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1. Introduction. A derivative is a security whose value depends on one or more
underlying factors. Derivative markets are rapidly growing. For example, the total
notional value of outstanding derivatives was $5 trillion in 1990 and was over $20 trillion
in 1994.

Options are a form of derivative security that give the holder the right, but not the
obligation, to buy or sell an asset for a specified exercise price at some future time. It is
of great interest to financial institutions to be able to determine the value of an option
as a function of the underlying factors and time.

Utilizing models of asset prices based on stochastic differential equations, a non-
stochastic partial differential equation (PDE) for the price of the option can be derived
[28]. This PDE has the familiar form of the multi-dimensional convection-diffusion
equation.

Many options have an early exercise feature. This allows the holder of the option
to exercise the option at any time during its life [28]. An option with this early exercise
feature is known as an American option. An option which cannot be exercised early
is termed a European option. Assuming that investors act optimally, the value of an
American option cannot fall below the value that would be obtained if it was exer-
cised early. Effectively, this means that the option pricing partial differential equation
becomes a differential algebraic equation (DAE).

If an implicit method i1s used to solve the basic option pricing PDE, then the
algebraic constraint (due to the early exercise feature) should, in general, also be handled
implicitly. One method for incorporating the constraint is to view the problem as a
linear complementarity problem [28] and then use projected SOR, [6] to solve the discrete
algebraic equations. However, in regions where it is not optimal to exercise the option
early, this method simply reduces to unaccelerated SOR for solving the sparse linear
system. Unaccelerated SOR iterative methods have, of course, been supplanted by the
more robust PCG-like techniques [20, 24, 26, 23]. Projected SOR can be accelerated
using a multigrid method [5]. While multigrid methods can sometimes be spectacularly
successful, they must often be tuned to the problem at hand. Care must be taken with
the choice of smoother, and the prolongation and restriction operators. For example,
in [5], the smoother must be adjusted to fit early exercise and non-early exercise parts
of the computational domain. It is therefore a daunting task, at the present time, to
produce black box option pricing software based on multigrid techniques which can
be used in day-to-day financial applications. An alternative method based on linear
programming [9] has recently been proposed. However, if the underlying PDE is more
than one dimensional, then the linear programming method used in [9] may become
computationally infeasible.

The objective of this article is to develop a general method for handling the Amer-
ican early exercise feature. We simply view the problem as a nonlinear differential
algebraic system (DAE), where the (in general) nonlinear constraint can be imposed
using a penalty method. The resulting system of nonlinear algebraic equations is then
solved using Newton iteration, where the nonsymmetric Jacobian at each nonlinear
iteration is solved using PCG-like methods [23]. The advantages of this approach are
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e Software can be developed based on black box off-the-shelf components. The
sparse Jacobian is solved using a standard method. The Jacobian itself can be
constructed using a variety of techniques.

e Since we regard the system as nonlinear right from the start, there is no diffi-
culty incorporating more sophisticated discretization methods such as nonlinear
flux limiters [25, 19]. In many cases, such as for an option pricing PDE based
on a stochastic volatility model [15], the PDE has large regions which are con-
vection dominated, and hence standard central or upstream weighting methods
are inappropriate.

e Incorporation of other types of constraints (e.g. time dependent barriers [30])
can be done in a straightforward fashion, since the algorithm does not depend
on the form of the constraint or the form of the PDE.

In this paper, we give examples of the use of this technique for pricing options
based on a stochastic volatility model. To illustrate the flexibility of this approach, we
include an example of an exotic American chooser option [16] written on a barrier put
and call, which has a complex early exercise constraint.

