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Abstract

This paper presents an implicit method for solving PDE models of contingent claims prices with
general algebraic constraints on the solution. Examples of constraints include barriers and early
exercise features. In this unified framework, barrier options with or without American-style features
can be handled in the same way. Either continuously or discretely monitored barriers can be
accommodated, as can time-varying barriers. The underlying asset may pay out either a constant
dividend yield or a discrete dollar dividend. The use of the implicit method leads to convergence
in fewer time steps compared to explicit schemes. This paper also discusses extending the basic
methodology to the valuation of two asset barrier options and the incorporation of automatic time

stepping.



1 Introduction

The market for barrier options has been expanding rapidly. By one estimate, it has doubled in size
every year since 1992 (Hsu (1997), p. 27). Indeed, as Carr (1995) observes, “standard barrier options
are now so ubiquitous that it is difficult to think of them as exotic” (p. 174). There has also been
impressive growth in the variety of barrier options available. An incomplete list of examples would
include double barrier options, options with curved barriers, rainbow barriers (also called outside
barriers, for these contracts the barrier is defined with respect to a second asset), partial barriers
(where monitoring of the barrier begins only after an initial protection period), roll up and roll down
options (standard options with two barriers: when the first barrier is crossed the option’s strike
price is changed and it becomes a knock-out option with respect to the second barrier), and capped
options. There are also numerous applications of barrier-type options to various issues involving
default risk (see for example Merton (1974), Boyle and Lee (1994), Ericsson and Reneby (1996),
and Rich (1996) among many others).

The academic literature on the pricing of barrier options dates back at least to Merton (1973),
who presented a closed-form solution for the price of a continuously monitored down-and-out Eu-
ropean call. More recently, both Rich (1991) and Rubinstein and Reiner (1991) provide pricing
formulas for a variety of standard European barrier options (i.e. calls or puts which are either
up-and-in, up-and-out, down-and-in, or down-and-out). More exotic variants such as partial bar-
rier options and rainbow barrier options have been explored by Heynen and Kat (1994a, 1994b,
1996) and Carr (1995). Expressions for the values of various types of double barrier options with
(possibly) curved barriers are provided by Kunitomo and Ikeda (1992), Geman and Yor (1996),

and Kolkiewicz (1997). Broadie and Detemple (1995) examine the pricing of capped options (of



both European and American style). Quasi-analytic expressions for American options with a con-
tinuously monitored single barrier are presented by Gao, Huang, and Subrahmanyam (1996).

This is undeniably an impressive array of analytical results, but at the same time it must
be emphasized that these results generally have been obtained in a setting which suffers from
one or more of the following potential drawbacks. First, it is almost always assumed that the
underlying asset price follows geometric Brownian motion, but there is some reason to suspect
that this assumption may be undesirable.! Second, in most cases barrier monitoring is assumed
to be continuous, but in practice it is often discrete (e.g. daily or weekly). As noted by Cheuk
and Vorst (1996) among others, this can lead to significant pricing errors.? Third, any dividend
payments made by the underlying asset are usually assumed to be continuous. While this may be
reasonable in the case of foreign exchange options, it is less justifiable for individual stocks or even
stock indices (see for example Harvey and Whaley (1992)). Fourth, in most cases it is not possible
to value American-style securities. Fifth, if barriers change over time, they are assumed to do so
as an exponential function of time. Aside from analytical convenience, there would not seem to be
any compelling reason to impose this restriction. Finally, it should be noted that the availability
of a closed-form solution does not necessarily mean that it is easy to compute. For example, the
expression obtained by Heynen and Kat (1996) for the value of a discrete partial barrier option
requires high dimensional numerical integration.

Factors such as these have led several authors to examine numerical methods for pricing barrier

1Boyle and Tian (1997) examine the pricing of barrier and lookback options using numerical methods when the
underlying asset follows the CEV process and report significant pricing deviations from the lognormal model, after
controlling for differences in volatility. They conclude that the issue of model specification is much more important
in the case of path-dependent options than it is for standard options.

?Broadie, Glasserman and Kou (1995, 1996) provide an accurate approximation of discretely monitored barrier
option values using continuous formulas with an appropriately shifted barrier. This approach works in the case of a
single barrier when the underlying asset distribution is lognormal.



options. For the most part, the methods considered have been some form of binomial or trinomial
tree.> Boyle and Lau (1994) and Reimer and Sandmann (1995) each investigate the application of
the standard binomial model to barrier options. The basic conclusion emerging from these studies
is that convergence can be very poor unless the number of time steps is chosen in such a way as to
ensure that a barrier lies on a horizontal layer of nodes in the tree. This condition can be hard to
satisfy in any reasonable number of time steps if the initial stock price is close to the barrier or if
the barrier is time-varying.

