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Abstract

We discuss response time properties of linear arrays of cells with various handshake com-
munication behaviours. The response times of a linear array are the delays between requests
and succeeding acknowledgments for the first cell. We derive simple formulas for the worst-case
response time and amortized response time of linear arrays using a general variable-delay model,

where delays may vary between a lower and upper bound. The properties are independent of
any particular implementation of the cells of the network.

1 Introduction

We present some properties on the response time of some regular asynchronous networks. The
basic problems that we address can be illustrated with the following example.

Consider a linear array of L + 1 cells as indicated in Figure 1 (where L = 3). We are only
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Figure 1: A linear array of cells

interested in the communication behaviour at the interface of each cell as an ordering of events.
Each interface between two cells has the same communication behaviour, viz., a repetition of a
request r followed by an acknowledgment a. A request followed by an acknowledgment is called a
handshake. The end cell handshakes at its only interface, the other cells perform handshakes at
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both interfaces. Each non-end cell in this array has a communication behaviour that synchronizes
the handshakes at both sides of the cell in some fashion. One of the simplest synchronizations is
that for each handshake on the left there is exactly one handshake on the right.

In these communication behaviours, the requests and acknowledgments are considered as instan-
taneous events, and delays can be incurred in the cells or the environment of the pipeline. For each
non-end cell we assume that the delays between the receipt of the last input and the production
of any of the two outputs is always bounded from below by é and from above by A. For the last
cell we assume that its delays are bounded from below by 1 and from above by Ar. The reason
for distinguishing the last cell from the other cells is explained later. Finally, we assume that the
environment can provide a next request rg after an acknowledgment ag after a minimum delay of
6. There is no upper bound for the environment delays.

The delays of the cells do not have to be fixed, but may vary between a fixed upper and lower
bound. Delays may depend on the data received, or they may vary over different instances of the
same cell, or they may vary over time. Furthermore, the delay model does not depend on particular
implementations of the basic cells. The only requirement is that the different implementations
satisfy the upper bounds and lower bounds for the delays of the basic cells. If we take the upper
and lower bound to be equal, as often happens in implementations using data bundling, we get the
results for a fixed delay network.

Under these delay assumptions we would like to know what you can say about the worst-case
response time of the linear network, that is, what is the maximum delay between any request rg
and succeeding acknowledgment ag over all possible delay distributions? The next question then is
whether the worst-case response time depends on the length of the array L or any of the bounds
é, A, 6z, and Ar? For example, we show that the worst-case response time for the linear network
above is bounded from above by Az, + (L + 1)(A — §) and that this bound is tight. We also show
under which delay distributions this bound can be achieved.

The second problem we consider is calculating an upper bound for the amortized response time
of a network. The amortized response time gives an upper bound for the average response time of
a network. The amortized response time can differ significantly from the worst-case response time.
For example, we show that for the linear network above the amortized response time is bounded
from above by Az, + A — §, which is independent of the length of the array L. This bound is also
tight.

We can consider more general behaviours than the one considered above. For example, we can
consider cells where for every n,n > 1, handshakes with the left neighbour there is at most one
handshake with the right neighbour. What can we say about the worst-case response time and
amortized response time in these cases? This is the third problem that we address. We show that
the following properties hold for the worst-case response time WR and amortized response time

AR.

e WR <A+ (L+1)(A - 4) provided that
Ap < 28(nf7t —1) + A,

Thus, even if the delay through the last cell increases exponentially with L (as in 26n%), the
worst-case response time of the network increases at most linearly with L (as in L(A — §)).

o AR < (3A +4)/2 provided that



Ap <28(nf~t —1) + A.

e WR < 2A provided that
Ap < Anl=! — (L —1)(A - §) and A < 26.

In the networks above we have parameterized the maximum and minimum delay for the last cell
by Ar and &1 respectively. Thus we can find out to what extent these bounds on the delay of
the last cell can influence the response times of the network. Knowing the extent of this influence
may give a designer more (or less) freedom in choosing an implementation for the end cell. For
example, for linear arrays where n > 1 applies, a bounded worst-case and amortized response time
is maintained even if the maximum delay Ay, of the end cell increases exponentially with the length
of the array. In such cases, a designer has the freedom to choose a few fast non-end cells and a very
slow end cell so that we still achieve a bounded worst-case and bounded amortized response time.
For other linear arrays where n = 1, the worst-case and amortized response time linearly depend
on the maximum delay of the end cell. In these cases it may be important to choose a fast end cell.

