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Abstract

Finite element models of linear elasticity arise in many application areas of structural analysis.
Solving the resulting system of equations accounts for a large portion of the total cost for large,
three-dimensional models, for which direct methods can be prohibitively expensive. Precondi-
tioned conjugate gradient (PCG) methods are used to solve difficult problems with small (< 1)
average element aspect ratios. Incomplete LU (ILU) factorisations based on a drop tolerance
parameter are used to form the preconditioning matrices. Various new techniques known as
reduction techniques are examined. Combinations of these reduction techniques result in highly
effective preconditioners for problems with very poor aspect ratios. Standard and hierarchical
triquadratic basis functions are used on hexahedral elements, and test problems comprising a
variety of geometries with up to 50,000 degrees of freedom are considered. Manteuffel’s method
of perturbing the stiffness matrix to ensure positive pivots occur during factorisation is used,
and its effects on the convergence of the preconditioned system are discussed.
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1 INTRODUCTION

The most CPU-intensive part of any three dimensional elasticity computation involves
the solution of the large sparse stiffness matrix. It is generally conceded that iterative
methods will eventually displace the traditional direct methods for solution of these
systems. Some recent articles on this topic include [1, 2, 3, 4, 5, 6, 7]. An extensive list
of previous work is also given in [7].

Preconditioned conjugate gradient (PCG) methods are generally the methods of
choice for the iterative solution of symmetric positive definite (SPD) stiffness matrices.
However, the success of PCG methods is crucially dependent on the preconditioning
technique used. For well-conditioned problems, a standard incomplete factorisation



based on either a level of fill [8] or a drop tolerance [9] works well. However, practical
problems are often very poorly conditioned. The most common source of poor condi-
tioning is when the elements have aspect ratios far from unity. Although it is the goal
of most modern mesh generators to produce meshes where all the elements have good
aspect ratios, this does not appear to the case in practice. Also, there are many prob-
lems where one of the physical dimensions of the object being modelled is much smaller
than the other dimensions. In this case, a natural mesh for the problem typically has
elements with extreme aspect ratios.

The objective of this article is to investigate some new approaches for precon-
ditioning based on reduction techniques. These methods entail the generation of an
intermediate matrix (based on the original stiffness matrix), and an incomplete (or
complete) factorisation of this intermediate matrix is then used as a preconditioner. We
give a more detailed explanation in Section 3, and the performance of these precon-
ditioners will be tested on a variety of badly conditioned problems that challenge the
robustness of iterative solvers. Performances will also be compared to that of a direct
solver.

2 FORMULATION

The three dimensional linear elasticity problem for a homogeneous, isotropic material
is given in terms of displacement vector @ (with three degrees of freedom at each node)
by the following system of equations :

pVie + (A +p)VV -2 =0, (1)

where the material properties are given by

b= oatw)
Ev

(14+»)(1-2v)

for Young’s modulus E and Poisson’s ratio v.

In the following, we will be using the popular triquadratic basis functions de-
fined on subparametic 20-node hexahedral elements [10]. Following the usual assembly
procedure, we obtain the linear system

Az =b (2)

where A is an SPD stiffness matrix. The test problems will be characterised by the
average aspect ratio of the elements §, which we define as the average (over the whole
grid) of 6. = d,/d;, the ratio of the shortest to the longest side, for each element.
Clearly, we expect that the problems will become more difficult as § — 0.



3 PRECONDITIONING

Incomplete LU (ILU) factorisation is a robust, well-understood preconditioning tech-
nique, and has been extensively documented [2, 8, 7]. Criteria for discarding the fill-in
entries that occur during the factorisation are generally based on the graph of the ma-
trix (levels of fill) [11, 8], the magnitudes of the entries (drop tolerance) [9, 12], or both.
There is a standard definition of a level-based ILU [7], whereas a drop tolerance ILU can
vary according to the form of the dropping criterion. Dropping a fill-in entry according
to its value is an intuitively clearer concept than that of a dropping criterion based
on the nodal elimination graph, and in [7] it was concluded that for linear elasticity
applications, a drop tolerance ILU generally outperforms a level-based ILU having the
same number of nonzero entries.

We denote by A*) the matrix obtained after (k — 1) stages of elimination. In this

(k+1) during the k** stage will be discarded if

work, a fill-in entry a;;

k+1)
J

| < ealitV (3)

o
where € € [0,1] is the drop tolerance parameter, otherwise it is kept. Note that using a
drop tolerance of € = 1 permits no fill-in entries to remain in the preconditioner, whilst
using a value of ¢ = 0 gives a complete factorisation. Using ILU preconditioning, we
thus obtain a preconditioner of the form

C=LU=A+R (4)

where the magnitude of the defect matrix R (representing the accuracy of the approxi-
mation to A) is controlled by the value of €. If A is an M-matrix, it is known that the
condition number

kp = K(CTTA) = [[CTA|L|[(CTA) 7, (5)

of the preconditioned system decreases with ||R||, and our experience indicates that
this is true for other stiffness matrices also. Recall that a bound for the number of
iterations required for a given solution tolerance for a PCG method is given in terms
of the condition number of the preconditioned system sz [13]. Hence one can prescribe
an appropriate value for ¢ to suit the needs of the problem; for example, solving ill-
conditioned problems requires a finer drop tolerance (to ensure good convergence) than
solving well-conditioned problems [7].

However, there are some serious drawbacks to this method of preconditioning. As
the number of unknowns (N) in the problem becomes larger, the number of nonzero
entries in the preconditioner C' grows considerably; for three-dimensional analyses, a
single mesh refinement in each coordinate direction increases N eightfold, and the time
and storage requirements for computing C rapidly exceed acceptable levels. Secondly,
it is known that for a standard ILU factorisation, kz is O(h™%) (or O(h™!) for modified
ILU factorisations, where applicable [14, 15, 3]); thus for a given convergence tolerance,



more PCG iterations are needed as the mesh is refined. Also, the cost of each PCG
iteration is related to the number of nonzero entries in C', making the iterative solution
phase expensive for large problems. In addition, when A is not an M-matrix, the oc-
currence of negative pivots [9, 16] in the preconditioner could cause the factorisation to
be restarted, which for large problems would be prohibitively time-consuming.

