Adaptive Protocols for Negotiating
Non-Deterministic Choice over Synchronous Channels

Erik D. Demaine
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

eddemaine@uwaterloo.ca

Abstract

In this paper, we propose several deadlock-free protocols for implement-
ing the generalized alternative construct, where a process non-deterministically
chooses between sending or receiving among various synchronous channels. We
consider general many-to-many channels and examine in detail the special case
of fan (many-to-one and one-to-many) channels, which are common and can
be implemented much more efficiently. We propose a protocol that achieves an
optimal number of message cycles per user-level communication, significantly
improving on previous results. We propose several other “less aggressive” pro-
tocols, which may be more suitable for some applications and networks, and
demonstrate how to adaptively switch between them and modify protocol pa-
rameters. Finally, we show how to maintain dynamic membership of channels,
while avoiding race conditions that would prevent garbage collection of pro-
cesses.

1 Introduction

CSP (Communicating Sequential Processes) [13, 14] initiated the area of distributed-
memory concurrent programming, which is now a large area of research. Many of the
ideas have been incorporated into a variety of concurrent-programming languages,
including Concurrent ML [18], Facile [12], Fortran-M [8], and occam [21]. Common
to these languages are two main concepts, synchronous communication over channels
and non-deterministic choice, that provide a powerful message-passing abstraction.

Briefly, message passing is provided by basic send and receive primitives. They
are synchronous in that the sender [receiver] waits for a matching receive [send] be-
fore continuing. The destination/source that is passed into the send/receive primi-
tive is specified by a channel. A one-to-one channel is a uni-directional connection
between two processes. Channels effectively correspond to the port abstraction (i.e.,
one of several message queues on a particular process), but are much more convenient

2 Erik D. Demaine

Senders Receivers

QQ\ anne /_i))@

%\Q

Figure 1: A many-to-many channel. Attempting to send on a channel will block
until one of the receivers attempts to receive a message from the channel, and vice
versa. When there are multiple willing senders and/or receivers, the behavior is

non-deterministic, although we draw it as a queue here.

to program with. Many-to-many channels generalize to allow multiple senders and
receivers (Figure 1); any send and receive operations on the same channel “match.”
An important primitive is the non-deterministic choice, originating from sequential
languages proposed by Dijkstra [7], which does one out of a list of sends and receives,
whichever can complete first by having a matching receive/send.

In this paper, we examine protocols for the efficient implementation of general
non-deterministic communication over synchronous channels. This problem is typ-
ically ignored by either disallowing distributed systems (e.g., Concurrent ML [18]
and Facile [12]) or restricting the non-deterministic-choice construct to allow only
receives (e.g., Fortran-M [8] and occam [21]). We clearly do not want to restrict our-
selves to sequential systems, since concurrent programs often have a large amount
of parallelism that should be exploited using a distributed system. (For this reason,
people often use the term “parallel languages” for concurrent languages.)

The so-called “generalized alternative construct,” that is, one that supports both
send and receive operations, is also important. Hoare [13] noted this as an important
feature when he first proposed CSP, because it is useful for describing some appli-
cations (e.g., bounded buffers and interleaved conversations [3]) and removes the
asymmetry between sends and receives. While the generalization is not known to
be required for any applications, it greatly simplifies programming. We believe that
the construct is in fact as general as needed, since it can easily be used to implement
such high-level communication operations as Reppy’s higher-order concurrency [18].

Unfortunately, it is difficult to support send operations in a non-deterministic-
choice construct. Silberschatz [22] and Van de Snepscheut [23] examined cases where
the construct is easy to implement if only certain processes use it. Inefficient imple-
mentations of the general construct include those that use global information (e.g.,
a central coordinator) [19], require an unbounded amount of time [9], or use an
unbounded amount of communication [2, 20]. An overview of these techniques can
be found in [4].