The end cell is also a special cell for other reasons. It could be a part of an environment in which
the non-end cells are placed. For example, for a simple FIFO the end cell could be seen as the
“get” environment. In such cases, the formulas indicate to what extent the delays at the “get”
environment can influence the response time at the “put” environment.

Symbol Usage
n Handshake multiplication factor.
(n =1 is typical of micropipelines)

é Lower bound on non-end cell delays
and environment delays

A Upper bound on non-end cell delays

o1 Lower bound on the end cell delay

Ag Upper bound on the end cell delay

L Number of non-end cells and
index of end cell

WR worst-case response time

AR amortized response time

Table 1: Summary of symbols used.

2 Related Work

The delay assumptions and dependency graphs (also called process graphs) in this paper are inspired
by the model used in [5, 6]. In [5, 6] algorithms are described to obtain exact bounds for the delay
between two given occurrences of events in a given dependency graph under a variable delay model.
A much larger class of networks and communication behaviours is allowed than we use here. In
contrast, we have focused on giving formula expressions for a small set of regular process graphs.



Such formulas have a few parameters, like the depth of the network and the upper and lower bounds
for certain delays. These formulas allow for quick back-of-the-envelope calculations.

More detailed performance analysis and optimization techniques, all the way down to transistor
sizing, are given in [1]. Techniques for analyzing the throughput and latency of micropipelines
and rings are proposed in [14], where formulas are derived for the throughput as a function of
the forward and backward latencies of the stages and the number of tokens in the ring. However,
a fixed-delay model is used. See also [11], where these techniques have been applied. A fixed
delay model is also used in [9], where an algorithm is presented to compute the average cycle time
of arbitrary Signal Graphs. In [4] formulas for upper bounds of the utilization of pipelines are
presented under various assumptions for the delay distributions for the latencies of the cells. In [10]
yet another model is used for analyzing the response time of implementations. The model is based
on the notion of sequence functions and is more restrictive than a variable delay model. Kearney
and Bergmann [8] perform an analysis of a pipeline with variable delays and a multiplication factor
of n = 1. Their results are largely based on simulation, and they do not give closed-form formulas.

3 Communication Behaviours

Consider the cell in Figure 2 from a linear array. At interface ¢, the communication behaviour for
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Figure 2: One cell

the handshakes can be given by *[r;?; a;!]. That is, we take an input request, r;?, and then we output
an acknowledgement a;!. (? denotes input, while ! denotes output.) This behaviour then repeats
(indicated by #[..]). At interface ¢ + 1 the communication behaviour is given by *[r;+1!;a;117].

Cell ¢ synchronizes the handshakes at interface ¢ and 7 + 1. In general, the communication
behaviour for a cell can take many different forms. We restrict ourselves to behaviours for cells
where for every n handshakes on interface 7 there is one handshake on interface i+1. More precisely,
the communication behaviours we look at are given by

(ri?5 #[ (@il w27 (@it 2?)][(rin @ia?))])

In other words, only every n-th occurrence of the segment a;!; ;7 takes place in parallel with a
segment ;4115 a;417.
For n = 1 we have a communication behaviour that can be represented by

(rs?; *[ (ail; ri?)[|(rig1l; @ipa?)])

An unfolded process graph for n = 1 for a cell is given in Figure 3.
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Figure 3: Unfolded communication behaviour for a cell

Let us denote the k-th occurrence of event a; by (a;, k), where k > 0. A process graph gives a
precedence relation for occurrences of events. A precedence between occurrences of events eg and
e is denoted by eg — e;. For example, in Figure 3 we have the precedences

(riaj) — (aiaj) and (ai+11j - 1) — (aiaj)

These precedences indicate that occurrence j of event a; can only happen after occurrence j of
event r; and occurrence j — 1 of event a;4; has happened.