3.1 Reduction techniques

Thus there is a need to improve the quality of drop tolerance ILU preconditioners, so
that the number of nonzero entries is reduced, yet enough information is retained to
yield a low condition number xr, and that the appearance of negative pivots is less
common. To this end, we seek to alter the stiffness matrix A before computing C', and
discard the less important entries (in terms of minimising kr), or perturb the diagonal
entries to ensure the appearance of positive pivots.

Preconditioning techniques that entail generating an intermediate matrix before
the incomplete factorisation is performed are referred to in this work as reduction
techniques. A new matrix B is derived from the original stiffness matrix A, and an
incomplete factorisation C of B is used to precondition A. The process of obtaining
B from A is called a reduction, since B usually has fewer nonzero entries than A.
Given that C' is now indirectly approximating A, one would expect some penalty to
be incurred in terms of minimising kF = x(C~'A). We can, however, show that this
penalty is bounded above [3]: since

X=Y7Z = |Xlp <[YlllZl
for any matrices X,Y, Z and any p-norm, by writing C~'A = C"1BB~1A and letting
k1 = k(B71A), k2=k(C'B)

we have that

kr < K1Ko. (6)
Hence the difference between ko and xr is bounded by a factor of x;. Note that &, is
fixed by the choice of reduction, whereas x; can be made arbitrarily small by choosing
e~ 0.

Reduction techniques often yield intermediate matrices B that are spectrally equiv-
alent to A with respect to certain problem parameters. Families of matrices A(p) and
B(p) that vary with parameter p are said to be spectrally equivalent if there exist
constants a, B (a < ) such that

2" A(p)

o< T<p Y oputo (7)
T

= 2"B(p)
where a and (3 are independent of p. It can be shown that if B is symmetric positive
definite (SPD) then the eigenvalues of B~! A all lie in the interval [a, 4] and thus x; < g

We now describe three different reduction techniques, and detail the particular
merits of each.



3.1.1 H Reduction

This technique applies to stiffness matrices arising through the use of hierarchical ba-
sis functions [17] in the finite element discretisation, and is also known as two-level
preconditioning. It was first proposed by Axelsson and Gustafsson [18] and was ex-
tensively analysed by Jung, Langer and Semmler in [19]. For quadratic basis functions,
the original matrix A can be reordered to take the block form

A’U’U Avm
4= ( Ay A ) (®)
where v and m denote the vertex and midside nodes respectively. Note that the matrix

Ay, is the stiffness matrix that arises from a linear finite element discretisation, hence
it is known to be SPD, and it can be shown that A,,,, is also SPD [13]. Thus the

decoupled matrix
Ay 0
(% 0) 0

is itself SPD and could therefore be used as a starting point for an ILU factorisation
preconditioner C.

It can be shown that A and By are spectrally equivalent with respect to the grid
discretisation parameter h [18]. So, given a particular problem and an initial grid, one
can conclude that k; = k(Bg' A) will not grow as the grid is successively refined. It has
also been observed that A and By are spectrally equivalent with respect to NEL (the
number of elements in the grid), i.e. the grid can be enlarged by adding similar elements
without affecting ;. These two properties together imply that x; does not grow with
N, the total number of degrees of freedom. It has been demonstrated, however, that
constants «, 3 are dependent upon the type of element used in the discretisation, the
degree of element deformation and on the value of Poisson’s ratio v, but not on the
shear modulus G [19]. It was observed that the effect of ¥ on «, 3 was less significant
than that of the element deformation, for realistic problems; in particular, the average
element aspect ratio 4, and the angles between the faces of the elements (degree of
distortion) were more influential.

Given that A,, corresponds to a linear FE stiffness matrix, its condition number
k(Ayy) is O(h™2), and it can be shown that x(A,.,) is independent of k [18], and also
of N. The preconditioner C takes the form

C— Coo 0
0 Cmm
so if we choose C,, = A,, (a complete factorisation of A,,) and C,,,, to be any incom-
plete factorisation of A,,,,, we have

I 0
¢ BH‘( 0 ColA.. (10)



where I, represents the identity submatrix, and hence k2 = x(C~1Bpg) is also indepen-
dent of h. So when using preconditioners of this form, the number of iterations needed
for convergence will not grow as the grid is refined or enlarged. It has been observed
from results in [19] that (A, ) is highly dependent upon both v and 4. Dickinson and
Forsyth [7] have demonstrated the superiority of this preconditioning technique over
standard ILU factorisation with no reduction, particularly for ill-conditioned problems.

3.1.2 C Reduction

This technique applies to matrices that are not Stieltjes matrices, as is usually the case
when solving stress analysis problems, and is also known as diagonal compensation.
It is a method of deriving a Stieltjes matrix B¢ from the original matrix A via the
removal of positive off-diagonal entries. A matrix is Stieltjes if it is symmetric, positive
definite and has non-positive off-diagonal entries. It is readily observed that all Stielt-
jes are also M-Matrices, and thus standard ILU factorisations will automatically yield
positive definite preconditioners. The idea was first proposed by Beauwens and Wilmet
[14] and was more recently used by St. Georges and Warzee [3] during their investiga-
tion of various modified ILU factorisation schemes for Stieltjes matrices. The process
of obtaining B¢ from A entails dropping the positive off-diagonal entries and adding
them to the diagonal, thereby preserving the row sums of A, and is fully described in
[3], where it is shown that the resultant matrix B¢ is SPD (and therefore a Stieltjes
matrix).

