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Abstract

The Montana C++ programming environment provides an API interface to the
compiler, which allows the compilation process to be extended through programmer-
supplied tools. This paper investigates the feasibility of that interface, using smart
pointers as an example. Smart pointers are a powerful feature of the C++ language
that enable a variety of applications, such as garbage collection, persistence, and
distributed objects. However, while smart pointers can be used in much the same way
as built-in pointers, they are not interchangeable. Using the Montana API, smart
pointer functionality can be introduced for built-in pointers, thus enabling built-in
pointers that act like smart pointers. We provide an overview of the Montana
programming environment and describes how smart pointers can be implemented
using the Montana API.
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1. Introduction

The Montana1 C++ programming environment is a joint development effort between IBM’s Software Solutions and
Research Divisions, and will be the base for a future release of IBM’s VisualAge C++ product.  Montana provides many
unique features over traditional C++ compilers, most notably support for complete incremental compilation and an API
interface [Nac96]. 

The purpose of this paper is to assess the feasibility of the Montana API interface for extending the compilation process
to augment built-in language syntax. We have chosen the C++ smart pointer support as a basis of comparison. In this
paper we present a partial smart pointer implementation using a Montana extension, where built-in pointer operations
are modified as part of the compilation process, and summarize the results.

2. The Montana C++ Programming Environment

The Montana project grew from the recognition that current C++ development environments, while improving, were
lacking in many areas, especially compared with those available for languages such as Smalltalk. One of the major
frustrations in developing large C++ applications is the build turnaround time. The goal for Montana is to provide
extremely fast incremental compilation, so that recompilation time required is proportional to the size of the change. In
particular, changing a header files should not force recompilation of all files that happen to include it.

The design goal for the Montana architecture is that it can be extended in a variety of ways. A good example is the
Montana object model2 support. Most C++ compilers support a single native object model, the semantics for which are
entrenched in the compiler itself, making it difficult to support different object, such as DirectToSOM C++ [Ham96] or
other industry object models. Montana, however, was designed so that the object model is supported through a well-
defined interface. A new object model can be added without requiring massive changes throughout the compiler. At the
time of writing, the author was responsible for the design and development of such non-native object models.

Montana is designed around a system called CodeStore [BCCKLN94].  CodeStore consists of a C++ parser, a database
that contains the compiled C++ program representation, and a class library that provides an API interface to the
compilation process and program representation. Using this class library interface, C++-knowledgeable tools such as
browsers can query the program representation of a compiled C++ program. In addition, CodeStore tools called
extensions can be written that interact with the compilation process.

There are three types of extensions [Sor96]: 1) CodeStore extensions, which add data to the CodeStore and have
incremental update capability, 2)  incorporation3 extensions, that modify or observe the incorporation process directly
and 3) user interface extensions, which allow additional artifacts such as buttons and menus to be added to the user
interface display. An example of the first type of extension is a separate compiler that is triggered as part of the
compilation process to handle different file types, while an example of an incorporation extension is a tool that interacts
directly with the compilation process itself, querying or updating the result. In this paper, we will concentrate on the
second form of extension.

                                                          
1 The name "Montana" originated from an architecture meeting in which the idea of developing a new compiler with a clean slate was referred to as
a "blue sky" approach. Since "blue sky" was thought to be the motto for the state of Montana (it’s actually "big sky"), that became the name of the
project. [Nac96]
2
 By object model, we mean issues such as how objects are laid out in memory and the strategy used to support virtual functions and bases. See

[Lip96] for a detailed discussion.
3
 Incorporation is the Montana term for recompiling a program, in which the changes to the source will be incorporated into the CodeStore

database.
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3. Smart Pointers

Smart pointers are a powerful feature of the C++
language that enable a variety of applications, such as
garbage collection, persistence, and distributed objects.
They are used to augment the functionality of C++
pointer operations, allowing the programmer to perform
additional work when pointers are created and used.

Smart pointers essentially allow a user-defined exit
added to be pointer operations. A smart pointer [Stro89]
itself is an instance of a class that wraps a built-in
pointer, for which the dereference operator -> has been
overloaded. Such objects can be used in much the same
way as a built-in pointer, but have additional
functionality provided through operator overloading4. In
much the same way as inheritance, smart pointers can be
used in C++ to extend the functionality of a class.
However, while inheritance extends the functionality of
class instances themselves, smart pointers are used to
extend the environment containing the instance.  In other
words, smart pointers are used to modify how the
programming environment operates on an object, rather
than how the object operates on itself. Smart pointers
have a wide variety of uses, from simple applications
such as detecting null dereferences, debugging, and
read-only pointers [Alg95], to more complex
applications such as garbage collection [GC96],
[Ede92a], and persistence [Coh96].

Figure 1 shows a very simple definition of a smart
pointer class. The operator->() function is a unary
postfix operator which must be followed by a function
or data member name. When applied to an object, the
result is reapplied to the given member name. Thus,
sp->i in the main function becomes
(sp.operator->())->i. The expression sp->i
= 10 invokes the SP::operator-> member function,  returning the value of _p that will be reapplied and used in
the actual dereferencing operation with the member i.

Smart pointers are more typically defined through a template class however, as shown in Figure 2, allowing multiple
pointer types to be supported.

3.1 Usage Differences

In general, smart pointers can be used in exactly the same way as built-in pointers, however, as described in [Ede92b],
there are some important differences between the two with respect to implicit type conversions performed by the
compiler. These fall into two major categories: 1) class hierarchies and 2) types qualified with const or volatile.
A further issue, described in [Mey96a] and [Mey96b], is testing for nullness.

                                                          
4
 Using the keyword operator, the C++ language allows programmers to define class methods that are language operators, such as +.

#include <iostream.h>

struct S {
    int i;
};

class SP {
    S *_p;
  public:
    SP(S *p) : _p(p) {}
    S* operator->() {

cout << "dereferencing" << endl;
return _p;

    }
};

int main()
{
    SP sp(new S);

    sp->i = 10; // sp.operator->()->i
}

Figure 1 Simple Smart Pointer Class

template<class T> class SP {
   T *_p;
  public:
    SP(T *p) : _p(p) {}
    T* operator->() {

cout << "dereferencing" << endl;
return _p;

    }
};

int main()
{
    SP<S> sp(new S);

    sp->i = 10;  // sp.operator->()->i
}

Figure 2 Template Smart Pointer class
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When using built-in pointers, the compiler implicitly performs a variety of conversions between pointer types. Examples
are T* to const T*, Derived* to Base*, and T* to void*. These implicit conversions are not directly supported
by smart pointer types.

3.1.1 Class Hierarchies

The conversion from a derived class pointer to that of a base class is an important one for C++, as this is how
polymorphism is supported in the language, using virtual functions. Even if the template class definition is used, there
is no type relationship between the two pointers SP<Base> and SP<Derived>. Given the code in Figure 3, the first
assignment in function main is valid because the compiler can implicitly convert a Derived* to a Base*. However,
the second assignment is invalid, because there is no implicit conversion between SP<Derived> and SP<Base>.

Given that smart pointers are to be used in the same way as built-in pointers, an explicit cast conversion from 
SP<Derived> and SP<Base> would not suffice. What is necessary is to provide an implicit standard compiler or a
user-defined conversion between the two types.

[Ede92b] describes two approaches to handling this
problem. The first is to supply user-defined conversions
between to all bases and the second is to define a parallel
class hierarchy.

3.1.1.1 User-Defined Conversions

Note that because user-defined conversions are not
implicitly chained by the compiler, conversions must be
supplied to all bases, both direct and indirect. In other
words, providing a conversion from class from C to its
direct base B and from class B to its direct base A still
does not provide a conversion from class C to its indirect
base A. There are several drawbacks to the approach of
providing user-defined conversions, the first being that for
deep class hierarchies, providing such conversions can be
quite tedious. The second is that the user-defined
conversion does not provide the same semantics as a
standard conversion, in which conversion to a direct base
is preferred over conversion to an indirect base.

For example, consider the class hierarchy shown in Figure
4. If conversions were defined from SP<Derived2> to
both SP<Base> and SP<Derived>, then the call to
function foo in the main function would be ambiguous
because the call matches both functions. With built-in
pointers, the call would not be ambiguous because a
conversion to a direct base class is preferred over a
conversion to an indirect base.

A third problem with this approach is that one must
specialize the smart pointer template class in order to add
the conversions, which diminishes the value of using a
template in the first place [Mey96a].

A relatively recent addition to the ANSI standard, member function templates [Stro94], [Mey96a], provides a partial

class Base {
};

class Derived : public Base {
};

int main()
{
    Base *baseP;
    Derived *derivedP;
   
    SP<Base> baseSP(new Base);
    SP<Derived> derivedSP(new Derived);

    baseP = derivedP; // ok
    baseSP = derivedSP; // error
}

Figure 3 Class Hierarchies with Smart Pointers

class Base {};
class Derived : public Base {};
class Derived2 : public Derived {};

void foo(SP<Base>);
void foo(SP<Derived>);

int main()
{
    SP<Derived2> derived2SP(new Derived2);

    foo(derived2SP);
}

Figure 4 Ambiguous Function Call
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solution to these problems. A member function template allows the programmer to declare a member function that has
formal template arguments, which provides a means for converting between smart pointer types.

Figure 5 shows a simple member template declaration. If
the compiler needs to convert an SP<Derived> object
to an SP<Base> object, it will first look for any user-
defined operators that support the desired conversion. If
none are found, the compiler will then look for a member
template function that would support the conversion
through instantiation. This is provided by the
template<class T2> operator SP<T2>()
member function template shown above. The member
template can successfully be instantiated only if the
statement return SP<T2>(_p); can be validly
instantiated as return SP<Base>(_p);

This is correct because _p is of type Derived *, which can be implicitly converted to type Base *.  In other words,
the member function template defined above provides a conversion from SP<Type1> to SP<Type2> for any Type1 *
that can be implicitly converted to a Type2 *.

Using member function templates to implement smart pointers solves two of the three problems associated with
providing user-defined conversions, namely the need to explicitly define every conversion and to specialize the
template class to do so. However, it still suffers from the same problem in that the semantics of a smart pointer
conversion do not match those of a built-in pointer conversion, such as preference to convert to a direct base class. In
addition, relatively few compilers support member function templates at this point.