Buckley and Silberschatz [4] were the first to propose a protocol that avoids all
three of the inefficiencies above. Bagrodia [1] later proposed a protocol that uses

Negotiating Non-Deterministic Choice 3

fewer messages. Unfortunately, both protocols are prone to deadlock for cyclic com-
munication patterns [16]. Bornat and Knabe independently discovered deadlock-
free protocols. Bornat [3] implements the generalized alternative construct using a
receive-only construct supporting one-to-one channels. His protocol requires six con-
trol messages per user-level communication, whereas our deadlock-free simple pro-
tocol (Section 2.4) uses only three for one-to-one channels. Knabe’s approach [15] is
more similar to ours in that he uses asynchronous (buffered) messages to implement
the (synchronous) generalized alternative construct for many-to-many channels. His
protocol requires six or seven control messages in the general case, and creates an
extra process for each channel, although he avoids multicasting, which is present in
some of our approaches.

In the development of our protocols, we focused on efficiency, that is, reducing
the number of messages and message cycles. While our deadlock-free simple protocol
(Section 2.4) is similar to Knabe’s approach [15], we improve on it significantly with
the deadlock-free fast protocol (Section 2.6). We also show how to construct a “mega
protocol” that adaptively switches between protocols and adjusts performance pa-
rameters (Section 3). In Section 4, we show how to maintain the membership of a
channel without race conditions. Finally, we conclude in Section 5.

2 Protocols

In this section, we present four protocols to support processes that each attempt
multiple send and receive operations over synchronous uni-directional channels and
complete exactly one operation, whichever is ready first, breaking ties arbitrarily.
Section 2.1 discusses a special class of channels called fan channels, which is what
most of our protocols consider. In Section 2.2, we describe the general framework
that our protocols are based on. Sections 2.3 and 2.4 discuss basic deadlock-prone
and deadlock-free protocols, respectively. Corresponding “fast” protocols are pre-
sented in Sections 2.5 and 2.6. Finally, we demonstrate the interoperability of our
protocols in Section 2.7.

2.1 Fan Channels

While several concurrent languages (e.g., Concurrent ML [18] and Facile [12]) sup-
port many-to-many channels, we will focus on implementing one-to-many and many-
to-one channels, which together constitute what we call fan channels. In prin-
ciple, many-to-many channels can also be implemented using our protocols (see
Sections 2.4 and 2.5), but they will be inefficient, as is any distributed protocol
implementing them. In addition, we feel that fan channels capture the most use-
ful properties of many-to-many channels, and have no trouble restricting ourselves
to them in practice. Finally, many-to-many channels can be implemented using a
many-to-one channel, a one-to-many channel, and a process in between (Figure 2).

4 Erik D. Demaine

)

Extra
process

I
ete

Figure 2: Building a many-to-many channel using fan channels.

As far as we know, we are the only ones to have looked at the intermediate
restriction of fan channels; most restrict their attention to one-to-one channels.
This is unfortunate, since fan channels can be implemented with the same efficiency
(for “less aggressive” protocols such as the one described in Section 2.3). The basic
property that allows an implementation to be more efficient than many-to-many
channels is the notion of a single owner involved in all communications, that is,
the unique sender [receiver| of a one-to-many [many-to-one| channel. We will call
processes on the other end of the channel members. By convention, we represent
one-to-one channels as many-to-one, that is, choose the owner to be the unique
receiver.

2.2 General Framework

All of our protocols can be described as special cases or slight modifications of
a general algorithm called Comm. Comm non-deterministically chooses exactly one
element from a set C of synchronous communications (sends and receives). It negoti-
ates this by sending asynchronous (buffered) messages over a reliable communication
subsystem. Hence, Comm has the ability to send a message to a specified process
or receive a message from an arbitrary process, but has to provide the channel ab-
straction itself. We shall first present an overview of the protocol used by Comm,
and later give a formal description.

Comm uses three kinds of control messages to negotiate communication. The
first, called notify, informs the recipient of willingness to communicate over the
channel. In response, a process may send a request message, which signifies that
it is committed to determining whether the communication will succeed (what we
call “half-committed”). In response to this, a process can send a cancel or another
request message. A cancel message causes the recipient to remove itself from its
half-commitment and forget the corresponding notify. A second request message
implies full commitment, causing user-level communication.

