Bg, but
010 does not.

Definition 5.2. Given a block B; from By and a block B} from By, we define B; A
B; = B; N B; if

e B;NB; #0,

o there exists a minterm b relevant to f such that bY exemplifies B; and bY ez-
emplifies B.

Otherwise, we define B; A By = 0.

Intuitively, the operation A is the block intersection if there is a common minterm
which exemplifies both blocks, and empty otherwise. In fact, we can show that in
the case U NV = ), this operation is equivalent to block intersection. Entry (3, j)
in the table T; ; is now defined to be B; A B;. The block multiplication table for our
function is presented in Table 6. For clarity, empty sets are represented by — and we
omit the {} for all other entries.



Table 6: Block Multiplication Table.

Bi By, By By By Bg Dy
Bo| 6 - — 6 - - -
By | — - -1 - 7
B,| 6 4 6 - - — -
Bs| - — — 2 2 24 2
Bs| 3 - 8 — - - -
Be| 3 4 8 — - -
B;| - - — 5 5 4 -

Note that Ty ¢ is empty instead of B, N B = {4}. This is because all minterms
that exemplify B, satisfy z3 = 0, while all minterms that exemplify Bf satisfy z3 = 1;
thus the minterm b in our definition does not exist and we have B3 A B, = 0. Now we
replace T; j with Myer, ; t1if T; ; is not empty. If T; ; is empty, it is replaced by (@, ®).
For clarity, we drop the parentheses and denote each entry by tuples. Also we use —
to denote the complete don’t care, which i1s ®® in this case. We call Table 7 the row
compatibility table.

Table 7: Row Compatibility Table.

By B, By By By By B;
Bo|00 — 00 — — — —
Bi|- - — — 0 - 10
B, |00 ® 00 — — — —
Bs| - — — 11 11 11 11
B, |®0 - ¥ - — — -
Bs |®0 &1 ®1 - — — —
B;| - — — 0l 01 & -—

Definition 5.3. A subset S = {B;,,...,B;,} of {B:} is called compatible if, in each
column of the row compatibility table, the entries in rows iy,...,t, are compatible,
i.e., they have a greatest lower bound.

We now find a blanket g, on the set {B;} where the blocks are compatible sets.
Each block of this blanket is a set of blocks in Fy. We obtain a blanket 8 on F' by
replacing each block with the union of its elements. We then use blanket 3 as j3,, to
obtain a single separation. Note this is equivalent to Luba and Selvaraj’s method [7],
where blocks are merged in [y to get § such that gy x 8 < fy. For some graph

10



theoretical methods to obtain 3, see [3]. Here we just use the brute force method
of taking a block B; of Py, trying to merge it with an existing block in (p; and
creating a new block for Sp, whenever B; is not compatible with any existing block.
For example, By, B; and B, are compatible, while Bj is not compatible with the first
three, so it’s in a separate block. Now B, is compatible with B3 so they are in the
same block. The rest of the merging i1s done similarly.

In our example, one possible blanket Bp, on the set {B;} is

/BB:' = {Bo,Bl,Bz7B7; 33734736}'

The corresponding blanket 3, with one possible encoding is

0 1
By = {1,4,5,6,7; 2,3,4,8}.

Note that this is the same blanket as we used in the last section. We can check
that 3, *8y < By. Thus this blanket corresponds to a single separation of f.

Denote the block encoded 0 by 4y and the block encoded 1 by d;. We construct
the column compatibility table as follows. The rows of the table are labeled §; and
the columns labeled B}. The entry (I, j) of the table is the greatest lower bound of
entries (ix,j) in the row compatibility table where & = {B;, }. This table is shown in
Table 8.

Table 8: Column Compatibility Table.

| B B, By By By By B;
&% |00 @® 00 01 01 @1 10
& |®0 @1 @1 11 11 11 11

Now we use similar procedure as before to find compatible columns.
Definition 5.4. A subset S’ = {B; ,...,B] } of {B;} is called compatible if in each
row of the column compatibility table, the entries in columns i;, ..., 1 are compatible,
i.e., they have a greatest lower bound.

