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Abstract

The last decade of computer technology has seen the proliferation of computer graphics
applications.  As technology advances, there is a growing fascination with three-dimensional
(3D) object representations that likely comes from their greater abili ty to match “real li fe” than
their two-dimensional (2D) counterparts.  Unfortunately, the benefits of 3D editing are not
without a price.  Most techniques for manipulating objects in a 3D environment are developed
for conventional hardware configurations that use 2D input devices and CRT displays.  The
difficulties lie in mapping 3D spatial relationships to 2D displays, and in mapping 2D user input
to 3D object manipulation.  This mapping problem is somewhat mitigated by adding constraints
to the degrees of freedom in the manipulation task. 3D surfaces that have been reconstructed
from contours are interesting to consider as targets of 3D interaction because they provide an
inherent constraint on manipulation: point motion is restricted to a plane.

As part of my research, I implemented an interactive contour editor to edit 3D surfaces that
were reconstructed from planar contours.  More precisely, the editor is a tool for visualising a
surface derived from a set of serial sections, and for removing deformations from this surface.
It was designed specifically to remove artefacts from medical images of arteries.

I used the interface from my editor in an experiment that tested whether users were faster and
more accurate at manipulating surfaces in a 2D environment or a 3D environment.  At the
outset of this study, I predicted that 2D would be better for editing deformations of a 2D
nature.  That prediction was borne out by my experimental results.  I had also hoped that 3D
would be superior as an editing environment for correcting deformations of a 3D nature.
However, the 2D character of the data had a stronger effect on performance than did the 3D
character of the deformation.  Despite the inherent constraints in the surfaces, participants were
faster at editing in 2D for all types of deformations, while maintaining a consistent accuracy
between 2D and 3D.  Participants did perceive a 3D environment to be better than a 2D
environment for manipulating a group of points that spanned multiple contours, although this
was not reflected in the quantitative results.  The intuitive preference for 3D in this situation
leads me to believe that it is worth continuing the search for a natural and effective interface for
editing surfaces in a 3D environment.
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The last decade of computer technology has seen the proliferation of computer graphics
applications.  They appear in such diverse fields as surgical training, flight simulation, computer-
aided design (CAD), financial analysis and medical visualisation.  Furthermore, as technology
advances, there is a growing fascination with three-dimensional (3D) object representations.
The appeal of 3D representations likely comes from their greater abili ty to match “real li fe” than
their two-dimensional (2D) counterparts. Using a computer to reproduce the world around us
has long been a “Holy Grail” of computer graphics.  This sentiment is echoed in the popular
enthusiasm for virtual reality.

The first of the 3D computer graphics applications1 were primarily concerned with static
visualisation.  Later, hardware technology improved, making machines faster and making real-
time object interaction possible.  Such interaction is used not only for visualisation, but also for
editing.  Whereas visualisation describes viewing changes such as rotating and translating an
object, editing refers to changes that deform the actual shape of the object. 3D editing
techniques will be the focus of this thesis.

For visualisation used to envision a real-world object it in its entirety, a 3D view has an
advantage over its 2D analogue [Wic89].  A 3D environment allows an object to be perceived
as a whole, while a 2D view is restricted to only a cross-section or profile of an object.

For object editing, 3D interaction has the benefit of providing context for the user.  It combines
the three spatial dimensions in a natural way.  Conversely, modelling packages that use three
separate 2D orthogonal views for interaction (with a perspective view reserved for observation)
are notoriously difficult to use as the user must integrate the different orthogonal views
conceptually [Coo84].  The interaction style of a 3D environment more closely matches the
user’s mental model of handling objects in his daily activities [Hut85], and capitalises on the
user’s lifetime of experience in negotiating a 3D environment and manipulating 3D objects.

Unfortunately, the benefits of 3D editing are not without a price.  Most techniques for
manipulating objects in a 3D environment are developed for conventional hardware
configurations that use 2D input devices and CRT displays.  The difficulties lie in mapping 3D
spatial relationships to 2D displays, and in mapping 2D user input to 3D object manipulation
[Her92].  This mapping problem hampers the user’s abili ty to indicate or perceive depth,
making it awkward to interact with an object and, in particular, with specific points on an
object’s surface.  It is particularly difficult to translate along an axis parallel to the line of sight,
because the axis projects onto a point on the screen rather than a direction [Phi92].

I would like to determine whether it is possible to exploit the advantages of 3D interaction
without falling prey to the mapping problem.  Manipulating objects in three-dimensional space is
a daunting task, having six degrees of freedom corresponding to the three axes of rotation and
the three axes of translation [War90].  The simultaneous manipulation of three degrees of

                                                  
1 In the context of this thesis, the term “3D” will be used to refer to a 2D projective view of a 3D object, rather than a stereoscopic view.
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freedom, let alone all six, is difficult.  Studies have shown that users perform better and report a
feeling of greater control in the environment when the degrees of freedom are restricted by
constraints [Hou92].

On a computer, a user can manipulate objects either directly, or indirectly.  In both interaction
styles, attempts have been made to introduce constraints that mitigate the effects of the mapping
problem.

Direct manipulation gives the user the impression of actually handling an object within the 3D
environment.  To accomplish this, however, the user must indicate a location in all three
dimensions.  Depth is most difficult, because it does not map well to existing 2D input devices.
Various research groups have designed special software tools (herein referred to as widgets) to
assist in this task by constraining 3D interaction [e.g., Sni92, Hou92, Her92, and Con92].
Widgets are encapsulations of geometry (their physical properties) and/or behaviour (the actions
they perform) that are used to control or display information about application objects [Con92].

Indirect manipulation can also avoid some of the mapping difficulties by providing separate
tools to control changes in each dimension.  These are usually standard widgets such as sliders
and dials [Che88] for tasks like translating or rotating an object.  Unlike direct manipulation
widgets, however, these tools are located outside of the 3D environment.

In this thesis, I examine the particular problem of surface editing using direct manipulation
techniques.  I strive to determine through experimentation whether a 2D environment or a 3D
environment is more suitable for editing three-dimensional surfaces reconstructed from medical
images.  Such surfaces are created by joining together slices containing contours that were
formed by cutting through an object with parallel planes. These slices are often referred to in the
literature as serial sections.  The lines used to connect points on contours in adjacent slices are
often constructed in such a way as to form triangles.  The surface generated for the object is
thus a triangular mesh.

3D surfaces that have been reconstructed from contours1 are interesting to consider as targets
of 3D interaction because they provide an inherent constraint on manipulation. Due to the
method used to create surfaces from contours, all the points on the resultant mesh lie in parallel
planes.  Thus the movement of points on a contour can occur only within the plane in which the
contour lies.  All manipulation of points on the surface is now constrained to two dimensions, so
there is no longer a need to map 2D user input to 3D object manipulation for this type of
interaction.

The tasks of selecting a point and of moving a point are fundamental to all surface editing
operations.  I therefore analysed these two tasks in an attempt to weigh the advantages and
disadvantages of each environment for editing.  The central research question of this thesis
involves determining whether 3D editing benefits by constraining the data points to lie on a set
of 2D planes.  2D editing of sequential slices may be more natural because it reflects the

                                                  
1 The assumption is that the surface being edited is the triangular mesh that results directly from the reconstruction, and not a smoother
surface that has been fit to that mesh.



INTRODUCTION 3

underlying structure of the data.  On the other hand, 3D manipulation provides a context for the
task; each contour is seen in relation to its neighbours.

Many applications employ 3D surface reconstruction from planar contour data.  Mining
engineers use contours to map mine workings.  In CAD applications, a technique called lofting
uses a set of contours to specify the geometry of an object.  Biologists use serial sections
through an organism to better understand its overall shape.  Of interest in this research are the
several imaging techniques of clinical medicine that provide data as a series of slices through an
object.  These include computed tomography (CT), ultrasound, as well as nuclear magnetic
resonance (NMR) and magnetic resonance imaging (MRI).

I implemented a surface editor called SLICE (SimpLe Interactive Contour Editor) for the
experimental component of the research, as well as for practical application in removing
artefacts from MRI and CT scans of arteries.  A fluid dynamics problem provides the context
for the research in this thesis [Eth92]. Data in the form of serial sections through arteries are
converted into a triangular surface mesh, which is edited to remove unwanted surface features
such as bumps and dents.  The resultant surface is transformed into a tetrahedral volume mesh
(a partitioning of the space contained within the surface mesh into tetrahedral elements) for use
in a fluid-flow analysis of the artery.  The ultimate goal of that analysis is to determine whether a
connection exists between the fluid flow in the artery and a disease known as intimal hyperplasia
(thickening of the artery wall) [Eth92].

Artery blockage that interrupts the supply of blood to vital organs (chiefly the brain and heart) is
responsible for roughly half of the deaths in most developed countries [Car78].  To renew blood
flow in the artery, surgeons frequently implant living tissue, or grafts, to bypass the obstructions.
Although the grafts are successful in the short-term, a significant number of them fail one or
more years post-operatively [Eth92].  A primary cause of this failure is intimal hyperplasia, a
progressive thickening of the parent vessel wall that eventually leads to occlusion of the graft
lumen (the cavity inside the “tube” formed by the artery wall) [Dob94].  This usually occurs at
the anastomosis, or junction between the original artery and the graft, and is then known as
anastotomic intimal hyperplasia.  A research project being conducted jointly by the University
of Western Ontario and the University of Toronto (herein referred to as the UWT project) is
attempting to model the flow fields in normal and diseased graft-artery anastomoses to better
understand the role of hemodynamic effects (i.e., effects of blood flow) in graft failure.  In the
long-term, it is hoped that the research will l ead to recommendations for a graft geometry
designed to reduce the incidence of graft failure, as well as the development of hemodynamic
criteria for early detection of intimal hyperplasia in patients [Eth92].

The data used to develop the artery models come from MRI and CT scans.  In the future,
histological serial sections (data from samples of sliced tissue) may be used as well.  From these
data, a tetrahedral volume mesh is produced for the finite element analysis of fluid flow in the
vessel1. Inaccuracies in the data-gathering process, however, introduce artefacts (most often
appearing as bumps and dents on the surface) into the contour data.  To correct these errors,
members of the UWT project create an intermediate triangular surface mesh that is edited to

                                                  
1 See Shames’ book for a treatment of finite elements [Sha89].
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eliminate the artefacts before proceeding with the generation of the volume mesh.  The surface
mesh must be edited by an expert user who can make informed decisions about how the surface
needs to be modified.

In Chapter 2, I describe the issues in surface reconstruction that were of importance in selecting
a reconstruction algorithm for the application.  I discuss data formats and their consequences on
the surface reconstruction algorithm used.  I also present issues in 2D and 3D interaction
techniques, and justify the use of direct manipulation.

In Chapter 3, I describe the implementation of SLICE, beginning with the requirements for the
program.  I explain the interface design that emerged from the task analysis and was chosen for
the experiments.

In Chapter 4, I focus on the experimental portion of the research.  I describe the purpose,
subjects, design, experimental conditions, results and analysis of the experiments.

In Chapter 5, I present the conclusions of the research.  I discuss future enhancements to the
interface and their implications.
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In this thesis, I focus on the surface editing aspect of the UWT artery project.  I have
implemented a surface editor that first reconstructs a surface (triangular mesh) from contour
data using existing software. The construction of this mesh is a multi-stage process that I
discuss in some detail in this chapter.

With the surface editor, the user can move or delete points on the intermediate mesh, thus
creating the final surface that will be used to produce the finite element volume mesh. In this
chapter, I present issues in interaction that arise when users manipulate the mesh to change its
shape.

The generation of that volume mesh, and the ensuing flow analysis are beyond the scope of this
thesis, but are dealt with in Cuvelier’s book [Cuv86].

��� � � �"!#!%$%&('")+*-,.&(/1032

The input to my editor is a set of planar contours that represent cross-sections through a 3D
object.  Figure 2.1 illustrates how the contours are formed.

  465 798;:=< > ? @ ACBEDGFCH DJICK=LNM9K=OQP D9K=RQO9SQTCU"V FCH O9K=LCOXWCH V FCYNMQW9ICH H=V F;YNZG[ MGFCON\]V H ^_MJF_D9Ta` O9W;Hcb
From these contours, I must reconstruct the surface of the object.  A mesh generation program,
or tiler, creates a triangular mesh from the contour data.  It builds the mesh by joining points on
one contour to corresponding points on a contour in a neighbouring slice as shown in
Figure 2.2.  I considered several tilers for use in the project including the “Surfaces from
Contours” package written by Meyers, Painter and Sloan of the Universities of Washington and
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Alabama, Jules Bloomenthal’s “Implicit Surface Polygonizer” [Hec92] and a surface meshing
package from Mark Jones of Swansea [Jon94].  I chose a tiler called nuages that was written at
INRIA, France by Bernhard Geiger [Gei93] for incorporation into the surface editor.  Of the
limited selection of available tilers, it best fulfilled the basic requirements of the project.

  
��� �����	� 
 � � 
������������ ����������� ����� �������	� �� !��������"$#

There were several considerations in choosing the tiler that generates the initial surface mesh.
The first was availabili ty at no cost.  Of the tilers that met this criterion, I sought one that could
generate a mesh at interactive speed.  This is desirable so that a new mesh can be generated as
the user edits the original mesh.  The tiler's source code also needed to be readily modifiable so
that I could build the editor interface on top of it.  In addition, to aid in maintaining interactive
speed, it is important that the entire mesh need not be recreated when only a small portion of it
is changed.  Thus, the tiler code needed to allow for local mesh reconstruction.

The nature of the artery data determines which approach to surface reconstruction is most
appropriate for the tiler.  There are two approaches to the problem: volume-based and surface-
based.  Volume-based methods are used when the data are available as a 3D lattice of points.
Surface-based approaches require that the data define the intersection of a surface and a plane
of sectioning [Mey92].  For this project, data are provided as a set of closed contours from
parallel slices through an artery.  A tiler that uses a surface-based approach is thus preferable.

The chosen tiler must also solve the basic meshing problems of correspondence, tiling and
branching.  These are illustrated in Figure 2.3.
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The correspondence problem refers to the issue of deciding which contours should be
connected by the surface.  Solutions include comparing the shape of contours in adjacent slices,
and determining overlap in the plane (e.g., slices made perpendicular to the primary axis of a
right circular cylinder have exactly the same shape - a circle, and line up precisely with one
another when projected onto a plane).  The coarse topology of the final surface is determined by
the topological adjacency relationships between the contours of the data set.  If there are
multiple contours in a section, the contours must be organised into groups representing
individual objects.

@/A B A*@ CED3F3D3G<H

The tiling problem deals with how the contours should be connected.  Given points on pairs of
contours from adjacent sections, the task is to generate the “best” topological adjacency
relationship between these points.  The difficulty lies in the fact that the tiling problem is
severely under-constrained.  In other words, there are many different tilings that could
interpolate a given set of contours.  Some metric must be chosen to determine what is meant by
“best” topological adjacency relationship.  Some commonly used metrics include area, volume,
matching direction, span length, matching normalised arc length, and various non-local metrics.
All of these metrics perform poorly with certain pathological examples.  There are, however,
possible improvements such as normalisation for position, size and small rotations [Mey92].

Ideally, the tiler used by the surface editor should create surfaces without twists.  Figure 2.4
illustrates a surface with a twist that was constructed from actual artery data.  Figure 2.5
provides a simpler example to illustrate the problem.  Twists in the surface are caused by joining
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the wrong points on adjacent contours and may cause problems when attempting to generate a
volume mesh.  The tetrahedral volume elements are generated based on the triangles in the
surface mesh.  If the triangles are twisted, the algorithm for generating the volume elements will
produce a poor discretisation of the volume; i.e., the tetrahedra will also be twisted, and will
therefore not accurately reflect the flow of forces within the object.

  
��� �����	� 
 � � 
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In Figure 2.5, the grey, dotted lines show how the two contours should be connected.  The
black, solid lines show what happens when the surface is twisted.  Imagine rotating the top
circle by two points while the grey connections are in place.  This would result in the black
connections.

  0�1 2�3�4	5 6 7 8 9�:�;�< =�>%? < @	< A&B�A�C&D&=E>)? AEF&@)DE;&G�H	@ D&I�A�J KL< ;�J M
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Since anastotomic intimal hyperplasia occurs at graft-artery junctions, it is crucial that the
meshing algorithm used by the tiler be able to handle branching structures in the surface.
Branching is said to occur when the object is represented by a different number of contours in
adjacent sections.

  ��� ������� � �  !�"�#�$ %�!�&(' )�*,+ -/.�02143�32#�0�% #�5�06-,+ ' 325�#�7�8/9�:;#,32% 7�#<!6=>% ?@1�.�06-4+ ' 325�#/7<A�7�B,3�0�C�9,D;' E�C2%�!6=>%�C27�#�#/.�0�-4+ ' 325/#�7<A�7�B4320�C,F

Branches may be in the form of a pair of simply-connected cylinders, a two-cylinder branch, or a
three-cylinder branch [Mey92] (Figure 2.6).  The difficulty in meshing branching surfaces is
determining how to mesh the area of the surface at the forking point, or junction.  The
information provided by consecutive slices at this point is always incomplete, since the two
slices contain different numbers of contours.  The idea behind the solution to the branching
problem implemented by the chosen tiler is to model the implied saddle surface at the junction
by adding fabricated vertices between adjacent contours to form composite contours [Gei93].
The solution to the tiling and branching problems determines the surface topology and its coarse
geometry.
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Once the surface, including branches, has been tiled, its precise geometry can be determined.
This involves finding a smooth surface that interpolates or approximates the vertices of the
mesh and maintains the same topology.  Interpolation is used if the data are precise
specifications of an object, whereas approximation is appropriate if the data are noisy or
otherwise imprecise.  The most commonly used method employs a series of parametric surface
patches [Far93].  The vertices of the mesh are the control points of the surface patches, and the
topology of the mesh determines which vertices are used in each patch.

The simplest method of surface-fitting is to merely use the triangular faces of the mesh as the
surface.  This method is not usually satisfactory unless the contours sample the original surface
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very finely.  In addition, since the surface produced by using just the triangular mesh may have
discontinuities, it is not always ideal for creating a finite element volume mesh.  For the research
purposes at hand, however, a surface formed by the triangular faces of the mesh is desirable.
The nuages tiler forms this mesh simply by joining the points on adjacent contours.   This means
that, unlike a fitted surface whose points lie anywhere in 3-space, all the points on the triangular
mesh lie in the parallel planes that contain the contours. This property of the mesh will be
exploited to provide a constraint on 3D interaction with the mesh.
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The process of creating an editing interface that improves on the current one (described later in
Section 2.2.3) requires some analysis.  First, both the benefits and the drawbacks of the existing
interface must be fully understood.  Second, potential problems in the replacement interface
must be recognised, and solutions to them devised.

Before performing this analysis, the concepts of direct manipulation and constraints must be
clarified.  I will examine direct manipulation first.
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Direct manipulation interfaces (DMIs) were first identified by Ben Schneiderman [Jac89].  The
term “direct manipulation” stems from the philosophy that users should manipulate objects in a
computer program by a means that is analogous to the way they manipulate objects in space
[Jac89, Hut85].  The essence of a DMI is that rather than carrying on a dialogue about an
object, the user operates directly on it, making the interface almost transparent [Hut85].

