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Abstract

A network is delay-dense if, of each pair of adjacent components in
the network, at least one is a delay. In this paper, we prove that a delay-
dense asynchronous network is delay-insensitive if and only if its behav-
ior is semi-modular. We consider autonomous networks, i.e., networks
without external inputs, whose components can be any sequential ma-
chines of the Moore type. A formal model for this type of networks and
their behaviors is established. We define delay-insensitivity of networks
using the notion of bisimulation. The definition of semi-modularity is
generalized to reflect non-determinism in network behaviors.

Keywords: asynchronous, bisimulation, delay-dense, delay-insensitive, delay ex-
tension, isochronic, module, network, semi-modular, speed-independent

1 Introduction

Although much of today’s digital design is based on a synchronous approach, there
has been a considerable interest in asynchronous circuits [2], more so during the past
decade. In contrast to a synchronous circuit, whose operation is under the control
of a global clock signal, an asynchronous circuit uses local handshaking between
its components. Potential advantages in using asynchronous circuits include lower
energy consumption, higher speed, and avoidance of clock distribution problems [2].

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant No. OGP0000871.



Among asynchronous designs, the class of so-called delay-insensitive networks
is receiving special attention. Roughly speaking, a network is delay-insensitive if
it continues to operate correctly, even if the delays in its components and wires
change arbitrarily. When such networks are designed in a modular fashion, it is
possible to replace their components by faster or slower ones, without changing the
correctness of the network operation, although, performance may be affected.

C. E. Molnar et al. introduced the “foam-rubber wrapper” postulate [6] to de-
scribe delay-insensitive specifications of network modules. A module is viewed as
being surrounded by a “foam-rubber wrapper.” The inner surface of the wrapper
corresponds to the module interface, whereas the outer surface defines the environ-
ment interface. The foam-rubber analogy suggests that the distance between the
inner and outer surfaces along one wire may be different from that along a differ-
ent wire, representing different (and possibly time-varying) delays. Following this
informal idea, J. T. Udding [9] gave the first formal definition of delay-insensitivity
of network modules, based on trace theory.

Semi-modularity of circuit behaviors was studied by Muller in his theory of
“speed-independent” circuits [4]. Roughly speaking, semi-modularity requires that
no state transition can change the implied value of any unchanged state variable
which is unstable. Muller considered autonomous circuits. He assumed that compo-
nents could have arbitrary delays, but that wire delays were negligible. Intuitively,
a circuit is speed-independent if it operates correctly independently of the speeds
of its components. Muller’s formal definition of speed-independence concerns the
terminal classes (or outcome [2]) of so-called allowed state sequences for the cir-
cuit. Muller showed that circuits exhibiting semi-modular behaviors form a proper
subclass of speed-independent circuits. For a recent survey of various definitions of
delay-insensitivity, speed-independence, and related concepts, see [1].

In this paper, we consider autonomous networks whose components can be any
sequential machines of the Moore type [7]. A formal model for this type of net-
works and their behaviors is established. An asynchronous circuit is characterized
by a so-called delay-dense network. A network is delay-dense if, of each pair of
adjacent network components, at least one is a delay. We define delay-insensitivity
of networks using the notion of bisimulation [5]. A network N is delay-insensitive
if the behavior of any network N derived from N by the addition of delays is
bisimilar to the behavior of N. A similar approach has been used by N. Shintel
and M. Yoeli [8]. We generalize the definition of semi-modularity to reflect non-
determinism in network behaviors, so that we can model arbitration devices. We
prove that a delay-dense network is delay-insensitive if and only if its behavior is
semi-modular.

The paper is structured as follows. In Sections 2 and 3, we present our model
for modules, networks, and network behaviors. Sections 4 and 5 concentrate on
the definitions of delay-insensitivity of networks and semi-modularity of network
behaviors. In Section 6, we give the proof of our main result. Section 7 concludes
the paper; in particular, we relate our result to Muller’s theory of speed-independent
circuits.



2 Modules

We now introduce our model of asynchronous component, which we call “module.”
To hide the details of the internal design of a module, we represent it only by
an abstract internal state. This also helps to keep the model simple. We do not
introduce any delays in the input and output wires of the module for several reasons.
First, wire delays are frequently ignored in modules designed on a small area of a
chip (“equipotential region”) [3]. Second, we want to have the ability to model
isochronic forks and similar components, since they are used in many practical
designs. And finally, if we do wish to have modules with input and output delays,
we can model them within a network, which is defined in the next section.

Definition 2.1 A module is a pair M = (G', C*), where
o G'= <Vi, 5i> is a directed graph, the module graph, where
. V"’ = X' U {3} U 2" is the set of module vertices, where X, {y'}, and
2Z* are pairwise disjoint sets, and

o X' ={zi,...,xl .}, m > 1, is the set of module input vertices;
o ' is the module internal state vertex;

o Zi = {z,..., z;;,»}, p' > 1, is the set of module output vertices;
o & = (é\f’i x {y'Hu ({y'} x Zi) is the set of module edges;
o C'= (8, X'y, 2', 6", XV is a sequential machine, where

e S'is a finite set of module internal states;
e X' is the set of module input variables; also, zi = (zt,. ,a::nl) is the
m'-tuple of module input variables;

y* is the module internal state variable;
e Z' is the set of module output variables; also, z' = (z8,...,2