2. Stochastic Volatility. Recently, there has been some interest in models where
the volatility of the underlying asset is a random variable [17, 21, 15, 27]. Consider an
option which is a function of the asset price s and the variance v, where s and v evolve
according to [15]:

ds = psdt™ + \/vsdz
(1) dv = k(0 —v)dt" + oy/vdz

where 2z, z, are Wiener processes [28]. Note that /v is the instantaneous volatility
of the asset price s. Stochastic volatility models are considered to be a more realistic
specification of stock price movement than models with constant volatility such as the
classic Black-Scholes [3] analysis. Following the usual steps [16], the PDE for the value
of an option U = U(s,v,t*) is:

(2) _US2U _|_ v Z] _|__02LU _|_r U —|— 9—17 —/\’U Z/ —’IZ/—I—U _—0
2 88 POVSU gy 2 vy SUs (HJ( ) ) v t*
where:

= correlation between dz;, dz,
volatility of volatility
mean reversion time constant

mean reverting value of v

> > & QA

market price of volatility risk

(3) r = Interest rate

Equation (2) is solved backward in time from the expiry date of the option t* =T
to the current time t* = 0. Equation (2) can be converted to the familiar form of an
3



equation forward in time by substituting t = T — t* to give:

(4) U, = v2i2U88 + povsU,, + %Uw +rsUs 4+ (6(0 —v) — Av) U, — rU.
Following some algebraic manipulations, equation (4) can be put into the following
form:

(5) U,+V.-VU=V.-D.-VU —+U

where:

1 vs? T8V
() Dz ()

posv  o7v

L rs —vs — pas/2
(™ V= (&(9—1})—/\1)—02/2—,001)/2)'
Equation (5) has the form of the convection-diffusion equation. The initial conditions

depend on the contractually agreed payoff function. For a vanilla (standard) put or
call, the initial conditions (at ¢ = 0 or equivalently at t* = T') are:

U(s,v,0) = max(s— E,0); Call
= max(E —s,0); Put

(8) E = exercise price.

Other boundary conditions for this equation can be determined by examining the orig-
inal equation (2). Letting v, s — 0 we obtain:

Uy = rsU, + kU, — rU, v— 0

0'2’0

(9) Uy = TUW + (k(0 —v) = A0)U, —rU; s—10

For s — oo we have:

U=3s Call
U=0 Put.

Finally, noting that as v — oo then U, — 0, so

2

(10) U; = %Uss +rsU, —rU; v — .



3. Discretization. We will now discretize equation (5) using a standard Galerkin
finite element method for the diffusion terms. For the convective terms, we will use a
finite volume approach. Formally, a finite volume discretization can be considered to
be a Galerkin method with a special quadrature rule [13], so that in a mathematical
sense, a Galerkin finite element method is being used for all terms in the equation.
However, it is more intuitively appealing to use a geometric finite volume approach for
discretizing the convective term.

Consider a discrete two dimensional computational domain R which is tiled by
triangles. Let N; be the usual C° Lagrange basis functions defined on triangles. Then,

N; = 1 at node 1z
= 0 at all other nodes
(11) Y N; = 1 everywhere in the solution domain.
J
If U" = ;U7 where U} = U(s;,v;,t") is the value of U at (s;,v;,t"), then the

discretization of equation (5) is given by:

UZ"L-I-l . Uln " " — n "
o (T) = (1=7) (Z Vi (U3 = U + )2 Li - ViU, — AU +1)

JEN; JjEn;

+5 (E ’Yij(U;l - Uzn) + Z Li; - V; z?;'+1/2 - AirUf‘)

JEm; JE;
(12) gt
where:
A = / NidR
At = timestep
f = timeweighting

B = 0 fully implicit
B =1 explicit
B = 1/2 Crank-Nicolson

Urtt = U(sg,v;, t")
i = —/évzvi .D - VN;dR
n; = set of neighbours of node %
g = source/sink term used for boundary conditions

and American constraints.

Z‘ii/z = value of U at the face between

node ¢ and node j.

(13)



Fic. 1. Finite volume surrounding node i. Points a and b are the centroids of their respective
triangles. The line segments from a and b pass through the midpoint of the triangle edge 7 — j.
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We have also used mass lumping for the time derivative term. Other details concerning
this discretization method can be found in [11, 13]. Note that A; can be considered to be
the area of the cell or finite volume surrounding node ¢. The finite volume surrounding
node 7 1s shown in Figure 1. The finite volume is constructed by joining the midpoint
of each edge of a triangle to the centroid of the triangle [1, 18, 12]. The vector length
L_;j in equation (12) is given by

o b
(14) Lij :/ nds

where the points a, b are shown in Figure 1, and 7 is the inward pointing normal to the
face between node ¢ and node j. An alternative choice of finite volume can be based on
the perpendicular bisectors of triangle edges [12].