3.1.1.2 Parallel Hierarchy

The second means of dealing with the base class conversion problems is to define a hierarchy of smart pointers that
parallels that of the original hierarchy. The first issue that arises with this approach is where the wrapped built-in
pointer is defined. If a pointer is defined in each class in the parallel hierarchy, there is first of all a significant
storage overhead. Secondly, care must be taken when an assignment is made to a smart pointer to update all pointers
in any base classes so that proper base class conversions can take place.

Rather than duplicating the wrapped built-in pointer in each base class, the underlying pointer could be declared in an
abstract virtual base class. This would avoid the storage overhead by having the pointer stored only once. However,
this approach suffers from conversion problems with base classes at non-zero offsets.

3.1.2 Qualified Pointers

Another problem that occurs when dealing with smart pointers is in handling const and volatile qualifications.
With built-in pointers, both the pointer and the referent can be qualified. For example, const T* means that the
referent is const, whereas T* const means that the pointer itself is const, and const T* const means that
both the referent and the pointer are const. The C++ language supports implicit conversions from non-const to
const types. For example, a T* can be assigned to a const T* or a T* const.

Smart pointers are restricted to being declared only as const SP<T>, which makes the pointer itself const. The only
way to declare a smart pointer so that object pointed to is const is by including const with the type, as in SP<const T>.
This however suffers from the same problem as the class hierarchies in that SP<T> and SP<const T> are considered
unrelated types by the compiler. Thus an SP<T> cannot be implicitly converted to an SP<const T>. If the compiler
supports it, the member function template described earlier will handle this conversion, otherwise an explicit user-defined
conversion function must be supplied.

template<class T> class SP {   
    T *_p;
  public:
    SP(T *p) : _p(p) {}
    T* operator->() {
        cout << "dereferencing" << endl;
        return _p;
    }
    template<class T2> operator SP<T2>()
        { return SP<T2>(_p); }
};

Figure 5 Member Template
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Volatile-qualified pointers suffer from the same issues and restrictions.

3.1.3 Comparison to null

When dealing with pointers in C++, invariably one needs to determine if the pointer is null. With built-in pointers, one
can simply compare the value to 0, in which case the compiler implicitly converts the constant expression 0 to the null
pointer for comparison purposes. Thus one can write if (ptr) or if (!ptr) to test for ptr being null. However,
with smart pointers, there is no implicit conversion to the null pointer, so such expressions cannot be used. This can be
alleviated by providing a function to test for nullness, however this would be contrary to standard programming idioms.
Simply providing a conversion to void * for a smart pointer will solve the problem, however it introduces new
problems in that mixed-type conversions would be allowed that would not be valid for built-in pointers. For example,
given two unrelated types Type1 and Type2, a Type1 * cannot be compared to a Type2 *. However, if the SP class
provided an implicit conversion to null, then an SP<Type1> could be compared to an SP<Type2> or to any other
pointer type, such as int *. One solution to this, proposed in [Mey96a], is to overload operator! to return 1 if the smart
pointer is null, and 0 otherwise. This allows for tests such as if (!ptr), however, it still doesn’t allow if (ptr). Two
additional approaches to handling this problem, not without their own drawbacks, can be found in [Mey 96b].

4. Making Built-In Pointers Smart

In the previous section, we described the differences between smart and built-in pointers and the problems that result
from these differences. If, however, the "smarts" of a smart pointer could be added to a built-in pointer, these problems
would be alleviated.  In this section, we describe the changes that would be needed to built-in pointer expressions in order
that they operate as smart pointers. For the purpose of this example, we will implement a reference counting smart
pointer. In subsequent sections, we will describe how to implement this model using a Montana incorporation extension.

4.1 A Reference Counting Smart Pointer

The basic model for a reference-counting smart pointer is as follows:

1) Whenever a new reference is made to a given object, the reference count for that object should be incremented.
2) If a reference to an object is removed, the reference count for that object should be decremented. If the reference

count for an object goes to zero, delete the object.

These rules are illustrated by the functions increment and decrement shown in Figure 6.

In order to add reference counting smart pointer
functionality to built-in pointers operations, the  following
expression transformations are required:

Pointer assignment: Whenever an assignment is made to a
designated smart built-in pointer, the reference count for
the object originally pointed to should be decremented and
that of the object now pointed to should be incremented.
Thus, the expression p1 = p2 becomes:

(p1 == p2 ? 0 : decrement(p1), p1 =
p2, increment(p1), p1)

Pointer initialization: A designated smart built-in pointer
must always be either explicitly initialized to a value, or to zero. (If a pointer were not initialized to zero and contained

void decrement(ReferenceCounter *sp)
{
    if (!sp)
        return;
    if (! --sp->rc)
        delete sp;
}

void increment(ReferenceCounter *sp)
{
    if (!sp)
        return;
    ++sp->rc;
}

Figure 6 Reference Counter Functions
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non-zero garbage, a subsequent assignment to that pointer using the previous expression would likely result in an
exception).

The statement SPC* p1; becomes:

SPC* p1 = 0;

and SPC** p1 = new SPC*; becomes:

SPC** p1=new SPC*; p1 ? *p1=0 : 0;

If a smart pointer is initialized to a value, the reference count for the underlying object must be incremented. So the
statement SPC* p1 = p2; becomes:

 SPC* p1 = p2; increment(p1);

Object Initialization:  When a designated smart built-in pointer object is created, the reference count must be initialized.
For dynamically-created objects, the count should be initialized to 0, and for static or automatic objects, the reference
count should be initialized to 1 so that the object can be used in reference counting contexts, but will never be deleted.

Pointer destruction:  When a designated smart built-in pointer is destroyed the reference count for the referenced object
must be decremented.  There are several ways that a smart pointer will be destroyed, the most common being that it goes
out of scope. Other possibilities are that a dynamically allocated smart pointer is deleted, or an exception occurs in which
the containing block is unwound from the stack.  Only the deletion of a dynamically-allocated smart pointer consists of
an expression that can be transformed. The other two require modifications to the function itself so that the scope
termination and exception handling code will include the decrement of any smart pointers declared therein.

4.2 Which Built-in Pointers Become Smart?

The above discussion raises the question of how to determine which built-in pointer operations should be transformed
into smart pointer operations. One could blindly apply the transformation to all built-in pointer operations, but this would
certainly be overkill. Rather, we would like to select only specific pointers for the transformation The approach that we
have chosen is to define a special base class,
ReferenceCounter. Expressions involving objects
declared of, or pointers to, a class derived from
ReferenceCounter will be transformed as
described above.
For example, consider the built-in pointers declared of
type C* in Figure 7. Because class C is derived from
ReferenceCounter, several transformations should take
place. cp1 and cp2 should be implicitly initialized to
0 at the point of declaration, and the assignment from
cp2 to cp1 should be transformed as described earlier.

5. Montana CodeStore Architecture

The previous section described the necessary transformations to built-in pointer operations in order to implement a
reference counting smart pointer. This section provides an overview of the Montana CodeStore architecture and describes
in a generic sense how a transformation extension can be added. This will form the basis for the remainder of the paper,
which describes our implementation of smart built-in pointers in Montana using an incorporation extension.

class C : public ReferenceCounter {};

int main()
{
    C *cp1, *cp2;

    cp1 = cp2;
}

Figure 7 Built-in Pointer Operations
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5.1 The Montana Incorporation Process

As part of the Montana incremental compilation process, the compiler separates a source file into regions, where each
region consists of approximately one declaration.  If a region, or something that region depends upon,  has changed since
the last incorporation, it is re-incorporated. Re-incorporation involves a number of standard steps: parsing, semantic
analysis, transformation, error checking, code generation, and incremental linking. In addition, dependency arcs are added
between CodeStore elements so that a change in one region can trigger a re-incorporation of a dependent region. For
example, a region containing a derived class declaration will have a dependency on each region containing one of its base
classes.

The Montana class CS_CodeStore is used to represent the underlying CodeStore database. This class supports a
variety of  routines to create, query and update the CodeStore. An application that operates on a CodeStore will contain
exactly one instance of the CS_CodeStore class. If an incorporation is currently taking place against the database,
 this CS_CodeStore instance will contain a reference to an object of type CS_IncorporationState, which
represents the current state of the incorporation.

5.2 Transformation

The transformation step involves simplifying expressions and statements into a C-like representation. In Montana, it is
implemented through the class  CS_Transformer, which is shown in Figure 8.  CS_Transformer has three versions
of the method transform, corresponding to the different types of transformations that are supported.  Most calls to
the CS_Transformer::transform methods are for statements or initializations. Expression transformations
typically occur as part of the transformation of their containing statement.

When the compiler needs to transform an item, it obtains a transformer object from the CodeStore’s incorporation state
object. The incorporation state in turn retrieves the transformer from an implementation component factory (see Figure
9).  The incorporation state maintains a list of implementation component factories, and selects the transformer returned
by the front element in the list. 

class CS_Transformer : public CS_IncorporationComponentBase<CS_DepthFirstModifier>
{
public:
   CS_Transformer(CS_IncorporationState& s) :
CS_IncorporationComponentBase<CS_DepthFirstModifier>(s) { }
 
   // Transform a statement tree
   //
   virtual CS_bool transform(CS_Statement*& stmt, CS_bool emitMessages)
      { modifyStatement(*stmt); return CS_true; }

   // Transform a variable initializer
   //
   virtual CS_bool
         transform(CS_Initializer*& init, CS_VariableDeclaration& var, CS_bool emitMessages)
      { init = &modifyInitializer(*init, &var.typeDescriptor(), &var); return CS_true; }

   // Transform an expression tree
   //
   virtual CS_Expression& transform(CS_Expression& expr, CS_bool emitMessages)
      { return modifyExpression(expr); }
};

Figure 8 CS_Transformer
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An implementation component can be one of four types: a  type analyzer, a diagnostician, a transformer, or an optimizer.
Each of these implementation components take part in a specific portion of the incorporation process, and can be
overridden to modify the compilation process. Applications can provide custom implementation components by
subclassing the implementation component factory class and providing overrides for the methods of interest. By inserting
this new class  at the front of the incorporation state list, the incorporation state will select the overridden component
provided.