;) is the
P

p'-tuple of module output variables;

e §% is the module excitation function, 5t : {0, 1}mi x 8§ — 2$i, and for
any a € {0,1}™ and b € 8, §%(a,b) # 0 and either §%(a,b) = {b} or
b ¢ & (a,b);

o XN = (X,.. .,/\;i) is the module output function, X' : &' — {0, 1}pi. O

An input state of the module is a tuple a € {0,1}™, an internal state of
the module is an element b € 8, and a total state is an ordered pair (a,b) €
{0,1}™ x &'. Let t = (a,b) be a total state. The set T = §'(t) C 8" is the
excitation state set, or simply, the ezcitation of the module in state ¢t. If T = {b},
then the total state ¢+ and the module are said to be stable, and the internal state



cannot change. If T' # {b}, then the total state and the module are unstable and
the internal state may change to any state b’ € T' at any time. The state b’ is non-
deterministically selected by the module. If the cardinality of T is always 1, the
module is said to be deterministic. In that case, we view d% as a function from the
set of total states to S'. The output state of the module, which is a binary p'-tuple,
is determined solely by the present internal state. If the internal state changes, and
the output state computed by the output function differs from the output state
before the change, the new output value appears instantaneously together with the
internal state change.

Definition 2.1 permits us to treat any sequential machine of the Moore type [7]
as a module. In particular, delays (or wires with delays), forks, logic gates, latches,
counters, C-elements, and arbiters are included. Note that in this model, forks are
isochronic, meaning that all the output branches change at exactly the same time,
simultaneously with internal state change. Anisochronic forks can be modelled
within a network.

Now let us consider some examples of modules. If only one module is being
discussed, we often drop the superscript 2, for convenience. The modules of the
first six examples are deterministic.

Example 2.1 A delay is a module M? = (G4, C?), with C? = ({0, 1}, {z4}, v,
{28}, 84, A9), and §¢ and A? defined as in Table 2.1. For future applications, we
often use the superscript d to identify a delay module.

Table 2.1: Functions of a delay Table 2.2: Functions of a fork
z z
y |0 1 | My y [0 1]y
010 1 0o(o0 1 00
110 1 1 110 1 11
54z, y) d(z,y)

Example 2.2 An (isochronic) fork has § = {0,1}, m = 1, p = 2, and ¢ and A
defined as in Table 2.2.

Example 2.3 A three-input majority element has $ = {0,1}, m = 3, and p = 1.

Table 2.3: Functions of a three-input majority element

T

000 001 010 011 100 101 110 111 | A(y)
0
1

ol

0 0 0 1 0 1
170 0 0 1 0 1 1 1

5(z,y)




Example 2.4 A set-dominant set-reset latch has & = {0,1}, m =2, and p = 2.

Table 2.4: Functions of a set-dominant set-reset latch

T
y |00 01 10 11| A(y)
00 0 1 1] ot
1)1 0 1 1] 10

d(z,v)
Example 2.5 A modulo-4 counter has § = {0,1,2,3}, m = 1, and p = 2.

Table 2.5: Functions of a modulo-4 counter

T
y |0 1 Ay
0[0 1 [ 00
112 1| 01
212 3| 10
30 3| 11
(z,y)

Example 2.6 A Muller C-element has § = {0,1}, m =2, and p= 1.

Table 2.6: Functions of a Muller C-element

T
y |00 01 10 11| A(y)
0[]0 0 0 1] 0
1o 1 1 1|1
(z,y)

Example 2.7 An arbiter has § = {0,1,2}, m =2, and p = 2.

Table 2.7: Functions of an arbiter

y| 00 01 10 11 Aly)

0 {0} {2+ {1} {12} | 00

1 {o} {o} {1} {1} | 10

2 {0} {2t {op {2} | 01
d(z,y)

Arbiters are non-deterministic; when both inputs are 1 and the module is in state
0, the next state is chosen between 1 and 2 arbitrarily.



Definition 2.2 A module M, as in Definition 2.1, is said to be one-step if, for
alla € {0,1}™ and b € S*, whenever b’ € §¢(a, b), then §i(a,b’) = {b'}.

All the modules we have seen so far are one-step. Here is an example of a
module M? which is not one-step. Its functions are defined as in Table 2.8. When
the input is fixed at 1, the state of M? will eventually oscillate between 1 and 2.

Table 2.8: Functions of M

0 ’ 1
2 (L7
0 1)
2

5(z,y)

N = O
>~
»—noo@
——

3 Networks

We now introduce our circuit model, which we call “network.” Networks are com-
posed of modules. Also, following Muller’s approach, we consider only autonomous
networks.

Definition 3.1 A network is a pair N = (M, G), where
o M ={M' ..., M"}, n>1,is a set of modules, where M’ is as defined in
Definition 2.1 for 1 <17 < n;

e G=(V,¢&)is a connected directed graph, the network graph, where

o V= U?:l V! is the set of network vertices;

e £D UL, &' is the set of network edges, such that

EC (LnJZi X O;\,’”)UOE",
i=1 i=1 i=1

and
1. for each module input vertex :B{ € V, there exists exactly one
module output vertex zj € V such that (z},z]) € &;
2. for each module output vertex z,’€ € V, there exists exactly one
module input vertex z; € V such that (z},z]) € €. O

We denote the set of network edges that are not internal module edges by K,
and refer to these edges as connections. The set of state variables of the network NV
is Y ={y',...,y"}. The set of states of Nis § =8 x...x 8". If s € 8, the i-th



component of s is denoted by s;. In general, we adopt the convention that specific
components of a tuple are indexed using subscripts.

Definition 3.2 Let 4' € Y. The network excitation function A; : S — 28" of Y,
is the module excitation function §* of M* with arguments changed as follows: If
(2], z}) is a connection, then the I-th input argument of §% is AR (y").

