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1. Introduction. Over the past few years there has been considerable interest in
the development of option pricing models which incorporate stochastic volatility. The
motivation for this stems from at least two sources. First, empirical evidence supporting
the hypothesis of random volatility has been found for a variety of financial time series
(e.g. [36] for equities, [29] for foreign currencies, [2, 35] for interest rates). Second,
there is evidence of stochastic volatility based on observed option price data. Implied
volatilities calculated using the Black-Scholes formula appear to change randomly over
time [26]. Moreover, some of the biases of the Black-Scholes model with regard to
observed option prices (i.e. the volatility “smile”) can be accounted for by stochastic
volatility models [9, 1]. One of the conclusions in [1] is that “the amount of persistence in
the smile 1s such that parametric models incorporating long-term memory in stochastic
volatility may be the most promising [extension to the Black-Scholes model to explain
smile effects]” (p. 24).

A variety of alternative random volatility models have appeared in the literature
(e.g. [23, 36, 29, 32, 22, 7, 35]). It is interesting to observe that these have invariably
been applied to plain vanilla options. Despite that large and rapidly growing literature
dealing with various types of exotic options [28], the issue of the effect of stochastic
volatility on the valuation of such options has not been explored (to our knowledge).

In this paper we investigate the pricing of lookback options under stochastic volatil-
ity. The terminal payoff of a lookback is a function of the maximum or minimum price
reached by the underlying asset over some time period. Closed-form solutions for the
valuation of such options have been obtained [21, 13] under the assumptions of con-
stant volatility and continuous monitoring of the underlying asset price. In practice,
however, monitoring occurs at discrete intervals (e.g. daily or weekly) and this i) can
imply significantly lower option values than the analytic formulas produce [6, 11]; and
i) has led to interest in developing numerical pricing schemes. Previous work in this
area has been in a constant volatility framework. Most of it has been based on some
variant of the binomial model [6, 24, 11, 8], which would appear to be relatively difficult
to extend to the case of stochastic volatility. By contrast, a PDE-based approach is
described in Chapter 12 of [37]. See [16] for an application of this method involving
American-style lookbacks. This setup can be readily generalized, at least in principle,
to include a second random volatility factor. However, there are some subtle numerical
1ssues involved.

The first objective of this paper is to introduce a finite element-finite volume method
for discretizing the stochastic volatility option pricing PDE for a discrete lookback. The
advantages of this discretization approach can be summarized as follows:

e An unstructured grid finite element approach based on triangular elements can
be used. In [20], examples are given which demonstrate the utility of being
able to insert nodes at arbitrary locations in the computational domain.

e Discretization of any type of second order term, including cross derivative terms
presents no particular difficulty. As well, there is an established theory of con-
vergence for these methods for irregularly spaced grids [5], and with appropriate
node placement, it i1s possible to produce discrete equations having desirable
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properties [17].

e The first order (hyperbolic) term can be isolated and discretized appropriately
(also for unstructured grids) with a finite volume technique [3, 18]. It is well
known that if the first order term dominates, then spurious oscillations may
swamp the solution [27, 12]. For stochastic volatility models, the PDE reduces
to first order hyperbolic near one of the boundaries, so this is clearly a concern.
A remedy for this problem involves use of upstream methods [12] or more
accurate flux limiters [33]. It is also necessary to carefully treat the boundary
equations so that outgoing waves are modelled correctly.

The second objective of this article is to determine the effect of a stochastic volatility
model on the price for a discrete lookback. Some example computations are given
which compare the price of a lookback under random volatility with the same option
valued using constant volatility. The latter computation uses the Black-Scholes implied
volatility for an at-the-money vanilla European option with the same maturity. That is,
we first calculate the price of an at-the-money vanilla European option of a particular
maturity under our stochastic volatility model and then compute the implied volatility
to match this price for the constant volatility model. We then compare the prices of
lookback options of the same maturity as the vanilla option for the two models. For
some choices of parameters, the constant volatility lookback price differs significantly
from the price computed using stochastic volatility, even though the models have been
constrained to produce the same price for a standard European option.

2. Formulation. We shall first review a standard stochastic volatility model, and
then extend this to accommodate discrete lookbacks.