Spectral equivalence properties for A and B¢ have not been derived, thus one
can assume that k; = x(B;'A) will vary as the mesh is refined or enlarged, and also
according to other problem parameters. It can be shown that \;(BZ'A) € (0, 1] for each
eigenvalue A; [13], and hence

1
K1 S =7
Amin(Bg A)

In [15] it is shown that with an appropriate modified ILU factorisation strategy,
and some additional conditions imposed upon B¢ such as diagonal dominance, it is
possible to obtain a bound for k3 = kK(C~'B¢) of the form

Ko <m—+1+2

with constants m,l > 0. The value of m is determined by the factorisation strategy
employed, and [ is dependent on the ordering of the unknowns. A precise definition
for I and some suggested ordering methods can be found in [15]. This bound has been
considered as an algebraic generalisation of the O(h™!) bound developed by Axelsson
using a geometric approach, and a variety of factorisation strategies that refine it were
analysed and tested in [3].



3.1.3 D Reduction

This process can be applied to any stiffness matrix arising from problems with more than
one degree of freedom per node. It was first applied to 3D structural analysis problems
by Shlafman and Efrat [20] and proceeds in a similar vein to H reduction. The original
matrix A is ordered by grouping together unknowns pertaining to the same nodal degree
of freedom; thus for three-dimensional linear elasticity, each node has three associated
degrees of freedom, corresponding to displacements in the z,y and z directions. The
matrix A can then take the block form

A:mv Amy A:L‘Z
A= | Ay Ay Ay (11)
Azm Azy Azz

It should be noted that each Aj;; block is the stiffness matrix for the corresponding one-
dimensional problem, and is thus symmetric positive definite. Therefore the decoupled
matrix

Age 0 0
Bp=| 0 A4, 0 (12)
0 0 A,

is also SPD, and hence a valid choice for ILU factorisation.

It can be shown that when A is a stiffness matrix for problems involving three-
dimensional solid objects, A and Bp are spectrally equivalent with respect to N EL and
k [20], and thus k; = k(Bp' A) will not grow as the grid is refined or enlarged. Spectral
equivalence with respect to other problem parameters has not been established.

Since each Aj; is itself a stiffness matrix, the corresponding x(4;;) will be O(h~?)
and thus an ILU factorisation of Bp will yield k2 = x(C~!Bp) as O(h~?). Thus for
the number of iterations to remain constant with grid refinement, one must employ a
complete factorisation of Bp, which is considerably more expensive than the complete
factorisation of A,, in equation (10). However, it was noted in [20] that the appearance
of negative pivots during the factorisation was much less common than for standard
ILU techniques, and hence modified ILU factorisations could conceivably apply.

3.2 Combining reduction techniques

It is clear that each of these techniques offers some advantage over conventional ILU
preconditioning in terms of storing and computing the preconditioner C'. For larger
problems, however, the cost can still dominate the entire solution process. To remedy
this, it is possible to combine two or more reduction schemes in a single preconditioning
technique, in an attempt to attain the benefits of each, whilst further reducing the
number of nonzeros in the matrix to be factored.

For C reduction in particular, the time and storage saved depends on the values
of the matrix entries, and may not always be appreciable. St. Georges and Warzee [3]



suggested using D reduction followed by C reduction (referred to as DC reduction),
to give the following Stieltjes matrix

(Azz)c 0 0
Bpe = (BD)C = 0 (Ayy)c 0 . (13)
0 0 (Azx)c

Factorisations of Bpo are much cheaper than those of By, and in addition the spectral
equivalence of A and Bp¢ with respect to h and NEL has been established [3]. Thus
one can achieve a bound for xz that is independent of A and N EL by completely fac-
toring Bpc, or attain a bound of O(h~!) given an appropriate modified ILU factoring
strategy.

For H reduction, the complete factorisation of A,, (necessary for k¢ to be in-
dependent of h) becomes relatively expensive for larger problems (N > 40,000). In
addition, when solving problems with a poor element aspect ratio, it has been recom-
mended that a very low drop tolerance ILU, or even a complete factorisation, of A,,,,
be used [21, 7]. This will dominate the cost of solution for fairly low values of N, and
make each iteration very expensive. To redress this, we can combine H and D reduction,

giving

which we shall call HD 4 reduction. Given that A and Bp are spectrally equivalent
for stiffness matrices A arising from three-dimensional solid problems, and that A,, is
itself the stiffness matrix arising from a linear FE discretisation, we deduce the spectral
equivalence of (A,,)p and A,,. Since we also know that x(A,.,,) is independent of
h and NEL, we can show further that Bgyp and Bpy are spectrally equivalent with
respect to these two parameters. Then since x(BgLA) < &(BgpoBr) - £(Bg' A), which
can be bounded independently of A and NFEL, we must have spectral equivalence of
A and Bgp. Hence using this technique, xr can be independent of A and NEL for
the relatively small price of completely factoring (A..)p, and using any incomplete
factorisation for (A.;m)D-

Although this approach is undoubtedly advantageous for large problems, there are
still the effects of & and v to consider. Since both k(Bp'A) and x(Bg' A) are dependent
on each of these parameters, it is likely that losing more information from A will have an
adverse effect on kx. Therefore we also propose two further combinations, namely HD,,
reduction and HD,,, reduction, where only one of the matrix domains is decoupled,
giving matrices

Brp, = ( (AU(;’)D Aim ) , Bup,, = ( Aaw (Amom)D ) : (15)

Clearly, greater savings in time and storage needed to compute C' will accrue with
the use of HD,,, reduction, since A,,,, is much larger than A,,, although the relative



sensitivity of each domain to changes in v and § has not yet been established; we will
attempt to ascertain this from our numerical results.