Solid arrows indicate precedence relations brought about by the cell. Dashed arrows indicate
precedence relations brought about by the environment of the cell.
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Figure 4: Unfolded communication behaviour for a linear array of four cells and n =1

If we consider the complete network of 3 non-end cells, one end cell, and the environment of the
pipeline, then we can depict its behaviour in a process graph (Figure 4), where all edges represent
direct precedences brought about by some component in the network. The dashed arrows represent
direct precedences caused by the environment of the pipeline (top) or by the end cell (bottom).

For n = 2 we have a communication behaviour that can be represented by

(77 *[a;l; 77 ((ail; m?))||(Piga); @igr?)) )

An unfolded process graph for n = 2 for a cell is given in Figure 5 and the corresponding graph
for a linear array of four cells is given in Figure 6. For later use we have labelled the nodes in this
graph with occurrence indexes.
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Figure 5: Unfolded communication behaviour for a cell with n = 2
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Figure 6: Part of an unfolded process graph for a linear array of four cells with n = 2

4 The Delay Model

Once we have a process graph we can assign a time stamp to each node in the graph, where nodes
are occurrences of events. This timing assignment, T, to nodes in the graph has to satisfy certain
restrictions given by the delay model. The delay restrictions translate into lower and upper bounds
for delays that can be incurred in each arc of the process graph and into the times that can be
assigned to a node.

Let ¢ be a node in a (unfolded) process graph with ¢ an output of a non-end cell. Our delay
model prescribes that any timing assignment T of the process graph must satisfy the following
constraints.

Tpred(c) + é g T(C) g Tpred(c) + A
where T'(c) is the time assigned to node ¢ and
Tpred(c) = max{T(b) | bis a direct predecessor of c}

This condition stipulates that the delay is always measured from the time T},.4(c), when the last
directly preceding event occurs, to the actual occurrence of the event c. The constraints prescribe
that all delays through non-end cells have upper bound A and lower bound §, that is

6 < Non — end cell delays < A

The delays incurred in the end cell can be expressed as T'(ar,j) — T (rz, 7) for occurrence 7,7 > 0,
of output ar, and input r;. We assume that the delays of the end cell have a lower bound é;, and
upper bound Ay, that is

67, < End cell delays < Ap,



Furthermore we assume that é < §; and A < Ap,.

Finally, we assume that the delay through the environment of the pipeline is at least §, that is,
T(ro,j+1) —T(ag,j) > é for all j > 0.

When a dependency graph and a timing assignment is given, we can define the useful notion of
critical paths. We define an edge a — b to be a critical edge if § < T'(b) — T'(a) < A for b an output
of a non-end cell, or if §;, < T'(b) — T'(a) < Ay for b an output of an end cell. Note that the lower
bound ¢ is automatic by our statement that edge delays must be at least §. The upper bound may
not always be true, because other dependencies may make event b occur later. We call a directed
path a critical path, if all its edges are critical edges.

We can view the critical edges as pieces of elastic which can “stretch” between lengths  and A,
or 67, and Ay. Note that for each node at least one incoming edge must be a critical edge, because
of the delay constraints. If we stretch an edge beyond A it breaks. On a critical path, we know
that no bit of elastic on that path is broken, since, by the choice of the edges on the path, none of
the bits of elastic is stretched beyond its upper bound A or Ap,.

5 A Timing Property

Before we formulate some properties about response times, we define the concept of response depth
of an occurrence of an event. Let the following path exist in a process graph for a behaviour B

(@i, 3i) = (@iz1,di-1) = - (@k+1, Jrt1) — (ak, Jr)

with ¢ > k and occurrences j; < ji—1 < Ji—a < ... < Jr+1 < Jr. That is, the acknowledgment ay,
depends on a; via a sequence of acknowledgments, one for each interface. Let furthermore T be a
timing assignment for behaviour B. We say that (ax, j») has response depth i — k for behaviour B
and timing assignment T iff the path (a;, j;) — (@i-1, ji—1) = ---(@k+1, Je+1) — (ar, jr) is a critical
path, and the edge (@it+1,ji+1) — (@i, ji) does not exist, or, if it does exist, it is not critical. We
call this critical path the “response path” for acknowledgment (a, jx). For example, if we have a
response path with & = 0, and ¢ = L, then we have a critical path of acknowledgments from the
end-cell to the environment, with response depth L.
We now state the main theorem.