Ritchken (1995) notes that trinomial trees have a distinct advantage over binomial trees in that
“the stock price partition and the time partition are decoupled” (p. 19).* This allows increased
flexibility in terms of ensuring that tree nodes line up with barriers, permitting valuation of a
variety of barrier contracts including some double barrier options, options with curved barriers,
and rainbow barrier options. However, Ritchken’s method may still require very large numbers of
time steps if the initial stock price is close to a barrier.

Cheuk and Vorst (1996) modify Ritchken’s approach by incorporating a time-dependent shift
in the trinomial tree, thus alleviating the problems arising with nearby barriers. They apply
their model to a variety of contracts (e.g. discrete and continuously monitored down-and-outs,
rainbow barriers, simple time-varying double barriers). However, even though there is considerable
improvement over Ritchken’s method for the case of a barrier lying close to the initial stock price,
this algorithm can still require a fairly large number of time steps.

Boyle and Tian (1996) consider an explicit finite difference approach. They finesse the issue

3One exception is provided by Andersen (1996), who explores the use of Monte Carlo simulation methods.

*It should be emphasized that this statement is true only up to a point. Trinomial trees are a form of explicit
finite difference method and as such are subject to a well-known stability condition which requires that the size of a
time step be sufficiently small relative to the stock price grid spacing.



of aligning grid points with barriers by constructing a grid which lies right on the barrier and, if
necessary, interpolating to find the option value corresponding to the initial stock price.

Figlewski and Gao (1997) illustrate the application of an “adaptive mesh” technique to the case
of barrier options. This is another tree in the trinomial forest. The basic idea is to use a fine mesh
(i.e. narrower stock grid spacing and, because this is an explicit type method, smaller time step) in
regions where it is required (e.g. close to a barrier) and to graft the computed results from this onto
a coarser mesh which is used in other regions. This is an interesting approach and would appear
to be both quite efficient and flexible, though in their paper Figlewski and Gao only examine the
relatively simple case of a down-and-out European call option with a flat, continuously monitored
barrier. It also should be pointed out that restrictions are needed to make sure that points on the
coarse and fine grids line up. The general rule is that halving the stock price grid spacing entails
increasing the number of time steps by a factor of four.

Each of these tree approaches may be viewed as some type of explicit finite difference method for
solving a parabolic partial differential equation (PDE). In contrast, we propose to use an implicit
method which has superior convergence (when the barrier(s) is close to the region of interest) and
stability properties as well as offering additional flexibility in terms of constructing the spatial grid.
The method also allows us to place grid points either near or exactly on barriers. In particular, we
present an implicit method which can be used for PDE models with general algebraic constraints
on the solution. Examples of constraints can include early exercise features as well as barriers.
In this unified framework, barrier options with or without American constraints can be handled
in the same way. Either continuously or discretely monitored barriers can be accommodated, as

can time-varying barriers. The underlying asset may pay out either a constant dividend yield or



a discrete dollar dividend. Note also that for an implicit method, the effects of an instantaneous
change to boundary conditions (i.e. the application of a barrier) are felt immediately across the
entire solution, whereas this is only true for grid points near the barrier for an explicit method. In
other words, with an explicit method it will take several time steps for the effects of the constraint
to propagate throughout the computational domain. Qur proposed implicit method can achieve
superior accuracy in fewer time steps.

The outline of the paper is as follows. Section 2 presents a detailed discussion of our methodol-
ogy, including issues such as discretization and alternative means of imposing constraints. Section 3
provides illustrative results for a variety of cases. Extensions to the methodology are presented in

Section 4. Section 5 concludes with a short summary.

2 Methodology

For expositional simplicity, we focus on the standard lognormal Black-Scholes setting. After per-
forming a change of variables in order to convert the Black-Scholes PDE into a forward equation,

we have

ov. 1, , 0%V ov
3t*_205 8S2+r585—rV (1)

where t* =T — t, V denotes the value of the derivative security under consideration, S is the price
of the underlying asset, o is its volatility, and r is the continuously compounded risk free interest
rate. We employ a discretization strategy which is commonly used in certain fields of numerical
analysis such as computational fluid dynamics, though it appears to be virtually unknown in the

finance literature. This is called a point-distributed finite volume scheme. For background details,



the reader is referred to Roache (1972). Our reasons for choosing this approach are twofold: i)
it is notationally simple (non-uniformly spaced grids can easily be described); and ii) it is readily

adaptable to more complicated settings. In this setup the discrete version of equation (1) is given

by:
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where V;”"'l is the value at node ¢ at time step n + 1, At™ is the time step size, F;_
are what is known in numerical analysis as flux terms, f; is called a source/sink term and 6 is a
temporal weighting factor. To gain some intuition for this expression, think of the discrete grid as
containing a number of cells. At the center of each cell ¢ lies a particular value of the stock price,
S;. The change in value within cell ¢ over a small time interval arises from three sources: i) the
net flow into cell ¢ from cell ¢ — 1; ii) the net flow into cell ¢ from cell ¢ + 1; and iii) the change

in value over the time interval due to discounting. In equation (2), the flux term F, 1 captures