2.1. Stochastic Volatility. Consider an option which is a function of the asset
price s and the variance v, which evolve according to the specification given in [22]:

ds = psdt™ + \/vsdz
(1) dv = k(0 —v)dt" + oy/vdz,

where p 1s the expected rate of return on s, & is the speed of reversion parameter for v,
6 is the reversion level of v, o 1s the “volatility of volatility”, z;, zo are Wiener processes
with correlation parameter p and t* represents time. Following the usual steps, the
following PDE is obtained for the value of an option W = W (s, v,t*):

2 2
(2) %Wss + povsW,, + 02—1)Wm, +rsW, + (k(6 —v) = o)W, —+W + W =0

where A is the market price of volatility risk and r is the risk free rate of interest.
The boundary conditions for this equation can be determined by examining equa-
tion (2). Letting v,s — 0 we obtain:

Wi + rsW, + kW, —rW = 0; v— 0
2

(3) Wi + %WM, + (58 —v) — AO)W, — W =0; s — 0.

3



For s — oo we have:

{ s for a standard call option

(4) W = ;8 — 0
0 for a standard put option
Finally, for v — oo, noting that W, — 0, we obtain
vs?
(5) Wi + 7W33 +rsW, —rW =0; v— oo

2.2. Discrete Lookbacks. A modification of the usual stochastic volatility model
may be used to model lookback options. As noted previously, most if not all of these
contracts feature discrete monitoring, so we concentrate exclusively on this case. In
particular, we suppose that the maximum or minimum of the asset price s is observed
at discrete times ¢t during the life of the option. Let

(6) . { maxi(s(t7)) for a put

min;(s(t;)) for a call

Following [37], J can be written as:

™ I lim,, o {fg* Y0t —tr)s dt’} v for a put
lim,, o0 {fg* Yot —tH)(1/s)” dt’}_l/n for a call
where
§d = delta function
t? = lookback observation times

2

From equation (7) we can see that:

dJ lim,, o (% > Ji—:(S(t* - t:)) for a put

(8) . =
dt lim,, (%1 > J (t* — tl*)> for a call

S

n+1
0

In general, the value of a lookback option with stochastic volatility will be W =
W(J,s,v,t*), i.e. a function of three variables and time. Following [37], the equation
for W is given by:

vs? v
7Wss + povsWy, + TWM’ + rsW, + (6(8 — v) — do) W,
dJ
(9) —rW + Wi + %WJ =0



It is convenient to convert equation (9) into an equation forward in time by substi-
tuting t = T — t* where T 1s the expiry date of the option to give:

2 2
W, = %Wss + povsW,, + 02_1)va +rsW, + (k(6 —v) — Ao) W,
dJ
1 _
( 0) rW + dt*WJ

where d.J/dt* can be written in terms of ¢ = T — t*

dJ lim,, o <% > Ji—:5(t — tl)> for a put
(11) dt* = X _1 Jn—}—l
lim,, o (T > S—n5(t — tz)> for a call

Note that term %WJ in equation (10) is zero except at t = ¢;. As t — t;, equation
(10) becomes:

dJ
12 Wy — —W;~0
with the other terms in equation (10) becoming negligible. (Alternatively, one can
imagine integrating both sides of equation (10) with respect to time from ¢; — € to
ti + €.) If t~ and t* are the times just before and after an observation date t;, then
noting that W is constant along a characteristic, and taking limits as n — oo, we get
the following jump conditions:

(13) W (Jy,s,v,tT) =W(J_,s,v,t7)

where for a put

Jooif =x>1
(14) Jo=3"
s if T+ <1
and for a call
PR |
J. if =<1
(15) =9 7
s if T+ >1

If the terminal payoff for the lookback has the form

max(J — s,0) for a put
(16) max(s — J,0) for a call

then a similarity transformation (see [37]) may be used to reduce equation (10) into an
equation with two space-like variables and time. If we define

a = s/J

(17) W(J,s,v,t) = JU(a,v,t)
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then equation (10) becomes simply (at ¢ # ¢;)

2 2

(18) U, = %Um + povaly,, + 02—va, +raly + (6(6 —v) — Av) U, — rU.