There are various choices for the terms Uj;y4 /5, For example, second order central
weighting for U;;1,/2 is given by:

Ui—I-Uj

(15) Uijt1/2 = —

while first order upstream weighting is given by

Uij+1/2 = U if L_;J -V, <0
(16) = Uj otherwise.

Note that equation (4) becomes first order hyperbolic as v — 0. First order up-
stream weighting is usually too diffusive for accurate solutions, while central weighting
may cause spurious oscillations in convection dominated regions. Recently, non-linear
flux limiters have been used to obtain accurate solutions without causing oscillations.
Essentially, these methods use a more accurate (usually second order) method as much
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as possible, but reduce to lower order accuracy only where necessary to avoid spurious
oscillations [29, 30]. One popular method uses a van Leer limiter [25, 19, 4]. With ref-
erence to Figure 1, assume that node ¢ is upstream of node j (the upstream directions
are given by equation (16) ). Point 2up is the value of U which is upstream of node 7,
interpolated using the two nearest nodes where U is known (see Figure 1). The value of
Uij+1/2 1s then extrapolated to the face (45 + 1/2) using the values at U; and U,,, [14].
A nonlinear limiter is applied to avoid spurious oscillations in the solution [2, 19, 12].
In this work we will use the van Leer limiter. Other possibilities include the smooth

MUSCL limiter described in [2].

4. Solution of the Discrete Equations. The discrete equations (12) are in
general non-linear. This is due to the use of a nonlinear flux limiter for the convection
term, and also due to the application of the American constraint. The method used to
apply this constraint, in an implicit fashion, will be described in a subsequent section.
An approximate Newton iteration will be used to solve the discrete equations. The
complete Jacobian is constructed with the exception of all derivatives with respect to
the second upstream points Us,,, which are ignored. The iteration for a given timestep
i1s deemed to have converged when

.n—l—l k+1 ?1+1k
o [T = (O

< tol
- max(|(UF) ], [(UP)], 1.0)

where (UP*1)* is the k" iterate for U*'. The Jacobian is solved using an incomplete
LU [7, 8] preconditioned CGSTAB iteration [26]. An automatic timestep selection
method is also used [22].

5. American Options. American options are easily handled in a fully implicit
fashion, through suitable definition of the source/sink term in equation (12). Two
approaches will be discussed in this paper. Effectively, these are penalty methods for
forcing the discrete problem to satisfy the early exercise constraint.

5.1. Constraint Switching. If an American option is to be priced, then we define
two possible states for a node {ON, OFF}. The source term (equation (12)) is then
defined as:

IF ( state; = ON) then
gt = i(UZ* — Uf“) x Large

.Y
ELSE

@t =0
ENDIF

(18)

where U} 1s the value of the option if exercised immediately. For a vanilla American
put, this is given by equation (8). In equation (18), Large is a suitably defined large
number.



After each nonlinear iteration, the state of each node can be switched:

IF ( state; = ON )
IF (Ut > U ) then

state; := OFF
ENDIF
ELSE
IF (Ut < U7 ) then
state; := ON
ENDIF
ENDIF

(19)

Note that when state; = ON, then we must have ¢'*' > 0 (since the American
constraint adds value). Consequently, as Large — oo, then for nodes with state; =
ON, then U"t* — U — ¢, where e = 0(1/Large). This error in enforcing the constraint
can be made arbitrarily small by making Large sufficiently large.

The transition rules in equation (19) are based on the assumption that a minimum
constraint is being imposed. In the case of an option with both maximum and minimum
type constraints (e.g. callable convertible bonds [28]), there would be three possible
states for a node, with the obvious changes to the transition rules.