In contrast, an indirect manipulation technique for object deformation would require many
different sliders, thereby using excessive screen real-estate.  While related controls such as
sliders for rotation may be logically grouped, users can rarely correlate changes in the controls
with corresponding changes in the deformed objects [Sni92a].  This large cognitive “distance”
between the user and the tool results from that fact that, by definition, indirect manipulation
tools are located outside the 3D environment.

Direct manipulation widgets such as trackballs [Str92, Con92], handles [Hou92, Con92, Str92],
bounding boxes [Str92, Hou92] and shadows [Her92, Jau95] have the advantage that they exist
in the scene along with the objects they manipulate [Str92] thereby reducing the cognitive load
on the user.

Demands on both the user's short-term and long-term memory are also reduced in a DMI.  For
long-term, the user must commit to memory only a few generic manipulation commands from
which most specific operations can be derived.   Short-term memory load is reduced by having
internal state data always displayed; most commands that change values are reflected
immediately in changes in the objects.  Additionally, DMIs often have less modes than an
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indirect manipulation interface of equivalent functionality [Jac89]. This is also less taxing on the
user's memory.

Due to its nature, direct manipulation is easiest to apply to a problem domain that has a concrete
graphical representation.  Editing the surfaces of arteries is such an application, and the
advantages of direct manipulation that I have presented make it a natural interface choice for
this task.  ROSS is an example of an existing product that provides a DMI for interactive
visualisation of objects reconstructed from serial sections [NAS93].  Unfortunately, ROSS does
not provide any surface editing capabili ty.

Any system that employs a DMI, however, is susceptible to the mapping problem (see Chapter
1 for discussion of this problem).  Often, such systems fail to provide sufficient feedback as to
how motion of the input device produces transformations on the object [Phi88].  Widgets can
supply additional feedback in the form of spatial cues, and even reveal their functionality
through their geometry [Hou92, Con92].  Their real benefit, though, comes from the constraints
they impose on interaction.
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Borning describes a constraint as “a relation that must be maintained” [Bor86].  For 3D
interaction, constraints can be thought of as a means of restricting motion, most often by fixing
it to a particular dimension, or set of dimensions.  This effectively reduces the number of
degrees of freedom in the interaction.  Rigid body motion in 3D has six degrees of freedom for
positional and angular placement [War90], and object deformations have many more [Phi88].

Simultaneous manipulation of many degrees of freedom may make interaction too difficult.
Snibbe observes that “a tool can be made more effective by removing unnecessary degrees of
freedom with constraints” [Sni92a].  Houde reports similar findings in her experiments with a
handle-box interface [Hou92].  Hsu et al. also note that the number of degrees of freedom
presented to the user in free-form deformation can be overwhelming [Hsu92].  Herndon et al.
constrain transformations to a plane with their shadow widgets in an attempt to make 3D
manipulation easier for the user [Her92].

Because of the demonstrated value of constraints in 3D interaction, 3D surfaces that have been
reconstructed from contours seem to lend themselves well to deformation through 3D
interaction.  They have an inherent “relation that must be maintained”: contours must remain
planar.  Since all points on the surface are part of some contour (recall from Chapter 1 that this
is a property of the surface mesh), movement of points is restricted to the plane.  The common
mapping problem is thus diminished by eliminating a dimension for translation.  I therefore hope
that a 3D DMI will be successful for editing the artery data.
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To provide an improvement over the existing artery editing interface, it is necessary to
understand both the positive and negative aspects of that interface.  Current editing techniques



12 CHAPTER 2

in the UWT project are somewhat haphazard.  The user determines contours that need editing
by examining an initial reconstruction of the artery data using the solid modeller package
I-DEAS

1.

The user then edits contours requiring corrections in one of three ways [Moo95].  The first
method is the most primitive, and difficult to use.  The user manually plots the cross-section
containing the problematic contour, and determines where the fault lies.  He then changes the
coordinates directly in the slice file using a text editor.

The second way in which the contours are processed is by a low-pass filter that smoothes out
tiny indentations in the surface.  The user can choose the degree to which the curves are
smoothed, if any.  This filter does nothing to remove larger bumps and indentations.

The third, and only interactive method, is to move points on the contours using a curve editing
feature of  I-DEAS.  When the user picks and moves a point on the curve (termed primary
motion), adjacent points on the curve, in a local region around the picked point, are also
affected (termed secondary motion) (Figure 2.7).  The user can specify the area of effect and
the nature of the secondary motion through a dialogue-style interface [SDR93].
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The user moves points in the current workplane.  For artery editing, this is chosen to be the
plane containing the contour of interest.  The user can limit the view to only this workplane,
providing a 2D view of a cross-section.  Alternatively, the user can display all of the contours in
the data set at once in a 3D perspective view.  Although the latter view gives the user a context
in which to work, it is seldom used.  Even with the ability to rotate, pan and zoom in this view,
having all of the contours present makes it difficult to pick and control the desired points for
movement [Moo95]. Attempts to interact with points on a particular contour are confused by
the interfering presence of other contours.  This may be because the surface itself is not present
in the view to give full meaning to the contour lines.  Unfortunately, the surface reconstruction
algorithm used by I-DEAS seems fragile, i.e., the final surface cannot be constructed until the
glitches in the contours are corrected.

Because editing in the perspective view is difficult when only the contours are visible, a 2D view
of a single cross-section is chosen most often as the editing environment for the arteries.  Even
then, users of the system frequently resort to using the text editor out of frustration.

                                                  
1 I-DEAS is a CAD/CAM product designed to aid in the manipulation of freeform geometry [SDR93].
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3D display representations better match the user's mental model of 3D spatial information (such
as flight path or contour data) than do their 2D counterparts [Wic89, Wic92].  It thus seems
reasonable that a 3D interface for artery editing might be an improvement over the current 2D
editing technique, at least for some tasks.  The aim of the experiments conducted as part of this
research is to determine for which tasks, if any, this holds true.  The experimental hypothesis is
that for tasks of a 2D nature (i.e., tasks involving only a single contour and hence a single
plane), a 2D interface will be superior to a 3D interface.  This superiority would exists because
of the unnecessary complicating factor of the extra dimension in 3D, and the resultant mapping
problem.

On the other hand, for tasks of a more global, 3D nature, such as flattening a bump that spans
several contours, I hypothesise that a 3D interface would prove more effective than a 2D
interface of equivalent functionality.  This is primarily because the user's mental model of the
artery is of a 3D nature.  In addition, the mapping problem is diminished due to the inherent
constraints in the artery data.  Finally, the visual momentum provided by presenting the artery as
a unified object, rather than a series of slices, may aid the user in 3D interaction [Woo84,
Wic92].  Users may become cognitively “lost” as they traverse through multiple displays
pertaining to different aspects of the same system.  Visual momentum is an engineering solution
to this problem.  See [Woo84] for a more complete treatment of this topic.

The 3D surface editor interface that I evaluate alongside the current 2D method of interacting
with the artery data will use direct manipulation.  As well as delivering all of the benefits
outlined in Section 2.2.1, this will allow a fair comparison to be made with the existing interface,
which also uses direct manipulation.
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Although I hope that SLICE’s  interface is generic enough to be used with any contour-editing
application, SLICE was primarily designed to fulfil the requirements of the UWT project.  In my
research, the interaction requirements of that project receive particular attention, and are
mapped into high-level viewing and editing tasks.  Those tasks in turn are broken down into
the low-level component tasks that drive the interface design process.  Out of this process, both
SLICE' s DMI for object interaction and its GUI emerge.  The GUI integrates the functionality of
the DMI with SLICE' s meshing capabili ties.  This chapter covers the evolution of the SLICE

interface, beginning with the requirements of the UWT project, and concluding with the
interface used in the experimental portion of the research.
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In the UWT project, users gather data from CT and MRI scans of arteries.  The next stage of
the project is to prepare the data for fluid flow analysis using the following multi-step process:
first, the contour data, which represents cross-sections through the arteries, is converted into
text format as lists of coordinates.  Then, a program takes these contours as input and
generates from them a triangular mesh that is an approximate reconstruction of the original
artery surface.  Next, a user interactively edits the mesh to remove scanning artefacts.  Finally,
the user exports the points of the edited surface for generating a volume mesh to be used in the
ensuing fluid flow analysis.

I designed SLICE to serve as the interactive surface editing program in this process.  SLICE’s
first obligation is thus the generation of a surface mesh from input contour data.  The program
must be able to generate the mesh with interactive speed, since the surface will need to be re-
triangulated as the user makes changes.

The data that arrive from the artery scanning process contain high-frequency noise.  This noise
manifests in a rough edge of fine indentations on the contour which prevents a proper volume
mesh from being created.  The meshing algorithm has trouble meshing the edges, and the
volume created from the mesh does not accurately portray flow within the artery.  Thus, the
next requirement that the UWT project imposes is that SLICE smooth the contour data.

Of primary interest in my research are the requirements involving user interaction with the data.
The participants in the UWT project desire a method of interactively viewing an artery in 3D as
a shaded surface, and from any position.  Currently, they have no easy way to visualise the
artery as a surface.  They can see the artery as a set of 3D contours, but the noise and artefacts
must be removed before a surface mesh can be generated using the I-DEAS package.

The second aspect of the interaction requirements is to allow users to interactively remove
unwanted features from the surface mesh.  This means manipulating individual points on the
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contours, while providing real-time visual feedback to the user.  This requirement is the focus
of the experimental research component of this thesis.

Finally, the program must be able to save and generate a final surface mesh that can be used to
produce a tetrahedral volume mesh for later fluid flow analysis.
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SLICE, the interactive contour editor I implemented for this thesis, was written to fulfil the
requirements of the UWT project.  SLICE is used to edit 3D surfaces that have been
reconstructed from planar contours.  More precisely, it is a tool for visualising the surface
derived from a set of serial sections, and for removing artefacts from this surface that were
created during the data-gathering process. SLICE is written in the C language for use on a Sun
platform.  It uses xview for the user interface and xgl for the graphics.  It consists of two parts:
a “back-end” for surface reconstruction, and a “front-end” user interface for surface
manipulation.

The back-end of SLICE is built around Bernhard Geiger's nuages program, which was
integrated with SLICE to perform triangular mesh generation.  The nuages program (introduced
in Section 2.1) takes as input a set of serial sections, and triangulates them into a surface mesh.
I changed the nuages code to store the entire artery data set in memory at one time (instead of
only pairs of slices).  Also, instead of writing the resultant mesh to a file, as nuages originally
did, I made modifications so that SLICE can display the mesh graphically in both a projective
view (3D) and as a sequence of cross-sections (2D).  SLICE reads a contour data file and then
passes the point information to nuages functions for processing.  The triangular mesh
generated by nuages is then stored in an internal data structure in SLICE.  Manipulations made
to the points by the user change the contents of this data structure, which is read by nuages
whenever the mesh needs updating.  When the user has finished modifying the mesh, the
changes can be saved to a file.  The final mesh output is based on the stored representation of
points maintained by SLICE.
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Due to the data-gathering process, the contour data is often noisy.  Smoothing each individual
indentation by hand would be time-consuming and tedious.  An automatic method of
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smoothing is preferable.  Geiger highly recommends using a feature of nuages for smoothing
pixel-by-pixel contours like the ones used in UWT’s research [Gei93].  The user specifies an
error value for the smoothing on the command line.  In nuages, contours are approximated
with line segments, for example AB and BC in Figure 3.1.  nuages uses a pairwise process for
smoothing.  That is, to decide whether to remove point B, nuages tests B’s distance, d, to a
new line segment, AC.  If this distance is less than the user-specified error value, nuages
removes the point.  For the purposes of UWT’s research, a value was chosen that yielded an
error tolerance level of three percent, thus keeping the curves within three percent of their
original position.  For normalised data, this translates into a value of d of 0.03.

SLICE' s front-end consists of a graphical user-interface that provides both 2D and 3D displays
of the data, as well as a means to interactively view and edit the data.  I wrote the interface in
Sun' s proprietary widget set, xview, since this is included with Sun hardware, and will thus be
readily available to the end user in the UWT project.

The remainder of the chapter is devoted to describing how SLICE meets both the viewing and
editing interaction requirements of the UWT project.
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Since the fundamental purpose of SLICE is to remove artefacts from artery data, the first
question is one of recognising such an artefact.  It is known that all contours provided by the
data extraction method will be closed.  All defects in the artery will therefore appear as bumps
or hollows in the surface.  These deformations may be the result of either points or entire
contours that are misaligned. Currently, only a limited number of data sets are available and
thus it is impossible to precisely describe the shape of the artefacts.  By definition, however, the
bumps or hollows for which a point or group of points is misaligned must take one of the
following forms: a spike, a spine, a ridge or a hill (Figure 3.2).  I will define a spike to be a
single point that is out of place.  A spine is a set of spikes along a range of contours.  A ridge is
a range of points along a single contour that is out of alignment. Finally, a hill is a range of
ridges.  Even though the deformations in Figure 3.2 all appear as bumps, the phenomena could
also occur as hollows if they were inverted.  It is not known how many artefacts will fall into
each of these categories in real data sets. Also note that the definition of an artefact is
subjective and recognition requires a trained observer.
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In order to remove the kinds of artefacts described in the previous paragraph, interaction in the
SLICE application involves making detailed changes to points on the surface.  Although changes
usually affect a local region of the surface, it is important to see their effect on the overall shape
of the surface. Thus editing operations are integrated with changes in the view.  This dual
environment must be unified through a coherent interface.

The high-level tasks presented here are groups of low-level tasks that have been combined at
the semantic level of user goals.  They fall into two categories: viewing tasks and editing tasks.
Viewing tasks include zooming, scrolling and rotating the view, viewing a cross-section of a
surface, and viewing the inside of a surface.  Editing tasks include removing bumps or other
unwanted pieces of a surface, stretching, or disconnecting a surface, adding points, and
undoing the last editing action.
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The user must be able to easily change the current view of the surface, either to see a global
view, or to focus on a particular area.  Viewing tasks enable the user to accomplish these goals.

The most frequently performed viewing task is that of moving the viewpoint to a new position.
After the 3D view has been changed, there must also be a way to reset it to its original position.
To change between a close-up view, and a view of the entire surface, the user must be able to
zoom the viewpoint closer to and further from the surface.  For example, if the eyepoint is
positioned on the positive z axis looking toward the origin, this means moving the viewpoint
along that axis while the surface remains centred at the origin.  In order to better view the
surface, the user must be able to scroll it within the viewing window.  This means moving the
viewpoint in its xy plane, if the eyepoint is positioned on the positive z axis.  Finally, the user
must be able to rotate a surface in 3-space with the three degrees of freedom formed by
rotations.
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In the surfaces that SLICE is designed to edit, that many of the points to be manipulated are
hidden by other parts of the surface.  Another viewing task is thus to reveal hidden parts of the
surface, allowing the user to “see inside” it.

Finally, the user may wish to have a view that clearly shows the shape of contours in a
particular cross-section.  Since all cross-sections are planar, this can be accomplished by
showing a 2D view of the cross-section of interest.  In addition, there must be a way to cycle
through viewing consecutive cross-sections of the object.

These viewing tasks are rigid body transformations; they do not deform the shape of the
surface the way that editing tasks do.  Thus surface rotation, even though it occurs by applying
a transformation to the surface, as opposed to the view, will be regarded as a viewing task.
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SLICE is designed to edit surfaces reconstructed from contours.  Editing involves changing the
shape of the surface to eliminate artefacts created during the gathering of the contour data.

The SLICE user may want to remove bumps, or other parts of a surface. Regular-shaped bumps
or hollows can be eliminated by stretching or flattening the surface.  Stretching or flattening is
accomplished by moving groups of points in a local area. When a user moves a point on the
surface, points in a local surrounding region should also move as a function of the motion of
the focal point.  The user must be able to restrict the area of effect of this secondary motion.
This method of eradicating bumps does not delete existing points, but instead moves them to a
new location.  Other protrusions or unwanted pieces of the surface may be removed by
deleting portions of the surface.

In addition to deleting points from a surface, the user may wish to add points to it.  Because the
user may choose to perform some smoothing of the contours, there may be contour segments
that are sparsely populated with points.  Removing a portion of the surface may also contribute
to sparseness.  If the user wishes to change the shape of the surface near such an area by
stretching or flattening, as described above, more points may be needed on the contour to
allow the user sufficient control over the shape of the curve (i.e., so that there are enough line
segments to produce a reasonably smooth curve).

Editing tasks that add, move or delete points have the potential to significantly change the
shape of a surface.  It is therefore desirable for the user to be able to undo an action by
returning to a previous state if he makes a mistake.  This is especially important in light of the
subjective nature of the surface editing for which SLICE is intended.  In this application, it is
likely that users’ editing will pass though successive approximations before the final version of
the surface is reached.

These high-level tasks all depend on the same low-level building blocks: selecting, adding,
deleting and moving objects.  These fundamental tasks might occur in any interactive 3D
interface, and will be at the root of the interface design.
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Hardware limitations, the intended user of the software and attention to sound design principles
all influence the creation of the SLICE interface.  I will examine these factors now.
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When designing SLICE, I made certain assumptions about the style of its interface.  The
following choices were based both on the focus of the research and on hardware choices
imposed by the resource constraints of the UWT project.  I confined the requirements of SLICE

to a standard, low-end hardware configuration.

First, I limited the scope of the research to direct manipulation interfaces. This restricts the
interface choices to mouse click and drag for surface manipulation.  For example, a task such
as rotating the view should be performed with mouse actions, rather than with scrollbars or
other GUI widgets.

Second, SLICE is designed to provide only visual feedback.

Third, SLICE is designed to use a 2D input device (in the current implementation, a three-button
mouse is used in conjunction with a keyboard), and output to a monitor. Other input devices
were not considered.

Finally, the UWT project requires SLICE to run on a low-end Sun workstation (a Sun
Sparcstation 20SX with 96 Mb of RAM and an SX + cg14 4Mb VSIMM  graphics board was
used).  This limits the available graphics capabilities if performance is to remain at an acceptable
level for interactive manipulation.  Thus some options, specifically those requiring the more
advanced rendering techniques, could not be explored (e.g., when objects are in motion, a
wireframe rendering must be used instead of a shaded one).

2�3 4 5�6 798;:=<�>;:�?

SLICE will be used by people who are accustomed to studying arteries.  The users will be
conversant with the scanning process used to produce the computer representations of the
arteries.  They will therefore be familiar with the artefacts that occur in the data, and can be
expected to recognise what editing is required for a given surface representation.

Some computer skill i s assumed on the part of the users.  I expect them to be comfortable
using both mouse and keyboard to interact with a graphical user interface.  Prior experience
with 3D graphical interfaces is not necessary.  SLICE’s 3D interface should be easy to learn by
transferring skills from an existing knowledge base.  The 3D interaction techniques should be
simple extensions of 2D interaction methods.

