Testing for Input Stuck-at Faults in
Content-Addressable Memories®

Piotr R. Sidorowicz Janusz A. Brzozowski

Department of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1

Canada

Abstract

Results pertaining to testing for input stuck-at faults in a n-word by
I-bit static CMOS content-addressable memory (CAM) array are pre-
sented. First, a formal approach to modeling CAM cells is developed.
The basis of this approach is the mathematical framework proposed
by Brzozowski and Jurgensen for testing and diagnosis of sequential
machines. Next, an input stuck-at fault model for a CAM is defined
and a test of length 7n + 21 4+ 5 with 100% fault coverage with respect
to this fault model is constructed. This test also detects all the usual
cell stuck-at and transition faults. Some design-for-testability (DFT)
modifications facilitating a further reduction of this test’s length are
also proposed. Finally, two other CAM tests are verified with respect
to our fault model.

Keywords. CMOS, content-addressable, design for testability, fault
modeling, stuck-at faults, testing.

1 Introduction

Content-addressable memories are word-oriented storage devices that allow
instantaneous searches of the memory content for a given key word. This
type of memory plays a fundamental role in caches, table-lookaside buffers,

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant No. OGP0000871. (Report issued April 17th, 1998)

Testing for Input Stuck-at Faults in CAMs 2

ATM switches, and other ASICs where searching is a critical operation.
In this report we investigate the testability properties of the CAM based
on the cell shown in Figure 1(a). This CAM is commonly used in the
telecommunications industry [1, 8, 12].

Testing is intrinsic to VLSI circuit production. The great complexity of
modern ICs requires formal mathematical tools to design useful tests. Ex-
isting CAM testing schemes lack a common formalism for qualitative com-
parisons. A formal approach to modeling CAMs is presented in this report;
the basis of this approach is the mathematical framework of Brzozowski and
Jirgensen [2]. This framework has been successfully utilized for modeling
faults in RAMs (See [3, 6, 7], for examples).

The focus of this report is the testing of CAM cells for faults in the input
stuck-at fault model. This fault model consists of any stuck-at fault which
affects input lines of the CAM cell.

The remainder of this report is organized as follows: A detailed model
of the CAM cell’s behavior is presented in Section 2. Section 3 describes the
derivation of a more abstract formal model, suitable for high-level analysis.
The fault model is presented in Section 4, where a test for a single cell CAM
is given. In Section 5, 6 and 7 the test derived for a single cell is extended
to n-word by 1-bit, 1-word by I-bit and n-word by [-bit CAMs, respectively.
Design-for-testability modifications facilitating further reductions of the test
length without affecting fault coverage are proposed in Section 8. Verifica-
tion of other CAM tests is presented in Sections 9. Section 10 contains some
concluding remarks.

2 Low-Level CAM Model

The circuit of the cell shown in Figure 1(a) can be divided on the basis of its
functionality into a storage section and a comparison section. The storage
section consists of two cross-coupled CMOS inverters, differential bit lines
(bit/bit) used for reading and writing data into a column of cells, and a word
select line (WL) that enables these operations in a row of cells. In a quiescent
state WL is driven low, the bit/bit lines are driven high and the cell stores
either 0 or 1. During a ‘write 1’ or a ‘write 0’ operation, the bit/bit lines
are driven to a true/complementary representation of the desired bit value.
Raising and then lowering WL stores the bit in the cell. Changes of the cell’s
state, when writing a 1 to a cell containing a 0, for example, are a result of
the dominant influence of stronger pull-down transistors. (Weaker pull-up
transistors maintain quiescent states of the cell.) The ‘write X’ operation

Testing for Input Stuck-at Faults in CAMs 3

cbl bit bit cbl

_ wordselect (WL) v

—aoT|
=l

W

Y

m ™

>

maich line (ML) —|£77
(a) (b

Figure 1: (a) Static CAM cell with dedicated compare lines, (b) its model.

o>

— 0O]> -—

can be implemented in two ways. One implementation requires both of the
bit/bit lines to be driven high; proper margining of the transistors assures
the preservation of the cell’s state. The other implementation is exactly like
a ‘read’ operation described below, except that any output is disregarded.
We have chosen to analyze the former implementation, and draw conclusions
on the latter by studying the ‘read’ operation itself.

A ‘read’ operation is performed by isolating both bit/bit lines, and then
raising WL, thus causing one of the bit/bit lines to discharge. The resultant
voltage differential between the bit/bit lines is detected by sense amplifiers
that re-create the content of the accessed word.

The comparison section consists of the bottom three transistors of the
cell’s circuit, the differential compare bit lines (cbl/cbl) for performing match-
ing operations, and the match line (ML). In a quiescent state cbl/cbl are
driven low and ML is driven high. The ‘compare’ operation is similar to the
‘read’ operation. First, ML is isolated. Next, cbl/cbl are driven according
to the desired search key. If a mismatch occurs, the bottom-most transistor
will be forced to conduct, thus discharging ML. In the case of a ‘compare X’
operation, both of cbl/cbl remain low, resulting in an unconditional match.
Altogether, seven operations can be performed on a CAM cell: within the
storage section - ‘write 0°, ‘write 1’, ‘write X’ and ‘read’, and within the
comparison section - ‘compare 0’, ‘compare 1’ and ‘compare X’.

In order to model input stuck-at faults, we have to understand how they
affect the internal operation of the cell. Since no clock signal is supplied
to individual cells, a single CAM cell can be viewed as an asynchronous

Testing for Input Stuck-at Faults in CAMs 4

sequential circuit, whose behavior can be modeled by the finite state machine
of Figure 1(b). Since bit/bit lines and ML are used for both input and output
in the circuit, they are represented by separate variables in the model. For
brevity we use b, b, w, etc. for bit/bit, WL, etc. Now, b, b and m are inputs

and 3, b, and 7 are outputs. Although WL and cbl/cbl are not usually meant
to provide any output, monitoring the state of these lines, if possible, might
improve the CAM’s testability. For this reason, we generalize our model to
include these lines; w, ¢ and ¢ for input, and @, ¢ and ¢ for output.

The total state of the cell is defined by the values present on the input
and output lines of the cell, and by its internal state s. It is represented by
the 13-tuple:

Cr = (w,b,b,¢c,¢c,m, s, w,b,b,7¢ c,m).

However, it turns out that in the correct cell, as well as in the presence of
input stuck-at faults, the output values are identical to those of the inputs;
hence, we omit them for simplicity. The “reduced” total state is symbolically
represented by

C =wbbcem-s,

where the input variables have been separated by spaces to amplify their
functional separation and the symbol - has been inserted to separate the
input variables from the internal state.

The domain of each variable in state C is the set Y = {0,1,0,1,I}. The
values 0 and 1 represent lines driven to the logic values 0 and 1 respectively,
while 0 and 1 denote lines that were first discharged and then isolated (floated
low) or precharged and then isolated (floated high). Symbol I stands for an
intermediate logic value, which is caused in a CMOS circuit when both pull-
up and pull-down transistors simultaneously conduct. The CAM cell has
two possible initial states: C =011001-0and C =011001-1.

The behavior of a cell is represented by sequences of events that take
place during the seven operations. Table 1 lists events that occur during
these operations. By events we mean changes in the value of the total state
C'. The occurrences of these events are ordered from top to bottom. Note
that, for every operation, the top and bottom entries in each column are
initial states.

Example: ‘Write 0’ operation.
Initial state of the cell: 0 11 00 1 -1. First, b is lowered: 0 01 00 1- 1.
Then w is raised: 1 01 00 1 -1. As a result, the state s changes:
101 00 0-0. Next, w is lowered: 0 01 00 0 - 0. Finally, both b and b
are raised: 0 11 00 0- 0.

Testing for Input Stuck-at Faults in CAMs

Table 1: Read, write and compare operations in a fault-free CAM cell.