Theorem 1 If the response depth of (a;,j;) is k,1 < k < L — ¢, then
T(ai,5:) — T(ai, ji — n*™1) < Cipn + A + k(A = 6)
where

oA #O0<k<L
Y AL ifk=1L

a

This theorem says that if acknowledgment (a;, 7;) has a response depth of k,1 < k < L—¢, then the
duration of the n*~! handshake cycles at interface i that end in (a;, j;) is at most C; 4 +A+k(A—6).
The factor n*~! in the above equation will prove useful, because we give a linear bound to the
duration between two events that have an exponential number of events between them (if n > 1).



Here is a brief example of the main theorem. Suppose n = 2, £k = 2, L = 3, and that we are
looking at event ag (¢ = 0) as illustrated in Figure 6. We will choose jo = 7. Therefore we wish to
show that

T(ao,7) — T(ao,7—2%7Y) < Cy+A+2(A-9)
T(ao,7) — T(a0,7—2) < A+A+2(A—6)
T(ao, 7) - T(ao, 5) S 4A — 26

Since k = 2, we know that (ag, 7) is dependent on an acknowledgment 2 levels deeper in the pipeline,
viz., (as, 1), and not on acknowledgments any deeper. Therefore we can ignore the dependency from
(as,0). So, tracing two steps further back, (ag,7) must be dependent on (r;,2). The path from
(r1,2) to (a0, 7) via (ag,1) cannot be longer than 4A. The path from (r1,2) to (ao, 5) cannot be
shorter than 2§. So we get

T(ao,7) — T(ao, 7 — 2')
< (T(r1,2) +4A) — (T(r1,2) + 26)

which is equivalent to
T(ao,7) — T(ap,5) < 4A—26
Before we prove the main theorem, we give some lemmas.
Lemma 2 If we have the direct dependency b — ¢, then
T(c)—T()>8 and hence T(b) —T(c) < -6

Proof. The result follows directly from the definition of the timing assignment. O

Lemma 2 says that if we know of the existence of a dependency, then the separation between the
source and target event must be at least . The next lemma says that if an acknowledgment to
a request to cell ¥ depends only on cell k itself and not on cells & + 1,...L, then the only delay
incurred is the delay of cell k.

Lemma 3 For any k,0 < k < L, if the response depth of (ak, jx) is 0, then

T(ak, jr) — T(rk, jr) < Ch

Proof. In any behaviour B of a pipeline with the given restrictions, there are at most two direct
dependencies that end in (ag, jr), viz.

(7, jx) — (ar,jr) and possibly (apt1,jr+1) — (ak, Jr)

If the response depth of (a, ji) is 0, then either the dependency (ag+1,jr+1) — (@, jr) does not
exist or, if it does exist,

T(ak, jr) — T(apt1, jrt1) > A



This is equivalent to saying that the edge (ar+1,jr+1) — (@k, jr), if it exists, is not a critical edge.
Since each node must have at least one incoming critical edge, the edge (7%, jx) — (ax, j) is a critical
edge. Furthermore, we observe that the delay through any edge of the form (rg, jx) — (ak, jx) is
not an environment delay. Hence, by our definition of the timing model, the delay through edge
(&, jx) — (a, jr) must be bounded above by A for a non-end cell and by D for an end cell.

O

With the preceding lemmas we can now prove the main theorem.

Proof of Theorem 1. By induction on k.

Basis. Assume that (a;,j;) has a response depth of ¥ = 1. Let (a;41,7i+1) — (ai,Ji), then
(@it+1,Ji+1) has response depth 0. From the restrictions on communication behaviours as explained
in Section 3, it follows that we have a dependency graph for levels ¢ and 741 as in Figure 7. From the
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Figure 7: A part of the behaviour graph. Dotted edges are not present in every instance.

definition of T},¢q(c) and the dependency graph in Figure 7, we have Tpyeq(Pit1, Jit1) = Tpred(@i, Ji —
In the proof below we take Tpreq = Tpred(@i,ji —1). We wish to derive an upper bound for
T(a;,ji) — T(a;,j; — 1). We observe
T(a;, ji) — T(a;, ji — 1)

{ Break path into 4 edges. }
(T(ai7 ]l) - T(a'i—}—l;ji-}—l)) + (T(ai—}—la ji—}—l) - T(ri—}—la ji-}—l)) + (T(ri—}—l; ji—}—l) - Tpred) + (Tpred -
T(ai, ji — 1))