1

2

the flow into cell ¢ across the cell interface lying half-way between S; and S;_;. Similarly, the

flux term F} 1 captures the flow into cell ¢ + 1 from cell ¢ across the interface midway between S;
2

and S;11. The change in value due to discounting is represented by the source/sink term f;. The

temporal weighting factor 6 determines the type of scheme being used: fully implicit when 8 =1,

Crank-Nicolson when 6 = %, and fully explicit when 6 = 0.



For equation (1) the flux and source/sink terms at time level n 4 1 are defined as
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where ASZ = %(Sﬂ_l — Si—l), ASH—% = Si+1 - Si, and

it = (-t (5)

Corresponding definitions apply at time level n. Note that flux functions (3) and (4) allow for
non-uniform grid spacing. This permits us to construct grids that have a fine spacing near the
barriers and a coarse spacing away from the barriers.

The remaining terms to define in (3) and (4) are V:i‘*; and VZT; These terms arise from the

(rs%) term in the PDE. Generally, the Black-Scholes PDE can be solved accurately by treating

this term using central weighting and we use this approach throughout this study.® In this case:

" V'in-l—l _I_ ‘/in-}—l
V=T ©)

in equation (4). Furthermore, it is easy to verify that with central weighting the discretization

given by equation (2) in the special case of a uniformly spaced grid is formally identical to the

®In more complex situations, more sophisticated methods may be required. For example, Zvan, Forsyth, and
Vetzal (1996) demonstrate the use of one such alternative known as a flux limiter in the context of Asian options.
Such methods may also be required if the interest rate is very high relative to the volatility. See Zvan, Forsyth, and
Vetzal (1996, 1997) for further discussion.



standard type of discretization described in finance texts such as Hull (1993, section 14.7).5

Some interesting issues arise with respect to choice of the temporal weighting parameter 6. It
is well-known that explicit methods may be unstable if the time step size is not sufficiently small
relative to the stock grid spacing. On the other hand, both fully implicit and Crank-Nicolson
methods are unconditionally stable. Both fully explicit and fully implicit methods are first-order
accurate in time, whereas a Crank-Nicolson approach is second-order accurate in time. This seems
to suggest that a Crank-Nicolson method might be the best choice, but in turns out that this
is not correct in the case of barrier options. The reason is that applying a barrier can induce a
discontinuity in the solution. A Crank-Nicolson method may then be prone to produce large and
spurious numerical oscillations and very poor estimates of both option values and sensitivities (i.e.
“the Greeks”).

Zvan, Forsyth, and Vetzal (1996) have shown that in order to prevent the formation of spurious

oscillations in the numerical solution, the following two conditions must be satisfied:

and
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Condition (7) is easily satisfied for most realistic parameter values for ¢ and ». Condition (8) is

trivially satisfied when the scheme is fully implicit (§ = 1). For a fully explicit or a Crank-Nicolson

6To be completely precise, there is a small difference in that it is traditional in finance to evaluate the rV term in
the PDE at time level n 4+ 1 independent of #. This permits the interpretation of an explicit method as a trinomial
tree where valuation is done recursively using “risk-neutral probabilities” and discounting at the risk free rate.



scheme, condition (8) restricts the time step size as a function of the stock grid spacing. It is
easily verified that the conditions which prevent oscillations in the fully explicit case are exactly
the same as the commonly cited sufficient conditions which ensure that it is stable. Furthermore,
even though a Crank-Nicolson approach is unconditionally stable, it can permit the development of
spurious oscillations unless the time step size is no more than twice that required for a fully explicit
method to be stable. Although a fully implicit scheme is only first-order accurate in time, it is our
experience that the Black-Scholes PDE can be solved accurately using such a scheme. Hence, we
chose to use a fully implicit method. This is advantageous because in order to obtain sufficiently
accurate values for barrier options, the grid spacing near the barrier(s) generally needs to be fine.
Thus, if a Crank-Nicolson method or a fully explicit scheme were used, the time step size would
need to be prohibitively small in order to satisfy condition (8).