3.3 Comparing reduction techniques

The question of which reduction technique to use is not one that can be easily answered
in general, since for each there are a wealth of ILU factorisations to choose from, some
of which are more suited to particular techniques (e.g. see [3] for examples of modified
ILU factorisations suited for Stieltjes matrices). However, given that the factor k1 =
k(B! A) in the bound on & given in equation (6) is fixed once the reduction has taken
place, some techniques may be inherently better than others for a given type of problem,
e.g. one with poor aspect ratio elements. We postulate that the quantity xz can be
bounded below by k1, giving

K1 < kp < K1Ka, (16)

in other words, preconditioning by using a complete factorisation of the reduced ma-
trix yields the lowest overall condition number, and hence the fewest iterations (but
not necessarily the fastest solution time). We have observed this to be true during
our experiments, and thus we can obtain some measure of the effectiveness of a given
reduction technique by setting C = B, thereby giving k2 = x(C~1B) = 1 and skr = &,
and then using the actual number of PCG iterations taken for a given problem to gauge
the relative size of k;. If the reduction is intrinsically bad (k; is large) for a particular
class of problem, then no preconditioning technique is likely to yield good results. Thus
there is reason to measure the innate quality of each reduction in terms of the size of &,
with respect to various problem parameters such as Poisson’s ratio » and the average
element aspect ratio §. We present some results from such measurements in Section 5.1.

3.4 Avoidance of negative pivots

It is well known that convergence of the PCG method is only guaranteed if the precon-
ditioning matrix C is symmetric positive definite. A necessary and sufficient condition
for any real n X n matrix A to be SPD is that the pivots u; in the LU factorisation
A = LU are all positive [13]. From equation (4) we see that C will be SPD if and only
if the pivots ;; in the ILU factorisation A = LU + R are all positive.
In this work, we have used a diagonal scaling of the original system (2) to give
DADy = Db where D is a diagonal matrix such that
1 .
dii = ——, d;i;j=0 fori#j.
[L2%
This scales each element of A, leaving unit diagonals in each row; note that the matrix
DAD is symmetric. The solution of (2) is then @ = Dy, and this scaling is known to
sometimes improve the condition number x(A) of A whilst leaving x(C ™' A) unchanged.
We recall that for a stiffness matrix A of a problem with discretisation parameter h, we



have that x(A4) is O(h™2) where Apaz(4) = O(R), Amin(4) = O(R®). It can be shown
that with diagonal scaling, we have Apag(4) = O(1), Apin(A) = O(R?). Moreover, it
is computationally more efficient to work with unit diagonals, as the square root of a
diagonal entry is needed for various calculations.

Generally speaking, it is not the case for stress analysis problems that all pivots
u;; will be positive, and two distinct approaches for remedying this situation have been
devised. Jennings and Malik [9] proposed a method which we call J&M Add, whereby
multiples of the dropped terms are dynamically added to the diagonal of the row being
processed. This method is known to give an SPD preconditioner, but often overestimates
the amount necessary to add to the diagonals, and in [7] it was shown that for linear
elasticity analyses, an alternative algorithm devised by Manteuffel [16] is more suitable.
This algorithm attempts to make the system more diagonally dominant, so that an ILU
factorisation is more likely to succeed. If, during the course of the ILU, a negative pivot
is encountered, the factorisation is aborted and restarted on the perturbed system

A= A+n-diag(A) = A= A+nl for scaled systems (17)

where I is the n X n identity matrix and 0 < 5 < 1. If a negative pivot occurs a second
time, a new attempt is made with 7 replaced by 27, and so on. We will refer to this
method as the Restart method, and it has been shown that for any SPD matrix A
there exists some n > 0 such that an ILU factorisation of (17) will be successful [16].
It is believed that adding positive values to the diagonal, whether before or during
the factorisation, can damage the convergence rate of the PCG method. Thus additions
made to ensure positive pivots should be kept low in order to keep the number of
iterations to a minimum. For the Restart method, we can give theoretical bounds on
the condition number of the resulting preconditioned system. For the perturbed matrix
A given in equation (17), we have
K(C7TA) < k(CTLA) - k(A1 4)
where /@(A_lA), the penalty for the perturbation, can be written as (assuming that the
system has been scaled with unit diagonal)
k(ATTA) = k(A71A)
= k(I+747Y
}‘mam(-[ + TIA_l)
)\mzn(-[ + nA_l)
1 + n- )\mam(A_l)
14 n- }\min(A_l)
= k(4) | ————— 18
( ) (}\mam(A) +7 ( )
where Apuz(A), Amin(A) denote the maximal and minimal eigenvalues of A. Thus the

bounds on the perturbation step penalty I‘L(A_lA) are
1< k(A71A) < &(A)

10



for n € [0,00). Since /@(A‘lA) is strictly increasing with 7, one would suspect that,
outside of a certain safety range !, the number of iterations needed to solve the system
also increases with 7. Furthermore, if 7 < Anq0(A) (Which will be the case for scaled
systems) then from (18) we have

=1 A\ ~ n
k(AT A~ 1+ 7}\min(A)‘ (19)
Thus for ill-conditioned problems where the minimal eigenvalue A, (A4) & 0, such as
problems with a small mesh size h, or poor aspect ratio elements, the penalty for per-
turbing the matrix will be severe unless a sufficiently small value for n can be found
that makes the factorisation successful.

In this work, we will use the Restart method as given for scaled systems in (17)
to ensure the appearance of positive pivots when necessary. For a drop tolerance ILU,
the symbolic and numeric factorisation algorithms are combined, and both phases need
to be repeated when the factorisation is restarted, which can be costly (especially for
standard ILU preconditioners with no reduction). Hence it is necessary to find a suitable
starting value for 7, large enough that the factorisation succeeds before too long, and
yet small enough to give good convergence in the iterative phase once the preconditioner
has been computed. To this end, we choose 7 = 10~* for the reduction techniques, and
n = 1073 for standard ILU preconditioners (where the extra factorisations are much
more expensive). In addition, we have modified the algorithm slightly so that if, after
five successive perturbations, the factorisation still fails, we replace n with 10n and start
again; thus for a reduction technique with seven failed attempts before succeeding, the
sequence of values used would be n = 107%, 2-107%,..., 5-107%, 1073 and 2-1073,
whereupon the factorisation would finish successfully.