< { (a@;,7;) has positive response depth so timing dependency exists. Also, ack/ack pair
cannot be environment or end-cell delays }

A+ (T(aiv1, Jit1) — T(rit1, Jiv1)) + (T (ria, Jiv1) — Tpred) + (Tprea — T'(ai, ji — 1))
< { (@i41,Ji+1) has resp. depth 0, Lemma 3 }

A+ Cip1 + (T(rig1, Jiv1) — Tpred) + (Tprea — T(as, i — 1))
= { Tpred = Tpred(ai, 4i — 1) = Tpred(Tit1, Jiv1) }

A+ Cip1 + (T(rig1, Jiv1) — Tpred(Piv1, Jig1)) + (Tprea — T(ai, ji — 1))
< { 6 < cell delays < A, Lemma 2 }

A+ Cip1+ A+ (=9)

1).



= { cale. }
Civr + A+ (A - 8)
Step. Assume the theorem holds for k& > 0 and that (a;,j;) has response depth k£ + 1. Then
there is a node (@;41, ji+1) such that dependency (@it1,ji+1) — (@i, ji) exists and (@;41, Ji+1) has
response depth k. From the induction hypothesis it then follows that node (a;;1, jiy1 —n* ') exists.
Given that node (@;41, Ji+1 — nk_l) and dependency (a;y1, jit+1) — (ai, Ji) exist, we show that node
(a;,j; — n*) and dependency (a;i1,jit1 — n*71) = (a;,j; — n*) also exist and that we can depict
the dependencies for levels ¢ and ¢ + 1 only as in Figure 8.

(R @ .- o) @ i)
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Figure 8: Dependency graph. The jagged line consists of 2n — 1 edges. Dotted lines represent
paths.

Let us look at the behaviour of a cell at level 3.

(ri?; #[(ail; m?)"7Y (@il 2?)[(rip @) ])
From this behaviour it follows that between any two successive edges a;; — a; there are n edges
a; — ;. It follows that dependency (a;y1,7iz1 — 1) — (as, j; — n) exists. Repeating this step n*~!
times yields the dependency graph above with direct dependency (a;;1,jiz1 —n*"!) — (a;, j; — n¥).
Finally we observe
T(ai, ji) — T(a;, ji — n*)
= { Break path into three: edge, path, edge. }
((T(ai, 43)) = T(ai+1, Jit1)) + (T(@it1, Girr) = T(@isr, Jirr — ") + (T (aigr, Jivr — 1) -
T(as, ji — n*))
< { (@i41,7i+1) has response depth k, induction hypothesis }
((T(ai, 5i)) = T(@it1, Jit1)) + Cigrar + A+ k(A = 8) + (T(ai41, fir — n*71) = T(as, j; — n*))
< { from Lemma 2 }
((T(ai, ji)) — T(@i+1,Jiv1)) + Ciphsr + A + k(A = 8) + (=6)
< { (a;, 7;) has positive response depth }
A+ Citpt1+ A+ k(A —-68)+ (-9)
< { calc. }

Citkr1 + A+ (k+1)(A - 9)

10



6 Worst-Case Response Time

From the last theorem we can infer a number of interesting properties. We can look at worst-
case cycle time and worst-case response time. Worst-case cycle time is the largest value that
T(ao,j+ 1) — T'(ap,j) can take over all possible values of j and all valid delay distributions. The
worst-case cycle time is not that interesting in this delay model, since the environment of the pipeline
can stretch the cycle time as much as possible by waiting to send a request. (The environment
delays do not have an upper bound.) The worst-case response time WR is more interesting. We
have the following theorem.