Read operations
(2=0) G=1)
Description w bb ce m-s | w bbcem-s
initial state 0110010 | 0110011
foat bit/bit 011001.0 | 0110011
raise WL 1110010 | 111001-1
bit or bit dischargest 1010010 | 1100011
read bit/bit & lower WL 001001-0 | 0100011
raise bit/bit 0110010 | 0110011
Write operations (s = 0)

W-0 W-1 W-x
Description wbbcegm-s | wbbcém-s | wbbcéms
initial state 0110010 | 0110010 | 0110010
set bit/bit 0010010 | 0100010 | 0110010
raise WL 1010010 | 1100010 | 1110010
new state 1010010 | 1100011 | 1110010
lower WL 0010010 | 0100011 | 0110010
raise bit/bit 011001-0 | 0110011 | 0110010

Write operations (s = 1)

W-0 W-1 W-x
Description wbbcégm-s | wbbcém-s | wbbcéms
initial state 011001-1 | 0110011 | 0110011
set bit/bit 0010011 | 0100011 | 0110011
raise WL 1010011 | 1100011 | 1110011
new state 1010010 | 1100011 | 1110011
lower WL 001001-0 | 0100011 | 0110011
raise bit/bit 011001-0 | 0110011 | 0110011

Compare operations (s = 0)

C-0 C-1 C-x
Description wbbcEm-s | wbbcem-s | wbbcems
initial state 0110010 | 0110010 | 0110010
float ML 0110010 | 0110010 | 0110010
set cbl/cbl 0110110 | 0111010 | 011001-0
ML discharges 0110110 | 0111000 | 0110010
read ML & ground cbl/cbl | 011001-0 | 011000-0 | 011001-0
raise ML 0110010 | 0110010 | 0110010

Compare operations (s = 1)

C-0 C-1 C-x
Description wbbcegm-s | wbbcém-s | wbbcéms
initial state 0110011 | 0110011 | 0110011
float ML 0110011 | 0110011 | 0110011
set cbl/cbl 0110111 | 0111011 | 0110011
ML discharges 0110101 | 0111011 | 0110011
read ML & ground cbl/cbl | 011000-1 | 011001-1 | 0110011
raise ML 0110011 | 0110011 | 0110011

iThere is a connection from bit to V44 when s = 0 and from bit to Vg when s = 1. But this
connection is through a weak p-transistor and an n-transistor, and drivers for the bit/bit are not
used. Hence, we still represent these cases as floating values.

Testing for Input Stuck-at Faults in CAMs 6

It should be noted that the analyses presented in Table 1, are done un-
der the assumption that operations occur one at a time. However, ‘compare’
operations utilize a separate set of differential lines and thus some concur-
rent executions are feasible. For example, a ‘compare’ operation can be
performed in parallel with a ‘read’ operation, but it cannot be performed
until a ‘write’ operation is completed. Modeling concurrent operations is an
open research topic.

We recognize that at this level of detail, where any input can be con-
trolled and any output observed, testing is a trivial process. It would suffice
to compare the state of each line with its expected value; any disagreement
would signify a presence of a fault. Unfortunately, this detail of monitoring
is not feasible in any real circuit and, thus, a more abstract CAM cell model
is necessary.

3 High-Level CAM Model

Most testing algorithms utilize sequences of ‘read’, ‘write’ and ‘compare’
operations as input, and observe the resulting output. Accordingly, we in-
troduce a high-level model of a CAM cell. This model is derived from the
low-level model of Section 2.

We represent the behavior of a fault-free CAM cell as a finite-state ma-
chine (FSM), which is shown in Figure 2(a). The input z of this FSM com-

Co/lL cx/1, ¢ /0 Col0 /1, ¢ /1

Q W
e e o -0 &

Wo
Wo W W Wy

(a) (b)

Figure 2: (a) Simplified behavioral model (b) Behavior of a fault-free cell.

prises all seven operations of a CAM cell, and the output y comprises the
responses to these operations without regard to the output’s origin, i.e., the
bit/bit lines or ML. State s represents the value stored by the cell. Formally,
a fault-free CAM cell is a Mealy automaton

M — (Q7X7 Y7 57A)7

Testing for Input Stuck-at Faults in CAMs 7

where Q = {0,1} is the set of states, X = {r, wg, w1, wy, ¢y, c1,¢x} is the
set of input symbols, Y = {0, 1, I, $} is the set of output symbols, where $ is
a formal symbol denoting lack of output during ‘write’ operations, and the
transition function § and the output function A are defined by

0, if z = wy,
d(g,z)=1¢ 1, ifz=w,

g, otherwise

and

q, ife=r,

1, ifz =¢, and ¢ = p,
Ag,z)=< 0, ifz=c, and ¢ # p,

1, if 2z = ¢y,

$, otherwise.

This automaton is depicted in Figure 2(b), where the symbol $ has been
omitted for clarity.

Example: For ‘write 1’ in state 0, §(0,w;) = 1 and A(0,w;) = $. For
‘compare 1’ in state 0, §(0,¢;) = 0 and A(0,¢;) = 0.

4 Fault Model

A low-level behavioral analysis has been performed for every potential input
stuck-at fault under a single-fault assumption; these analyses are presented
in Appendix A. Subsequently, high-level models for each of these faults
have been developed. The resulting faulty CAM cells are presented in Fig-
ures 3 and 4, where incorrect operations and outputs are in boldface.

Example: ‘Write 0’ operation in the presence of the b-sa-0 fault. Initial
state: 0 10 00 1-1. First, b is lowered: 0 00 00 1-1. Then w is raised:
1 00 00 1-1. Since both b and b are low, s becomes indeterminate:
10000 1-I. Next, w is lowered: 0 00 00 1 -I. Finally, both b and b
are raised: 0 10 00 1- 0|1, and eventually s becomes either 0 or 1.

From the low-level model we construct an automaton. In this example,
only operations wg, wy and r are incorrect, all others are correct; hence
we get Figure 3(c).

As the example indicates, the b-sa-0 and b-sa-0 faults increase the state
set) by the “indeterminate” state I. State I can be interpreted in two

Testing for Input Stuck-at Faults in CAMs 8

Co/L, cx/l c /0 Col0 cx/1 ¢ /1

Wo, W, 1/0 O /L cx/L ¢ /0

110 Ck?:iXD (>

o oo
$

Co/0 cx/1, ¢ /1

Wol r/o
W, Coll, cx/1, ¢/l Wo Wy
(a) (b)
Co/L cx/L ¢ /0 cO/O cx/1, ¢ /1

O g W, r/1 /L /L ¢ /0 /0, cx/L, ¢ /1

/@3 0) 0)

r/1

Wo

SRS R ©

W, Co/l, cx/1, ¢ /1
(c)

co/l, /L, ¢ 0

)
r.Cg

Wor Wy, Wy

Wo, W, Wy W, Wy
(d)

/0 /L, ¢ /1

v

Wo, W, Wy

(e)

Figure 3: Faulty behaviors of a CAM cell: (a) b-sa-0, (b) b-sa-1, (c) b-sa-0,
(d) b-sa-1, (e) w-sa-0.

ways. From an “asynchronous” point of view it represents a temporary,
metastable state, where the cell holds some indeterminate logic value. This
interpretation is important due to the possibility of simultaneous operations
in this type of CAM. From the “synchronous” perspective it represents the
loss of information regarding the current state of the cell due to the non-
deterministic resolution of a metastable state. In either case, state I is not
considered as an initial state.

For the two implementations of the ‘write X’ operation, described in
Section 2, the reader may verify that in the presence of faults both ‘read’
and ‘write X’ operations affect the cell in a similar manner (when the output
is ignored). The high-level model presented here is, therefore, appropriate
regardless of how the ‘write X’ operation has been implemented.

Testing for Input Stuck-at Faults in CAMs

G/l /1, /1 Co/0 cx/1, ¢ /1

[0
@ W

(a)

r/0

G/l cx/L ¢ /0 Coll, ex/1, ¢ /1

Co/0, cx/0, ¢, /0 Co/0, cx/1, ¢ /1

[0
@ W

(b)

r/0

Co/L, cx/1, ¢ /0 Co/0, cx/Q ¢,/0

Q w
W@ e

(c) (d)

co/l e/l gl collL, ex/l, ¢ /1

w O w O
/\ /\
@0 o SN 0 Sl O
Vé%x " gf|,2\’x Vévgx "o gf|,2\’x

Figure 4: Faulty behaviors of a CAM cell: (a) c-sa-0, (b) c-sa-1, (c) ¢-sa-0,
(d) ¢-sa-1, (e) m-sa-0, (f) m-sa-1.

The comparison of each of the faulty machines to the fault-free CAM
cell has led to the derivation of simple tests for each fault. Table 2 lists all
the shortest tests that end in either a ‘compare’ or a ‘read’ operation. These
tests have been generated by the OBSERVER! program for all input stuck-at
faults except the w-sa-1 fault. We refer to the faults that are detectable in a
single cell as independently testable. The use of wy and ‘compare’ operations
rather than ‘read’ operations for the purpose of propagating faulty responses
is dictated by the unreliable output of the ‘read’ operation for four faults
related to the storage section of the cell: b-sa-1, b-sa-1, w-sa-0 and w-sa-1.
In the last example a wowy forces the faulty cell to state 1, whereas a good
cell would be in state 0. A wg alone is not enough to force the faulty cell to
the erroneous state.