For example, to provide a transformer (incorporation) extension, the class
CS_ImplementationComponentFactory would be derived from, supplying a transformer method that would
return the custom transformer object. The incorporation state method prependImplementation-
ComponentFactory would be called to add this factory to the front of the list. Any factory methods that are not
overridden would return the result of invoking that method against the next factory in the list, as shown in Figure 9 with
the method invocation against the result of the next method.

Montana supplies a default implementation component factory that provides the standard implementations for each
component. When no extensions have been introduced, this factory will be at the front of the incorporation state’s list.
Figure 10 shows the relationship between the various classes discussed in this section.

6. Implementing Smart Pointers with Montana

In this section, we will present our implementation of smart pointers through built-in pointers using a Montana
transformation incorporation extension. The complete implementation is included in the Appendix A, and we have
extracted specific pieces to clarify the explanation. We will first describe how to add our specific transformation
extension, and then present our implementation for reference counting smart pointers based on the required expression
transformations discussed earlier.

class CS_ImplementationComponentFactory : public CS_Link<CS_ImplementationComponentFactory>
{
public:
   virtual CS_TypeAnalyzer&   typeAnalyzer()  { return next()->typeAnalyzer();  }
   virtual CS_Diagnostician&  diagnostician() { return next()->diagnostician(); }
   virtual CS_Optimizer&      optimizer()     { return next()->optimizer();     }
   virtual CS_Transformer&    transformer()   { return next()->transformer();   }
};

Figure 9 CS_ImplementationComponentFactory class

Figure 10 Relationship Between Classes
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6.1 Creating a Transformation Incorporation Extension

As described in the previous section, in order to implement a transformation extension, we must create a subclass of  the
CS_ImplementationComponentFactory class and insert an object of this new type at the front of the
incorporation state’s factory list. Figure 12 shows the definition of the class SmartPointerImplementation
ComponentFactory and Figure 11 shows the corresponding implementation. The method transformer is overridden
to return our custom smart pointer transformer extension. The constructor for the factory initializes the _transformer
member by creating a new object of class SmartPointerTransformer. This latter class will implement our smart
pointer transformer extension, and will be discussed in more detail subsequently. Note that the transformer extension
constructor is passed the incorporation state and the current transformer object, obtained from the front of the factory
list.

6.2 Dynamically Loading a Transformation Incorporation Extension

We now have a factory implementation that will return our custom transformation extension. The next issue to address
is how the factory object will be created and added to the front of the incorporation state’s factory list. This will be
achieved by loading a dynamic link library (DLL) that contains a static variable whose initialization will cause the factory
to be created and inserted into the list. Then the question is, how is the DLL loaded? We will now examine the Montana
support for defining and loading extensions.

SmartPointerImplementationComponentFactory::
        SmartPointerImplementationComponentFactory(CS_IncorporationState& s) :
    _state(s),
    // The second argument to this constructor comes from pull on the
    // chain of components stored in the IncorporationState.
    //
    _transformer(new SmartPointerTransformer(_state,
                 _state.implementationComponentFactory().transformer()))
{
    assume(_transformer);
}

CS_Transformer& SmartPointerImplementationComponentFactory::
        transformer()
{
    assume(_transformer);
    return *_transformer;
}

SmartPointerImplementationComponentFactory::
        ~SmartPointerImplementationComponentFactory()
{
    delete _transformer;
}

Figure 11 SmartPointerImplementationComponentFactory implementation

class SmartPointerImplementationComponentFactory
   : public CS_ImplementationComponentFactory {
  public:
    SmartPointerImplementationComponentFactory(CS_IncorporationState&);
    virtual CS_Transformer& transformer();
    virtual ~SmartPointerImplementationComponentFactory();

  private:
    CS_IncorporationState& _state;
    CS_Transformer* _transformer;
};

Figure 12 SmartPointerImplementationComponentFactory class
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Externally, a Montana extension is introduced using an
Incremental C++ Extension, or ice, file. Montana searches for
and applies ice files at load time according to a defined search
order. Figure 13 shows an ice file which defines an extension
called SmartPointer, for which the corresponding DLL to
load is smartp.dll. The suffix and prefix information is
used to associate a specific file type with a given extension.
This interface is for CodeStore extensions, but is used as a
temporary measure until the final interface for incorporation
 extensions is defined.

Montana programs are compiled by providing a configuration
file which supplies the various options for the compilation. For
our purposes, the configuration file shown in Figure 14 is used.

This configuration file indicates that the source file to be
compiled is t.cpp, the target executable will be t.exe, and
that an additional source file called dummy.sp will also be
processed. This latter source file, being an unsupported file
type, will cause Montana to search the  ice files for an
appropriate extension that handles this file type, and load the
extension DLL smartp.dll.

The next step is to register an extension dynamic load point
using a statically-defined variable in the smartp.dll
extension DLL as shown in Figure 15. An extension dynamic
load point is used to register an extension with the compiler.
For an incorporation extension, the final parameter to the
extension dynamic load point constructor,  the incorporation
startup function pointer is most important. This function will
be run at the start of every incorporation and can be used by an
extension to plug in components into the incorporation state.

[SmartPointer]

type=extension
description=Smart Pointer
Extension
dll=smartp.dll
suffixes=sp SP
prefix=dummy

Figure 13 ice File for Smart Pointer Extension

source type(cpp) src0 = "t.cpp"
target "t.exe" { source src0 }

source type(sp) src1 = "dummy.sp"

Figure 14 Montana Configuration File

CS_ExtensionDynamicLoadPoint
  
SmartPointer::extension_load_point(
        SmartPointer::className(),
        SmartPointer::update,
        SmartPointer::isChanged,
       
SmartPointer::processOptions,
        EXTENSION_PRIORITY,
       
SmartPointer::incorporationStartup);

Figure 15 Extension Dynamic Load Point

class SmartPointer : public CS_InterfaceBase
{
public:
   static const char* className();

   static void SmartPointer::incorporationStartup(
      CS_ExtensionDynamicLoadPointLink&, CS_IncorporationState&);

   static CS_DependencyNode::UpdateResult
        update(CS_ExtensionSource* me, CS_IncorporationState& state,
               CS_bool emitMessages);

   static CS_bool isChanged(CS_ExtensionSource* me);

   static void processOptions(CS_ExtensionSource* me, CS_OptionList& options);

private:
   static CS_ExtensionDynamicLoadPoint  extension_load_point;
};

Figure 16 SmartPointer class
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The main effect then, of constructing the static member variable SmartPointer::extension_load_point is
that the method SmartPointer::incorporationStartup will be called prior to each incorporation. The class
SmartPointer  and the incorporationStartup method are shown in Figure 16 and Figure 17. In the
incorporationStartup method the newly-created SmartPointerImplementationComponentFactory
object is added to the front of the incorporation state’s factory list (see Figure 10). Adding this custom factory object to
the front of the queue will cause any requests made of the incorporation state for a transformer object to return the custom
transformer, SmartPointerTransformer.

void SmartPointer::incorporationStartup(
        CS_ExtensionDynamicLoadPointLink&, CS_IncorporationState& state)
{
    cout << __FUNCTION__ << endl;

    SmartPointerImplementationComponentFactory* fac =
        new SmartPointerImplementationComponentFactory(state);
    assume(fac);  // (our version of "assert")

    // Push our new factory with its new Transformer onto the chain
    // stored in the IncorporationState.
    //
    state.prependImplementationComponentFactory(*fac);

    return;
}

Figure 17 incorporationStartup method

class SmartPointerTransformer : public CS_Transformer {
  public:
    SmartPointerTransformer(CS_IncorporationState& s, CS_Transformer& p)
       : CS_Transformer(s), _parent(p),
         _referenceCounterTransformerImplementation(0) {
    }

    ~SmartPointerTransformer();

    virtual CS_bool transform(CS_Statement*& stmt, CS_bool emitMessages);
    virtual CS_bool transform(CS_Initializer*&, CS_VariableDeclaration&, CS_bool);
    virtual CS_Expression& transform(CS_Expression&, CS_bool);

    virtual CS_Expression& modifyAssignExpression(CS_BinaryExpression&);
    virtual CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    virtual CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    virtual CS_Expression& modifyDestructorStateChangeExpression(
        CS_DestructorStateChangeExpression&);

    CS_Expression& typeAnalyze(CS_Expression&);
    CS_Initializer& typeAnalyze(CS_Initializer&);

  private:
    CS_Transformer& _parent;

    // classes for each smart pointer implementation
    ReferenceCounterTransformerImplementation* _referenceCounterTransformerImplementation;

    // Return the smart pointer implementation, if any, for the expression
    // The expression must be a pointer to a class derived from a SmartPointer class
    SmartPointerTransformerImplementation* transformerImplementation(CS_TypeDescriptor&);
};

Figure 18 SmartPointerTransformer class
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6.3 The SmartPointerTransformer class

At this point, whenever a transformation takes place, the SmartPointerTransformer class (see Figure 18) will
have control. One of the three overridden transform methods shown at the beginning of the class will be called
depending upon the type of transformation taking place: a statement, initialization, or an expression. The overridden
versions of the SmartPointerTransformer methods are shown in Figure 19. These transform methods have
fairly standard implementations. They first call an appropriate modify method, and then invoke the transform
method of the previous element in the component chain (given by member variable _parent.) 

Recall that the constructor for the SmartPointerTransformer class is passed the current transformer object, which
is used to initialize the data member _parent. Calling the parent transform method allows the standard compiler
transformations to take place after the extension has been run.

It is when the modify method is called that the transformer extension has an opportunity to modify the transformed
expression. The compiler-supplied modify methods step through the underlying item and calls an appropriate
modifyxxx method for each entity encountered. By overriding methods corresponding to expression of interest, the
transformer extension can modify these expressions. In this case, we have overloaded modifyAssignExpression,
modifyExpressionInitializer, modifyImplicitInitializer, and
modifyDestructorStateChangeExpression (these methods will be explained in more detail in the next
section). If the underlying expression or statement corresponds to one of these four, the overloaded method will be called.
Each of these methods determines if any further expression transformation is necessary, based on the type of the object
being operated on. If so, the expression is transformed according to the model described earlier for transforming built-in
pointer operations into smart pointer operations.

