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Abstract

The triangular Bézier patch presents a natural primitive for modeling surfaces of arbitrary
topology, but does not enjoy the same widespread use as the tensor product patch. Existing
triangular Bézier patch interpolation schemes that are designed to fit surfaces to parametric
data produce interpolants that suffer from noticeable visual flaws. Patch boundaries are often
visible as creases in the resulting surface.

Interpolation of functional data is simpler than interpolation of parametric data. However
schemes such as the Clough-Tocher technique have many of the same visual flaws as para-
metric schemes. Foley and Opitz introduced an improvement over Clough-Tocher. Central
to the Foley-Opitz scheme is the cross boundary construction that produces quadratically
varying cross boundary derivatives.

My work involves attempting to extend the Foley-Opitz scheme to the parametric setting.
Modifying this scheme requires the formulation of an extension to the standard rational
blend technique. In addition to blending interior control points, boundary control points
must also be blended to incorporate Foley-Opitz cross boundary construction, which relies
on the natural parameterization of the functional setting.

When interpolating irregularly scattered data and when increasing the tessellation of the
data mesh, the new scheme shows improvement over representative parametric data fitting
schemes. The quality of the resulting surfaces depended largely on the correlation between

the normals and the triangles of the underlying mesh.
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Chapter 1

Introduction

Modeling in computer graphics deals with the mathematical description of objects in a scene.
Surfaces can be modeled with polygonal meshes, which offer simplicity at the cost of large
memory requirement and difficult mesh manipulation. Polynomial spline surfaces solve both
of these problems by using a relatively sparse set of control points to define a surface that
can later be dynamically tessellated into a polygonal mesh. Mathematical conditions on the
placement of control points that ensure smooth joins between splines, also known as patches,
allow higher level manipulation of surfaces — instead of worrying about many polygons while
deforming a surface, relatively few control points of a spline need be modified. Extra control
points that ensure smooth joins can then be inserted automatically.
Fitting data supplied by the user of a surface modeling system requires points and,
potentially, normals in R3. The resulting spline, F, will have the form
z(s,t)
F(s,t) = | y(s,?)
z(s,t)
and will interpolate the data or provide a good approximation. This type of spline and data
are said to be parametric.
The tensor product patch, specifically the B-spline tensor product patch, is the spline
primitive of choice for constructing surfaces because of its high order continuity, local con-

trol, and interactive nature. The triangular spline 1s another primitive, but it has not enjoyed
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the same widespread use as the tensor product B-spline even though it dates back to the
birth of computer aided geometric design. Triangular splines are interesting and potentially
very powerful because they can naturally describe surfaces of arbitrary topology. The tensor
product patch maps a rectangular domain to an affine space, giving it an inherently rect-
angular nature. However, constructing surfaces that are not topologically equivalent to the
plane may present some problems. Triangular holes may have to be filled by constructing
degenerate tensor product patches — two boundaries are collapsed into one boundary to fit

the triangular hole.

The triangular Bézier patch is a two dimensional extension of the Bézier curve that pre-
serves several of the properties of the one dimensional case. Unfortunately, existing triangular
patch interpolation schemes have a number of drawbacks and must balance surface quality
with interactivity. Schemes that provide efficient evaluation, and hence interactivity, produce
surfaces of visually poor quality. Most schemes that improve on this quality use some type of
global or large scale optimization that makes interactivity infeasible. Triangular parametric
patches have the problem that higher degree patches must be used to fit the data, but the
patch formulation leaves many of the degrees of freedom of the high degree patch unused.
These degrees of freedom are then left as shape parameters for a modeler to adjust or are set
using some heuristic. Global optimization schemes attempt to set these leftover parameters
by minimizing some metric. A third approach is to use DMS splines [3], which have high

order continuity, but unfortunately are expensive to evaluate.

Mann [16] conducted a survey of local triangular spline interpolation schemes and has
concluded that none of the existing schemes produce high quality surfaces because of poor
boundary curve construction. I will consider the problem of improving existing local, para-
metric interpolation schemes that use triangular Bézier patches, or variants that are known

as hybrid triangular Bézier patches.

One setting in which triangular Bézier patches currently work well is the fitting of func-

tional data with functional patches. Functional patches are parameterized by the plane and
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hence represent a restricted subset of general parametric patches. They have the form

z(s,t)

The good results given by functional patches are a result of the restricted nature of the
functional setting — for cubic patches boundary curves are completely determined by the
triangle vertices and normals. This i1s in contrast to the parametric setting in which cubic
curve construction has four degrees of freedom.

My approach is to extend a good functional interpolation scheme, the scheme of Foley
and Opitz [10], to the parametric setting. In Chapter 2, I present some background material
about triangular Bézier patches, parametric schemes, and functional schemes. In Chapter
3, I consider the two elements of patch construction, boundary curve and cross boundary
construction, and present the Foley-Opitz scheme. In Chapter 4, I formulate a parametric
version of the Foley-Opitz scheme that includes the formulation of a new hybrid Bézier
patch. In Chapter 5, I analyze the new scheme by constructing interpolants for some test
data. Comparisons with other parametric schemes are made, plus an analysis of why the
new scheme gives some superior results. In Chapter 6, I present my conclusions, make some
recommendations about using the new patch, and point to some future work that could be

done in this area.



Chapter 2

Background

In this chapter, I present some background material on triangular Bézier patches, explain

the problem of fitting scattered parametric data, and discuss functional data fitting.

2.1 Triangular Bézier Patches

The triangular Bézier patch is a simple primitive that can be used to interpolate scattered
data while offering interactive manipulation and local control of a surface. There is no in-
herent relationship between the domain and range of triangular Bézier patches, so they are

candidates for interpolating scattered parametric data, i.e., producing a function of the form

that interpolates scattered points in R>.



2.1. Triangular Bézier Patches

2.1.1

Bernstein Polynomials

The m variate, homogeneous Bernstein polynomials, or Bernstein basis functions, of degree

7 are

where

and

They are essential building blocks in the formulation of Bézier curves and surfaces.

B (to,t1, .« b)) = tiogin ... gim

<

7

1= (o yim)y 3520, Y ij=m
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2.1.2 Bézier Curves

A degree n Bézier curve

F(t) = fj B (t)P;

(2.1)

uses the control points P; and the univariate Bernstein polynomials to map a segment of the

real line [a, b] to an affine space, typically R? or R3.

Among the useful properties of Bézier curves are

1. End point interpolation — F(a) = Po and F(b) = Py, so the Bézier curve contains the

first and last control points, a useful property for data fitting.

2. Convex hull property — For ¢ € [a,b] the curve lies in the convex hull of the control

points Pj.

2.1.3 Triangular Bézier Patches

Triangular Bézier patches are natural extensions of Bézier curves to two dimensions. Using

a triangular network of control points

S
P;:i = (io,11,%2), to + %1 + i3 = m, 4; > 0,4; are integers
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Figure 2.1: Triangular Bézier patches are polynomials mapping triangular regions of the real
plane into an affine space.
and the trivariate Bernstein polynomials

B?(to,tl,tz) — - tgot?t?,

-

a degree m triangular Bézier patch
(2.2)

F(t07t17t2) = Z PZB?(tO’tl’Q)’

maps a triangular domain, D € R?, to an affine space, typically %3, where ¢, ¢;, and t, are
the barycentric coordinates of a domain point relative to D.

When considered over the domain, D € R?, Bézier patches have some interesting prop-

erties:
1. Corner point interpolation — the two dimensional analogue of end point interpolation.

The Bézier patch contains the three corner control points but in general does not

contain any other control points.

2. Convex hull property — The image of the triangular domain, D € R?, lies in the convex

hull of the control points.
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3. Bézier boundary curves — The images of the three edges of the domain triangle are

Bézier curves defined by the boundary control points.

2.2 Scattered Data Fitting

The problem of scattered data fitting can be described as the problem of constructing a
function to interpolate a set of sparse data. I will only be considering the fitting of points in
3 and associated normals in this discussion.

“Scattered” means that the data is sufficiently sparse that interpolation will produce some
meaningful and efficient representation and that each piece of data contributes significantly
to the local structure of the interpolant. On the other hand, fitting dense data requires some
representation that indicates the overall structure of the data but gives little information
about the local structure of the data, i.e., an approximation. “Scattered” also implies a
non-uniform distribution of data. The data is assumed to have some structure — points are
organized into a mesh so that “neighbours” of each point are known. Issues such as mesh
construction from unorganized data or estimation of normals from data points, are beyond

the scope of this discussion.

2.2.1 Why Use Triangular Patches?

Two types of surfaces that can be used to solve the scattered data fitting problem are the
triangular patch and the tensor product patch. The underlying geometry of the triangular
patch is a triangle. The underlying geometry of the tensor product is the quadrilateral.

Bézier and B-spline tensor product patches have simple cross boundary constructions,
quick evaluation and high order continuity with local control, all highly desirable properties
for surface patches. However, the underlying geometry of tensor product patches presents
problems when modeling complex topologies.

Triangular Bézier patches have been around since the birth of computer aided geometric
design — de Casteljau investigated them as extensions of Bézier curves to surfaces. They are

a natural choice for data fitting and surface construction since surfaces of arbitrary topology
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can easily be decomposed into triangles. Unfortunately, triangular Bézier patches have not
been developed to the same level as tensor product patches and consequently are missing
some of the features of tensor product B-splines, most noticeably high order continuity.
Existing triangular Bézier patch data fitting techniques produce noticeable visual defects,
demonstrating the lack of high order continuity.

Other promising interpolation techniques, such as triangular B-splines [3], offer features
by using primitives more complex than the triangular Bézier patch. The increased complexity
unfortunately results in expensive evaluations, difficulty of use for the modeler, and thorny
implementation issues.

The Bézier patch is a simple primitive that not only interpolates data but facilitates

interactivity, local control, and natural construction of surfaces of arbitrary topology.