That is, the output function A® performs an instantaneous encoding of the state of
module M? and provides the k-th bit of the encoded value as an input to module
M. Since A depends solely on ¥, the excitation function A; becomes a function
of yP.

Definition 3.3 Fory' € Y and s € S, the excitation of y' in state s, denoted by
Si, iS S, = A,(S)

Definition 3.4 A state s is stable if S; = {s;} for all 4; otherwise, s is unstable.

We denote the set of unstable state variables in state s by

Us) ={y' €Y | Si # {si}}.

We now define the behavior of a network. Like most authors, for simplicity,
we assume that only one signal changes at a time. This is essentially the general

single-winner (GSW) model [2].

Definition 3.5 The GSW relation over the set of states of a network N is a
binary relation R, such that (s,%) € R, or sRt, if and only if s differs from ¢ in
exactly one component 4, s; # t;, y* € U(s), and t; € S;.

Definition 3.6 A (GSW) behavior of a network N is an initialized directed graph
B = {q,Q,R), where

e g € & is the initial state;

o Q. specifying the vertices of B, is the set of states reachable from ¢ via the
GSW relation R,
Q={seS|qR"sh

o R, specifying the edges of B, is the GSW relation of Definition 3.5 restricted
to Q.

If (s,t) € R, we attach to edge (s,t) a tag 7(s,t) € Y, which denotes the state
variable in which s and ¢ differ. O

Definition 3.2 reflects a functional dependency among state variables (or corre-
sponding modules). This is captured by the “feed” relation, defined as follows:



Definition 3.7 A module M is said to feed a module M7, denoted by (M*, M7) €
F,or M'FM/, if there exist z, € 2' and z] € X’ such that (z},z]) € K.

The relation F can also be viewed as being defined over the set of state variables.
That is, (y',3’) € F if and only if (M, M7) € F.

Proposition 3.1 Let (s,) € R and 7(s,t) = y'. If Sj # Tj for some j # 1, then
(v'.y') e F.
Proof: Since j # 4, we have s; = ;. Thus, if §; # Tj, the value of some input

argument of A; must have changed along with the state transition. As the only
state variable changed is ', by Definitions 3.2 and 3.7, (', 4’) € F. O

A behavior B = (q, Q,R) of a network N can be viewed as a non-deterministic
finite automaton B = (Y, Q, ¢, p, Q), where

e Y is the input alphabet;
e Q is the state set;
e ¢ is the initial state;
e p is the state transition function, p: @ x Y — 2Q, such that
p(s,y') = {t € Q| sRt and 7(s,t) = y'}
for s € Q and ¥ € Y;
e Q is the set of accepting states.

We extend the state transition function p to p* : @ x Y* — ZQ, which can be
defined inductively as follows. For s € Q, y* € Y, and w € Y*,

o p(s,€) = {sh
o p*(s,wy’) ={t € Q|t € p(s,y') for some s’ € p*(s,w)}.

We often represent the state set p*(s,w) by the short-hand form sw. The
language L(B) accepted by B is defined in the usual way,

L(B) ={w e Y | p*(q,w) # 0}.
It is worth noting that L(B) is always prefix-closed.

Example 3.1 Figure 3.1 shows a network N composed of a C-element, an inverter,
and a fork. The set of state variables is Y = {3, y%,¥*}. The behavior of N with
initial state (0, 0, 0) is shown in Figure 3.2'. We see that this behavior is sequential.

!From now on, when showing particular state tuples, we omit parentheses and commas,
for brevity; also, unstable state components are in boldface.



Figure 3.1: Network N.
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Figure 3.2: A behavior of network N.
Example 3.2 Figure 3.3 shows a network N’ composed of a two-output C-element

and two inverters. The behavior of N’ with initial state 000 is shown in Figure 3.4.
Note the existence of races in the behavior.
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Figure 3.3: Network N'.

/010\ /101\

1

0117 =~ 100—
\ ) \ /

( 001/ 110

1

y

Figure 3.4: A behavior of network N'.



4 Delay-insensitivity of networks

In this section, we first model asynchronous circuits using networks. An asyn-
chronous circuit is characterized by a so-called delay-dense network. Then we de-
scribe how we model all possible delay distributions in an asynchronous circuit.
Finally, we give a formal definition for delay-insensitivity of networks.

4.1 Delay-dense networks

An asynchronous circuit consists of a set of components interconnected by wires,
where each component can be modelled by a module. The distinction between
the current state and the current excitation of a module allows us to associate a
delay with the module. To model wire delays, we treat wires as delay modules.
Intuitively, an asynchronous circuit is delay-insensitive if the correctness of its op-
eration is independent of the delays in its components and in the wires connecting
the components. We only assume that the delays are finite, but arbitrary. As both
component and wire delays are to be taken into account, any asynchronous circuit
can be modelled precisely by a delay-dense network, defined as follows:

Definition 4.1 A network N, as in Definition 3.1, is delay-dense if, whenever
(M, M7) € F, then either M* or M7 is a delay module.

For example, the networks of Examples 3.1 and 3.2 are not delay-dense. They
become delay-dense if we “insert” a delay in each of the network connections.

Proposition 4.1 If N is delay-dense and (M', M*) € F for some M', then N
consists of a single delay module.