6.4 CS_SmartPointerTransformer::modify

Now we will discuss the implementation of the CS_SmartPointerTransformer::modify methods. Each of
these methods uses the SmartPointerTransformer::transformerImplementation method to determine
if the current expression or statement deals with an object of interest.  This method returns a
SmartPointerTransformationImplementation that will perform implementation-specific transformations,
depending upon the smart pointer type. We will discuss this latter class in the next section.

The  modifyAssignExpression method is shown in Figure 20. For our smart pointer implementation, we want
to detect any pointers assignments where the underlying type is derived from a special base class such as

CS_bool SmartPointerTransformer::transform(CS_Statement*& stmt, CS_bool emitMessages)
{
    modifyStatement(*stmt);
    _parent.transform(stmt, emitMessages);
    return CS_true;
}

CS_bool SmartPointerTransformer::
        transform(CS_Initializer*& init, CS_VariableDeclaration& var, CS_bool emitMessages)
{
    init = &modifyInitializer(*init, &var.typeDescriptor(), &var);
    _parent.transform(init, var, emitMessages);
    return CS_true;
}

CS_Expression& SmartPointerTransformer::transform(CS_Expression& expr, CS_bool emitMessages)
{
    CS_Expression *expr2 = &modifyExpression(expr);
    return _parent.transform(*expr2, emitMessages);
}

Figure 19 SmartPointerTransformer transform methods
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ReferenceCounter. modifyAssignExpression is passed a reference to a CS_BinaryExpression object,
representing the assignment expression currently being transformed. If the type descriptor for the lhs of this expression,
given by CS_BinaryExpression:: expression1(), is not a pointer, then no further work is necessary. If it
is a pointer, then the type to which it points, given by CS_TypeDescriptor::next() is passed to
transformerImplementation to check if it points to an object derived from one of the special base classes. If
a non-null value is returned, the modifyAssignExpression of the returned implementation object is called to
modify the expression.

The modifyExpressionInitializer and modifyImplicitInitializer methods (Figure 21 and Figure
22) perform similar functions, but must handle both pointer and non-pointer initializations. These methods call the
transformerImplementation with the CS_TypeDescriptor for the non-pointer variable being initialized.
If the variable being initialized is a pointer, the CS_TypeDescriptor for the type pointed to, given by td->next(),
is passed instead.

CS_Expression& SmartPointerTransformer::modifyAssignExpression(CS_BinaryExpression& binary)
{
    if (! binary.expression1().typeDescriptor().isPointer())
        return binary;

    SmartPointerTransformerImplementation *ti =
        transformerImplementation(*binary.expression1().typeDescriptor().next());

    return ti ? typeAnalyze(ti->modifyAssignExpression(binary)) : binary;
}

Figure 20 modifyAssignExpression method

CS_Initializer& SmartPointerTransformer::modifyExpressionInitializer(
        CS_ExpressionInitializer& init, CS_TypeDescriptor* td, CS_VariableDeclaration* var)
{
    if (!td)
        return init;

    // need to handle both pointer and object initialization
    SmartPointerTransformerImplementation *ti =
        transformerImplementation(td->isPointer() ? *td->next() : *td);

    if (! ti)
        return init;

    return typeAnalyze(ti->modifyExpressionInitializer(init, td, var));
}

Figure 21 modifyExpressionInitializer method

CS_Initializer& SmartPointerTransformer::modifyImplicitInitializer(
        CS_ImplicitInitializer& init, CS_TypeDescriptor* td, CS_VariableDeclaration* var)
{
    if (!td)
        return init;

    // need to handle both pointer and object initialization
    SmartPointerTransformerImplementation *ti =
        transformerImplementation(td->isPointer() ? *td->next() : *td);

    if (! ti)
        return init;

    return typeAnalyze(ti->modifyImplicitInitializer(init, td, var));
}

Figure 22 modifyImplicitInitializer method
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The modifyDestructorStateChangeExpression method, shown in Figure 23, does not actually perform any
modification against the given expression. Rather, it calls the static method
SmartPointerTransformationImplementation::modifyDestructorStateChangeExpression,
which simply saves the most recently seen state table entry if that entry is for a destructor. This value will be used later
to add information to the state table in the appropriate location.

6.5 SmartPointerTransformerImplementation class

As discussed earlier, the model for our smart pointer implementation is that a built-in pointer will be transformed into
a smart pointer if the underlying type inherits from a special base class.  In order to provide multiple smart pointer
transformations, we have defined a common base class called SmartPointerTransformerImplementation
(Figure 24), from which a derived class will be defined for each smart pointer implementation.  This derived class will
handle the transformations specific to that smart pointer implementation.

CS_Expression& SmartPointerTransformer::
        modifyDestructorStateChangeExpression(CS_DestructorStateChangeExpression& dsce)
{
    return SmartPointerTransformerImplementation::
        modifyDestructorStateChangeExpression(dsce);
}

CS_Expression& SmartPointerTransformerImplementation::
    modifyDestructorStateChangeExpression(CS_DestructorStateChangeExpression& dsce)
{
    // save most recent state table entry
    if (dsce.tableEntry() && dsce.tableEntry()->asDestructorStateTableEntry())
        _currentDestructorStateTableEntry = dsce.tableEntry()->asDestructorStateTableEntry();

    return dsce;
}

Figure 23 modifyDestructorStateChangeExpression methods

class SmartPointerTransformerImplementation : public
CS_IncorporationComponentBase<CS_InterfaceBase> {
  public:
    SmartPointerTransformerImplementation(CS_IncorporationState &state,
                                          SmartPointerTransformer &transformer) :
        CS_IncorporationComponentBase<CS_InterfaceBase>(state), _transformer(transformer) {}

    virtual CS_Expression& modifyAssignExpression(CS_BinaryExpression&) = 0;
    virtual CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*) = 0;
    virtual CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*) = 0;

    static CS_Expression& modifyDestructorStateChangeExpression(
        CS_DestructorStateChangeExpression& dsce);
    CS_DestructorStateTableEntry* currentDestructorStateTableEntry()
        { return _currentDestructorStateTableEntry; }
    void currentDestructorStateTableEntry(CS_DestructorStateTableEntry *ste)
        { _currentDestructorStateTableEntry=ste; }
   
    SmartPointerTransformer& transformer() { return _transformer; }

  private:

    SmartPointerTransformer& _transformer;
    static CS_DestructorStateTableEntry *_currentDestructorStateTableEntry;
};

Figure 24 SmartPointerTransformerImplementation class
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When a method needs to determine if a smart pointer implementation applies to a given expression, it calls the method
SmartPointerTransformer::transformerImplementation, shown in Figure 25. The
transformerImplementation method is passed a reference to an object of type CS_TypeDescriptor, which
describes the type of the object being operated on. If the object is of a class type, a reference to the associated
CS_ClassDeclaration is assigned to the variable decl. A CS_ClassDeclaration provides complete
information about a class declaration, such as the class name, members. etc. So at this point, decl will reference the
class declaration for the object of interest

Next, the findClassDeclaration method of the ReferenceCounterTransformerImplementation
class is invoked. This method returns a pointer to the CS_ClassDeclaration object representing the class
ReferenceCounter, if that declaration has been encountered in the program, and null otherwise. If non-null is
returned, the method uses the CS_ANSI_Queries::isBaseClassOf method to determine if the class declaration
for the object of interest is derived from ReferenceCounter. The CS_ANSI_Queries class provides a variety
of functions that support querying of class declarations. If ReferenceCounter is a base class, the
_referenceCounterTransformerImplementation data member will be initialized with a new
ReferenceCounterTranformerImplementation object if it has not yet been initialized.

In the current implementation, we have defined one special base class, ReferenceCounter, and one corresponding
specialization of SmartPointerTransformerImplementation. The programmer would include the declaration
of ReferenceCounter class (see Figure 26 ) and derive from it to introduce reference-counting functionality for
pointer operations against objects of that derived class. (The name member in ReferenceCounter is used for
debugging purposes and will be discussed later). Additional smart pointer implementations could be introduced by
inserting code at the end of the transformerImplementation method where indicated.

SmartPointerTransformerImplementation *SmartPointerTransformer::
        transformerImplementation(CS_TypeDescriptor& td)
{
    if (! td.isNamedType() ||
            ! td.declaration().declarationKind() == CS_Declaration::IsClass)
        return NULL;
    CS_ClassDeclaration &decl = *td.declaration().asClassDeclaration();

    CS_ClassDeclaration *referenceCounter =
        ReferenceCounterTransformerImplementation(state(), *this).findClassDeclaration();
    if (referenceCounter &&
            CS_ANSI_Queries::isBaseClassOf(*referenceCounter, decl)) {
        cout << "got a pointer to class derived from "
             << referenceCounter->signature() << endl;
        if (! _referenceCounterTransformerImplementation) {
            _referenceCounterTransformerImplementation =
                new ReferenceCounterTransformerImplementation(state(), *this);
        }
        return _referenceCounterTransformerImplementation;
    }
    // insert code to look for other smart pointer class implementations here
    return NULL;
}

Figure 25 transformerImplementation method

class ReferenceCounter {
  private:
    int rc;
    char *_name;

    static void dtor(ReferenceCounter **sp, int);
    static void decrement(ReferenceCounter *sp);
    static void increment(ReferenceCounter *sp);

  public:
    ReferenceCounter(char *name) : _name(name) { rc = 0; } 
    char *name() { return _name; }
    virtual ~ReferenceCounter();
};

Figure 26 ReferenceCounter class
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6.6 ReferenceCounterTransformerImplementation class

The ReferenceCounterTranformerImplementation (see Figure 27) class provides the transformer extension
implementation for a reference counting smart pointer. It is a specialization of the
SmartPointerTransformerImplementation, and contains overrides of the
SmartPointerTransformerImplementation::modify methods, along with additional methods specific to
implementing a reference counting smart pointer.

class ReferenceCounterTransformerImplementation :
        public SmartPointerTransformerImplementation {
  public:
    ReferenceCounterTransformerImplementation(
        CS_IncorporationState& state, SmartPointerTransformer& transformer) :
        SmartPointerTransformerImplementation(state, transformer) {};

    CS_ClassDeclaration* findClassDeclaration();
       