2.2.2 Continuity

To be useful for surface design a data fitting scheme must produce a continuous surface that
is smooth. I will outline continuity for parametric patches and present one G* construction,
Chiyokura-Kimura’s construction, that is an essential component of two of the interpolation

schemes discussed later.

Zeroth Order Continuity

The boundary Bézier curve of a triangular Bézier patch is completely determined by the
boundary control points so if two patches share the common boundary control points they

will meet with C° continuity.

First Order Continuity

From a geometric perspective, the mathematical term C' does not characterize the smooth-
ness of a surface well. For example, two neighbouring patches may share a border and cross
boundary derivatives along that border, but a change in the parameterization of one of the

patches will change the cross boundary derivatives of that patch making them no longer
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joined with C! continuity. There is no natural way to associate the domains of parametric
patches.

Tangent plane continuity, also known as G' continuity, is a better definition of the first
order continuity of a surface. Two patches are said to be tangent plane continuous, or G*
continuous if they have C° continuity along one boundary and have matching unit normals
along that boundary. See Farin’s book [5] for a formal description of G* continuity. Farin has
published a paper outlining simple conditions that are sufficient for two triangular Bézier

patches to meet with G continuity [7].

Chiyokura-Kimura

Of the various approaches to constructing surface patches, one technique is to first construct a
field of cross boundary tangent vectors using data from two neighbouring patches. Chiyokura
and Kimura [1] developed a technique that constructs a G* join between two bicubic tensor
product Bézier patches. The method can be extended to quartic triangular patches with
cubic boundary curves.

The following diagram shows the boundary separating two quartic patches plus the con-
trol points used in the construction. Note that the four boundary control points define a
cubic curve but the two patches are quartic. A cubic curve is used so that the G construc-
tion can exactly mirror the construction for the case of a bicubic tensor product patch. The
curve will be degree raised to a quartic after construction of the tangent plane field. Let F
be the patch with control points Fo, Fy, F2, F3, Ho, Hy, H,, and H3, and let G be the patch
with control points Gg, Gy, G2, Gz, Ho, Hy;, H2, and H3..

Any technique can be used to construct H(t), the cubic boundary curve. For patch F,
unit cross boundary tangent vectors, Co and él, are chosen at the two patch vertices Hy
and Hy. The cross boundary tangent field for F is chosen to be the linear blend

C(t) = (1 —1)Co + tC4

—

C(t) and H'(t) completely define the tangent plane field along the boundary. Note that when
working with patch G, —Cg and —C, would be used as cross boundary tangent vectors at

the patch vertices.
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Figure 2.2: Boundary between two quartic patches.

For patch F to agree with this tangent plane field there must exist a function
DiF(0,t,1 —t) = k(t) - C(t) + h(t) - H'(¢) (2.3)

where r(t) is the radial direction in the domain of F.

k(t) and h(t) can be evaluated at ¢ = 0 and ¢ = 1 by using Equation 2.3.
ﬁosz'éo—l-hO'Ion
ﬁ:lzkl'él‘l‘hl'ﬁl
where H; = Hyyq — Hy, Hy = Hyq — Hy ko = k(0),ky = k(1),ho = h(0), and hy = h(1).

Since, in general, kg # ki and hg # h; both h(t) and k(t) must be at least linear functions.

The construction is made easier if both A and k are restricted to be linear functions.

Equation 2.3 can be expressed in terms of the cubic Bernstein basis functions. The co-
efficients for B3(t) and B3(t) can then be used to determine the interior control points, Fy
and F,.

F, = %{(ko + k1)Co + koCy + 2hoHy + hyHo} + H,y
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1 “ ~ — —
F, = g{klco + (Ko + k1)Cx + hoHa + 2k Ha} + Hy

The choice of a linear function k(t) was arbitrary. Equation 2.3 is at most a cubic function
so the product k(t)é(t) can be at most cubic. k(t) could be chosen to be quadratic, giving
a scalar degree of freedom, or é(t) could be chosen to be a quadratic giving a vector degree
of freedom. The choice of a quadratic k(t) giving a scalar degree of freedom was used by
Jensen [13].

Chiyokura-Kimura constructs a tangent plane field along the boundary by blending cross
boundary tangent vectors at each of the triangle vertices to get a cross boundary tangent vec-
tor field. The cubic Bézier boundary curves used as input to the scheme plus the constructed
tangent vector field completely define the boundary tangent plane field. The interior points

that control G! cross boundary continuity are then determined by examining the radial

derivatives.

2.2.3 Vertex Consistency

Constructing two patches to meet with G! continuity is straight-forward. The patches must
share the same boundary control points and the interior control points can be set using
Farin’s [7] conditions or Chiyokura-Kimura’s [1] construction.

A more complex problem arises when constructing a network of patches. A patch may
require three G' joins with its neighbours but these cannot be constructed independently.
Continuity along one border may impose a constraint on an interior control point while
continuity along a different border may impose a different constraint on the same interior
control point. Figure 2.3 shows a cycle of patches centered around one point, illustrating the
system of constraints for a simple network. The constraints arising from an even numbered
cycle of patches sharing one vertex cannot in general be solved. With odd numbered cycles of
patches, every vertex in a mesh will have its own cycle of constraints and these various cycles
will be interdependent, requiring a global solution. This is known as the vertex consistency

problem.
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Figure 2.3: The vertex consistency problem with a network of cubic patches. Each pair of
shaded panels represents a constraint relating two interior control points. The system of

constraints must be satisfied to produce a G surface.

Vertex consistency needs to be solved for two reasons

1. For even numbered cycles of patches, the constraints have no solution in general so a

G' network of patches cannot be constructed.

2. For odd numbered cycles of patches, the constraints have a solution but a global solu-
tion is needed to construct G' joins for the entire network of patches. This calculation

is computationally expensive and prevents interactive manipulation of the surface.

Rather than solve it, there are two common techniques for bypassing the vertex consis-

tency problem — split domains and rational blends.

Split Domains

The split domain solution to the vertex consistency problem replaces each patch with three
patches. Figure 2.4 illustrates how the domain of the original triangle, the macro-triangle, is

split into three mini-triangles.

The control points for the mini-triangles are constructed starting from the outside and

progressing towards the center. The mini-triangles will have the same boundary control points
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Figure 2.4: Split domain solution for vertex consistency problem. The macro-triangle on the

left 1s split into three mini-triangles on the right.

as the macro-triangle along the outer boundary. The interior points of the mini-triangles are
then chosen to give G* joins along the outer boundaries. The inner boundaries are then set
to give G* joins across mini-triangles boundaries.

Splitting the domain helps avoid the vertex consistency problem by moving the problem
from the data points to the split point, which will always have an odd numbered cycle of
patches — there are three mini-triangles in a macro-triangle. The freedom to set the interior
control point of the macro-triangle eliminates the unsolvability of the even numbered cycles
of constraints around the macro-triangle corner points and eliminates the need for a global

solution for the odd numbered cycles of constraints around the macro-triangle interior point.

Rational Blends

The other standard approach to solving the vertex consistency problem is the rational blend.
Multiple triangular Bézier patches are created and each one is designed to handle one aspect
of the construction. For example, three patches could be constructed and each patch is
constructed to give a G* join along only one of the three edges. Figure 2.5 presents a domain
space view of the three patches. To evaluate the rational blend interpolant at some parameter
value, each of the multiple Bézier patches are evaluated at that parameter value, then an
affine combination of those points is taken. The coefficients of the affine combination are
rational functions of the parameters hence the name rational blend. Each boundary of the
resulting interpolant then has the tangent plane field of one of the multiple patches and

therefore has G' joins along all the boundaries.
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Figure 2.5: Rational blend solution for vertex consistency problem.

The only points on the boundary that have contributions from more than one patch are
the corners. The two patches that contribute to tangent plane continuity at a corner will in
general have different mixed partial derivatives. Vertex consistency is “solved” by allowing

inconsistent mixed partial derivatives at the corner points.

2.2.4 Some Data Fitting Schemes

The following are short descriptions of some scattered data fitting schemes that produce
either triangular Bézier patches or hybrid triangular Bézier patches, triangular interpolants
constructed from rational blends of triangular Bézier patches. Some of the schemes require
boundary curves as inputs while others include boundary curve construction as part of the

scheme.

Shirman-Sequin

Shirman and Sequin [20] introduced a split domain scheme that accepts vertex positions,
normals, and boundary curves as inputs and produces quartic Bézier patches.
Chiyokura-Kimura’s construction is used with the input cubic boundary curves to set
the inner control points close to the macro-triangle boundary. The cubic boundary curves
are subsequently degree raised to quartic curves. The cross boundary continuity conditions
between mini-triangles give equations relating the remaining control points in terms of scalar
parameters. These parameters are then set to give certain geometric properties to the inter-

polant.
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Shirman-Sequin’s scheme demonstrates one of the difficulties of moving into the para-
metric setting — the higher degree patches required by the parametric formulation introduce

unused degrees of freedom that must either be set using heuristics or left as shape parameters.

Nielson’s Scheme

Nielson [19] devised a triangular interpolation scheme that gives tangent plane continuity
using rational blends.
Nielson constructed three patches using a side-vertex curve constructor and blended them

together. The side-vertex curve constructor,
G(P7 Q7 NP7 NQ)7

accepts two points and two normals as inputs and produces an interpolating curve. The
boundary curves of the three patches are defined by the side-vertex constructor. To evaluate
the interior of one of the patches, a point and normal along a boundary curve are evaluated
and the side-vertex constructor is used with these and the opposite triangle vertex and
associated normal, giving a point in the interior. The following function weights the three
points evaluated on the three underlying patches, qo q; and qs, giving a point p lying on
the Nielson patch:

P(toatlatz) = aO(t07t17t2)q0 + al(t07t17t2)q1 + a2(t07t17t2)q2 (2-4)

where

t:tr
ai(to, t1,ts) = J
(to t1, %) tit; + tit + titr

i4j 4k (2.5)

Gregory’s Scheme

Triangular Gregory patches [14] take cubic boundaries as input and use rational blends of

interior points to produce an interpolant in a manner similar to the Foley-Opitz method.
Figure 2.6 shows the boundary control points plus all the interior points used in the

rational blends. Notice that the patch boundary curves are cubic, which is necessary when

using Chiyokura-Kimura’s tangent plane field construction. The cubic boundaries are later
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Figure 2.6: Triangular Gregory patch control points.

degree raised to quartic curves once the interior control points have been determined. The
interior points are chosen to give a specific tangent plane field along each boundary.