I anticipate that the use of SLICE will occur in fairly infrequent but intense sessions.  In other
words, when new artery data is obtained, the user will sit down with SLICE, and work with one
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data set until all of its defects have been corrected.  I expect that the user will edit each defect
in sequence for a particular data set.  This style of interaction will govern the use of modes in
the design.  I will discuss this in detail, in Section 3.4.4.
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Although consistency is recognised as a difficult concept to define precisely [Gru89, Kel87], it
is widely perceived as a desirable goal for user interface design.  Although designers may not
be able to state explicitly what consistency means, it is possible to define its effects.  A
consistent user interface allows the user to feel familiar with the interface, and most
importantly, to transfer skills and learning.

According to Grudin [Gru89], there are three types of consistency: internal, external, and
external analogue.  Internal consistency refers to a coherence of principles within a single
interface, for example the use of the <F1> key to display help from anywhere within the
interface.  External consistency means consistency between different interfaces, such as the
“file” menu being located at the top left of a menu bar.  External analogue, or metaphoric
consistency has to do with the correspondence of the interface design to features in the real
world, such as the Macintosh desktop metaphor.

An interface designer should pay attention to the way in which consistency is used within an
interface, for it is not a panacea.  Consistency helps learning, but may sometimes impede use.
For example, keeping all the household brushes in one drawer is consistent, and would help
you to learn where to find them.  Brushes, however, may be used for different tasks.  There are
paint brushes, tooth brushes, lint  brushes, hair brushes, and brushes for sweeping the floor.
Keeping them all in the same place would make them difficult to use.  They would perhaps be
better located according to their function; a tooth brush may be kept in the bathroom, a paint
brush in the workshop, etc.

The interface designer may also choose to make things slightly inconsistent so that the user
pays attention.  Performing a particular operation, such as removing a file, may have drastic
consequences to the user.  If the interface for file removal is inconsistent with the rest of the
interface in some way, it will draw the user’s attention making sure that he takes special care
with that operation.
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Modes in an interface refer to different interpretations of same user input according to the
current state of the interface. For example, a left mouse click could mean “select a point” or
“delete a point” depending on the current mode.  Having modes in a user interface places
additional mental load on the user since it requires that he remember the current state of the
interface (or be reminded by the system), and what commands are applicable in that state.
However, some use of modes cannot be avoided in most user interfaces, as there are not
enough distinct brief input operations, such as single keystrokes, to map into all the commands
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of a system [Jac89].  The best one can hope for is to minimise the amount of mode-switching
that the user must perform.

The complexity of SLICE’s user interface calls for the use of modes.  Since I wanted the
interface to be a DMI, I wanted user input actions to come through the mouse and operate
directly on the mesh.  This meant that the individual input actions available for consideration
included single and double click and drag with any of the left, middle or right mouse buttons, or
combination of buttons (chording).  In fact, use of the mouse while different buttons are held
down might also be seen as operating in different modes.  I will not, however, make this
distinction in my discussion.

To determine how modes should be used in the interface, I analysed the semantic meanings that
these mouse actions must take on.  Table 3.1 enumerates the objects in the system and the user
actions that operate on them.

Objects Applicable Actions

view move (for scroll and zoom)

entire mesh move (for rotate)

point select, deselect, move, add, delete

contour select, deselect, move, delete

range of points select, deselect, delete

primary point (defined in
Section 3.5.1)

select, deselect, move
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The first possibili ty I considered was to have a mode corresponding to each type of object.  For
instance, depending on the mode, an action such as move would be applied to a point, a
contour, or the entire mesh.  One problem with this approach is that it produced too many
different modes.  The objects, however, can be logically grouped  according to the actions that
may be applied to them.  This implies that actions may better correspond to modes than objects
do.  In addition, an action-oriented scheme of modes is more likely to correspond to the user’s
mental model of the system.  Users are unlikely to think of the view, the mesh and its
component points and contours as separate objects upon which to operate.  Rather, I hope they
will perceive a more unified environment.

The second design I considered thus had modes corresponding to actions.  This type of
interface would be similar to a paint program such as MacDraw in which actions are thought of
as tools, and each tool is a mode.  Thus there are modes for each of selection, deletion,
addition, and motion.  These modes would govern the program’s interpretation of mouse
input.  The flaw with this design is that the user still requires a method of indicating to what
object the chosen action should apply.



IMPLEMENTATION 23

The final design attempted to pull together the best components of each of these designs by
abstracting the objects and actions at a higher semantic level.  The first design, which had
objects corresponding to modes, was natural because it allowed the user to use modes that
differentiate between targets for a consistent set of actions.  The second design, which had
actions corresponding to modes, fit better with the user’s mental model of the system.  More
careful inspection of the objects and actions reveals natural groupings between them.  The first
two object-action sets listed in Table 3.1 are related to viewing.  The last two are related to
ranges of objects.  The middle two are related to the building blocks of the mesh itself.  These
are the objects and actions at the heart of the interface.  Ranges and viewing are really “extra”
features that assist with the main tasks in this category.  Thus, the actions related to points and
contours should in some way be the default mode, minimising the amount of mode-switching
required on the part of the user.  Adding a point can be seen as a different type of action to
select, move and delete since the latter manipulate existing points.

Translating these groupings into modes yields a view mode, a range mode, an add mode and a
default mode.  This division allows the use of modes to indicate the target of the action (e.g.,
the view versus an object), as well as grouping actions at a semantic level.  In Section 3.5.2, I
discuss the precise mapping of the various mouse actions to the semantic actions that must be
performed in each mode.

Since it is expected that operations to manipulate the surface will be frequently interspersed
with changes in the view, the user must be able to make rapid, fluid changes between view
mode and default mode.  For this reason, keyboard and mouse combinations (for example
<ctrl> + mouse) were used to denote the different modes instead of using GUI widgets such as
radio button.  Pressing and releasing a key to switch modes can be done very quickly, and does
not require a shift of attention to a new location on the screen. Using a key-mouse combination
for each mode provides internal consistency to the interface.  Section 3.5.2 discusses the
precise mapping of keys to modes used in SLICE.

Finally, it is crucial that the user be provided with clear feedback as to the current mode.  A
frequent source of user error is inappropriate input due to an incorrect perception of the
current mode [Wick92], for example turning the key in a car’s ignition when it is already
running, having incorrectly perceived the engine to be off.  There are several different ways in
which a mode change might be signalled such as a change in colour, or display of a label.  Since
the user’s attention always remains focused on the object being manipulated, however,
changing the cursor seemed the most effective way to indicate a mode change.  The cursor is
always located at the precise point of the user’s interest, so a change in its shape will not go
unnoticed.  An open hand was used for view mode, a pointing hand for range mode, a “+” sign
for add mode, and X11’s default arrow cursor for default mode.
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For each task in SLICE’s interface, I explored a list of possible implementations.  I made this list
outside the context of any particular application.  Appendix A contains this design space of
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interaction possibilities.  In this section, I discuss how the low-level tasks are mapped into this
space, in light of their intended use in the SLICE application.

Where several implementations are semantically equivalent, it will be necessary to choose
between the options.  I used prototyping of alternatives as well as analysis of existing interfaces
to assist in making these choices.  In some cases, however, it may be desirable to implement
more than one method per environment of performing a task, each to be used in a different
situation.

I was able to immediately reject some implementations as infeasible or inappropriate to the
application.  Handles, for instance, are a common tool used to implement all kinds of
transformations on objects including rotation, translation and scaling, as well as more complex
manipulations such as bending, twisting and tapering [Hou92, Con92, Str92].  A handle is
usually some visual geometry that enforces a constraint on interaction, such as restricting
motion to a single axis.  I did not feel that the use of handles was appropriate in SLICE.  The
handles would only be useful for the viewing transformations, and not for reshaping the object.
Instead, they would obscure the surface, interfering with point manipulation.  Handles are
better for an interface in which they realise all of the desired interaction.  That way, the handles
themselves represent modes.  In other words, grabbing the rotation handle means mouse
motion will be interpreted to spin the object, while grabbing a scaling handle has mouse motion
interpreted to resize the object.

Another interface possibility that I rejected for the sake of simplicity was the use of planar
boundaries to aid in selection and deletion of points.  One option for selecting an area of points
to move is to define the dimensions of a (rectangular) section of the plane tangent to the
surface at the focal point of motion.  This plane is projected onto the surface, and the region
within the plane is the area affected.  An ellipse may be used instead of a rectangle.  A planar
boundary could also be used to define an area for use as a cutting plane. It would act as a
separator between the areas of the surface that are to be kept, and those that are to be
discarded.  In the case of removing a branch, however, deleting contours is a simpler solution.
Defining a planar boundary is difficult because of the many degrees of freedom associated with
an arbitrary plane.  Using arbitrary planar boundaries would mean forfeiting the one advantage
that the data provides: motion is constrained to a plane.

Since the high-level viewing and editing tasks share common low-level components (select,
move, add and delete), I will try to provide an internally consistent interface by implementing
each of the low-level tasks in the same way for all of their high-level uses.

The selection and movement of objects is at the heart of the high-level viewing and editing
tasks.  I discuss these two low-level tasks here in some detail, before presenting them within
the interface design framework.  In the rest of this section, I discuss the design of the DMI used
to manipulate the surfaces.
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Selecting something makes it the active object to which subsequent move or delete operations
will be applied.  You can select both points and contours.  Only one contour at a time may be
selected.  However, points may be selected in a contiguous range along a contour, and in sets
of ranges along several neighbouring contours (forming a contiguous area of selected points),
or as a primary point (the focal point for motion of a range).

Feedback can be provided to indicate which objects(s) have been selected by highlighting them
in a different colour, by having them blink on and off, or by changing their size or shape.  In the
SLICE interface, points and contours change colour, becoming “highlighted” when they are
selected.  Selecting a point as a primary point causes it to both change colour, and change
shape from a circle to an asterisk.

Contour selection is used in the deletion of surfaces in whole or in part.  Deleting a branch, for
example, would be done by deleting its constituent contours one at a time (a potentially time-
consuming operation, but one that should rarely be used).  Deleting a contour in the middle of
a surface will disconnect it.  Contour selection in 3D may also be used to choose a cross-
section of the surface for viewing in 2D.  Finally, a selected contour may be moved within the
plane in which it lies.

Point selection is a fundamental operation used to either delete, or more frequently, to move a
point or group of points. Smoothing out a contour may require points to be selected singly or
in a range. Tasks like removing a bump may require a range or area of points to be selected.

Multiple points cannot be moved without first selecting a primary point to act as the focus of
the motion.  As mentioned in Section 2.2.3, the user interactively manipulates the primary
point, and the other selected points (secondary points) move according to some function of this
motion.  This is illustrated in Figure 3.3.
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In the design of SLICE’s interface, I considered having the user define this function. Making
some assumptions about the user’s goal in moving the points renders this complicated process
unnecessary, however.  For the UWT project, users move points to smooth out surface
irregularities.  SLICE, therefore, implements the function in the following way.  First, a least-
squares approximation is used to fit a B-spline curve to the range of selected points.  (See
Farin’s book for a discussion of spline curves [Far93]).  The order of this curve is set to be
4 + ln( abs( range_length )) to provide reasonable control of the curve.  In this
way, the order of the curve increases logarithmically with the number of points selected
(range_len).  For example, the order of the curve is four when two points are selected, five
when three to seven points are selected, and six when eight to twenty points are selected.  A
higher order curve results in more control vertices, and hence greater control of the curve.  It is
important to increase the order of the curve more quickly at the low end of the range length,
because differences in order are more apparent when there are fewer points.

SLICE includes an additional point at either end of the selected range in the set of points to
which it fits the B-spline.  For this reason, at least two points on the curve must remain
deselected at any time.  SLICE then converts the B-spline control vertices produced by the
curve-fitting to Bézier control vertices1 because Bézier curves have the desirable property of
passing through their first and last control vertices.  Thus, the extra points at each end of the
range become the end vertices of the Bézier control polygon, and act as anchors while the
curve segment between them moves (Figure 3.3).

Because the manipulation of control vertices is an awkward, non-intuitive means of
manipulating a spline curve, SLICE uses a direct manipulation technique developed by Bartels
and Beatty [Bar89].  This allows the user to affect the shape of the curve in an intuitive way by
dragging points on the curve (i.e., the primary points).

When interaction begins, the original Bézier evaluation of the points on the curve is determined
at the locations specified by the parameters that correspond to the selected points on the
contour.  After the user has moved the primary point, the new locations of the control vertices
are calculated so that the curve will pass through the new location of the primary point.  Using
these new control vertex locations, the positions are calculated for the other points on the
curve.

In SLICE, it is possible for the user to select several ranges of points on adjacent contours and
then move a single primary point to affect the whole region.  In this case, the same process is
repeated for each curve to determine the new point locations.  However, since the user only
selects one primary point (marked with an asterisk in Figure 3.4) for the entire area, a pseudo-
primary point (marked with a dot in Figure 3.4) must be determined for each of the adjacent
contours.  This point is the closest, connected, selected point to the user-selected primary
point.  If such a point does not exist, the ranges cannot be moved together. This restricts the
points that can be moved as a group.  Adjacent ranges must contain at least one point that is
connected to the primary point of motion.  In SLICE, if an invalid set of ranges is chosen, the
user is warned when he tries to move the primary point.
                                                  
1 The code for fitting a B-spline curve to the selected points, and for converting the B-spline control vertices to Bézier control vertices was
generously provided by Richard Bartels of the Computer Graphics Lab at the University of Waterloo.
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I will call the contour containing the primary point the primary contour, and other contours
containing selected points secondary contours.  The process of finding pseudo-primary points
is repeated for all secondary contours, cascading outward from the primary contour (Figure
3.4).
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The primary contour moves the most, while secondary contours move less according to their
distance from the primary contour.  Once the delta has been found for the motion of the
primary point, it is applied to all the pseudo-primary points with exponential drop-off outward.
This exponent can be interactively set by the user with a slider to values between one and five,
with a default of two.  Figure 3.5 illustrates the default case in which the pseudo-primary points
in curves marked “B” move half as much as the primary point in the curve marked “A”.  The
curves marked “C” would move one quarter as much, and so on.
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After the delta for the pseudo-primary points is calculated, the motion can then be determined
for the other points on the curve in the same fashion as described earlier for the primary
contour.
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In Section 3.4.4, I introduced SLICE’s four modes (view, range, add and default modes).  In
this section, I discuss the keyboard actions used to implement each mode, and the mouse
actions used for the tasks in each mode.  All mouse actions except rotate apply to both the 3D
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view and 2D view, and are mapped the same way in each case for internal consistency.  The
following table presents the details of the mouse mappings in each mode.

LEFT MOUSE

(DOUBLE
CLICK)

LEFT MOUSE

(SINGLE CLICK)

MIDDLE MOUSE

(SINGLE CLICK)

RIGHT MOUSE

(SINGLE CLICK)

Mouse
only

select contour;
drag to move
selected

select point; drag to
move selected

deselect endpoint of
range (decided after
pretests)

deselect the last
selection

Mouse
+
<Shift>

select additional
contour

select additional
point at end of
range (decided after
pretests); drag to
add/delete points
from range

deselect all selected
objects

deselect the last
selection

Mouse
+
<Ctrl>

N/A drag to rotate object
(3D only)

drag to translate
view

drag to zoom view

Mouse
+
<Alt>

N/A add point N/A delete the last point
added
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3.5.2.1 View mode

In view mode, the only action is “move”.  There are, however, three types of motion: rotation,
scroll, and zoom.  The target for these actions is implied.  Scroll and zoom apply to the view,
and rotation applies to the entire mesh.  There should not be much distinction here in the mind
of the user; all actions are enabling the user to obtain a better view of the object.  It is easy to
map these three actions to click and drag with each of the three mouse buttons.  Details are
provided in Table 3.2.  Using the cursor as tool to grab and move the object provides
consistency through the use of an external metaphor.  The user can perform scrolling and
zooming in both the 3D view and the 2D view, but rotation applies only to the 3D view.

The direction of mouse movement when scrolling corresponds directly to the direction in
which the surface moves.

Mouse motion upward or to the right when zooming brings the surface closer to the viewer.
Mouse motion downward or to the left moves the surface further away.

Preliminary research in 3D interaction [Coa93] involved implementing rotation with a pitch,
yaw and roll interface that used a combination of sliders and a dial.  User testing of this
implementation revealed that such an interface was awkward and unintuitive.  Subjects found it
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very difficult to perform a simple task such as rotating the surface to swap opposite corners of
an plane.  For this reason, I did not consider the pitch, yaw and roll interface for this
application.  Instead, I used trackball rotation.  This interface provides additional consistency
through the use of an external metaphor.  A trackball interface works by having the user
imagine that the surface to be rotated is enclosed within a transparent sphere.  The cursor is
used to grab and roll the sphere.

3.5.2.2 Range mode

The primary purpose of range mode is to allow the user to select multiple points.  Selection of
a range of contours is not permitted because determining adjacency with a branching structure
is too complex.  Because only a contiguous range of points may be selected, I can use a click
and drag interface similar to that for selecting and moving points (thus providing some internal
consistency).  A left mouse click selects the first point in the range and then dragging the
mouse selects adjacent points along the contour; the further the mouse is dragged, the more
points are selected.  The direction of the range selected corresponds to the direction of mouse
drag in the following way: dragging up and to the right means select points in a clockwise
direction around the contour, and dragging down or to the left means select in a counter-
clockwise direction.  The model matrix containing all the viewing transformations is used to
ensure that clockwise and counter-clockwise refer to how the contour appears on the screen,
regardless of how the object is rotated in 3D.  If the mouse is dragged to the right to select
points, dragging it back to the left by a corresponding amount will deselect points, and
dragging it further will begin to select points in the opposite direction.

Selecting one endpoint and then dragging out the rest of the range was chosen as the range-
selection interface rather than selecting the two endpoints of the range for several reasons.
Selecting two endpoints on a closed contour would ambiguously divide the points into two
possible ranges, and might also require the user to perform an intermediate, time-consuming
view change operation.  The drag interface only requires the user to select one point with the
cursor.  It is also convenient since the artery data points lie very close together.  Users reported
employing a strategy of dragging one point past the end of the range that they wanted, and then
going back.  They found this a comfortable way to select exactly the desired group of points.

SLICE implements range mode using the <Shift> key as the mouse input modifier.  Using the
<Shift> key to indicate multiple selection has become an industry standard, and is used in such
products as MacDraw and the drawing tool in Microsoft Word for Windows 95, thus
providing further external consistency.

3.5.2.3 Default mode

Default mode is most complex.  I want the user to accomplish as many of their most frequently
performed tasks as possible without having to switch modes. It is natural to map the simplest
mouse action to the most fundamental task.  The core actions of the interface are select and
move. Mapping select and move to click and drag with the left mouse button (with no key
modifier) provides external consistency with other DMIs such as Microsoft Word’s drawing
tool and Alias Studio. In order to distinguish between points and contours, the two possible
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targets for these actions, single-click is used to indicate a point selection, and double-click is
used to indicate a contour selection. Without different means of selecting points and contours,
it might be difficult to distinguish between them on the screen when points lie close together.
Double-click is reserved for contour selection since this will be less frequently used than point
selection.  Note that this single- versus double-click paradigm allows for a later extension to the
interface to select a range of contours (i.e., double-click and drag).

