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Abstract
Before sizing the delays of the components in a circuit, it is often necessary to find delay
constraints that would ensure the correctness of the circuit, and to verify the sufficiency of
these constraints. We formalize constraints of a certain type as processes in a metric-free
model. The circuit specification and components are also represented as processes, to be
coupled and compared with the constraint processes. We use a BDD-based tool to verify a
circuit together with a set of constraints, and to find hints as to which constraints are
needed. We illustrate this technique on a circuit that uses extended isochronic forks.

1. Introduction

INV1 INV2

(a) (b)

Figure 1: Is the waveform (a) realized by the circuit (b)?

Consider the problem of designing a circuit that responds to a rising input transition by issuing an output
pulse, as in Figure 1 (a). A straightforward implementation would be that in Figure 1 (b): from an initial
stable state where a is low, the rising transition on a causes falling transitions on b and d, then erises, after
which crises and e falls.

t This research was supported by an Ontario Graduate Scholarship and by Grant No. OGP0000871 from the Natural Sciences
and Engineering Research Council of Canada.
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Figure 2: Ensuring correct behavior: (a) by extra circuitry; (b) by relative delays.

However, if INV1 and INV2 are quicker than INV3 and NOR, it is possible that the output pulse will never
occur or will be corrupted, since ¢ might rise and pull e down before e completes the upgoing transition.

To prevent this problem, one may introduce extra circuitry, as in Figure 2 (a). (The newly introduced gate
is a C-element, which copies at the output the value of the inputs if the inputs have the same value, and
keeps the output constant if the inputs have different values.) However, the extra circuitry increases the
area, delay, and power consumption of the circuit. Fortunately, a cheaper and more efficient solution is
available. One can size the component delays in such a way that

(1) Dinvidown + Dinvaup > Dinvadown + Dnorup

where D’s represent gate delays, and ‘up’ and ‘down’ refer to transitions of output signals. The two chains
of delays involved are shown in Figure 2 (b).

Often, circuit designers face the problem of finding delay constraints before knowing the actual delays
or delay bounds of the components. Then the question arises whether the detected constraints are sufficient
to guarantee correctness of the circuit. The component delays are sized and optimized only after the delay
constraints and the correctness of the circuit are established.

To our knowledge, other timing analysis methods have not focused on this specific problem. The
methods in [BGM91] and [MD92] only compute bounds on timing separations of events and do not directly
verify the functionality of a circuit. The verification method in [My95] requires the component delay
bounds to be given, thus it does not address our problem. The timing-reliability problems in [KN94] are
related to the problem we are studying, but [KN94] focuses on quantitative analysis for known delay
constraints, rather than on finding and verifying the constraints. In [BY75] and [BY76], almost-equal-
delay models were proposed to analyze a circuit under the assumption that the gate delays are roughly
equal; however, [BY75] and [BY76] do not address our problem because their delay constraints are fixed
(always a triangle inequality).

In this paper, we propose a semi-automatic technique for finding delay constraints and verifying their
sufficiency before the component delays are sized. We use a metric-free process space from [Ne95] to
model circuit specifications, components, and delay constraints. Although we have not done efficiency
comparisons between our model and timed models, metric-free models should in principle be simpler than
timed models and more tractable computationally. We perform the verification by a tool for manipulating
such metric-free processes, and the tool also indicates potential flaws by producing executions where the
flaws show up. Typically, such an execution contains two events out of order, or an undesirable event,
suggesting a delay constraint that needs to be introduced. The tool is based on binary decision diagrams
(BDDs). Process spaces are briefly described in Section 2 and the tool in Section 3.

We have applied our technique to circuits from Sun Microsystems Laboratories [MJCL97] and Philips
Research Laboratories [vBHP95, Pe96]. In Section 6, we illustrate our technique by analyzing the delay
constraints in a handshake-latch circuit from [VBHP95].
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2. Process Space Basics

Process spaces are a simple theory for a large class of interacting systems, including distributed systems,
digital circuits, and communication protocols as particular cases. Process spaces unify several correctness
concerns by letting the users choose executions of the type most appropriate for their problems. In process
spaces, the executions of a system can be sequences of events, functions of time, etc., but a priori we do not
impose any structure on executions.

Formalism

The process space formalism is built over an arbitrary set E, as follows. An execution is an element of .
A processover E is a pair (X, Y) of subsets of E such that

@) XuY=E.

T atp=Y Notation Name Set
- asp accessible X
rp | gp | ep atp acceptable Y
rp reject Y
T oen= % ap goal Xny
asp =X ep error X

Figure 3: Execution sets of a process.

A process represents a contract between a device and its environment: the device guarantees that only
executions from X may occur, whereas the environment guarantees that only executions from Y may occur.
Executions from X are called accessible and those from Y are called acceptable—the device can ‘access’
and “accept’ them, respectively. A process splits E into three disjoint subsets, as in Figure 3. Executions
from Y are called rejects and must be avoided by the environment; executions from X are called errorsand
must be avoided by the device; executions from X N Y are called goalsand are legal for both device and
environment. The fact that X U Y = E, written equivalently X N Y = [, formalizes a separation of
responsibilities between the device and the environment: if an execution is in Y, the environment
guarantees to avoid it, thus the device does not need to avoid it too, and that execution is not in X. The sets
of accessible, acceptable, error, reject, and goal executions of process p are denoted by asp, atp, ep, rp,

and gp, respectively.
How do you do?
How are you? |:| |:|

Environment U

Machine

Figure 4: Etiquette machine.

For example, imagine a simple etiquette machine. Proper etiquette is defined as a conversation
composed of “How do you do” and “How are you,” and the conversation can be arbitrarily long. However,
the available vocabulary includes another phrase, “XXX,” that nobody wants to hear. If our machine hears
“How do you do” or “How are you,” it responds by “How do you do” or “How are you.” If it hears
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“XXX,” the machine might become out of order and may respond by anything, or give no response at all.

To model this machine in process spaces, we take the executions to represent conversations, consisting
of strings of greetings between the machine and the environment. For instance, (Environment: How are
you) (Machine: XXX) (Machine: How are you) is in E, but {(Environment: How do you do XXX} is
not in E. In this example we indicate in each greeting who delivered it, because it does matter who says an
(XXX}, for instance.

XXX How do you do? How do you do?
)

00 N oo
N — —

rej ect goal error

Figure 5: Watch your mouth!

Figure 5 gives examples of goals, rejects, and errors for the etiquette machine. In a goal execution,
everybody behaves and everybody is content. In a reject execution, the environment behaves improperly
and violates the requirements of the machine, whereas in an error execution, the machine behaves
improperly and violates the requirements of the environment.

ml, m2, mx, el, 2, ex

Greeting Shorthand
Machine: How do you do ml
Machine: How are you m2
Machine: XXX mx
Environment: How do you do el
Environment: How are you e
Environment: XXX ex

ml, m2, mx, el, 2, ex

(a) (b)

Figure 6: Process of the etiquette machine: (a) actions; (b) process.

Figure 6 shows in full detail a process for the etiquette machine, as a state machine. The edges are
labeled with greetings. To reduce clutter, we use shorthands for the greetings, and we sometimes put
several greetings on a single edge. The shorthands are listed in Figure 6 (a). The state markingsr, gand e
in Figure 6 (b) stand for reject, goal, and error, respectively. The initial state is marked with an incoming
arrowhead. A string of greetings is a reject, goal, or error for this process if that string is spelled by a path
starting at the initial state and ending at a state marked r, g, or e, respectively. Since every greeting is
possible in every state, and thus every string in £ is on a path starting at the initial state, the rejects, goals,
and errors cover the whole E. A priori, any conversation is possible, because we don’t know what the
environment or the machine would do. However, we forbid the environment or the machine from doing
certain things by qualifying those things as rejects or errors.

In other words, the formal representation requires us to classify every string of greetings, including
some which were more or less hand-waived in the informal descriptions above. For example,
(Environment: XXX) (Machine: XXX} is a reject, because the environment faulted first; {Machine:
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How do you do) {Environment: XXX) {Machine: How are you) is an error, because the machine is not
allowed to speak out of turn; (Environment: How do you do) {Environment: How do you do) {Machine:
How are you) is a reject, because the environment is not allowed to speak out of turn, either; the empty
string is a goal, because neither the environment nor the machine have done anything wrong; and, the
execution consisting of just {Environment: How are you) is an error, because it would be impolite for the
machine not to respond to the greeting. Regarding the last execution, note that an execution represents an
entire conversation in this example, not just the beginning of a conversation. Notice that the error state on
the right must be exited by a polite greeting from the machine in order to reach a goal state.

Although the etiquette machine is non-deterministic, since it can choose between two available
greetings, the state machine in Figure 6 (b) is, formally, a complete deterministic automaton: it has exactly
one initial state, and, for each state and for each action, there is exactly one edge going out of that state and
labeled with that action. Non-deterministic automata can also be used by our tool to represent and
manipulate processes, but, for simplicity, we do not use them in this paper.

Operationsand Conditions

Process spaces provide several operations on processes and conditions for correctness. The most important
ones are summarized below.