Let b,,b,, and b, be the domain space parameters that weight the vertices V,Vq, and
V., respectively. Then points I;; and I; are the points constructed to ensure cross boundary
continuity along the boundary corresponding to b; = 0. To evaluate the patch at (b, by, b,),
three interior quartic control points would be computed from the six interior control points
found in the diagram, using the following formula:

bk(l — bj)Iik ‘|‘ b](l - bk)I,j

I =
br(1 —b;) + b;(1 — br)

Then the quartic patch consisting of these three control points plus the input boundary
curves is evaluated at (by, by, b.). Thus, along the boundary b; = 0, the interpolant has the
same tangent plane field as a quartic Bézier patch with interior control points Ij and Iy;.
As with all rational blend schemes the interior of the patch is C' but does not in general
correspond to any quartic patch.

As an alternative method of evaluation, instead of constructing three quartic patches for
every point of evaluation, the blending functions used to construct the I;’s can be placed over
a common denominator allowing the interpolant to be represented as a convex combination

of seven different quartic Bézier patches. The blending functions then become degree six
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polynomials.

2.3 Restricted Data Fitting — Functional Data

In general, the data I am considering can be treated as though sampled from a parametric

function of two variables

An interpolation scheme then produces the interpolant F(s,#) which intersects G(s,t) at
the data points and has the same tangent plane at those points. Both the data and the

interpolant are referred to as parametric.

If G can be restricted to a function parameterized by the plane

z(s,t)

then the interpolant F(s,¢) would have the same form and therefore would be parameterized

by the plane. In such case, the data and the interpolant are referred to as functional.

An important property of functional patches that arises from the natural parameteriza-
tion is that the z and y coordinates of the control points are completely determined by the
z and y coordinates of the triangle vertices — the control points of a patch must be evenly
distributed over the domain triangle. This means that when constructing cubic patches, the

triangle vertices and normals completely determine the boundary curves.

In the parametric setting, the =, y, and z coordinates of the control points are free
variables. In the functional setting, only the z coordinates of the control points are free

variables.
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Figure 2.7: C* continuity conditions

2.3.1 C! Continuity

Functional interpolation schemes typically produce C'! surfaces. A simple geometric condition
can be given that ensures C! continuity for the boundary separating two patches, shown in
Figure 2.7 for the case of cubics. qo, q1,¢2, and ¢3 are the common boundary control points.
Po, p1,p2 and 1o, 71,79 are the two “paralle]” rows of control points next to the common
boundary.

Each pair of marked triangles must be coplanar for C* continuity. In other words, pg, o, 70,
and ¢; must be coplanar, p1, g1, 71, and ¢, must be coplanar, and p,, g2, 7, and, g3 must be
coplanar. The condition is similar for non-cubic patches. Each pair of triangles along the

shared boundary must be coplanar.

2.3.2 (C? Continuity

Figure 2.8 illustrates the necessary conditions for C? continuity between two cubic functional
Bézier patches.

Suppose that the barycentric coordinates of Wy with respect to Vg, Vy, and V3, are
r, 8, and t respectively, i.e., Wy = ¥V 4+ sV + tV,. Also, suppose that the barycentric
coordinates of V, with respect to Wy, Wy, and W, are 7, 5, and £ respectively, i.e., V, =
TWo +3Wy + tW,.

For the two patches to meet with C? continuity the following equations must hold

Qo + $q1 + tpo = Tro + Sry + ZSO (26)
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Figure 2.8: C? continuity conditions

rq1 + 5q2 + tpl =Try + Sre + ES] (27)

In other words, the planes hi-lighted by the shaded regions in the figure must have the same

z-value at the points marked a and b.

2.3.3 Clough-Tocher

The Clough-Tocher [2] [12] interpolation scheme is a classic solution to the functional data
fitting problem. It has been around for several decades and was originally used as a tech-
nique in finite element analysis. Clough-Tocher takes points and corresponding normals and
produces a split domain cubic interpolant with quadratic precision, i.e., given data sampled
from a quadratic function, the scheme will reproduce the original quadratic function.

The domain macro-triangle is split into three mini-triangles, shown in Figure 2.9, all of
which are the domains of cubic patches.

Figure 2.10 shows the order in which control points are constructed. The points marked 0
are inputs and have normals associated with each of them. Points marked 1 are determined
by the vertex positions and vertex normals using Hermite interpolation. Points marked 2
are then calculated to ensure C! continuity across the macro-triangle boundary. The points
marked 3 are determined by the C'! continuity conditions across mini-triangle boundaries.

The only degrees of freedom in the entire scheme, the settings of the points marked 2, are

set to give linearly varying cross boundary derivatives across the macro-triangle boundaries.
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Figure 2.9: Top-down view of triangle subdivision

0

Figure 2.10: Order of calculation of Clough-Tocher control points

The choice of linearly varying derivatives results in a C! cubic interpolant with quadratic

precision.



Chapter 3

Boundary Curves and Cross

Boundary Continuity

My goal is to improve the surface quality of existing parametric interpolants. There are
two components to patch construction that can be examined separately — boundary curve

construction and cross boundary continuity construction.

Functional cubic boundary curve construction is completely determined by corner posi-
tions and normals. In contrast, parametric boundary curve construction is more problematic.
Mann [16] has concluded that poor boundary curve construction is the primary reason for

poor visual quality of parametric triangular interpolants.

My approach to improving parametric surface quality will be to study interpolation
schemes in the functional setting and to transfer a construction to the parametric setting.
This means that boundary curves will not be an initial consideration since they are com-
pletely determined in the functional setting. Instead, I will concentrate on a cross boundary

construction and investigate whether it can be transferred to the parametric setting.

I will consider a functional interpolation scheme, the Foley-Opitz [10] scheme, that im-
proves on Clough-Tocher. The key component of the scheme is the cross boundary continuity
construction — not only are patch joins C*! but the patch has cubic precision. There is visual

improvement over the C*' surfaces with quadratic precision produced by Clough-Tocher.

21
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Figure 3.1: Domain control net for the Foley-Opitz hybrid Bézier patch.

3.1 The Foley-Opitz Scheme

Foley and Opitz [10] present a method for interpolation of scattered data above the plane
using a “hybrid” cubic Bézier patch that is based on Nielson’s scheme. The cubic patch
boundary is determined by the triangle vertices and normals. The calculation of the three
inner control points using a new C' cross boundary construction is introduced that gives
cubic precision, i.e., when given data sampled from a cubic surface the scheme reproduces
that cubic surface.

Figure 3.1 shows the domain control net for two neighbouring triangles. p, 1s one of the
three interior control points associated with the left triangle and ¢, is one of the three interior
control points associated with the right triangle. The following is the Foley-Opitz method
for computing ps.

Let r,s, and t be the barycentric coordinates of cgg3 with respect to bggs, bosg, and bgosz. If

both patches form a single cubic, then from subdividing Bézier cubics it can be shown that

102 = T2bsgo + 2r8ba1o + 2rtbag + 8%b1ag + 28tps + t2b1os (3.1)

o1z = T2ba10 + 2r8byag + 28tbosr + %boso + 2rtps + t2bo1s (3.2)

Similarly, if u, v, and w are the barycentric coordinates of bggs with respect to cggs, cozg, and
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Coo3 then

broa = u’cso0 + 2uvca1o + 2uwesy + vierao + 2vwqs + w102 (3.3)

bo1a = u*ca10 + 2uverag + 2vwega + viepso + 2uwgs + weors (3.4)

Equations 3.1 and 3.2 are two of the three equations obtained during the second last step of
the deCasteljau algorithm when evaluating the patch given by bsgo, boso, and boos at (7, s, ),
the barycentric coordinates of ¢go3 with respect to (bso0, boso, boos)-

Foley and Opitz show that the over-determined system of equations for p, in Equa-
tions 3.1 and 3.2 always has a solution and similarly that g, can always be determined from
Equations 3.3 and 3.4.

ps and qo as calculated above ensure that the two triangles have a C! join along their
common border. Identical calculations would be made to ensure C! continuity across the
remaining two edges giving three settings for the interior control points of each of the two
patches.

Nielson’s rational blend function, Equation 2.5, is used to weight the three calculated

interior control points, giving

bi11(to, t1,t2) = ao(to, t1,t2)pPo + a1(to, t1,t2)p1 + aa(to, t1,t2)pP2 = P, (3.5)

a point that is then treated as the single interior control point of a cubic patch. This rational
blend introduces removable singularities and inconsistent mixed partial derivatives at the
triangle vertices.

To see why the patch has cubic precision, consider pg, p;, and p,, the interior points
corresponding to the edges bsooboso, b300b003, and bgsgboos respectively. Suppose that the three
points, bzoo, boso, and bgos, and corresponding normals are taken from a cubic surface. The
three calculated interior points will be identical since the cross-boundary construction as-
sumed that the data was sampled from a cubic surface. The resulting blend of the three
interior control points will give the interior control point for a cubic surface, meaning that
the Foley-Opitz patch becomes a cubic Bézier patch. Thus, the Foley-Opitz method has cubic

precision.
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Figure 3.2: The Franke data set interpolated with Clough-Tocher patches, left, and Foley-
Opitz patches, right.

Figure 3.2 shows the Franke data set [11] interpolated with Clough-Tocher and Foley-
Opitz patches. The smoothing out of patch boundaries is the significant improvement in the
surface quality. The underlying triangular patches are visible throughout the Clough-Tocher
interpolant and are noticeable as creases surrounding triangular regions of the surface. The
Foley-Opitz interpolant is generally smoother but still has some visible patch boundary

creases.