    CS_Expression& modifyAssignExpression(CS_BinaryExpression& binary);
    CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);

    private:
        const CS_Atom& referenceCountMember();
        virtual CS_Expression& decrementReferenceCounterExpression(CS_Expression &);
        virtual CS_Expression& incrementReferenceCounterExpression(CS_Expression &);
        virtual CS_Expression& createStateChangeExpression(
            CS_Expression&, CS_VariableDeclaration&);
        virtual CS_FunctionDeclaration& findOrCreateDecrement();
        virtual CS_FunctionDeclaration& findOrCreateIncrement();
        virtual CS_FunctionDeclaration& findOrCreateDtor();
        virtual CS_FunctionDeclaration& findOrCreateMemberFunction(char *);
        virtual CS_DestructorStateTableEntry&createDestructorStateTableEntry(
            CS_VariableDeclaration&, CS_TreeNode&);
        virtual void addDestructorCalls(
            CS_VariableDeclaration&, CS_DestructorStateTableEntry&, CS_TokenLocation&);
};

Figure 27 ReferenceCounterTransformerImplementation class

CS_Expression&
ReferenceCounterTransformerImplementation::modifyAssignExpression(
    CS_BinaryExpression &binary)
{
    // Don’t transform expressions on temporaries
    CS_Expression &e = binary.expression1();
    if (e.expressionKind() == CS_Expression::IsName &&
            e.asNameExpression()->name().declaration() &&
            ! e.asNameExpression()->name().declaration()->mapsToASourceLocation()) {
        return binary;
    }

    CS_TokenLocation loc =
        binary.sourceLocation().sourceRegion()->tokenLocation();

    CS_Expression &expr =
        ef().createCommaExpression(loc,
            decrementReferenceCounterExpression(binary.expression1()),
            ef().createCommaExpression(loc,
                binary,
                incrementReferenceCounterExpression(binary.expression1())));
    return expr;

}

Figure 28 modifyAssignExpression method



Page 17

6.6.1 Transforming Pointer Assignments

As discussed earlier, when an assignment to a reference-counting smart pointer occurs, we want to transform an
expression such as x = y, where x points to a type derived from ReferenceCounter, to the following:

    (x == y ? 0 :
  decrement(x), x = y,
  increment(x), x)

This is achieved through the modifyAssignExpression method shown in Figure 28. The first thing the method
does is check if the left-hand-side (lhs) of the expression (given by binary.expression1()), is a compiler-
generated temporary. Unlike programmer-declared variables, the declaration of a temporary will not have a
corresponding source location. Our implementation does not currently handle temporaries, and assignments to such are
ignored. Temporaries are discussed in more detail in section 8.

CS_Initializer& ReferenceCounterTransformerImplementation::
        modifyExpressionInitializer(CS_ExpressionInitializer& init,
                                    CS_TypeDescriptor* td, CS_VariableDeclaration* var)
{
    assume(var);

    CS_TokenLocation loc =
        init.expression().sourceLocation().sourceRegion()->tokenLocation();

    if (td->isPointer()) {
        CS_BinaryExpression *be = init.expression().asBinaryExpression();
        assume(be);
        // C *c1(x) will already be transformed to C *c1 = x;
        assume(be->binaryExpressionKind() == CS_BinaryExpression::opAssign);

        CS_Expression &expr1 = be->expression1();

        // change C *c1; c1 = x to
        //        C *c1; c1 = (c1=x, c1 != 0 ? c1->rc++: 0, c1)

        init.setExpression(
            ef().createAssignExpression(loc,
                expr1,
            ef().createCommaExpression(loc,
                ef().createAssignExpression(loc,
                    ic().cloneExpression(expr1),
                    transformer().modifyExpression(be->expression2())),
                ef().createCommaExpression(loc,
                    incrementReferenceCounterExpression(
                        expr1),
                    ef().createCommaExpression(loc,
                        createStateChangeExpression(expr1, *var),
                    ic().cloneExpression(expr1))))));
        return init;
    }
    // For non-dynamic variables, initialize reference count
    // to 1 so that never get collected.

    init.setExpression(
        ef().createCommaExpression(loc,
            transformer().modifyExpression(init.expression()),
            ef().createAssignExpression(loc,
                ef().createDotExpression(loc,
                    ef().createNameExpression(loc, *var),
                    referenceCountMember()),
                ef().createLiteralExpression(
                    cs(), loc, intType(), 1))));
    return init;
}

Figure 29 modifyExpressionInitializer method
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If the target of the assignment is not a temporary, a new comma expression is created using the result of the
decrementReferenceCounter and incrementReferenceCounter methods along with the current
assignment expression. The findOrCreateDecrement method called in the
decrementRefereneCounterExpression method  locates or creates a declaration corresponding to the
ReferenceCounter::increment method declared earlier. Note that  the right-hand-side (rhs) value is used three
times in the resulting expression, in decrement, assignment, and increment expressions. We should generate a temporary
to hold the rhs value so that expressions containing side-effects are not executed multiple times. Further, we currently
do not generate code to handle the initial check for the lhs being equal to the rhs, which requires a temporary for both
the lhs and the rhs, or the final expression containing just the rhs for the assignment value. This support would be added
when temporaries are handled by our implementation (see section 8).

6.6.2 Transforming Initialization Expressions

The modifyExpressionInitializer method, shown in Figure 29,  transforms initialization expressions
corresponding to the model described earlier. Much of this method is fairly self-explanatory. For pointers, however, there
is an additional action performed, which is to add state change information. If a pointer goes out of scope, either due to
an exception or control implicitly returning from the function, the appropriate reference count decrement must take place.
This is achieved through calling the createStateChangeExpression method, which will use the saved state
change variable to create a state change node and insert it in the table in the appropriate place, based on the most recent
state change that occurred within the function. This will cause code to be inserted at the end of the function on implicit
scope termination to call the dtor method defined for the class ReferenceCounter, which will decrement the
reference count. See the appendix for details.

7. An Example

To demonstrate the smart pointer transformer extension in action, Figure 31 shows a simple program containing several
pointer declarations and assignments. Figure 30 shows the resulting execution output after compiling the program with
the transformation extension. The built-in pointers act like smart pointers!

C c1;
C *cp1 = &c1;
>> Incrementing count for c1 to 2
C *cp2 = new C("new C 1");
>> Incrementing count for new C 1 to 1
cp2 = 0;
>> Decrementing count for new C 1 to 0
>> Deleting new C 1 with 0 references
cp1 = cp2;
>> Decrementing count for c1 to 1
C *cp3 = new C("new C 2");
>> Incrementing count for new C 2 to 1
C c2;
cp1 = &c2;
>> Incrementing count for c2 to 2
>> Deleting c2 with 2 references
>> Decrementing count for new C 2 to 0
>> Deleting new C 2 with 0 references
>> Decrementing count for c2 to -1
>> Deleting c1 with 1 references

Figure 30 Test Program Output
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#include "ReferenceCounterInterface.h"

class C : public ReferenceCounter {
  public:
    int i;
    C(char *name) : ReferenceCounter(name) {}
};

int main()
{
    cout << "C c1;" << endl;
    C c1("c1");

    cout << "C *cp1 = &c1;" << endl;
    C *cp1 = &c1;

    cout << "C *cp2 = new C(\"new C 1\");" << endl;
    C *cp2 = new C("new C 1");

    cout << "cp2 = 0;" << endl;
    cp2 = 0;

    cout << "cp1 = cp2;" << endl;
    cp1 = cp2;

    cout << "C *cp3 = new C(\"new C 2\");" << endl;
    C *cp3 = new C("new C 2");

    cout << "C c2;" << endl;
    C c2("c2");

    cout << "cp1 = &c2;" << endl;
    cp1 = &c2;

    return 0;
}

Figure 31 Test program

transformed tree for: int main()
{
  __ef __fsm_tab = { 0xBEEFDEAD, 4, { { <offset of c1 + 0>, &C::__dftdt, 1, 16, 0, 0 }, {
<offset of @1 + 0>, &operator delete, -3, 16, 0, 1 }, { <offset of @2 + 0>, &operator delete, -
3, 16, 0, 2 }, { <offset of c2 + 0>, &C::__dftdt, 1, 16, 0, 3 } } };
  __est __es = { 0, 0, &__fsm_tab, (long int *) 0, 0 };
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C c1;"), endl);
  C c1; *C::C(&c1, "c1") , __es.__s = 1;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp1 = &c1;"), endl);
  C *cp1; cp1 = &c1;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp2 = new C(\"new C 1\");"),
endl);
  C *cp2; cp2 = (( @1 = ::operator new(16) ? __es.__s = 2 , C::C(@1, "new C 1") , __es.__s = 1 :
0 ) , @1);
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp2 = 0;"), endl);
  cp2 = 0;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp1 = cp2;"), endl);
  cp1 = cp2;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp3 = new C(\"new C 2\");"),
endl);
  C *cp3; cp3 = (( @2 = ::operator new(16) ? __es.__s = 3 , C::C(@2, "new C 2") , __es.__s = 2 :
0 ) , @2);
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C c2;"), endl);
  C c2; *C::C(&c2, "c2") , __es.__s = 4;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp1 = &c2;"), endl);
  cp1 = &c2;
  return @3 = 0 , (__es.__s = 3 , C::~C(&c2, 2, 0) , (__es.__s = 0 , C::~C(&c1, 2, 0))) , @3;
}

Figure 32 Transformed Expressions Without Smart Pointer Extension
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Without the transformer extension, the transformed tree for the main function would be as shown in Figure 32. The first
line of the transformed function contains a finite state machine table used for exception handling. Each of the 4 entries
in the table specifies the action to take should an exception occur during execution of the function. There is an entry for
the two local variables requiring destruction, along with the dynamically-allocated storage, in the order they occur in the
function.  Most of the remaining transformed function is fairly self-explanatory.  The state variable __es.__es is
updated to indicate the progress made, (in other words the state of the function), should an exception occur. The final
line handles local destructors, updating the state as each destructor is called in reverse order of declaration.  Note that
there are no state table entries, state changes, or final destruction code, corresponding to the built-in pointers, as there
is no cleanup necessary or possible for them.