The issue of the poorer performance of the J&M Add method was recently ad-
dressed by Hladik et al [2] who modified the algorithm to add only the necessary amounts
to the diagonals. They concluded that for standard ILU preconditioners, their modifi-
cation made for a substantial improvement in performance over the original algorithm,
which we can verify from observations during our own experiments. We have not pur-
sued their idea further here, but refer the interested reader to [2] for details.

4 TEST PROBLEMS

All of the test problems in this work are model problems arising from regular, structured
grids that are partitioned into subparametric 20-node quadratic hexahedral elements.
Table 1 summarises the test problem data, and detailed descriptions of each problem
are given below.

'In [16] it is shown that the optimal value for n is slightly larger than the smallest for which the
factorisation is successful, to avoid having pivots @;; ~ 0.
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Table 1: Summary of data for the various test problems used.

Degrees of | Nonzeros Relative Dimensions Material Properties
Freedom in U(4) of Elements v, E
Beam 13,503 986,370 1:3: % various, 100
Pipe 42,624 3,333,456 1:75: 114 (inner)  0.45, 50
(outer) 0.3, 300
I-Beam 56,559 4,460,352 | (flange centre) 1:1:20 0.3, 200
(Hange sides) 1:20: 20
(web) 1:15: 20
Washer 26,793 1,997,235 1: 164 : 125 0.25, 20
F=mg

Figure 1: Beam hanging under its own weight.

4.1 Beam problem

This problem consists of a rectangular beam of variable thickness attached at each end to
a wall, hanging under gravity as shown in Figure 1. The beam is held in tension, inducing
a longitudinal strain of 1%. Its dimensions are 0.6 m x 0.15m x 0.156 m in the z, y and
z directions respectively, and it is modelled on a 25 X 7 x 7 grid, where the dimensions
of each element are 1 X % X % Grids with » = 0.4 and é =1, %, 11—0, %, ﬁ and ﬁ are
used to demonstrate the effects of poor element aspect ratio on the convergence of the
iterative solution. Similarly, grids with § = 1 and v = 0.4, 0.49,0.499 and 0.4999 show
the effects of Poisson’s ratio. A depiction of the surface mesh is shown in Figure 2; all
such diagrams show modified versions of the actual grids used, for clarity.

The boundary conditions are designed to simulate the effects of the weight of the
beam and the longitudinal strain. A downward force is prescribed at the centre of the
underside of the beam (the centre of gravity) and the nodes adjacent to the left hand
wall are fixed. Those adjacent to the right hand wall are displaced by 0.006 m in the
z direction, to effect the 1% strain. The prescribed force was proportional to the cube
of the beam thickness in each case, in order to adjust for the changing aspect ratio; in
each case, the maximum vertical displacement was approximately 0.002 m.

12



Figure 2: Surface meshes of the pipe and beam.

4.2 Pipe problem

This problem consists of a pipe made from two different materials, having inner radius
1.0 m, length 10.0 m and thickness 0.0175 m. The pipe comprises five concentric layers,
of which the inner three layers are made from one material, and the outer two layers
from another. A depiction of the surface mesh is shown in Figure 2.

Separate sets of boundary conditions simulate the pipe undergoing tension along
its length, or torsion about its axis of symmetry. In each case, the nodes at one end
of the pipe are fixed. For tension, an axial load is applied to the free end, to effect
a longitudinal strain of approximately 3%. For torsion, a tangential planar force is
applied to each surface element at the free end, resulting in an angular displacement of
approximately 4°.

4.3 I-Beam problem

This problem consists of an I-beam of length 1.8 m and cross-sectional height 0.38 m,
with a flange of width 0.24 m and thickness 0.04 m, and web thickness 0.04 m. The
elements in the grid are of differing sizes and aspect ratios, as can be seen from the
surface mesh in Figure 3.

Two sets of boundary conditions simulate the I-beam experiencing torsion and
bending, respectively. In each case, the nodes at one end of the pipe are fixed. For
torsion, a tangential planar force is applied to the free end, as for the equivalent pipe
problem, resulting in a rotation of approximately 2°. For bending, a lateral force is
applied at the free end, inducing a displacement of about 0.015 m.

13



Figure 3: Surface meshes of the I-beam and washer.

4.4 'Washer problem

This problem consists of a thin circular ring with an arc of sector angle 45° having been
removed. The washer has inner radius 1.0 m, width 0.6 m and thickness 0.0056 m, and
is shown in Figure 3.

Once again, two sets of boundary conditions simulate different loadings on the
washer. A central line of nodes along the outside surface of the washer have been fixed,
and a normal force has been applied to each of the ends, to create the effect of prising the
washer open. The maximum displacement in any direction is approximately 0.017 m.
Also, equal and opposite axial forces have been applied to the normal surface of the
washer near each end, to produce lateral displacements of approximately 0.008 m.

5 RESULTS

Results are given for experiments that test the various reduction techniques (summarised
in Table 2) with respect to the average element aspect ratio § and Poisson’s ratio v.
Many experiments were carried out; however, in the interests of brevity, details will
be given for a representative sample of the tests which highlight typical results from
all the experiments. Results for the beam problem are given first, and then successful
techniques will be tested further on the larger, more geometrically complex problems.
Results are generally given in terms of CPU time and the number of iterations.
CPU time includes computation of the preconditioner, including all repeated factorisa-
tion attempts, and iterative solution of the linear system, but not the assembly of the
stiffness matrix. All tests were run on a Sun Sparc 10 workstation with a 32 bit word
size, 256 Megabytes of RAM and 256 Megabytes of virtual memory. Standard basis
functions were used in all experiments except those where H* reduction techniques were

14



Table 2: Brief summary of the different reduction techniques.

| Reduction || Explanation |
C Remove positive off-diagonal entries and add to the diagonal
D Decouple matrix with respect to degrees of freedom
H Decouple matrix with respect to vertex and midside nodes
DC Perform D-reduction and then C-reduction
HD 4 Perform H-reduction and then D-reduction
HD, Perform H-reduction, and then D-reduction on A4,, only
HD,, Perform H-reduction, and then D-reduction on A,,., only

involved, in which case hierarchical basis functions were used instead, and a direct solve
was performed on the vertex node domain. Whenever a direct solve was performed, the
matrix (or submatrix) was ordered with the Minimum Degree ordering algorithm [22],
otherwise the Reverse Cuthill McGee (RCM) algorithm [23] was used.