3.2 Combining Foley-Opitz with Clough-Tocher

Both Foley-Opitz and Clough-Tocher provide solutions to the data interpolation problem.
However, each scheme has both strengths and weaknesses. The Foley-Opitz scheme gives
a C' interpolant with cubic precision at the cost of using a rational blend, a degree five
over degree two rational polynomial. The rational blend introduces removable singularities

and inconsistent mixed partial derivatives at the triangle vertices. Using the split domain
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technique, Clough-Tocher produces a piecewise cubic patch with quadratic precision.

Mann [17] has combined these two schemes. In calculating the midpoints of the three
micro-triangles in Clough-Tocher the choice of conditions ensuring quadratic precision was
arbitrary. Simply exchange Clough-Tocher’s cross-boundary conditions for those of Foley-
Opitz. The added complication over and above the standard calculation required for Clough-
Tocher will be the inspection of neighbouring triangles. Clough-Tocher uses a blend of the
boundary control points to set the midpoint while Foley-Opitz uses information from the
neighbouring triangle in addition to the boundary control points.

The resulting patch will be piecewise cubic and will have cubic precision. Given data
sampled from a cubic surface, the original surface will be reproduced using this method. The
patch will not have the inconsistent mixed partial derivatives found with the Foley-Opitz

scheme or Nielson’s scheme.

3.3 Other Cross Boundary Schemes

There are other functional cross boundary schemes for cubics [17] which I will briefly describe.

Farin [6] devised a split domain cubic C' scheme that minimizes C? discontinuity be-
tween mini-triangles across macro-triangle boundaries. A macro-triangle is constructed to
give quadratic precision then is subdivided into three mini-triangles. The interior control
points of the mini-triangles are adjusted to minimize C? discontinuity across the macro-
triangle boundaries. The remaining mini-triangle boundary control points are then set as in
Clough-Tocher. This scheme has quadratic precision.

Mann [17] has modified Farin’s scheme to give cubic precision by constructing three
macro-triangles, each of which minimizes C? discontinuity across one boundary. One mini-
triangle is retained from each patch after subdividing and leftover mini-triangle boundary
control points are set as in Clough-Tocher. A Clough-Tocher scheme using the Foley-Opitz
technique and this modified Farin method are nearly identical. Both methods have cubic
precision, but while in general both yield better surfaces than the original Farin technique,

there are times when the original Farin technique produces surfaces of better quality.
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Since the difference between these schemes and the Foley-Opitz is minor, I did not test
any of them in my surface construction technique. I did not consider any iterative cross

boundary techniques [6] [8].



Chapter 4

A New Interpolation Scheme

The problem with local data fitting in the parametric setting is that existing schemes produce
visually unsatisfying interpolants. Mann [16] has published a survey of parametric scattered
data fitting schemes using triangular interpolants. The conclusion reached in that survey is
that the methods available at the time produced interpolants of roughly the same quality,
and that quality was poor, despite all the interpolants being G'. Even though different
surface construction methods were used — split domain and rational blend - the results were
uniformly mediocre. This was attributed to the one step of surface construction common to all
the schemes — boundary construction. Many schemes require boundary curves as input to the
interpolation scheme while others provide some method of construction. The construction of
boundary Bézier curves does not exploit the structure of the patch or naturally complement
the patch.

One of the underlying problems behind the poor surface quality and the boundary curve
construction is the number of degrees of freedom. Unlike curve construction, in which the
degrees of freedom roughly equal the number of conditions imposed, the surface construction
problem does not give as efficient a solution. In this setting, parametric cubic patches cannot
be joined with G' continuity, and the need for higher degree patches results in many excess
degrees of freedom, which are typically set using heuristics or are left as shape parameters
for a modeler. The ideal interpolation scheme would use up all the excess degrees of freedom

to satisfy geometric constraints and, in doing so, produce a fair surface.

27
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In light of the problems with parametric patches, I have decided to approach the problem
of data interpolation from the better understood domain of functional schemes and have tried

to “parameterize” one of these schemes.

4.1 Overview of the New Scheme

My goal is to create a parametric version of Foley-Opitz so as to bring its good surface quality
to the parametric setting. Converting Clough-Tocher or a related split domain scheme to
the parametric setting would require degree raising to quartic patches or higher at best.
Converting a rational blend functional scheme to the parametric setting is easier, promises
a greater degree of success, and preserves the structure of a cubic patch.

The Foley-Opitz cross boundary construction relies on a natural parameterization be-
tween patch pairs since the barycentric coordinates of neighbouring patches with respect
to each other are key in determining the tangent plane fields. Barycentric coordinates are
always taken with respect to a plane that parameterizes the patches. Therefore, some asso-
ciation between neighbouring patch domains must be made in order to use the Foley-Opitz
tangent plane field construction.

My approach is to choose a plane for each patch pair, project the control points of both
patches onto the plane, and then perform the Foley-Opitz C' construction. Three sets of
control points are calculated for each patch — each set representing a C'! construction along
one triangle edge. The three sets of control points will share the same triangle vertices but
in general differ in the rest of the boundary and interior control points. Unfortunately, the
rational blend used by Foley-Opitz in the functional setting only allows for a blend of the
interior control points and not the boundary control points.

However, having multiple sets of boundaries can be overcome by treating the boundary
points in the same manner as the interior points — both boundary and interior control points
are blended to produce the final interpolant. Figure 4.1 shows the domain control net for a
parametric version of the Foley-Opitz scheme. The structure is similar to Foley-Opitz — the

control points are organized as the control points of a cubic triangular Bézier patch except
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Figure 4.1: Domain control net for a parametric Foley-Opitz patch.

that a group of parametric Foley-Opitz control points correspond to a single regular cubic

control point.

The control points are taken from three different Bézier patches and characterize the
three boundary tangent plane fields. Each of the three patches share the same triangle
vertices, bsgo, boso, and bgos, but in general do not share any other control points. By
contributing a set of control points each patch determines the tangent plane field along one
edge. Figures 4.2, 4.3, and 4.4 show the contributions from each of three Bézier patches to
the parametric Foley-Opitz patch. The control points in the figures determine the tangent
plane field along the bgsobooes, bsooboos, and bsgoboso edges respectively.

In the construction of the tangent plane field along a particular boundary only two para-
metric Foley-Opitz patches are involved and consequently only two Bézier patches. Each
Bézier patch contributes seven control points to a parametric Foley-Opitz patch, as in Fig-
ure 4.2. These control points determine the tangent plane field along that boundary. To
construct the seven points, some plane is chosen as a natural parameterization for the two

Bézier patches allowing the construction as in the Foley-Opitz functional scheme. Once the
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Figure 4.2: Tangent plane field control points along the bgzgbgos edge.

V= Dy

Figure 4.3: Tangent plane field control points along the bggobgos edge.

plane is chosen, then the Bézier patch control points are completely determined by the tri-
angle vertices and the associated normals. Hermite interpolation over a plane completely

determines the cubic boundary curves and the Foley-Opitz cross boundary construction de-
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Figure 4.4: Tangent plane field control points along the bggobgse edge.

termines the interior control points.

There are some degrees of freedom in the choice of a plane and also some restrictions.
The orientation, not the position, of the plane determines the positions of the control points
thus giving two rotational degrees of freedom. However, treating the plane as a function that
maps a set of points and normals to two angles is awkward. The plane should be constructed
geometrically from the given information — triangle vertices and normals. The two Bézier
patches must not have overlapping domains on the plane so the orientation is restricted to

being “underneath” both patches.

One failsafe method of choosing a feasible plane is to take the plane that is perpendicular
to the bisecting plane of the two neighbouring triangles and that also contains their common
edge. Figure 4.5 shows the bisecting plane for the two triangles PQR and SQR. The triangle
is bisected in the sense that /PRT = /SRT and /PQT = /SQT for any point T on the
bisecting plane. The final plane, Figure 4.6, contains the edge QR and is perpendicular to
the bisecting plane. Note that P, the projection of the triangle vertex P, will never lie in the
the triangle SQR so the patch domains will never overlap.

Another possibility is to use the information provided by the normals at the triangle
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Figure 4.5: The bisecting plane for triangles PQR and SQR. Angles PRT = SRT and
angles PQT = SQT for any point T on the bisecting plane.

Figure 4.6: Plane used to parameterize neighbouring Bézier patch pairs.

vertices to construct the plane. The normals give information about the shape of the function
from which the data was sampled making them ideal as input for the construction of the

parameterization plane.

Once the control points from three Bézier patches are calculated they can then be used
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COZl(u) COJ.Z(U)

Figure 4.7: Control net after blending parametric Foley-Opitz control points.

to formulate the parametric Foley-Opitz patch. However, blending is not as straightforward
as in the functional case — boundary points are included in the blend. Figure 4.7 illustrates
the control net for the parametric patch. Each point ¢ is a rational blend of the associated
control points from the three Bézier patches shown in Figure 4.1. The points c3g0, Cozo, and
Coos are constants, the remaining boundary control points are rational blends of two Bézier
patch boundary control points and three Bézier patch interior control points. The coefficients
used to blend the bjjc control points are functions of the patch parameters so that different

cijk will be used at each point of the evaluation.

When evaluating along the edges, the blend formulation must preserve the important
properties of the three underlying Bézier patches, boundary curves and cross boundary
derivatives. The corner control points are constants so no blending function is needed. The
blending function for the interior control points is the same as used in the Foley-Opitz

functional construction.

c111(u) = wo(u)byi10 + wi(u)byzr 1 + wa(u)byar 2
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where

U U

i FGFk

wi(“Oa Uy, 11,2) -
Uy + UoUz + UL U2

The boundary control points are blended to give two properties:

1. When evaluated along a boundary the parametric Foley-Opitz control points become

the control points of one of the three Bézier patches

2. The tangent plane field of the parametric Foley-Opitz patch along a boundary matches
the tangent plane field along the same boundary of one of the three Bézier patches.