The interface enforces several rules of selection.  When the user makes a new selection, the
selected contour or the contour to which the selected point belongs, becomes the current
contour.  It is highlighted in red in the 3D view, and the 2D view is changed to display the
cross-section to which it belongs.  A point and contour cannot be selected at the same time,
thus a contour selection will deselect any currently selected points, and vice versa.  In addition,
since SLICE allows only contiguous ranges of points to be selected, a new selection on the same
contour as an existing selection deselects that existing selection.  Finally, since the user may
select multiple ranges of points only on a contiguous range of contours, a new selection of
points on a contour that is not adjacent to an existing selection deletes any currently selected
points.

The middle and right mouse buttons are reserved for two kinds of deselection.  Note that since
deselection applies to both single points and ranges, the mapping for these mouse buttons
applies in range mode too.  The right mouse button, with the cursor located anywhere on the
screen, deselects the last selection (contour, point or range of points).  This operation may be
applied repeatedly to deselect objects in reverse order of selection.  For example, if the user had
selected three adjacent ranges of points, clicking the right mouse button three times would
deselect one range each for each click, from the most recent to the earliest selection.  The
middle mouse button is used to clear all selections.

3.5.2.4 Add mode

In add mode, the user can insert additional points into an existing contour.  This may be useful
if the user wishes to modify the local shape of a contour in an area where there is a long line
segment.

One might expect add to be a mouse action under default mode.  Once again, however, it is
advantageous to break internal consistency to draw the user’s attention to this operation as a
special situation, one that more drastically modifies a mesh than simple movement of points.  In
addition, consistency can help learning while impeding use.  Making add a separate mode
makes default mode easier to use.  With add included as an operation in default mode, there
would be insufficient mouse actions to handle all of the tasks.

A left mouse click in add mode adds a point at the cursor location on a selected contour.  To
be consistent with the default and range modes, where the right mouse button deselects the last
object selected, in add mode, the right mouse button deletes the last point added.
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The SLICE interface consists of a window that contains both a 3D and a 2D view of the surface.
The 3D window is located on the left, and displays a 3D projective view of the entire surface.
The 2D view is located on the right, and displays the cross-section of the surface containing the
current contour (see Section 3.5.2.3 for a definition of the current contour).  Interaction in one
window updates the other.  For example, selecting a point in 2D causes the point to be
highlighted in both views, as well as causing the red-highlighted current contour to be updated
in the 3D view.

Beneath each view is a text area that provides information as to the current actions available
with the mouse.  This information is updated according to what key modifier is depressed as
well as what is currently selected.

A menu bar at the top has a “File” menu which contains the standard (and thus externally
consistent) “New”, “Open”, “Close”, “Save”, “Save as…” and “Exit” options.  This menu was
not included in the interface used in the experiments.

Widgets providing operations that apply to both the 2D and 3D views are located between the
two views in the centre of the window.  These include pushbuttons for “Undo move”, “Select
nothing” and “Delete”.

Pressing “Undo move” restores the mesh to its shape prior to the last movement of points.
After undoing a move, the button label changes to “Redo move”, and pressing it will restore
the mesh to its state after the points were moved.  SLICE provides only a single level of undo
due to storage limitations imposed by the complexity of the data.

“Select nothing” duplicates the functionality of the middle mouse button, deselecting all
objects.  It provides some redundancy in the interface.  This may be useful since the mouse
mappings are fairly complex.  If the user cannot remember all of the mouse mappings, there is a
visible way (i.e., using a labelled button) to perform the action.

“Delete” is slightly different from an action like move or add.  It is simply an operation applied
to a selected point or range of points.  It does not, therefore, require mapping to a mouse input
action. (Note that move can also be thought of as an operation applied to a selected object, but
it requires further mouse input to indicate a new position.)  The interface described in
Section 3.5.2.3 is used for selection of a contour, point or range of points.  A GUI widget such
as a push button can then implement the delete action.  As per the previous discussion on
consistency in Section 3.4.3, an additional benefit of making delete a special case in the
interface (i.e., using a widget instead of a mouse action) is that it draws attention to an action
that has the potential to do damage if applied incorrectly.  A confirmation dialogue can also be
displayed when the action is performed.  Since no task in the experiments required the delete
operation, this button was not included in the experiment version of the interface.

Buttons that apply only to the 2D view are located directly beneath it.  These include “Next”,
“Previous” and “Reset view”.



32 CHAPTER 3

“Next” and “Previous” simply cycle through the cross-sections, displaying each one in turn in
the 2D view.  The current contour in the 3D view is also updated.  Again, these buttons
provide redundancy in the interface since the arrow keys provide the same functionality.

“Reset view” restores the view to its original state, undoing any scroll and zoom viewing
transformations that were made.  There is a corresponding button located under the 3D view to
reset that view, which undoes all rotation, scrolling and zooming.

Under the 3D view are the widgets that apply only to this view.  I have already discussed
“Reset view”.  In addition, there are radio buttons to determine the current shading style, a
“Disclose Inner surface” toggle button, a slider to set the “Deform exponent” for secondary
point motion (see Section 3.5.1), and a “Reset exponent” button to restore the slider to its
default setting1.

The radio buttons to change the current shading style provide options for showing only the
contours, showing a wireframe view of the surface mesh, or for flat-shading the surface.  A
more sophisticated method of shading, such as Gouraud shading, is not used for performance
reasons; even in flat-shading mode, the display changes to wireframe when the view changes or
a part of the object is in motion.  In Chapter 4, I will discuss a pretest that was used to
determine what form of shading to use in the experiments.  These radio buttons are not present
in the final experiment interface.

When editing with SLICE, the portions of the surface to remove will often be on the inner side
of a closed area.  In these cases, it will be necessary to disclose the inner surface before editing.
The “Disclose inner surface” toggle addresses this requirement by removing all front-facing
polygons.  This toggle button is not present in the final experiment interface.

The “Deform exponent” slider affects the surface, and the effects of its use are thus reflected in
the 2D view.  The slider, however, is really only useful in conjunction with the 3D view, and is
therefore located with the other 3D-related widgets.  If an area of points and a primary point
are already selected when this slider is adjusted, it interactively changes the shape of the surface
according to the selected exponent.  If nothing is selected, the slider setting will apply to all
subsequent motion of multiple ranges of points.  A “Reset exponent” button will reset the slider
to its default value. In Chapter 4, I will describe a pretest that was used to determine whether
this feature should be included in the final experiment interface.

                                                  
1 Since the term “exponent” may not be familiar to medical users, this should be renamed in future versions.
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Figure 3.6 shows the interface used in the final experiment.  There are some differences
between this and the complete interfaced discussed here due to some features not being
included in experiment (such as the shading style radio buttons, the button to disclose the inner
surface and the delete button), and due to changes made as a result of feedback from pretests
(the addition of “Select on contour” and “Reselect only” buttons) which I will discuss in
Chapter 4.  The interface in the experiment also contained a “Next trial” button that enabled the
user to progress through a series of trials in the experiment.
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I conducted an experiment to empirically determine whether a 2D environment or a 3D
environment is superior for editing surfaces reconstructed from contours.  Participants from the
University of Waterloo community ran trials in which they edited manually constructed surface
data.  The results of several pretests were used to fine-tune the environment for the experiment.
In this chapter, I present a complete discussion of the pretests and final experiment, from the
experimental design to the results and their implications.
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The most important step when designing an experiment is to determine what question one
hopes to answer with its results.  This may seem obvious to the reader, but the kind of question
posed will drive the direction of the work, and the precision with which one formulates it will
determine the nature of the results.  In this study, a first attempt at a question might be

“ Is a 2D environment or a 3D environment best for editing surfaces reconstructed from
contours?”

This question addresses the fundamental issue that I would like to investigate, but it is too
vague.  Several aspects need to be clarified.  For instance, what does best mean?  What is
involved in editing?  What kinds of surfaces should be manipulated?  Each of these ambiguities
relates to a different issue.  The first is a lack of precision in the motivating question.  The
second is an experimental task that is too broad in scope.  Finally, the third is an experimental
environment that contains too many variables.
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To make the question more precise, I first need to define “best”.  In the UWT project, the final
edited surface will be used to make precise measurements of fluid flow through an artery.  For
this reason, an interface that allows accurate manipulations of the surface is important.
However, it would be unrealistic to expect a user to spend a vast amount of time making a
single, small adjustment.  Thus the interface must allow the user to work at a reasonable speed
to achieve the desired accuracy.  Since speed and accuracy are the factors most important to
the end user in the UWT project, I will define best to mean fastest without loss of accuracy.
Speed and accuracy will be the dependent variables in my pretests and final experiment.

The second issue I must address is that of restricting the scope of the task that I investigate.  I
determined in Section 3.1 that the primary function of SLICE is to allow the removal of
anomalies from surfaces reconstructed from contours.  Because a typical editing session
involves a great many steps (and thus an abundance of variables) that depend on the data set
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involved, any attempt to mimic a real world editing scenario in the experiment would be
fraught with ambiguity.  For this reason, I must choose a simplified version of the editing task
that still contains the key elements of a real li fe situation.

The first step in making this choice is to eliminate any tasks that duplicate participants'
behaviour.  In Section 3.3.2, I outlined the elements of interaction, and found them to consist
primarily of adding, deleting, selecting and moving objects.  Contour manipulation is no
different from point manipulation in terms of either the mental or physical processes of
determining where to select on the screen and how to navigate the selected item in 3-space.
Thus, for the experiment, I will concentrate solely on point manipulation, as it will be the more
commonly performed activity in the UWT project.

Since deleting points is simply applying an operation to a selected point, and adding a point is
simply selecting a new location in which to place a point, the tasks of selecting and moving a
point encompass all of the interactions involved in point manipulation.

The task chosen for the experiment was to remove a bump or hollow from a surface, using
only the existing points.  In other words, points may not be added or deleted.  The participant
must reshape the surface by selecting and moving existing points. I used the same task in both
the pretests and the final experiment.  This task covers all aspects of interaction necessary in the
SLICE interface including changing the view, selecting and moving points, and making three
dimensional spatial judgements.

The third and final issue to address is what type of surface to use for the editing task.  The
participants for the experiment had no training or experience recognising artefacts in artery
data.  It was therefore infeasible to present a real data set to a participant for repair. Such a task
would not have a clearly identifiable goal for the chosen participants.  Instead, simplified data
sets were manufactured for the experiment.  I used a cylindrical tube as the surface, which
enabled me to provide a goal that the participant could easily identify: returning the tube to a
regular, cylindrical shape. This had the further benefit of guaranteeing a degree of similarity
between trials.  The cylindrical tube does, however, maintain some realism as it is an idealised
artery shape.

I first considered having the cylindrical goal surface shown on the screen for the user.
However, this made the experiment into a matching task, which is different from a real world
situation where there is nothing to which the surface can be compared.  It is likely to be easier
to match an existing surface than to create a new one.  The presence of the goal surface on the
screen would provide depth and positional cues not ordinarily present in the scene, and so one
was not displayed.

I considered several options for defining the end of a trial.  One possibili ty would be to have the
trial end when the participant brought the surface within a prescribed tolerance of the goal
surface.  This, however, leads to the measuring of speed, and not accuracy.  This is undesirable
for two reasons.  First, I want to see if users will achieve the same accuracy in 3D as in 2D, so I
must not force a particular level of accuracy in the trial.  Second, I would be unable to
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differentiate between a slow user who is good at 3D interaction, and a fast user who struggles
for a long time because he has trouble with 3D interaction.

Another option for determining the end of a trial was to let the participant manipulate the data
for a fixed amount of time, and then to measure the accuracy at the end of the elapsed period.
This, however, would lead to greater inter-participant variation within each environment in the
key factor of interest: accuracy.  Some participants would be inherently slower than others, and
thus be interrupted at different stages of their repair strategies.  This would make it more
difficult to obtain meaningful statistical results when comparing differences between
environments.  In addition, people might behave differently, and use different strategies when
under artificial time pressure.

The option that I chose was to have the participant determine for himself when the editing task
is complete by making a subjective judgement that the surface has been restored to the goal
cylinder.  Thus, the participant is matching the experimental surface to an implied target
surface.  Such a technique has been used in previous experiments in the form of colour [Sch85]
and shape [Bos87, Rue89] matching to imitate a creation task.  However, unlike a creation ask,
matching allows the experimenter to measure accuracy as well as speed.  Using the matching
technique, I was also able test whether accuracy judgements are difficult to make with the
SLICE interface.

Permitting the participant to determine his own stopping criterion allows an inherently slow
participant to be distinguished from one who is having trouble perceiving accuracy.  If I used a
tolerance-level stopping criterion, both types of participant would have long trial times and an
equal (by enforcement) measure of accuracy.  With my method however, participants having
difficulty making accuracy judgements may have faster trial times, but will score lower on
accuracy.  In addition, letting the participant determine the end of the experiment eliminates any
trials where the user might become frustrated after a long period of struggling to arrive at the
desired shape.  If the user gives up on an editing task, such trials will be reflected in a poor
accuracy result.

The subjective factor that a participant-determined stopping condition introduces into the
experiment is somewhat  mitigated by the instructions that I, as the experimenter, provided to
the participant.  These included a rough guide as to the level of accuracy and speed that were
sought.  In Section 4.3.7, I discuss the instructions provided to the participants in more detail.
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Once I had determined the question, I had to decide how best to answer it.  The basic
experimental design is the same for the pretest experiments and the final experiment.  In this
section, I present the elements of subject selection, data design and procedure common to all
the experiments.  I discuss the those aspects that pertain to a particular experiment in
Sections 4.4 through 4.7.
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Participants for the pretests were all recruited from the University of Waterloo’s Computer
Graphics Lab (CGL) and, as such, had some previous exposure to interactive 3D graphics.  I
hoped to receive useful feedback from these participants for fine-tuning of the final experiment.

All participants in the pretests, except me, were male.  My own results were typically examined
separately as those of a trained user.  Only one participant in the pretests was left-handed, but
used the mouse with his right hand.  Participants were all in their mid-twenties to early thirties.
They received no compensation for their participation in the pretests.

For the final experiment, there were sixteen participants in all.  Of these, thirteen were male and
three were female.  The participants were recruited by a news posting to the computer graphics
course newsgroup, the CGL newsgroup, and individual email requests.

One participant was a fourth year undergraduate student, three were professors, and the rest
were graduate students.  All sixteen were from the Department of Computer Science.  I
wanted to use subjects who were familiar with using computers since the experimental task
was fairly complex.  In addition, future users of the SLICE system, who represent the target
population, have experience using computers.

Two participants were left-handed, only one of whom used the mouse with the left hand.
Participants had a range of experience in 3D interactive graphics, ranging from none at all to
extensive training.  CGL members were not compensated for their participation in the study as
such contribution is expected as a condition of lab membership.  Non-members were paid ten
dollars for their contribution.

After using the SLICE interface extensively, I and one other participant became “expert users”.
Our results were handled separately from the regular participants.
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I created the data set for each trial by adding a deformation to a cylindrical tube of unit radius
comprised of ten cross-sections, with each cross-section having 25 points.  I will refer to this as
the base cylinder.  Instead of creating several deformations in one data set, I deformed the base
cylinder with a single bump or hollow for each individual trial to control for editing style. In
other words, participants are forced to tackle each deformation in sequence, rather than
switching back and forth between separate bump removal tasks.  This provides an element of
consistency between participants, and is in fact the way in which expert users are expected to
use the system.  Having only one bump for each trial instead of many, as might occur in reality,
also makes it easier to measure the time taken to remove the bump.

Because I have few data sets from the UWT project, there is no clear pattern to the appearance
of the scanning artefacts.  Thus, for the experiment, I attempted to reproduce all possible
classes of bump.  The deformation added to the base cylinder for each data set was one of a
spike, a spine, a ridge or a hill (refer to Section 3.3 for a description of each type of
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deformation) according to the pretest or experiment in question.  I provide details pertaining to
individual experiments in Sections 4.4 through 4.7.

The deformations were created using the SLICE editor.  Starting with the base cylinder, points
were moved to create a bump or hollow.  To avoid always having a simple inverse operation of
the data-creation steps to return the surface to its base cylindrical shape, deformations were
created in a number of ways.  Some deformations were made by selecting and moving a single
group of points.  These data sets are termed default or simple, depending whether they use the
“Deform exponent” slider setting (refer to Section 3.5.1 for a description of the slider that
controls the amount of movement of secondary contours) of ½ (default), or another setting
(simple).  Other data sets were made by selecting and moving one group of points, and then
selecting and moving a second, overlapping set of points (thus influencing the position of some
points by a two-step process).  The data sets created with this two-step method are termed
complex, since a different slider setting was used when moving each of the two point
selections.

When I chose the data sets to be used in each experiment, I ensured that for each deformation
type, there were an equal number of bumps and hollows, that the bumps appeared equally often
at the front of the surface, the middle and the back (with respect to the orientation of the bump
at the start of a trial), that the deformation lay equally often completely on-screen and partially
off-screen (in the 2D view), and that there were an equal number of deformations with an odd
and even number of points, and in the case of spines and hills, an odd and even number of
contours.

Recall from Section 3.5.1 that if a user selects a primary point for motion that is not connected
to an adjacent range, a warning is issued and no action takes place.  In the cases of spine and
hill data sets, I ensured that the displaced points could all be selected and moved together so
that this situation would be unlikely to arise during the experiments.
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In Section 4.2, I determined that speed and accuracy should be the measures of the “best”
editing environment.  Thus, speed and accuracy are the dependent variables for all experiments.
For the final experiment, the environment is the independent variable, and has two “levels:” 2D
and 3D.  Some of the pretests have a different independent variable, such as surface type.  I will
discuss such variations on a per-experiment basis in Sections 4.4 through 4.7.  In addition, the
nature of the deformation (spike, spine, bump or hill , as defined in Section 3.3) is a second
independent variable in some pretests, making those factorial design experiments.

I chose a within-subject, or “repeated measures” design for the experiments (i.e., each subject
receives all conditions) for two reasons.  First, it would have been difficult to recruit the large
numbers of participants required for a between-subjects design (i.e., a different group of
subjects receives each condition).  Second, each participant needs significant time to learn the
interface through instructions and practice trials.  A between-subjects design would involve
extra training time.
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To minimise the effects of learning, I used a counterbalancing scheme.  I made “order” a
between-subject variable by giving each participant a different random order of levels of the
independent variable.  Since there are two independent variables in all experiments, I must
combine every level of one with every level of the other.  Each such combination is termed a
condition.  Thus, I randomise the order in which the conditions are presented to each
participant.  Even the order in which practice trials are presented is randomised, in case
subjects choose to do only the first one.  I ensured that an equal number of each condition was
presented in each session.  In fact, each participant was presented with the same data sets
during the experiment, but in a pseudo-random order.  However, each trial used a different
data set, even when conditions were repeated.

