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Abstract

We show that two desirable properties for planar mesh refinement techniques are
incompatible. Mesh refinement is a common technique for adaptive error control in
generating unstructured planar triangular meshes for piecewise polynomial represen-
tations of data. Local refinements are modifications of the mesh that involve a fixed
maximum amount of computation, independent of the number of triangles in the mesh.
Regular meshes are meshes for which every interior vertex has degree 6. At least for
some simple model meshing problems, optimal meshes are known to be regular, hence
it would be desirable to have a refinement technique that, if applied to a regular mesh,
produced a larger regular mesh. We call such a technique a regular refinement. In
this paper, we prove that no refinement technique can be both local and regular. Our
results also have implications for non-local refinement techniques such as Delaunay
insertion or Rivara’s refinement.

keywords unstructured mesh, triangulation, adaptive refinement

1 Introduction

In this paper, we show that two desirable properties for refinement techniques of two-
dimensional, unstructured triangular mesh generation are incompatible. The better-known
of these properties, locality, is that each refinement involves a fixed maximum amount of
work; local refinement is reviewed in the second section of this paper. A regular mesh is a
mesh in which all interior vertices have the same degree. A refinement technique is regular if
its application to a regular mesh results in a regular mesh. Regularity is motivated primarily
by the theory of optimal meshes as we elaborate in the third section. Our basic result is
that a refinement cannot be both local and regular, as we prove in the fourth section. To
establish this result, we prove in Theorem 1 that, in a simply-connected regular mesh, there
is only one mesh topology for balls of vertices that are within a fixed path distance from a
given vertex and that are interior to the mesh; i.e. all such interior balls are isomorphic.

*Support for this research was provided by the Natural Sciences and Engineering Research Council of
Canada, and by the Information Technology Research Centre of Ontario.
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Figure 1: A typical interior triangle (a) and two simple local mesh refinements (b) and (c)

2 Mesh refinement

In the finite element method, and other contexts, data specified in a planar domain D is
approximately represented by piecewise polynomial functions defined on a mesh of triangles
on D. In this section, we give a general outline of the common technique for adaptively
generating an unstructured triangular mesh suitable for such data that is the major context
for the topic of this paper. Adaptive local refinement techniques modify the mesh to provide
error control by examining each triangle of the mesh and computing an estimate of the error
in the piecewise polynomial approximation. If the resulting error is too large, the mesh
1s modified either by adding new vertices, by modifying the triangle incidences of existing
vertices, or both. See compendium [7].

Some refinement techniques are illustrated in Figure 1. If triangle 7', as shown in Fig-
ure 1(a), is selected for refinement, a simple insertion of vertex V at its centroid would result
in the configuration of Figure 1(b). A common alternative is to subdivide T into four smaller
copies of itself as shown in Figure 1(c), which introduces the three midside points of T' as
new vertices in the refined mesh e.g. Bank, Sherman and Weiser, 1983, [3], Bank, 1990, [2].

One of the traditional ‘mesh quality’ objectives of mesh refinement has been to avoid
introducing triangles with small (or large) angles'. When a new vertex is inserted into T
using the technique of Figure 1(b), at least two new obtuse angles must be introduced into
the mesh, which reduces the quality of the resulting mesh. If, however, the mesh is modified
as in Figure 2 when V is inserted, no new obtuse angles are introduced in the configuration
shown. In general, it is to be expected that suitable mesh refinement techniques will modify

1See, however, Babuska and Aziz ,1976, [1] and Simpson, 1994, [12].



Figure 2: An alternative local refinement for insertion of V

a group of triangles; this can be seen in the splitting of the neighbours of T' in Figure 1(c).
These refinement schemes are particularly simple because they involve introducing a fixed
number of vertices and modifying a fixed number of edges, so that they are relatively easy
to implement and cheap to execute. More complex refinements include Delaunay insertions,
Weatherill, 1988, [13], Chew, 1993, [4], or the recursive longest edge bisection approach of
Rivara, 1984, [10], 1993 [11]. Our result has implications for these methods also despite the
fact that they are not local.

We will use the term refinement for any technique for modifying a mesh which includes the
insertion of at least one additional vertex and define the qualifiers local and interior with more
precision and generality than is common. A refinement is a mesh valued function which takes
as parameters the mesh, M, and some other finite set of inputs, I, (e.g. a specific triangle
T of M as in the above examples). The resulting mesh will be designated using function
notation as R(M,I). We require all vertices of M to be included in R(M,I) and R(M,I) to
have at least one additional vertex. Let Cr(M, I) be the set of edges in R(M,I) but not in
M. If maxy 1 Cr(M, I) is finite, we will call R a local refinement function. E.g. Suppose we
were to define refinement functions, Ry(M, I) or R.(M, I) which changed a mesh, M, shown
in Figure 1(b) or Figure 1(c) for I as the single triangle T'. Then Cg,(M,I) = 3 for any
mesh M, and maxps; Cr, (M, I) = 12. However, in general, for refinements in which R(M, I)
is required to be a Delaunay triangulation maxas; Cr,(M,I) = oo as can be seen from the
family of meshes with 2m + 1 vertices Vi, = (k,0), k=—m to m, k # 0 and V5 = (0,100m),
and input [ = Vet = (0,1).