An asymmetric blend of the following form has both of these properties

(1 — u)uy?

1 — ’UJi)’UJj2 —|— (1 — ’qu)’UJi2

(4.1)

hij(wo, uy, us) = (

This blending function is used to weight all the non-vertex boundary Bézier control points.
The blends for the cjjk control points have a similar structure but differ in the exact blend

functions used. For example, the V1V, edge control points would be
C012(110, uy, 112) = h01(u0,u1,u2)b012,0 + h10(u0,u1,u2)b012,1
C021(u07 uy, 112) = hoz(uo,uhuz)bon,o + h20(u07u17u2)b021,2
Evaluation along the V1V, edge uy = 0 gives
C012(0, uy, 112) = h01(0,u1,u2)b012,0 + hlo(o,ul,uz)bmz,l = b012,0

C021(07 Uy, 112) = h02(07u’17u2)b021,0 + h20(07u17u2)b021,2 = b021,0

since Equation 4.1 gives ho;(0,u1,us) = 1 and hio(0, %1, us) = 0. The V{1V, boundary curve
1s the cubic Bézier curve given by the control points bgso, boz21,0, Po12,0, and bges which is

suggested by Figure 4.2.
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4.2 Details of the New Scheme

Control Points

I will introduce a notation for parametric Foley-Opitz patches that allows for a concise
definition of the patch. Figure 4.7 shows that the structure of the control net for a parametric
Foley-Opitz patch is similar to the case of a cubic triangular Bézier patch and Figure 4.1
shows how the notation is also similar. The control points for a parametric Foley-Opitz patch

are
bso0, boso, boos

bi110,b111,1,b1112

bs(012),00 > Po(012),01 -
The corner control points bzgg, boso, boos are exactly the same as in a cubic Bézier patch.
The interior byq1; points, and the way in which they are subsequently blended, are taken
from the paper of Foley and Opitz. The points that are subscripted with ¢(012), o; represent
a new notation that allows the patch definition to have the same form as a standard cubic
Bézier patch.

0(012) represents an arrangement of the numbers 012. ¢ is the position of 0 in the

arrangement, and oy is the position of 1 in the arrangement. For example, choosing ¢(012) =
210 would give

Og = 2

g1 = 1
bo‘(012),0'0 = b210,2
bo‘(012),0'1 = b210,1

The difference in notation between these points and regular cubic Bézier control points
is the addition of the second subscript. The new subscript indicates which parameter, and
consequently which edge, is most closely associated with the control point. As will be demon-
strated shortly, the oo control points control C° continuity, and the o, control points control

G continuity.
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The control points {bszeo, boso, boos, b;J} are blended together to form the ten control
points of a standard cubic Bézier patch, labeled as c;(u). The Bézier patch defined by the c;

1s then evaluated at u. The concise definition given by the new notation is

There are then three types of by control points: triangle vertices, boundary control points
that are not triangle vertices, and interior control points. The corner control points bsgg,

boso, and bggs are not blended so

Csoo(u) = bsoo0, Coso(u) = boso, Coos(u) = boos.

The center control points by110, b111,1, and bji12, are blended as in the Foley-Opitz

scheme [10] using the blend functions

UsUp

77:#]‘%1{;7

wi(u07 Uy, u’2) -
Uty + UolUs + Uil

and the center control point is

ci111(u) = wo(u)bii10 + wi(u)by11,1 + wa(u)byyy 2.

The boundary control points that are not triangle vertices are blended in the following
manner
Co(012) (1) = Pogo, (0)bo(012),00 + Poroe (1)bo(012),04 5 (4.2)
where
(1 — wi)u,”

hij(ll) - (1 - ’UJi)’quz + (1 - Uj)ui2 ’

(4.3)

The boundary control points are thus

(1-— uo)uzzbozl,o + (1 — u2)ug ’bo21 2
C021(u) = 2 2
(]_ — UO)UQ + (]_ ’le)’lLo
(1-— uo)ulzbmz,o +(1- ul)u 012,1
C012(11) = 2 2
(]_ — uo)ul + (]_ — ul)uo
(1-— Ul)uzzbzol,l +(1- uz)u 201,2
C201(u) = 2
(]_ — ul)uz + (]_ — ’le)’lLl
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(1-— ul)uozbloz,l +(1- uo)u12b102,0
C102(11) = 2 2
(]_ — ul)uo + (]_ — uo)ul
(1-— uz)u12b210,2 +(1- Ul)uz2b210,l
C210(u) = 2 2
(]_ — ’ng)’lLl + (]_ — ul)u2
c1z0(n) = (1-— Uz)uo2b120,2 +(1— Uo)u22b120,o

(]_ — ’ng)’lLoz + (]_ — UO)ng
Evaluating the patch at the boundary will reveal some information about the structure
of the patch and explain some of the notation used to describe the points. Note that when

evaluated along the edge u,, = 0, Equation 4.2 becomes

= bo‘(OlZ),o‘g

[Co(olz) (11)}

Uy =0

since Equation 4.3 gives

= 1, {h(,lgo (u)b0(012)700}u = 0

o =0

[hmm (u)bo(012)70'0i| u

o =0

The triangle vertices plus the control points subscripted with ¢g, by(012),60, determine the
parametric Foley-Opitz patch boundary. This continuity is completely independent of control
points with a o1 subscript, by(012),0, , since Equation 4.2 gives these points zero weight along

the patch boundary.

Cross Boundary Derivative and Tangent Plane Field

The tangent plane field is determined by the boundary curve derivative and the cross bound-
ary derivative. The boundary curve derivatives are the derivative of the three Bézier curves
that form the borders of the patch. The cross boundary derivatives of the patch are direc-
tional derivatives with respect to a domain vector, d = (d, e, f), and evaluated at a point
on one of the three patch boundaries, uwg = 0, u; = 0, or uy = 0. d must not be parallel to
the boundary containing the point of evaluation unless the point is one of the three triangle
vertices, bsoo, boso, or bges. This section calculates the cross boundary derivative of the
patch F(ug, u1,us) and draws conclusions about the structure of the patch.

The patch formulation is symmetric in form with respect to the parameters ug, u;, and

ug so that the cross boundary derivative need only be computed for one of the bzgoboso,
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bsooboos, or bosoboos edges. The derivative will be calculated on the bggobese edge at
the point u = (¢,1 — ¢,0),t € (0,1). The general directional derivative vector used here
is d = (d,e, f). Common direction vectors to use are either the radial direction vector
d = (¢,1—t, —1) or some constant direction vector parallel to either the bgosbsee or beosboso
edge, i.e., either d = (1,0,—1) or d = (0,1, —1).

The directional derivative [5] of a surface F at the point u = (ug, u1, u2) and with respect

to the vector d = (d, e, f) is given by
DF () = dFyy(u) 1 eFo, (1) + fF, (u)

where Fy,,, Fy,, and F,,, are the partial derivatives of F with respect to wug, %, and us, 1.e.,

0 0 0
= a—uO:F(ll)7 Fu1 = a—ul:F('ll)7 Fu2 [ ——

The patch F(u) is given by

F(u) = Z B:(u)c(u) = Z Zolfﬁ
F=3 =3 O

Fy,

uPului2e(u)

where
Caoo(u) = bsoo0, Coso(u) = boso, Cooa(u) = boos
u1u2b111.0 + wouzbi11,1 + wou1bi11,2
UgUy + UoUs + UL U2

Ca(012)(11) = haoal(u)ba(on),oo + halao(u)bo(mz),al

C111(11) =

The evaluation can be simplified by recognizing that v, = 0 when calculating the cross
boundary derivative along the bggoboso edge. Any terms with us still left as a factor after
taking the partial derivative can be discarded. Each of the following expressions for Fy,(u),

F,,(u), and Fy,(u) leave out terms which have a factor of u, after differentiation.

0
Fuo (1) |uy=0= e [Bgoo(u)CSOO(u) + Byyo(u)earo(u) + szo(u)clzo(u)LFO (4.4)
=3 {Bzzoo(u)bi%OO + Bf(u)b21o2 + Bgzo(u)bnoa}w:o
a 3 3 3
Fu, () [u=0= s {leo(u)czlo(u) + Biy(u)cizo(n) + Boso(u)COSO(U)LFO (4.5)
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=3 [Bzzoo(u)bZIOJ + B} o(u)bizo 2 + Bgzo(u)boao}

u =0

0
Fu, (1) fup=0= 5 - [3301(11)0201('1) + Biy(w)ewn(u) + Bgzl(“)cozl(u)} _0 (4.6)
2 U2 =
=3 {Bgoo(u)bZOLZ + Biig(u)banrz + Bgzo(u)bmlﬂ]wzo
The resulting directional derivative is
D(d,e,f)F(ta 1 —1t,0) = [dbsgo + ebz102 + fb201,2]B§00(t, 1—¢,0)+ (4.7)

[dbz2102 + €bi202 + fb111,2]31210(t7 1—t, 0)‘|‘
[db120,2 + €boso + fboz1,2]Bisg(t, 1 — ¢, 0)

The directional derivative [5] of a cubic triangular Bézier patch, with control points
{b3s00, boso, boos, bf,2}7 at u = (¢,1 —1¢,0),t € (0,1), is identical to Equation 4.7. The cross
boundary derivative on the bsgobese edge is given by substituting d = (d, —d,0),d # 0. By
symmetry in the structure of the patch formula, the cross boundary derivative along the
other two boundaries has a form similar to Equation 4.7.

The patch can be used to construct a G! network of parametric triangular patches since
rational blends solve the vertex consistency problem by combining independently constructed
boundary tangent plane fields. However, the patch provides more than independent boundary
tangent plane fields. The Foley-Opitz scheme uses a convex combination of three triangular
Bézier patches that must share the same boundary — they only differ in the interior control
point. This patch gives the freedom to choose the boundaries independently for each of the
three Bézier patches. Two neighbouring patches can be considered locally functional patches
by choosing some plane as a natural parameterization. Functional interpolation techniques
can then be used to construct a G! join. This process can be repeated for each patch pair

to give a G' network.