The appropriate strategy for imposing an algebraic constraint on the solution depends on the
nature of the constraint. If the constraint is of a discrete nature (i.e. it holds at a point in time, not
over an interval of time), such as a discretely monitored barrier, then it can be applied directly in
an explicit manner. In other words, we compute the solution for a particular time level, apply the
constraint if necessary, and move on to the next time level.” Consider the example of a discretely
monitored down-and-out option with no rebate. If time level n + 1 corresponds to a monitoring
date, we first compute V"*! and then apply the constraint:

0 if S; < h(t"t!, 0"t H
v = (9)

V;"‘H otherwise

"Note that this is exactly the way that the early exercise feature for American options has been traditionally
handled in finance applications.



where H is the initial level of the barrier, A is a positive function which allows the barrier to move
over time, and o”t! is an arbitrary parameter. Note that for constant barriers h is always equal
to one. Similarly, for a discretely monitored double knock-out option we compute V"**! and if
necessary apply the constraint:

0 if Sz S h(tn+1a an+1)Hlower or Sz Z h(tn—}_laﬁn-}_l)Hupper
Vit = (10)

V;”‘H otherwise
where Hjower (Hupper) is the initial level of the lower (upper) barrier, and ! is an arbitrary
parameter.

If the constraint under consideration is not of a discrete nature, then it may be better to use
an alternative strategy which imposes the constraint in an implicit fully coupled manner. This
ensures that the constraint holds over a time interval (from time level n to n + 1), not only at one
point in time. Suppose for example that we want to value some kind of barrier call option with
continuous early exercise opportunities. The constraint is V;”‘H > max(S; — K, 0). Zvan, Forsyth,
and Vetzal (1996) demonstrate how to impose this in an implicit fully coupled manner. Instead of

solving the discrete system given by (2) we solve

el _yn
S = F VIR Vi) = FEN VT VIR + (11)

by constructing a Jacobian matrix and using full Netwon iteration, where for call options Vi"+1 =
max(®7*!, S; — K, 0).

Similar to American options, options with continuously applied barriers can be valued using

10



(11) where for down-and-out barrier options

0 if S; < h(t"t!, 0"t H
Vet = (12)

<I>?+1 otherwise

American barrier options where the barriers are applied continuously can be valued by incorporating
the early-exercise feature into constraint (12) as follows:

0 if S; < h(t"T1, ") H
v = (13)

max(®?*!, S; — K,0) otherwise

The importance of evaluating a constraint implicitly or explicitly appears to depend on the con-
straint itself. Zvan, Forsyth, and Vetzal (1996) report very little difference either way in computed
values for standard American put options. However, as will be shown below, there can be a signif-
icant advantage to using the implicit fully coupled approach in the case of barrier constraints.

Finally, to handle cases where the underlying asset pays a discrete dollar dividend we use the
jump condition (Willmott, Dewynne, and Howison (1993)) V' (S;,t}) = V(S; — D,t*) with linear
interpolation, where D is the discrete dividend, and 3 and ¢* are times just before and after the
ex-dividend date, respectively. The case of a constant dividend yield can be dealt with in the usual

way.

3 Results

This section presents a set of illustrative results. We focus on knock-out options with zero rebate in

order to maximize comparability with existing published results. European knock-in option values
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may be calculated either directly or by using the fact that the sum of a knock-out option and the
corresponding knock-in option generates a standard European option, at least when the rebate is
zero. If the rebate is non-zero, or if the knock-in option is American style, the methods described
by Reimer and Sandmann (1995) in the binomial context may be applied.

Results for European down-and-out call options where the barrier is applied continuously and
discretely are contained in Table 1. The results are for cases where the barrier is close to the point
of interest. That is, H = 99.9 and S = 100. Although the continuous application of the constant
barrier effectively establishes a boundary condition at the same point throughout the life of the
option, discretization (11) and constraint (12) were used to obtain the numerical solution for this

case in order to maintain generality.

Continuous Daily Weekly
PDE | Analytic | PDE | C& V | PDE | C& V
0.16 0.16 1.51 1.51 3.00 2.96

Table 1: European down-and-out call values when » = 0.10, ¢ = 0.2, T — t = 0.5, K = 100 and
S =100. C & V denotes results obtained by Cheuk and Vorst (1996).

The results in Table 1 were obtained using non-uniform grids. A grid spacing of AS = 0.1 near
the barrier and At* = 0.05 were used when the barrier was continuously applied. For the barrier
applied daily At* = 0.0005 and AS = 0.01 near the barrier. A grid spacing of AS = 0.01 near the
barrier was used for the barrier applied weekly with At* = 0.0025. The PDE results in Table 1
can be considered accurate to within $0.01, since reduction of AS and At* changed the solution by
less than $0.005. Table 1 indicates that the PDE method converges to a slightly higher value than
obtained by Cheuk and Vorst (1996) for options were the barrier is applied weekly. This issue will

be addressed later in the paper.
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As noted by Cheuk and Vorst (1996), Table 1 illustrates that there is a considerable difference
between continuous monitoring and discrete monitoring, even with daily monitoring. It is clearly
inappropriate to use continuous models in the case of discrete barriers.