Let dup(P,Q) be the path distance in mesh M from vertex P to vertex @, i.e. the
minimum number of edges for any path from P to ). Let Bp(P,7) be the submesh of M
containing all vertices, @, such that dp (P, Q) < r; i.e. Bp(P,7) is the ball of vertices of
path distance r from P. The general idea of an interior refinement by a refinement function
R is that the effects of the refinement should be confined to balls in the interior of M and
R(M,I). We define R applied to M and I to be an interior refinement of M if there is a



ball Bps(P,r) such that
R(M,I) = R(Bu(P,r),I) + (M \ Bu(P,7)) (1)

R(Bum(P,r),I) is contained in some interior ball of R(M,I).

Here we interpret R(Bap(P,r),I) as a submesh of R(M, I) with the same boundary vertices
as By (P,r). As one would expect, a local refinement function (with maxas; Cr(M,I) = k)
applied in a ball Bp(P,r) which is at a sufficient distance from the boundary of M (i.e.
dp(Bu(P,7),0M) > k) produces an an interior refinement of M.

3 Regular meshes and optimal mesh generation

A triangular mesh is regular if six edges and six triangles are incident on each interior mesh
vertex 2. The primary motivation for our interest in regular meshes is their connection
with optimally efficient meshes as elaborated further below. Regular meshes provide some
advantages of simplicity and approximation accuracy for finite element methods, and other
computations using meshes for piecewise polynomial data representation. Frey and Field,
1991, [8], describe a method for improving a mesh that is not regular by modifying its
topology to bring its vertex degrees closer to six. Marcum and Weatherill, 1995, [9], comment
on some advantages regular meshes can provide for turbulent viscous flow computation. In
practice, however, most unstructured meshes are not regular. The result of this paper may
provide one reason why.

Mesh generation tasks can be specified formally in several ways as constrained opti-
mization problems, Simpson, 1994, [12]. In general, there are neither criteria to recognize
nor methods for computing meshes that meet these optimality specifications. In practice,
good suboptimal meshes that are inexpensive to generate are satisfactory and most mesh
generation techniques, including mesh refinement, can be viewed as heuristics that produce
suboptimal meshes. For simple idealized cases, however, it is possible to produce provably
optimal meshes, e.g. D’Azevedo, 1991, [5] and D’Azevedo and Simpson, 1991, [6]. One
striking feature of these optimal meshes is that they are regular.

The elementary local refinement techniques that we used as examples above, when applied
to a regular mesh, destroy this regularity. Hence these refinement techniques appear to reduce
the resemblance of the modified mesh to an optimal one. In Figure 1(a), the triangle T is
shown as having each of its three vertices of degree 6. After the insertion of V' according
to the technique shown in Figure 1(b), the original vertices of T have degree 7, and the
new vertex, V', has degree 3. If the insertion i1s done according to Figure 2, then the newly
inserted V' has degree 6, but each of the vertices now connected to V has degree either 5 or
7.

We will call a refinement regular if, when 1t is applied to a regular mesh M, with some
input I, it produces a larger regular mesh. The general question which motivated this paper

2We try to conform to standard unstructured mesh terminology. Conformity is complicated in the case of
the term ‘regular’ because it is commonly used to describe several different mesh properties. In particular,
the property referred to by “regular” in [3] is commonly referred to by “conforming”, as per [11].
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1s whether it is possible to devise a refinement technique that is both regular and local, in the
sense of the previous section. We prove the stronger result that a refinement R(M, I) applied
to a regular mesh M on a simply-connected domain cannot be both a regular refinement
and an interior refinement, for any choice of I.

4 Establishing the Result

Let S be a standard regular triangulation of the plane; ¢.e. the mesh with triangles whose
vertices are (¢,7), (¢ + 1,7) and either (¢ + 1,5 + 1) or (4,5 — 1), for integers 7 and j. Let
S1 be a simply-connected finite submesh of S. Then the degree of a boundary vertex of S;
must between 2 and 5 inclusive. We will refer to the sequence of the degrees of the boundary
vertices of S} taken in counter-clockwise order, starting at an arbitrary boundary vertex, as
the degree sequence for S;. In Lemma 1, we claim that S is uniquely determined, up to
1somorphism, by its degree sequence.

Lemma 1 A simply-connected finite submesh of S is determined up to isomorphism by its
degree sequence.