Choosing a Plane

The relationship between two patches is defined by choosing a plane with respect to which the

patches can temporarily be treated as functional patches. Using a plane in the range space
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Figure 4.8: Two neighbouring data triangles with vertices Vi, V4, V., and V. and normals

Np, Nq, Nr, and Nj.

as a temporary “natural parameterization” for the two patches allows easy construction of
both boundaries and C* joins between the two patches. To construct a network of patches,
a different plane must be chosen for every triangle boundary. Let the two triangles that we

are trying to join together, shown in Figure 4.8, have vertices
Vo, Vq, Vi, Vg

and normals

For the V, Vg boundary some plane must be chosen to facilitate the Foley-Opitz con-
struction. The obvious restriction that would apply to such a plane is that the projections
of the two triangles onto the plane cannot overlap and that neither of the triangles can be
projected onto a line segment. Figure 4.9 illustrates these restrictions.

Note that what is important here is not the position of the plane but only its orientation
relative to the two triangles. Thus only a normal is needed to characterize the plane since
whenever height values are required any point can be substituted into the point-normal

definition of the plane. Let N be the normal we are trying to select.
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Figure 4.9: The three cases for projecting triangle pairs: acceptable projection, left, overlap-

ping domains, middle, degenerate projection, right.

The restriction on the plane relating to projections of the two triangles is that
(Cpe -N)(Cop - N) > 0 (4.8)

where

and

Vpg=Vp — VgVig = Vi — VqViq = V. — V

I have chosen two different methods for selecting a plane. The first method is to take the
average of the normals at the two triangle vertices on the common border between the two
patches. A A

Np + Ny
[ Np +Nq |

The second is to take the vector that is perpendicular to the common edge between the two

N =

triangles and that bisects the two normals defining the two planes containing the two data

triangles. The normal is then
Npgr + Npgs
| Npgr + Npgs |

where Npqr and Npqs are the normals that define the planes containing the two triangles.

N =
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The first method does not guarantee that the normal satisfies the criteria given above but
does incorporate the information given by the data normals. When a normal is constructed
that does not satisfy the criteria, I revert to the second method of choosing a plane.

The second method will not work when the two data triangles lie on the same plane. In

this situation the input data will have to be modified.

Boundaries

The construction of a projection plane as described above requires two neighbouring data
triangles. However, special treatment is required when constructing patches that border the
edge of a data set since these patches will have one or more edges for which no neighbour
exists. When constructing a patch associated with one of these bordering edges I use the

data triangle as the projection plane.

Using Other Blends

In my formulation of parametric Foley-Opitz patches, I have used the function

u1t2b111.0 + wouzbi11,1 + wou1bi112

UgUy + UoUs + UL U2

C111(11) =

when blending interior control points. Other weights may be used when blending the interior

control points provided that their sum is one. For instance, weights of the form

utusbi11,0 + ugusbii11 + ufulbiii2

Ci111\1) =
() uguy + uguy + uiuy

where n is an integer can be used since

N, N
Uy

> =1

TNy, T My, TNy, T
UgUy + Ugty + Uy

However, in practice, increasing the exponent of each parameter did not improve surface
quality. Variations on the weights for the boundary control points did not give any improve-
ment over the weights I have already outlined.

The Foley-Opitz functional construction produces patches with cubic precision by using

information from 9 control points per edge — three rows of control points. In my formulation
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of parametric Foley-Opitz patches, I have included only the first two rows of control points
in the final interpolant. Although three rows were used to set the interior control points,
the third row of control points is thrown out. I have experimented with incorporating these
points into the blend but the resulting surfaces did not improve on the simpler blend I have

already outlined.



Chapter 5
Analysis of the New Scheme

The formulation of parametric Foley-Opitz patches is an interesting variation on existing
schemes because the blending of boundary control points allows the three Bézier patches
which form a parametric Foley-Opitz patch to be constructed independently — they are
not required to share the same boundary, only the same corner points. This allows the
incorporation of elements from functional data fitting schemes into neighbouring patch pair
constructions.

One consequence of using this rational blend is that removable singularities are introduced
at the patch corners. When evaluated at a corner, the term frac00 will appear as the weight of
the corner control point. In this case, the patch formula should not be used. When evaluating
near the corner, attention should be paid to possible numerical instability.

Parametric Foley-Opitz patches have some basic properties that are necessary to establish
the scheme as a valid option for data interpolation: parametric Foley-Opitz patches interpo-
late the given data with G continuity, and the contributions of the three Bézier patches to
the three boundary tangent plane fields are independent. In contrast to these mathematical
conclusions, the analysis in this chapter will be mostly qualitative and will largely involve
evaluation of the visual quality of surfaces.

I have constructed interpolants for three data sets that demonstrate the effect of variations
in Foley-Opitz patch construction, evaluate how the surface is affected by the density of the

input data, contrast surfaces produced by other interpolation schemes, and isolate different
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Figure 5.1: Cat test data set.

components of parametric Foley-Opitz patches.

The cat data set, shown in Figure 5.1, will be used as test data for some of the discussion
of surface quality and the choice of parameterization plane. The data set includes vertex
positions, normals, and a mesh of triangular faces. Each normal in the cat data set was
constructed by weighting the surrounding face normals with the inverse area of the faces.
Note that this is not the only method of construction of normals from data points and that
different techniques could influence the resulting surface shape. There are 366 vertices and

698 triangular faces in the data set.

The two tori data sets, shown in Figure 5.2, contain vertex positions, normals, and second
fundamental forms sampled around the torus at regular intervals, plus a mesh of triangular
faces. The torus was sampled at regular intervals both around the large circle and around the
small circle. The first data set has 10 samples around the large circle and 5 samples around
the small circle giving 50 vertices and 100 triangular faces. The 10 x 10 sampled data set
has 100 points and 200 faces.
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Figure 5.2: Tori data sets sampled 10x5, left, and 10 x 10, right.

5.1 Choosing a Projection Plane

Section 4.2 outlined two methods for choosing the plane that is used as a local parameteri-
zation between two neighbouring triangles — using the plane perpendicular to the bisecting
plane of the two triangles that contains the common edge and using the plane defined by the
average of the normals from the common edge. The first uses only the information provided

by the input points while the second uses only two input normals.

Using the plane determined by the bisecting plane guarantees that the construction can be
done since there will be no overlapping projections of triangle pairs. Using this plane means
that parametric Foley-Opitz patches can then be constructed for any data, provided that
the normals are not parallel to the plane of projection. This plane is the natural choice and
at first inspection, the superior choice. However, after examining some constructed surfaces

I found this method to be of limited use.

As a rough measure of the quality of patches produced by the parametric the Foley-Opitz

scheme I have chosen to consider those patches that have control points that are “far” from
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003 b120,0

Figure 5.3: Some conditions for good patches: | byi10 — bsoo |< Ci | boos — bseo | or

| b111,0 — bsoo |< C; | boso — bsoo | ) | b120,0 — bsoo |< Ch | boso — bsoo |

the underlying data triangle to be unacceptable. By “far,” I mean that the distance between
boundary control points, interior control points and the corner control points exceeds some
tolerance. For example, Figure 5.3 shows a data triangle plus the by110 and bj290 control

points. by11,0 would be an unacceptable control point if
| bi11,0 — bsoo |> C; | boso — bsoo |

and

| bi11,0 — bsoo |> C; | boos — bsoo | (5.1)

b1200 would be unacceptable if
| bi20,0 — bsoo |< C | boso — bsoo | (5.2)

C; and ()} are constants that represent tolerances for the interior and boundary conditions
respectively. If any one control does not satisfy the conditions then the whole patch is treated
as unacceptable. Note that interior points are compared against two triangle sides while
boundary points are compared against only one side.

Figure 5.4 shows the parametric Foley-Opitz scheme run on the cat data set with patches

removed that do not satisfy the conditions given by Equations 5.1 and 5.2 with tolerances
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Figure 5.4: Parametric Foley-Opitz patches fitted to the cat data set using a projection plane
that is perpendicular to the bisecting plane. Patches failing to meet the tolerance C; = 3

and Cp = 3 were not rendered. 76 of 698 patches failed to meet the tolerance conditions.

of C; = 3 and C, = 3. 76 of the 698 patches were not rendered since they did not satisfy
the tolerance conditions. The large number of rejected patches is the result of the lack of

correlation between the projection plane and the vertex normals.

The patches produced by using the plane defined by the average of two normals are
of much higher quality than those produced using the bisecting plane method. Figure 5.5
shows the complete interpolant. The only areas where the interpolation produces inadequate
patches are on the ears of the cat data set. The rest of the interpolant preserved much of the
underlying surface from which the data was sampled. I pruned patches using three different
threshold values to see if any patches other than those on the cat’s ears would be removed.
Rejection rates for the three interpolants in Figure 5.6 are: 4 of 698 patches rejected with
tolerance settings of C; = 3 and Cp, = 3, 8 of 698 patches rejected with tolerance settings
of C; = 2 and Cp, = 2, and 21 of 698 patches rejected with tolerance settings C; = 1.5 and
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Figure 5.5: Average of normals method used to interpolate the cat data set.

Cp» = 1.5. The only patches removed were from the cat’s ears.

The explanation for the superior surface quality lies in the relationship of the two normals
to the Bézier patch boundary control points. The average of normals will ideally produce
boundary curves that are parallel to the projection plane at the two triangle vertices on
the shared boundary. This means that the boundary curve along the shared edge will have
little variation from the data triangle. The other two boundary curves will also have little
variation near the shared edge. Of course, these boundary curve properties break down if
the two vertices along the shared edge are sampled from the opposite sides of a crease in the

underlying data set.
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Figure 5.6: Tolerance settings of C;,Cy = 3, C;,Cy, = 2, and C;,Cy, = 1.5 with average of

normals method.