Comm is parameterized by a set Z = Z(C) C C that specifies the process’s
initiative. In other words, it lists each ¢ € C that the process is aggressive on, and
will send initial notify messages about.

Before we describe Comm in detail, let us give some terminology. Each ¢ € C has

Negotiating Non-Deterministic Choice 5

a corresponding channel, denoted channel(c). Each control message m has two fields
(other than its type, notify, request, or cancel). The first, denoted channel(m), is the
channel that m refers to. The second, denoted sender(m), is the name of the process
that sent m. We say that m matches a communication ¢ € C if channel(m) =
channel(c). Finally, we say that m matches another message m’ if channel(m) =
channel(m') and sender(m) = sender(m’).

Then Comm works as follows:

1. Set the level £ of commitment to 0.

2. For each ¢ € 7, send a notify message m with channel(m) = channel(c) to
processes on the other end of channel(c).

3. While ¢ < 1:

(a) If £ = 0 and there is a request message m matching some ¢ € C, send a
request message to sender(m), ¢* < ¢, m* < m, and £ + 1.

(b) If £ = 0 and there is a notify message m matching some ¢ € C, send a
request message to sender(m), ¢* < ¢, m* < m, and £ + %

(c) If £= 1 and there is a request message m matching m*, £ + 1.

(d) Remove any messages m just matched in the steps above from the lists
they were found in.

e) If £ < 1, receive a control message m and process it as follows:
) g p

i. If m is a notify or request message, add it to the list of messages of
that type (such lists are persistent between calls to Comm).

ii. If m is a cancel message, remove the corresponding notify message

from its list. Furthermore, if £ = % and m matches m*, £ « 0.

4. For each ¢ € 7 — {c*}, send a cancel message m with channel(m) = channel(c)
(similar to Step 2).

5. Send a cancel message for ¢* except to sender(m*).

6. Execute ¢* (either send a user-level message or wait for one to arrive).

To simplify the description of Comm, we have omitted details of sequencing. For
each channel z, a process maintains the number of notify messages m it has sent with
channel(m) = 2. This value is appended to each notify message m, channel(m) = z,
and any request message responding to m includes a copy of the value. Hence, Comm
can recognize out-of-date request messages, which it can simply discard because a
cancel message has already been sent and will be considered a reply.

Note that Comm can be called in between arbitrarily long computation blocks
without slowing down other processes, since every notify message sent in a call to

6 Erik D. Demaine

Sender Receiver Sender Receiver

Figure 3: The successful and unsuccessful scenarios in the simple protocol for a
many-to-one channel. HC, C, and DC stand for half-commit, commit, and decom-
mit, respectively.

Comm is later cancelled or requested in the same call to Comm. This means that
any request messages that arrive after that call will effectively be responded to even
though the process is computing.

2.3 Simple Protocol

The simple protocol is described exactly by Comm, where a channel z € 7 if and
only if the process is a member of z, i.e., it is not the owner of z. In this case,
control messages (except cancels) between two processes about a particular channel
are exchanged sequentially (Figure 3). The main advantage of the simple protocol
is that notify messages are only sent to one process (the owner) per channel.

The simple protocol is somewhat slow, requiring three control messages for each
user-level (synchronous) communication. The sender can piggyback the user-level
message onto its request message, resulting in three message cycles per user-level
communication, or 3 MC/UC. For one-to-many channels, this can waste network
resources, since the process is only half-committed when it piggybacks. If we are
not willing to take this risk, we need an extra message cycle to send the user-level
message, resulting in 4 MC/UC. We use the MC/UC measurement because startup
overhead and propagation delay typically dominate message-passing time, especially
for small (e.g., control) messages.