YOBSERVER is a program for diagnosing and testing sequential machines. It is based
on the theory developed in [2] and was written at the University of Waterloo by C.-J. Shi;
additional features were later added by P. Kwiatkowski and P. R. Sidorowicz.

Testing for Input Stuck-at Faults in CAMs 10

The w-sa-1 fault automaton, is identical to that of the fault-free CAM
cell; therefore, no test exists for a single cell. Consequently, this is the only
input stuck-at fault that is not independently testable. However, this fault
is detectable in conjunction with other words, and will be considered later.

Partly with the aid of the OBSERVER program, we have found tests

Tisaf = WoW1 Wy C1CoWWx CoC1,

and

1
Tisaf = W1WoW « CoC1W1 W« C1Co

of length 9, that detect all independently testable input stuck-at faults. It
has been shown that, for every independently testable fault, there exists
a test that is included in T4y (T;,,p- The details are presented in Ap-
pendix B. Moreover, these two tests are irredundant, since the removal of
any of the input symbols in the test will result in some fault becoming unde-
tectable. Tests for individual faults that are included in Tisaf are indicated
in Table 2 in boldface. With the exception of tests for c-sa-0 and ¢-sa-0
faults, these tests have been chosen because their response in a fault-free
cell is a match, and in a faulty cell, a mismatch. Thus, the CAM’s property,
that a match line discharges in the presence of even a single bit mismatch,
can be efficiently utilized.

A cell stuck-at-0 (stuck-at-1) fault is similar to a cell with w-sa-0, when
that cell is started in state 0 (state 1). This fault is detected by wic; (woco).
Also, a cell unable to undergo the 1 — 0 (0 — 1) transition is similar to
b-sa-1 (b-sa-1). This fault is detected by wjwoco (wowcy).

5 Extension to n-word by 1-bit CAM

We now consider an n-bit CAM where each word consists of a single cell.
At this point, some assumptions must be made about the functionality of
the peripheral circuitry in a fault-free CAM.

1. The address decoder can raise at most a single write line. Conse-
quently, only one word can be written to or read from at any given
time.

2. Match detection is done through a hit line (high when at least one
match is detected), a multi-hit line (high when multiple matches are
detected), and an encoder that returns the address k of the highest
priority match line?.

2By convention, address 1 has the highest, and address n the lowest priority.

Testing for Input Stuck-at Faults in CAMs

Table 2: Summary of input stuck-at faults.

‘ Fault “ﬂkstSequence Faulty Response | Fault-Free Response

b-sa-0

W1iWxC1
W1Wx Co

wir

1

b-sa-1

Wi1WoCo
w1Woecl1

wLwor

b-sa-0

WoWx Co
WoWx C1

woT

b-sa-1

Wowicy
Wwowico

Wow1 T

[=T ol e R e Bl I e B e N N)

w-sa-0

W1C1WoCo
WoCoWwicCy
wi1cCoWoCly

WoC1Wwi1Co

—_
—_

~
<

[e)
[e)

n

w-sa-1

see Section 5.1

c-sa-0

WocC1

c-sa-1

WoCo

WoCx

c-sa-0

WiCo

c-sa-1

WwicC1

Wi1Cx

m-sa-0

€1Co
CoC1

Cx

m-sa-1

€1Co

CoC1

10or01

n

11

Testing for Input Stuck-at Faults in CAMs 12

We model the correct behavior of an n-word by 1-bit word CAM as a
finite state automaton
M=(Q,X,Y,4N),
where Q = {0,1}", X = (U~ 4;) UC with 4; = {r}, w},wt,w’}, C =
{co,c1,¢x}, Y = {0,1,8,k}, where 0 < k < n, and the transition functioné
and the output function A are defined by

1 n : — an?
yeun0,..0,¢"), ifz=w},
) .

q q
§ 1 7 n _ (1 n if 2 = w'
((q7""q,"'7q)’m)_ (q""’.,"'7q)’ 1 :B_w17
(¢*,..., ¢, ...,q"), otherwise,

and
¢, ifz=r
min(k), if z = c, and ¢* = p,

)‘((qlv 'aqia- 7qn);$): 0, ifﬂlch and -3k :qk =p,
1, ifz=cy,
$, otherwise.

The inputs r*, w}, w?, wi denote the ‘read’, ‘write 0’, ‘write 1’ and ‘write x’
operations on word %, respectively. The inputs ¢g, c1, cx denote compare
operations with the contents of every cell in the CAM. The output $ is
merely a formal symbol denoting lack of output during ‘write’ operations.

5.1 Testing the w-sa-1 fault

As indicated earlier, w-sa-1 is not independently testable and affects all the
cells along the faulty WL. However, this fault is detectable in the following
manner:

Assume w'-sa-1. Since word i is always accessed, a ‘read’ or ‘write’ op-
eration may be applied to two words simultaneously. Note that if the two
accessed words contain opposing values, ‘read’ operations will yield unreli-
able results. A possible test is:

_ il n n_ . u
Ty-sa-1= (wp)*wy crwgwier,

where 1 < 4 < n and 1 < u < n. The symbol ()* denotes n operations.
These can be done in order either from n to 1 or from 1 to n; hence the J.
Initially, Os are written into every word. If word u is the faulty word, u # n,
then w7 will write 1s to both u and n. The first ¢; will generate a multiple
hit and the returned value of k will indicate the address of the faulty word,

Testing for Input Stuck-at Faults in CAMs 13

as the faulty word has a higher priority than word n. If word n is the faulty
word, then word w is not, so w{ restores the initial state of the CAM, wY
will write 1 to words u and n, and the second ¢; will generate a multiple hit.
Here the value of k is ignored, as the location of the faulty word is known
to be n. Thus, the occurrence of a multiple hit indicates the w-sa-1 fault.
The reader may note that the w-sa-1 fault is similar to a coupling fault.

5.2 Tz'saf for n-word by 1-bit CAM

The test Tisaf is modified into a march test

Tn-isaf = (wé)i(wzlwlx C1)nilco(wéwi CO)n“Cl

for the n-word by 1-bit CAM. The symbol ()"#! denotes the direction of
the march elements: from n to 1. This direction is dictated by the priority
scheme used in the match line encoder and always follows from the lowest
to the highest priority. First, all the words are initialized to 0. Then, in
the fault-free CAM, for each wliwiX in a march element, the subsequent ¢;
input should produce a value of k: k& = . Multiple hits during this test
are expected; thus the status of the multi-hit line must be ignored. The
mismatching cg is performed once per march element, on a CAM uniformly
filled with 1s, and should produce a value k£ = 0, indicating a global mis-
match. Any hit, i.e., any k& > 0, indicates a fault. The rest of the test
sequence is similar, with 0 and 1 interchanged.

5.3 Proposed test for n-word by 1-bit word CAM

To achieve 100% fault coverage under the input stuck-at fault model, we
combine Tn-isaf with T, ¢, 7:

Tn-saf= (wh)H(wiw e1)™ eo (whwl o)™ o1 (wi crwiwiies).

We remind the reader that we are using the single-fault assumption.
Note that the initial (w})? of the T, 4, ; test has been dropped, as the
CAM is expected to hold only 0s at the end of Tn-isaf‘ Note also that wy is
not needed in the last part of the test, because the faults b-sa-0 and b-sa-0
which require wy would have been detected by the first part of the test.

The Tn-saf test has of 5n + 3 ‘write’ operations and 2n + 4 ‘compare’
operations and has an overall length of 7Tn + 7.

Testing for Input Stuck-at Faults in CAMs 14

6 Extension to a 1-word by /-bit CAM

We now consider a single row of cells comprising a CAM word. Recall, that
a match line is a ‘wired AND’ of match responses of all cells in a word.

Let B = {0,1} and 7 = {0, 1, x}. To handle masking of selected bits we
define a function ¢ : 7 x B — B, where

000=0, 001=0,
lo0=1, lo1=1,
X o0 =0, X ol=1.

In this manner, for z € 7 and y € B, & ¢ y returns the value of y if z = X,
or the value of z otherwise.

We extend this function to I-bit words as a bit-by-bit operation. Let
V=B and P=T andlett € P and t' € V. Then t = (t,...,%) and
t'=(t,...,t)), wheret; € T, t; € Bfor 1 <i <1, and

tot' =ty ot],... .t 0t

The behavior of a 1-word by I-bit CAM can be specified by the automa-
ton

M=(Q,X,Y,6,]A)

where Q =V, X = {r} U (U,ep wp) U (Upep ¢), and Y = VU {0, 1, $}. For
g € V, z € X the transition function é and the output function A are defined
by
B g, fe=rorz=c, peP,
5(q,$)_{p0q7 ifq):wp,pep,
and
q, ife=r,
1, ifz =c, forsomep € P and pogq =g,
0, ifz=c, forsomep e P and pogq # g,
$, otherwise.