A process is called robust if it has no rejects; any execution is acceptable for that process. Robustness
models the property that process p ‘operates correctly all by itself,” i.e., that p does not impose any
requirements on the environment. In other words, a robust process does not rely on the environment to
avoid certain executions. The set of robust processes over an execution set E is denoted by R ;. Formally,

(3) pOR: « rp=< < ap=F.
For example, the process in Figure 6 is not robust, because the executions beginning with {Environment:

XXX are rejects for that process. Robustness is an absolute correctness condition, meaning that a
process has a correctness property by itself, rather than with respect to a specification.

ml, m2, mx, el, e2, ex

ml, m2, mx, el, e2, ex

el, e2, ex el, e2, ex

ml, m2, mx, el, e2, ex
ml, m2, mx, el, e2, ex

() (b)

Figure 7: Examples for refinement: (a) repeat machine; (b) quiet machine.

Refinement is a binary relation on processes. Refinement, written p = g, formalizes that process q is a
‘satisfactory substitute” for process p. To be a satisfactory substitute, g should tolerate at least those
environment situations that p tolerates, which means g has a larger acceptable set. Also, g should offer
more guarantees than p, in terms of avoided executions, which means g has a smaller accessible set.
Formally,

4) pEqg <« ap<caq A asp=asq.
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Refinement is a relative correctness condition: p = ¢ can be interpreted as ‘a specification p is met by an
implementation g.”

Why is it undesirable to have many accessible executions? The smaller the set of accessible
executions, the more determinate is the behavior specified by a process. For example, consider a ‘repeat
machine’ that behaves similarly to the etiquette machine, except that, after a polite greeting by the
environment, the repeat machine responds by the same greeting. The process in Figure 7 (a) for the repeat
machine was obtained from the process in Figure 6 (b) by splitting the rightmost state, to remember the
particular greeting used by the environment. Now, observe that the repeat machine is not refined by the
etiquette machine, since execution el m2 is accessible for the etiquette machine but not for the repeat
machine. In other words, the etiquette machine is not a good substitute for the repeat machine, since the
etiquette machine might commit a gaffe if the environment is stiff enough to require identical responses.

For another example, consider a ‘quiet machine’ that has the same requirements as the original
etiquette machine, but would not respond to any greeting. The process for such a machine is shown in
Figure 7 (b). Execution el is accessible because it is legal for the quiet machine to stop after an el.
However, execution el is not accessible for the etiquette machine. The quiet machine is not a good
substitute for the etiquette machine, because of stopping after e1; the fault is detected as an extraneous
accessible execution.

The examples above show how to detect safety faults and deadlock faults in this process space over
finite words. On the other hand, the repeat machine does refine the etiquette machine, as is easily verified.
This is because there is no deadlock and no illegal output event, although it might be considered ‘unfair’ to
respond always by the same greeting. Such unfairness faults are ignored by the finite words process space
we use in this paper, but they can be detected by a process space over infinite words, as shown in [Ne95].
One also verifies that neither the repeat machine nor the etiquette machine refine the quiet machine, and the
quiet machine does not refine the repeat machine, either.

Reflection, denoted by —, is a unary operation on processes. Reflection swaps the accessible and
acceptable sets of a process, that is, for process p,

() -p=(ap asp).

Considering that a process represents a contract between a device and its environment from the device point
of view, reflection turns the table, i.e., the reflected process represents the environment viewpoint in the
same contract. From the definition, it follows that the rejects of a process p are the errors of —p, and
viceversa. Informally, notice that p requires its environment to avoid executions from r p, while the
reflected process —p, representing the environment viewpoint, guarantees to avoid those executions. Also,
p guarantees to avoid executions from ep, while the reflected process —p requires its environment to avoid
those executions.

£ atp
L

as(pxg) ~ ,TImsotooooooe- N

! |

i S S !
1’\“_ ! atq

1R :

asq |
U

B ' at(p><q)
asp

Figure 8: The product operation.

Product, written X, is a binary operation on processes. The product yields a model for the system of
two processes operating ‘jointly.” Formally, the product of two processes p and q is defined by

(6) as(px g = aspnasq,and
(7 at(pxq) = atpnatq U aspn asq.
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To interpret the formal definition of product, notice that executions that are accessible to both
participating devices are accessible for the system, and executions that are acceptable to both devices are
acceptable for the system. However, these two intersections do not cover the whole execution set E; in
Figure 8, we can see that the executions marked *!” have not been accounted for so far. These executions
are errors for the resulting system, because they should be avoided by one of the devices. Accordingly,
these executions are acceptable, but not accessible for the resulting system.

The set of acceptable executions of the product can be rewritten as

(8) a(pxq) =apnaq U rpneq U epnrg.

That is, the set of acceptable executions of the product is obtained by augmenting atp N at q with the
executions marked “!”, which are errors for one of the devices and rejects for the other.

el, e2, ex, beep beep, m1, m2, mx

el, e2, ex, beep beep, m1, m2, mx
(self-loops on m1, m2, mx) (self-loops on el, €2, ex)
(a) (b)

Figure 9: Example for product: (a) Listener; (b) Speaker.

To illustrate the product, let us consider an example of an etiquette machine which is realized as a
system of two parts, call them Listener and Speaker. Listener emits a “beep” each time it hears a greeting
from the environment, provided that the greeting is not out of turn and not an “XXX.” Speaker delivers a
polite greeting each time it hears a “beep.”

The processes for Listener and Speaker are over the execution set

E = {el, €2, ex, ml, m2, mx, beep}*,

that is, the executions are strings of greetings and beeps, using the shorthands from Figure 6 (a). The
processes for Listener and Speaker are shown in Figure 9. These processes are similar to the process in
Figure 6, except that certain actions have been omitted from the state machines. We normally omit those
actions that are ignored by a device, in the sense that they do not change the state of the device. More
precisely, at every state there should be self-loops labeled with those actions.

Now, let us discuss some of the executions of the product of Listener and Speaker. Execution €2 beep
ml is accessible and acceptable for both Listener and Speaker, since it leads each of them to a goal state.
By the definition of product and Figure 8, this execution is acceptable and accessible for the product
process as well. Execution el €2 is accessible and not acceptable for Listener and it is accessible and
acceptable for Speaker, since the environment has spoken too fast for Listener, but Speaker has stayed in
its initial state, which is a goal state; this execution is accessible and not acceptable for the product
process. An execution corresponding to a square marked ‘!” in Figure 8 is el beep beep; this execution is
acceptable and not accessible for Listener and it is accessible and not acceptable for Speaker; thus this
execution is acceptable and not accessible for the product process. If a part guarantees to avoid a certain
execution, the whole system guarantees to avoid that execution.

One can verify that the original etiquette machine is refined by the product of Listener and Speaker.
This product, however, is not refined by the etiquette machine; a counter-example execution is beep,
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revealing that the etiquette machine does not control action beep. (For the latter refinement relationship to
hold, we would need to ‘hide’ beep from the device-environment interface. However, the hiding operation
is not discussed here, as it is not needed in the analysis we perform.)

Algebraic Propertiesand Structured Verification

Several algebraic properties of process spaces can be used to facilitate formal verification. The refinement
relationship is reflexive, transitive, and antisymmetric. Reflection is its own inverse. The process space
product is commutative, associative, and idempotent. Furthermore, product satisfies the following
monotonicity property with respect to refinement: for processes p, g, and r,

9) pPEqg O pXr Eqgxr.

In words, if p is refined by g, then p coupled with r is refined by g coupled with the same r.

In

C X c; x [ =5

= = =

(dyg X dip X [ X (X dpp X [ X M = S
=

q = S

Figure 10: Hierarchical and modular verification.

Transitivity of = and monotonicity of X allow hierarchical and modular verification, which can reduce
computational costs by breaking a global verification task into smaller tasks. The problem is to determine
whether p £ g, where p represents a specification and g an implementation. Typically, one uses several
intermediate specifications S, S, ..., S, such that s, = p and s, = g, as shown in Figure 10. The
intermediate specifications (including p and g ) may be broken into components; for instance, s =¢; X ¢,
X [Mand 541 = (dig X thy X I X (dy X dp X [ X [I One verifies, for each j, that ¢ = dj; X d, X [T
By monotonicity of X with respect to =, one obtains 5 = s.;. By the same procedure, one obtains sq =
S« foreach kin {0, ..., n—1}. By transitivity, p = q follows.

The following property permits to verify whether an implementation refines a specification by placing
the implementation in the environment of the specification, and then checking robustness. For processes p
and q,

(10) p=q = -pxgORe.

Execution Types

Although in the general process space theory executions have no structure, for a particular application we
need to choose particular executions. This choice is done by a tradeoff between precision and complexity
of the analysis to be performed. For the problem at hand, we rule out executions that contain explicit
timing information in the form of timestamps, timing intervals, etc. ‘Timed” executions would permit to
verify quantitative properties such as maximum or minimum delays, but they are harder to handle than
‘untimed” executions. We limit our choice to finite and infinite sequences of events, with no explicit timing
associated to the events. A process space over infinite sequences would capture faults such as unfairness
and livelock, which are ignored by the finite sequence model. However, finite sequences are easier to
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handle and they capture at least safety faults and global deadlocks, which are our primary concerns. In this
paper we settle for finite sequences of events, i.e. finite words over a given alphabet. As in the etiquette
machine example, these words represent sequences of events during the entire operation of a circuit, not
just the beginning of the operation.