2.4 Deadlock-Free Simple Protocol

The simple protocol described in the previous section is prone to deadlock for cyclic
communication patterns. For example, consider n one-to-one channels connecting
n processes in a circle, and suppose each process non-deterministically either sends
a message to its clockwise neighbor or receives a message from its counter-clockwise
neighbor (Figure 4). Each process will first send a notify message to its clockwise
neighbor (Figure 4(a)), receive a notify message from its counter-clockwise neighbor,

Negotiating Non-Deterministic Choice 7

request

Figure 4: Deadlock scenario for the simple protocol. The notify messages in (a)
cause half-commitment and request messages in (b). The request messages must be
ignored because of the half-commitment.

and send a request message to its counter-clockwise neighbor (Figure 4(b)). At this
point, every process will be half-committed to receiving, and so must ignore the
request message, resulting in deadlock.

One way to make the simple protocol deadlock-free is to prevent deadlock com-
pletely (deadlock prevention). To do this, we must first realize that Comm-based
protocols can be run in the “reverse direction.” The reverse of a protocol corre-
sponds to complementing the set Z. Hence, in the reverse-simple protocol, owners
send a notify message to every member of the channel (unfortunately, this must be
done with a reliable multicast operation). If the owner chooses to communicate on
another channel, it multicasts a cancel message.

We can combine both protocols to achieve a deadlock-free version of the simple
protocol. Basically, a process p uses the simple protocol on processes < p (according
to some total order of processes), and uses the reverse-simple protocol for other
processes. That is, owners notify lesser processes, and members notify the owner
if it is lesser. This can be generalized to many-to-many channels by saying that
processes notify all lesser ones on the other end of the channel. This combination
disallows cycles of notify messages and hence prevents deadlock.

In Section 2.6, we discuss a technique for recovering from deadlock after it is
believed to have occurred. This technique can in fact be used with the simple
protocol, and may be more efficient (depending on the application) since it avoids
multicasting.

2.5 Fast Protocol

In the previous section, we saw how to combine the simple protocol and the reverse-
simple protocol “mutually exclusively,” in that each protocol handles transactions
between a set of process pairs, and these two sets are disjoint. If we allow deadlock,
we can in fact run both protocols simultaneously. In terms of Comm, we simply
choose T =C.

8 Erik D. Demaine

Sender Receiver Sender Receiver

DC

Ignore

Figure b: The successful and unsuccessful scenarios in the fast protocol.

Although this protocol, which we call the fast protocol, has twice as much message
volume in the worst case, only 2 MC/UC are required for the control messages
(Figure 5). This is clearly optimal for synchronous message-passing. If we choose
not to piggyback the message onto the sender’s request message, 3 MC/UC are
needed.

We have described the fast protocol in a way that assumes nothing about the
channel types, so it can in fact be used to implement communication over many-to-
many channels.

2.6 Deadlock-Free Fast Protocol

As with the simple protocol, the fast protocol is subject to deadlock for cyclic
communication patterns. We cannot use the same deadlock-prevention technique,
however, since the reverse of the fast protocol is just the fast protocol itself (that is,
it is symmetric), and hence it makes no sense to combine them. We instead adopt
a deadlock-avoidance scheme, which is based on a timer.

When a certain amount of time passes in which process p receives no control
messages, and p is half-committed, then p suspects that deadlock has occurred. In
this case, p sends a relief message to processes that are half-committed to it (that is,
p has received request messages from them). A relief message m relieves a process
from its half-commitment to sender(m), causing it to half-commit or commit to a
different alternative, if one exists; if not, the process is clearly not part of a deadlock,
and simply repeats its request message. It should be obvious how to modify Comm
to implement this idea; we simply set a timeout on receiving control messages in
Step 3(e) (after which we send relief messages), and add a case for relief messages
as Step 3(e)(iii).

A process suspecting deadlock cannot send relief messages to every process half-
committed to it, because this can simply reverse the cyclic dependence, resulting
in another deadlock. Repeating this procedure leads to a livelock. To solve this,
processes only send relief messages to lesser processes (according to the total order).