Note that equation (18) is written for times away from observation times. The boundary
conditions are:

Uy = ralU, + k08U, — rU; v— 0
2

(19) U, = J2—UUM, + (6(6 —v) — Av)U, — rU; a—0

Finally, for v — oo, noting that the option must become independent of v and that
therefore U, — 0, we obtain

2

(20) U; = %Um +ral, —rU; v — oo

At t = 0 the boundary conditions at &« — oo are determined from the payoff
condition (16)

(21) U o for a call
0 for a put

At observation times t;, the following jump conditions must be satisfied (let ¢* and
t~ be the times just before and after the observation times). The condition for a put is

Ula,v,t™ a<l
(22) U(a,v,tT) = ( )
alU(l,v,t7) a>1

and for a call

Ula,v,t™ a>1
(23) U(a,v,tT) = ( )
aU(l,v,t7) a<l1

Note that after the first observation times, the boundary conditions as a« — oo are
determined by equations (22, 23).

2.3. Standard Form. In order to discretize equation (18) using a finite element
approach, it is convenient to write this equation as:

(24) U,+V-VU=V-D.-VU —+U

where:

(25) D=



ra —va — poa)2

k(0 —v) — Av —a?/2 — pov /2

(26) V-

Equation (24) has the familiar form of the convection-diffusion equation. A simple
physical analogue of equation (24) is a chemical with concentration U being transported
by a fluid moving with velocity V. and diffused by diffusion D. If the fluid velocity is
large compared to the diffusion, then equation (24) is said to be convection dominated,
and behaves numerically like a first order hyperbolic PDE.

3. Discretization. We will now discretize equation (24) using a Galerkin finite
element method. In general, the diffusion term in equation (24) can be discretized
using standard methods. The convection term in equation (24) can cause difficulties. If
the convective term is large compared to the diffusion term, then equation (24) behaves
numerically like a hyperbolic equation, and therefore care has to be taken with this term.,
otherwise spurious oscillations may occur in the discrete solution [10, 38, 12]. Note that
boundary equation (19) (v — 0) is first order hyperbolic, and hence care must be taken
to ensure that the problem is properly posed at the boundary. Consequently, we will
discretize the convective term using a finite volume approach. Formally, a finite volume
discretization can be considered to be a Galerkin method with a special quadrature rule
[17, 3, 19]. However, it is more intuitively appealing to use a geometric approach for
discretizing the convective term.

Consider a discrete two dimensional computational domain R which is tiled by
triangles. Let N; be the usual C° Lagrange basis functions defined on triangles. Then,

N; = 1 at node 1
= 0 at all other nodes
(27) Y N; = 1 everywhere in the solution domain.
J
If Un = ;U7 where U} = U(ay,v;,t") is the value of U at (ay,v;,t"), then the

discretization of equation (24) is given by:

Uin-l—l - Uzn n n it n n
& ( At ) = (1-5) (Z ¥ (U7 = U+ X Lij - ViU — AU +1)

JEn; JjEn;

+0 (Z (U} = U) + Y Lij - ViU s — AirUf”)

JEN; JEN;
(28) +(1—-B)g ™ + Bq}
where:
A; = /NMR



At = timestep
f = timeweighting
B = 0 fully implicit
B =1 explicit
B = 1/2 Crank-Nicolson

Uin-}_l = U(si,vi,t"H)
(29) v = — /évzvi .D-VN,dR
n; = set of neighbours of node %
¢ = source/sink term used for boundary conditions
Zii /2 = value of U at the face between

node ¢ and node j

(30)

We have also used mass lumping for the time derivative term. Other details concerning
this discretization method can be found in [17, 20]. Note that A; can be considered to be
the area of the cell or finite volume surrounding node ¢. The finite volume surrounding
node 7 1s shown in Figure 1. The finite volume is constructed by joining the midpoint
of each edge of a triangle to the centroid of the triangle [3, 25, 18]. The vector length
sz in equation (28) is given by

o b
(31) Lij :/ nds

where the points a, b are shown in Figure 1, and 7 is the inward pointing normal to the
face between node ¢ and node j.