The tests were run using double-precision storage for both the stiffness and precon-
ditioning matrices, except for the I-beam and pipe problems, where the preconditioner
(only) was stored in single-precision to reduce memory requirements. The /5 residual of
any computed solution was calculated once the solution had been obtained, to validate
the residual given by the PCG algorithm upon convergence. For the beam problems,
the residual arising from a direct solve of a given problem was used as the convergence
tolerance for the iterative solution. For the larger problems, the convergence criteria
varied with each problem, and will be discussed later in this section. All iterative solu-
tions used the zero vector as an initial guess.

Given that the matrices involved are symmetric, only the upper halves need be
stored and processed, thereby reducing both storage costs and execution times.

5.1 Results for the beam problem

As mentioned in Section 3, we can give an estimate of the relative magnitude of x; =
k(B7A) for the different reduction techniques, by utilising a complete factorisation
of the reduced matrix as a preconditioner, and thus gain an insight into the intrinsic
quality of each reduction. Figures 4 and 5 show the solve time and number of iterations
needed by each reduction as a function of the aspect ratio and Poisson’s ratio, for the
various incarnations of the beam problem, and also show the time taken for a direct
solve of the original matrix. From them, we see that as the aspect ratio worsens, the
hierarchical basis techniques H and HD,,, reduction are by far the best choices, and
the only ones for which convergence was achieved in under 1000 iterations. The poorer
performance of HD,, and HD 4 reduction implies that x(A4,,) is much more sensitive to
d than k(A,.m); hence there is an additional need to completely factor A,, in order to
ensure good convergence of the PCG method, quite apart from achieving independence
of h. The graphs also suggest that the cost of the extra iterations incurred by using
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HD,,, reduction, as compared to H reduction, is compensated by the savings accrued
whilst computing the preconditioner and performing the forward-back solve step each
iteration. The results obtained from varying Poisson’s ratio are similar, although we
notice that D reduction performs relatively better.
We see that using C reduction, with or without D reduction, gives very poor
results, even for well-conditioned problems. Part of the cause can be attributed to the
fact that the reduced matrix B¢ is not spectrally equivalent to the stiffness matrix A




Table 3: Performance of H and HD,,, reduction for the beam problem with varying aspect
ratio 6, when incompletely factoring the reduced matriz. The incomplete factorisation
applies to the midside node domain only; a complete factorisation of the vertexr node
domain was used in all cases. The number of factoring failures due to negative pivots,
if any, is given in parentheses beside the number of iterations.

|  H reduction | CPU seconds (iterations) |

| Droptol. e [ d=F [ =5 [ d=5 [ d=gng | d=z5 |
1 227 (75) | 361 (142) 689 (3017) | 900 (4091) (1)
1077 234 (75) | 370 (146) 542 (224®) | 1379 (627(7) *(
1072 244 (77) | 348 (123(19) | 596 (238(11) | 1474 (656171) *(11)
10~° 291 (66) 307 (77) 457 (159®) | 864 (34917) *(6)
1071 446 (65) 419 (64) 482 (113@) | 625 (19119) *(3)
107" 622 (65) 607 (64) 539 (81) 841 (184) 2311 (836(7)
10~° 736 (65) 722 (64) 711 (80) 761 (121) 2556 (774()
0 840 (65) 823 (64) 908 (80) 1071 (113) 1515 (214)
| HD,, reduction || CPU seconds (iterations)
| Drop tol. ¢ || 5:% | 5:L | 5:51—0 | 5_W | 5_m
1 213 (82) 211 (81) 243 (99) 329 (145) 669 (341)
T 213 (82) 211 (81) 383 (170®) | 802 (404() *(
1072 212 (80) 217 (82) 559 (252010 | 1260 (660111)) *(11)
1073 227 (80) 221 (78) 337 (128®) | 660 (308®) *(6)
1071 251 (80) 244 (78) 269 (99) 410 (177) (1)
10~° 278 (80) 270 (78) 286 (96) 382 (147) 1649 (797()
10°° 306 (80) 293 (78) 313 (96) 394 (140) 734 (333)
0 330 (80) 338 (78) 369 (96) 490 (139) 850 (278)

* Failed to converge within 1000 iterations.

with respect to the number of unknowns IV, and thus the number of iterations depends
on the problem size. However, DC reduction also gives poor results relative to the other
methods (albeit markedly better than C reduction alone) even though k(BppA) is
independent of N, leaving us to conclude that it is the C reduction step that is causing
the slow convergence. One reason for this could be that the amount added to the
diagonals is too large in some sense, causing the same sort of performance deterioration
that is sometimes encountered when a large perturbation is made to ensure positive
pivots. Also, the advantages of C reduction involve using modified ILU schemes which
lower the largest eigenvalue A,,,, and thus control kr [3]. However, results in [19]
indicate that as § — 0 or » — 0.5, it is the smallest eigenvalue that changes the most,
getting increasingly closer to zero. The poor convergence of C-reduction has also been
reported by Hladik et al in [2].