Negotiating Non-Deterministic Choice 9

Protocol Successful Unsuccessful
Cycles | Messages | Cycles | Messages
Simple 4 4 2 3
Simple + piggybacking 3 3 2 3
Fast 3 2m+ 3 2 2m + 2
Fast 4+ piggybacking 2 2m 4+ 2 2 2m 4+ 2

Table 1: Summary of our protocols. im + j denotes i multicast and j unicast mes-
sages.

This ensures that at least one process in the cycle will not be relieved, but at least
one will, so the deadlock will be resolved. Assuming that the timeout is sufficiently
long, a deadlock will result in only one set of relief messages, which is a small cost
for resolving the unlikely event of deadlock.

2.7 Interoperability

One property of Comm is that Z can be chosen arbitrarily at each process, as long
as at least one side of each potentially communicating process-pair sends a notify
message. As a result, the simple and fast protocols are clearly interoperable, since
they are both special cases of Comm. A process can also choose which protocol to
use on a per-channel basis.

One way to switch between the two protocols is for the owner to have “control”
over the protocol that is used. By default, everyone uses the simple protocol for that
channel. If the owner decides to change to the fast protocol (e.g., the programmer
issues a “hint”), then it can start sending notify messages. Comm specifies that
members respond, so the entire channel has effectively switched to the fast protocol
until the owner switches back and stops sending notify messages. So in fact we can
notify only certain members, resulting in a “partial fast” protocol; we will examine
this more in Section 3.1.

As noted in Section 2.4, we can use the deadlock-avoidance technique from the
previous section with both the simple and fast protocols. Using reasoning similar to
the above, these two protocols can be mixed. We can also mix with deadlock-prone
techniques by viewing them as having a timeout of co (of course, deadlock freedom
is not guaranteed).

In conclusion, the protocols we have discussed are all related and interoperable.
They are summarized in Table 1.

3 Adaptive Extensions

If we want a protocol that uses fewer message cycles than the simple protocol,
multicasting is necessary. This may or may not improve the communication speed,

10 Erik D. Demaine

depending on the application. In this section, we will see how to adaptively choose
between the two deadlock-avoidance protocols, as well as computing user-specifiable
options.

It will become clear that we need experimentation to evaluate the effectiveness
of the various schemes, depending on the application and network. The main point
of this section is that there are several methods available for protocol adaptation.

3.1 Simple-Fast Protocol Switch

As in Section 2.7, we adopt the idea that the owner of each channel decides the
protocol to be used on that channel. We essentially want to determine whether it
is worthwhile for the owner to send the extra notify messages for a channel c.

One way to measure this is as follows: each time the owner has the possibility
of communicating on ¢, make note whether it actually communicates on c. If in the
last k trials, communication is often successful, then it seems to make sense for the
owner to send extra notify messages to speed up this process. On the other hand, if
most communications are unsuccessful, it is pointless to send extra notify messages
for c.

The exact cut-off point « in this binary approach can be specified by the user.
However, it is unlikely to capture the fact that, if c has many members, it is expensive
to multicast extra notify messages. If we mainly receive messages from a small subset
of the members, it may make sense to send notify messages only to them.

One way to solve this is by sending a notify message with a certain probability.
That is, for each member, we flip a pseudo-random coin with a certain weight, and if
it comes up tails, we send a notify message to that member. If the owner determines
that the probability of successfully communicating with a particular member 7 is p;
(via a discrete analysis), then it sends a notify message to ¢ with probability f(p;).
For example, f could be a linear function, that is, f(p) = max(1, Bp) for some 3.

Note that the sum of the p;’s is the probability p. of successfully receiving on
channel c. Hence, this probabilistic approach is related to the binary one. In partic-
ular, we could choose f = [p. —] to exactly mimic the binary approach, or choose
f(p) = [p — a] to apply the binary approach on a per-member basis.

3.2 Piggybacking Toggle

Another question is when we should piggyback the user’s message on the first request
message. Basically, we do not want to append a user message that will not be used.