Figure 33 shows the transformed tree with the reference counter transformer extension. The first difference is that the
state table contains entries for each of the three built-in pointers, calling the ReferenceCounter::dtor method.
In addition, state changes have been added throughout the function for the built-in pointer declarations. Each declaration
or pointer assignment now includes the additional smart pointer functionality that was added as part of the transformation
extension. And finally, at the end of the function, the built-in pointers are decremented as they go out of scope, in reverse
order of declaration.

transformed tree for: int main()
{
  __ef __fsm_tab = { 0xBEEFDEAD, 7, { { <offset of c1 + 0>, &C::__dftdt, 1, 16, 0, 0 }, {
<offset of cp1 + 0>, &ReferenceCounter::dtor, 1, 4, 0, 1 }, { <offset of cp2 + 0>,
&ReferenceCounter::dtor, 1, 4, 0, 2 }, { <offset of @0 + 0>, &operator delete, -3, 16, 0, 3 }, {
<offset of cp3 + 0>, &ReferenceCounter::dtor, 1, 4, 0, 4 }, { <offset of @1 + 0>, &operator
delete, -3, 16, 0, 5 }, { <offset of c2 + 0>, &C::__dftdt, 1, 16, 0, 6 } } };
  __est __es = { 0, 0, &__fsm_tab, (long int *) 0, 0 };
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C c1;"), endl);
  C c1; *C::C(&c1, "c1") , __es.__s = 1 , c1.rc = 1;
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp1 = &c1;"), endl);
  C *cp1; cp1 = (cp1 = &c1 , (ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp1))
, (cp1 , __es.__s = 2 , cp1)));
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp2 = new C(\"new C 1\");"),
endl);
  C *cp2; cp2 = (cp2 = (( @0 = ::operator new(16) ? __es.__s = 4 , C::C(@0, "new C 1") ,
__es.__s = 3 : 0 ) , @0) , (ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp2)) ,
(cp2 , __es.__s = 3 , cp2)));
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp2 = 0;"), endl);
  ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp2)) , (cp2 = 0 ,
ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp2)));
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp1 = cp2;"), endl);
  ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp1)) , (cp1 = cp2 ,
ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp1)));
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C *cp3 = new C(\"new C 2\");"),
endl);
  C *cp3; cp3 = (cp3 = (( @1 = ::operator new(16) ? __es.__s = 6 , C::C(@1, "new C 2") ,
__es.__s = 5 : 0 ) , @1) , (ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp3)) ,
(cp3 , __es.__s = 5 , cp3)));
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "C c2;"), endl);
  C c2; *C::C(&c2, "c2") , __es.__s = 7 , c2.rc = 1;
  foo();
  *ostream::operator<<(ostream::operator<<((ostream *) &cout, "cp1 = &c2;"), endl);
  ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp1)) , (cp1 = &c2 ,
ReferenceCounter::increment(static_cast<ReferenceCounter *> (cp1)));
  return @2 = 0 , (__es.__s = 6 , C::~C(&c2, 2, 0) , (__es.__s = 5 ,
ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp3))) , (__es.__s = 3 ,
ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp2))) , (__es.__s = 2 ,
ReferenceCounter::decrement(static_cast<ReferenceCounter *> (cp1))) , (__es.__s = 0 , C::~C(&c1,
2, 0))) , @2;
}

Figure 33 Transformed Expressions With Extension
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8. Further Work

There are several areas that were not covered by this work, most notably temporaries. The problem with temporaries is
that the API currently does not support them very well. There is no model for detecting when a temporary goes out of
use, which is necessary in order to correctly apply reference counting.  The current model does not include temporaries
in the reference count, which is sufficient for some, but not all, cases.  Consider an expression such as cp2 = cp1++;
The initial value of cp2 must be saved in a temporary prior to the increment of cp2 in order to be assigned to cp1,
so the expression would be transformed as follows:

cp2 = (@0 = cp1 , cp1 = cp1 + 1 , @0);

Applying the smart pointer transformation without taking into account the temporary would yield an incorrect result if
the decrement against cp1 caused the underlying storage to be deleted, resulting in a dangling reference being assigned
to cp2. The API needs a mechanism for allowing a transformation to determine when a temporary goes out of use so
that, for this example, the appropriate reference counting can take place. When such support for temporaries is avaiable,
the smart pointer implementation must also be updated to generate temporaries for the modified expressions to avoid
multiple evaluation of expressions containing side-effects, as discussed earlier.

Further work also needs to be done in the area of non-implicit scope termination, (for example through a return
statement), and exception handling. The current transformation implementation handles reference decrementing only for
implicit scope termination, through the state table additions.  However, the API does support the capability to handle
explicit scope termination, by detecting return statements and using the state information to determine what needs to be
done.  With respect to exception handling, the current extension implementation does work for simple examples, but not
for all cases. Due to time constraints, we did not pursue these areas, but anticipate that the implementation would be fairly
straightforward.

9. Conclusion

C++ smart pointers, while similar to built-in pointers, cannot be used interchangeably. Most notably, implicit compiler
conversions are not supported for smart pointers.  We have proposed that the “smarts” of smart pointers be added to built-
in pointers, and presented the expression transformations that would be necessary to implement a reference-counting
built-in pointer. Using the Montana API, we have demonstrated a working example of these ideas.

The Montana API interface has proven to be quite complete for the purposes of adding transformation extensions. Other
work in this area [Car97] supports this conclusion.  We found the API interface and design to be reasonably
straightforward and understandable, particularly given the complexity of the problem we were attempting to solve, that
of modifying compiler-generated expressions. Nonetheless, adding a transformation extension is not a trivial undertaking,
and is more likely to be expected of a class library vendor rather than a casual programmer.

While there is some additional work necessary to allow full support for a reference counting smart pointer
implementation, it is clear that the interface is quite capable of handling such language-level extensions. The API
definitely need better support for temporaries, both those generated by the compiler and by extensions such as the one
we have demonstrated. However, given the flexibility of the interface, this does not seem like a difficult design issue.
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12. Appendix - Complete Implementation

12.1 SmartPointer.h

#ifndef SmartPointerH
#define SmartPointerH

#include "interface/Extension.h"
#include "interface/ExtensionOption.h"
#include "interface/ExtensionSource.h"
#include "interface/InterfaceBase.h"

#include "common/AtomStore.h"

#include "incorporator/ExtensionDynamicLoadPoint.h"
#include "incorporator/ImplementationComponentFactory.h"
#include "incorporator/IncorporationState.h"
#include "incorporator/Transformer.h"
#include "incorporator/TypeAnalyzer.h"

#define EXTENSION_PRIORITY CS_DependencyNode::beforeLibrariesPriority

class CS_String;
class CS_ExtensionOptionBase;
class SmartPointerTransformer;
class ReferenceCounterTransformerImplementation;

//
// The SmartPointer class provides the call-back methods used by the kernel.
//
class SmartPointer : public CS_InterfaceBase
{
public:
   static const char* className();

   static void SmartPointer::incorporationStartup(CS_ExtensionDynamicLoadPointLink&,
CS_IncorporationState&);

   static CS_DependencyNode::UpdateResult
        update(CS_ExtensionSource* me, CS_IncorporationState& state, CS_bool emitMessages);

   static CS_bool isChanged(CS_ExtensionSource* me);

   static void processOptions(CS_ExtensionSource* me, CS_OptionList& options);

private:
   static CS_ExtensionDynamicLoadPoint  extension_load_point;
};

//
// The SmartPointerImplementationComponentFactory class
// registers the SmartPointerTransformer class as a new transformation phase.
//
class SmartPointerImplementationComponentFactory
   : public CS_ImplementationComponentFactory {
  public:
    SmartPointerImplementationComponentFactory(CS_IncorporationState&);
    virtual CS_Transformer& transformer();
    virtual ~SmartPointerImplementationComponentFactory();

  private:
    CS_IncorporationState& _state;
    CS_Transformer* _transformer;
};

//
// This is the common base class for all smart pointer implementations
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//
class SmartPointerTransformerImplementation : public
CS_IncorporationComponentBase<CS_InterfaceBase> {
  public:
    SmartPointerTransformerImplementation(CS_IncorporationState &state,
                                          SmartPointerTransformer &transformer) :
        CS_IncorporationComponentBase<CS_InterfaceBase>(state), _transformer(transformer) {}

    virtual CS_Expression& modifyAssignExpression(CS_BinaryExpression&) = 0;
    virtual CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*) = 0;
    virtual CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*) = 0;

    static CS_Expression& modifyDestructorStateChangeExpression(
        CS_DestructorStateChangeExpression& dsce);
    CS_DestructorStateTableEntry* currentDestructorStateTableEntry()
        { return _currentDestructorStateTableEntry; }
    void currentDestructorStateTableEntry(CS_DestructorStateTableEntry *ste)
        { _currentDestructorStateTableEntry=ste; }
   
    SmartPointerTransformer& transformer() { return _transformer; }

  private:

    SmartPointerTransformer& _transformer;
    static CS_DestructorStateTableEntry *_currentDestructorStateTableEntry;
};

//
// This class handles the smart pointer transformation phase
//
// use -showTransformedGraph to view completed transformations
//
class SmartPointerTransformer : public CS_Transformer {
  public:
    SmartPointerTransformer(CS_IncorporationState& s, CS_Transformer& p)
       : CS_Transformer(s), _parent(p),
         _referenceCounterTransformerImplementation(0) {
    }

    ~SmartPointerTransformer();

    virtual CS_bool transform(CS_Statement*& stmt, CS_bool emitMessages);
    virtual CS_bool transform(CS_Initializer*&, CS_VariableDeclaration&, CS_bool);
    virtual CS_Expression& transform(CS_Expression&, CS_bool);

    virtual CS_Expression& modifyAssignExpression(CS_BinaryExpression&);
    virtual CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    virtual CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    virtual CS_Expression& modifyDestructorStateChangeExpression(
        CS_DestructorStateChangeExpression&);

    CS_Expression& typeAnalyze(CS_Expression&);
    CS_Initializer& typeAnalyze(CS_Initializer&);

  private:
    CS_Transformer& _parent;

    // classes for each smart pointer implementation
    ReferenceCounterTransformerImplementation* _referenceCounterTransformerImplementation;

    // Return the smart pointer implementation, if any, for the expression
    // The expression must be a pointer to a class derived from a SmartPointer class
    SmartPointerTransformerImplementation* transformerImplementation(CS_TypeDescriptor&);
};
#endif
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12.2 ReferenceCounter.h

#include "SmartPointer.h"

class ReferenceCounterTransformerImplementation :
        public SmartPointerTransformerImplementation {
  public:
    ReferenceCounterTransformerImplementation(
        CS_IncorporationState& state, SmartPointerTransformer& transformer) :
        SmartPointerTransformerImplementation(state, transformer) {};