The proof by induction on the boundary path length is straightforward.

If all simply-connected regular meshes were isomorphic to submeshes of S, then a proof
by contradiction that a refinement could not be both regular and interior would be easy, as
follows. Let S; be a submesh of S isomorphic to M. Then the number of vertices in M is
the same as in S, which is determined by the degree sequence of the boundary of S;. If
we then were to assume that R(M, ) is regular and has the same boundary as M, but has
more vertices, we would have a contradiction. However, it is straightforward to construct
simply-connected regular meshes which are not isomorphic to submeshes of S.

In Theorem 1, we establish that for any simply-connected regular mesh M, there i1s a
ball Bps(P, ), interior to M, that is isomorphic to Bg((0,0),r). This result then allows us
to make a similar if somewhat more technically involved argument about the non-existence
of a regular, interior, refinement.

Theorem 1 is based on two lemmas presented below. In Lemma 2, we observe that closed
paths in a planar mesh M can be mapped to closed paths in the standard mesh S. This
observation allows us to prove in Lemma 3 a crucial property of the boundaries of any regular
submesh N that is isomorphic to a part of S: 1.e. any edges between boundary vertices of N
that are present in a supermesh must have images in 5.

The proofs of these results use combinatorial properties of plane-embedded graphs, which
we shall review here. In a plane embedding of a graph, each vertex receives a prescribed
(counterclockwise) ordering of its neighbours; the collection of these orderings for all the
vertices determines the topology of the embedding. Given the order of neighbours at each
vertex, one may follow consecutive edges around a face. Graphs derived from regular trian-
gulations of simply-connected domains have three pertinent combinatorial properties. First,
all of the faces but one (the exterior face, containing the point at infinity) have three edges.
Second, the graph is biconnected; equivalently, no vertex appears twice in the sequence of
vertices on the exterior face. Third, any simple cycle in the graph encloses a unique subgraph
(including the cycle as its boundary), this subgraph corresponds to a regular triangulation of
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Figure 3: The two cases: w is interior or boundary.

a simply connected subdomain. In what follows, we shall use the terms “mesh” and “graph”
interchangeably. We shall term a mesh “valid” if it satisfies the conditions above.

Any path in M, considered as a sequence of edges (u1,us), (u2,us), ..., (w, ugt1), has
an image in the standard mesh, as follows. Map the first edge to an arbitrary edge (vy, v2)
of the standard mesh. Map each succeeding edge into the standard mesh according to the
placement of the edge in the order of the edges around its endpoint; that is, if (w;, ;1) is the
jth edge following (w;_1,u;) around point u;, then map (u;,u;+1) to the jth edge following
(vi—1,v;) in the order around v;. (If j > 6, wrap around v; as often as necessary.) We will
denote the image of a path p under this mapping by I(p); the image of any edge e or vertex
v is denoted I(e) or I(v).

Lemma 2 Let p be the boundary path of M, taken either clockwise or counter-clockwise
starting from any edge. If p returns to its start, with (ux,up+1) = (u1,us2), then the image
path I(p) also returns to its start, with (vg, vgpy1) = (v1,v2).

Proof. We use induction on the number of edges in M. If M is a triangle, the image path
is also a triangle, satisfying the required condition.

Now suppose that the result holds for all meshes with less than r edges, and let M have
r edges. Select any boundary edge e = (u,v). Since M is biconnected, e forms part of a
triangle wvw. We consider two cases. In case one, w i1s not a boundary point of M, and
M' = M — e is a valid mesh. In case two, M — e has two biconnected components; let M’
be the component containing v and M"” the component containing «. Both components are
valid meshes and contain w.

For case one, consider the boundary walk in M’ that starts with edge (w,v) mapped
to ((0,0),(1,0)). By the induction hypothesis, the image of this walk returns to its start.
Hence the penultimate edge (u,w) has image I(u,w) = (z,(0,0)) for some point z; since w
has degree six, we must have z = (1, —1).



Nodes u and v have degree one higher in M than in M’. Therefore, in an image of the
boundary path of M, the edges that are also boundary edges of M’ receive the same image
they did in the walk around M, and the second occurrence of e has the same image as the
first, as required.

For case two, consider one walk in each component, starting from (w,v) mapped to
((0,0),(1,0)) and (u,w) mapped to ((1,—1),(0,0)). Each image returns to its start, by
induction.

A walk in M starting from e = (v, v) mapped to ((1,—1),(1,0)) will have the same image
as the walk in M’ until they reach w, with image I(w) = (0,0). Since the degree of w in M
is the sum of its degrees in M’ and in M"”, the walk in M will continue by following the walk
in M"”. When it reaches u, the final image of (u,v) will be ((1,-1),(1,0)), as required. O

Lemma 3 Let M be a valid mesh. Suppose that N is a valid submesh of M and I is an
tsomorphism of N into a submesh of S. For any two vertices a and b on the boundary of N,

if (a,b) is an edge of M, then (I(a),I(b)) is an edge of S.