Rdated Formalisms

The particular process space formalism that uses finite sequences of events as executions, as well as the
conditions and operations in this formalism and their algebraic properties, are closely related to several
previous theories of concurrency, notably to [BR85], [Di89], [Eb89], [EbI1], [H085], [J092], and [Ve94].

Methods for hierarchical and modular verification are common in concurrency theory. Properties
similar to (10), linking relative and absolute notions of correctness, were given previously for instance in
[Di89], [Eb91], and [Ve94]. Notice, however, that we have eliminated all alphabet restrictions from
hierarchical and modular verification and from property (10): arbitrary processes can be connected by
product and compared by refinement, regardless of the relationships between their inputs, outputs, and
other kinds of actions, while the algebraic properties are shown to hold for arbitrary connections and
comparisons, too.

3. FIREMAPSBasics

FIREMAPS is a tool for manipulation of processes whose executions are finite words and whose execution
sets are given by finite state machines. The label FIREMAPS stands for finitary and regular manipulation
of processes and systems, and also refers vaguely to mapping firings of a Petri net. FIREMAPS has over
one hundred operators, including the process space operations and conditions described in Section 2.

For efficiency, FIREMAPS uses a package of BDD routines. BDDs (binary decision diagrams) are
data structures for representing Boolean functions [Br86]. BDDs allow for greater average-case efficiency
of the Boolean operations than the traditional representations of Boolean functions. The BDD package,
presented in [BMB90], was obtained from the Model Checking Group at Carnegie Melon University.
FIREMAPS was written by the author, at the University of Waterloo.

In this section, we present a minimum of FIREMAPS syntax and commands necessary to understand
the examples of application of our analysis technique for speed-dependences. FIREMAPS is used for other
purposes too, but they are not the subject of this paper.

Syntax and Some Data Types

FIREMAPS uses the Polish notation for expressions, where an expression consists of the operator,
followed by the operands, while the operands may be constants, variables, or similar expressions. This is
in reverse to the HP calculator convention, where the operands are typed in first, then the operator. This
notation may not be very common, but it offers several advantages. Firstly, it does not need parentheses,
and expressions have less clutter. For instance, 2 * (3 + 4) is written * 2 + 3 4 in Polish notation.
Secondly, parsing is made trivial, and we can easily add new commands and functionality to the tool.
Thirdly, it does not need operator precedences, which means that the users have less trivia to memorize.

FIREMAPS has several data types: process (p ), action list ( a ), integer list ( 1), string ( t ), integer
(n), bit (b)), etc. Each data type is designated by a single letter, which is used to form some of the
operator names as shown below. For each data type, there are operators for reading, writing, and variable
assignment, plus some file operations. If x is the letter of a data type, then the operators for read, write,
and variable assignment are (xr), (wx),and (=x), respectively. The reading operator (xr) must be
followed by an ASCII representation of the object being read, and it returns that object. The writing
operator takes as operand an object and returns nothing. The variable assignment operator takes as
operands the variable name and the object being assigned, and it returns nothing. In general, the operators
that return nothing constitute commands and can be invoked from the FIREMAPS prompt.
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For example, the following two commands read a string, assign it to a variable my string, and print
the value of my string.

(=t) my string (tr) "sample string”
(wt) my string
# the reply was: "sample string"

The # sign starts a comment which ends at the end of the line in which # appears. In response to the first
command, the tool does not produce any output. In response to the second command, the tool prints
"sample string™", asclaimed inthe comment. We often indicate the results of a FIREMAPS session
by inserting such comments in the script.

For the variable assignment for processes, we use the shorthand = instead of (=p) .

FIREMAPS exits angrily upon the slightest syntax error. In compensation, however, there are
facilities for syntax checking. The FIREMAPS script can be read from a file instead of being typed in each
time it is used, and also there is a command that disables the more computationally-intensive process
operations.

To input the commands from the file myscript instead of the console, just type

(in) myscript

at the FIREMAPS prompt. There are no quotes around the file name. This command also works with a
path instead of just a file name, if the path is from the directory where FIREMAPS was invoked. For
example, if the file myscript is located in the directory mydirectory which is located in the directory
where FIREMAPS was invoked, then the command is

(in) mydirectory/myscript

The command (pdis) (for ‘process-operation disable’) disables/enables the costly operations. To do
syntax checking on a FIREMAPS script, we invoke (pdis) and then we run FIREMAPS normally. The
results will not be valid, because the expensive routines are replaced by stubs; on the other hand, we find
out in a short time whether the script has proper syntax.

A quick way to exit FIREMAPS is to type in a syntax error. The proper way, however, is to type in
the command (q) . A list of FIREMAPS operators and commands can be printed by (h) or (help).

Some Data Formats

Action and integer lists have a simple format, containing the number of elements in the list, a colon, and
then the list itself. For instance,

5: abaca

is a valid action list,

2: 15 22

is a valid integer list, and
0:

is both a valid action list and a valid integer list. On the other hand,

2: a
2: a b a

are not valid action lists, because the indicated counts do not correspond to actual numbers of actions.
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2 actions; 4 states; 8 edges;
actions: a, b;
states: O sti, 1t, 2 s, 3t;

edges:

from0O: a1, b 3;

froml: a 2, b 0;

from2: a 2, b 2;

from3: a 3, b 3.
(@) (b)

Figure 11: Process format: (a) process; (b) FIREMAPS representation.

Processes have a more intricate, but self-explaining format. For example, the process in Figure 11 (a)
is represented by the text in Figure 11 (b). For reference, we have annotated the states in Figure 11 (a) by
state codes in italics. The FIREMAPS format for processes should be self-explaining, except for the short
strings next to the state codes in Figure 11 (b). These short strings describe the type of a state: if s is
present, the state is accessible; if t is present, the state is acceptable; if i is present, the state is initial.
There can be more than one initial state. To comply with process space theory, any state that is reachable
from an initial state must be either accessible or acceptable or both; otherwise, restriction (2) would be
violated.

Process Conditions and Operations

The process space operations product and reflection are implemented by the FIREMAPS operators * and -
respectively. The process space conditions refinement and robustness are implemented by the FIREMAPS
operators [=and (R), respectively.

The reflection operator takes as arguments two processes and returns a bit. To see that bit, we can
print it using the print bit command (wb), as in

(wb) [= ep eq

where ep and eq are expressions returning processes. Similarly, the robustness operator takes as
argument a process and returns a bit. To see that bit, we can print it, as in

(wb) (R) ep

where ep is an expression returning a process.

If a process is not robust, we may want to know why, and FIREMAPS can produce an action list that
represents a reject execution of that process. This is an important facility for diagnosis. The operator is
(aR); it takes a process as argument, and it returns an action list representing a reject execution, if one
exists. The resulting action list can be printed, assigned to variables, etc. Typically, we print the resulting
action list by the command (wa), asin

(wa) (aR) ep

where ep is an expression returning a process. Note, however, that if the (aR) operator is invoked with a
robust process as argument, then no reject execution exists, no execution is returned by the operator, an
error is flagged and FIREMAPS exits. Check robustness before asking for a counter-example to
robustness.
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Counter-examples to refinement can be obtained as counter-examples to robustness, using the process
space property (10) from Section 2. To obtain an execution that contradicts p = ¢, we ask for an
execution that contradicts the robustness of —p X g, as in

(wa) (aR) * - ep eq

where ep and eq are expressions returning the processes p and g, respectively.

Integer State type Sti marking
7 goal, initial sti Integer Trap type
6 goal, not initial st 6 goal trap
5 reject, initial si 4 reject trap
4 reject, not initial S 2 error trap
3 error, initial ti 0 no trap
2 error, not initial t
()
()

Figure 12: Types for simulation commands: (a) state types; (b) trap types.

To interpret a word that has been found as a counter-example to refinement, we can check the effect of
that word on the processes involved. There are several simulation commands in FIREMAPS, taking a
process and an action list as arguments, and yielding an integer list as the result. The integers in the integer
lists represent the states that have been reached following the given action list. The integers can be: the
actual state codes, if the command used is (apply); state types (accessible, acceptable, initial), if the
command used is (sti apply); ortrap types, if the command used is (trap apply). A state hasa
trap type iff the states reachable from that state are all goals, all errors, or all rejects. The state types and
trap types are shown in the tables in Figure 12.

For example, suppose that the process in Figure 11 is assigned to the variable p, the action list 3: a
b b isassigned to the variable t, and we invoke three simulation commands as follows.