We can employ a simple binary scheme as follows. A sender (the owner for
one-to-many channels, a member for many-to-one channels) makes note of the last
k first request messages it sent for channel ¢, and whether it succeeded (second
request message) or was rejected (cancel message). The sender can hence estimate
the probability of a request message for ¢ being accepted. If this is sufficiently high,
and the message is not too large, the user message should be piggybacked onto the

Negotiating Non-Deterministic Choice 11

request message. On the other hand, if the probability is low, or the message is
large, it is too costly to piggyback.

Owners of one-to-many channels can keep track of the probability on a per-
member basis. This allows some members to accept messages frequently even if
others do not. Note that it makes sense to send a request message to the process
that has the highest probability of accepting, if multiple notify messages accumulate
during computation.

We can generalize this idea to a probabilistic scheme as in the previous section.
Let p denote the probability that a first request message will be accepted by a
particular process under consideration (that is, we are about to send a first request
message to that process). Then we piggyback the user’s message with probability

9(p)-

3.3 Deadlock Timeout

It also seems useful to adaptively compute the deadlock-timeout value. If it is too
small, processes will falsely predict deadlocks; for example, if we timeout before
a control message could actually travel over the network, we will constantly think
that deadlock has occurred. To avoid this, we can multiply the timeout value by
a constant k > 1 whenever a timeout occurs. This exponential growth will quickly
leave this situation.

However, the occasional deadlock causes the timeout value to grow and deadlock
detection to worsen. For long-running applications, the timeout value will quickly
approach infinity (since it follows an exponential growth). To avoid this, we multiply
the value by a constant m < 1 whenever we successfully complete a user-level
communication, providing an exponential decay. Since deadlock is sufficiently rare,
this should inhibit any major growth past the cutoff point between too short and
too long a timeout value.

One could argue that once we have grown to a sufficiently large value, we can
stop the adaptive extension and leave the timeout value fixed. However, this fails
to take into account variable network delays. Assuming an appropriate choice of
m, the exponential decay should also be slow enough, so we should rarely make the
timeout value too small and need to increase it by k.

3.4 Exploiting Common Concurrency Structures

It is important to examine what programmers actually do with channels, to aid in
the optimization of the protocols. One common structure is to have a server process
that constantly non-deterministically either receives a request (on a many-to-one
channel) or sends a reply for a completed operation (if any exist). A call to Comm
sends a round of notify messages for the reply channels, and if the server chooses to
receive a request, it also sends a round of cancel messages. It may be possible to
specify that the server will almost always be executing algorithm Comm, and hence

12 Erik D. Demaine

will be responsive to control messages. In this case, we can often avoid the round
of cancel messages and shortly after repeating a round of notify messages. In other
words, processes will know that they can always send request messages on reply
channels, even though the server frequently succeeds in communications.

If we are not careful how we implement this idea, members will half-commit to
request messages and block arbitrarily long periods of time (up to the amount of
computation the server does). It may be worthwhile to split the server into two
threads, which handle control messages and computation respectively, to ensure
responsiveness to control messages. This doubling of the number of threads may
be too expensive, depending on the system being used. An alternative is available
for message-passing systems such as PVM 3.4 [11], where we can interrupt the
computation to deal with each control message.

Another common structure is a devoted send or receive, that is, a send to or re-
ceive from a single process, executed without other choices. While non-deterministic
choice is a powerful construct, it is not always needed. For example, suppose we have
the following master-slave model. Slaves repeatedly receive jobs from the master and
send their results back to the master, both of which are devoted.

Devoted communication can be exploited as follows. Suppose that member p is
guaranteed not to decide to do something else. Then p can state this in the notify
message, which will persist at the other end until it is used. If p is sending, the
message can be appended to the notify message. Otherwise, the message can be
appended to the request message that follows, which signifies a full commit. Hence,
we achieve the optimal 2 MC/UC without excess piggybacking.