Proof: If N is delay-dense and (Mi, M) € F, then M’ must be a delay and
(2, 2}) € K. Thus, the vertices of M' cannot be connected with vertices of other
modules. Since the network graph is connected, N consists of a single delay module,
namely, M?. O

4.2 Delay extensions

To determine whether a network is delay-insensitive, we wish to examine how the
distribution of delays in the modules affects the behavior of the network. The
motivation behind our approach to this problem is Charles Molnar’s “foam-rubber
wrapper” principle [6], where a module is viewed as being surrounded by a flexible
boundary to reflect the fact that communication between its terminals and its en-
vironment takes place through a medium involving unknown delays. This intuitive
idea corresponds to surrounding each module in a network by delays. However,
instead of “wrapping” all the modules by delays at once, we choose to proceed
inductively using the notion of delay extension. This facilitates the mathematical
treatment of the problem.

10



Definition 4.2 Let N be a network. A delay successor of N is a network ]\7 =
(M, G) obtained from N by inserting a delay M"*! in a connection e = (2, z]) of
N, where

o M=MuU{M*t1};
o G= (1},3% where

e V=yuyrts
o E=(E—{ehUE T U{(2, 27T, (27T, 2]) ).

Definition 4.3 The set D(N) of delay extensions of a network N is defined in-
ductively, as follows,

¢ NcD(N);
e if N € D(N), then each delay successor of N is also in D(N).

As a convention, we denote a delay extension of a network N by N. Further-
more, all the components of N, any object associated with N, e.g., a behavior, and
the components of that object are all marked by ~

In order to compare the behavior of a network N with the behavior of a delay
extension of N, it is essential that we relate the corresponding states and state
transition sequences in the two behaviors.

Definition 4.4 Let N € D(N). The projection of a state § of N with respect
to N is the |Y|-tuple s = § | Y obtained from § by removing all components
corresponding to variables not in Y. The projection of a word & € j/* with respect
to N is the word w = @ | Y obtained from w by erasing all the symbols not in Y.

Definition 4.5 Let Ne D(AN and let s be a state of N. An eztension of s with
respect to N is a state § of N for which 3 J Y = s. Let § be an extension of s; if
U(8) C Y, in other words, if all the inserted delays are stable in §, then we say that
§ is the stable-delay extension of s.

We now prove two useful propositions concerning state extensions. In the fol-
lowing, N € D(N), and s and § are states of N and N, respectively. We call a
module of N which is also present in N an original module.

Proposition 4.2 If § is the stable-delay extension of s, then S; = S; for all ¢
such that M is an original module.

Proof: By Definition 3.3, it suffices to prove that in state s, the value of each
argument of A; agrees with that of the corresponding argument of A; in state 3.
Since s; = §;, we only need to worry about the input arguments. Let the k-th
input argument of A; be /\f‘(é‘h). If M" is original, then we are done. Otherwise,
M" is an inserted delay. Then there exists a “chain” of inserted delays of which

11



MP" is the tail, and some original module M9 feeds the head of the chain. As 3 is
the stable-delay extension of s, all the delays in the chain are stable in §. Thus,
/\?(§g) = 8p, where we assume that the j-th output of M9 feeds the head of the
delay chain. Furthermore, A (3) = 3, = )\?(§g). On the other hand, it is clear that
(M9, M) € F and the value of the k-th input argument of A; is /\?(sg) = )\?(é‘g),
same as that of Al We are done. 1

Corollary 4.2.1 If § is the stable-delay extension of s, then U(8) = U(s).

Proposition 4.3 Let § be an extension of s. Then there exists O € (j) —Y)* such
that 8 = {8'}, where § is the stable-delay extension of s.

Proof: Let us assign “levels” to the inserted delays in N inductively as follows:
a) A delay is of level 1 if it is fed by an original module; b) a delay is of level k + 1
if it is fed by a delay of level k. Clearly, there are no cycles of inserted delays in N.
Also, every delay has a unique input and output. Therefore, each inserted delay
is assigned a unique level. Starting in state §, we change inserted delays which
are unstable in such a way that at each step, we always choose one which has the
least level. We stop when all the inserted delays are stabilized. One easily verifies
that the process will terminate when the stable-delay extension §' of s is reached.
Moreover, since delays are deterministic, 8 is the only state reachable. O

4.3 Formal definition of network delay-insensitivity

The delay extensions of a network give a description of all possible delay distri-
butions within the network. For a network to be delay-insensitive, the behavior
of any delay extension of the network should satisfy a certain correctness concern
with respect to the behavior of the original network. We define this correctness
concern to correspond to weak bisimulation [5] (or observation equivalence), one of
the strongest forms of behavioral equivalence. Transitions occurring on the inserted
delays are treated as non-observable “internal” actions; in fact, they can be viewed
simply as a passing of time.

We will give a formal definition of network delay-insensitivity shortly. But
first, in order to compare the behavior of a network with the behavior of a delay
extension of the network, we have to choose an initial state for the latter behavior.
It only makes sense to choose an initial state which “imitates” the initial state of
the behavior of the original network.

Definition 4.6 Let N € D(N), and let B = (g, Q,R) be a behavior of N. A
behavior B = (§, Q,R) of N is said to be initial-state compatible with B if § is the
stable-delay extension of q.

We now define delay-insensitivity of networks formally. Note that in addition
to observation equivalence, we require livelock-freedom.