= p (pr) 2 actions; 4 states; 8 edges;

actions: a, b;

states: O sti, 1t, 2 s, 31t;

edges:
fromO: a 1,
froml: a 2,
from2: a 2,
from3: a 3,

(=a) t (ar) 3: a b b

(wl) (apply) p t
# the reply was: 4: 0 1 0 3
(wl) (sti_apply) p t
# the reply was: 4:
(wl) (trap_apply) p t
# the reply was: 4:

727 2

000 2

The first command produces the codes of the states visited, as given in Figure 11: the first state visited is
state 0, then state 1, then state 0 again, and then state 3. The second command produces the sti-types of the
states visited, which can be found in the table in Figure 12 (a): the first state has type 7, the code for st1,
i.e., itis a goal and an initial state; the second state has type 2, the code for t, i.e., it is an error state; etc.
The third command produces the trap types: no trap for states 0 and 1, because goals, errors, and rejects
are reachable from these states; and trap type 2, i.e. error trap, for state 3, because only errors, state 3
itself, are reachable from state 3.
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To decide refinement, robustness, or to find a counter-example to robustness, FIREMAPS uses a
BDD-based breadth-first search of the state-spaces. The search consists of several passes, where at each
pass a new layer of states is visited. For monitoring the advance of the computation, FIREMAPS has the
command (trace). This command turns on and off the reporting of the number of layers of states that
have been visited during the computation.

Sometimes we need to construct a process by changing the initial state of an original model. The
operator ( quot ), for quotient’, changes the initial state of a process. This operator takes as arguments
the process and an action list, and it returns another process which behaves like the original process after
the given actions have occurred. In fact, this operator takes the quotients of the languages of the given
process with respect to the given word. For example, if ep is an expression returning the process in Figure
11, the command

(wp) (quot) ep (ar) 3: a b a
prints the following process, which is similar to that in Figure 11 but has a different initial state:
2 actions; 4 states; 8 edges;

actions: a, b;
states: 0 st, 1 ti, 2 s, 3 t;

edges:
from0O: a1, b 3;
froml: a 2, b 0;
from2: a2, b 2;
from3: a 3, b 3.
Systems

In typical applications, we use FIREMAPS to either verify or diagnose (provide a counter-example to) the
robustness of the product of several processes. Applications that use refinement are, by property (10) from
Section 2, particular cases of applications that use robustness.

Verifications and diagnosis of robustness of the product of several processes can be made much more
efficient if the product is not computed explicitly, but an equivalent operation is done on the set of
processes involved.

These optimizations are very substantial. For their sake, we have introduced in FIREMAPS a data
structure called system, which is a list of processes, and has the code letter P. A system is built by adding
processes to an empty system or by uniting two systems. The operator ( enpt y) returns an empty
system, the operator (add) eP ep takes a system eP and a process ep and returns a new system by
inserting ep into eP. The operator (addP) eP1 eP2 takes systems eP1 and eP2 and returns their
concatenation. There is an assignment operator for systems, ( =P) . The operator ( pr odP) eP returns
the product of the processes in system eP.

The operator ( RP) eP takes a system eP and returns a bit representing robustness of the product of
the processes in e P, while the operator (aRP) eP takes a system eP and returns an action list
representing a counter-example execution to the robustness of the product of the processes in eP, if any
such execution exists.

For example, to obtain an execution that contradicts p = g, X 0, X g, we ask FIREMAPS to print a
counter-example to robustness of product for a system sys containing —p, ¢, Gz, and gs, as in:

(=P) sys (add) (add) (add) (add) (empty) - ep eql eqg2 eq3
(wa) (aRP) sys

where ep, eql, eq2, and eqg3 are expressions returning the processes p, g, 0z, and gs, respectively.

! Similar operators are called “after” in [Ve94] and elsewhere. We try to use the terminology first introduced for formal
languages.
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4. CMOS Gate Models

In this section we discuss process space models of Boolean gates and some other circuit components, such
as C-elements. Such digital components can be modeled by finite state machines; however, there are some
subtleties, because the behavior of a gate is not fully standardized in the presence of hazards.

We are interested in components that have a single output and whose behavior is described by a
Boolean function of the inputs and the output, which we call the instability function, in the following
manner. The instability function specifies when the output value does not correspond to the input values,
and thus the output signal is about to undergo a transition. We refer to all such components as CMOS
gates. For example, consider an AND gate with three inputs a, b, and c, and with output d. The instability
functionis (a A b A ¢) @ d, where & is the exclusive-or sign. Noting that exclusive-or is the negation of
equivalence, we see that the AND is unstable whenever d is different from the conjunction of a, b, and c.
For another example, consider a C-element with inputs a and b and with output c. The instability function
isaAbAcCV aA bAac Inwords, the C-element is unstable whenever a and b are high and c is low,
or aand b are low and cis high. In general, a CMOS gate that has output b and realizes the Boolean
function F(ay, &y, ...) has the instability function b ® F(a;, &, ...), and a CMOS gate that realizes Martin’s
production rules [Ma90] U(ay, &, ...) - bt and D(ay, &, ...) —» bl has the instability function U(ay, a, ...)
ADb Vv D(a, a,..)Ab.

(@) (b) (©)

Figure 13: Responses to a short pulse: (a) gate and signals; (b) incomplete transition; (c) delayed pulse.

The behavior of a CMOS gate is to a large extent standardized, but still there are some situations
where the behavior depends on the particular implementation. For example, consider the AND gate in
Figure 13 (a). Suppose input b is high and input a is low. Suppose a rises and then falls again before the
output gets a chance to rise. What happens next? Depending on the implementation, the output signal
might not become high, as shown in Figure 13 (b), or it might have a delayed pulse, as in Figure 13 (c).
Roughly speaking, CMOS gate models where an output transition is canceled upon retraction of the input
excitation, as in Figure 13 (b), are called inertial models, whereas models where output transitions copy
precisely the changes in the input excitation, as in Figure 13 (c), are called ideal models. Variations of
these models and other CMOS gate models are also possible. For a detailed discussion of gate and delay
models, see [BS95].

Situations where a CMOS gate becomes unstable and then stable again before undergoing an output
transition, as in Figure 13, are called hazards. Since several behaviors of a gate may be expected in a
hazard situation, we need to know whether hazards may occur and, if so, for which gates. One can simply
forbid hazards at first by using gate specifications that declare hazards illegal. We call such CMOS gate
specifications hazard-intolerant models. Then, any hazards will be detected as violations of the gate
specifications. Should any hazards show up, one can use more detailed specifications to model the
particular behaviors of those gates exposed to hazards.
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Figure 14: Hazard-intolerant model: (a) gate and signals; (b) execution abcac; (c) process.

For an example of a hazard-intolerant model in process spaces, consider the AND gate in Figure 14
(a). Executions represent waveforms as finite sequences of actions from {&a, b, c}. Each action represents
a rising or falling transition on the corresponding signal. For instance, the waveform in Figure 14 (b) is
represented by abcac. The process for the hazard-intolerant model of the AND gate is shown as a state
machine in Figure 14 (c). The state machine has ten states: eight states for the eight possible combinations
of logic levels of the signals of the gate, one error trap state for executions containing an illegal output, and
one reject trap state for executions containing an illegal input. Unless otherwise specified, we assume that
in the initial state all signals are low. Then, in the neighboring state after an a transition, the signal values
become a high, b low, c low; and so on. Let us discuss some executions in the hazard-intolerant model.
Execution abcabc is a goal because it leads back to the initial state, which is a goal state. Execution aca
contains an invalid output, and, accordingly, it leads to the error state on the left. Execution ab is an error
because it leads to an unstable state, and the gate should respond by a c, not stop after ab. (In this paper,
we are taking an execution to represent the entire operation of the gate, not just the beginning of the
operation.) Finally, execution abb represents a hazard, modeled as a reject, because the gate becomes
unstable after the first b and stable again after the second b, without performing an output transition.

Figure 15: Process for the inertial model of the gate in Figure 14 (a).

For an example of an inertial model in process spaces, consider the process in Figure 15, representing
the inertial model of the AND gate in Figure 14 (a). This process is similar to the hazard-intolerant model,
except that input transitions from an unstable state to a stable state are permitted. For instance, execution
abb represents a hazard as described above, but it leads to a goal state of the inertial model in Figure 15.

The hazard-intolerant models extend to arbitrary CMOS gates the asynchronous models used e.g. in
[Di89] for Boolean gates, while the inertial models correspond to the widely known inertial delay models
described e.g. in [BS95].

FIREMAPS provides operators for building CMOS gate models directly from the instability functions of
the gates. These operators are (hazard-intolerant) for the hazard-intolerant model and
(inertial) forthe inertial model. Each of these operators takes as arguments a Boolean function
representing the instability function of a CMOS gate and an action list containing just the output of the
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gate. This format was chosen for convenience. The operator (Br) reads and returns a Boolean function.
The format of a Boolean function read by (Br) is, again, in the Polish notation. The function uses the
symbols for the input and output signals of the gate as variables. The Boolean operators used in the
function are represented by: & for conjunction, | for disjunction, ! for negation, ~ for exclusive-or, —> for
implication, and <—> for equivalence.
The following expression returns the hazard-intolerant model for an AND gate with inputs &, b, and ¢
and output d :

(hazard-intolerant)
(Br) " d & & a b ¢
(ar) 1: d

The (hazard-intolerant) operator returns an internal representation of the hazard-intolerant
process for the AND gate, and takes as arguments a Boolean function, read and returned by (Br), and an
action list, read and returned by (ar). The Boolean function is the instability functiond ® (a A b A c) of
the AND gate, as we have discussed at the beginning of this section. The action list contains just one
action, d, which is the output of the gate.