Mg z) =

Faults affecting the bit/bit lines of each of the I cells are detectable by
performing the respective tests on all cells in parallel since these faults man-
ifest themselves with a mismatch. Detection of the w-sa-0, m-sa-0 and the
m-sa-1 faults is also done in parallel, as these faults affect the entire word
the same manner. Detection of each of the ¢/-sa-0 and & -sa-0 faults, where
1 < j <1, is more complex. Their respective tests have a mismatch as a
fault-free response and a match as a faulty one; thus, they cannot be applied
to all the cells in parallel, as no faulty response would ever be propagated

Testing for Input Stuck-at Faults in CAMs 15

along the ML. To propagate a faulty response along the ML, a mismatch
must be attempted on each cell j individually, while simultaneously applying
a ¢y to the remaining I — 1 cells. Let x7~10x‘~7 be the I-bit word with 0 in
position j and x in every other position. The word x7='1x!~7 is similarly
defined. The symbol [c,j-14y1-;j] represents a sequence of I ‘compare’ op-
erations to words of the form x7~10x!~7 where j varies from 1 to [or from
[to 1. The extension of the Tisaf test to the 1-word by I-bit CAM takes the
form

— . 14
Tl—isaf = wO...Owl...lwx...xCl...l[cxj—l()xl—]]
>
’wo...o’wx...xCo...o[CXj—llxl—j])

where wq,_ o denotes the writing of an all-0 word, etc.
The T ;5. test consists of 5 ‘write’ operations and 2/ + 2 ‘compare’
operations and has an overall length of 21 4 7.

7 Extension to n-word by [-bit CAM

The combination of both extensions described above yields the specification
for the behavior of a n-word by I-bit CAM.

Let ¥V, P and ¢ be defined as before. The correct behavior of a n-word
by I-bit CAM is denoted by the automaton

M — (Q’X’ Y’ 5’A)’

where Q = V", X = (UiL; 4;)UC with 4; = {ri}p(Upe? w;), C = Upep >
Y =VUuU{0,...,n,8}. For1 <i<mnandforq¢ €V,z e X,pec P, the
transition function § and the output function A are defined by

q"), ifz=r"orz=nc,

8((d4 .., d\ .. d%), &) = (a'- . |
) 4)) (ql,,,.,poql,.”,qn), ifﬂ):wl,
p

qi, if:e:ri,lgign

min(k), ifz=cp,and po @ =q
0, fz=c,and ~Jdk:pogq
$, otherwise.

. k
}‘((qla"waa"'aqn)am): l::_qk
-)

The following test provides 100% fault coverage under the input stuck-at
fault model:

Tsaf = (wé...o)i(wi..lwi...x cl...l)nu[C><J'—1O><’—J']H

Testing for Input Stuck-at Faults in CAMs 16

(Wi oW xc0..0)™ eyimtyyi-i]®
(wi je1.1wg Wi j€1.1)-

This test consists of two parts, analogous to those of the T, . rtest. The
first part consists of an initialization which sets all words to 0. . .0, followed
by two march elements. For a fault-free CAM, each of the march elements
should result in n hits with k¥ = 7. Each march element should be followed by
[mismatches at £ = 0. Any other response indicates a fault. In the second
part (last line), multiple hits are monitored, since they indicate faults.

The Tsa test consists of 5bn+3 ‘write’ operations and 2n+2l+2 ‘compare’
operations. Therefore, the length of our test for all input stuck-at faults in

an n-word by [-bit CAM is 7n + 2l 4 5.

8 DFT Suggestions

The length of our test for input stuck-at faults is linear in the number of
bits in the CAM. This test length can be substantially shortened by certain
DFT hardware enhancements.

\ Bit SenselLatch \
al-c-and-C
DS (dg-z-o;
9]
Address % CAM Array %
5 5
< g
inl I
‘ Data-In Latch ‘
w-high al-hit
(w-sa-1) (m-sa-0)

Figure 5: DFT suggestions.

The enhancements depicted as logic gates in Figure 5 target faults that
contribute most to the length of the test; these enhancements are described
below.

e An all-hit output, indicating that a match has not been detected on
every word in the CAM simultaneously. Note that this output directly

Testing for Input Stuck-at Faults in CAMs 17

detects the m-sa-0 fault. Given this additional output, test T’ ¢ can

be modified to
;af = (wz)...o)i(wll...1wz><...><)nucl...l[CXj—lOXz_j]H

(wé Owi...x)nuco...o[cxj—l 1xl—j]<_>

n n U
(wi jc1.awg WY jc1.1),

the length of which is reduced to 5n + 21+ 7.

e An all-c-and-¢ output, indicating that all ¢ and all ¢ inputs are high.
This output would eliminate elaborate testing for the c-sa-0 and ¢-sa-0
faults. As a result, T;af can be further reduced to

nll

saf = (wh_ o) (wi_ywl)™er a(wh owh)™ eo oer

n n U
(wi je1.1wg Wi j€1.1),

which has length 5n + 8.

o A w-high output, indicating that at least one write line is active. This
output can directly detect any w-sa-1 fault, as well as w-sa-0 faults
during ‘write’ operations; hence, the suffix of the test T;/af’

n n U
(wl...lcl...le...Owl...lcl...l)7

can be omitted. If, however, the w-high output is unavailable, the w-
sa-1 fault can still be detected by reducing the above-mentioned suffix
to ([T)l = 0...0]cy..1), where [6) = 0...0] represents setting all the
bit lines to ground — like the first step in the ‘write 0’ operation —
without actually raising any of the WLs. This will result in the word
affected by the w-sa-1 fault having 1...1 written into it. A match
resulting from a subsequent ¢;_; operation indicates a presence of this
fault.

e The ability to perform a bulk-write operation to all words in the mem-

ory simultaneously, in conjunction with the all-hit output, will result
in a test length that is independent of the number words in the CAM.
For example, the length of T;af would be reduced to 2] + 12, and the

"
length of Tsaf to 13.

Although these enhancements are meant to operate in test mode, it is pos-
sible that some of them may adversely affect the mission mode operation of
the CAM; therefore, a judicious compromise between testability and perfor-
mance may be necessary.

Testing for Input Stuck-at Faults in CAMs 18

9 Verification of Other CAM Tests

Several algorithms for testing CAMs have been reported [4, 8, 9]. These
algorithms are applicable to CAM designs which incorporate an explicit
word addressing scheme of the type found in conventional RAMs. They
are not applicable to designs with implicit entry addressing, like that of
McAuley and Cotton [10].

9.1 Giles and Hunter (1985)

One of the first tests for CAMs, of length 8n+ 21, was presented by Giles and
Hunter [4]; we refer to this test as Tygsg7- The following eight steps of this

test are quoted from [4]; we have re-labeled the array dimension variables
to be consistent with our notation:

1. Proceeding from top to bottom of the array, write the entry’s position number
into each entry.

2. Then from the bottom up, compare for each number and observe each entry
hit. At this point, the CAM is in a known initial state.

Repeat steps 1 and 2 but with the entry numbers complemented.
From bottom up, write the entry number into each entry.

From top down, compare for each entry number and observe each entry hit.

Fill the entire CAM array with 0’s.

N O Ot R W

Do [compares walking a 1 through a field of 0’s. Each of these [compares
should miss.

8. Repeat steps 6 and 7 except fill with 1’s, and compare walking a 0 through
a field of 1’s.

The authors claim that this test detects all single stuck-at-faults in the
CAM array found in the Motorola MC68851 Paged Memory Management
Unit, but give no proof that this indeed is the case. Since the transistor
circuit for this CAM cell was not provided, we were unable to verify this
claim. We have, however, applied this test to the CAM circuit of Figure 1(a)
to determine this test’s fault coverage with respect to our input stuck-at fault
model, under the single-fault assumption.

We represent this test using our notation. Since we index the words in
our CAM from 1 to n, (the former being the top, and the latter the bottom
of the CAM array) the value of k£ written into each word ¢ is equal to ¢ — 1;
k denotes the 1’s complement of k.

Testing for Input Stuck-at Faults in CAMs 19

)1¢n c)nTl

g
N
Z
=
3

)nTl

g

(

(ck
()"
$
$

g
o

Ig —~~~ Ig N N
H O e e e
N’

3
EY
=
o
7

.0)
1)

[coi-1101-i]""
[

.1)7[C1i-1011- ,]

The T'gsp test is limited to CAM arrays where n < 2! in order to ensure
that a distinct bit pattern is written into every word of the array. In arrays
where n > 2!, duplicate bit patterns would be unavoidable. These dupli-
cates would cause multiple hits, thus precluding the verification of individual
match lines, and also precluding the detection of the w-sa-1 faults.