Theorem 4 The worst-case response time, WR, for any pipeline (as defined in section § operating
under a delay model of section 4) is bounded from above as

WR < max({Cp+A+k(A—-68)—26n""14+6|1<k<L}U{Co})

Proof. We have to find an upper bound for T'(ag,j) — T'(ro,j) over all § > 0 and all valid delay
distributions. Each acknowledgment has a response depth k, where 0 < k < L. For a response
depth k& = 0, we have from Lemma 3, T'(ag,j) — T'(r0,7) < Co. For a response depth of £ > 0, we
use the result of the previous section. We observe

T(ao,5) — T(ro,5)
= { calc. }

(T(a0,5) — T(ao,j — n*~1)) + (T(ao,j — n*71) = (T(ro, 1))
< { (@0, 7) has response depth k, Theorem 1 }

Cr+ A+ k(A —-68)+ (T(ao, j — n*1) — (T(ro, 5))

Notice that there are n*~! handshakes at level 0 between occurrences (a0, j) and (ag,j — n
The handshakes at level 0 experience delays through the environment and through cell 0. Assuming

k—l)'

that the environment’s and the cell’s minimum response time is ¢, the minimum duration of one
cycle through environment and cell is 25. Therefore the minimum duration from T'(ag,j — n*~1)

to T(ro, j) is 26n*~! — §. This then leads to the inequality

T(ao,j) — T(r0,5) < Crx + A+ k(A = §) — 26nF71 4§
Maximizing these upper bounds over all k,0 < k < L gives the desired result.
O

The above theorem holds for all pipelines with a multiplication factor n > 0. The case when L = 0
is not especially interesting, as this is simply an environment and an end cell. In this case the
formula resolves to WR < Aj. For L > 0, we consider two special cases: n = 1 and n > 1.
Instantiating the above theorem for n = 1, we derive

Theorem 5 The worst-case response time WR for a linear array with multiplication factor n =1
satisfies

WR < Ap+ (L+1)(A-9)

11



Proof.
WR
< { Theorem 1 above, n =1}
max({Cx + (k+ 1)(A - 8) | 1< k < L} U{Co})
= {cale., A>6§, AL >A }
Ar+ (L+1)(A - 9)

O

In other words, for a pipeline with multiplication factor 1, the worst-case response time depends
linearly on Ay, L, and A — 4. With the proper distribution of delays, this upper bound can indeed
be attained. See Figure 9. All solid thin lines have a delay of 4, and all solid thick lines have a
delay of A. The dashed, thick line has a delay of Ar,. The dashed, thin line has a delay d;,. The
delay between (rg,4) and (ag, 4) is Az, + 4(A — ). Obviously, this example can be generalized for
a pipeline of any length.

Figure 9: Example with worst-case response

For the case where the multiplication factor » > 1, we take a function Dy, to serve as an upper
bound for the delay through the end cell. Let

Dp=28(n"t1-1)+ A
for 1 < L. If we assume that Ay < Dy, we derive with Theorem 4

Theorem 6 The worst-case response time WR for a linear array with multiplication factor n > 1
satisfies

WR <A+ (L+1)(A-9)
provided the delay through the end cell satisfies
Ap <25(nf1-1)4+A

12



Proof. Let Dy, = 26(n*~! — 1)+ A with 1 < k < L. Then C}, < Dy, 1 < k < L. This also implies
that Dy, < 28(nl~! — 1) + A.

WR < max({Cr+A+k(A—-68)—26n*"14+6|1<k<L}U{Cy})

= max{Cr+A+k(A—-6)—26n"1+6|1<k<L} {SinceL>0}

max{Dy + A+ k(A -8) —26n*1 + 6|1 <k <L} {Since Cy < Dy, }
max{25(nk_1 -1+ A+A+E(A-6) - 26nk1 1§ |1<k<L}
max{—26 + 2A+ k(A —-0)+d6 |1 <k <L}
max{2A -6+ k(A —-96) |1 <k <L}
max{A+ (k+1)(A-96) |1 <k <L}
= A+ (L+1)(A-9)

A

O

In words, if the delay in the last cell increases at most exponentially with L (as in 26n”), the
worst-case response time of the network increases at most linearly with L (as in k(A — §)).

A special case occurs when the delays in the cells are fixed (A = §), which often happens in
bundled data implementations where matching delays are fixed, then the upper bound for the
worst-case response time is bounded by A.