The user may specify a hint or an adaptive extension may determine that the
members (e.g., slaves) are often devoted. In this case, it may not be necessary for
the owner (e.g., master) to send the extra notify messages, even if other adaptive
extensions say that the fast protocol is useful.

Devoted communications are also useful for the deadlock-avoidance scheme. Ba-
sically, processes do not have to send relief messages to processes that are devoted.
In fact, it makes sense to choose devoted communications over others to avoid dead-
lock. In this sense, devoted communications tend to get higher priority, since they
are more efficient.

4 Dynamic Membership

In this section, we consider the following dynamic problem: a process can send the
name of a channel it owns to another process, the recipient can send this name to
another process, and so on. The owner must maintain a list of all processes that
hold the name of the channel, except itself (that is, the list of members). The list
must be non-empty if and only if a process will hold the name at some time in the
future, assuming the owner does not send the name to any more processes. This
property can be used to detect whether, during a call to Comm, there will be any

Negotiating Non-Deterministic Choice 13

processes willing to communicate on a channel. Detecting this is important for
garbage collection of processes [5, 6], where we want to detect when a process has
lost all connections to other processes and is waiting to communicate, in which case
it can be discarded. A preliminary version of this section appeared in [6].

When a member discards the name of a channel, it sends a remove message to
the owner. However, add messages are not as simple.

Suppose that members only send add messages immediately upon receiving a
new channel name. Then the following scenario leads to an unfortunate situation:
the sole member of the channel sends the channel’s name to another process, and
immediately deletes its copy. This will cause a remove message to be sent, which
will likely arrive before the add message. Thus, for a period of time, the owner
believes that there are no members, even though there will be a member soon.

A similar race condition occurs if only the sender issues add messages, allowing
arbitrary network delays®. Hence, both the sender and the receiver need to send add
messages in such a way that the second-received one is ignored. This will remove
any possible race conditions.

The owner cannot simply maintain a list of first-received add messages, and
remove one from the list when it receives the second add message with the same
source and destination. This would not work if a process sent a channel name
to another process twice in a row (simply suppose that the sender’s add messages
both arrived at the owner before the other add messages, and we can arrive at race
conditions similar to those above).

To solve this, we split add messages into send-side and receive-side add messages,
sent by the sender and receiver of a channel name, respectively. Several send-side
[receive-side] add messages with the same source and destination may accumulate
in the list, and are individually removed by matching receive-side [send-side] add
messages.

We have used this membership protocol in two implementations of higher-order
concurrency [17], on top of Java [5] and PVM [6]. In the latter implementation,
we exploited the following fact: the membership protocol can be modified to allow
processes to “pack” channel names into a buffer, and have this buffer travel through
several processes before it is unpacked. This is achieved by storing the original
sender and receiver with the channel name, which is used in the receive-side add
message, sent during the unpacking phase.

!Note that we will assume, for any two processes p and g, the messages from p to g are delivered
reliably in the order they were sent. This corresponds exactly to the quality-of-service that PVM [10]
provides.

14 Erik D. Demaine

5 Conclusion

In this paper, we have presented several efficient deadlock-free protocols to im-
plement the generalized alternative construct over synchronous channels. We found
that fan (many-to-one and one-to-many) channels allow much higher efficiency than
general many-to-many channels. In particular, the dynamic membership problem
has an efficient solution, while avoiding a race condition, thereby allowing garbage
collection of processes. The adaptive extensions allow effective choice between our
protocols and selection of protocol parameters.

The simple protocol and dynamic-membership protocol were used in two imple-
mentations of higher-order concurrency [5, 6]. In the future, we plan to implement
the other protocols and evaluate their relative performance. In particular, we are
interested in how well the suggested adaptive methods work for various applications
and networks.

Acknowledgments

We wish to thank David Taylor for the idea of adaptive extensions, in particular the
suggestion of the binary approaches, and for valuable comments on the paper. We
also thank Frederick Knabe for providing important references on related work, and
Thomas Kunz for initial discussions on the protocols. This work was supported by
the Natural Sciences and Engineering Research Council (NSERC).