The analysis of the T'gf7 test in our automaton model of input stuck-
at faults shows that, in the cell of Figure 1(a), Tqg g does not reliably
detect the b-sa-0 and b-sa-0 faults. This is due to a metastable state caused
by ‘write 1’ and ‘write 0’ operations in the presence of these two faults
respectively; thus any subsequent output is not reliable. The details are
presented in Appendix C.

There are 21 b-sa-0 and b-sa-0 faults in an n-word by I-bit CAM. Since
there are 4n+ 8 possible single faults in our fault model, T’ g7 detects only
(1- #—Hl) -100% of faults in the input stuck-at fault model. For example
[8], for n = 32, [= 29 only 83.89% of faults are detected.

We next modified the T ;g7 test to remedy the problem of the b-sa-0
and b-sa-0 faults. We have shown that, in the presence of these two faults,
a ‘write x’ operation forces the faulty cell to a determinate but erroneous
state that is easily detectable. Therefore, by judiciously inserting ‘write x’
operations into Ty, we can achieve 100% fault coverage with respect to
our fault model under the assumption that n < 2!. This augmented test,
presented below, has length 11n + 2.

Teany =

Testing for Input Stuck-at Faults in CAMs 20

9.2 Mazumder et al. (1987)

Mazumder et al. [9] propose a test that can detect pattern-sensitive faults
as well as stuck-at faults. In general, faults are considered to be ‘pattern-
sensitive’ if a faulty behavior of a cell is manifested only when the remaining
cells hold specific values. In their analysis, the authors make assumptions
about the effect of certain operations on the state of the accessed memory
cells and define a restricted pattern-sensitive fault model (PSF):

e Write operations which cause a cell to change state are called ‘transition
write’ operations.

e Only write operations may be pattern-sensitive.
e ‘Read’ operations do not alter a cell’s state.

e A base cell together with four additional cells immediately to the ‘north’,
‘south’, ‘east’ and ‘west’ of it constitute a ‘von Neumann’ neighborhood.

e A PSF occurs when a transition write operation to the base cell fails due to
a fixed pattern in the neighborhood.

This test requires the incorporation of special circuitry in the match
sensing periphery that allows simultaneous comparisons of every fifth match
line; an enhancement that is not available in most CAMs. We have also
demonstrated that ‘read’ operations alter a cell’s state in the presence of
some faults, thus violating the initial assumptions for this test. Thus, this
test is not universally applicable to static CAMs and will not be investigated
further.

9.3 Kornachuk et al. (1994)

The test presented by Kornachuk et al. [8] is a built-in self test (BIST) for
embedded CAMs that use the cell of Figure 1(a). We refer to this test as
To_gMm- It is an adaptation of the SMARCH test, of length 24nl, originally
developed for testing embedded SRAMs [11]. SMARCH has been shown to
detect stuck-at and coupling faults as well as stuck-open faults in the address
decoder circuitry. In fact, SMARCH is a serialized version of the ‘March C-’
test [5]. The serialization was necessary in order to utilize built-in scan-path
facilities of the CAM circuit.

The SMARCH test consists of the following six steps (march elements)
as presented in [11]. We have re-labeled the array dimension variables to
be consistent with our notation and use our symbols. The reader should be
familiar with [8, 11].

Testing for Input Stuck-at Faults in CAMs 21

1. FOR address 1 = 1 ton

(1) V=119 (riuf) =10

{this step initializes the CAM with 0’s }
2. FOR address 1 = 1 ton

0110 () =21
{ read 0’s and replace with 1’s}
3. FOR address : = 1 to n

() U= (s 5=
{ read 1’s and replace with 0’s}
4. FOR address 1 = n to 1

(i) U= (s 0=
{ read 0’s and replace with 1’s}
5. FOR address : =n to 1

() O30 (=21
{ read 1’s and replace with 0’s}
6. FOR address : =n to 1

(rhub) U= (vt =10
only € NIIst read 1S 1mportant. rinal state 1S selectable.
ly the first read is i tant. Final state is selectabl

The subscript ‘=’ indicates an arbitrary binary value used during the

initialization step of the test. (Note that these ‘read’ and ‘write’ operations
are applied to individual cells.)

The adaptation of the SMARCH test to the CAM circuit was possible due
to the dual-port nature of this particular CAM design, where one set of dif-
ferential lines (bit/bit) is used only for the ‘read’ and ‘write’ operations, and
a second set of differential lines (cbl/cbl) is dedicated solely to the ‘compare’
operations. During T gjs, ‘compare’ operations occur in the same clock
cycle as the ‘read’ and ‘write’ operations and thus are perceived to be exe-
cuted in parallel. To be precise, ‘compare’ operations are indeed performed
concurrently with the ‘read’ operations, but they occur immediately after
the completion of the ‘write’ operations; thus the newly stored value is the
subject of the comparison. Since these operations are performed in parallel,
the length of T'x g7 remains 24nl, although twice as many operations are
actually executed.

T ¢z presented in [8] can be represented using our notation. In this
case, ‘read’ and ‘write’ and ‘compare’ operations are performed on entire
words. The subscripts of ‘write’ and ‘compare’ operations represent the

Testing for Input Stuck-at Faults in CAMs 22

decimal equivalent of an I-bit binary number. The subscripts of ‘read’ op-
erations represent the expected output of the operation. In this case, the
subscript ‘—’ indicates an arbitrary decimal value used during the initializa-
tion step of the test. The concurrent ‘compare’ operations are listed directly
below the ‘read’ and ‘write’ operations.

- . .10 o Ln
,,,’L w’L ,r’l.w’l.
T _ W 0Wo
C-SM c_C_] . [CoCo
L 7= -1
- . . . 1
LN Wil oj 0 Pt \Wiot o
(21—20+1)) P(21-2i) (21-1) 7 (21-1)
L Cet-2) Cl-2i) | L C@-1C@et-n)
ro i 0 Py 1ln
[G- C@i-n) Jime L 0%
. . . . 1
Plot_oi+1)) Winl_oj ° Pl Wiot !
(2!—20U+1)) T(2!-24) (2!—1) 7 (2!-1)
L CGat-2i) Cai-2i) | L G- C@i-y
T i 0 Py ntl
T (26+1) —1) W(2i-1)] l ToWo]
[G- C@i-y Jime L 0%
) . nfl
ToWo ToWo
[€0€0 |,y L €0%

Since multiple matches can be expected, a priority encoder is used to
produce the highest address where a match was obtained. Table 3 illustrates
the execution of the second march element for the CAM BIST for a 3 x 3
sample CAM,; after the first march element, all cells are 0.

The analysis of the T(_gf test in our automaton model of input stuck-
at faults shows that To_sM detects all the faults in the model. The details
are presented in Appendix D.

10 Concluding Remarks

Using a static CMOS CAM as an example, we have developed a fault model-
ing and test derivation methodology. The modeling steps involved include:
circuit analysis, asynchronous behavior analysis, and a finite automaton

Testing for Input Stuck-at Faults in CAMs

Table 3: CAM BIST March Element [8].

23

CAM Serial
SMARCH Inputs Core Contents Data | Compare Results
Operation | D0 D1 D2 | Word 0 | Word 1 | Word 2 | Out | DOD1D2 to Core
Word 0 Addressed
Read 100 000 000 000 0 Miss
Write 100 100 000 000 0 Hit Word 0
Read 110 100 000 000 0 Miss
Write 110 110 000 000 0 Hit Word 0
Read 111 110 000 000 0 Miss
Write 111 111 000 000 0 Hit Word 0
Read 111 111 000 000 1 Hit Word 0
Write 111 111 000 000 1 Hit Word 0
Word 1 Addressed
Read 100 111 000 000 0 Miss
Write 100 111 100 000 0 Hit Word 1
Read 110 111 100 000 0 Miss
Write 110 111 110 000 0 Hit Word 1
Read 111 111 110 000 0 Hit Word 0
Write 111 111 111 000 0 Hit Word 0,1
Read 111 111 111 000 1 Hit Word 0,1
Write 111 111 111 000 1 Hit Word 0,1
Word 2 Addressed
Read 100 111 111 000 0 Miss
Write 100 111 111 100 0 Hit Word 2
Read 110 111 111 100 0 Miss
Write 110 111 111 110 0 Hit Word 2
Read 111 111 111 110 0 Hit Word 0,1
Write 111 111 111 111 0 Hit Word 0,1,2
Read 111 111 111 111 1 Hit Word 0,1,2
Write 111 111 111 111 1 Hit Word 0,1,2

Testing for Input Stuck-at Faults in CAMs 24

representation of the fault-free and faulty circuits. An input stuck-at fault
model has been defined for an n-word by [-bit static CMOS CAM. A test
with 100% fault coverage with respect to this fault model has been con-
structed. This test also detects all the usual cell stuck-at and transition
faults. It has also been demonstrated that ‘read’ operations are inappropri-
ate sources of output for testing static CMOS CAMs, and that the ‘compare’
is a more reliable choice. In addition, some DFT enhancements that reduce
the test length have been suggested.