The remaining boundary points, near the third vertex that is not on the shared edge,
contribute to the construction of the interior point but do not appear in the final patch
blend so they play a less important role than the control points near the shared edge. The
importance of the control points near the shared edge combined with their dependency on
the two normals make the average of normals a good choice for the parameterization plane.
Using the plane perpendicular to the bisecting plane does not use the information provided

by the normals possibly ignoring some useful information.

When used to interpolate data sampled from the torus both methods of choosing a
plane produced reasonable patches. Figure 5.7 presents a comparison of the two methods
on the 10 x 5 torus data set. The surface produced by using the bisecting plane method is
obviously better although some creases can be seen that correspond to patch boundaries.
The other surface has noticeable, regular bumps that are more serious defects than the other

interpolant.
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Figure 5.7: Parametric Foley-Opitz interpolants for 10 x 5 sampled torus data set using
projection planes perpendicular to the bisecting plane, left, and taken from the average of

normals, right.

5.2 Data Sampling Frequency

The comparison between the two methods of choosing a projection plane using the torus
data set produced minor differences but comparisons between data sets of various sampling

frequencies give some interesting results.

Figure 5.8 shows the parametric Foley-Opitz interpolants for the two torus data sets using
the average of normals to define the projection plane. Not only is an extremely good surface
produced by doubling the samples taken from the torus but there is dramatic improvement

in comparison to the interpolant for the coarser data set.

Any reasonable interpolation scheme will produce better surfaces with more finely sam-
pled data so the improvement with Foley-Opitz patches was expected. However, the rate
of convergence of the parametric Foley-Opitz interpolant to the torus was unexpected. The
next section will contrast the rates of improvement of parametric Foley-Opitz patches and

some representative parametric patches.
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Figure 5.8: Parametric Foley-Opitz interpolants using average of normals for 10x5, left, and

10 x 10, right, torus data sets.

5.3 Comparison With Other Parametric Schemes

I will use the average of normals method to choose the projection plane for parametric Foley-
Opitz patches. Comparing the reasonable results given by the average of normals method to
the mixed results given by the bisecting plane method makes the former the better general

purpose method.

I will compare parametric Foley-Opitz interpolants with Shirman-Sequin and triangular
Gregory patches. Mann [16] has concluded that existing parametric local triangular inter-
polation schemes produce surfaces of similar quality, so I will consider Shirman-Sequin and
triangular Gregory patches as representative of split domain and rational blend schemes

respectively.

The cubic boundary curves I used with these two schemes are constructed from vertex
positions and normals by first choosing a plane then intersecting it with the tangent planes
at the two vertices. The two middle control points lie on the lines of intersection and are

chosen so that the distance from one of the vertices is one third the distance between the



5.3. Comparison With Other Parametric Schemes 53

Figure 5.9: Planar boundary curve. Each of the two interior control points lies on the tangent
plane of an endpoint. The distance between an interior control point and one of the endpoints

is one third the distance between the two endpoints. All four control points are coplanar.

two vertices, shown in Figure 5.9.

Additionally, I constructed de Boor-Hollig-Sabin boundary curves with the two tori data
sets to see how the additional information provided by the second fundamental forms would
affect the surface quality. de Boor-Hollig-Sabin curves are cubic curves that interpolate vertex
positions, normals, and curvature information [4].

Figure 5.10 shows the cat data set interpolated with Shirman-Sequin, triangular Gre-
gory patches, and parametric Foley-Opitz patches, using planar boundaries for the first two
schemes, and the average of normals method for the third scheme. Except for the pruned
defects on the ears, the parametric Foley-Opitz interpolant is a better surface. The other
two methods preserve evidence of the underlying geometry of the patches — patch boundaries
can be seen on the surfaces in many places. All three surfaces are smooth G! surfaces but
many of the surface defects from the first two interpolants have been smoothed out in the
parametric Foley-Opitz interpolant, though the surface is still far from perfect.

Figure 5.11 shows the 10 x 5 sampled torus data set interpolated with all three schemes,

using the average of normals method for parametric Foley-Opitz patches and planar boundary
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Figure 5.10: Comparison of Shirman-Sequin, triangular Gregory patches, and parametric
Foley-Opitz patches on the cat data set using planar boundary curves with Shirman-Sequin

and triangular Gregory patches.

6

Figure 5.11: Comparison of Shirman-Sequin, triangular Gregory patches, and parametric

Foley-Opitz patches on the 10 x 5 torus data set using planar boundary curves with Shirman-

Sequin and triangular Gregory patches.
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Figure 5.12: Comparison of Shirman-Sequin, triangular Gregory patches, and parametric
Foley-Opitz patches on the 10 x 5 torus data set using de Boor-Hollig-Sabin boundary curves

with Shirman-Sequin and triangular Gregory patches.

Figure 5.13: Shirman-Sequin, left, triangular Gregory patches, middle, and parametric Foley-
Opitz patches, right, used to interpolate the 10 x 10 torus data set. Planar boundaries were

used with Shirman-Sequin and triangular Gregory patches.

curves for Shirman-Sequin and triangular Gregory patches. Both of the other two schemes
produce better surfaces than the parametric Foley-Opitz surface. There are noticeable lumps
with parametric Foley-Opitz. However, evidence of patch boundaries can be seen with both
of the other schemes. At this granularity of data sampling, Shirman-Sequin and triangular
Gregory patches can be greatly improved by using a different boundary curve construction,

de Boor-Hollig-Sabin as in Figure 5.12.

The situation changes greatly in the more densely sampled 10 x 10 torus data set. Fig-
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Figure 5.14: Shirman-Sequin, left, triangular Gregory patches, middle, and parametric Foley-
Opitz patches, right, used to interpolate the 10 x 10 torus data set. de Boor-Hollig-Sabin

boundaries were used with Shirman-Sequin and triangular Gregory patches.

ure 5.13 shows all three schemes with parametric Foley-Opitz patches using the average of
normals method and the other schemes using planar boundaries. Parametric Foley-Opitz
produces a high quality surface while the other two schemes again produce surfaces with dis-
tinctly visible patch boundaries although there is significant improvement over the surface
quality produced with the coarser data set.

Figure 5.14 shows all three schemes with parametric Foley-Opitz patches using the aver-
age of normals method and the other schemes using de Boor-Hollig-Sabin boundaries. The
parametric Foley-Opitz surface is the same as in the previous figure, only the interpolants
produced by the other two schemes have changed. Although the superior curve construction
improves the smoothness of the other two surfaces, there are still distinct surface defects. de
Boor-Hollig-Sabin boundaries use the normals plus the second fundamental forms of the data
set while parametric Foley-Opitz patches use only the normals, yet parametric Foley-Opitz
produces a better interpolant for this data.

What is interesting about the comparisons using the tori data sets is the significant
improvement of parametric Foley-Opitz interpolants when changing from a coarser to a
finer sampling of data. Also interesting is the rate of improvement relative to the other two
schemes. Parametric Foley-Opitz converges to the original surface much faster than the other

schemes.
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5.4 Boundary Curves

The improvement in surface quality with the cat data set and the 10 x 10 torus can be
explained by analyzing separately the two major components of patch construction, boundary
curve construction and tangent plane field construction, to determine which is responsible
or if both are equally important. Parametric Foley-Opitz patches cannot be constructed by
using the planar or de Boor-Hollig-Sabin boundaries since the projection of curves onto a
parameterizing plane is not possible. The only comparison that can be made is substituting
the parametric Foley-Opitz boundary curve construction into other schemes.

I have constructed triangular Gregory patches using the curves from parametric Foley-
Opitz patches created by the average of normals method. Figure 5.15 shows the cat data set
interpolated by triangular Gregory patches, using planar and parametric Foley-Opitz bound-
aries, and interpolated by parametric Foley-Opitz patches. The problems with patches being
fitted around the ears occurs in the triangular Gregory interpolant when using parametric
Foley-Opitz boundary curves. Other than that one problem, the rest of the interpolant re-
sembles the original triangular Gregory interpolant more than the parametric Foley-Opitz
interpolant. With this data set, the new boundary curves do not improve the Gregory inter-
polant and actually introduce problems when fitting patches to the ears.

Figure 5.16 and Figure 5.17 show comparisons between triangular Gregory patches using
planar boundaries and using parametric Foley-Opitz boundaries with both the coarse and
fine torus data sets. Combining the new boundary curves with triangular Gregory patches
does significantly alter the surface quality. While the problem of visible patch boundaries
i1s evident the patches are not as flat as those produced using the planar boundaries. The
10 x 10 torus data set surfaces also show marked improvement.

These mixed results — no improvement for the cat data set but marked improvement for
the tori data sets — demonstrate that parametric Foley-Opitz boundary curve construction
does play an important role in surface quality but does not necessarily produce good surface
quality. Unfortunately, in the case of the cat data set, parametric Foley-Opitz patches cannot
be improved by substituting in some other parametric curve construction, such as de Boor-

Hollig-Sabin curves, because of the locally functional construction.
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Figure 5.15: Triangular Gregory patches constructed using both planar boundaries, left, and
parametric Foley-Opitz boundaries, right, with the cat data set.

5.5 Curvature

So far I have presented images that depict the surfaces using Gouraud shading and Lamber-
tian lighting. Another useful representation of the surface i1s the curvature plot in which a
surface 1s shaded according to its Gaussian curvature. Curvature plots help highlight areas
of both uniform and varying curvature that may be difficult to pick out on the previous
1mages.

The curvature plots in this section render the surface using the numerically estimated
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0086

Figure 5.16: Triangular Gregory patches constructed using planar boundaries, left, de Boor-

Hollig-Sabin boundaries, middle, and parametric Foley-Opitz boundaries, right, with the
10 x 5 torus data set.