There are various choices for the terms Uj;44/5, For example, second order central
weighting for U;;1,/, is given by:

Ui—I-Uj
2

(32) Uijt1/2 =

However, central weighting is prone to producing spurious oscillations [12, 38]. An
alternative is first order upstream weighting [12] which is given by

Uij+1/2 = U if L:J -V, <0
(33) = Uj otherwise

First order upstream weighting is usually too diffusive for accurate solutions. Re-
cently, non-linear flux limiters have been used to obtain accurate solutions without
causing oscillations. Essentially, these methods use a more accurate (usually second
order) method as much as possible, but reduce to lower order accuracy only where
necessary to avoid spurious oscillations [38, 39]. One popular method uses a van Leer
limiter [33, 27, 10]. With reference to Figure 1, assume that node ¢ is upstream of node
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Fic. 1. Finite volume surrounding node i. Points a and b are the centroids of their respective
triangles. The line segments from a and b pass through the midpoint of the triangle edge 7 — j.

~ Finite Volume
g
&
0\\
&
2
B\

O°

J (the upstream directions are given by equation (33) ). Point 2up is the value of U
which is upstream of node ¢, interpolated using the two nearest nodes where U is known
(see Figure 1). In this case,

U, - U;
(34) Uijrij2 = Ui+ o(rij) <JT>
where
Ui - U2up
D bt =
(35) R A
[ — x|

where the van Leer limiter [33] is defined by

o(r) = 0, if r<0
2r
= if .
(36) T if r>0
and x; 1s the location vector of node 7. Other possibilities include the smooth MUSCL
limiter described in [4].

A van Leer limiter can be shown to be TVD (total variation diminishing) in one
dimension. This is a formal specification of an oscillation free solution [27].



Fic. 2. Finite volume surrounding node i at the boundary. Point m is in the interior of the
computational domain. Line im is perpendicular to k~kt.

m
. —
Finite Volume m
_ N\ —

Boundary

4. Discretization of Boundary Conditions. Equations (28) are used for all
interior points in the computational domain. For nodes on the boundary, the discrete
equations can be deduced from the boundary equations (19-20). Note that the discrete
equations (28) are valid for a completely unstructured grid. Some examples showing the
utility of being able to insert nodes near points of interest is given in [20]. However, in
order to construct discrete boundary equations having a simple form, it is advantageous
to ensure that the grid is unstructured except for the following constraint: for any node
i on the boundary, there exists a (nearby) node m in the interior of the computational
domain such that the line ¢m is perpendicular to the boundary. It is easy to construct
such a grid, given an arbitrary grid, by inserting some extra nodes if necessary. If the
grid satisfies this condition, then a straightforward finite volume approach can be used
to discretize equations (19-20).

Consider a node ¢ on the boundary, as depicted in Figure 2. Let k be the unit
vector pointing along the boundary, and let m be a unit vector perpendicular to the
boundary pointing inward to the computational domain.

If x; is the location vector of node ¢, then let

Azg- = |lxi — xp-||
A$ik+ = sz — X+ H
(37) Ail?lm = sz — XmH

The finite volume discretization of equations (19-20) then has the same form as the
discrete equations (28), if we define the various terms appropriately. Let:

Ly- = 2
Liw = ——5"k
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TABLE 1
Definition of terms in equation (28) for boundary nodes.

v — 0
V; —fraiiﬁ — klm
P | Lim||s8UF*
in(k =kt k™) 0
a—0
V; (—k(8 — v;) + Av;) ki
e 0
Yir(k = kT, k") Tixo?v; /2
vV — 00
V, —ra;k
gt 0
yir(k = kT, k7) Tiav; /2
no— (Awik+ —;— A$ik—> i
4 — <Awm> (Awik+ + Awik—)
2 2
Ty- = A;"’"" N
Tir = Azim [ Azt
ni = {k7, k", m}
(38) Yim = 0

Table 4 shows the definitions of the remaining terms in equation (28) for the bound-
ary nodes for each of the cases in equations (19-20).

Note that for the case v — 0 in Table 4 we have assumed that L:m -V; >0
(in equation (28)). This means that the domain of dependence of a point on the
boundary consists of points interior to the computational domain, and other points on
the boundary. The non-zero source term for this case (v — 0) accounts for the first
order hyperbolic term which results in outgoing waves [3].

It is now clear why we used the original boundary equations (19-20) instead of
taking the limit as (say) v — 0 in equation (26). For example, if v — 0 in equation
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(26), then we obtain

(39) v _ —ra+ poa/2
—kf + 02 /2

In this case, the component of velocity normal to the boundary from equation (39) is
(—k6 + ¢2/2) 9, may not always point in the negative ¢ direction. This would cause
some complication, since we know that no boundary data exterior to the domain should
be required.