The effect of other types of faults on the operation of this CAM cell is
the topic of continuing research.

Acknowledgments

We thank Ken Schultz of Nortel Corporation’s Memory Development Team,
for providing extensive information regarding various defects and their ef-
fects on the behavior of a CAM. We also express our gratitude to Robert Berks,
Tracey Bogue, Edward Dengler, Radu Negulescu and all members of the
Maveric Group for their insightful comments and suggestions.

References

[1] H. Bergh, J. Eneland, and L-E. Lundstrém. A fault-tolerant associa-
tive memory with high-speed operation. IEEFE Journal of Solid-State
Circuits, 25(4):912-919, August 1990.

[2] J. A. Brzozowski and H. Jiirgensen. A model for sequential machine
testing and diagnosis. Journal of Electronic Testing: Theory and Ap-
plications, 3:219-234, 1992.

[3] B. F. Cockburn and J. A. Brzozowski. Near-optimal tests for classes of
write-triggered coupling faults in RAMs. Journal of Electronic Testing:
Theory and Applications, 3:251-264, 1992.

[4] G. Giles and C. Hunter. A methodology for testing content-addressable
memories. In Proc. International Test Conference, pages 471-474. IEEE
Computer Society Press, 1985.

[65] A. J. van de Goor. Testing Semiconductor Memories. John Wiley &
Sons, 1991.

Testing for Input Stuck-at Faults in CAMs 25

[6]

A.J. van de Goor and B. Smit. The automatic generation of march
tests. In Records of the IEEE International Workshop on Memory Tech-
nology, Design and Testing, pages 86—91, San Jose, CA, August 1994.
IEEE Computer Society Press.

A.J. van de Goor and B. Smit. Automating the verification of memory
tests. In IEEE VLSI Test Symposium, pages 312-318, Cherry Hill, NJ,
April 1994. IEEE Computer Society Press.

S. Kornachuk, L. McNaughton, R. Gibbins, and B. Nadeau-Dostie. A
high speed embedded cache design with non-intrusive BIST. In Records
of the IEEFE International Workshop on Memory Technology, Design
and Testing, pages 40-45. IEEE, August 1994.

P. Mazumder, J. H. Patel, and W. K. Fucks. Design and algorithms
for parallel testing of random access and content addressable memories.
In Proc. ACM/IEEE Design Automation Conference, pages 688—694.
IEEE Computer Society Press, 1987.

A.J. McAuley and C. J. Cotton. A self-testing reconfigurable CAM.
IEEFE Journal of Solid-State Circuits, 26(3):257-261, March 1991.

B. Nadeau-Dostie, A. Silburt, and V.K. Agarval. Serial interfacing
for embedded-memory testing. IEFEE Design & Test of Computers,
7(2):56-64, April 1990.

K. J. Schultz. CAM-Based Circuits for ATM Switching Networks. PhD
thesis, University of Toronto, 1996.

Testing for Input Stuck-at Faults in CAMs 26

A CAM Fault Analysis

In this section operations observably affected by input stuck-at faults will
be discussed. The behaviors of operations not listed here may differ slightly
from their fault-free counterparts in the low-level model; however in the
high-level model these differences cannot be observed. Abbreviated fault
names appear in parentheses.

bit-sa-0 (b-sa-0) fault. This fault does not affect operations where the
bit lines are not used, or those where the bit line is normally driven to
0. This includes all ‘compare’ operations, the ‘write 0’ operation and
the ‘read’ operation in state 0. Table 4 describes the faulty behaviors
in the presence of this fault. Deviations from the fault-free behavior
are indicated by bold type.

Table 4: CAM cell operation with bit-sa-0 fault.

Read operations
=1
Description w bb cé m-3
initial state 0010011
foat bit/bit 0010011
raise WL 1010011
bit or bit discharges 1010010
read bit/bit & lower WL | 0 01 00 1-0
raise bit/bit 0010010

Write operations (s = 0)
W-1

Description w bb cé m-3
initial state 0010010
set bit/bit 000 00 1-0
raise WL 1 0000 1-0
new state 1000011
lower WL 000001-I
raise bit/bit 0 01 00 1-0[1

Write operations (s = 1)
W-1 W-x
Description w bb cé m-3 w bb ¢ m-s
initial state 0010011 0010011
set bit/% 0000011 0010011
raise WL 100001-1 1010011
new state 1000011 1010010
lower WL 0000011 0010010
raise bit/bit 00100101 | 0010010

Testing for Input Stuck-at Faults in CAMs 27

During the ‘read’ operation in state 1, the grounded bit line forces
the s node to ground, causing the cell’s state to change before the bit
line has a chance to discharge. As a result, a 0 is always detected
by the sense amplifiers. During the ‘write 1’ operation, when WL is
asserted, both bit/bit lines are 0 causing both pull-up transistors to
conduct which, in turn, results in a metastable state. Once WL is
de-asserted one of the pull-down transistors dominates over the other
and the cell eventually reverts back to one of the two quiescent states.
Since the state of the cell cannot be predicted after a ‘write 1°, this
operation must be followed immediately by a ‘write x’ or a ‘read’
operation which will force the cell into a determinate but faulty state.
The ‘write X’ operation changes the cell’s state to 0, thus resembling
the behavior of a ‘write 0’ operation.

Analogous behavior is exhibited in the presence of the bit-sa-0 fault.

bit-sa-1 (b-sa-1) fault. The reader can verify that every operation except
for ‘read’ and ‘write 0’ is not affected by this fault. This is because
either bit is always 1 by definition, as in the case of ‘write 1’, ‘write
x’, and all ‘compare’ operations, or as in the case of ‘write 0’ in state
0, when the fact that bit is stuck-at 1 does not alter the cell’s state.
Table 5 describes the faulty behaviors of a CAM cell affected by the
bit-sa-1 fault.

Table 5: CAM cell operation with bit-sa-1 fault.

Read operation

=0
Description w bb ¢ m-s
initial state 0110010
foat bit/bit 0110010
raise WL 1110010
bit or bit discharges 1110010

read bit/bit & lower WL | 011 00 1-0
raise bit/bit 01100 1-0

Write O operation

=1
Description w bb cé m-s
initial state 0110011
set bit/bit 0110011
raise WL 1110011
new state 1110011
lower WL 0110011
raise bit/bit 0110011

Testing for Input Stuck-at Faults in CAMs 28

A ‘read’ operation in state 0 will be misinterpreted by the sense cir-
cuitry because both bit lines remain high; therefore, a ‘read’ is not a
reliable source of output. (Since the ‘compare’ operations are not af-
fected by this fault, they are more suitable for fault detection.) When
the cell is in state 1, a ‘write 0’ operation fails, because the state
transition does not occur.

Analogous behavior is exhibited in the presence of the bit-sa-1 fault.

WL-sa-0 (w-sa-0) fault. Since this fault affects WL, it alters the behav-
ior of operations for which this line is used, i.e. ‘read’ and ‘write’
operations. ‘Compare’ operations are not affected by this fault, and
function correctly. Table 6 describes the faulty behaviors of a CAM
cell in the presence of a WL-sa-0 fault. From this table, we see that a

Table 6: CAM cell operation with WL-sa-0 fault.

Read operations

(=0 =1

Description w bb cé m-s | w bb cé m-3
initial state 0110010 0110011
foat bit/bit 0110010 | 0110011
raise WL 0ii001.0 | 0110011
bit or bit discharges 0jioo10 | 0iioo11
read bit/bit & lower WL | 0110010 | 0110011
raise bit/ﬁ 0110010 0110011

Write operations (s = 0)

W-1

Description w bb cé m-s
initial state 011 001-0
set bit/bit 01000 1-0
raise WL 010 00 1-0
new state 010001-0
lower WL 0100010
raise bit/bit 011 00 1-0

Write operations (s = 1)

W-0
Description w bb ¢ m-s
initial state 0110011
set bit/bit 001 00 1-1
raise WL 0010011
new state 0010011
lower WL 0010011
raise bit/bit 0110011

‘read’ operation will fail, since neither bit line is allowed to discharge.