12



Definition 4.7 Let N € D(N). Let B = (g, Q,R) be a behavior of N, and let
B= (4, Q 'R,) be the behavior of N which is initial-state compatible with B.

e The behavior B is said to be safe with respect to B if, whenever § € Q is an
extension of s € Q, then for all £ € Qand b€ ji*, fitespandd | Y =1
for some ' € Y, then there exists t € Q such that ¢t € sy and t is the
projection of ¢ with respect to N.

e The behavior B is said to be faithful with respect to B if, wheneve seQ

is an extension of s € Q, then for all ¢ € sy’, there exist W € J/ and f € Q
such that £ € 8, ¥ | Y = ¢, and { is an extension of ¢ with respect to N.

e The behavior B is said to be livelock-free with respect to B if, for all § € Q
and W e (Y —-Y)*, 5 ¢ 50

Definition 4.8 A network N is delay-insensitive with respect to a state q if, for
any delay extension N of N, B is safe, faithful, and livelock-free with respect to B,
where B = (g, @, R) is the behavior of N originating from ¢, and B is the behavior
of N which is initial-state compatible with B.

We now show that faithfulness and livelock-freedom are redundant properties,
since they are satisfied by all delay extensions. Consequently, only safety is required.

Proposition 4.4 The behavior B of Definition 4.8 is always livelock-free with
respect to B.

Proof: Suppose that there exist § € Q and @ € (j’ — Y)T such that § € 5. Let
' be an inserted delay which appears in 1. Clearly, ¥ must appear at least twice
in 1. Thus, the (unique) state variable y" that feeds y' must have changed and
appears in . It follows that %" is an inserted delay. Applying the same argument
(this time, on y", to start with) repeatedly will lead to a contradiction since there
are no cycles of inserted delays in N. We are done. O

Proposition 4.5 The behavior B of Definition 4.8 is always faithful with respect
to B.

Proof: Let § € Q be an extension of s € Q, and let t € sy'. By Proposition 4.3,
there exists 1 € ()—Y)* such that 8 = {8'}, where § is the stable delay extension
of s. By Proposition 4.2, S; = S’ Therefore, there exists t € §'y* such that i is an
extension of ¢ with respect to N. Thus, we have £ € §'y' C swy wy' | Y =,
and # is an extension of ¢ with respect to N. By Definition 4.7, B is faithful with
respect to B. O

In view of Proposition 4.4 and 4.5, we have the following:

Theorem 4.1 A network N is delay-insensitive with respect to a state q if, for
any delay extension N of N, B is safe with respect to B, where B and B are as
defined in Definition 4.8.
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Example 4.1 Consider part of a network N shown in Figure 4.1(a) (for brevity,
we hide the internal structures of modules), where two delays are connected to an
arbiter (as defined in Example 2.7). Figure 4.1(c) shows the corresponding part
of a delay successor N of N, where the inserted delay is shaded. Let the current
values and excitations of the modules be as shown, where excitations are shown in

brackets.

1,{0} 0.{1,2 0,{0} 0,{2
S Arbiter | 4‘5-: Arbiter |
1{1 1,{1}
State: s State: t
@ (b)
1{0 1{y O{12% 0,{00 1,{0p 0{L2
45'—% Arbiter : ﬂ Arbiter :
?1} {1
State: § State: f
(© (d)

Figure 4.1: Example of safety violation.

Each figure represents a network state: State ¢ of N, as shown in Figure 4.1(b),
results from state s (Figure 4.1(a)) by a delay change; state £ of N (Figure 4.1(d))
results from state § (Figure 4.1(c)) by the same delay change; also, § is the stable-
delay extension of s. We assume that the states of network modules not shown are
the same in all four states.

Clearly, © is an extension of ¢. In state 7, the arbiter may change to state 1 or 2,
whereas in state ¢, the arbiter can only change to 2. This demonstrates a violation
of safety. Therefore, N is not delay-insensitive with respect to state s. O

5 Semi-modularity of network behaviors

Semi-modularity was initially defined in [4] for deterministic circuit behaviors. We
generalize the definition of semi-modularity to permit non-determinism, so that we
can include arbiters.

Definition 5.1 Let B = (g, Q,R) be a behavior of a network N. A state s € Q
is said to be semi-modular if, for all ¢t € Q, if (s,t) € R with 7(s,t) = ', then
S; C Ty for all j # i such that 3/ € U(s).
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Definition 5.2 A behavior B = (g, @,R) of a network N is semi-modular if, for
all s € Q, s is semi-modular.

Intuitively, semi-modularity requires that once a state variable 3 becomes un-
stable and b is in its excitation, b should remain in the excitation until y* changes.

Example 5.1 For a violation of semi-modularity, refer to Figure 4.1(a) and (b).
The delay change involved alters the excitation of the arbiter and violates semi-
modularity.

Example 5.2 Figure 5.1 shows a network N consisting of an arbiter, a C-clement,
and two delays. A C-element functions like a Muller C-element with an inverted
output.

v V2 v
i Two-output L
Arbiter C-dement
vt

Figure 5.1 Network N.

Figure 5.2 shows a semi-modular behavior of N. This example illustrates that
the set inclusion in Definition 5.1 can be proper. For example, in state 0010, the
arbiter can change to state 1 only; in a subsequent state 0011, resulting from a
change on a delay, the arbiter can change to either 1 or 2.

2001

1010
0010% }‘1011
%01ooﬁoooo/ \VA\‘0011/
& 0001 y 2011
2001y

Figure 5.2 A semi-modular behavior of N.

Proposition 5.1 A behavior B = (q, @, R) is semi-modular if and only if, when-
ever 5,t € Q, t € sw for some w € Y*, y* €U(s), and S; € T, then y* appears in
w.