Notice that the gate inputs were not listed separately, but the output was. The operator (hazard-
intolerant) reads all gate actions from the expression for the instability function. The gate output is
given in a separate action list because there is no way to distinguish the output from the inputs by reading
the instability function only.

The following expression returns the inertial model of a C-element with inputs a and b and output c :

(inertial)
(Br) | & &ab!c &«&&! a! bc
(ar) 1: c

The instability function of this C-elementisthusa A b A ¢V a A b A cand the output is c.

5. Chain Constraints

To enforce a particular ordering of two events, one can either rely on causality or on relative delays. If
causality between two events is used, one may introduce some extra circuitry that does not allow the second
event to occur until the first event has occurred. The causality approach has the inconvenience that the
delay of the extra circuitry is introduced between the two events. If relative delays are used instead, one
chooses the delays of the circuit components so that the total delay on a path from a third event to the first
event is shorter than the total delay on a path to the second event. This way, the delay between the first and
the second events can be reduced arbitrarily, and area and power savings can be achieved.

Figure 16: Specification process.

For example, consider again the circuit in Figure 1 (b). The pulse specification in Figure 1 (a) is
represented by the finite-state process in Figure 16. From the initial state, a is supposed to switch, then e,
and then eagain. Illegal inputs lead to a reject state, and illegal outputs to an error state. Stopping before
two e transitions is also illegal, and the corresponding states are error states. Stopping is legal after two e
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transitions and before the first a transition, since normally the environment does not need to ever initiate the
operation of the circuit. Events other than a and e are ignored by this interface specification, meaning that
they do not change the state of the process. The gate behaviors are represented by hazard-intolerant
models. The problem is to determine whether the specification process is refined by the product of the gate
processes. FIREMAPS reported that refinement does not hold and produced counter-example execution
abcd, indicating a hazard at the NOR gate. This execution shows that the circuit might end up in a stable
state where signals a and c are high and signals b, d, and e are low, while an etransition is expected. Thus,
in absence of delay constraints, the circuit might not behave as specified.

One way to deal with the flaw above is to introduce extra circuitry, as in Figure 2 (a), for which the
product of the hazard-intolerant models of the gates does refine the specification process above.

Another way to deal with the flaw, without introducing new gates, is to impose constraint (1). To
verify the circuit with the constraint, we model constraint (1) as a process that forbids certain executions by
declaring them to be errors. It is the responsibility of an imaginary constraint device to avoid executions
such as abcd, abdc, abd. The constraint process is built automatically by FIREMAPS from the lists of
actions involved, the values of the corresponding signals at the state where the ‘race’ starts, and the two
competing delay chains. In this case, the actions involved in the constraint are a, b, ¢, d, and €; the
competing delay chains start at the initial state; the chain with the longer delay is abc; and, the chain with
the shorter delay is ade. FIREMAPS reported that refinement holds between the specification process in
Figure 16 and the product of the new constraint process and the gate processes.

b2 —— —p bn—l > bn
Db _.b
a= bl Dblb2 n-1-n
Da
18 Da_, ,a,
> ... P an am

Figure 17: General form of competing delay chains.

In general, we use a constraint of the form
(11) Dblb2 +..+ Dbn-lbn > D3162 +..+ Dam-lam

to ensure that a,, will occur before b,, where &, ..., am, by, ..., by are events such that & is the same as by,
and the D’s are delays between the events indicated in subscripts; see Figure 17. The interpretation of
such a constraint is that the b chain of events will not be completed before the a chain, unless one of the a
or b actions involved occurs out of order, disrupting the chains. Such a constraint is different from the
simple delay inequality Do b, > Daja,; We shall discuss this point on an example later in this section. We
call the constraints of the form (11) chain constraints.

We model a chain constraint as a process. The starting point of the delay chains is a state called the
base state of a process called the base process. The base process ‘monitors’ the circuit, and, if the base
state is reached and the first event of the chains occurs, then a ‘race’ between the two delay chains is
started. Recall that the first event is the same for the two chains.

For example, consider the chain constraint in expression (1), referring to the circuit in Figure 1 (b).
The “race’ starts when signals b and d are high, signals a, c, and eare low, and an upgoing transition on a
occurs. The base process is a five-dimensional hypercube, to keep track of the logic values of these five
signals. Each state of the hypercube corresponds to one of the 32 possible configurations of logic values of
these five signals. The base state corresponds to the signal configuration mentioned above. The initial
state of the chain constraint process corresponds to the initial state of the circuit. In this example the base
state is the same as the initial state, but in general they can be different.

The chain constraint process is obtained by adding new states to the base process, to monitor the
progress through the two delay chains after the base state. The first event of the chains is now taken to lead
from the base state to one of the new states. If the chain that is supposed to take longer is completed before
the other chain of events, then an error trap state is reached. If one of the chains is left before any chain is
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completed, we go back to the states of the original base process. Except for the error trap state, all states
of the chain constraint process are goal states. The chain constraint process enforces that the chain that is
supposed to take longer will not be completed before the other, but the chain constraint process does not
intervene in any other way in the behavior of the circuit or the environment.

For example, consider again the circuit in Figure 1 (b). The full listing of the process for the chain
constraint in expression (1) is given in Appendix 1. The initial state of this process happens to be its base
state. Execution abdc leads through states 0, 33, 35, 36, and 32, to the error trap state (state 32) of the
chain constraint process, because the chain abc is not supposed to be completed before the chain ade.
Execution abdadb leads through states 0, 33, 35, 36, 10, 2, and 0 to a goal state (the initial state), because
the chains have been left by the second a transition.

Thus, the meaning of a chain constraint process is to forbid every execution u that splits into three
parts uy, Uy, and us, such that uy puts the base process into the base state and u, violates a delay chain
inequality. For example, execution abdcdda splits up into u, = the empty word, u, = abdc, and u; = dda.
The violation occurs if u, is the “interleaving’ of two words v and w such that v is the first chain of actions
(the chain that is supposed to take longer) and w is a prefix of the second chain of actions. In the example
above, v=abc and w=ad. More precisely, u, is the interleaving of v and w if each of vand wcan be
obtained by deleting from u, the actions of the other chain. In the example, v can be obtained by deleting d
and e, and w by deleting b and c.

Notice that, if the chains are disrupted by an extraneous event, the constraint does not apply. For
instance, execution abdac is a goal for the process in Appendix 1, and thus it is not ruled out by the
respective chain constraint. This is because the second a event is not expected in the chains.

FIREMAPS provides the operator (cc) for building a chain constraint process from the base process, the
base state, and the two chains of events. A chain constraint process is yielded by an expression of the form

(cc) ep eal ea2 eal3

where ep is an expression returning the base process, and eal, ea2, and ea3 are expressions returning
action lists for a word leading to the base state, for the slow delay chain, and for the quick delay chain,
respectively. Hypercubes can also be built by a special operator, (hypercube), which takes as
argument an action list with the actions of the hypercube.

For example, a process listing like that in Appendix 1 can be obtained by the commands:

= pulse (cc) # (Al1.1)
(hypercube) (ar) 5: a b ¢ d e # (A1.1.1)
(ar) O: # (Al1.1.2)
(ar) 3: a b ¢ # (Al1.1.3)
(ar) 3: a d e # (A1.1.4)

(wp) pulse # (A1.2)

Line (A1.1.1) above yields the base process, a hypercube with five actions: a, b, ¢, d, and e. Line (A1.1.2)
reads an action list that leads from the initial state of the base process to the base state; in this case, the
base state is the initial state itself, and the action list is empty. Lines (A1.1.3) and (Al.1.4) read action lists
for the competing delay chains; the chain that is supposed to have a larger delay goes first, in line

(Al1.1.3). Command (Al.2) prints the process.

The action list for a base state does not have any restrictions, but the following restrictions apply on the
two action lists for delay chains taken by the (cc) operator. Let x and y be two such action lists.

0] All the actions in x and y must be actions of the base process as well;

(i) x and y must have a common prefix of length at least one;

(iii) After the largest common prefix, x and y should have at least one action each;

(iv) Each action of x that comes after the largest common prefix of x and y should be different from
each action of y that comes after the largest common prefix of x and y.
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The question arises whether one can simply sum up the delays in a chain constraint and use a simpler
constraint. For instance, would the chain constraint

(12) DaT ct > DaT et

have the same effect on the circuit in Figure 1 (b) as the constraint (1)? The answer is no, because chain
constraint (12) is inadvertently strong. We used the tool to find counter-examples to refinement between
the circuit with chain constraint (12) and the circuit with chain constraint (1), as follows:

= pulse2 (cc)

(hypercube) (ar) 3: a c e
(ar) O:

(ar) 2: a c

(ar) 2: a e

=a) init (ar) 2: b d

(

= invl (quot) (inertial) (Br) ~ b ! a (ar) 1: b init

= inv2 (quot) (inertial) (Br) *~ ¢ ! b (ar) 1l: ¢ init

= inv3 (quot) (inertial) (Br) ~ d ! a (ar) 1: d init

= nor (quot) (inertial) (Br) ~ e ! | ¢ d (ar) 1l: e 1init

(wa) (aR) *
- * * % % ipyl inv2 inv3 nor pulseZ2
* % % % invl inv2 inv3 nor pulse

# the reply was: 6: a b a a d c

where pulse2 is the new chain constraintand inv1, inv2, inv3, nor are the gates in the circuit. The
tool has produced execution abaadc which is an error for the new chain constraint process but a goal for
the original chain constraint process. This execution is allowed by (1) but it is inadvertently ruled out by
(12), because the process for (12) does not notice that the delay chain abc was started earlier than the delay
chain ade. (This execution is not permitted by the specification in Figure 1 () either, but this is beside the
point; in some other application, we might need to compare this circuit with another specification.)