Proof. The vertices a and b divide N into two pieces P; and P,. Assume without loss
of generality that the cycle Pi,(a,b) encloses the path P». Consider the walk from b along
the reversal of P, to a and returning to b. This walk is a cycle in M and hence encloses
a submesh N’ of M; by Lemma 2 applied to N’, the walk’s image path in S returns to its
origin. In particular, I(b) and I(a) are adjacent in S, as required. O

For any point P in a mesh M, let B(P,r) be the ball of radius r around P, that is, the set
of vertices in M at distance at most r from P together with the edges between pairs of such
vertices. The ball B(P,2) in the standard mesh is illustrated in Figure 4. In the standard
mesh, the ball B(P,r) has six boundary vertices of degree three and 67 — 6 boundary vertices
of degree four, as one can easily establish by induction. We now show that in any mesh, a
ball that does not reach the boundary must be isomorphic to this standard ball.

WVAVAVAY,

Figure 4: The ball B(P,2) in the standard mesh.

Theorem 1 Let P be any interior point of a valid mesh M. Then for all v, either B(P,r)
contains a boundary point of M or B(P,r) is isomorphic to the ball of radiusr in the standard
mesh.



Proof. We proceed by induction on r. For the base case r = 1, we note that P has six
neighbours forming six triangles each with a corner at P. Hence B(P, 1) is isomorphic to
the standard mesh.

Suppose that B(P,r) , r > 1, has only interior vertices of M and is isomorphic to the
standard mesh. In particular, the boundary of B(P,r) has six vertices of degree three and
6r — 6 vertices of degree four, joined into a cycle by 6r edges.

If B(P,r + 1) contains a boundary point, then B(P,r’) contains a boundary point for all
" > r + 1 and there is nothing more to prove.

Suppose B(P,r + 1) is interior to M. Each of the vertices of the boundary of B(P,r)
has degree six in M; thus there are 12r — 6 edges between boundary vertices of B(P,r) and
vertices in B(P,r + 1) \ B(P,r). These new edges form 6r triangles (one on each edge of
OB(P,r)) and 6 other edges. Additional triangles fill in between these triangles and single
edges. If B(P,r + 1)\ B(P,r) has 6r 4 6 distinct vertices, then the isomorphism of B(P,r)
extends to B(P,r + 1).

We now show that B(P,r+ 1)\ B(P,r) cannot have fewer than 6r + 6 vertices. Suppose
to the contrary; i.e., suppose two triangles on edges (a1, az) and (b1, bs) of dB(P, ) have the
same point ) as apex. Let N be the submesh of M formed from B(P,r) by adding the point
@ and the two edges (Q, a;1) and (@, a2). Then by the induction hypothesis N is isomorphic
to a submesh of S. By Lemma 3, edges (Q,b;) and (@Q,b2) of M must have images in S.
No such images exist, however. Thus ) cannot exist and B(P,r + 1) \ B(P,r) must have
exactly 67 + 6 distinct vertices.

Finally, Lemma 3 implies that B(P,r + 1) has no additional edges not mentioned above.
Hence B(P,r + 1) is isomorphic to a submesh of S, as required. g

5 Conclusions

Returning to the primary objective of this paper, we can now assert that there is no hope
of finding a clever local refinement algorithm that preserves regularity in a mesh. Further,
we can assert that for nonlocal refinement techniques like Delaunay insertion, or Rivara’s
recursive longest edge bisection, no particular instance applied to a regular mesh can make
a modification of the mesh which is both regular and confined to the interior of the mesh.

To support these assertions, let us hypothesize to the contrary the existence of a regular
mesh M and a refinement function R that, for some input I, makes an interior, reqular
refinement of M. The claim that the refinement is interior indicates two things as per
(1). One is the existence of an interior ball, By (P,r), in M such that the vertices on
the boundary of Ba(P,r) occur in R(M,I) with the same degree sequence. Moreover, the
difference between M and R(M, ) is confined to R(Bu(P,r),I) as a submesh of R(M,I).
The other implication of R being interior is that R(Ba(P,r),I) lies in some interior ball of
R(M,I). By Theorem 1 and the assumption that R is regular, R(Bps(P, ), I) is isomorphic
to a submesh, S, of S and By (P,r) is isomorphic to a submesh, S3, of S. But, since the
degree sequences of the boundaries of R(By(P,r),I) and Bp(P,r) are identical, S; and S,
must be isomorphic (Lemma 1) and in particular contain the same number of vertices. This
leads to a contradiction that R(M, ) is a refinement of M and hence R(Bp(P,7),I) must
contain at least one more vertex than Bas(P, ).
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