Proof: We prove the “if” part by contradiction. Assume that B is not semi-
modular. Then there exists (s,t) € R with 7(s,t) = 3’ such that S; € T; for some
i # j with y* € U(s). Let w = ¢. Then we have t € sw, S; € T;, but y* does
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not appear in w. Now assume that B is semi-modular. Let s,t € @ be such that
t € sw for some w € Y* and S; ¢ T;. Clearly, w # €. If ' does not appear in w,
then by semi-modularity and transitivity of set inclusions, we would have S; C T;,
which is a contradiction. Hence, the proposition is proved. |

6 Delay-insensitivity and semi-modularity

6.1 Semi-modularity is preserved under delay extensions

In this section, we prove that semi-modularity of behaviors of delay-dense networks
is preserved under delay extensions. This result is essential in the proof of the
main result of the paper, which is presented in the next section. The first theo-
rem concerns delay successors. The second theorem extends this result to delay
extensions.

Theorem 6.1 Let N be a network, and let B = (q, Q,R) be a semi-modular
behavior of N. Let N be a delay successor of N, where the extra delay M? is
inserted in a connection between two distinct modules. Without loss of generality,
assume that the connection is from M?* to M?. If M? is a delay, then B= (4, Q, 7A?,>,
the behavior ofN which is initial-state compatible with B, is also semi-modular.

Proof: By the construction of N, we have (y',v%) € F and (1, y9), (v?,4?) € F.
The result follows from a series of four lemmata. In the following, we assume that
B = {q, Q,R) is semi-modular. Also, let § € Q be any state of N. The state § is
said to be normal if § | Y € Q; in that case, we let s = § | ).

Lemma 6.1.1 Let § be normal. Ifi # d and i # 2, then S; = Si and U(3) —
{y,y*} CU(s).

Proof: Clearly, M’ is an original module. One easily verifies that the input con-
nections to M are identical in the two networks N and N. Thus, the value of each
argument of A; in s is equal to the value of the corresponding argument of A; in
5. Hence, S; = S;. The second result follows immediately. O

Lemma 6.1.2 If 5 is normal, but not semi-modular, then y? € U(5).

Proof: Let s =35 )Y € Q. Suppose that § is not semi-modular. Then there exists
f € Q such that

1. (3,1) € R with 7(3,%) = ¢';
2. there exists j # i such that 3/ € U(5) and ,§’j Z T]

By Proposition 3.1, (y%,47) € F. Also, ¢ € U(8), by definition. Assume that
yl ¢ U(3). Then, i #d and j # d. Since M? (a delay) has exactly one input, i # d,
and (y',9"), (v?,4%) € F, we must have j # 2.
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Since y? ¢ U(5), 3 is the stable- delay extension of s. Also, M and M7 are
original. By Proposition 4.2, S = S§; and S; = S;. Tt follows that there exists t € Q
such that sRt, 7(s,t) = v, and t =t ] Y. Thus, { is normal. Recall that j #+ d and
Jj # 2. By Lemma 6.1.1, T T;. On the other hand, 3/ EU( §) =U(s). Also, B is
semi-modular and j # 4. Therefore, S; C Tj. It follows that S =85;CT; = T —a
contradiction. Hence, if § is not semi- modular then y? € U(3 ) a

Lemma 6.1.3 If § is normal, but not semi-modular, then either y* € U(3) or
there exists t € Q such that (5,1) € R, 7(5,%) = y*, and Sq € Ty.

Proof: Let s =53] Y € Q. Suppose that § is not semi-modular. Let 4, 7, and £ be
as defined in the proof of Lemma 6.1.2. Again, we have (y',3’) € Fandy € U(3).
Assume that y* ¢ U(5). Then, i # 2 and J # 2. Since M? (a delay) has exactly
one output, j # 2, and (v, ), (y¢,9?) € F, we must have i #d.

Suppose that j # d. By Lemma 6.1.1, S = 5;. Slmllarly, Sl = §;. It follows
that there exists ¢ € Q such that sRt, T(S t) =4, andt =% | Y. Thus, fis
normal. By Lemma 6.1.1 again, T] = T;. On the other hand, by Lemma 6.1.1,
¥ € U(3) — {y?,v*} C U(s). Also, B is semi-modular and j # i. Therefore,
S; C T;. It follows that ,§j =85, CT; = ija contradiction. Hence, j = d. Since
(v, v7) € F, we must have i = 1. Thus, (3,1) € R, 7(5,%) = y*, and Sq Z Ty, as in
the lemma. O

Lemma 6.1.4 For all s € Q, 5 18 semi-modular and normal.

Proof: We proceed by induction. For the base case, let § = §. Clearly, § is normal
and y¢ ¢ U(5). By Lemma 6.1.2, § is semi-modular. Now, let (#,35) € R with
7(#,8) = y'. Assume that 7 is semi-modular and normal. We shall prove that 3 is
semi-modular and normal.

Let r=#]Y € Q. If y? ¢ U(#), then i # d and Ri = R;. Tt follows that 3 | Y
€ Q. Now assume that y? € U(#). If y2 € U(#), then by changing y¢ in state 7, we
would have a violation of semi-modularity, contradicting the semi-modularity of 7.
Therefore, y* ¢ U(7) and i # 2. If i = d, then 3 | Y = # | Y € Q; otherwise, by
Lemma 6.1.1, we have R = R;, which implies that § | Y € Q. Hence, § is normal.