    CS_ClassDeclaration* findClassDeclaration();
       
    CS_Expression& modifyAssignExpression(CS_BinaryExpression& binary);
    CS_Initializer& modifyExpressionInitializer(
        CS_ExpressionInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);
    CS_Initializer& modifyImplicitInitializer(
        CS_ImplicitInitializer&, CS_TypeDescriptor*, CS_VariableDeclaration*);

    private:
        const CS_Atom& referenceCountMember();
        virtual CS_Expression& decrementReferenceCounterExpression(CS_Expression &);
        virtual CS_Expression& incrementReferenceCounterExpression(CS_Expression &);
        virtual CS_Expression& createStateChangeExpression(
            CS_Expression&, CS_VariableDeclaration&);
        virtual CS_FunctionDeclaration& findOrCreateDecrement();
        virtual CS_FunctionDeclaration& findOrCreateIncrement();
        virtual CS_FunctionDeclaration& findOrCreateDtor();
        virtual CS_FunctionDeclaration& findOrCreateMemberFunction(char *);
        virtual CS_DestructorStateTableEntry&createDestructorStateTableEntry(
            CS_VariableDeclaration&, CS_TreeNode&);
˝
        virtual void addDestructorCalls(
            CS_VariableDeclaration&, CS_DestructorStateTableEntry&, CS_TokenLocation&);
};

12.3  ReferenceCounterInterface.h

#include <iostream.h>

class ReferenceCounter;

class ReferenceCounter {
  private:
    int rc;
    char *_name;

    static void dtor(ReferenceCounter **sp, int);
    static void decrement(ReferenceCounter *sp);
    static void increment(ReferenceCounter *sp);

  public:
    ReferenceCounter(char *name) : _name(name) { rc = 0; } 
    char *name() { return _name; }
    virtual ~ReferenceCounter();
};

ReferenceCounter::~ReferenceCounter()
{
    cout << "Deleting " << _name <<
            " with " << rc << " references" << endl;
    rc = 0;
}

void ReferenceCounter::dtor(ReferenceCounter **sp, int)
{
    // can assume sp not null
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    decrement(*sp);
}

void ReferenceCounter::decrement(ReferenceCounter *sp)
{
    if (!sp)
        return;
    cout << "Decrementing count for " << sp->name() << " to " << sp->rc-1 << endl;
    if (! --sp->rc)
        delete sp;
}

void ReferenceCounter::increment(ReferenceCounter *sp)
{
    if (!sp)
        return;
    cout << "Incrementing count for " << sp->name() << " to " << sp->rc+1 << endl;
    ++sp->rc;
}

12.4 SmartPointer.C

#include <sys/stat.h>
#include <iostream.h>

#include "SmartPointer.h"
#include "ReferenceCounter.h"

CS_ExtensionDynamicLoadPoint
   SmartPointer::extension_load_point(
        SmartPointer::className(),
        SmartPointer::update,
        SmartPointer::isChanged,
        SmartPointer::processOptions,
        EXTENSION_PRIORITY,
        SmartPointer::incorporationStartup);

//--------- SmartPointer --------

// This method is called when incorporation begins. Is is hooked
// in through the initialization fo extension_load_point with the
// DLL is statically loaded.
void SmartPointer::incorporationStartup(
        CS_ExtensionDynamicLoadPointLink&, CS_IncorporationState& state)
{
    cout << __FUNCTION__ << endl;

    SmartPointerImplementationComponentFactory* fac =
        new SmartPointerImplementationComponentFactory(state);
    assume(fac);  // (our version of "assert")

    // Push our new factory with its new Transformer onto the chain
    // stored in the IncorporationState.
    //
    state.prependImplementationComponentFactory(*fac);

    return;
}

CS_DependencyNode::UpdateResult SmartPointer::
        update(CS_ExtensionSource* me, CS_IncorporationState& state,
               CS_bool emitMessages)
{
   return CS_DependencyNode::success;
}

CS_bool SmartPointer::isChanged(CS_ExtensionSource* me)
{
   return (me->timestampHasChanged());
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}

void SmartPointer::
        processOptions(CS_ExtensionSource* me, CS_OptionList& options)
{
}

const char* SmartPointer::className()
{
   return "SmartPointer";
}

//--------- SmartPointerImplementationComponentFactory --------

// This method is called from SmartPointer::incporporationStartup to
// register a new transformation phase
SmartPointerImplementationComponentFactory::
        SmartPointerImplementationComponentFactory(CS_IncorporationState& s) :
    _state(s),
    // The second argument to this constructor comes from pull on the
    // chain of components stored in the IncorporationState.
    //
    _transformer(new SmartPointerTransformer(_state,
                 _state.implementationComponentFactory().transformer()))
{
    assume(_transformer);
}

CS_Transformer& SmartPointerImplementationComponentFactory::
        transformer()
{
    assume(_transformer);
    return *_transformer;
}

SmartPointerImplementationComponentFactory::
        ~SmartPointerImplementationComponentFactory()
{
    delete _transformer;
}

//--------- SmartPointerTransformer --------

CS_bool SmartPointerTransformer::
        transform(CS_Statement*& stmt, CS_bool emitMessages)
{
    modifyStatement(*stmt);
    _parent.transform(stmt, emitMessages);
    return CS_true;
}

CS_bool SmartPointerTransformer::
        transform(CS_Initializer*& init, CS_VariableDeclaration& var, CS_bool emitMessages)
{
    init = &modifyInitializer(*init, &var.typeDescriptor(), &var);
    _parent.transform(init, var, emitMessages);
    return CS_true;
}

CS_Expression& SmartPointerTransformer::
        transform(CS_Expression& expr, CS_bool emitMessages)
{
    CS_Expression *expr2 = &modifyExpression(expr);
    return _parent.transform(*expr2, emitMessages);
}

CS_Expression& SmartPointerTransformer::
        modifyAssignExpression(CS_BinaryExpression& binary)
{
    if (! binary.expression1().typeDescriptor().isPointer())
        return binary;
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    SmartPointerTransformerImplementation *ti =
        transformerImplementation(*binary.expression1().typeDescriptor().next());

    return ti ? typeAnalyze(ti->modifyAssignExpression(binary)) : binary;
}

CS_Initializer& SmartPointerTransformer::
        modifyExpressionInitializer(CS_ExpressionInitializer& init,
                                    CS_TypeDescriptor* td,
                                    CS_VariableDeclaration* var)
{
    if (!td)
        return init;

    // need to handle both pointer and object initialization
    SmartPointerTransformerImplementation *ti =
        transformerImplementation(td->isPointer() ? *td->next() : *td);

    if (! ti)
        return init;

    return typeAnalyze(ti->modifyExpressionInitializer(init, td, var));
}

CS_Initializer& SmartPointerTransformer::
        modifyImplicitInitializer(CS_ImplicitInitializer& init,
                                  CS_TypeDescriptor* td,
                                  CS_VariableDeclaration* var)
{
    if (!td)
        return init;

    // need to handle both pointer and object initialization
    SmartPointerTransformerImplementation *ti =
        transformerImplementation(td->isPointer() ? *td->next() : *td);

    if (! ti)
        return init;

    return typeAnalyze(ti->modifyImplicitInitializer(init, td, var));
}

CS_Expression& SmartPointerTransformer::
        modifyDestructorStateChangeExpression(CS_DestructorStateChangeExpression& dsce)
{
    if (dsce.tableEntry() && dsce.tableEntry()->asDestructorStateTableEntry())
        cerr << " for: " << dsce.tableEntry()->
                asDestructorStateTableEntry()->variable().signature();
    if (dsce.tableEntry())
        cerr << ", tableEntry address: " << (void *)dsce.tableEntry();
    cerr << ", expression address: " << (void *)&dsce;
    cerr << endl;

    return SmartPointerTransformerImplementation::
        modifyDestructorStateChangeExpression(dsce);
}

// to call _parent transform.
CS_Expression& SmartPointerTransformer::typeAnalyze(CS_Expression& expr)
{
    CS_Expression *exprp = &expr;
    // perform type analysis on the expression
    CS_bool result = state().typeAnalyzer().analyze(exprp, 0, CS_false);
    assume(result);
    return *exprp;
}

CS_Initializer& SmartPointerTransformer::typeAnalyze(CS_Initializer& init)
{
    if (! init.asExpressionInitializer())
        return init;
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    CS_Expression &ei = init.asExpressionInitializer()->expression();
    CS_TokenLocation loc = ei.sourceLocation().sourceRegion()->tokenLocation();
    CS_Initializer& newInit =
        ef().createExpressionInitializer(loc, typeAnalyze(ei));
    // indicate var should be initialized, not set for statics as BE will handle
    newInit.setInitialization(CS_true);       
    return newInit;
}

SmartPointerTransformerImplementation *SmartPointerTransformer::
        transformerImplementation(CS_TypeDescriptor& td)
{
    if (! td.isNamedType() ||
            ! td.declaration().declarationKind() == CS_Declaration::IsClass)
        return NULL;
    CS_ClassDeclaration &decl = *td.declaration().asClassDeclaration();

    CS_ClassDeclaration *referenceCounter =
        ReferenceCounterTransformerImplementation(state(), *this).findClassDeclaration();
    if (referenceCounter &&
            CS_ANSI_Queries::isBaseClassOf(*referenceCounter, decl)) {
        cout << "got a pointer to class derived from "
             << referenceCounter->signature() << endl;
        if (! _referenceCounterTransformerImplementation) {
            _referenceCounterTransformerImplementation =
                new ReferenceCounterTransformerImplementation(state(), *this);
        }
        return _referenceCounterTransformerImplementation;
    }
    // insert code to look for other smart pointer class implementations here
    return NULL;
}

SmartPointerTransformer::~SmartPointerTransformer()
{
    delete _referenceCounterTransformerImplementation;
}

CS_DestructorStateTableEntry *SmartPointerTransformerImplementation::
    _currentDestructorStateTableEntry = 0;