Testing for Input Stuck-at Faults in CAMs 29

Lack of differential voltages on the bit lines yields an unpredictable
response of the sense circuitry. Therefore, a ‘read’ operation is not a
reliable source of output. Since WL is never asserted, ‘write 1’ from
state 0 and ‘write 0’ from state 1 are also affected, as they do not re-
sult in a transition to the desired state. ‘Write 0’ from state 0, ‘write
1’ from state 1 and ‘write X’ operations, are not affected, as they
effectively “do nothing”.

WL-sa-1 (w-sa-1) fault. As the reader can verify using Table 1, in the
presence of this fault, although there are minor differences in the low-
level model, all operations are correct in the high-level model of a
single cell.

cbl-sa-0 (c-sa-0) fault. Again, this fault has no effect on ‘read’ and ‘write’
operations. As indicated in Table 7, this fault affects only the ‘com-

Table 7: CAM cell operation with cbl-sa-0 fault.

Compare operations (s = 0)
C-1
Description w bb ¢ m-s
initial state 0110010
float ML 0110010
set cbl/cbl 0110010
ML discharges 01100 1.0
read ML & ground cbl/cbl | 0 11 00 1.0
raise ML 0110010

pare 1’ operation when the cell is in state 0. The fault prevents ML
from discharging resulting in an erroneous match.

Analogous behavior is exhibited in the presence of the cbl-sa-0 fault.

cbl-sa-1 (c-sa-1) fault. This fault has no effect on ‘read’ and ‘write’ op-
erations. As indicated in Table 8, this fault only affects ‘compare 0’
and ‘compare X’ operations when the cell is in state 0. In this state the
initial value of the ML is I, which is the result of a conducting match
line discharge transistor when ML is driven high by the peripheral cir-
cuitry. In effect, this fault may also manifest itself by an increased
quiescent power supply current. Once ML is floated, it is immediately
discharged by the faulty line.

Analogous behavior is exhibited in the presence of the cbl-sa-1 fault.

Testing for Input Stuck-at Faults in CAMs 30

Table 8: CAM cell operation with cbl-sa-1 fault.

Compare operations (s = 0)
C-0 C-x
Description w bb ¢ m-s | w bb cE m-s
initial state 011 101I.0 011101I.0
float ML 011 10 0.0 0111000
set cbl/m 01111 0.0 0111000
ML discharges 0111100 | 0111000
read ML & ground cbl/cbl | 0111000 | 011 10 0-0
raise ML 011101I.0 011 101I.0

ML-sa-0 (m-sa-0) fault. Table 9 describes the faulty behaviors of a CAM
cell in the presence of a ML-sa-0 fault. This fault does not affect

Table 9: CAM cell operation with ML-sa-0 fault.

Compare operations (s = 0)

C-0 C-x
Description w bb c¢ m-s | w bb cé m-3
initial state 011 00 0-0 011 00 0-0
float ML 011 00 0-0 011 00 0-0
set cbl/@ 01101 0.0 011 00 0-0
ML discharges 01101 0-0 011 00 0-0
read ML & ground cbl/cbl | 0 1100 0-0 | 0 11 00 0-0
raise ML 011 00 0-0 011 00 0-0

Compare operations (s = 1)

C-1 C-x
Description w bb ¢ m-s | w bb cE m-s
initial state 0110001 01100 0-1
float ML 0110001 01100 0-1
set cbl/m 0111001 01100 0-1
ML discharges 011100-1 011 00 0-1
read ML & ground cbl/cbl | 0 11 00 0-1 0110001
raise ML 0110001 01100 0-1

the behavior of the cell during ‘read’ and ‘write’ operations. It does,
however, affect ‘compare’ operations by returning an unconditional
mismatch.

ML-sa-1 (m-sa-1) fault. Table 10 describes the faulty behaviors of a
CAM cell in the presence of a ML-sa-1 fault. As expected, this fault
has no bearing on the ‘read’ and ‘write’ operations, but it does affect
‘compare’ operations by returning an unconditional match.

Testing for Input Stuck-at Faults in CAMs 31

Table 10: CAM cell operation with ML-sa-1 fault.

Compare operations (s = 0)

C-1
Description w bb cé m-s
initial state 0110010
float ML 0110010
set cbl/cbl 0111010
ML discharges 0111010
read ML & ground cbl/cbl | 0 11 00 1.0
raise ML 0110010

Compare operations (s = 1)

C-0
Description w bb ¢ m-s
initial state 0110011
float ML 0110011
set cbl/cbl 0110111
ML discharges 0110111
read ML & ground cbl/cbl | 0 11 00 1-1
raise ML 0110011

B Verification of the Ti.saf Test

In this section the Tisaf test for a single cell is verified. In Table 11 the
fault-free response is provided for comparison with the faulty responses of all
independently testable faults. The deviations from the fault-free response
are indicated in boldface. Tests for individual faults that are included in
Tiscltf are also given. o ‘ ‘

n all cases except w-sa-0 the initial state of the cell is not important
because, after the execution of the first three write operations wow;wy, the
initial state is forgotten.

Tests for some of the faults (ex. b-sa-1: wiwpcy) appear separated by
other operations. These interleaved operations are combinations of wy, cg
and ¢; which do not change the intended state of the cell and, therefore, do
not invalidate these tests.

The T

isaf
of the operations that make up T’ f will prevent some fault from being

1sa
detected.

test is irredundant, which means that the removal of any one

Example: If the first wg is dropped, then b-sa-1 fault is no longer de-
tectable.

Testing for Input Stuck-at Faults in CAMs

Table 11: Verification of the Tisaf test.

Tisaf Test Sequence for Faults
Fault WOWLWx C1CoWOW x CoC1 within Tisaf
fault-freecell | — — — 10 — — 10
b-sa-0 — — — 01 — — 10 | wowiWxe€1CoWoWyCoC1
b-sa-1 — — — 10 — — 01 | wogwWiwxC1CoWoWyxCoC1
b-sa-0 — — — 10 — — 01 | wowiwxC1CoWoW x CoC1
b-sa-1 — — — 01 — — 10 | wowiwyx€1CoWoWsxCoCL
w-sa-0 (s=0) — — — 01 — — 10 | wowiwx€1CoWoWyx CoC1
w-sa-0 (s=1) - — — 10 — — 01 "
c-sa-0 - — — 10 — — 11 WoUWLW % C1COWQW x CoC1
c-sa-1 - — — 10 — — 00 WoWLW % C1COWQW x COC1
c-sa-0 — — — 11 — — 10 | wowiwyC1CoWoWyxCoCy
c-sa-1 — — — 00 — — 10 | wowiwycC1CoWoWyxCoCy
m-sa-0 — — — 00 — — 00 | wowiwycycCoWoWyCoCL
m-sa-1 — — — 11 — — 11 | wowiwycCyCoWoWyx CoCL

C Analysis of T espr

32

For the sake of simplicity we assume an n-word by I-bit CAM where n = 2!,
In this manner, the address of word (row index) is used as the unique bit-
pattern. Whenever necessary, we comment on CAMs where n < 2!, as the
unique bit-pattern constraint is also satisfied in this case.

We can represent T'(yg; 7 from the perspective of an arbitrary cell located
at coordinates (7, 7) in the array where 1 <4 <nand 0 < j <I—1. Variable
p is a row index (and, coincidently, the decimal representation of the word

content).

ij
Tegg =

4,3
Y

w

%,J j
i
() div2)
wo” [€7p,,]p=0
e
wy” € ppp,1lp=o0

where I[] is a » x [identity matrix.
We have shown in Section 4 that ‘compare’ operations, even when faulty,
do not affect the state of the cell, so interleaving ‘write’ operations with arbi-

12 ((i-1) div i) mod 2) (€1

. [CJ .]
i—1)div2J) mod 2 L~ (p div 29) mod 21p=0

0

J
i—1)div 27) mod 2 [c(p div 29) mod Z]P:n—l

0
—((p div2i) mod 2)]p=n—1

n—1

Testing for Input Stuck-at Faults in CAMs 33

trary number of ‘compare’ operations will not influence any state transitions
resulting from ‘write’ operations. Each cell (¢, j), therefore, is subject to one
of the following two sequences of write operations:

WoW1WoWow1 or wWiLWow1Wwows .

In the case of n = 2!, each of the initial three ‘write’ operations are followed
by n/2 ‘compare 0’ operations and n/2 ‘compare 1’ operations. The order
of ‘compare’ operations depends on the column j in which the given cell is
located, but can be treated as arbitrary. If n < 2!, in the worst case, each
of the initial three ‘write’ operations will only be followed by a sequence
of “matching” ‘compare’ operations, i.e., a wy”’ would precede a sequence
of ¢)’s or a wy” would precede a sequence of ¢]’s. The last two ‘write’
operations are always followed by [— 1 “mismatching” ‘compare’ operations,
where a wy precedes a ¢; and vice-versa, and a single “matching” ‘compare’
operation, for all possible values of n and I. The order of occurrence of the
single “matching” ‘compare’ operation depends on the column j in which
the given cell is located.