From our table, we obtain the following blanket on the set {B}}.

The corresponding blanket [3,, with one possible encoding is

11



As we can see, the blanket 3,, we derived is also the same as the one we used
in the previous section. We label the four blocks dy,...,d5. Using similar methods
as we used in the construction of the column compatibility table, we merge columns
this time and the result is shown in Table 9. We can get function h directly from
this table: each input combination of h is formed by concatenating the encodings of
d; and &} while the output tuple is the entry (i, j) of the table. As usual, we can omit
an input combination from A if the output tuple is a complete don’t care (denoted by
— in our tables).

Table 9: Final Table.

| 6 & & &
50|00 01 00 10
5| ® 11 @1 11

Note that we could have used Table 7 as our column compatibility table and
merged the columns first. This is equivalent to exchanging the sets U and V. If we
do this in our example, we get

This gives
00 10

01
B, ={1,2,3,4,5,6; 2,4,7; 6,8}

Table 10: New Row Compatibility Table.

Gy 01 0y
By [ 000 — 00
By |01 10 -
By | 00 @1 00
By |11 11 -
By | @0 - a1
Bs | 0 @1 &1
B, |01 - -

Table 10 is our new row compatibility table. We can get p, and then g3, from
this table. They are as follows:

Be; = {30732; By, Br; F?’; B4’BG}'

12



Table 11: New Final Table.

do 01 0y
d [ 00 @1 00
s [01 10 -
& |11 11 —
53 | 20 21 @1

00 01 10 11

/391 = {47—67 1747577; 27—47 37478}

We can now deduce our new final table from 3,,. The result is shown in Table 11.
Note this new table is 4 x 3 as opposed to the 2 x 4 table we obtained earlier. Thus
the order in which we reduce our table is important. In our example, the set of tables
for our second double separation would have larger total size than the tables for our
first double separation.

We now prove that the blankets 3, and f,, obtained by the above procedure give
us a double separation of f. The proof that 3, gives us a single separation is similar
and so 1t 1s omitted.

Theorem 5.5. The table reduction method results in a double separation of the orig-
wnal function f.

Proof. Let b be a minterm relevant to f. Then Y exemplifies a block B; in the
blanket 3y and bY exemplifies a block B} in the blanket fy. We know that B;N B} # 0,
as the row that contains b is in the intersection. Further, by definition, we have
B; A B} = B; N B;. In our final table obtained using the procedure, there is an entry
corresponding to the value h(gy(bY), g2(b")). This entry is the greatest lower bound
of some output vectors, one of which is the entry (¢,7) in the block compatibility
table. Since that entry is simply f(b), we get f(b) 2 h(g1(bY), g2(b")) as required.

6. Decomposition of Multi-Valued Functions

We now extend the method in the previous section to decomposition of multi-
valued functions. In this section, unlike in previous sections, the set E has more than
two elements. The following is an example of a set function, where E = {0,1,2}. As
usual, for clarity, we drop {} from the entries.

In the following, we shall state the multi-valued version of Theorem 3.3 and then
work through a double decomposition of f using the table method.

Theorem 6.1. Let f(z) be a set function specified by a set F' of set vectors, and let
(U, V) be a pair of subsets of X satisfying U UV = X. For every pair of blankets (3,

13



Table 12: Set Function f.

Row T Ty T3 T4 Ts Y1 Y
1 1 0,1 0 0 0,1 1 0
2 1,2 1 0 1,2 2 0 1,2
3 0,1 0 0 0,1 0 1,2 0
4 2 0,2 1,2 2 2 0,1 2
5 0,1 0 0,2 1 1 2 1,2
6 0 0 0,1 0 2 1 1
7 0,1,2 1 0,2 0 2 0 0
8 0 2 0 0 2 1 2

and B, satisfying the conditions stated below, there is a double separation (g1,g2,h)
of f such that 3,, corresponds to g1 with respect to U, and [3,, corresponds to g, with
respect to V.

o Bu < By, and
o By < B,,, and

L /691*/392 S /BY-

The proof of this theorem is similar to the proof of the corresponding theorem
in [2] and is omitted.