Figure 1 demonstrates the oscillatory solution obtained using the Crank-Nicolson method to

14
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Figure 1: European down-and-out call option with a constant barrier applied weekly calculated
using Crank-Nicolson and fully implicit schemes when » = 0.10, 0 = 0.2, 7 —¢ = 0.5, H = 99.9 and
K =100. A non-uniform spatial grid with AS = 0.01 near the barrier was used and At* = 0.0025.

value a European down-and-out call where the barrier is applied weekly. The grid spacing and time
step size are identical to that used to obtain accurate solutions with a fully implicit scheme. The
oscillations result because condition (8) was not satisfied. In order to satisfy condition (8) in the
region of the barrier when a Crank-Nicolson scheme is used, the time step size must be less than
5.00 x 10~7. This time step size is several orders of magnitude smaller than the time step size of
At* = 2.50 x 1073 needed to obtain accurate results using a fully implicit scheme. Note that if a

fully explicit scheme were used the stable time step size is less than 2.50 x 107",
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Barrier European Dividend | American

Application | PDE | C &V

Continuously | 2.04 2.03 1.92 5.25
Daily 2.48 2.48 2.32 5.90
Weekly 3.01 2.99 2.80 6.37

Table 2: Double knock-out call values with continuously and discretely applied constant barriers
when » = 0.10, 0 = 0.2, T — t = 0.5, Hipwer = 95, Hypper = 125, K = 100 and S = 100. C &
V denotes results obtained by Cheuk and Vorst (1996). Dividend denotes European option values
where the underlying asset pays a discrete dividend of $2 at T — ¢ = 0.25. American denotes
values for options that are continuously early-exercisable where the underlying asset does not pay

dividends.

We also point out that oscillations are a potential problem with the Cheuk and Vorst (1996)
algorithm, at least in some circumstances. As noted by Cheuk and Vorst, if the time step size is too
large, then their tree probabilities can be negative. In such cases, their algorithm is not guaranteed
to prevent oscillations.

We next consider double knock-out call options. Table 2 contains results for cases where the
barriers are applied continuously and discretely. In Table 2, the results for the continuously applied
barriers were obtained using a uniform spacing of AS = 0.5 with At* = 0.0025. The results for
the discretely applied barriers were obtained using a non-uniform grid spacing of AS = 0.01 near
the barriers. The time step size was At* = 0.00025 and At* = 0.001 for barriers applied daily and
weekly, respectively. Reduction of AS and At* changed the PDE results in Table 2 by less than
$0.005.

In Table 2 we also include results for cases where the underlying asset pays a discrete dividend
of $2 at T — t = 0.25 and where there is no dividend paid but the option is American. They also
show that the early exercise premia for the American cases are very large. Note that (at least in

the continuously monitored case) this is due to the presence of the upper barrier — by Proposition
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AS=0.1 AS =0.05 AS =0.025 AS =0.0125 AS = 0.00625
Down-and-out | At* =0.02 | At* =0.01 At* = 0.005 At* = 0.0025 At* = 0.00125

2.91 2.96 2.98 3.00 3.00
Double AS=05 | AS=0.25 | AS=0.125 | AS=10.0625 | AS =10.03125
knock-out At* =0.01 | At* =0.005 | At* = 0.0025 | At* = 0.00125 | At* = 0.000625
2.97 2.99 3.00 3.01 3.01

Table 3: Successive grid refinements demonstrating convergence for European down-and-out and
double knock-out call options with barriers applied weekly when » = 0.10, 0 = 0.2, T — t = 0.5,
K = 100, and S = 100. For the down-and-out case, H = 99.9. For the double knock-out case,
Hiower = 95 and Hypper = 125. AS denotes the grid spacing near the barrier(s).

5 ¢) of Reimer and Sandmann (1995), a continuously monitored American down-and-out call on
a non-dividend-paying stock will not be optimally exercised early if the barrier is lower than the
strike price.

As Tables 1 and 2 indicate, the PDE method generally converges to the converged values
obtained by Cheuk and Vorst (1996). However, as seen in Tables 1 and 2, we found that the PDE
method converged to slightly higher values (see Table 3) from those reported by Cheuk and Vorst
for options with barriers that are applied weekly. We suspect that this may be due to a difference
in when the barrier(s) is applied because of a difference in the definition of a weekly time interval.
We defined a week to be 5 days of a 250 day year.