So far, it seems that the hierarchical techniques H and HD,,, reduction are the
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most successful for problems with poor aspect ratios or extreme values of v, whilst HD 4
reduction has some merit for larger, better-conditioned problems. To further compare
H and HD,, reduction, we present results using incomplete factorisations of the reduced
matrix in Table 3. For a given drop tolerance, HD,, reduction gives a lower overall
solution time for all aspect ratios, and in many cases, the number of iterations is also
lower, particularly as the aspect ratio worsens. We note that for the very poor aspect
ratio problems, the number of factoring failures (and hence the number of perturbations
to the original matrix) has a more significant effect on the number of iterations needed
than the drop tolerance itself, with the fastest convergence obtained when the fewest
perturbations are needed. This supports the theory given earlier, that for ill-conditioned
problems, diagonal perturbations must be kept to a minimum, and explains the success
of the coarse drop tolerance factorisation for (A,,m)p using ¢ = 1. We see that HD,,
reduction generally resulted in fewer factoring failures, which concurs with the stabilising
properties of D reduction claimed by Shlafman and Efrat in [20]. We conclude from
the results in this section that HD,, reduction is the best choice for poor aspect ratio
problems.

5.2 Results for the larger problems

Figure 6 shows results for the more successful reduction techniques, namely H, HD,,
and HD 4 reduction, for the larger, more complex problems.

From the graphs in Figure 6, we see that though the best choice of reduction varies
from problem to problem, HD,, reduction consistently outperforms H reduction across
the range of drop tolerances tested, with only the coarse drop tolerance factorisation
of € = 1 used for the washer problem giving better results for H reduction. Again, the
occurrence of negative pivots during factorisation was less common when using HD,,
reduction, and the amount by which the matrix was perturbed was highly influential.
HD 4 reduction was not competitive for the poorer aspect ratio problems, but provided
the fastest solution for the better-conditioned I-beam problem. We see that for the more
ill-conditioned problems, the fastest solutions arise from using a fine drop tolerance fac-
torisation of the midside node domain, and thus a more accurate approximation to B~}
for a preconditioner, as was reported in [7].

An interesting feature of the graphs is that they each have a hump in the vicinity
of € = 1072, resulting from an excessive number of factoring failures occurring with this
drop tolerance. For the I-beam problem, the convergence rate is not greatly affected,
but the time taken for the additional attempts to factor the matrix is significant. For the
other problems, the factorisation time is less important, but the iteration time is dras-
tically affected, particularly for the washer problem. For the pipe problem, we notice a
rapid upsurge in solution time for H reduction as € — 0, which is largely spent in com-
puting the now enormous preconditioner (even though no factoring failures occurred).
This illustrates one of the principal drawbacks of H reduction, that the preconditioners
are very expensive to compute and store for ill-conditioned problems, where fine drop
tolerances are necessary. Fortunately, such drop tolerances are available without too
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much expense through the use of HD,, reduction.

For the I-beam problem, a coarse factorisation of the midside node domain was
sufficient to provide good convergence (notice that for the I-beam problem, there was
not enough memory available to store an H reduction preconditioner with e < 107%).
The most time-consuming activity for H and HD,,, reduction was the complete factori-
sation of the vertex node domain, and the fastest solutions in fact arose through using
HD 4 reduction, in spite of needing many more iterations for convergence. As the size of
a given problem increases (with grid refinement, say), this factorisation will dominate
the cost of solution for moderate to well-conditioned problems, and hence HD 4 reduc-
tion is an extremely useful technique in such situations, as well as having considerable
memory-saving benefits. We stress that this technique is not applicable for very ill-
conditioned problems, however; for the washer problem, convergence was not achieved
within 5000 iterations using any preconditioner arising from HD 4 reduction, which is
therefore absent from the graphs.

We notice that for the washer problem, the performance of direct and iterative
solves is comparable; the smaller size and poorer aspect ratio of the problem favour-
ing direct solution methods. We have found this to be indicative of a plateau reached
by our preconditioning methods, with respect to the average aspect ratio. A modified
version of the washer problem with an aspect ratio twice as poor could not be solved
within 5000 iterations using any of the preconditioning techniques mentioned in this
paper. We note that the existence of force-specified boundary conditions makes the
problem even more difficult; with only force-specified boundary conditions, the stiff-
ness matrix would be singular, and the condition number of the system infinite. By
way of comparison, we reformulated the washer problem (with normal loads) to have
only displacement-specified boundary conditions (at the nodes which were previously
subject to surface forces), obtained by first solving the original washer problem to find
the displacements. The maximum relative difference? in any direction for the two so-
lutions (solved in double-precision by a direct method) was verified to be less than 1%
at any given node, and the solution times for HD,,, reduction are compared in Table 4.
We found it generally true that iterative methods performed better on problems with
displacement-specified boundary conditions, which must always be preferred, given the
choice. The different types of loading for each problem did not have a significant impact
on the convergence rates, however.

The convergence tolerance used for the PCG solutions varied with each problem,
as mentioned earlier. A direct solution was not available for the I-beam problem due
to memory restrictions, and even though one was available for the pipe problem, the
solution quality (judged by the size of the residual) was very poor. Thus the conver-
gence criteria for these problems have been changed, and a summary is given in Table
5. We found in general that for even moderately poor aspect ratios, it was essential to
store the stiffness matrix entries in double-precision, as single-precision storage lead to

2This is defined as the maximum absolute difference divided by the maximum absolute displacement,
for each direction.
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Table 4: Convergence for the washer problem (normal loads) with equivalent force-
specified and distance-specified boundary conditions, using HD,, reduction. The con-
vergence tolerance was set to the residual of the direct solution in each case, including
adjustments.