Consider the set function f specified by Table 12. Let U = {z;, s, 23} and
V = {3, 24,25}, then

Bi By By By Bs B B; By By

Puv=1{3,5,6; 6; 5; 7; 8;1,3,5;1,2,7; 4;2,7},

B By, By By By By B By By
Bv=41,3; 1;6,7,8;, 3; 5; 2; 6; 4; T},

and
00 01 02 10 11 12 20 21,22

Note that the tuples on top of each block of By are the tuples that exemplify that
block. We omit such tuples from Gy and fy; instead, we show the labels to be used
in subsequent tables.

Just as before, we first construct the block multiplication table with rows labeled
B; and columns labeled B;, with entries B; A B;. This is shown in Table 13.

We then replace the entries by corresponding outputs to get the row compatibility
table shown in Table 14.
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Table 13: Block Multiplication Table.

By By, By By, By By B; By By

By | 3 — 6 3 5 - - - -

B|- - - - - - 6 - -

B3| - - - - 5 - - - =

By| - - 17 - - - - =17

Bsy| - - 8 —-— - - - - -

Bs|1,3 1 — 3 5 - - - -

B, 1 1 7T - - 2 = = =

Bs| - - - - - - - 4 -

By| - -7 - - 2 - - -

Table 14: Row Compatibility Table.
B B, B B, By Bg By Bg By
ooy - 0D meMoy @y - - - -
- - - - - W - -
- - - - {2}{1,2} - - - -
- - {0}{o} - - - - - {0}{0}

- -y - - - - - -
{1} {oy {10} - {1,2K{0} {2}{1,2} - - - -
{13{o}  {1}{o} {o}{0} - - {o}{1,2} - - -
- - - - - - - {0,142} -
- - {0}{o} - - {o}{1,2} - - -
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Two rows in the row compatibility table are considered to be compatible if the
glb of the corresponding entries exist. Using the simple algorithm described earlier to
merge blocks, we get

Bp; = {B1, Bs, Bs, Bs, Bs; By, By, Bo; Bs}.
The blanket on F' corresponding to g, is

1 2

0
B, =1{1,3,4,5,6; 1,2,7; 8}.

We construct the column compatibility table by merging the rows appearing in
the same block of 8p;. The result is shown in Table 15.

Table 15: Column Compatibility Table.

Bi By By B, Bs Bg By Bg By

do | {1H{0} {1}{0} {1}{1} {1,2}{0} {2}{1,2} - {11} {o0,1}{2} -
gl {1{0o} {1}{0} }Oﬁ(ﬁ - - {o1,2} - - {0}{0}
2 - - 112 — — — B

As before, we partition the columns into compatible blocks. The result of using
our simple brute force algorithm is as follows:

This corresponds to
00 02 10

01
To get functions g;, g» and h, we use similar methods to the one used in the
previous section. The tables for these functions are shown in Tables 16, 17 and 18,

respectively.
Consider the following blankets:

By ={1,3,5,6; 1,2,7; 4,8},

By, =1{1,3,4;6,7,8; 2,5}

We can check that these blankets satisfy the conditions of Theorem 6.1. As we can
see both blankets have only three blocks. Thus by using these blankets, both g; and
g2 would have one output and A would have only two inputs. This new decomposition
would be an improvement over our current one. This shows that two blankets 3,
and By, even if they are of the same size, may lead to two blankets 3y, and 3, with
different sizes.

16



ing g:.
Matrix defin

le 16:

Tab

zZ1
T3
T2

i

ing gs.
Matrix defin

le 17:

Tab

zZ3

Z9
Te
Ts5

Ty
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Table 18: Matrix defining h.

fr  fo
1 0

[N
=

N
Y

N
w

DN = = -0 OO O O
OO OO = OO O
N =IO O N -=O

o

—

[\

7. Conclusions

From Theorem 3.4, we see that all separation results achievable by the double-
separation method are achievable with repeated application of the single-separation
method. The latter method is more flexible as we are free to choose the sets U and
V for the second separation and perhaps get a better result.
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