CS_Expression& SmartPointerTransformerImplementation::
    modifyDestructorStateChangeExpression(
        CS_DestructorStateChangeExpression& dsce)
{
    // save most recent state table entry
    if (dsce.tableEntry() && dsce.tableEntry()->asDestructorStateTableEntry())
        _currentDestructorStateTableEntry = dsce.tableEntry()->asDestructorStateTableEntry();

    return dsce;
}

12.5 ReferenceCounter.C

#include "interface/LexicalBlockStatement.h"
#include "incorporator/StatementFactory.h"

#include "ReferenceCounter.h"
//
// change x = &a to x != 0 ? (x->rc-- == 0 ? delete x : 0) : 0,
//                  x = &a,
//                  x != 0 ? x->rc++ : 0
//
CS_Expression&
ReferenceCounterTransformerImplementation::modifyAssignExpression(
    CS_BinaryExpression &binary)
{
    // Don’t transform expressions on temporaries
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    CS_Expression &e = binary.expression1();
    if (e.expressionKind() == CS_Expression::IsName &&
            e.asNameExpression()->name().declaration() &&
            ! e.asNameExpression()->name().declaration()->mapsToASourceLocation()) {
        return binary;
    }

    CS_TokenLocation loc =
        binary.sourceLocation().sourceRegion()->tokenLocation();

    CS_Expression &expr =
        ef().createCommaExpression(loc,
            decrementReferenceCounterExpression(binary.expression1()),
            ef().createCommaExpression(loc,
                binary,
                incrementReferenceCounterExpression(binary.expression1())));
    return expr;
}

CS_Initializer& ReferenceCounterTransformerImplementation::
        modifyExpressionInitializer(CS_ExpressionInitializer& init,
                                    CS_TypeDescriptor* td, CS_VariableDeclaration* var)
{
    assume(var);

    CS_TokenLocation loc =
        init.expression().sourceLocation().sourceRegion()->tokenLocation();

    if (td->isPointer()) {
        CS_BinaryExpression *be = init.expression().asBinaryExpression();
        assume(be);
        // C *c1(x) will already be transformed to C *c1 = x;
        assume(be->binaryExpressionKind() == CS_BinaryExpression::opAssign);

        CS_Expression &expr1 = be->expression1();

        // change C *c1; c1 = x to
        //        C *c1; c1 = (c1=x, c1 != 0 ? c1->rc++: 0, c1)

        init.setExpression(
            ef().createAssignExpression(loc,
                expr1,
            ef().createCommaExpression(loc,
                ef().createAssignExpression(loc,
                    ic().cloneExpression(expr1),
                    transformer().modifyExpression(be->expression2())),
                ef().createCommaExpression(loc,
                    incrementReferenceCounterExpression(
                        expr1),
                    ef().createCommaExpression(loc,
                        createStateChangeExpression(expr1, *var),
                    ic().cloneExpression(expr1))))));
        return init;
    }

    // For non-dynamic variables, initialize reference count
    // to 1 so that never get collected.

    init.setExpression(
        ef().createCommaExpression(loc,
            transformer().modifyExpression(init.expression()),
            ef().createAssignExpression(loc,
                ef().createDotExpression(loc,
                    ef().createNameExpression(loc, *var),
                    referenceCountMember()),
                ef().createLiteralExpression(
                    cs(), loc, intType(), 1))));
    return init;
}

CS_Initializer& ReferenceCounterTransformerImplementation::
        modifyImplicitInitializer(CS_ImplicitInitializer& init,
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                                  CS_TypeDescriptor* td, CS_VariableDeclaration* var)
{
    return init;
}

// when a pointer goes out of scope, decrement it’s reference count
CS_Expression &ReferenceCounterTransformerImplementation::
    createStateChangeExpression(CS_Expression &expr, CS_VariableDeclaration &var)
{
    CS_TokenLocation loc =
        expr.sourceLocation().sourceRegion()->tokenLocation();

    CS_DestructorStateTableEntry& ste =
        createDestructorStateTableEntry(var, expr);
    addDestructorCalls(var, ste, loc);
    currentDestructorStateTableEntry(&ste);

    CS_Expression &expr2 = transformer().typeAnalyze(expr);

    CS_DestructorStateChangeExpression &sce =
        ef().createDestructorStateChangeExpression(loc,
            CS_DestructorStateChangeExpression::IsConstruction,
            &ste,
            &expr2);
    sce.setTypeDescriptor(var.typeDescriptor());
    ste.setConstruction(sce);
    return sce;
}

CS_FunctionDeclaration&
ReferenceCounterTransformerImplementation::findOrCreateMemberFunction(char *func)
{
    const CS_Atom &name =
        codeStore().atomStore().findOrCreate(func);
    CS_Declaration *dec =
        findClassDeclaration()->memberDeclarationStore().findFirstDeclaration(name);
    assume(dec);
    assume(dec->asFunctionDeclaration());
    return *(dec->asFunctionDeclaration());
}

CS_FunctionDeclaration& ReferenceCounterTransformerImplementation::findOrCreateDtor()
{
    return findOrCreateMemberFunction("dtor");
}

CS_FunctionDeclaration& ReferenceCounterTransformerImplementation::findOrCreateDecrement()
{
    return findOrCreateMemberFunction("decrement");
}

CS_FunctionDeclaration& ReferenceCounterTransformerImplementation::findOrCreateIncrement()
{
    return findOrCreateMemberFunction("increment");
}

CS_DestructorStateTableEntry &ReferenceCounterTransformerImplementation::
    createDestructorStateTableEntry(CS_VariableDeclaration &var, CS_TreeNode& n)
{
    CS_FunctionDeclaration& dtor = findOrCreateDtor();
    CS_DestructorStateTableEntry& ste =
        ef().createDestructorStateTableEntry(
            CS_DestructorStateTableEntry::IsLocalVariable,
            // next state table entry
            currentDestructorStateTableEntry() ?
                currentDestructorStateTableEntry() : NULL,
            var,
            NULL, // class type
            1,        // number of elements
            0,  // offset
            dtor);
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    assume(outermostLexicalBlockStatement(n));

    CS_LexicalBlockStatement &block = *outermostLexicalBlockStatement(n);

    block.insertStateTableEntryAfter(ste, currentDestructorStateTableEntry());

    return ste;
}

void ReferenceCounterTransformerImplementation::
    addDestructorCalls(CS_VariableDeclaration &var, CS_DestructorStateTableEntry &dste,
CS_TokenLocation &loc)
{
    // For each state table entry, an ealier phase will already have figured
    // out where destructor calls (ie at return/break/goto) are required.
    // Need to insert a destructor expression for each
    // point at which the previous state table entry required
    // a destructor. This handles the timing of destructors so that
    // our destructor gets called in the correct relative order
    // If the variable for the previous state change expression is not
    // in the same lexical block, then do nothing, as no timing concerns.
    // Instead must add info to return/break/goto statements as encounter
    // them (using modifyxxx).

    if (! dste.next())
        return;

    // find the first compiler-generated DestructorStateTableEntry - it will have
    // the destructor calls that we want to append to
    for (CS_StateTableEntry *nextSte = dste.next(); nextSte; nextSte=nextSte->next()) {
        if (! nextSte->asDestructorStateTableEntry())
            continue;
        if (nextSte->asDestructorStateTableEntry()->destructorCalls().size() > 0)
            break;
    }

    if (! nextSte)
        return;
    CS_DestructorStateTableEntry &nextCompilerDtse = *nextSte->asDestructorStateTableEntry();

    // make sure the DTSE we found is in the same scope
    if (dste.variable().enclosingDeclarationStore() !=
                nextCompilerDtse.variable().enclosingDeclarationStore())
        return;

    CS_List<CS_DestructorStateChangeExpression>& dsceList =
        nextCompilerDtse.destructorCalls();

    CS_ListIterator<CS_DestructorStateChangeExpression> iter(dsceList);
    for (CS_DestructorStateChangeExpression *dsce = iter.first();
            dsce; dsce = iter.next()) {
        CS_TreeNode* parent = dsce->parent();
        assume(parent);

        CS_FunctionCallExpression &dtorCall =
            ef().createFunctionCallExpression(loc,
                ef().createNameExpression(loc, findOrCreateDecrement()));
        dtorCall.appendArgument(
            ef().createExpressionInList(
                ef().createNameExpression(loc, var)));
        CS_Expression &dtorCall2 =
            transformer().typeAnalyze(dtorCall);
        dtorCall.setTypeDescriptor(var.typeDescriptor());

        CS_DestructorStateChangeExpression &sce =
                ef().createDestructorStateChangeExpression(loc,
                    CS_DestructorStateChangeExpression::IsDestruction,
                    &dste,
                    &dtorCall);
        sce.setTypeDescriptor(voidType());
        CS_Expression &expr = ef().createCommaExpression(loc, *dsce, sce);
        expr.setTypeDescriptor(dsce->typeDescriptor());
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        replaceExpression(*parent, expr, *dsce);
    }
}

CS_Expression&
ReferenceCounterTransformerImplementation::decrementReferenceCounterExpression(
    CS_Expression &expr)
{
    CS_TokenLocation loc =
        expr.sourceLocation().sourceRegion()->tokenLocation();

    CS_FunctionCallExpression &decCall =
        ef().createFunctionCallExpression(loc,
            ef().createNameExpression(loc, findOrCreateDecrement()));
    decCall.appendArgument(
        ef().createExpressionInList(
            ic().cloneExpression(expr)));
    return decCall;
}

CS_Expression&
ReferenceCounterTransformerImplementation::incrementReferenceCounterExpression(
    CS_Expression &expr)
{
    CS_TokenLocation loc =
        expr.sourceLocation().sourceRegion()->tokenLocation();

    CS_FunctionCallExpression &incCall =
        ef().createFunctionCallExpression(loc,
            ef().createNameExpression(loc, findOrCreateIncrement()));
    incCall.appendArgument(
        ef().createExpressionInList(
            ic().cloneExpression(expr)));
    return incCall;
}

const CS_Atom &ReferenceCounterTransformerImplementation::referenceCountMember()
{
    return cs().atomStore().findOrCreate("rc");
}

CS_ClassDeclaration* ReferenceCounterTransformerImplementation::
    findClassDeclaration()
{
    const CS_Atom &name =
        codeStore().atomStore().findOrCreate("ReferenceCounter");
    CS_Declaration *decl =
        codeStore().globalDeclarationStore().findFirstDeclaration(name);
    if (! decl)
        return NULL;
    return decl->asClassDeclaration();
}