In general, one must be careful when deciding to simplify a chain constraint, because a simpler delay
inequality such as (12) may inadvertently guarantee to avoid some potentially dangerous executions, and
thus it may mask bugs if it is used in verification instead of the more detailed constraint. One should check
that the circuit with a simplified constraint is equivalent to the circuit with the original constraint (double
refinement) before using the simplified constraint.

6. Case Study: A Handshake L atch

:3 NOR1 ql ANDO

W fo
Wy 4_OQ_O<@ I
INV NOR2 r

w; >

:3 NORO qO AND1

Figure 18: Handshake latch [vBHP95].

The handshake latch circuit in Figure 18 was given in [vBHP95] as an example of usage of extended
isochronic forks. A handshake latch is intended to operate as a one-bit memory cell with handshake
protocols for reading and writing. Initially, the circuit inputs and outputs are low. A write cycle is
supposed to start by raising Wy, for writing a 0, or wy, for writing a 1. The circuit should raise w;, (‘write
acknowledge’) in response; then wy or wi, whichever was raised, is lowered; and then the circuit should
lower w,, completing the write cycle. A read cycle is started by raising r, (‘read request’); the circuit
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should raise ro if a 0 was stored or ry if a 1 was stored; then r, is lowered; and then the circuit should
lower either rq or ry, whichever was raised. The read and write cycles must be mutually exclusive.

The =* signs indicate extended isochronic forks of depth 2 [vBHP95]. Such a fork bounds the
difference in the delays through two layers of gates by the delay in a third layer of gates. In [vBHP95], it is
only mentioned that “the fork from w, extends to g, and ws,” not to r; this fork constrains the difference
between the delay from wy to w;, and the delay from w;, to g to be less than the delays in those gates that
have w;, or g as input. The fork from w; is symmetrical to that from w.

To illustrate our technique, we model the circuit, its specification, and the extended isochronic fork
assumptions as processes, and we use FIREMAPS to compare the circuit and the fork assumptions with
the specification described above. The FIREMAPS session is shown in Appendix 2; in the following, we
discuss the commands used.

The specification is constructed from several partial specifications by commands (A2.1) through
(A2.4) in Appendix 2. Process writeack from (A2.1) models the protocol obeyed by signals w,, wi, and
W, as described above, and process readack from (A2.2) models the protocol obeyed by ro, rq, and ry,
also described above. Process mutex-consistency from (A2.3) requires mutual exclusion between
the read, write O, and write 1 operations, and it ensures consistency between the value that is read and the
value that was written last.? In (A2.3) we assumed that the value stored initially is 0; the analysis would
be the same if the value stored initially were 1.

Command (A2.4) builds the overall specification process spec from the partial specification
processes. We take the product of the reflections of the partial specifications, rather than the product of the
partial specifications themselves. To put it briefly, this is because the product operation models the joining
of devices in a system, whereas what we join in this case are ‘pieces of the environment.’

The processes for the circuit components are built by commands (A2.5) through (A2.10). At first, we
use hazard-intolerant models for CMOS gates; we shall replace some of these models later as necessary.
Although hazards are not always bugs, it is better to know about them if they may occur, and to ignore
them if they are not important. The initial states of these processes have to be changed from all signals at
zero to the initial state of the circuit. Initially, signals wo, Wi, W, I, I'1, I, and g, are low and signals wand
Qo are high. For NORO, ANDO, AND1, and NOR2, the initialization sequences of (quot) contain one
transition for each signal that should be high. For NOR1 and INV, however, the initialization sequences
cannot just have one transition for g and w, respectively, because those transitions would be hazards
(situations where an output transition is enabled and then disabled without being completed), putting these
gates into their reject trap states. Thus, for these gates, we use some longer initialization sequences, still
setting all signals to their desired initial values. For instance, for NOR1 we apply q: go 0, first setting
signal g, high to stabilize the gate, then g, high and g, low again to reach the desired values.

Commands (A2.11) and (A2.12) check that, under hazard-intolerant models, the gates NOR2 and INV
can be replaced by an OR gate. If the verification holds with the OR gate, then it will also hold with the
NOR2 and INV gates instead, by the properties for hierarchical and modular verification.

At this point we check whether the specification is satisfied by the implementation by verifying
refinement between their processes. As discussed in Section 3, this is equivalent to checking robustness of
product for a system containing all gate processes and the reflection of the specification process. For
efficiency, we prefer to work with systems. Command (A2.13) constructs the system to check by inserting
processes to an empty system. Command (A2.14) enables tracing, to monitor the progress of the
verification task. Command (A2.15) performs the check. The tool finds that refinement does not hold, and
we ask for a counter-example execution in command (A2.16). Again, we work with a system instead of
single processes. Command (A2.17) disables tracing.

Execution r,r; has been found as a counter-example to refinement, indicating that, although initially a 0
is stored in the latch, a 1 is read! We have also checked that, if a 1 is written, a 0 is (inadvertently) read:
we write a 1 and then we read the stored value, through simulation commands (A2.18) and (A2.19). In
(A2.18) we try to read a 1 and reach an error state, while in (A2.19) reading a 0 leads to a goal state.

2 In this paper we use a rather verbose format for processes because the state machines are relatively small and this format
shows all their details. FIREMAPS also supports some more concise formats, in which the reject trap states, the error trap
states, and the ‘illegal’ edges leading to such states are not shown in the script, but are filled in implicitly by the program.
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Figure 19: Relabeled handshake latch circuit.

The AND gates appear to have been connected incorrectly, and we fix them as in Figure 19. The
correction is minor, amounting to a simple relabeling of the output terminals. Commands (A2.20),
(A2.21), and (A2.22) rebuild the processes for the ANDs and the system for the whole implementation
accordingly. Commands (A2.23) through (A2.26) redo the verification task.

Another counter-example to refinement, execution wy W, Wy Wy, is found for the corrected circuit. By
the simulation commands (A2.27), (A2.28), and (A2.29), we see that this execution is a reject for the
implementation and for the process of NORO, although it is a goal for the specification. This execution is a
hazard for gate NORO, although the environment has obeyed the specification.

What is the meaning of this hazard? To see what could happen in this “hazardous’ situation, we
replace the hazard-intolerant models of the NOR gates by inertial models, in commands (A2.30), (A2.31),
and (A2.32), and we redo the verification in commands (A2.33) through (A2.36). The counter-example to
refinement obtained this time is execution w; W, Wy W, I 1o, Showing that an invalid value can be read if the
w; signal is reset before NORO performs an output transition. That is, the written value is retracted before
the circuit can store it, and then a wrong value is read.

To prevent reading a wrong value as in Wy W, Wy Wy I, Io, We should use the extended isochronic fork
assumptions from [vBHP95]. In both the original circuit and the corrected circuit, the difference of the
sums of delays Dnoro + Dnor: @nd Dorz + Diny must be less than Danpo because of one of the forks and
less than Danp: because of the other fork, where D’s denote gate delays.

Usually, an extended isochronic fork assumption breaks down into several chain constraints, of which
only a few are of interest for the functionality of the circuit. Here, we need a constraint that would compel
0.1 to occur before the erroneous reading can take place. From the isochronic fork assumptions, we extract
an upper bound on the time of occurrence of g;1 by aiming to have Dyogr; 0N the ‘smaller’ side of a delay
inequality:

Danoo > | (Dnort + Dnoro) — (Dnorz + Diny) | (the fork from wy—see comments below)
O DANDO > (DNORl + DNORO) — (DNORZ + DINV) (One of the two bounds above)
0 Dnorz + Dinv + Danpo > Dnoro + Dnort (re-arranging the terms)
O Dugtwh + Dud wyt + Drtrgt > Dugt gpl + Dol gyt (picking a particular case of signal levels)
O Duyt wyt + Drtrgt > Dyt gpl + Dol gyt (since we hide w in the circuit model)

A chain constraint is obtained by adding positive delays (Dw,t w;l + Dw;l w,l + Dw,i 1) to the left-hand side:
(13) leT wyt T DwaT wl T lel wyl T Dwal T DrrT ol > leT ol T qul ot

This line of reasoning is probably not the most natural way to extract a chain constraint from an
extended isochronic fork assumption, since we started from the fork assumption for w, and we ended with
delay chains that are triggered by a w; event. The matter is somewhat confused by the swapping of the
AND gates, which affects the delay assumptions as well. Also, the intermediate delays Dyt w, 1, Dw, i wy!,
and Dy r,+ had to be added because the AND gates are not used immediately after latching a new value,
but only after w; is lowered and r, is raised. On the other hand, one may have to overcome many such
difficulties in practical applications, and this is what we try to illustrate in a case study.