Suppose that § is not semi-modular. Let the output vertex of M?! which is
connected to M? be zt. Clearly, z; is connected to M? in N. By Lemma 6.1.2,
y? € U(3). Tt follows that i # d. By Lemma 6.1.3, there are two cases to consider.

o ¥y cU(3):
Note that y? is a delay. Since i # d, y?> € U(F). By a similar argument
given above, we have y? ¢ U(#). Thus, i = 1 and y* € U(#). On the other
hand, since y? ¢ U(#), # is the stable-delay extension of r. It follows that
yt,y? € U(?) = U(r) and there exists s € Q such that rRs, 7(r, s) = y', and
s =4] Y. Wehave Ry = Al(r1) = AL(f1) = Rq = #q and Sy = Al(s1) =
M(81) = S,. Since vyl € U(3), 54 # S;. But 74 = 34. Therefore, Ry # Sa,

which violates semi-modularity of B—a contradiction.
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e There exists { € Q such that (3,1) € R, 7(3,%) = y*, and Sy Z Ty
Since y? & U(3), 82 = 4. Also, 34 # AL(31), since y? € U(5). Let s = 5 |
Y € Q. Then, 53 # Aj(s1), which implies that y*> € U(s). On the other
hand, by Lemma 6.1.1, we have 51 = 8. Therefore, there exists ¢ € Q such
that sRt, 7(s,t) = y*, and ¢t = £ | . We have So = Al (s1) = AL(31) = Sa,
and similarly, T5 = Td. Since é'd Z Td, ie., .§d + Td, we have S3 # T, which
violates semi-modularity of B—a contradiction again.

Hence, § is semi-modular. The lemma, is proven by induction. O

By Lemma 6.1.4, § is semi-modular for all § € Q. Hence, B is semi-modular.

We are done. O

Theorem 6.2 Let N be a delay-dense network, and let N ¢ D(N).A Let B =
(g, Q,R) be a behavior of N, and let B = (§, Q,R) be the behavior of N which is

initial-state compatible with B. If B is semi-modular, then so is B.

Proof: We prove the theorem by induction on the number of inserted delays.
The base case, where N = N, is trivial. Now assume that B = (¢, Q,R) is semi-
modular. We insert a delay M? into a connection e of N. If e connects a module
to itself, then by Proposition 4.1, N consists of a single delay module; the result
holds trivially in that case. Thus we assume otherwise, i.e., that M? is inserted
between two distinct modules M? and M7. Denote the resulting delay successor
by N. Thus, (M', M%), (M? M7) € F. Let B = (4§, Q,R) be the behavior of N
which is initial-state compatible with B. We shall prove that B is semi-modular.
If M7 is a delay, then the result follows from Theorem 6.1; otherwise, since N
is delay-dense, M' must be a delay. Let (M", M%) € F. Clearly, M" is unique.
Imagine that in the network N, we change the index of M? to d, and call the new
network N. Obviously, B is a semi-modular behavior of N as well. Now N can be
viewed as being obtained from N by inserting M* in the connection between M"
and M, in which case the new delay feeds the delay M?. So the result we wish to
prove again follows from Theorem 6.1. The theorem is proven by induction. O

It is worth noting that Theorem 6.2 does not necessarily hold for networks
which are not delay-dense. For example, consider the network consisting of a two-
output inverter and an AND-gate, as shown in Figure 6.1(a). Let the initial state
be 00. The corresponding behavior is semi-modular, as shown in Figure 6.1(b).
With a delay y® inserted, as shown in Figure 6.1(a), the corresponding behavior
(Figure 6.1(c)) is no longer semi-modular; more specifically, the states 100 and 001
are not semi-modular.

6.2 Main theorem

In this section, the proof of the main theorem of the paper is presented. We first
prove that network delay-insensitivity implies semi-modularity, where delay-density

18



@ (b) ©
Figure 6.1: Theorem 6.2 fails to hold for networks which are not delay-dense.

of networks is not required. We then prove that semi-modularity implies delay-
insensitivity for delay-dense networks. As any asynchronous circuit can be modelled
precisely by a delay-dense network, we conclude that an asynchronous circuit is
delay-insensitive if and only if its behavior is semi-modular.

Theorem 6.3 If a network is delay-insensitive with respect to a state, then its
behavior originating from that state is semi-modular.

Proof: Let N be a network, which is delay-insensitive with respect to a state
q. Let B = {q, Q,R) be the corresponding behavior. Let N € D(N) be obtained
from N by inserting one delay in each connection of N. Let B = (4, Q,'IA?,> be the
behavior of N which is initial-state compatible with B. By Theorem 4.1, B is safe
with respect to B. Let us first prove a lemma, which will be used later.

Lemma 6.3.1 Let s € Q. There exists § € Q such that § is the stable-delay
extension of s.

Proof: We prove the result by induction. The base case, where s = ¢, is trivial.
Let s € Q and t € sy, for some y' € Y. Assume that there exists § € Q such
that § is the stable-delay extension of s. By Proposition 4.2, S =S;. Thus, there
exists ¥ € Q such that ¥ € $y' and © | Y = t. By Proposition 4.3, there exists
w € (¥ — Y)* such that fw = {{'}, where ¥ € Q is the stable-delay extension of .
Thus, the lemma is proven. O

Now suppose that B is not semi-modular. Then there exists (r,s) € R with
7(r, s) = ' such that R; ¢ S; for some j # i with 3/ € U(r). Let b € R; such that
b¢S;.

By Lemma 6.3.1, there exists 7 € Q such that # is the stable-delay extension
of r. By Proposition 4.2, R; = R; and R; = Rj. Thus, there exists § € Q such
that 3 € 74/ and § | ¥ = s. By our construction of the network N, (v',v) ¢ F.
By Proposition 3.1, we have ﬁj = S’j. Note that 3 € U(r) = U(#). It follows that
Y €U(3). Also,bE Rj = Rj = ,§'j. Thus, there exists £ € Q such that £ € 3/ and
t}- = b. Recall that § is an extension of s and B is safe with respect to B. Therefore,
there exists ¢ € Q such that ¢ € sy’ and ¢ =¢ | Y. Thus, {; = b, which implies that
b € S;—a contradiction. Hence, B must be semi-modular. We are done. O
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Theorem 6.4 If a behavior of a delay-dense network is semi-modular, then the
network is delay-insensitive with respect to the initial state of that behavior.