5.2. Quadratic Source Term. If Newton iteration is used to solve the nonlinear
discrete equations which result from use of the constraint switching method in (19),
then the Jacobian has a discontinuous derivative at U/t' = U, which might cause
some difficulties. An alternative approach uses a smoother method of implementing the
constraint. The source/sink term in equation (12) can be defined as:

(20) @ttt = %(min((]in+1 —U?,0))* x Large
where Large is a suitably defined large number and U} is the value of the option if
exercised immediately.

Imagine solving the discrete equations with the source term (20), by a Newton
iteration. Suppose the initial guess for the solution at Ut uses the value of U, and
suppose that this value is above the value obtained by early exercise. Consequently, on
the first iteration, the source term (20) is zero. If after the first iteration, U™ > U7,
then it is not optimal to exercise early, and the iteration terminates. However, if the
first iteration produces U"*' < U7, then the source term becomes nonzero, and then
forces another nonlinear iteration. Since the source term is positive, the next iteration
will produce a larger value for U*'. The quadratic form for the source term will cause
a monotonic approach to a value of U"*' = U* — e with € < 1. The size of ¢ will be
determined by the size of Large. The larger the value of this constant, the smaller e,
but in general the number of nonlinear iterations will increase as Large increases in
magnitude.



5.3. Equivalence of Penalty Method and Linear Complementarity For-
mulation. Let the vector with components U**! be denoted by U™, Similarly

(@) = ¢
(21) (U"): = U

Let a be the the region of the computational domain D where:
(22) @ >0 if (z,y) € a

In other words, « is the region of D where it is optimal to exercise the option early. Let

yrtt _pr
LUn+1 ;= 2 7
(U (7& )

JEN; JEn;

Auen (S o £ v, - a) |

(23)

{5 (Z ’Yij(U; - U+ E L:j -V, Z;'+1/2 - AiTUin) } .

JEN; JEn;

For simplicity, we consider only the constraint switching method in the following. From
equation (18) as Large — oo we have

1
ntl _rFy = — -y,
U -0 = A0l () € o
(24) > 0 (wi,yi) eED—a
From equations (18,23,24) it follows that
(LU™Y), = O(é) (zi,y5) € @
At ’
(25) =0 (:lii,yi) €eD—a.
Equations (24,25) then imply that
1
Ut —uUn > —|0 ;) €D
( ) 2 A0 () €
LU > 0 (zi,y;) € D
1 Ap
U™t — U . LU| < == ;) €D
I )20l < O R we
(26) Ap =) A

Therefore, as Large — oo, equation (26) can be regarded as an approximation to

(Un+1 o U*) Z

LU

(27) (U™ —U") . LU
9
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TABLE 1
Data for American put with stochastic volatility.

o .9

p 1

K 5.0

0 .16

A 0.0

r .10

Time to expiry .25 years

Exercise Price (E) $10

U; max(E — s;,0)

for all (z,y) € D. This is a discrete form of the linear complementarity formulation
of the American constraint [28]. The linear complementarity approach is an identical
numerical problem to a discrete variational inequality [28]. Consequently, it is possible
to demonstrate, in some cases, that a unique solution exists, and that the discrete
solution converges to a solution having C' continuity across the early exercise boundary

[10].

6. Clark and Parrot Problem [5]. An American put option with stochastic
volatility was extensively studied in [5]. The data for this problem are given in Table 1.

Table 2 gives the values of the American Put computed on an 89 x 52 grid, and
a refined grid formed by inserting a node between each node in the coarse grid (176 x
102). The timestep selector parameters [22] were halved for the fine grid as well. The
values of Large and the convergence Newton iteration tolerance tol are given in Table
2. For comparison, the finest grid results from [5] are also given. A Crank-Nicolson
timestepping method was used.

The results are in general agreement with those in [5], but there are some differences.
Note that in this work, the computations on the fine grid used smaller timesteps than
the coarse grid results. Hence, the results in Table 2 (for this work) reflect both time
and space truncation errors. In contrast, in [5], a constant timestep was used on all
grids. As well, interpolation was used in [5] to obtain the values shown in Table 2 (a
coordinate transformation was used in [5] to obtain discrete equations more suitable for
a multigrid approach). These effects probably account for the differences between this
work and the results in [5].