Commands (A2.37) and (A2.38) construct processes for chain constraint (13) and a symmetrical chain
constraint, by means of the special operators (cc) and (hypercube), described in Section 5. In
(A2.39), we build a system cons by inserting the two chain constraint processes into an empty system.
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Command (A2.41) checks refinement between the specification and the product of the implementation and
the constraint processes, by checking robustness of product of a system containing the gate processes, the
constraint processes, and the reflection of the specification process.

Figure 20: Objection to the delay assumptions for the handshake latch.

A new counter-example is found in (A2.42). To simplify the presentation, we permute a few events in
the new counter-example execution, and we obtain execution e = w; ¢ Wy W G Wa I o, representing the
waveform in Figure 20. Execution eis also a counter-example to refinement, as shown by the simulation
command (A2.44). This execution is not ruled out by the chain constraint (13) because the second w; event
disrupts the chains and the delay inequality does not apply. Also, it is easy to see that execution eis
compatible with both entire isochronic fork assumptions, not just with the chain constraints we have
extracted from these assumptions: since rq is the last event in e, the delays in the AND gates can be
arbitrarily large, larger than the difference between Dyoro + Dnor: @nd Dnorz + Diny-

What if the fork assumptions bounded the branch delay difference not only by the delay in the AND
gates, but also by the delay of a hypothetical gate in the environment, where the extra gate has w; as input?
Wouldn’t the extra gate avoid the danger in Figure 20 by retarding the w ! transition till after a transition
on ¢;,? Not necessarily, since the extra gate delay may or may not intervene in the environment delay from
w,! to wyl. The environment delay from w,! to wyl can be made arbitrarily short, shorter than the extra
gate delay, for instance, by using extended isochronic forks of the kind used in the circuit itself.

The waveform in Figure 20 contains an undesirable gyt event. To forbid this event, we needed some
stronger delay assumptions. Although, strictly speaking, the fork assumptions from [vBHP95] do not
guarantee to avoid execution e above, [VBHP95] seems to intend the environment delay from w,t to wy ! or
to wp! to be larger than the extra gate delay above, thus larger than the delay differences in the fork
assumptions. Accordingly, we imposed that a g, T event occurs before wy |, and we imposed a symmetrical
constraint for gt and wp!:

(14)  Duwtwyt + Dugtwyl > Duyt ool + Dagl oyt
(15) DWQT WaT + DWaT Wol > DWQT qll + Dqll qu

Command (A2.47) builds a system containing the two new chain constraint processes. Command
(A2.49) verifies refinement between the specification and the product of the implementation and the
constraint processes, by checking robustness of product for a corresponding system. This time, refinement
holds, which means that the new chain constraints suffice to guarantee that the circuit meets the given
specification. Command (A2.51) ends the session.

7. Concluding Remarks

In Section 5 we formalized constraints of a certain form, which we called chain constraints, as processes in
a metric-free process space from [Ne95]. In Section 6 we analyzed a handshake latch circuit from
[VBHP95]. The circuit was found to be correct, except for a swapping of output labels and an objection to
the original delay assumptions. We verified that the relabeled circuit meets its specification under slightly
stronger delay assumptions. The verification and diagnosis were done by a BDD-based tool, taking less
than half a minute on a typical workstation for the script in Appendix 2. The analysis technique is widely
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applicable and we have used it for several other small industrial designs as well.

Chain constraints and related delay assumptions appear to be used often in the design of low-level
CMOS gate circuits. Chain constraints can save area and power, and can increase speed by replacing parts
in the circuit. Also, chain constraints can be manipulated conveniently by a metric-free formalism and tool:
they can be found in an almost systematic manner and they can be verified automatically. Moreover, safety
margin evaluations such as those from [KN94] can be applied to chain constraints to assess the reliability
of a circuit in the presence of delay fluctuations.

The circuits we have tried were designed for asynchronous operation, but we do not see any conceptual
problems in applying our analysis technique to synchronous circuits, as long as we are dealing with low-
level, gate implementations. The handshake latch itself might be operated in a clocked environment. One
possible direction for further work is to apply chain constraints to analyze other types of systems, not just
gate circuits. We are currently targeting switch-level circuits, i.e. MOS transistor circuits where the
transistors are approximated by switches. Another direction is to automate the entire analysis procedure,
by deriving new chain constraints from the counter-example executions automatically.

It would be interesting to relate our technique to the more detailed timing methods from [My95],
although there may be a difficulty in doing that, since, as shown at the end of Section 5, the chain
constraints we use may not boil down to inequalities involving single delays. Also, it may be interesting to
adapt our analysis technique to other metric-free formalisms, especially to those in [BR85], [Di89], [Eb89],
[Eb91], [H085], [J092], and [Ve94], which are closely related to the formalism used in this paper. Chain
constraints should be straightforward to represent in the cited formalisms. However, there may be a
difficulty in transferring our techniqgue to some of these formalisms. Notice that the actions of a chain
constraint process are outputs, because the process controls them. In process spaces, although there is no
formal distinction among inputs, outputs, inouts (actions that may change input/output direction during the
operation of the circuit), and other kinds of actions, an output is easy to recognize because illegal output
events lead to an error trap state. We effectively connect outputs of the chain constraint processes to
outputs of the gate processes, whereas [Di89], [J092], and [Ve94] in their present forms forbid connecting
outputs by parallel composition.

In general, we hope that the high flexibility provided by the absence of connectivity restrictions and the
abstraction of the notion of execution will make process spaces suitable for dealing with various ‘niche’
applications.

Finally, let us give a suggestion regarding isochronic forks and extended isochronic forks. We have
noticed that it is rare that both upgoing and downgoing transitions of a signal need delay constraints; more
often, only one direction needs to be constrained. We propose up or down isochronic forks, meaning that
the delay assumptions apply only when the input signal of the fork undergoes a rising or falling transition,
respectively. This way, the costs of implementing the forks may be reduced.
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Appendix 1. Listing of a Chain Constraint Process

5 actions; 37 states; 185 edges;

actions: e, a, ¢, b, d;

states: 0 sti, 1 st, 2 st, 3 st, 4 st, 5 st, 6 st, 7 st, 8 st, 9 st,
10 st, 11 st, 12 st, 13 st, 14 st, 15 st, 16 st, 17 st, 18 st, 19 st,
20 st, 21 st, 22 st, 23 st, 24 st, 25 st, 26 st, 27 st, 28 st, 29 st,
30 st, 31 st, 32 t, 33 st, 34 st, 35 st, 36 st;

edges:
from 0: e 16, a 33, ¢ 4, b 2, d 8;
from 1: ¢ 17, a 0, ¢ 5, b 3, d 9;
from 2: e 18, a 3, ¢ 6, b 0, d 10;
from 3: e 19, a 2, ¢ 7, b 1, d 11;
from 4: € 20, a 5, ¢ 0, b 6, d 12;
from 5: e 21, a 4, ¢ 1, b 7, d 13;
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from 6: e 22, a 7, ¢ 2, b 4, d 14;
from 7: e 23, a 6, ¢ 3, b 5, d 15;
from 8: e 24, a 9, ¢ 12, b 10, d 0;
from 9: e 25, a 8, ¢ 13, b 11, d 1;
from 10: e 26, a 11, ¢ 14, b 8, d 2;
from 11: ¢ 27, a 10, ¢ 15, b 9, d 3;
from 12: e 28, a 13, ¢ 8, b 14, d 4;
from 13: e 29, a 12, ¢ 9, b 15, d 5;
from 14: e 30, a 15, ¢ 10, b 12, d 6;
from 15: e 31, a 14, ¢ 11, b 13, d 7;
from 16: € 0, a 17, ¢ 20, b 18, d 24;
from 17: e 1, a 16, ¢ 21, b 19, d 25;
from 18: e 2, a 19, ¢ 22, b 16, d 26;
from 19: e 3, a 18, ¢ 23, b 17, d 27;
from 20: e 4, a 21, ¢ 16, b 22, d 28;
from 21: e 5, a 20, ¢ 17, b 23, d 29;
from 22: e 6, a 23, ¢ 18, b 20, d 30;
from 23: e 7, a 22, ¢ 19, b 21, d 31;
from 24: e 8, a 25, ¢ 28, b 26, d 16;
from 25: e 9, a 24, ¢ 29, b 27, d 17;
from 26: e 10, a 27, ¢ 30, b 24, d 18;
from 27: e 11, a 26, ¢ 31, b 25, d 19;
from 28: e 12, a 29, ¢ 24, b 30, d 20;
from 29: e 13, a 28, ¢ 25, b 31, d 21;
from 30: e 14, a 31, ¢ 26, b 28, d 22;
from 31: e 15, a 30, ¢ 27, b 29, d 23;
from 32: e 32, a 32, ¢ 32, b 32, d 32;
from 33: e 17, a 0, ¢ 5, b 35, d 34;
from 35: e 19, a 2, ¢ 32, b 1, d 36;
from 34: e 25, a 8, ¢ 13, b 36, d 1;
from 36: e 27, a 10, ¢ 32, b 9, d 3