If the upper and lower bounds for the delays differ, we can still maintain a bounded response
time for n > 1 if we are willing to let the delay in the last cell increase a little bit less than Dy.
How much less increase is needed depends on the ratio of A and 4. For example, we have

Theorem 7 If A < 2§ then the worst-case response time WR for a linear array with multiplication
factor n > 1 satisfies
WR < 2A
provided the delay through the end cell satisfies
Arp < Anf=t — (L - 1)(A - 6)
Proof. Let Dy, = An*~! — (k — 1)(A — ) with 1 < k < L. Then C), < Dy, 1 < k < L. This also
implies that Ay, < Anf~! — (L - 1)(A — 5).
R < max({Ch+ A+ k(A -8)—26n""1+6|1<k<LIU{Cy})
= max({Ck—l—A—}—k(A 8)—26n" 1+ 6|1 <k<L} {SinceL>0}
ax({Dp+ A+ k(A —-8)—26n"1+6|1<k<L} {Since Cx < Dy, }
ax({(A-nk—l —(k=1)-(A=8)+A+k(A-6) 200"t +6|1<k<L}
(
(

INA

Il
8

max({(A-nF 1 — k(A -8)+ (A —-68))+A+k(A-8) 200" +6|1<k<L}
{(A-28) -1+ (A-8)+A+6|1<k<L}
= max({(A—-26)-n""14+2A 1< k< L}

I
=
&

k—1

If A < 24, the expression (A — 24) < 0, and so the maximum occurs when n is minimized. For

k > 1, the maximum occurs when k£ = 1 with value

(A —268)+2A
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< (26-28)+2A {Since A <24}
2A

7 Amortized Response Time

The amortized response time is the average response time under the worst-case delay distribution.
In other words, the average response time for any delay distribution is at most the amortized
response time. We show that the amortized response time is bounded by constants independent
of L for pipelines with multiplication factor n > 1, as we would expect, but also for pipelines with
n = 1. In other words, although the worst-case response time for a pipeline with n = 1 depends
linearly on L, the average response time for such a pipeline is bounded from above by a constant
independent of L.

We consider two cases n = 1 and n > 1 and use the notion of a critical response path to prove
an upper bound for the amortized response time for these pipelines. Here is the theorem for the
case n = 1.

Theorem 8 The amortized response time AR of a pipeline with multiplication factor n = 1 is
bounded from above as

AR<AL+A -6

Proof. Consider a pipeline with multiplication factor » = 1 and a timing assignment for its de-
pendency graph as illustrated in Figure 4. Take an occurrence of an acknowledgment, say (ao, jo).
From acknowledgment (ag, jo) there is a critical path from some request (rg, %) with 75 < jo and
on this critical path there is no other event at level 0. Let the length of this path be k. Notice that
if h = 1, then jo = 79 and we have T'(ao, jo) — T'(r0,%0) < A. For a path of length A > 1, a delay
of Ar, can be obtained in at most every other edge of the path and only in edges at level L. In the
other edges a delay of at most A can be obtained. Let h = 2k 4+ 1 for some k£ > 0. For k < L we
then get an upper bound of

T(ao, jo) — T(ro,%0) < 2k +1)A

Furthermore, between (7, %9) and (ao, jo) at level 0 there are k = (h — 1)/2 handshake cycles plus
one cell delay. (A handshake cycle consists of one environment and one cell delay.) Environment
delays are at least §. In k& handshake cycles, the total time for the environment delays is at least
ké. Hence, the total time for the pipeline responses between T'(ro, %) and T'(ao,jo) is at most
(2k+1)A — k8. So the average response time AR, for the pipeline responses between T'(rg, 79) and
T (ao, jo) satisfies

ARy, < ((2k+1)A — k8)/(k+1) = 2A — 6 — (A — 8)/(k +1)

for 0 < k < L. Maximizing this upper bound over all k,0 < k < L, yields an upper bound for the
amortized response time, ARO.

ARO<2A -6 — (A -6)/L

14



For k > L we get a critical path of length 2k 4+ 1 with maximum delay if there are 2L edges with
delay A, k — L edges with delay A, and k+ 1 — L edges with delay Ay,

T(ao, jo) — T(ro,%0) < 2LA+ Ap + (k- L)(AL+ A)

Using a similar reasoning as above, we find for the average response time, AR}, for the pipeline
responses between T'(ro, i9) and T'(ao, jo)-

ARy,
< { From above }

(2LA+ AL+ (k- L)(AL+ A)—kd8)/(k+1)
= { calc. }

AL +A—-6—(A-6+L(AL—-A)/(kE+1)

Maximizing this upper bound over all & > L, and taking into account that A > é and Ay > A,
yields an upper bound for the amortized response time, AR1.