Each participant completed a single session comprising two or three practice trials followed by
12 to 24 actual trials, depending on the experiment.  The number of trials given to each
participant was governed both by the length of time it takes to complete one trial, as well as the
number of conditions required for the experiment.  One hour was divided by the number of
conditions multiplied by the time per condition (i.e., time for one trial) to determine how many
times the complete set of conditions could be repeated for the experiment.  I did not wish to
make the entire session longer than one hour for fear the participant would lose concentration,
or become fatigued.  This meant I had to use a fairly large participant pool to obtain sufficient
data since the collection of a single data point took approximately two minutes.
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The experiment is run from a Unix shell script.  Each trial is a new invocation of the SLICE

program, with command line parameters to specify the conditions for the trial, such as the data
file used and the surface rendering type.  The shell scripts were generated from a C program
that used srand() and drand48()to pseudo-randomly generate the parameters that create
the trial conditions.  This script generation program was run once for each participant, and a
script file was output that had the participant’s initials as a suffix.

On each trial, the participant is presented with the SLICE interface as depicted in Figure 3.5.
Note that the appearance of  the interface was slightly different for the pretests; such
differences are described in Sections 4.4 to 4.7.  In the 3D view, the tube data set appears in
the centre of the window, from an eyepoint looking down the z-axis.  In the 2D view, a single
contour lies in the centre of the window.  After the participant has completed the interactions
necessary to eliminate the deformation, he presses the “Next Trial” button to stop the timing,
end the current trial, and begin the next.

Participants may pause between trials at this point if they desire, as timing for the new trial does
not begin until the mouse is moved.  Between trials, the interface disappears and reappears for
the new trial, since each trial is a new invocation of SLICE.
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The philosophy behind the data-gathering process was to collect as much information as
possible, in case it might prove useful in the analysis to follow.  By gathering all information
thought to be relevant, I hoped not to have to repeat any experiments should some trend be
revealed in the initial analysis that provoked a look at unanticipated factors.

The experiment program recorded information for every window entry or exit, mouse click and
button press event generated by the participant.  For these events, a timestamp, event code and
description were stored.  The information was written out to four files.  The naming
convention for these data files used the participants initials as a prefix to the file names.  The
files were called abc.accuracy.info, abc.event.info, abc.event.data and abc.move.info, where
“abc” were the participant’s initials.  Examples of these files and details of their contents appear
in Appendix B.

The accuracy file recorded the final distance of each point from the corresponding point on the
base surface.  The two event files stored information about the start time, duration, and nature
of every significant user interaction with the interface.  Each time a point was moved, the
movement file kept track of its new location, the distance it was translated, the current
selection type, and whether the move was done in 2D or 3D.

The information contained in the four files described above was distilled into a single file for
analysis by SAS (a statistical analysis software package).  A C program was used to process
the data files, generating a file abc.out that was read by SAS. This file contained one line per
trial, with the subject’s initials, trial number, information on the data set used, total elapsed
time, total manipulation time, total viewing time, accuracy and other optional information,
depending on the particular pretest or experiment.  The accuracy was calculated as the total
error summed over each point and each contour.  An example of this file is included in
Appendix B.
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I used an analysis of variance (ANOVA) test to determine the means, variance and whether there
was any significant difference in the means between groups.  An ANOVA is used for interval or
ratio data when the underlying distributions are approximately normal, as is expected of my
speed and accuracy measurements.  I used a single variable ANOVA for the experiments with
only one independent variable, and a two variable, no replacement ANOVA for my factorial
design experiments, which have two independent variables.

The F value of the ANOVA test reported for each experiment is the ratio of variance between
groups to variance within groups.  A ratio close to 1 indicates that the groups sampled come
from the same population and the independent variable has no effect.  As F gets larger, one
becomes increasingly confident that differences among groups were due to the effect of the
independent variable rather than to chance.  As a standard level at which a result can be said to
be statistically significant, scientists have agreed that the likelihood of obtaining the observed



42 CHAPTER 4

differences in samples due to chance should be less than 1 in 20.  Some scientists are more
strict, requiring that the test indicate a difference less than 1 time in 100.  This is called testing
at the .05 or the .01 level of significance and is referred to as p < .05 or p < .01.  I will use
p < .05 for testing my results.
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Each participant received both written and verbal instructions at the beginning of the
experiment.  I gave the same verbal instructions regarding the experiment procedure to all
participants, but also permitted them to ask questions if they had difficulty with the interface.
After the interface was displayed on the screen with the first sample data set, I described the
format of the experiment.  I told each participant that his task was to move points on the
surface to eliminate the single bump or hollow that would appear, thus returning the cylinder to
a smooth, regular shape.

I informed participants that their accuracy in performing the experimental task was more
important than their speed.  Because my final goal is to create a surface suitable for generating
a precise volume mesh, accuracy is more important to me than speed (provided, of course, that
the difference in speed is not extreme).

I indicated that they should strive to make each surface presented into a surface as close to a
cylinder as possible in a reasonable amount of time, and without worrying about minute details.
In order to provide a guideline for what a "reasonable amount of time" should be, I estimated
that an average trial should take roughly two minutes.  This was determined by previously
timing several people for some sample tasks.  I instructed participants that I would measure
accuracy by the final shape of the surface, and not by the position of individual points.  This
reflects what is important in fluid-flow analysis for the UWT project.

I told participants that they had three practice trials before the real experiment began, and that
they should use these trials to familiarise themselves with the interface.  To this end, I left
written instructions with the participant that included a tutorial to guide them through the use
of all the features of the interface.  The written instructions also included a letter explaining the
purpose of the experiment.  The full written instructions provided to the participant for the final
experiment appear in Appendix C.  Instructions for the pretests were similar.

During the fifteen minutes following my initial instructions, I visited the participant in the
experiment room twice to see if there were any questions about the interface.  I then left the
participant alone to do the experiment, and then fill out a questionnaire.
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Because the SLICE interface is so complex, there are many variables in the experimental
environment that have the potential to affect the results.  It is therefore desirable to eliminate as
many variables as possible so that I can be more certain that any experimental result obtained is
due to the independent variable, and not to some factor in the environment.  Consequently, I
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used several pretests in an effort to eliminate some of the variables such as the surface used for
rendering, and the controls of the GUI.  The pretests also served to fine-tune the experimental
design.  They helped to validate the task, the data-gathering process and the reliability of the
results.

I used the first pretest to determine the most effective surface type (both objectively and
subjectively) for displaying the data among contours only, wireframe mesh or flat-shaded.  By
using only one surface type in the final experiment, I eliminated one variable in the
environment.

I used the second pretest to determine which views (2D, 3D or both) should be presented to
user.  By using only the best arrangement of views for the final experiment, I eliminated
another environmental variable.

I used the final pretest to determine whether any bump types could be eliminated from
consideration for the final experiment in a further effort to reduce variables.
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To reduce the number of variables in the experiment, I wanted to have only one surface type
for rendering objects.  This pretest was designed as an informal means of determining the best
surface type to use, both from a subjective and an objective point of view.  The objective
measure of "best" was that described previously in Section 4.1: fastest for editing without loss
of accuracy.  The three surface types among which I had to choose were contours only,
wireframe mesh and flat-shaded.  Due to performance limitations, I was unable to consider
such options as Gouraud-shaded or texture-mapped surfaces.
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In this pretest, I was looking for a trend, rather than a rigorous result.  Consequently, there
were only four subjects, including myself.  Each subject received three practice trials, all using
hill data sets.

This pretest had a factorial design, since both surface type and bump type were manipulated.
For each of the three surface types, all of the four bump types (spike, spine, ridge and hill) were
tested, resulting in a total of 3 × 4 = 12 conditions.  Two repetitions of each condition were
used for a total of 24 trials in this pretest.  For the spine and hill data sets, default, simple and
complex slider settings were present in equal proportions.

Only the 3D interface, with no 2D display, was used for this experiment.
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Participant feedback from this pretest served to uncover the bulk of the problems with the
SLICE interface.  Participants found that they often accidentally selected a point that was two
contours away from their current selection, especially in wireframe and shaded modes.  This
caused them to lose their entire selection, as it was replaced with the newly-selected point.
These comments led to an augmentation of the interface, whereby selections made with the
<Shift> key depressed are restricted to a contours adjacent to any existing selection.

Participants reported similar difficulties when re-selecting a point to make it the primary point
for motion.  If an unselected point were accidentally chosen, the current selection would be
lost.  To reduce the occurrence of this problem, a second feature was added to the interface.
When set, the “Reselect only” toggle restricts the points that can be picked to those that are
already selected.  This assists in the selection of primary points.

Further participant feedback led to the improvement of the “Select on Contour” toggle.
Instead of restricting selection to points on the contour on which the last selection was made, I
changed the functionality so that when set, selection can occur only on the current, active
contour (see Section 3.5.2.3).  This contour can be changed using the arrow keys.  It is
highlighted in red, thus providing a cue to the user as it is “moved” through the object.  Now,
the “Select on contour” toggle makes it easy for the user to locate and select points on any
given contour by restricting the degrees of freedom inherent in the problem.

Participants experienced further frustration when they selected a range of points, and “missed”
the first point, i.e., they started the range selection one point too early or one point too late, and
then dragged out the rest of the range.  Because all range selection was done by dragging the
mouse, there was no way to add or deselect a point from the end of a range; the whole range
had to be selected again.  To remedy this, I added the abili ty to deselect the endpoint of a range
using the middle mouse button, and to select an additional point at the end of a range using
shift plus the left mouse button.

Participants also pointed out the confusion caused by having the direction of range selection
fixed with respect to the object instead of the world.  When the object was rotated 180 degrees
about the y axis, the direction of range selection would reverse from the user's point of view.
This inconsistency was eliminated by adjusting the direction of selection according to the
current degree of rotation obtained from the model transformation matrix.  For later
experiments, the direction of rotation was always counter-clockwise on the screen as the user
moved the mouse to the right.  Now, depending on the 3D rotation, the direction of range
selection in the 3D view may not always correspond with the direction in the 2D view.  This
may cause problems if the user is selecting in one view while watching the other.  On the other
hand, the discrepancy can provide some feedback as to the current 3D rotation.

A final detail of the interface was corrected at this point by having the interface window appear
in the same place on the screen for each trial.
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Perhaps a more serious problem than those encountered with the interface involved the nature
of the data.  Some participants found themselves simply zooming in from the default view, and
performing no rotation of the surface.  This made the cylindrical surface appear as a set of
concentric circles, and hence the points that formed the deformation were immediately obvious
(see Figure 4.1).
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The arrangement of the contours as a cylinder made the deformation into an emergent feature,
i.e., a global property of the data not visible in isolation [Wic92].  In other words, the bump
became apparent as soon as it was placed in close proximity to the other non-deformed
contours.  In addition, the human perceptual system is quite adept at perceiving circles and
detecting when a point lies slightly off the circle [Arn65].  Both of these global processing and
feature detection phenomena tend to be pre-attentive and automatic.  Thus, my choice of data
set produced an experimental task that participants could perform with great ease and
accuracy: aligning points to match a circle.  Such a task fails to mimic the ambiguity of the real
world task of removing deformations from an artery surface.

I decided to modify the test data sets used in the experiments in case the effect of concentric
circles introduced a confounding variable into the study.  I felt that simply squashing the
circular contours to form ellipses would not be sufficient to eliminate the effect.  My next
thought was to change the surface from a cylinder to a Y-shaped tube.  I still believed,
however, that this would still be prone to the same pitfalls as a cylinder when viewed from
certain angles.

The solution I implemented was to make the tube into a spiral shape.  In other words, the
contours are laid out along a spiral path rather than along the straight line axis of a cylinder.  A
partial spiral added sufficient curvature to the surface so that there was no angle from which
the user could line up the contours.
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To further mitigate the effect, I used elliptical, rather than circular contours.  Figure 4.2
illustrates the resulting surface.  To create the new data, I warped my existing data sets with the
following equations:

)+*-,/.&0 ε 1�243 α 5�687:9<;>=@?!A	? α B�C8DFEHG�I JKBLCNM/O&D
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‘k’ was chosen as 4 to sweep out ¼ of a circle and ‘ε’ was chosen as 0.4 to stretch the unit
circle to an ellipse with a major axis of 2.8 (i.e., 2 ∗ 1.4), and a minor axis of 2.

Since all contours of the base surface are still i dentical under this mapping, the smooth, regular
shape of the surface is preserved.  This allows participants to easily identify irregularities and
recognise when they have been corrected.

In addition, because the data sets were warped after the deformations had been added, the
deformation exponent slider no longer performs a perfect inverse operation when the user tries
to eliminate the bump.  Without this effect of the warping, the slider might be more useful in
the experimental situation than it would be in the real world.  With the warping of the data,
however, the effectiveness of the slider is more realistic.
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Because there were so many changes to the interface as a result of the feedback from the first
group of participants, the experiment was repeated.  Two fresh participants in addition to one
participant from the first version of the pretest performed the experiment with the new interface
and warped surfaces.  I used the data gathered during this run of the experiment to determine
the most effective surface type to use in the rest of the experiments.  I present the main results
in the tables below, but a full analysis can be found in Appendix D.
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In the tables in this and the following sections, the letters in the “Significant difference?”
column are used to indicate whether or not the result in the second column (mean speed or
mean accuracy) is statistically significant at the .05 significance level (i.e., a large value of F and
p < .05).  If two rows have the same letters in the “Significant difference” column, then there is
no significant difference, whereas means marked with different letters are significantly different.
For example, in the table below, we see that the hill bump type is marked with an “A,” while
the ridge, spine and spike bumps types are marked with a “B.”  This means that there was a
statistically significant difference at the .05 level in speed between the hill and the rest of the
bump types (F = 6.84, p = 0.0005), but no significant difference in speed among the other
bumps types.

Bump
type

Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

hill 169.12 142.89 A 18

ridge 96.58 80.37 B 18

spine 87.00 62.41 B 18

spike 37.98 33.46 B 18
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The first test I did on the data was a “sanity check” to see that it took longer to correct the
deformation the more points there were to move.  This trend is indicated by the mean speeds in
Table 4.1.  The spike (only one point displaced) was faster than the spine (single points along a
range of contours), which was in turn faster than the ridge (points along a single contour).  The
most complex bump type, the hill (an area of points across multiple contours), was slowest of
all.  Although the differences are not statistically significant, it is likely that they would become
so with data from more participants.

Surface
type

Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

shaded 112.23 70.61 A 24

wireframe 103.12 129.23 A 24

contours 77.66 89.94 A 24
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The mean speeds for each surface type in Table 4.2 show that participants were fastest with the
contour surface, and slowest with the shaded.  These differences were statistically non-
significant (F = 1.00, p = 0.37), although a larger sample size may have made the result more
pronounced.
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Participants unanimously found the surface drawn with only contours to be the easiest to
manipulate, and preferred it over the wireframe and shaded surfaces. They reported that they
were much more willing to spend the time to place the points precisely with the contour
surface since that surface type was much less frustrating to use than the other two.  In spite of
the extra care spent with the contour surface, it still had the shortest associated mean time.

Bump type Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

hill 1.7722 0.6788 A 18

ridge 0.9962 0.9984 B 18

spine 0.2696 0.2524 C 18

spike 0.0593 0.0742 C 18
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To secure confidence in my data and my analysis process, I compared the accuracy for each
bump type as an additional check.  Recall from Section 4.3.5 that accuracy is measured as the
total displacement of the points from the base surface, and thus a lower number means higher
accuracy.  The units used to measure accuracy are the same as those used to measure the size
of the ellipses in the base cylinder, which had a major axis of 2.8 units and a minor axis of 2
units.

As one might expect, the mean accuracy data in Table 4.3 shows that there was a statistically
significant difference in accuracy at the .05 level between some of the bump types (F = 36.20,
p = 0.0001).  Not surprisingly, accuracy, like speed, was best for the simplest data type (the
spike) and worst for the most complex (the hill).  The fact that further statistical significance
emerges between the various bump types when accuracy is measured supports my previous
assumption that the results for speed differences between bump types would become more
significant with more participants.

Surface type Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

shaded 1.0698 1.0945 A 24

wireframe 0.8118 0.9328 B 24

contours 0.4406 0.5193 C 24
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There was a statistically significant difference in accuracy at the .05 level with each of the three
different surface types (F = 8.00, p = 0.0008).  Accuracy was highest with the contour surface
and lowest with the shaded surface.  The mean accuracy for each surface type is reported in
Table 4.4.
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Users were fastest and most accurate with the contour surface.  These results were consistent
with participants’ verbal feedback.  Contours only was found to be the easiest surface type to
manipulate, and was preferred by all subjects.

As a final check, I looked for an interaction between the bump type and the surface type to
ensure that the contour surface did in fact globally produce higher accuracy.  I found no
tendency toward such an interaction (for accuracy, F = 1.74, p = 0.13, and for speed F = 1.40,
p = 0.23).  Thus, the contour surface was used for all subsequent pretests and experiments.
This also allowed more direct comparisons between the SLICE interface and the IDEAS
interface, which uses only contours to display the surface for editing.
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In the final experiment, I am interested in comparing editing in 2D and 3D.  When editing in a
2D environment, however, the presence or absence of a 3D view may affect the user's
performance (and likewise when editing in 3D).  To avoid testing all combinations of 2D and
3D views in the final experiment, I used a pretest to determine whether in fact an additional
view was helpful to the user.

 "! # $&% '�(")+*-,/.&01*-24365�798:*<;�.�=�2

Since I was again looking only for a trend, only four subjects in addition to myself and the
other expert user performed this pretest.  I ran it in two separate sessions.  One session
compared editing in 2D using only the 2D display with editing in 2D using an additional 3D
display for surface viewing only.  The other session made the equivalent comparison for editing
in 3D, comparing performance with and without an additional 2D display for viewing only.
Each subject received three practice trials and sixteen actual trials in each session.

This pretest had a single variable design: the editing environment was the independent variable
manipulated.  For both of the editing environments (i.e., with and without an additional view),
all of the four bump types (spike, spine, ridge and hill) were tested, resulting in a total of
2 ∗ 4 = 8 conditions.  Two repetitions of each condition were used for a total of 16 trials in this
pretest.  As in the surface type pretest, default, simple and complex spine and hill data sets were
present in equal proportions.

When both displays were present, the user was able to differentiate between the display for
editing and the display for viewing by the background colour.  The display for editing had a
black background, whereas the display for viewing only was grey.
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As expected, participants found the 3D view more difficult to use than the 2D view.  They
reported that since they found the 2D view easier to use, they felt more inclined to take extra



50 CHAPTER 4

care with accuracy when they were using it.  In a real world scenario, however, one can
assume that users would be more motivated to be precise in whichever view they were using.

I added the instruction to the participants to stress accuracy over speed as a result of the
feedback from this pretest.  I hoped that it would urge users to take as much care with
accuracy in 3D as in 2D.  With this instruction, I now hoped to measure differences in
effectiveness of the interface, rather than in motivation.  The fact that users prefer to work in
2D, however, is already a telling sign that the 3D interface is arduous to use.