Appendix 2. FIREMAPS Session for a Handshake L atch

# SPECIFICATION PROCESSES

= writeack (pr) # (A2.1)
3 actions; 8 states; 24 edges;
actions: w0, wl, wa;
states: 0 sti, 1 t, 2 st, 3 t, 4 st, 5t, 6 t, 7 s;

edges:
from 0: wO 1, wl 5, wa 6;
from 1: wO 7, wl 7, wa 2;
from 2: wO 3, wl 7, wa 6;
from 3: wO 7, wl 7, wa 0;
from 4: wO 7, wl 3, wa 6;
from 5: wO 7, wl 7, wa 4;
from 6: wO 6, wl 6, wa 6;
from 7: wO 7, wl 7, wa 7.
= readack (pr) # (A2.2)

3 actions; 8 states; 24 edges;
actions: r0, rl, rr;
states: 0 sti, 1 t, 2 st, 3 t, 4 st, 5 t, 6 t, 7 s;

edges:
from 0: r0O 6, rl 6, rr 3;
from 1: r0O 0, rl 6, rr 7;
from 2: r0 6, rl 6, rr 1;
from 3: r0 2, rl 4, rr 7;
from 4: r0 6, rl 6, rr 5;
from 5: r0 6, rl 0, rr 7;
from 6: r0O 6, rl 6, rr 6;
from 7: rO 7, rl 7, rr 7.
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= mutex-consistency (pr) # (A2.3)
6 actions; 16 states; 96 edges;
actions: rr, w0, wl, wa, r0, rl;
states: 0 sti, 1 t, 2 st, 3 t, 4 st, 5 t, 6 st, 7 t,
9 t, 10 st, 11 t, 13 t, 14 st, 15 t,
8 t, 12 s;
edges:
from O: rr 13, wO 1, wl 5, wa 8, rO 8, rl 8;
from 1: rr 12, wO 12, wl 12, wa 2, rO 8, rl 8;
from 2: rr 12, wO 3, wl 12, wa 8, rO 8, rl 8;
from 3: rr 12, wO 12, wl 12, wa 0, rO 8, rl 8;
from 4: rr 9, wO 1, wl 5, wa 8, rO 8, rl 8;
from 5: rr 12, wO 12, wl 12, wa 6, rO 8, rl 8;
from 6: rr 12, wO 12, wl 7, wa 8, rO 8, rl 8;
from 7: rr 12, wO 12, wl 12, wa 4, rO 8, rl 8;
from 9: rr 12, wO 12, wl 12, wa 8, rO 8, rl 10;
from 10: rr 11, wO 12, wl 12, wa 8, rO 8, rl 8;
from 11: rr 12, wO 12, wl 12, wa 8, rO 8, rl 4;
from 13: rr 12, wO 12, wl 12, wa 8, r0 14, rl 8;
from 14: rr 15, wO 12, wl 12, wa 8, rO 8, rl 8;
from 15: rr 12, wO 12, wl 12, wa 8, rO 0O, rl 8;
from 8: rr 8, wO 8, wl 8, wa 8, rO 8, rl 8;
from 12: rr 12, wO 12, wl 12, wa 12, r0 12, rl 12.
= spec - * * - writeack - readack - mutex-consistency # (A2.4)
# VERIFICATION WITHOUT DELAY CONSTRAINTS—--ORIGINAL CIRCUIT
= nor0 (quot) (hazard-intolerant) (Br) ~ g0 ! | wl gl (ar) 1: g0 (ar) 1: gO
# (A2.5)
= norl (quot) (hazard-intolerant) (Br) ~ gl ! | wO g0 (ar) 1: gl
(ar) 3: gl g0 gl # (A2.6)
= and0 (quot) (hazard-intolerant) (Br) ©~ r0 & gl rr (ar) 1l: rO0 (ar) O:
# (A2.7)
= andl (quot) (hazard-intolerant) (Br) *~ rl & g0 rr (ar) 1: rl (ar) 1: g0
# (A2.8)
= nor2 (quot) (hazard-intolerant) (Br) *~ w ! | wO wl (ar) 1l: w (ar) 1l: w
# (A2.9)
= inv (quot) (hazard-intolerant) (Br) ~ wa ! w (ar) 1l: wa (ar) 3: wa w wa
# (A2.10)
= or (hazard-intolerant) (Br) ~ wa | wO wl (ar) 1: wa # (A2.11)
(wb) [= or * nor2 inv # (A2.12)
# the reply was: TRUE
(=P) impl (add) (add) (add) (add) (add) (empty)
nor0 norl or and0 andl # (A2.13)
(trace) # (A2.14)
(wb) (RP) (add) impl - spec # (A2.15)
# the reply was: FALSE
(wa) (aRP) (add) impl - spec # (A2.16)
# the reply was: 2: rr rl
(trace) # (A2.17)
(wl) (sti apply) (prodP) impl (ar) 8: wl g0 gl wa wl wa rr rl # (A2.18)
# the reply was: 9: 7 2 2 2 6 2 6 2 2
(wl) (sti apply) (prodP) impl (ar) 8: wl g0 gl wa wl wa rr r0 # (A2.19)
# the reply was: 9: 7 2 2 2 6 2 6 2 6
# VERIFICATION WITHOUT DELAY CONSTRAINTS--CORRECTED CIRCUIT
= and0 (quot) (hazard-intolerant) (Br) *~ r0 & g0 rr (ar) 1l: rO0 (ar) 1: gO
# (A2.20)
= andl (quot) (hazard-intolerant) (Br) ©~ rl & gl rr (ar) 1l: rl (ar) O:
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(A2.21)
(=P) impl (add) (add) (add) (add) (add) (empty)
nor0 norl or and0 andl (A2.22)
(trace)
(wb) (RP) (add) impl - spec
# the reply was: FALSE
(wa) (aRP) (add) impl - spec

I I FE I I FE I I
>
N
N
o

# the reply was: 4: wl wa wl wa

(trace) (A2.206)
(wl) (sti apply) (prodP) impl (ar) 4: wl wa wl wa (A2.27)
# the reply was: 5: 7 2 2 2 4

(wl) (sti apply) norO (ar) 4: wl wa wl wa (A2.28)
# the reply was: 5: 7 2 2 4 4

(wl) (sti apply) spec (ar) 4: wl wa wl wa (A2.29)
# the reply was: 5: 7 2 6 2 6

# VERIFICATION WITHOUT DELAY CONSTRAINTS--INERTIAL MODEL

= nor0 (quot) (inertial) (Br) ~ g0 ! | wl gl (ar) 1l: g0 (ar) 1: gO
# (A2.30)
= norl (quot) (inertial) (Br) ~ gl ! | wO g0 (ar) 1: gl (ar) 3: gl g0 gl
# (A2.31)

(=P) impl (add) (add) (add) (add) (add) (empty)

nor0 norl or and0 andl # (A2.32)
(trace) # (A2.33)
(wb) (RP) (add) impl - spec # (A2.34)
# the reply was: FALSE
(wa) (aRP) (add) impl - spec # (A2.35)
# the reply was: 6: wl wa wl wa rr rO
(trace) # (A2.306)
# VERIFICATION WITH DELAY CONSTRAINTS—--PASS 1
= cc0 (cc) # (A2.37)

(hypercube) (ar) 6: wl gl g0 r0O wa rr

(ar) O:

(ar) 6: wl wa wl wa rr rO

(ar) 3: wl g0 gl
= ccl (cc) # (A2.38)

(hypercube) (ar) 6: w0 g0 gl rl wa rr

(ar) 2: g0 gl

(ar) 6: wO wa wO wa rr rl

(ar) 3: w0 gl g0
(=P) cons (add) (add) (empty) cc0 ccl # (A2.39)
(trace) # (A2.40
(wb) (RP) (add) (addP) impl cons - spec # (A2.41)
# the reply was: FALSE
(wa) (aRP) (add) (addP) impl cons - spec # (A2.42)
# the reply was: 8: wl wa g0 wl wa rr g0 rO
(trace) # (A2.43)

(wl) (sti apply) (prodP) (add) (addP) impl cons - spec
(ar) 8: wl g0 wa wl g0 wa rr r0 # (A2.44)
# the reply was: 9: 7 2 2 2 2 2 6 2 4

# VERIFICATION WITH DELAY CONSTRAINTS--PASS 2

= cc2 (cc) # (A2.45)
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hypercube) (ar) 4: wl gl g0 wa

(

(ar) O:

(ar) 3: wl wa wl

(ar) 3: wl g0 gl
= cc3 (cc) # (A2.46)

(hypercube) (ar) 4: w0 gl g0 wa

(ar) 2: g0 gl

(ar) 3: w0 wa wO

(ar) 3: w0 gl g0
(=P) cons (add) (add) (empty) cc2 cc3 # (A2.47)
(trace) # (A2.48
(wb) (RP) (add) (addP) impl cons - spec # (A2.49)
# the reply was: TRUE
(trace) # (A2.50)
# QUITTING
(q) # (A2.51)
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