Boundary conditions as @ — oo are simple Dirichlet conditions. Initially, conditions
(21) are applied, which may be altered at observation times.

Immediately after each observation times, the jump conditions (13-15) are imposed
by using linear interpolation on each triangle (the finite element basis functions are
conveniently available for this purpose). The determination of the appropriate triangle
to be used in the interpolation is based on a fast point location algorithm which uses
the finite element basis functions [30].

5. Solution of the discrete equations. The discrete equations (28) are in gen-
eral non-linear. This is due to the use of a nonlinear flux limiter for the convection term.
Nonlinearities are also introduced if the American early exercise constraint is applied
[20]. Consequently, an approximate Newton iteration will be used to solve the discrete
equations. The complete Jacobian is constructed with the exception of all derivatives
with respect to the the second upstream points Us,, (in equation 35), which are ignored.
The iteration for a given timestep is deemed to have converged when
(40) smae (D7) — (U7 < tol
where (UT1)F is the k** iterate for Ut

Note that if a direct method is used to solve the Jacobian, then implicit methods
can be very expensive in two or more dimensions. For example, in [16], a band solver
was used to solve the matrix. However, modern sparse matrix iterative methods are
very efficient at solving problems generated by PDE timestepping, since a good initial
guess (from the previous timestep) is available. In this study, the Jacobian is solved
using an incomplete LU [14, 15] preconditioned CGSTAB iteration [34]. This method is
completely general, and makes no assumptions about the structure of the sparse matrix.

An automatic timestep selection method is also used [31].

6. Example Computations. In order to validate our lookback model, we set
£ =p =0 =X =0 in equation (18). The solution of this model for a given value of
v = (volatility)? will then correspond to a lookback with a constant volatility. Using
the parameters r = .1, v = .04, and time to expiry of one year, with observation times
5,1.5,2.5,...,11.5 months, this corresponds to the case given in [37].

This problem was run on a grid with various numbers of nodes in the s/.J direction,
where J 1s maximum observed asset price for a put. At each grid refinement, the
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TABLE 2
Comparison of discrete lookback put with constant volatility with the results in [87]. Value given
as for U = W/.J (see equation 17). Grid size given as total number of nodes in the s/.J direction.

This work
Grid Size |s/J=.9|s/J=1.0|s/J=1.1
93 .09999 .08863 .09525
185 .10020 .08883 .09545
389 .10025 .08885 .09546
Results from [37]
Not Stated 101 .089 .095
TABLE 3

Common data for the stochastic volatility lookback cases.

6 .04

A 0.0

T .10
Time to expiry 0.5 years
Observation times Weekly

(1/52 of a year)

timestep parameters were also reduced. Table 2 compares our results with those from
[37].

In order to analyze the effect of stochastic volatility on lookback options, we calcu-
lated lookback values under both constant and random volatility for several cases. The
volatility parameter for the constant volatility models was determined by first comput-
ing the price of an at-the-money European vanilla call option with 0.5 years remaining
until expiry for the stochastic volatility case at hand and then finding the Black-Scholes
implied volatility for this option value. Note that this means that our constant and
stochastic volatility specifications were constrained to produce exactly the same price
for a standard European call option (and, by put-call parity, exactly the same price for
a standard European put option as well). All cases used the common parameters in
Table 3. The other data for the four cases is given in Table 4, including the computed
implied volatilities.

Figure 3 shows the value of a lookback put computed using the stochastic volatility
model given by equation (18). The values shown are actually U = W/.J, where W
is actual value of the option, and J is the most recently observed maximum of the
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TABLE 4
Data for the stochastic volatility lookback cases.

Case | K | o | p | B-Simplied
volatility
1 2 1.5 .5 16.72%
2 2 1.5]-5 19.27%
3 201.2] .5 19.43%
4 20(1.2]-5 20.17%
TABLE 5

Convergence of constant volatility lookback. A wvalue of v = .04 (volatility = .2) was used. Grid
size is given as the number of points in the s direction. Value given as for W = JU for J = 100.