After this pretest, I uncovered another problem with my data sets unrelated to the use of
additional views.  From participants’ reports, I found that it was still to easy to remove the
deformations from the cylinders by performing the inverse process to their creation.  If a
participant happened upon the right group of points, he could smooth out the bump perfectly in
a single movement.  Since this is unrealistic in terms of the real data, I introduced some random
jitter into the points according to the following equation:
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After the points had been stretched from a circle to an ellipse, I jittered a random point on each
bump by a small, random amount within a certain range.  The effect of this was such that if the
participant did select and move the right group of points (i.e., the same ones that had been
moved in the creation of the deformation), the points would not fall exactly into place.  Some
further fine-tuning of single points would be required to smooth the surface properly.  This
effect better reflected interaction with actual artery data.
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I used the data from this pretest to determine whether or not an additional view should be
present in the interface for the final experiment.  Since I wanted to use the same interface for all
trials of the final experiment, I did not differentiate between bump types in the data.  A single
factor ANOVA was performed on both the 2D and 3D data to find out whether an additional
view was useful over all data types.  Once again, I present the main results in the tables below,
with a full analysis in Appendix D.

View type Mean speed
(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D only 55.84 45.42 A 46

2D with 3D
view

59.23 60.19 A 46
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The presence of the 3D view when editing in 2D had no statistically significant impact on
participants’ speed (F = 0.093, p = 0.76), although the speed with the 3D view was slightly
higher than without it (Table 4.5).  It does seem reasonable that a user would be slower with
the additional 3D view since it provides extra information to process.

View type Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

3D only 70.25 62.13 A 49

3D with 2D
view

73.64 57.64 A 49
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When editing in 3D, the presence of the 2D view had a statistically non-significant effect on
speed (F = 0.079, p = 0.78).  As in the 2D session, the mean speed with the additional view
was slightly greater than without it (Table 4.6).  From verbal reports from the participants, it
seems that the 2D view was used to aid with precision.  The extra effort that participants made
to be precise when the 2D view was present may have slowed them slightly.

 View type Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D only 0.3441 0.4106 A 46

2D with 3D
view

0.3049 0.4038 A 46
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Table 4.7 reports the mean accuracy for editing in 2D with and without the additional 3D view.
When editing in the 2D view, there was no statistically significant difference in accuracy with
the presence of the 3D view (F = 0.21, p = 0.64).  The 3D view did not seem to provide the
kind of information that assisted users with precise point adjustments, since there was no
significant improvement in accuracy with its presence. There was also no decrease in accuracy,
however, since the 3D view provides additional information to complement the 2D view.

View type Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

3D only 0.4736 0.7334 A 49

3D with 2D
view

0.3241 0.4042 A 49
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As anticipated from the verbal feedback, accuracy was slightly better when the 2D view was
present when editing in 3D (Table 4.8), although this result was also statistically non-significant
(F = 1.56, p = 0.21).  Users consistently reported that the 2D view helped them to be more
precise.  This may be because the 2D view is, by construction, parallel to the plane of the
contour.  By the nature of the 3D view, the contour being edited is often rotated so that it is no
longer parallel to the viewing plane.

There was a wide variation between participants in terms of which view combinations were
most useful.  Some subjects never used the extra view; others some used it extensively.  Those
participants who used the extra view were adamant about the need for its inclusion.  Aside
from the one participant who found the extra view distracting, those who did not use it were
generally unconcerned about its presence.  Thus, participants found the extra view helpful at
best, and redundant but harmless at worst.  It provided additional information for those who
wanted it, and was ignored by those who didn’t.  The interface was therefore constructed with
the additional view for all subsequent experiments.
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At the outset of my inquiry into 2D and 3D environments for surface editing, I expected that
users would perform better in a 2D environment for tasks of a 2D nature.  In other words,
where the deformation was restricted to a single contour, users would do better correcting it in
a strictly 2D environment.  My hope was that a 3D environment would be better for editing
deformations that were 3D in nature, i.e., spanning multiple contours.  With this pretest, I thus
wished to eliminate the spike and ridge deformations as conditions for the final experiment
since they affect only a single contour.  If participants perform better in 2D for these types of
deformations, then only spine and hill data need be tested in the final experiment.

 "! # $&% '�(")+*-,/.&01*-24365�798:*<;�.�=�2

Instead of running more participants through an experiment, the data used to determine
whether the spike and ridge could be eliminated from the final experiment were taken from the
additional view pretest, and simply analysed differently.  Only the data from the sessions with
both views present were considered (i.e., sessions having 2D editing with a 3D view and 3D
editing with a 2D view).  For each of these two environments, all four bump types had been
tested, and two repetitions had been made of each condition, resulting in 16 trials per
participant (4 × 2 × 2 = 16).  Six participants had performed the pretest.  This meant that there
were 96 data points in total, consisting of 24 for each bump type, with half from each
environment.  For this pretest, each of these groups of 24 data points was analysed separately
using environment type, i.e., 2D versus 3D, as the independent variable.
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The following tables present the main results, with a complete analysis in Appendix D.  The
conditions analysed in this pretest were the same as those used in the final experiment, so I
could look at trends to anticipate the results of the final experiment.  The spine and hill data did
not produce any statistically significant  results with only the small number of participants used
in the pretest, however, and so merit further study with more people in the final experiment.

Environment Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D 0.0743 0.0876 A 12

3D 0.1002 0.1408 A 12

  ������� � � � � ���� �!�"�!�#$#�%'&�!�#)(�* +�&�,$-�. "' �/� �* +�&�0�!�1�. +2"43

Environment Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D 52.49 44.90 A 12

3D 59.01 28.78 A 12
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The means reported in Tables 4.9 and 4.10 reveal no statistically significant difference in speed
or accuracy for spine deformations (for speed, F = 0.18 and p = 0.68, and for accuracy,
F = 0.29 and p = 0.59).  Participants were a little slower and a little less accurate in 3D.
Further study with more participants in the final experiment will show whether or not this trend
is significant.

Environment Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D 0.8467 0.4361 A 12

3D 0.8239 0.4275 A 13
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Environment Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D 131.70 64.80 A 12

3D 145.50 58.61 A 13
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As illustrated by Tables 4.11 and 4.12, the same trend in speed occurred for hill data as for the
spine data, i.e., participants were slightly faster in 2D than in 3D.  Accuracy, however was
slightly better in 3D.  Neither result was statistically significant (for speed, F = 0.31, and
p = 0.58, and for accuracy, F = 0.017 and p = 0.90).  Again, this merits further study with more
participants.

Environment Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D 0.0255 0.0207 A 11

3D 0.0212 0.0223 A 12
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Environment Mean speed
(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D 16.29 7.57 A 11

3D 26.29 10.66 B 12
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Table 4.13 shows that there was no significant difference in accuracy between 2D and 3D
(F = 0.23, p = 0.64) for the spike data.  As predicted, however, participants were significantly
faster at the .05 level in 2D than in 3D (F = 6.61, p = 0.02).  According to the definition of
“best” from Section 4.2, this means that 2D is the best environment for removing spike
deformations.

Environment Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D 0.2443 0.0976 A 11

3D 0.3095 0.2072 A 12
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Environment Mean speed
(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D 30.47 10.75 A 11

3D 57.78 27.39 B 12
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Just as the spike data confirmed my predictions about 2D being a better environment for
editing 2D deformations, so did the ridge data.  Table 4.15 presents the mean accuracy for the
two environments; there was no significant difference between them (F = 0.90, p = 0.35).  The
mean speeds in Table 4.16, however, show that participants were again significantly faster at
the .05 level at editing in 2D (F = 9.56, p = 0.006).

Spikes and ridges were eliminated from consideration in the final experiment, leaving only spine
and hill data sets to be tested.  This cut the number of experimental conditions in half, allowing
more relevant data to be gathered during the limited duration of the final experiment.
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Once a sound experimental environment was established, I was ready to test for my main
result.  This experiment was used to determine whether a 2D environment or a 3D
environment was better for editing deformations of a 3D nature, namely spine and hill data sets.
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The final experiment was conducted over a period of one week. Each participant was brought
into a small, quiet room to perform the experiment alone on the room’s single workstation.
Each session lasted approximately one hour, and consisted of three practice trials, twelve real
trials, and a short questionnaire.

There were an equal number of trials for the 2D and 3D environments, and an equal number of
spine and hill data sets, distributed evenly over the two environments.  In order that the
participants could finish the trials in about half an hour, three repetitions of each condition were
included, since a trial takes approximately two minutes to complete (2 × 2 × 3 = 12).  An equal
number of data sets had bumps and hollows, and equal numbers were constructed using simple,
default and complex slider settings.

In the first practice trial, the participant was free to edit in both the 2D and the 3D windows so
that he could try everything in the instructions.  The second two practice trials were presented
in random order.  One allowed editing only in 2D and the other allowed editing only in 3D.

The same data sets were presented to all of the participants, but each participant received them
in a different random order.

<�= > ?;@ ACB�D�E%FHG�D

I present the main results in the tables and charts below.  A complete statistical analysis can be
found in Appendix D.  Spine and hill data were grouped together in this experiment, and a
single variable ANOVA was used to test for differences in the mean speed and accuracy between
2D and 3D.
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Figure 4.3 compares the mean accuracy for the 2D and 3D environments (indicated by red
squares).  The yellow squares mark one standard deviation away from the mean.  There is very
little difference in the means between the two environments.

Environment Mean
accuracy

Standard
deviation

Significant
difference?

No. of
repetitions

2D 0.7622 1.0231 A 94

3D 0.8045 1.1279 A 96
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Indeed, the means in Table 4.17 show no statistically significant difference in accuracy between
the two environments (F = 0.073, p = 0.79).  This bodes well for the viability of a 3D interface
because it shows that users are able to be equally precise using either 2D or 3D for editing.

3D2D
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A glance at Figure 4.4 shows that the performance of the 3D interface suffered with respect to
its speed component.  The mean speed for 3D is noticeably slower than for 2D, with a wider
spread of  the data.

Environment Mean
speed

(seconds)

Standard
deviation

Significant
difference?

No. of
repetitions

2D 118.44 62.33 A 94

3D 149.60 100.97 B 96
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This difference in speed was statistically significant (F = 6.52, p = 0.012), as illustrated in
Table 4.18.

To better understand why participants might be so much slower at editing in 3D than in 2D, I
looked at a breakdown of how they spent their time in each environment.

2D 3D
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In Figure 4.5, all segments represent a percentage of the total time editing in each environment.
The burgundy band indicates time spent observing.  This measured time spent either simply
looking at the screen, or performing actions such as picking points in preparation for editing.
The yellow band shows time spend in viewing the surface, which included time spent rotating,
translating or zooming the view.  Finally, the blue band shows the time spent manipulating, or
actually moving, the points.

The overall pattern of interaction was the same in each environment.  It is interesting to note,
however, that a larger percentage of time was spent on observation time in 3D.  This is
presumably because there is more information to process in the 3D environment, and it takes
longer to orient oneself in 3D.

In absolute terms, more time was spent in 3D than in 2D for each of the three editing actions.
In particular, 20 percent of the extra time was spent on viewing, 40 percent of it on
manipulation and 40 percent of it on observation.

In hoping that 3D would be better than 2D for tasks of a 3D nature, I had hypothesised that the
abili ty to manipulate all the points of the 3D deformation as a single group would give 3D an
advantage over 2D.  After discovering that 3D was in fact slower than 2D for the editing, I
looked at the data more closely to see whether the editing strategy chosen by the user had any
impact on performance.  In particular, I compared editing speed of participants who used a
“multi-range” strategy (i.e., selected and moved areas of points spanning multiple contours as a
single group) with editing speed of participants who used a “single-range” strategy (i.e.,
selecting and moving ranges of points one contour at a time).  I found that in fact, multi-range
editing was a significantly slower strategy than the single-range technique.

The more 3D in nature the task became, the slower were the participants.  Not only were they
slower when using a full-blown 3D editing technique, but when I analysed the spine and hill
bump-types separately, I found that the significant difference in editing speeds between 2D and
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3D actually came from the hill data, with the spine data showing the same trend without a
statistically significant difference.

The last factor I investigated was the effect of previous experience with 3D graphics on
performance.  By chance, participants were evenly distributed into three categories of
experience according to a self-reported level of experience obtained from the questionnaire
administered at the end of the experiment.  Five participants were deemed novice users, having
never used a 3D graphics package before.  Six participants were intermediate users with limited
experience with 3D graphics, such as taking a fourth-year university computer graphics course.
The other five participants were experts conducting full-time research related to 3D graphics.

While both novice and expert user groups performed with similar speed and accuracy in 2D
and 3D, intermediate users were less accurate and slower in 3D than in 2D.

Experience 2D mean
speed

(seconds)

2D
standard
deviation

3D mean
speed

(seconds)

3D
standard
deviation

Novice 128.90 70.86 149.28 93.24

Intermediate 115.02 52.87 166.67 102.40

Expert 112.79 65.34 129.42 106.14
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The mean speeds reported in Table 4.19 reveal that all users were faster in 2D than in 3D.  In
fact, however, this difference is only significant for the intermediate level participants (F = 7.23,
p = 0.009).

Experience 2D mean
accuracy

2D
standard
deviation

3D mean
accuracy

3D
standard
deviation

Novice 1.00 1.30 0.92 1.37

Intermediate 0.58 0.85 0.78 1.04

Expert 0.97 0.90 0.72 0.97
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It should also be noted that there was no significant difference in accuracy between the groups
(F = 0.26, p = 0.77).  In fact, the intermediate users were slightly less accurate than the expert
users, although slightly better than the novices (Table 4.20).  This means that the reduced
speed for the intermediate users cannot be accounted for by an increase in precision.  The only
theory I can offer for this result is that the novices were faster in 3D than the intermediate users
because they were less precise, and that the intermediate users were slower than the experts as
a result of their lack of experience.  This suggests that previous experience with 3D graphics
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does improve performance with SLICE’s 3D editing interface.  It does not show, however, that
prior experience with 3D graphics narrows the gap between performance in 2D and 3D with
SLICE.

In addition to the participants in the final experiment, two expert users, including myself, used
the SLICE interface extensively.  As is suggested by the results with general experience in 3D
graphics, prior experience with SLICE improved performance with that interface.  This was true
for both 2D and 3D, however, and expert users were still much faster at 2D than at 3D, with
similar accuracy in both environments.
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In addition to the quantitative results I obtained from the 2D and 3D trials, I gathered some
subjective data through a questionnaire that was filled out by participants upon completion of
the trials.  The text of questionnaire appears in Appendix E along with a complete analysis of
the results from every question.  Here, I will report only on the overall results and significant
findings.

For each viewing, point selection and point movement task, the questionnaire asked
participants whether they found 2D or 3D more enjoyable, easiest to use and most effective for
that task.  Users could also indicate no preference by marking a category designated “Equal.”
The questionnaire asked about viewing the bump, viewing the tube as a whole, and selecting
and moving single points, ranges of points and areas of points.

The final question asked for the users overall preference between 2D and 3D.  In this case, no
“Equal” category was provided.  In two cases, participants chose to create their own “Equal”
category.  Figure 4.6 below shows the results.

Overall preferences
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Most effective
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2D was clearly preferred by users as the most enjoyable, easiest to use and most effective
interface.  Some participants even told me that given a chance, they would have performed the
entire experiment using the 2D environment.  In the questionnaire results, 3D came out ahead
in all categories for viewing the object as a whole.  This is not surprising, as I assumed from the
start that 3D was better than 2D for the visualisation of entire objects.

3D also won out over 2D for moving ranges of points on multiple adjacent contours.  This
does not correlate with the quantitative results, but it is interesting that users perceived 3D to
be a better environment for that task.  This leads me to believe that it might have been details of
the interface’s implementation, rather than the fact of editing in 3D that led to the slower
performance with 3D.  At the very least, there seems to be some role for 3D in this type of
editing process.

Finally, 3D was perceived as more effective than 2D for selecting ranges of points on multiple
adjacent contours.  In terms of the more enjoyable and easy to use interface, 2D and 3D were
fairly evenly matched.  For every other interaction task, 2D was chosen as the better interface,
hence the overall results.

The other interesting result to emerge from the questionnaire was in response to a question I
posed about the interaction between the 2D and 3D views.  I added this question as a result of
observing the way in which I used the SLICE views myself.  Figure 4.7 reports the results of
asking whether or not participants watched one view while moving points in the other.

 

View interaction

0% 20% 40% 60% 80% 100%

Watch 3D while
moving in 2D

Watch 2D while
moving in 3D

Often

Sometimes

Never

  
� ��� ����� 	 
�� 
�	 ��� ����� 	�����	�������
��

When asked whether or not they watched the 2D view while moving points in 3D, everyone
reported that they did at least some of the time, and most people reported doing this frequently.
When questioned further, participants said that watching the 2D view helped them to place
points more precisely.
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People also watched the 3D view while editing in 2D, although this occurred less often.
Participants said that the 3D view provided them with some context to see how the change
they were making to a particular contour related to the adjacent contours, and the surface as a
whole.
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At the outset of this study, I predicted that 2D would be better than 3D for editing
deformations of a 2D nature, specifically spikes and ridges.  That prediction was borne out by
my experimental results.  I had also hoped, however, that 3D would be a superior to 2D as an
editing environment for correcting deformations of a 3D nature, namely spines and hills.  The
2D nature of the data, however, had a stronger effect than the 3D nature of the deformation.
In spite of, and perhaps because of,  the inherent constraints in the surfaces that restricted point
motion to a plane, participants were faster at editing in 2D for all types of deformations, while
maintaining a consistent accuracy between 2D and 3D.

In determining the applicability of these results to the real world, I must assess how well they
generalise to the target setting: the UWT project.  There are a two key differences between the
data created for the experiments and actual artery datasets.  First, the points on the actual
datasets are much closer together than the points on the hand-generated data used in the
experiment.  This should not have a significant impact on the results, however, since the click
and drag range selection interface (see Section 3.5.2.2) was designed with the tightly-spaced
points of actual artery data in mind.  Second, the experimental data contained no branches,
which are key elements of the data being studied in the UWT project.  Whether or not this
impacts the results depends on where the artefacts in the scanned data are located.
Unfortunately, I have little information on either the shape or the location of the deformations.
As far as the shape is concerned, the experimental data covered all of the basic types of bumps
and hollows possible, and the surface itself is similar in shape and curvature to actual artery
data.

Since the experimental environment that I used probably represented a reasonable interface for
a general contour-editing application running on low-end hardware (i.e., systems using a
monitor and mouse as opposed to a stereoscopic display and 3D input device), one might
conclude that editing of surfaces reconstructed from contours should be performed in a strictly
2D environment.  Participant feedback, however, revealed that each environment had its
strengths and weaknesses.  2D was clearly best for precise movement of points.  The 3D view
did have its place in the interaction process too, however, and was found to be best for tasks
that dealt with the surface in a more global way.

Because the 3D view allowed users to see the surface as a whole, it afforded an easy way to
locate a deformation and determine its magnitude.  In addition, 3D provided a context in which
to evaluate the deformation.  One contour could be compared to the next to determine how
changes to it would affect the global shape of the surface.

During the experiment, participants were restricted to editing in only one of the 2D or 3D
environments, and using the other just for viewing.  When the expert users of the interface had
both views available for editing, however, they found it natural to use the 2D and 3D views in
conjunction.  An effective editing procedure was to use the 3D environment to locate and
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select a contour for editing, and the 2D environment to actually move the points.  Furthermore,
coarse changes could be made in 3D before proceeding to 2D for fine-tuning.