Proof: Let N be a delay-dense network. Let B = (g, Q, 'R> be a semi-modular
behavior of N. Let N € D(N), and let B be the behavior of N which is initial-state
compatible with B. We shall prove that B is safe with respect to B.

Let 5§ € Q be an extension of sc Q. Letfc Q and © € j)* be such that
t € b and w | Y = o for some y' € Y. Let ;i = b. Clearly, all we need to show
is that b € S;. Let us write ¥ as ¥ = 4y'4’, where 4,4 € (y Y)*. Denote the
state reached after 4 by &, § € 5d. Clearly, = Ll(§') and b € g{ Also, §' is an
extension of s. By Proposition 4.3, there exists 4 € (57 — Y)* such that §'9 = {§"},
where 8§ is the stable-delay extension of s. By Theorem 6.2, B is semi-modular.
Furthermore, by Proposition 5.1, we have §/ C §/, which implies that b € §. On
the other hand, by Proposition 4.2, we have S; = .SA’Z” Hence, b € S;. By definition,
B is safe with respect to B. Since N was chosen arbitrarily, by Theorem 4.1, we
conclude that N is delay-insensitive with respect to q. |

Note that Theorem 6.4 does not necessarily hold for networks which are not
delay-dense. For example, consider the network N consisting of a single module
M? (as defined in Table 2.8), as shown in Figure 6.2(a).

y? y? y?
T 0\ 00—>20—>21
1 1
Ml yll 1 yll 5 y y
y
) 2/y/1 10~—"——11

@ (b) (©

Figure 6.2: Theorem 6.4 fails to hold for networks which are not delay-dense.

Let the initial state be 0. The corresponding behavior B is semi-modular, as
shown in Figure 6.2(b). Now let us insert a delay %, as shown in Figure 6. 2( ).
The corresponding behavior B of the resulting delay extension N is given in Fig-
ure 6.2(c). Note that in state 11 ofB, M? may change to 2; but in state 1 of B, M?
can only change to 0. Therefore, B is not safe with respect to B, and consequently,
N is not delay-insensitive with respect to state 0.

Theorem 6.3 holds for all networks. Combining Theorem 6.3 and 6.4, we have
the main theorem of the paper:

Theorem 6.5 A delay-dense network is delay-insensitive with respect to a state
if and only if its behavior originating from that state is semi-modular.
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7 Concluding Remarks

We conclude the paper by classifying autonomous asynchronous networks using the
criteria we discussed, i.e., delay-insensitivity, semi-modularity, and delay-density.
Figure 7.1 shows a general picture. The universal set is really the set of initialized
autonomous networks, i.e., autonomous networks with designated initial states.

A DD: delay-dense
AV‘ DI: delay-insensitive
SM: semi-modular

1

Figure 7.1: Classification of asynchronous networks.

We now describe each numbered region in Figure 7.1.

. non-empty: a network belonging to this region is shown in Figure 7.2(a);
. non-empty: an example was given in Figure 6.2(a) (without the delay 3?);
. empty: by Theorem 6.4;

. non-empty: an example is shown in Figure 7.2(b);

. non-empty: an example is shown in Figure 7.2(d);

1
2
3
4
5. non-empty: an example is shown in Figure 7.2(c);
6
7. empty: by Theorem 6.3;

8

. empty: by Theorem 6.3.

b e ) 5

Figure 7.2: Network examples.
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In addition, we also include speed-independent circuits, as defined by Muller [4],
in our classification.

According to Muller, a circuit is speed-independent with respect to a state u if
all allowed state sequences starting with u have the same terminal class. An allowed
state sequence corresponds to a path in the behavior of the circuit; it is finite only
if the last state of the sequence is stable; it cannot end in a transient cycle. A cycle
of states is said to be transient if there is a state variable which is unstable and
remains unchanged throughout the cycle. Let R* be the reflexive and transitive
closure of R (Definition 3.5). Two states a and b are equivalent if aR*b and bR"a.
Let £ be a partial order defined over the induced equivalence classes: ALB if there
exists a € A and b € B such that aR*b. For each allowed state sequence, there is
a unique sequence of equivalence classes and a definite “last” class, the terminal
class.

Muller considered only deterministic modules. In our network model, we call a
network deterministic if all the modules in the network are deterministic; otherwise,
it is non-deterministic. Muller showed that circuits exhibiting semi-modular behav-
iors form a proper subclass of speed-independent circuits. Using Muller’s definition,
we see that the circuit of Figure 5.2 is certainly not speed-independent; however,
according to our definition, the circuit is semi-modular. This does not contradict
Muller’s result, for our definition of semi-modularity is less restrictive than that of
Muller’s. For deterministic networks, however, the two definitions are equivalent.
Figure 7.3 shows the classification of deterministic initialized networks.

1
. DD: delay-dense
' DI: delay-insensitive
“ SM: semi-modular

SlI: speed-independent

Figure 7.3: Classification of deterministic asynchronous networks.

We now describe each numbered region in Figure 7.3.

1. non-empty: a network belonging to this region was given in Figure 7.2(a);
2. non-empty: an example is shown in Figure 7.4(a) (from [4]);

3. non-empty: an example is shown in Figure 7.4(b);
4

. non-empty: an example was given in Figure 7.2(b).
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@ (b)

Figure 7.4: Network examples.
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