References

[1] Rajive Bagrodia. A distributed algorithm to implement the generalized alter-
native command of CSP. In Proceedings of the 6th International Conference
on Distributed Computing Systems, pages 422-427, Cambridge, Massachusetts,
May 1986.

[2] Arthur J. Bernstein. Output guards and nondeterminism in “Communicat-
ing sequential processes”. ACM Transactions on Programming Languages and
Systems, 2(2):234-238, April 1980.

[3] Richard Bornat. A protocol for generalized occam. Software — Practice and
FEzperience, 16(9):783-799, September 1986.

[4] G. N. Buckley and A. Silberschatz. An effective implementation for the gen-
eralized input-output construct of CSP. ACM Transactions on Programming
Languages and Systems, 5(2):223-235, April 1983.

[6] Erik D. Demaine. Higher-order concurrency in Java. In Proceedings of the Par-
allel Programming and Java Conference (WoTUG20). 10S Press (Netherlands),
April 1997.

Negotiating Non-Deterministic Choice 15

[6] Erik D. Demaine. Higher-order concurrency in PVM. In Proceedings of the
Cluster Computing Conference, Atlanta, Georgia, March 1997. World Wide
Web. http://www.mathcs.emory.edu/ ccc97.

[7] E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(18):453-457, 1975.

[8] Ian Foster and K. M. Chandy. Fortran M: A language for modular parallel
programming. Journal of Parallel and Distributed Computing, 26(1):21-35,
1995.

[9] N. Francez and M. Rodeh. A distributed abstract data type implemented
by a probabilistic communication scheme. In Proceedings of the 21st Annual

Symposium on Foundations of Computer Science, pages 373-379, Syracuse,
New York, October 1980.

[10] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM: Parallel Virtual Machine — A User’s Guide and
Tutorial for Networked Parallel Computing. The MIT Press, Cambridge, MA,
1994.

[11] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, and S. L. Scott. Beyond PVM 3.4:
What we've learned, what’s next, and why. Unpublished manuscript. World
Wide Web. http://www.epm.ornl.gov/pvm/nextGen.ps.

[12] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A sym-
metric integration of concurrent and functional programming. International
Journal of Parallel Programming, 18(2):121-160, 1989.

[13] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666-677, August 1978.

[14] C. A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, 1985.

[15] Frederick Knabe. A distributed protocol for channel-based communication with
choice. Technical Report ECRC-92-16, European Computer-Industry Research
Centre, Miinchen, Germany, 1992.

[16] Frederick Knabe. A distributed protocol for channel-based communication with
choice. Computers and Artificial Intelligence, 12(5):475-490, 1993.

[17] John H. Reppy. Higher-order concurrency. PhD thesis, Dept. of Computer
Science, Cornell University, June 1992.

16 Erik D. Demaine

[18] John H. Reppy. Concurrent ML: Design, application, and semantics. In Peter E.
Lauer, editor, Functional Programming, Concurrency, Simulation and Auto-
mated Reasoning, volume 693 of Lecture Notes in Computer Science, Hamilton,
Ontario, Canada, 1993. Springer-Verlag.

[19] F. B. Schneider. Synchronization in distributed programs. ACM Transactions
on Programming Language and Systems, 4(2):125-148, April 1982.

[20] J. S. Schwarz. Distributed synchronization of communicating sequential pro-
cesses. Technical report, Dept. of Artificial Intelligence, University of Edin-
burgh, Edinburgh, Scotland, July 1978.

[21] SGS-THOMSON Microelectronics Limited. occam 2 Reference Manual. Pren-
tice Hall International Ltd., 1988.

[22] A. Silberschatz. Communication and synchronization in distributed systems.
IEEFE Transactions on Software Engineering, SE-5(6):542-546, November 1979.

[23] J. L. A. Van de Snepscheut. Synchronous communication between asynchronous
components. Information Processing Letters, 13(3):127-130, December 1981.