Figure 2 is a plot of the oscillations that result when the Crank-Nicolson method is used for
a double knock-out barrier with the same grid spacing and time step size as was used to produce
sufficiently accurate results with a fully implicit scheme. Again, condition (8) was violated, which
resulted in severe oscillations near the barriers for the Crank-Nicolson method. Figure 3 is a plot
of a European double knock-out option where the underlying asset pays a discrete dividend of $2

at T —t = 0.25, and the barriers are applied weekly. Notice that the dividend case produces lower

15
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Figure 2: European double knock-out call option with a constant barrier applied weekly calculated
using Crank-Nicolson and fully implicit schemes when » = 0.10, 0 = 0.2, T — t = 0.5, Hiower = 95,
Hpper = 110 and K = 100. A non-uniform spatial grid with AS = 0.05 near the barrier was used
and At* = 0.002.
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80 %0 100 110
Figure 3: European double knock-out call options with a constant barrier applied weekly where the
underlying asset does not pay a dividend and where the underlying asset pays a discrete dividend
(no dividend protection) of $2 at T' — ¢ = 0.25, when » = 0.10, 0 = 0.2, T — t = 0.5, Hiower = 95,
Hpper = 150 and K = 100. A non-uniform spatial grid with AS = 0.05 near the barrier was used
and At* = 0.002.
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Figure 4: American (continuously early-exercisable) double knock-out call option with a constant
barrier applied daily when » = 0.10, 0 = 0.2, T —t = 0.5, Hiower = 95, Hypper = 110, and K = 100.
A non-uniform spatial grid with AS = 0.05 near the barrier was used and At* = 0.002.

values than the non-dividend case, unless the stock price is relatively close to the upper barrier.
This reflects the reduced probability of crossing the upper barrier due to the dividend. A plot of
an American double knock-out option where the barriers are applied daily is contained in Figure
4. Clearly, discrete monitoring has a large impact. With continuous monitoring, the option would
be worthless for all stock price values less than $95 or above $110. The positive value in the region
below $95 is due to the probability of the stock climbing back above the boundary before the next
day.

It is interesting to note that to obtain accurate solutions for the double knock-out options with
continuously applied barriers considered here, only a relatively large grid spacing of AS = 0.5 was
needed. This is due to the fact that the continuous application of the constant barriers effectively

establishes boundary conditions at the same points throughout the life of the option, and because
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o Continuous Weekly
Outward Inward Outward | Inward
PDE | K& I | PDE | K &1
0.20 | 35.17 | 35.13 | 24.74 | 24.67 38.51 29.85
0.30 | 24.99 | 24.94 | 14.12 | 14.02 32.99 21.65
0.40 | 14.88 | 14.81 | 7.22 7.17 24.39 14.80

Table 4: European double knock-out call values for continuously and discretely applied time-varying
barriers when » = 0.05, T — t = 0.25, Hioper = 800, Hypper = 1200, K = 1000 and S = 1000. A
uniform spatial grid with AS = 0.5 was used and At* = 0.001. K & I denotes results obtained by
Kunitomo and Ikeda (1992).

the underlying PDE is the Black-Scholes equation. An analogous situation exists for down-and-out
options with continuous barriers considered here. However, a finer grid spacing near the barrier
was used for such options because the barrier was close to the region of interest.

Although the grids for the examples with constant barriers considered here were constructed
such that a node fell directly on the barrier, we found that it was not actually necessary to do so
if the grid spacing was fine. However, if a large grid spacing was being used, then it was necessary
to place a node right on the barrier or substantial pricing errors could result.

Table 4 contains results for European double knock-out options with time-varying continuous
and weekly barriers where A(t"+1, ant1) = "™ and p(tnt1, gntl) = 7T For inward
moving barriers o”*t! = 0.1 and 8"*! = —0.1. For outward moving barriers o"t! = —0.1 and
B7*tt = 0.1. Note that discretely applied time-varying barriers can be viewed as step barriers.
A grid spacing of AS = 0.5 and At* = 0.001 was chosen in order to obtain option values that
differed by no more than 0.01% of the exercise price from the results obtained by Kunitomo and
Ikeda (1992) for the case of continuously applied barriers. The large impact of discrete monitoring

is once readily again apparent, particularly for higher values of o.
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Figure 5: European double knock-out call options when ¢ = 0.20 and ¢ = 0.40, » = 0.05, T —

t = 0.25, Hijpper = 800, Hyppe, = 1200 and K = 1000. The barriers are outward moving and
continuously applied. A uniform spatial grid with AS = 0.5 was used and At* = 0.001.