0006

Figure 5.17: Triangular Gregory patches constructed using both planar boundaries, left, de

Boor-Hollig-Sabin boundaries, middle, and parametric Foley-Opitz boundaries, right, with
the 10 x 10 torus data set.

value of the Gaussian curvature for shading. Gaussian curvature is represented using colour

ranging from red, high positive Gaussian curvature, to blue, low negative Gaussian curvature.

The torus will ideally have blue shading along the inner ring, progressing to cyan then

green, and reaching yellow along the outer ring, shown in Figure 5.18.

The curvature plots of the torus data sets emphasized the results observed so far —

parametric Foley-Opitz patches perform more poorly on the torus 10 x 5 data set and much
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Figure 5.18: Curvature plot for a torus.

Figure 5.19: Curvature plots for Shirman-Sequin, triangular Gregory patches, and parametric
Foley-Opitz patches, with the 10 x 5 torus data set. Planar boundaries were used with

Shirman-Sequin and triangular Gregory patches.

better on the torus 10 x 10 data set. Figures 5.19 demonstrates that the bulges in the
parametric Foley-Opitz interpolant with the coarse torus data set are visible as areas of high
positive curvature, shown as red regions and streaks, on the outer circle. Figure 5.20 shows
the fairly uniformly varying curvature plot of the parametric Foley-Opitz interpolant for the

finer torus data set.
The curvature plots for the cat data set were inconclusive. The irregularity of the data set
and consequently the frequent variation in curvature obscured the differences in curvature

between the various interpolation schemes.
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Figure 5.20: Curvature plots for Shirman-Sequin, triangular Gregory patches, and parametric
Foley-Opitz patches, with the 10 x 10 torus data set. Planar boundaries were used with

Shirman-Sequin and triangular Gregory patches.

5.6 Cross Boundary Derivatives

Since parametric Foley-Opitz boundary curves are not the deciding factor for the improve-
ment in surface quality for either the irregularly sampled data set or the finely tessellated,
regularly sampled data set, I have investigated the other major component of triangular
patch construction, cross boundary construction.

The surface quality of Foley-Opitz patches results from the cubic precision achieved
through the Foley-Opitz cross boundary construction. A corollary to the cubic precision of
Foley-Opitz patches are quadratically varying cross boundary derivatives. Parametric Foley-
Opitz patches use the same cross boundary construction as functional Foley-Opitz patches
giving them quadratically varying derivatives. I have constructed parametric Foley-Opitz
interpolants for the three data sets using both the Foley-Opitz cross boundary construc-
tion and the cross boundary construction used in Clough-Tocher that gives linearly varying
derivatives. Parametric Foley-Opitz boundary curves were used for all test cases.

The cat data set interpolants, shown in Figure 5.21, demonstrate that using linear cross
boundary derivatives gives surfaces quite similar to Shirman-Sequin or triangular Gregory
patches.

The interpolants for the 10 x 5 torus data set, shown in Figure 5.22, give similar results.
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Figure 5.21: The cat data set interpolated by parametric Foley-Opitz boundaries with
Clough-Tocher cross boundaries, left, and parametric Foley-Opitz patches, right.

Figure 5.22: The 10 x 5 torus data set interpolated by parametric Foley-Opitz boundaries
with Clough-Tocher cross boundaries, left, and parametric Foley-Opitz patches, right.
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Figure 5.23: The 10 x 10 torus data set interpolated by parametric Foley-Opitz boundaries
with Clough-Tocher cross boundaries, left, and parametric Foley-Opitz patches, right.

The surface with linear cross boundary derivatives is similar to the interpolants produced by
Shirman-Sequin and triangular Gregory patches constructed with planar boundaries. The
interpolants for the 10 x 5 torus data set, shown in Figure 5.23, again show that using
linearly varying cross boundary derivatives produces surfaces similar to Shirman-Sequin and

triangular Gregory patches with planar boundaries.

Since the quality of the interpolants constructed with parametric Foley-Opitz boundaries
and linearly varying cross boundary derivatives are similar to the quality of Shirman-Sequin
and triangular Gregory patches, the cross boundary derivatives are the deciding factor in the
quality of parametric Foley-Opitz patches. The marked improvement in surface quality with
the Foley-Opitz cross boundary construction compared to Clough-Tocher’s cross boundary
construction using the cat and the torus 10 x 10 data sets demonstrates the superiority
of quadratically varying boundaries. A comparison between the torus 10 x 5 data set in-
terpolants supports this claim since the difference in surface quality mirrors the difference
discovered when comparing parametric Foley-Opitz interpolants with other schemes with

this data set in Section 5.3.
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5.7 Quantitative Analysis

Many data sets are produced by graphic artists or represent data taken from physical models.
Quantitative comparisons with the “perfect” surface are difficult or impossible to make in
these cases. When considering simple surfaces like the torus or the sphere, some quantitative
analysis can be done to test the accuracy of an interpolation scheme and its performance
relative to other schemes.

I have chosen two quantities to test parametric Foley-Opitz patches — the normalized
distance from the model and the dot product of the interpolant’s normal with the model’s
normal. Each of these values is measured at uniformly spaced points over the surface and
the maximum and minimum values are recorded.

I have tested interpolants produced with the icosahedron, the torus 10x5, and the torus
10 x 10 data sets. Each patch is sampled uniformly at 45 positions. For parametric Foley-
Opitz and triangular Gregory patches this means 800 samples for the icosahedron, 4000
samples for the the 10 x 5 torus, and 8000 samples for the 10 x 10 torus. Since Shirman-
Sequin uses a split domain there will be roughly three times as many samples, thus giving
results for Shirman-Sequin that are more accurate.

The following are the minimum and maximum normalized distances for parametric Foley-
Opitz, triangular Gregory, and Shirman-Sequin patches, using planar boundaries for the

latter two schemes. A torus would be at a constant distance of 1.

Icosahedron | Torus 10 x 5 | Torus 10 x 10
Min distance | Foley-Opitz 0.994285 0.981309 0.998741
Triangular Gregory | 0.943616 0.904166 0.974028
Shirman-Sequin 0.976806 0.973374 0.992454
Max distance | Foley-Opitz 1.018850 1.032030 1.006930
Triangular Gregory | 1 1.004800 1.006480
Shirman-Sequin 1 1.016100 1.008030

The icosahedron results suggest parametric Foley-Opitz patches provide a better fit since

there i1s a smaller range of variation.
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The torus 10 x 5 data set results correlate well with the images of the previous sections.
The minimum distances show that triangular Gregory patches have flat areas, since the
minimum is noticeably smaller than with the other two schemes. Parametric Foley-Opitz
patches have a larger maximum indicating the bulges that were evident in previous images.

The torus 10 x 10 data set results also confirm the visual evidence. Parametric Foley-
Opitz patches have little variation while the other two interpolants have roughly the same
ranges.

The following table compares the dot products of the sampled normals with the actual
normals for both the icosahedron and the tori data sets. The perfect interpolant would have

dot products of 1.

Icosahedron | Torus 10 x 5 | Torus 10 x 10
Foley-Opitz 0.994756 0.944733 0.999269
Triangular Gregory | 0.990964 0.969569 0.995101
Shirman-Sequin 0.998642 0.969532 0.995650

The numbers for the icosahedron indicate that parametric Foley-Opitz produces results
comparable to the other two schemes, not as good as Shirman-Sequin but above the per-
formance of triangular Gregory patches. The lower values for triangular Gregory patches
indicate that some patches were flat, similar to the case of the coarsely sampled torus.

The torus 10 x 5 data shows that parametric Foley-Opitz patches perform poorly com-
pared to the other two schemes. The sharp bulges evident in the images of the previous
sections result in discrepancies in the normals.

The torus 10 x 10 data shows the improvement of parametric Foley-Opitz patches with

this data set and that the other two schemes are approximately equivalent.



Chapter 6

Conclusions

The analysis of the last chapter demonstrates that parametric Foley-Opitz patches, while
not perfect, provide improvements over existing local, triangular Bézier patch interpolation
techniques.

In certain cases, parametric Foley-Opitz patches produced patches that were clearly un-
acceptable. However, I provided a simple test to decide if a patch should be rejected because
of bad shape. In practice this pruning technique removed precisely those patches that did
not fit the overall shape of the interpolant. Of the patches that were not pruned, there was
improvement in surface quality over other techniques when fitting irregularly scattered data
and finely tessellated, regularly scattered data.

In light of this improvement in surface quality, I recommend the use of parametric Foley-
Opitz patches combined with another interpolation scheme. When parametric Foley-Opitz
patches do not meet the tolerance selected by a surface designer, another interpolation
scheme, Shirman-Sequin for instance, could be used to replace the pruned patches, giving an
overall G! surface. Parametric Foley-Opitz patches would not be appropriate for problem-
atic data in which there is poor correlation between the normals and the underlying data
triangles.

Another positive aspect of parametric Foley-Opitz patches is the geometric nature of the
shape control since the freedom in setting neighbouring patch pair continuity is characterized

by a plane. In other schemes, extra degrees of freedom are left as shape parameters or are
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set using some heuristic. The formulation of Shirman-Sequin patches [20] demonstrates the
problem with merely providing algebraic relationships between shape parameters — a set of
equations restricting control point placement does not give any intuition about the shape
of the patch or how modifying those equations would change the shape of a patch. On the
other hand, direct manipulation of a plane with two rotational degrees of freedom, as in
parametric Foley-Opitz patches, would provide a more intuitive interface.

Shape control would be the main area of future research in parametric Foley-Opitz
patches. There are two facets of shape control — improving the automation of good shape
construction and addressing user interface issues. Automated shape control is now handled
by choosing the average of two normals to define a projection plane, however more informa-
tion could be incorporated, such as other vertex normals or data triangle normals blended
with various weighting functions. A good user interface would provide intuitive manipulation
of individual patches or regions of a surface.

Parametric Foley-Opitz patches present a new and interesting type of surface construction
primitive, most notably because of the rational blend of patch boundaries. However, they
are not just of theoretical interest. These patches present a practical modeling primitive that

would complement a surface construction library using other types of triangular patches.
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