Further studies on using the two views in concert are warranted.  In determining what features
to include in the final SLICE interface, it would be interesting to investigate in more detail for
which tasks each of the two environments (2D and 3D) is best suited.  At the very least,
however, it seems that an interface for editing surfaces from contours should provide a 3D
environment for viewing the entire surface, and selecting individual contours for editing in a 2D
environment.

When considering the slower performance results in 3D, one must ask how much impact the
particular implementation of the interface had on the outcome.  I feel that the result was strong
enough that although improvements to the 3D interface might narrow the performance gap
between 2D and 3D, 2D will always outperform 3D for editing surfaces reconstructed from
contours.  It would be instructive to test this with further studies.  These could investigate such
factors as better rendering techniques, new interface styles, automatic feature detection and
using improved hardware.

It might be informative to relax the hardware restrictions imposed by the UWT project to test
whether better rendering techniques make 3D editing a more viable option.  Texture maps
could be added to the flat-shaded surfaces to provide better depth cues.  Introducing a better
shading model such as Phong or Gouraud shading (see Foley and vanDam for a discussion of
these shading methods [Fol90]) might also enhance depth cues, thereby improving the 3D
environment.  Translucent shading of the surfaces might provide an effective means of
displaying the contours and the shape of the surface simultaneously which might also give 3D
an edge.

It would be also be interesting to combine the current SLICE style of 3D interface with a
traditional constraint-based tool like a handle widget [Hou92, Con92, Str92] that emphasised
the inherent planar constraint of the surface data.

Breaking away from the current interface paradigm, future work could incorporate some
automatic processing of the data into the interface.  Either the program could have some
intelligence built in to detect anomalous features, or the intelligence to correct such anomalies.
Because of the distinction between artefacts in the data and actual features, some human
intervention in the editing process is always likely to be required.  For the auto-correction of
defects, the user could select the points that form comprise the defect, and have the program fit
a curve or curves to remaining points on the contours.  It could then fill in a new curve
segment for the selected area to match the fitted curves, thus smoothing out the bump or
hollow.  The user could then accept that as the final surface, or intervene with further manual
editing.

Finally, an entirely different tack could be taken in future research.  Instead of attempting to
make the mapping problem less troublesome in the 3D interface, improved hardware could be
used to bypass it altogether.  Surface editing experiments could be conducted using
stereoscopic views and bats (3D mice).



CONCLUSIONS AND FUTURE WORK  65

Pursuing one or more of these avenues definitely merits some attention.  I think it is significant
that users perceived the 3D environment to be better than 2D for selecting and moving points
that spanned multiple contours, even though this was not reflected in the quantitative results.
The intuitive preference for 3D in this situation leads me to believe that it is worth continuing
the search for a natural and effective interface for editing surfaces in a 3D environment.
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The following is a description of the design space of possibilities I considered in the creation of
the SLICE interface.  I present only the most basic tasks, namely selection, rotation, translation,
deletion, insertion.  Further details depend on the particular implementation chosen.  For each
task, I give an application-independent list of possible implementations.

Select

In order to add, delete or move an object, a position must first be selected.  Points, contours
and entire surfaces may be selected, singly or in groups.

Possible implementations include the following:

• Rubber-band a volume around the desired object or objects in a 3D view.

• Rubber-band an area around the desired object or objects in a 2D view.

• Press a mouse button (single or double click) while the locator is over the object to
be selected.  If this selection is ambiguous, then have the user cycle through the
possibilities until the desired choice is reached.  For a range of objects, hold down
the <Shift> key1 while making selections after the first.  The mouse may be pressed
for each new selection, or simply dragged to select neighbours in a direction
corresponding to the mouse motion.

• To select a range of objects around an already selected focal object, a slider, dial,
or text entry (specifying the number of affected points) could be used to select
neighbours in a radial or axial direction from the focus.

• Click on the end objects of a range to select all objects in between.

• Interactively drag two lines to intersect them over the desired object in a 2D or 3D
view of the surface; each line has one degree of freedom for movement in a 2D
view, or two degrees of freedom in 3D.

• Define a planar boundary in 3D, such as a rectangle or ellipse, and

1. select all objects that lie within its projection on some surface, or

2. use it to divide an object into two parts, selecting only those parts that lie
on one side of the bounding plane and within its confines.

                                                  
1 Note that the <Shift>  key is chosen here for multiple selections because of its fairly widespread use in other graphical applications, but
any non-repeating key could be used just as easily.
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• Using the spacebar, arrow keys, mouse buttons or a button widget, cycle through
all objects marking the desired ones by means of a mouse or key press.

• Choose a named object using a text entry, scrolled list, or radio buttons (check
boxes for multiple objects).

Rotate

Some viewing tasks, and possibly some editing tasks, require rotation.  The user must be able
to rotate the entire surface in order to view it from different angles.  In addition, if planar
boundaries are used, they must be rotated to the correct orientation for tasks such as specifying
a cutting plane and defining an area of effect.

Possible implementations include the following :

• Use a slider or dial for rotation about each of the three coordinate axes.

• Use a slider or dial for each of pitch, yaw and roll.

• Use trackball rotation while a mouse button is held down, or while in a “rotate
mode”.

• Each of the three mouse buttons is mapped to rotation about one of the coordinate
axes.  Either or both of mouse x and mouse y motion while the button is held down
produces rotation about the corresponding axis.

• Use a text entry to specify an angle of rotation about each axis.

• Use graphical handles on the object with which to rotate it about each axis.

Translate

Both scrolling and zooming of the view require translation of the viewpoint.  In the 2D view,
the zoom effect is created by scaling the cross-section. All translation of the view is constrained
to a plane.  Scrolling occurs parallel to the xy plane.  Zooming is further constrained to a single
axis (z).

Points, contours and planar boundaries can also be translated.  The only translation task for
which there are three degrees of freedom is that of moving a planar boundary in 3-space. Like
the view, translation of points and contours is constrained to a plane.  As a result, the same
object motion to mouse motion mappings for translation of points and contours can be used in
either a 2D or a 3D view.

Possible implementations include the following:

• Use a slider or dial for translation parallel to each coordinate axis.
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• Use text entry for amount of translation parallel to each coordinate axis.

• Use text to enter coordinates of a new position in space. (Besides not being
intuitive, this method makes it difficult for the user to keep the point in an arbitrary
plane in 3-space).

• Map the motion of the object in a single direction to either or both of mouse x and
mouse y motion while one of the mouse buttons is held down, or while in a “Move
mode”.

• Map the motion of the object in two perpendicular directions to mouse x or mouse
y motion while a button is held down.  One button maps to object motion in one
direction and the other button maps to object motion in the orthogonal direction.

• Map the motion of the object in two orthogonal directions to mouse x and mouse y
motion respectively, while a button is held down, or while in a mode.

• Indicate the new location for an object by intersecting two lines at the desired point
in a 2D or 3D view.  Each line has one degree of freedom for movement in a 2D
view, or two degrees of freedom in 3D.

• Use the arrow keys to move the object in 2D, or in the plane to which it is
constrained in 3D.

• Move objects as a function of the motion of another specific object (for example
move a range of selected points as a function of the motion of one of the points).

• Use graphical handles on the object with which to translate it in each direction.

All of the above methods can be used in a 2D or a 3D view

Insert

Points may need to be inserted on a sparsely populated contour in order to facili tate fine
adjustments to its shape.  Contours must always be planar, so insertion of a point is restricted
to the plane of the contour to which it is being added.  When inserting in 3D, a grid
representing the plane of the contour may be used to provide feedback to the user for
positioning.  Since contours are evenly spaced in the input data, contour insertion will not be
permitted.

Possible implementations include the following:

• Click on the location for the new point with the mouse.  This may be done in a 2D
view, or in a 3D view where position is constrained to a plane.

• Use text entry to specify the location of the new point.  This may be done in 2D or
3D.
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• Use the arrow keys or sliders to move a marker around in 2D or 3D constrained to
a plane.  A button widget, key press or mouse press indicates when the marker has
reached the desired location for the new point.

• Indicate the new location for an object by intersecting two lines at the desired point
in a 2D or 3D view.  Each line has one degree of freedom for movement in a 2D
view, or two degrees of freedom in 3D.

Delete

Points, contours and surfaces may be deleted.  If deletion is implemented as an operation on a
selected item, then all of these cases would be handled in the same way.  On the other hand, if it
is implemented as a mode, then deletion would work just as select (which could be another
mode).

Feedback to the user to indicate delete mode could be a cursor change to, for example, the
standard skull and crossbones cursor.

An undo feature, which could be provided for all editing operations, is especially desirable for
‘delete’ since it has potentially destructive consequences.  Another option, which could be
combined with ‘undo’, is for the delete operation to request confirmation from the user.

Possible implementations include the following:

• Apply delete as an operation.

• Drag an item to an icon. This could only be used for surfaces since other objects
like points and contours are attached.

Apply Operation

Operations that do not require the user to specify any parameters, or for which sufficient
information has already been provided, may be applied with a single action.  Such operations
include deleting selected objects, turning off front-facing polygons, or undoing the previous
action.

Possible implementations include the following:

• Press a button widget to perform the operation.

• Press a key to perform the operation.

• Select a menu item to perform the operation.

• Double-click the mouse to perform the operation.
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Accuracy is based on matching the shape of the base cylinder, rather than matching
corresponding points.  Thus, accuracy is measured by determining the distance from each point
on the participant’s final surface to the corresponding circle on the base cylinder.  The file
abc.accuracy.info contains a numbered label for each point beside its distance from the “true”
circle.  The list of points for each section begins with numbered section label.  Each trial is also
demarc7ated with a label.

Each user interaction event was recorded with a timestamp.  The file abc.event.info contains
this information.  This file records the name of the data set for each trial, along with descriptive
details about the type of surface it contains, a new trial demarcation, the view type for the trial
(i.e., 2D or 3D), and an entry for each event.  The start time, end time and duration of each
event is recorded, along with a textual description of the event, such as “move point.”  The
event is recorded when it ends.  There are two types of events.  Some events are single
operations, such as picking a point.  These are deemed to occur while the participant is
observing.  The second type of event measures the time spent in different modes, including
observing.  The single events that occur during observation are indented in the file.  By
convention, they all have the same start time as the “parent” observation event during which
they occur.  Their end times  mark when they finish, and the duration measures the amount of
time since the beginning of the observation event.  Other events, such as “rotate” or “move
point,” are treated equivalently to “observe”, and have their start, end and duration times
recorded upon completion.  At the end of each trial, the total elapsed time, total view time,
total manipulation time and total observation time are recorded.  The SLICE program keeps
track of these with internal counters.  Total view time includes all time for rotation of the
cylinder, and translation and zooming of the view.  Total manipulation time includes all time
that the participant spent moving points.  Total observation time encompasses the rest of the
time when the user was simply observing the data, making decisions about what points to
move, selecting or deselecting points, changing the current SLICE with the arrow keys etc.  The
total elapsed time is simply the sum of the total viewing, manipulation and observation times.

Timing was done within the SLICE program using calls to the C library function
gettimeofday().  Timestamps were recorded for events by getting the current clock time
with this function.  Timing was done in milliseconds.  I did not worry about the time taken to
write to record the events in the files since this time is negligible in terms of the elapsed times of
roughly two minutes per trial.

The file abc.event.data contains exactly the same information as abc.event.info, but in a form
that is less human-readable, and easier to process with a C program.  The event descriptions
are replaced with numerical codes.

In case it became important to study the movement of individual points, and not just their final
position, information was recorded each time points were moved.  The file abc.move.info
contains the data set used for each trial, and a new trial demarcation.  For each trial, the points
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that were moved are listed one per line.  A blank line separates each group of points that was
moved.  The start of the line is the word Single (if the point was moved alone), Range (if the
point was moved as part of a range; this is secondary motion), Primary (if the point was the
primary one moved by the user when moving a range, or multiple ranges) or Multi-range (if
the point was moved as part of a group of ranges; this is secondary motion).  The next item on
the line indicates the context, i.e., whether the move occurred in 2D or in 3D.  The section
number and point number follow this.  Finally, the distance that the point moved since its last
position is recorded.  This data was not used in the final analysis.

The following are samples from the data files gathered during the running of a trial:

abc.accuracy.info

/p/arteries/code/scalpel/data/hill 5b.cnt

New trial:

Accuracy:

{…}

section 5:
point  0: distance: 0.000000
point  1: distance: 0.018504
point  2: distance: -0.017115
point  3: distance: -0.025646
point  4: distance: 1.850630
point  5: distance: 2.948860
point  6: distance: 2.391859
point  7: distance: 1.151355
point  8: distance: 0.000000
point  9: distance: 0.000000
point 10: distance: 0.000000
point 11: distance: 0.000000
point 12: distance: 0.000000
point 13: distance: 0.000000
point 14: distance: 0.000000
point 15: distance: 0.000000
point 16: distance: 0.000000
point 17: distance: 0.000000
point 18: distance: 0.000000
point 19: distance: 0.000000
point 20: distance: 0.000000
point 21: distance: 0.000000
point 22: distance: 0.000000
point 23: distance: 0.000000
point 24: distance: 0.000000

{…}
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abc.event.info

/p/arteries/code/scalpel/data/hill 3a.cnt
New trial:
data type 4

sub type 3
view type 3
start time: 817244373.082452

enter 3D: 3D 817244373.082452 817244373.448569 366
observe: 3D 817244373.082452 817244375.779678 2697
rotate: 3D 817244375.779746 817244381.258229 5478
{…}
range select: 3D 817244404.778251 817244408.793335 4015

arrow back: 3D 817244408.793405 817244410.012301 1218
valid mouse pick: 3D 817244408.793405 817244412.288025 3494

observe: 3D 817244408.793405 817244412.406018 3612
{…}
observe: 3D 817244414.264295 817244422.315661 8051
adjust def exp: 3D 817244422.315749 817244423.794884 1479

enter 3D: 3D 817244423.794951 817244424.164793 369
mouse pick primary: 3D 817244423.794951 817244426.457958 2663

observe: 3D 817244423.794951 817244426.577315 2782
move multi range: 3D 817244426.577424 817244431.515485 4938

mouse deselect: 3D 817244431.515554 817244433.506066 1990
mouse deselect: 3D 817244431.515554 817244433.655771 2140

observe: 3D 817244431.515554 817244435.565958 4050
rotate: 3D 817244435.566024 817244438.532604 2966

mouse pick primary: 3D 817244438.532690 817244439.670193 1137
mouse deselect: 3D 817244438.532690 817244440.076499 1543
mouse deselect: 3D 817244438.532690 817244440.226456 1693
mouse deselect: 3D 817244438.532690 817244440.886517 2353
valid mouse pick: 3D 817244438.532690 817244442.335187 3802

observe: 3D 817244438.532690 817244442.449034 3916
move point: 3D 817244442.449225 817244446.927055 4477

arrow fwd: 3D 817244446.927124 817244448.187133 1260
valid mouse pick: 3D 817244446.927124 817244450.523069 3595

observe: 3D 817244446.927124 817244451.377661 4450
move point: 3D 817244451.377729 817244454.497892 3120

{…}
valid mouse pick: 3D 817244454.497960 817244464.562188 10064
invalid mouse pick: 3D 817244454.497960 817244465.474053 10976
invalid mouse pick: 3D 817244454.497960 817244466.004571 11506
valid mouse pick: 3D 817244454.497960 817244468.047012 13549

{…}
observe: 3D 817244558.478922 817244560.749194 2270
move point: 3D 817244560.749259 817244561.769139 1019

arrow fwd: 3D 817244561.769207 817244563.295328 1526
arrow fwd: 3D 817244561.769207 817244563.470684 1701

End trial: 817244561.769207 817244564.737489 2968
Total elapsed time 191.655037
Total view time 20.934568
Total manip time 60.365459
Total observe time 110.349399
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 abc.move.info

/p/arteries/code/scalpel/data/hill 5b.cnt
New trial:
Single context: 2 section: 4 point 12: dist moved: 1.028524

{…}

Single context: 2 section: 5 point 3: dist moved: 0.410723

Single context: 2 section: 5 point 4: dist moved: 0.240950

Range context: 2 section: 5 point 2: dist moved: 0.163566
Primary context: 2 section: 5 point 3: dist moved: 0.286301
Range context: 2 section: 5 point 4: dist moved: 0.211602
Range context: 2 section: 5 point 5: dist moved: 0.064857

Primary context: 2 section: 5 point 2: dist moved: 0.044644
Range context: 2 section: 5 point 3: dist moved: 0.047716
Range context: 2 section: 5 point 4: dist moved: 0.018846
Range context: 2 section: 5 point 5: dist moved: 0.002399

Single context: 2 section: 5 point 1: dist moved: 0.000000

Range context: 2 section: 5 point 2: dist moved: 0.187020
Primary context: 2 section: 5 point 1: dist moved: 0.291178

Single context: 2 section: 5 point 3: dist moved: 0.000000

Range context: 2 section: 5 point 4: dist moved: 0.040100
Primary context: 2 section: 5 point 3: dist moved: 0.062624

Single context: 2 section: 5 point 5: dist moved: 0.031894

{…}

Multi -range context: 2 section: 5 point 7: dist moved: 0.214153
Multi -range context: 2 section: 5 point 6: dist moved: 0.699068
Multi -range context: 2 section: 5 point 5: dist moved: 0.945488
Multi -range context: 2 section: 5 point 4: dist moved: 0.541113
Multi -range context: 2 section: 4 point 16: dist moved: 0.857317
Multi -range context: 2 section: 4 point 15: dist moved: 2.798349
Primary context: 2 section: 4 point 14: dist moved: 3.781952
Multi -range context: 2 section: 4 point 13: dist moved: 2.166448

By exponent context: 2 section: 5 point 7: dist moved: 0.856610
By exponent context: 2 section: 5 point 6: dist moved: 2.796271
By exponent context: 2 section: 5 point 5: dist moved: 3.781953
By exponent context: 2 section: 5 point 4: dist moved: 2.164452

{…}
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The following is an example of the file produced from processing the previous data files.  It
served as input into the statistical analysis package:

abc.out

Suj/tri data/sub viewt elaps view manip obsv acc mr

jrh 1 4 5 2 1642.573880 160.701431 294.469201 1187.383091 31.368387 1

jrh 2 2 7 2 56.325769 1.409902 12.136408 42.778671 0.017623 1

jrh 3 4 3 3 257.768463 28.221481 72.658821 156.881829 0.945007 1

jrh 4 4 1 3 173.349806 7.486496 64.609234 101.250629 0.303381 1

jrh 5 2 1 2 37.518057 1.049873 13.695989 22.771365 0.000000 1

jrh 6 4 3 3 191.655037 20.934568 60.365459 110.349399 1.572414 1

jrh 7 2 4 3 110.466812 10.032031 42.121329 58.310868 0.057716 1

jrh 8 4 6 2 202.440859 11.710618 70.777607 119.947292 2.157498 0

jrh 9 4 5 3 140.405402 20.250786 43.717115 76.434207 1.232670 1

jrh 10 4 2 2 168.916645 17.166891 57.973815 93.770738 0.609180 1

jrh 11 4 4 2 137.649984 9.100651 39.202469 89.342976 1.589894 0

jrh 12 2 5 2 54.839138 11.578115 14.114977 29.144774 0.066103 1

jrh 13 2 6 3 99.449770 13.804576 17.181083 68.461957 0.227878 1

jrh 14 2 3 2 110.059874 15.770696 27.841905 66.443630 0.130213 1

jrh 15 2 2 3 40.018902 8.480365 12.311272 19.225994 0.041205 1
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The following are the instructions given to participants at the start of the final experiment:

Department of Computer Science

Faculty of Mathematics

University of Waterloo

September 26, 1995

Dear Student:

I am a graduate student in the Department of Computer Science at the University of Waterloo. I am
conducting research under the supervision of Professors Rick Kazman and Stephen Mann on the
manipulation of computer representations of surface meshes.  Three dimensional object manipulation is
becoming more and more prevalent with the advent of ‘virtual reality’.  Thus there is the need to
determine where the strengths and pitfalls of 3D interaction lie.  As a student of computer science
yourself, your views and abili ties could be of importance to this study.