Figure 5 is a plot of European double knock-out options with differing volatilities where the
barriers are outward moving and continuously applied. Note that the option value may or may
not be increasing in volatility. The intuition for this is that higher volatility implies an increased
probability of a relatively high payoff but also a greater chance of crossing a barrier. A plot of
European double knock-out options with inward and outward moving barriers is contained in Figure
6. As we would expect, shrinking the distance between the barriers causes a large drop in the initial
option value, especially for stock price values midway between the barriers.

Figure 7 demonstrates the difference in value between an option with continuously applied
outward moving barriers and an option with outward moving barriers that are applied weekly.

The convergence of the method for pricing time-varying barrier options is demonstrated in Table

5. Table 6 contains option values where the barriers are applied in an implicit fully coupled manner
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Figure 6: European double knock-out call options with outward and inward moving continuously
applied barriers when » = 0.05, 0 = 0.20, T —t = 0.25, Hjoyer = 800, Hypper = 1200 and K = 1000.
A uniform spatial grid with AS = 0.5 was used and At* = 0.001.
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Figure 7: European double knock-out call options with weekly and continuously applied outward
moving barriers when r = 0.05, 0 = 0.20, T —t = 0.25, Higyper = 800, Hypper = 1200 and K = 1000.
A uniform spatial grid with AS = 0.5 was used and At* = 0.001.
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Barrier AS =05 AS =10.25 AS =0.125 AS=005 |K&I
Movement | At* = 0.001 | At* = 0.0005 | At* = 0.00025 | At* = 0.0001

Outward 14.88 14.84 14.83 14.81 14.81
Inward 7.25 7.21 7.19 7.18 7.17

Table 5: Successive grid refinements demonstrating convergence for European double knock-out
calls with continuously applied time-varying barriers when r = 0.05, ¢ = 0.4, T — ¢t = 0.25,
Hiower = 800, Hypper = 1200, K = 1000 and S = 1000. K & I denotes results obtained by
Kunitomo and Ikeda (1992).

o Outward Inward
Explicit | Implicit | K & I | Explicit | Implicit | K & I
0.20 34.25 35.17 35.13 25.97 24.74 24.67
0.30 25.11 24.99 24.94 15.82 14.12 14.02
0.40 15.75 14.88 14.81 8.84 7.22 7.17

Table 6: Explicit and implicit application of continuously applied time-varying barriers for Euro-
pean double knock-out calls when 7 = 0.05, T' — ¢t = 0.25, Higwer = 800, Hypper = 1200, K = 1000
and S = 1000. A uniform spatial grid with AS = 0.5 was used and At* = 0.001. K & I denotes
results obtained by Kunitomo and Ikeda (1992).

or explicitly. The table demonstrates that the implicit fully coupled application of the constraint

for barrier options leads to more rapid convergence.

4 Extensions

4.1 Automatic Time Stepping

Although the results in Section 3 were obtained using constant time stepping, such problems lend
themselves quite readily to automatic time stepping. This is because, say for discrete barrier
options, the constant time step (which must be determined by trial and error) is limited by the
fact that small time steps are needed immediately after the application of a barrier(s). Automatic

time stepping procedures will cut the time step (if necessary) immediately after the application of
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a barrier(s) and then increase it as the solution becomes smooth according to some specified error
criterion.

One such automatic time stepping procedure is that of Sammon and Rubin (1986). Sammon
and Rubin derived a method for fully implicit schemes where the global time truncation error will

be less than or equal to a specified target error. In their method

92"

n+l _
AEH = 26/, [| 5l

where € is the target global time truncation error. In equation (14)

e2v" 1

at": ~ At

ov" AV
oty a1y |’

where

o)~ o)

n n n—1
J is the Jacobian and % = —% (see Mehra, Hadjitofi and Donnelly (1982)). Note that

if the fluxes are dependent on t”, as is the case when the barriers are time-varying, then the flux
. . . . o
functions and source terms should be included in the calculation of 3 -
When using (14), a time step size must be specified for the initial two time steps and the two
time steps immediately following the application of a barrier(s) (since %2(75—”)2 is meaningless at such
points in time). In practice a small time step size is specified for the first two steps. The time step

n

selector will then increase the time step significantly if appropriate. Also, ||%||00 need not be
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Barrier € Converged
Application | 0.10 [ 0.04 | 0.02 | 0.01 | Solution
Continuously | 2.10 | 2.06 | 2.05 | 2.05 2.04
Daily 2.65 | 2.65 | 2.53 | 2.51 2.51
Weekly 3.08 | 3.03 | 3.02 | 3.01 3.01

Table 7: Double knock-out call values with continuously and discretely applied constant barriers
computed using automatic time stepping when » = 0.10, ¢ = 0.2, T — t = 0.5, Hjpwer = 95,
Hpper =125, K =100 and S = 100. € denotes the specified global time truncation error.

computed over the entire domain, but only for the area surrounding the region of interest.