Table 3 compares the results for the above problem with various values for tol
and Large. The coarse 89 x 52 grid was used for these computations. The constraint
switching method (see Section 5.1) was used. This table should be viewed as comparing
the effects of using different values of nonlinear convergence tolerance tol and Large
(see equations (18 - 19)), for a given grid size and timestep sequence.

Note that if a tolerance of tol = 107% is desired, then the value of Large should
be ~ 10*. Examination of Table 3 shows that, as expected, there is no change in the
solution to five figures for k > 4.
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TABLE 2
Convergence of American put with stochastic volatility. Constraint switching method used with
tol = 1075, Large = 10°. Table values are the value of an American put with the stochastic volatility
model, in dollars at the initial timet* =0 ¢t =T).

v s
80 | 9.0 | 10.0 | 11.0 | 12.0
89 x 52 grid

.0625 | 2.0000 | 1.1078 | 0.5206 | 0.2142 | 0.0823
.25 2.0784 | 1.3338 | 0.7963 | 0.4485 | 0.2427
177 x 103 grid, smaller timesteps
.0625 | 2.0000 | 1.1076 | 0.5202 | 0.2138 | 0.0821
.25 2.0784 | 1.3337 | 0.7961 | 0.4483 | 0.2428
Results in [5], finest grid
.0625 | 2.0000 | 1.1080 | 0.5316 | 0.2261 | 0.0907
.25 2.0733 | 1.3290 | 0.7992 | 0.4536 | 0.2502

Table 4 shows similar results, but this time the quadratic source term (see Section
5.2) was used. For a quadratic penalty term, if an accuracy of tol = 107% is desired,
then Large should be ~ 102*. Although moderate accuracy can be obtained with the
quadratic source term, difficulties were observed when requesting very tight convergence
tolerances (note the non-convergence for tol = 107° in Table 4).

The results shown here are representative of our observations for many problems.
It appears that the constraint switching method is more efficient and reliable than the
quadratic source method. This appears surprising at first glance, since the quadratic
term would seem to be more easily solved using Newton iteration. However, the
timesteps required for reasonable levels of time discretization error are quite small,
so that the discontinuity in the derivative of the constraint switching source term does
not appear to have serious consequences.

To isolate the effect of the American constraint on the nonlinear iterations, Table
5 shows the total number of nonlinear iterations required for solution of the above
problem with various discretization methods.

If pure upstream weighting is used (equation (16)), then the only nonlinearity in
the discrete equations is due to the American constraint. In this case, Table 5 indicates
that about five nonlinear iterations per timestep is required to resolve the American
constraint to five figure accuracy. In contrast, solving a European problem using the flux
limiter requires about four iterations per timestep. Finally, use of the flux limiter with
the American constraint requires almost the same number of total nonlinear iterations
as with the American constraint with upstream weighting. Of course, the solutions
to all these problems are not identical, so the comparisons are not perfectly valid.
Nevertheless, it appears that the cost of using the DAE approach for the early exercise
constraint, coupled with the flux-limited discretization, is not much more expensive
than using the flux-limiter alone. However, if a European option is being priced using
upstream weighting, then this is a purely linear problem, and only one iteration per
timestep is necessary. Consequently, the cost of solving an American option with a
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TABLE 3
Constraint switching method used with indicated values of Large and convergence tolerance tol.

89 x 52 grid used. Problem from [5].