CPU seconds (iterations)
Drop tol. ¢ : 1 | 1072 | 10~° | 10°° | 0
Force-specified 4747 (1145) * 2143 (504) | 2037 (400) | 2665 (412)
Distance-specified || 2322 (578) | 3680 (907) | 1202 (257) | 1279 (225) | 1693 (224)

* More than 5000 iterations needed.

inaccurate solutions and much higher iteration counts. In some cases, the resulting PCG
method did not converge at all, and similar behaviour was witnessed in [24]. Storing
just the preconditioner in single-precision presented less of a difficulty, although for very
bad aspect ratio problems some idiosyncrasies were apparent, such as the appearance of
negative pivots during the direct solve of the pipe problem (thus accounting for the high
residual). Iteration counts were also affected : for the washer problem (normal loading)
using HD,,, reduction, convergence could not be achieved within 5000 iterations using
single-precision storage, compared to 412 using double-precision. (For the pipe problem,
the maximum difference in using single and double-precision was less than 20 iterations,
however.) We note that bad aspect ratios give rise to relatively small off-diagonal entries
in the preconditioning matrices, thus the risk of losing necessary information through
single-precision storage becomes significant as § — 0. We also found that for the washer
problem, the residual calculated upon convergence was significantly higher than that
returned by the PCG algorithm, even with double-precision storage in use. Thus we
lowered the convergence tolerance for each set of boundary conditions, to make the true
residuals (calculated from the solutions themselves) comparable to a direct solve.

Table 5: Convergence tolerance and residual data for the larger problems.

Problem Residual from | PCG convergence
Direct Solve tolerance used

Pipe (tension) 4.97-107° 107%%

Pipe (torsion) 1.03-1073 1077

I-Beam (both) 1 107%%

Washer (normal) 1.81-107 1.00-1071°

Washer (axial) 5.72-1071° 1.00-107 7

In summary, we can recommend HD,, reduction with a drop tolerance ¢ = 107°

or 1076 for problems with § < -, and HD4 reduction with ¢ = 1 otherwise (espe-

1 Insufficient memory available.

1 Iz residual reduction
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Table 6: Best performance of each of the reduction techniques for the Pipe (tension),
I-Beam (torsion) and Washer (normal force) problems.
attain this performance is also given; note that for H, HD,, and HD, reduction, the

The drop tolerance used to

incomplete factorisation applies to the midside node domain only. Memory is measured
as the number of megabytes needed to store the stiffness matriz (in double-precision) and
the preconditioner (in single-precision for the I-Beam and Pipe problems, and double-
precision for the Washer problem).

Reduction CPU seconds (iterations) Memory in megabytes
Pipe | [-Beam | Washer Pipe | I-Beam | Washer
H 4,795 (285) | 2,799 (83) | 2,766 (357) || 103 Meg | 117 Meg | 74 Meg
[107"] [1] [1077]
HD,, 3,204 (277) | 2,719 (86) | 2,037 (400) || 86 Meg | 108 Meg | 54 Meg
[1077] [1] [107°]
HD, 6,039 (820) | 2,168 (252) ¥ 69 Meg | 73 Meg | N/A
[107°] [1]
D 8,612 (524) | 6,683 (277) w 124 Meg | 158 Meg | N/A
[0] [1077]
DC ok ok ok N/A N/A N/A
C ok ok ok N/A N/A N/A
None w 12,198 (342) w N/A | 210 Meg | N/A
[107%]
Direct Solve 13,739 i 6,695 293 Meg N/A 236 Meg

** More than 14,400 seconds taken.
1 Insufficient memory available.

cially for very large, moderately-conditioned problems). HD,, reduction consistently
outperformed H reduction in our experiments, and has additional memory-saving at-
tributes, as does HD, reduction. These are exemplified in Table 6, where the best
performance attained by each reduction technique is given (using e = 1,107%,.--,1076
and 0), accompanied by the memory requirements for each solution. We see clearly that
hierarchical basis techniques are by far the best choice, saving both time and memory
in comparison to the other methods. Techniques involving the reduction of off-diagonal
entries (C-reduction) did not produce good preconditioners, for any of the problems
tested. Indeed, we note that for the very ill-conditioned washer problem, only hierar-
chical basis preconditioners could compete with a direct solve. The superiority of these
techniques over standard ILU factorisation is also noteworthy.
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6 CONCLUSIONS

The main conclusions of this work can be summarised as follows :

e For problems with poor element aspect ratios, preconditioners based on a hier-
archical decoupling of the stiffness matrix (H and HD,,, reduction) give the best
results. The combination of hierarchical and degree of freedom decoupling is par-
ticularly successful. Note that HD,,, reduction (hierarchical decoupling followed by
degree of freedom decoupling of the midside nodes, with a complete factorisation
of the vertex node domain, and an incomplete factorisation of the midside node
domain) is always faster than standard H reduction, and requires less memory.

e For larger problems with better element aspect ratios, HD 4 reduction (hierarchical
decoupling followed by degree of freedom decoupling of both midside and vertex
node domains) works very well, requiring only 60% - 70% of the memory needed
for H reduction.

e For extremely poor aspect ratio problems, the amount added to the diagonal to
ensure positive pivots is crucially important, and more influential than the value
of the drop tolerance. Adding the minimum amount to the diagonal can save large
amounts of time during the iterative phase.

In this article, we sought to find the limits of applicability of the iterative methods dis-
cussed, with respect to the condition number of the stiffness matrix. A robust technique
(i.e. one which works well for problems with poor aspect ratios) consists of hierarchi-
cal decoupling, and requires a fairly small drop tolerance for the reduced midside node
domain, and a direct solve of the vertex node domain. For problems with element as-
pect ratios § > 11@, the above choices of preconditioner were quite effective, and the
resulting PCG methods were faster than direct methods. However, for problems with
extreme aspect ratios (6 < 1i5), it must be admitted that the iterative methods used
in this work did not always perform satisfactorily. Of course, there are also limitations
in terms of problem size, under which our methods fare well in comparison to direct
methods, which can quickly exceed the physical capabilities of a given machine.

The decision of which type of method to use, therefore, should be made according
to both the size of the problem and the condition number of the resulting stiffness
matrix. Given that most practical problems arising in industry are likely to be better
conditioned than those solved in this work, and will often be larger, we can comfortably
recommend the use of iterative solvers in general.
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