Table 7 contains results obtained using (14). In Table 7 Converged Solution refers to the con-
verged option values obtained using constant time step sizes (see Table 2) where the solution is
accurate to within $0.01. The spatial grids used for the results obtained with automatic time step-
ping were the same as those used for obtaining the converged option values. Table 7 demonstrates
that the actual errors are generally less than the specified global time truncation errors (¢). Thus,
the method produces time step sizes that are slightly conservative, which is consistent with Sam-
mon and Rubin (1986) since € in (14) is an upper bound for the error. Note that automatic time
stepping can be used when valuing options with continuously applied barriers or general options.
For such options, the time step size will be increased as the solution profiles smoothen.

Although the computation of % requires an additional matrix solve, this does not introduce
a great amount of additional overhead since the Jacobian has already been constructed. In fact,
computational savings can be gained when the time step size can grow to be sufficiently large

(for example, when longer term general options or discrete barrier options where the barrier(s) is

applied infrequently are being valued).
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4.2 Two Asset Barrier Options

The above methods can be applied to pricing barrier options written on two assets. The general

form for an option which is a function of two factors is

Ve +U.VV =V-D-VV — ¢V, (15)

where the form of U and D are determined by the precise nature of a given model. Suppose a two
asset option is to be valued, and the option value is given by V' = V(S1, S2,t*) where S; and S,

are the prices of two traded assets. If S; and S evolve according to

dSl = ,ulSldt + a‘lSldzl,

ng = ,UQSgdt + UzS2dZ2

where dz; and dz; are Wiener processes with E(dz1dz;) = pdt, then V is given by equation (15)

with
1 5120'% Slsgpa'lcrg
D=
2
Sngpcrlcrg 5220'5
and
Si(r — 02 — payo4/2)
U=-

So(r — 0% — po102/2)

24



Equation (15) can be discretized using a finite element approach as described in Forsyth, Zvan and
Vetzal (1997).

Table 8 gives the parameters for a two asset double knock-out pricing problem. The barriers
are defined as

V(S1,Sa,%,,) if 90 < Sy, S, < 120,
V(S1, S5, 85,,) =

0 otherwise

where t; ,, is the application date of the barriers, which are applied weekly.® The payoff for this

g1 0.40
(o)) 0.20
p -0.50
T 0.05

Time to maturity | 0.25 years
Exercise Price (K) $100
Barriers Applied Weekly

Table 8: Parameters for the two asset double knock-out barrier problem.

example problem is based on the worst of the two assets. For a call this would be

V(S1,S2,0) = max(min(S;, S2) — K, 0).

As mentioned earlier, Crank-Nicolson time weighting results in large oscillations for this prob-
lem, so a fully implicit method was used. This problem was computed using the finite element

method on an 81 x 81 grid. A fine grid run using a 161 X 161 grid with smaller time steps showed

8Note that our methodology allows us to apply barriers to either asset or both assets. Previous work by
Ritchken (1995) and Cheuk and Vorst (1996) examines two dimensional problems but where barriers are only applied
to one of the assets.
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Figure 8: Two asset barrier call option on the worst of two assets when K = $100, o; = 0.40,
o9 = 0.20 and p = —0.50. The barrriers are applied weekly.

that these results are accurate to within $0.01 (the largest errors being right at the barrier). Figure
8 shows the contours of constant value for an option with a time to maturity of 0.25 years. Figure
9 shows similar results, except that o; = o2 = 0.50 and p = 0.50. A comparison of the figures

reveals how the option value is affected by the volatility and correlation parameters.

5 Conclusions

We have described an implicit PDE approach to the pricing of barrier options and illustrated its
application to a variety of different types of these contracts. We have shown that a Crank-Nicolson
approach, though stable, can produce very poor answers. We have also demonstrated that apply-

ing barrier constraints in an implicit fully coupled manner can lead to more rapid convergence.
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Figure 9: Two asset barrier call option on the worst of two assets when K = $100, oy = 05 = 0.50
and p = 0.50. The barriers are applied weekly.

Furthermore, due to the very small grid spacing required near the barrier(s) (in order to obtain
accurate solutions), the time step size restrictions for an explicit method are very severe. Examples
in this work show that an accurate explicit method would require time steps four orders of magni-
tude smaller than a fully implicit scheme (which admittedly has more computational overhead per

time step).
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