8.0 | 100 [ 12.0 | 80 | 10.0 | 12.0
v=.0625 v=.25
tol = 1073, Large = 103
Total nonlinear iterations = 100
2.0000 | 0.5206 | 0.0823 | 2.0783 | 0.7963 | 0.2427
tol =107%, Large = 10*
Total nonlinear iterations = 117
2.0000 | 0.5206 | 0.0823 | 2.0784 | 0.7963 | 0.2427
tol = 107>, Large = 10°
Total nonlinear iterations = 125
2.0000 | 0.5206 | 0.0823 | 2.0784 | 0.7963 | 0.2427
tol =107, Large = 10°
Total nonlinear iterations = 133
2.0000 | 0.5206 | 0.0823 | 2.0784 | 0.7963 | 0.2427
tol = 1078, Large = 108
Total nonlinear iterations = 154
2.0000 | 0.5206 | 0.0823 | 2.0784 | 0.7963 | 0.2427

TABLE 4
Quadratic source method used with indicated values of Large and convergence tolerance tol. 89 x 52
grid used. Problem from [5].

80 | 10.0 | 120 | 8.0 | 10.0 | 120
v=.0625 v=.25
tol = 1073, Large = 10°
Total nonlinear iterations = 98
1.9999 | 0.5205 | 0.0823 | 2.0783 | 0.7963 | 0.2427
tol =10~%, Large = 108
Total nonlinear iterations = 140
2.0000 | 0.5206 | 0.0823 | 2.0783 | 0.7963 | 0.2427
tol = 10~°, Large = 10"
Total nonlinear iterations = * * *x
Not Converged
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TABLE 5
Constraint switching with upstream weighting and flux limiter, convergence tolerance 1073,
Large = 10°. For upstream weighting, the only nonlinearity is due to the American constraint. Problem

from [5].

Method Number of Number of
Nonlinear iterations | timesteps
American 122 27
upstream
European with 104 27
Flux Limiter
American 125 27
Flux Limiter

flux-limited discretization is about five times greater than for a European option with
upstream weighting, for this quite severe convergence criteria.

7. An American Chooser Based on European Barrier Options. A chooser
option gives the holder the right to either a call or a put at maturity [16]. The payoff
for a chooser is given by:

Payoff = max(C(s,v,T¢c — T, E¢),P(s,v,Tp — T, Ep))
C = Value of Call
P = Value of Put
s = asset price
v = (volatility)?
E¢ = Call exercise price
Ep = Put exercise price
Te = Maturity date of Call
Tp = Maturity date of Put
T = Maturity date of Chooser.

The value of a chooser is determined by solving for a put over the period Tp — 7', and
then solving for a call over the period Tg — T. The payoff U(s;,v;,t* = T) = U? for
the chooser at node 7 is then given by

2

(28) U = max(P;, C;).

This provides the initial condition for equation (4), which is then solved over the life of
the chooser option. This is illustrated in Figure 2.

In this example, we will also be specifying discrete dollar dividends. Discrete dollar
dividends are easily handled with an unstructured grid. If £+ and ¢~ represent the times
just before and after the dividend dates (recall that ¢t = T' — ¢*), then

(29) U(s,v,tt) =U(s — D*,v,t")
13



F1c. 2. Schematic of Chooser option. Put P and call C are solved over different periods (Tc,Tp),
with exercise prices Ec, Ep, for underlying asset price S. Then the mazimum of the put and call values
at each node gives the terminal payoff of the chooser, which is then solved over the life of the chooser.

T T
Call
\ T 0
max(S-Ec. 0) Chooser
——
T, T
max(P,C)
Put
\max(Ep-S.O)
where D is the dividend payment and
(30) D* = min(D, s).

Equation (30) prevents the unrealistic phenomenon of dividend payments being larger
than the asset price. The value of U(s — D*,v,t7) is interpolated using linear interpo-
lation on the triangular mesh.

We give an example for an American chooser option written on a European put
and call (European options cannot be exercised early). The European put and call
have double knockout barriers, which are observed weekly. More formally, the knockout
barriers are defined as

Us,v,tt) = Ul(s,v,t7)
if 80 < s <110
(31) =0 otherwise

where t*,4~ are the times just after and just before application of the barrier. Note
that equation (31) imposes a jump discontinuity on the solution after each barrier
observation date. Barriers are used to reduce the cost of an option, which is desirable
for purchasers of the option if they believe that the underlying asset is likely to trade
only within a restricted range. The data for the European put and call are given in
Table 6. The data for the chooser, with initial condition given by equation (28) is given
in Table 7. No barriers are applied to the chooser option.