C.1 Proofs of fault detection

The proofs presented below indicate that Té;jé’j o when applied to an arbi-

trary single CAM cell, will not detect any of the b7-sa-0 and b7-sa-0 faults,
where 0 < j <[— 1. We, therefore, conclude that these faults will not be
detected by T';ygs gy when it is applied to an n-word by I-bit CAM. All other
input stuck-at faults are detected.

b-sa-0 According to Table 2, a test that detects this fault is wjwyc;. The
sequence wy”wy’ does not occur in T ¥ . Since after the initial w}’
the cell finds itself in an indeterminate state, none of the subsequent

‘compare’ operations can result in a dependable output.

The reader can verify that a similar reasoning holds for the symmetric
fault b-sa-0.

b-sa-1 According to Table 2, a test that detects this fault is wywgco. The
sequence w;”wy’ occurs during the execution of (1) and (2), or (2)
and (3) in TZG’]@ g~ Each wy” is guaranteed to be followed by at least

J
one ¢j.

A similar reasoning holds for the symmetric fault b-sa-1.

Testing for Input Stuck-at Faults in CAMs 34

w-sa-0 According to Table 2, a test that detects this fault is w;ciwoco.
The sequence wy’wg’ occurs during the execution of (2) and (3), or

(3) and (4) in T&’J@H. Each wi’ﬂ is guaranteed to be followed by at

least one cl; each w’ is guaranteed to be followed by at least one c.

w-sa-1 Assume that there are no duplicate words in the array. Then there
exists a column j where two distinct cells (¢, j) and (¢, 7) will have
complementary values written to them. Suppose that cell (¢,7) is
written to first. If row ¢’ is faulty, then during the ‘write’ operation
to cell (7, 7), the cell (¢, 7) will be overwritten to a complementary
and erroneous value. The erroneous value will be detected by subse-
quent ‘compare’ operations. This reasoning is symmetric, as ‘write’
operations in T ¢ are performed in both descending and ascending
order.

c-sa-0 According to Table 2, a test that detects this fault is woc;. This
test occurs in (4) of T'4g gy, as the wg’ is guaranteed to be followed

by a c{.
A similar reasoning holds for the symmetric fault ¢-sa-0.

c-sa-1 According to Table 2, a test that detects this fault is wocg. A wé’j
occurs in either (1) or (2) of T\ygp- Each wy” is guaranteed to be

followed by at least one cf.

A similar reasoning holds for the symmetric fault ¢-sa-1.

m-sa-0 and m-sa-1 Assume that there are no duplicate words in the ar-
ray. According to Table 2, tests that detect these faults are cicq or
coc1- Either cjcg or cye] occurs in (4) or (5) of Ty after wy? or
wy”, respectively. In the presence of a duplicate word, however, any
m-sa-0 fault would be masked by a match on the fault-free duplicate.

D Analysis of To_gpr

In the following analysis we assume an n-word by I-bit CAM. We can repre-
sent T gy from the perspective of an arbitrary cell located at coordinates
(¢,7) in the array where 1 < ¢ < m and 0 < j <! — 1. The subscripts
of ‘write’ and ‘compare’ operations represent single bit values, where ‘-’
stands for an arbitrary value used during initialization. The subscripts of

‘read’ operations denote the expected output of the operation.

Testing for Input Stuck-at Faults in CAMs 35

r ;1 (I=1)=4) 1 i1T i 70+
ig, ag 1 J 4,4, 4.4 FIRN
Ti’j _ r ’. w0 r ’. wQ 7'07 'wQ (6)
C-SM e c cé e}
r 1 (I=1)=5) 1 i1T i 70+
i ig 1 J FIRN PPN
ro’ w0 ro’ wl rl’ 'wl (7)
e el el el
L € ¢ | | &6 | [& ¢]
r i 1(=1)=34) 1 iTT i 7+
rlawlﬂ rlawqﬂ Toﬂwqj ®
& c ¢! c ¢!
L ¢1 6] Ll %%][% % |
r 7 (I=1)=4) r i1T i 7+
ioag 1 J g, 4 g, 4
ro’ w0 7"07.w1, 7’17.'“’1, (9)
e e e
L € ¢ | I &6 | [& ¢]
r 7 ((I=1)=5) r i1T i 7+
. ag 1 J J, 5 J 6
rl’ w1 rl’.wQ ro’.wQ (10)
& c ¢l c ¢!
L ©1& | Ll %% 1L % % |
r 7 (I=1)=4) r i1T i 7+
i ig 1 J J 5 J 6
ro’ w0 ro’.wq ro’.wQ (11)
el c ¢! c ¢!
0% | Ll %% 11 % % |

D.1 Proofs of fault detection

The proofs presented below indicate that Ti’j_ u when applied to an arbi-
trary single CAM cell will detect all faults in the input stuck-at fault model.
We, therefore, conclude that these faults will also be detected by T gps
when it is applied to a n-word by [-bit CAM.

b-sa-0 According to Table 2, a test that detects this fault is w;r. The

wiir7 sequence occurs in (7) of TC’ g - Although after the initial

wl’J the cell’s state is indeterminate, the subsequent ri’j forces the cell
to a determinate, erroneous state 0 and returns this erroneous value.

The reader can verify that a similar reasoning holds for the symmetric
fault b-sa-0.

b-sa-1 According to Table 2, a test that detects this fault is wywgr. In the
presence of this fault, read’ operations do not affect the cell’s state.

The sequence wl’JwO’] occurs during the execution of (7) and (8) in

C’— s Bach wg” is guaranteed to be followed by at least one ry”.

A similar reasoning holds for the symmetric fault b-sa-1.

w-sa-0 In the presence of this fault ‘read’ operations do not provide a
reliable output; they do not, however, affect the cell’s state. According

Testing for Input Stuck-at Faults in CAMs 36

to Table 2, a test that detects this fault is wic;wocg. The sequence
w;”wg” occurs during the execution of (7) and (8) in T4 g, Although
c{cg is performed “in parallel”, these ‘compare’ operations actually
occur after the ‘write’ is completed, and thus they are applied to the

newly written value; hence the required test occurs in TZC’?_ S

w-sa-1 Since the array is “filled” serially, there exists a column j where
two distinct cells (¢/,7) and (", 7) will hold complementary values at
some point during each march element. Suppose that i’ < ¢’ and
a march element is being executed in the ascending order. The cell
(¢,7) is written to first. If row ¢’ is faulty, then during the ‘write’
operation to cell (¢, j), the cell (¢, 7) will be overwritten prematurely
to a complementary and erroneous value. Since all march elements
begin with a ‘read’ operation, the value obtained from cell (i”,) during
that initial ‘read’ will differ from the expected value. This reasoning
is symmetric, as march elements in T\ gps are performed in both
descending and ascending order.

c-sa-0 According to Table 2, a test that detects this fault is woc;. This
test occurs during the execution of (6) and (7) iI.I.TZCe—SM’ before th(?
first wy’. During (6) the cell is subject to a wg’. During (7), a c]
occurs concurrently with the r;’, that precedes the first w]”. Since in
the presence of this fault ‘read’ operations do not affect the state of

1 1 .7
the cell, the required test occurs in TC— S

A similar reasoning holds for the symmetric fault ¢-sa-0.

c-sa-1 According to Table 2, a test that detects this fgmlt is wqcg. A.u.)é’j
is certain to occur in (6), (8), (10) and (11) of T’C’?_SM_ Each w’’ is

guaranteed to be followed by one cg during the same clock cycle.

A similar reasoning holds for the symmetric fault ¢-sa-1.

m-sa-0 and m-sa-1 Since the array is “filled” serially, each of the rows in
the array holds a unique value some point during the execution of a
march element. A comparison with an identical key-word that results
a single match is performed (See Table 3). According to Table 2, tests
that detect these faults are c;co or coe; while the state of the cell re-
mains unchanged. The sequence ¢{c] occurs during the execution of
(6) and (7), and during the execution of (8) and (9)1n Tg—SM concur-

rently with wé’j ré’j that immediately precedes a w]”’. Symmetrically,

Testing for Input Stuck-at Faults in CAMs 37

the sequence c{cj occurs during the execution of (7) and (8) and dur-
ing the execution of (9) and (10) in T';_gps concurrently with wi”ry”

that immediately precedes a wg”.