Put
Grid Size | s/J=.9 | s/J =10 ]s/J=1.1
160 9.68 7.66 8.28
320 9.68 7.65 8.27
Call
160 10.43 11.88 17.03
320 10.43 11.88 17.03

asset price. The parameters are given in Table 3 and Case 1, Table 4. This Figure
clearly shows the local minimum in the value of the put (along lines of constant v) near
s/J = 1. In contrast, Figure 4 shows the contours for the lookback call, Case 1, for
the same data. Note that the put shows a more complex behaviour as a function of v
than the call, and hence we can expect a greater diffusion effect in the v direction for
the put. Not surprisingly, the figures also demonstrate that option values can be quite
different when the initial level of v is not equal to its long run mean level of .04.

Table 5 illustrates the convergence of our algorithm in the constant volatility case
where v = .04 (corresponding to a constant volatility of .20). The timestepping param-
eters were adjusted so that there was no change to four significant figures.

Table 5 indicates that the results with 320 nodes in the s/.J direction are accurate to
within $0.01. The above runs were repeated using this grid for all the implied volatilities
given in Table 4. The results are given in Table 6.

The full stochastic volatility lookback model was run for all 4 cases. Two grids,
with 19,551 nodes and 77,645 nodes were used, in order to check the solution accuracy.
The worst case (in terms of solution accuracy) was Case 2, which is shown in Table

14



Fi1c. 3. Stochastic volatility lookback put. Contours of U = W/J, where J = max; S(¢;) shown.

Data are for Case 1, Table 4, weekly observation.
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Fi1c. 4. Stochastic volatility lookback call. Contours of U = W/.J, where J = min; S(¢;) shown.

Data are for Case 1, Table 4, weekly observation.
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TABLE 6
Values of a constant volatility lookback, for the values of the Black-Scholes implied volatilities given
in Table 4. Results are correct to within .01. Value given for W = JU for J = 100. Compare with
Table 8.

Case | s/J =9 |s/J=10]|s/J =11
Put

1 8.42 6.05 6.54

2 9.39 7.30 7.89

3 9.46 7.38 7.97

4 9.75 7.75 8.37
Call

1 9.18 10.47 16.11

2 10.16 11.57 16.82

3 10.22 11.64 16.86

4 10.50 11.96 17.09

7. Reduction in the timestepping parameters showed no change in the solution to four
figures. The results indicate that the solution error (in the worst case) is about $0.04.
If the error is assumed to be O(h?) (h being the mesh size parameter [5]), then the
actual error for the finest grid is probably about .01.

It 1s interesting to observe from Tables 6 and 8 that there can be significant differ-
ences between the constant and stochastic volatility values, particularly for the puts.
For example, under Case 2, the price of the at-the-money put for the stochastic volatility
model is $5.45, compared to $7.30 for the constant volatility model. This 35% differ-
ence is quite significant. Even though the differences for the call options are smaller,
it is clear from these two tables that a constant volatility model can be a very poor
approximation to the two factor model.

7. Conclusions. In this paper, we have developed a finite element-finite volume
method for discretizing the pricing PDE for lookbacks with stochastic volatility. This
technique correctly handles the limiting case as v — 0 where the equation becomes first
order hyperbolic. As well, the boundary equations are also discretized so that outgoing
waves are correctly modelled.

Our illustrative computations demonstrate that the stochastic volatility model can
produce lookback values which are significantly different from the constant volatility
model, even though the two models are calibrated to generate the same price for a
standard European option of the same maturity. This suggests a need for further
research into the effects of stochastic volatility on the valuation of various types of
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TABLE 7
Convergence of the stochastic volatility lookback option for Case 2. Value given as for W = JU
for J = 100. Grid size given as total number of nodes.

Put
Grid Size | s/J=.9 | s/J =10 ]s/J=1.1
19,551 7.87 5.41 5.80
77,645 7.88 5.45 5.84
Call
19,551 10.38 11.98 17.91
77,645 10.37 11.95 17.90
TABLE 8

Values of a discrete stochastic volatility lookback. Results are correct to within .04 in the worst

case. Value given for W = JU for J = 100. Compare with Table 6.

Case | s/J =9 |s/J=10]s/J =11
Put

1 10.16 7.07 7.56

2 7.88 5.45 5.84

3 9.99 7.82 8.44

4 9.22 7.23 7.80
Call

1 8.97 10.27 16.06

2 10.36 11.95 17.90

3 10.06 11.46 16.61

4 10.60 12.09 17.40
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exotic options. We conjecture that similar effects might well be observed, for example,
in the case of barrier options.
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