The early exercise constraint is implemented using constraint switching, with the
value of U} (equation (18) ) given by

14



TABLE 6
Data for the stochastic volatility put and call, which are the basis for the chooser option. These
are Buropean options with discretely observed barriers.

o D
p -9
K 2
6 .04
A 0.0
r .05
Time to expiry .D years
Exercise Price: Put $100
Exercise Price: Call $90
Dividend $1.00 quarterly
Knockout barriers at $80 , $110
Barriers observed weekly
Early Exercise No

TABLE 7
Data for the stochastic volatility chooser. This is an American chooser (i.e. it can be exercised at
any time).

o D

p -5

K 2

6 .04

A 0.0

r .05
Time to expiry 1.0 years

Dividend $1.00 quarterly

Early Exercise Yes
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Fic. 3. Value of European put and call at t* = T. The put and call have discrete double knockout
barriers at $80 and $110. Left: call, right: put.
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where U} is given in equation (28).

These problems were solved on a 123 x 76 grid. For the European put and call,
a fully implicit timestepping method was used. This i1s necessary to avoid spurious
oscillations, as discussed in [30] when pricing discrete barrier options. Crank-Nicolson
timestepping was used for the chooser computation.

Figure 3 shows the results for the put and call at t* = T (see Figure 2). This
data is used for the initial condition for the chooser (equation (28)) and the American
constraint (equations(32)).

Figure 4 gives the results for the chooser option at the initial time (¢* = 0). For
comparison, the results are also given for a chooser based on the same initial data,
but without the American early exercise feature. Note the regions near V' = .04, Asset
Price =$ 95, where the American chooser has significantly more value than the European
version. Grid and timestep reduction studies show that the discretization errors in the
region of interest are <$0.01.

The optimal early exercise regions (at ¢* = 0 and ¢* = 0.5) are shown in Figure 5.
These regions are determined from

(33) e <1,

In these cases, the optimal early exercise regions are multiply connected, which causes
no particular difficulty for the penalty method of satisfying the American constraint.

8. Conclusions. The American early exercise constraint for option pricing prob-
lems can be viewed as simply transforming the original convection diffusion equation
16



Fic. 4. Value of a chooser option, written on a European put and call at t* = 0. The put and call
have double knockout barriers at $80 and $110. Left: American chooser, right: European chooser.
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into a differential algebraic equation. Since option pricing constraints are typically non-
linear, the resulting set of nonlinear discretized equations can be solved by approximate
Newton iteration. This approach allows for the use of modern, robust methods for
iterative solution of the Jacobian matrix.

There are various ways to impose the early exercise constraint. A smoothly dif-
ferentiable penalty method was compared with a constraint switching technique. The
constraint switching method does not have a continuous derivative at points where the
constraint i1s switched. Somewhat surprisingly, the constraint switching method was
superior to the smooth penalty technique.

The constraint switching method for computing American options was demon-
strated on some option pricing problems based on a stochastic volatility model (which
gives rise to a problem in two space-like dimensions). Even very complex American
constraints (e.g. an American chooser written on discrete barrier options with discrete
dividends) with multiply connected early exercise regions were easily handled.

The method used here to impose early exercise constraint is very straightforward
to implement. Other types of constraints (e.g. callable convertible bonds) are easily
modelled. As long as an efficient sparse matrix solution method is used, there are no
restrictions on using this technique for higher dimensional problems. Note that the
computationally intensive part of these computations, the solution of the sparse Jaco-
bian, is completely decoupled from the details of any particular model, which permits
the use of modern sparse matrix software.

Since most stochastic models of the underlying assets for option pricing will result
in a convection-diffusion problem, and virtually any type of constraint can be forced
using a suitable definition of the discrete source/sink term, this means that it is possible
to construct a modular library for pricing a wide variety of options. This is because the
basic discrete equations are formally identical for a large number of different types of
options. Use of modern object-oriented approaches to software development thus permit
the user to develop complex new pricing models simply by writing a small number of
virtual functions.
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