I would appreciate if you could participate in an experiment and fill out a brief questionnaire. The
experiment will require you to move points on a deformed tube to return it to its original regular shape.
The manipulations will be done in both 2D and 3D environments.  Instructions will be given (both
written and oral) as to the exact methods of your experiment. You will be timed for the duration of the
experiment, and your interactions with the computer will be recorded (ie messages will be automatically
written to a file as you view and move the tube).  The questionnaire will ask you to rate your experiences
of the experiment.

You will be paid $10 for participating in the research study.

It is expected that the experiment and questionnaire will take approximately one hour of your time.
Although it is desired that you complete the experiment and questionnaire, you can end your
participation at any time. Please note that any information that you provide is considered confidential and
would be seen only by myself and my supervisors. Furthermore, I am interested in general results rather
than specific results of an individual, so you will not be identified by name in any report.

This project has been reviewed and approved for ethics through the Office of Human Research &
Animal Care at the University of Waterloo. If you have any questions or concerns resulting from your
participation in this study, please contact this off ice at 885-1211 Ext. 6005.

Thank you in advance for your assistance. If after reading this letter and participating in the experiment
and questionnaire, you have any questions about this project, please feel free to contact Professor
Kazman at 885-1211 Ext. 4870, or Professor Mann at 885-1211 Ext. 4526.

Yours sincerely,
Julie Waterhouse
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Department of Computer Science
Faculty of Mathematics
University of Waterloo

Surface Editing Experiment Instructions

The surface editing experiment will consist of a series of trials.  In each trial, two views will be
presented to you containing a tube that has a deformation (bump or hollow).  Your task is to
remove the deformation, and turn the object back into a regular elliptical tube.  You will do this
by selecting and moving points on the tube.

On each trial, both a 2D view and a 3D view of the tube will be shown.  The 2D view is a
cross-section through the tube showing a contour.  It is possible to cycle through each of the
contours in order.  This 2D view can always be changed through translation and zoom
operations (described in the attached Reference section).  The 3D view is a perspective
projection of the whole tube.  This 3D view can always be changed through rotation,
translation and zoom operations (described in the attached Reference section).

Although the view can always be changed in either 2D or 3D, you will only be able to move
points in one of the two views.  Which view this is will vary from trial to trial.  The view in
which you can move the points will have a black background.  The other view will have a grey
background.  Points can be  selected and moved singly or in groups in order to eliminate a
deformation.  A group of points can be a continuous range of points along a single contour, or
an area of points made up of a set of adjacent ranges across multiple contours.

When you have completed a trial, click on the ̀ `Next trial'' button in the top left-hand corner of
the interface, or press the F1 key, to move on.  The first three trials are just for practice.  Use
this time to get familiar with the interface, and take as long as you want on each practice trial.
The first practice trial allows you to move points in both 2D and 3D.  You should use this trial
to go through the reference guide and learn all of the interface operations.  The other two
practice trials will be just like real ones: you will only be able to move points in 2D or in 3D
(but not both).  You will be signalled with a popup window when the real experiment begins.

Your interactions with the program will be recorded and timed.  If you need a break, you can
rest at the  start of a trial (right after you have pressed ``Next trial'' or the F1 key), because
timing does not begin until you move the mouse or press a button during a trial.  Both your
speed and accuracy will be measured.  Accuracy is most important.  Try to be as accurate as
you can, but don't spend too long making micro-adjustments to the points.  It is expected that a
trial will take roughly two minutes on average.

If you have any questions after reading these instructions, please feel free to ask me now.
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Department of Computer Science
Faculty of Mathematics
University of Waterloo

Surface Editing Interface Reference

The following is a description of how the interface works.  All methods described work in both
the 2D view and the 3D view unless otherwise specified.

In order to change the view, hold down the control key.  Moving the mouse while holding
down the left mouse button then provides trackball rotation.  Trackball rotation is explained in
a section at the end of this document.  Rotation is only available in the 3D view.  The middle
mouse button is used to zoom the view, and the right mouse button is used to translate the
view.  This can be done in 2D or 3D.

To undo viewing changes, click on the ̀ `Reset view'' button for a window.  This will undo
any rotation, translation or zoom changes that were made.  There are separate buttons for the
2D and the 3D views.  There is no redo option with this button.  The view is reset to its
starting position, and any changes that you made to the view are lost.

Select a point by clicking on it with the left mouse button.  Dragging the mouse after a
selection will move the point.

The shift key is used when selecting multiple points.  Simply hold down the shift key for
selections after the first.  To select a set of adjacent points (a range), select the first point, and
then hold down the shift key while dragging the mouse.  Dragging the mouse to the right
selects in a clockwise direction on the screen; dragging to the left selects in a counter-clockwise
direction on the screen.

In order to add an extra point onto the end of a range, shift click on it.  It must be adjacent
to an existing range.

In order to delete a point from a range, select it with the middle mouse button.  It must be
one of the endpoints of the range.

Multiple ranges are selected by repeating the range selection process while the Shift key is
depressed.  In this way, you can select an area of points.
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Three points worth noting about selection:

1. Every point you select in a range moves when a primary point is picked.  Thus when
moving a range, you should only select those points that are “out of place”, and that you
wish to move (ie don't select any “anchor” points.)

2. When selecting multiple ranges, additional ranges must be adjacent to existing ranges of
selected points.

3. When selecting with the shift key depressed, selection is restricted to new selections on
contours with already selected points, or the contours adjacent to these.

In order to move multiple points, a primary point of motion must be defined by clicking on
one of the already selected points with the left mouse button.  Dragging the mouse after this
selection will cause the group of selected points to move.  One primary point can be selected
for a single range, or for multiple ranges.  In the latter case, moving the primary point creates
or flattens a mound-like shape.

The ``Deform exponent'' slider changes the shape of deformation.  It can be used when
multiple ranges of points are being moved on adjacent contours.  When the primary point is
dragged, the slider controls how much the points in the other contours move.  The slider value
represents exponential dropoff.  For example, if the slider is set to one, points on adjacent
contours move the same amount as the primary point.  If the slider is set to 1/5, the points in
the contours adjacent to the one containing the primary point move one fifth as much as the
primary point, and the contours adjacent to those (one more level out), move 1/5 as much
again.  The ``Reset exponent'' button is used to reset the slider to its default value of 1/2.
Please refer to the diagram on the next page.
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Starting contours

Dragging some selected points with slider set to ½.

Dragging some selected points with slider set to 1.
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Clicking anywhere in the 2D or 3D window with the right mouse button will deselect the last
selection.  It can be used repeatedly to deselect items in the reverse order of selection.  To
deselect everything, either click repeatedly with the right mouse button, or click the “Select
nothing” button on the interface.

Click on the “Undo move” button on the interface to undo the last move.  The button will
then be labelled “Redo move”, and can be used to redo the move that was undone.

“Next” and Previous” are used to change the 2D view to the next contour of the cylinder in
each direction.  This also changes the “current contour” in the 3D view.  The left and right or
up and down arrow keys can also be used to cycle through the contours (ie change the
current contour).

In order to restrict selection to a contour, set the “Select on contour” toggle.  This means that
points can only be selected on the highlighted, “current” contour.  This is useful when selecting
in 3D where certain views can make selection ambiguous.

In order to restrict selection to an already selected point, set the “Reselect only” toggle.  This
is useful when selecting a primary point, to ensure that only an already selected point is
targeted as the primary point.  It helps to avoid the problem of missing the desired point and
starting an entirely new selection.
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Trackball rotation

Author for this section: Michael Hardy, August 12, 1993.

Holding down the Control key and left mouse button and moving the mouse will rotate the
scene using trackball rotations.  The best way to think of this type of interaction is to pretend
that the scene is in a large glass sphere that is sticking out of the window.  The mouse can be
thought of as a hand that strokes the sphere.  Where and in what direction the sphere is stroked
will determine how the scene rotates.

Moving the mouse from left to right THROUGH THE CENTER OF THE WINDOW will
rotate the scene from left to right.

Moving the mouse from top to bottom THROUGH THE CENTER OF THE WINDOW will
rotate the scene from top to bottom.

Moving the mouse from the upper right to the lower left THROUGH THE CENTER OF THE
WINDOW will rotate the back right corner of the scene up and over to the front left of the
scene.  This is like stroking the sphere from the upper right corner towards the lower left
corner.

Moving the mouse clockwise around the window WHILE STAYING NEAR THE BORDER
OF THE WINDOW will rotate the scene clockwise.  This is like turning the sphere clockwise.

Mouse mapping

The current mouse mapping for a window is always described in the text box located directly
below that window.  Also feel free to refer to the following diagrams at any time.

Default mouse mapping.

Select
new
point

Deselect
end of
range

Deselect
last Move point
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Mouse mapping when shift key is pressed.

Mouse mapping when control key is pressed.

Select
additional

point

Deselect
last

Trackball
rotation

Zoom
view

Translate
view

Select range

<Shift> +

Drag to change view

<Ctrl> +
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Following is the complete statistical analysis of the results of the pretests and final experiment.

Surface type pretest results:

Speed: Surface type and Bump type Interaction
Anova: Two-Factor With Replication
SUMMARY Wireframe Shaded Contours Total

Spike
Count 6 6 6 18
Sum 195.5916 380.293 107.7022 683.5867
Average 32.59859 63.38217 17.95036 37.97704
Variance 306.685 2192.58 16.95612 1119.624
S.D. 33.46078

Spine
Count 6 6 6 18
Sum 387.3114 790.7117 387.9868 1566.01
Average 64.55189 131.7853 64.66446 87.00055
Variance 278.7209 8454.133 901.1557 3895.361
S.D. 62.41283

Ridge
Count 6 6 6 18
Sum 678.9234 819.8758 239.6623 1738.461
Average 113.1539 136.646 39.94372 96.58119
Variance 10333.29 5173.33 347.5631 6458.634
S.D. 80.36563

Hill
Count 6 6 6 18
Sum 1212.952 702.6906 1128.589 3044.232
Average 202.1587 117.1151 188.0982 169.124
Variance 46262.96 3047.907 15123.99 20418.33
S.D. 142.8927

Total
Count 24 24 24
Sum 2474.779 2693.571 1863.94
Average 103.1158 112.2321 77.66418
Variance 16701.26 4985.691 8089.9
S.D. 129.2334 70.60942 89.94387

ANOVA
Source of Variation SS df MS F P-value F crit
Bump type 158111 3 52703.68 6.841726 0.000485 2.758078
Surface type 15406.68 2 7703.338 1.000009 0.373924 3.150411
Interaction 64560.2 6 10760.03 1.396813 0.230814 2.254055
Within 462196.3 60 7703.272
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Accuracy: Surface type and Bump type Interaction

Anova: Two-Factor With Replication

SUMMARY Wireframe Shaded Contours Total
Spike

Count 6 6 6 18
Sum 0.173555 0.730429 0.163274 1.067258
Average 0.028926 0.121738 0.027212 0.059292
Variance 0.00026 0.01036 0.001065 0.005502
S.D. 0.074174

Spine

Count 6 6 6 18
Sum 1.515016 2.357709 0.962454 4.835179
Average 0.252503 0.392952 0.160409 0.268621
Variance 0.125187 0.046582 0.011976 0.063723
S.D. 0.252434

Ridge

Count 6 6 6 18
Sum 6.208968 9.821954 1.901004 17.93193
Average 1.034828 1.636992 0.316834 0.996218
Variance 1.052984 1.250472 0.037066 0.996734
S.D. 0.998366

Hill

Count 6 6 6 18
Sum 11.5855 12.76596 7.54748 31.89893
Average 1.930916 2.12766 1.257913 1.772163
Variance 0.150389 0.845843 0.071328 0.460823
S.D. 0.67884

Total

Count 24 24 24
Sum 19.48303 25.67605 10.57421
Average 0.811793 1.069835 0.440592
Variance 0.870057 1.197939 0.269716
S.D. 0.932768 1.094504 0.519342

ANOVA
Source of Variation SS df MS F P-value F crit

Bump type 32.61466 3 10.87155 36.20319 1.75E-13 2.758078
Surface type 4.802585 2 2.401292 7.996507 0.000834 3.150411
Interaction 3.135155 6 0.522526 1.740056 0.127271 2.254055
Within 18.01756 60 0.300293

Total 58.56996 71
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Additional view pretest results:

2D Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

Both 46 2724.591 59.23023 3623.044 60.19173
2D only 46 2568.862 55.84483 2062.7 45.41696

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 263.6008 1 263.6008 0.092723 0.761446 3.946866
Within Groups 255858.5 90 2842.872

Total 256122.1 91

2D Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

Both 46 14.02001 0.304783 0.163017 0.403754
2D only 46 15.83046 0.34414 0.168612 0.410624

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.035627 1 0.035627 0.214863 0.644101 3.946866
Within Groups 14.92332 90 0.165815

Total 14.95895 91

3D Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

Both 49 3608.413 73.64107 3321.938 57.63625
3D only 49 3442.106 70.24706 3860.513 62.13303

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 282.2238 1 282.2238 0.078587 0.779825 3.940158
Within Groups 344757.6 96 3591.226

Total 345039.9 97
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3D Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

Both 49 15.88239 0.32413 0.163379 0.404202
3D only 49 23.20663 0.473605 0.537875 0.7334

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.547393 1 0.547393 1.561181 0.21453 3.940158
Within Groups 33.66021 96 0.350627

Total 34.2076 97

Bump type pretest results:

Spike: Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 11 179.179 16.289 57.23406 7.565319
3D 12 315.4412 26.28677 113.6699 10.66161

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 573.657 1 573.657 6.60928 0.017816 4.324789
Within Groups 1822.71 21 86.7957

Total 2396.367 22

Spike: Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 11 0.280902 0.025537 0.000427 0.020653
3D 12 0.254884 0.02124 0.000497 0.022302

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.000106 1 0.000106 0.228462 0.637605 4.324789
Within Groups 0.009737 21 0.000464

Total 0.009843 22
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Ridge: Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 11 335.1637 30.46943 115.581 10.75086
3D 12 693.3819 57.78183 749.9729 27.38563

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 4281.203 1 4281.203 9.558785 0.005527 4.324789
Within Groups 9405.511 21 447.8815

Total 13686.71 22

Ridge: Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 11 2.68698 0.244271 0.009517 0.097553
3D 12 3.713743 0.309479 0.042951 0.207246

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.024403 1 0.024403 0.902814 0.352836 4.324789
Within Groups 0.567629 21 0.02703

Total 0.592032 22

Spine: Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 12 629.9031 52.49193 2015.678 44.8963
3D 12 708.0858 59.00715 828.1498 28.77759

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 254.6887 1 254.6887 0.179117 0.676242 4.300944
Within Groups 31282.1 22 1421.914

Total 31536.79 23
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Spine:Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 12 0.891309 0.074276 0.007682 0.087649
3D 12 1.202506 0.100209 0.019821 0.140787

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.004035 1 0.004035 0.29343 0.593475 4.300944
Within Groups 0.302536 22 0.013752

Total 0.306572 23

Hill: Speed
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance s.D.

2D 12 1580.345 131.6954 4199.512 64.80364
3D 13 1891.504 145.5003 3434.786 58.60704

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1189.186 1 1189.186 0.312901 0.581313 4.279343
Within Groups 87412.06 23 3800.524

Total 88601.25 24

Hill: Accuracy
Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance S.D.

2D 12 10.16082 0.846735 0.190151 0.436063
3D 13 10.71126 0.823943 0.182792 0.427542

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.003241 1 0.003241 0.017398 0.896209 4.279343
Within Groups 4.285166 23 0.186312

Total 4.288407 24
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Final experiment results:

Speed

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance STD

2D 94 11133.53 118.4418 3884.497 62.32574
3D 96 14361.26 149.5965 10195.05 100.9706

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 46098.98 1 46098.98 6.517284 0.011477 3.891401
Within Groups 1329788 188 7073.343

Total 1375887 189

Accuracy

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance STD

2D 94 71.64813 0.762214 1.046797 1.023131
3D 96 77.22798 0.804458 1.272085 1.127867

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.084757 1 0.084757 0.073026 0.787277 3.891401
Within Groups 218.2002 188 1.160639

Total 218.285 189
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The following is the questionnaire that was administered to participants upon completion of the
final experiment.

Department of Computer Science
Faculty of Mathematics
University of Waterloo

For the following tasks, please indicate which environment was most effective for
completing that task, which was easiest to use, and which was most enjoyable to use.
Circle the appropriate response.

viewing the tube as a whole:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

viewing a bump or hollow::

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

selecting a single point:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal
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selecting a range of points on a single contour:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

selecting ranges of points on multiple adjacent contours:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

moving a single point:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

moving a range of points on a single contour:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal

moving ranges of points on multiple adjacent contours:

most effective 2D 3D Equal

most easy to use 2D 3D Equal

most enjoyable to use 2D 3D Equal
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Please answer the following questions by circling the appropriate response:

Overall, which environment did you find most effective in performing the tasks?

2D 3D

Overall, which environment did you find easiest to use when performing the tasks?

2D 3D

Overall, which environment did you find most enjoyable when performing the tasks?

2D 3D

Did you watch the 3D view while moving points in the 2D view?

A) Never

B) Sometimes

C) Often

Did you watch the 2D view while moving points in the 3D view?

A) Never

B) Sometimes

C) Often

Have you ever used any graphical modelling packages (such as a CAD package) before?

A) Never

B) Sometimes (please specify): _____________________________________________

C) Often (please specify): _________________________________________________
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Please comment on any problems you had using the interface:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Please provide any additional comments you feel might be useful:

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________
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The following charts illustrate the results from the questionnaire.

Viewing the tube as a whole

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D

Viewing a bump or hollow

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D
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Selecting a single point

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D

Selecting a range of points on a single contour

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D
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Selecting ranges of points on multiple adjacent contours

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D

Moving a single point

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D
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Moving a range of points on a single contour

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to
use

Equal

3D

2D

Moving ranges of points on multiple adjacent contours

0% 20% 40% 60% 80% 100%

Most effective

Most easy to use

Most enjoyable to use

Equal

3D

2D
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