AR1 < Ap+A-¢

The maximum of ARO and AR1 gives as upper bound for the amortized response time AR.
AR<AL+A -4

O

This bound is tight, since we can get arbitrarily close to it with a proper delay distribution and a
sufficiently long sequence of handshakes. For example, if we take a delay distribution, where each
delay through a non-end cell is A, each delay through an end cell is Ay, and each delay through
the environment is §, and we take an infinite number of handshakes at cell 0, then this bound is
achieved.

For a multiplication factor n > 1 we can use the following theorem. It states that if the delay
through the last cell increases at most exponentially with L (as in 26n”), then the amortized
response time for a pipeline with multiplication factor n > 1 is bounded by (3A + §)/2.

Theorem 9 The amortized response time AR of a pipeline with multiplication factor n > 1 is
bounded from above as

AR < (3A+46)/2
provided the delay in the last cell satisfies
Ap <26(nFt-1)4+A

Proof. A derivation for an upper bound of the amortized response time for n > 1 is similar to the
derivation for » = 1. Part of the dependency graph for when n = 2 is shown in Figure 6. Let there
be a critical path of length h from (ag, jo) back to (rg,%0) with 79 < jo and no other occurrence
of an event on the path is at level 0. As before we have h = 2k + 1. Moreover, for a dependency
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graph with n > 1, we infer that there are k¥ “up-edges,” k “down-edges,” and one “level-edge” in
the path. (See Figure 6 for n = 2, for example.) The total delay therefore for this path is at most

2kA + Ap

when k = L. For k < L the upper bound is
2kA + A

By definition of Cy, for 0 < k < L, the upper bound can be expressed as
2kA + Cy,

The number of handshake cycles between (7o, %9) and (ao, jo) is

k-1
Ny = (Yo n) = (n* = 1)/(n—1)

-
Il
=]

where we define Ny = 0. Let Dy, = 26(n*~* —1) + A with 1 < k < L. Then Cy < Dy,1 < k < L.
This also implies that Az < 26(nf~! — 1)+ A. Similar to the proof of the previous theorem we get
the following derivation for the amortized response time AR.

AR
< { calc. }
max{(2kA + Cr, — Ni.6)/(Nr+1) |0 < k < L}
= {L>0,Ny=0,and Co < A+ (C1-9)/2}
max{(2kA + Cr, — Ni.6)/(Np+1) |1 <k < L}
= { calc. }
max{(2kA +Cr+68)/(Nr+1) -6 |1 <k <L}
< {Cy<D,,1<k<L}
max{(2kA + Dy +6)/(Nr+1) -8 |1 <k < L}
= { Def. of Dy, }
max{(2kA +26(n*! — 1) + A+68)/(N,+1) -6 |1 <k < L}
= { cale. }
max{((2k + 1)A — §) +26nF 1) /(N +1) =8 |1 < k < L}
< { Exponential term reaches maximum of 2§ when k£ — oo }
max{((2k+ 1)A - 8)/(Nr+1)+2§ -6 |1 <k <L}
< { Remaining term is maximized when £ =1 }
(3A—-46)/2+ 6
= { calc. }
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(83A+4)/2

This bound is not quite tight, because we maximize at ¥ = 1 for one term and at ¥ — oo for
another term.
O

8 Concluding Remarks

Given a linear pipeline, various communication behaviours, and bounds on the delays of the cells,
we have given formulas for the amortized and worst-case response times of the pipeline. Notably,
we have shown that we can achieve bounded amortized response times independent of the length
of the pipeline. Furthermore, we have shown under what conditions a bounded worst-case response
time can be achieved.

Not only do these formulas allow for quick back-of-the-envelope calculations, but they also allow
for a better understanding of which parameters are influential and in what sense they influence the
response time of the design. For example, we have shown how slow the end cell can be without
affecting the response time. Such knowledge can be exploited conveniently in the design of the last
cell by trading speed for better energy efficiency, for example.

There are many pipeline designs for various computations all with multiplication factor n = 1
and where data is flowing in one or both directions, see [2, 3, 7, 10, 12, 13] for example. If we
know what the values are for each of the parameters for certain implementations, we can quickly
determine what the upper bounds for the worst-case and amortized response times are. If we know
that delays are fixed, that is, A = §, then we get a worst-case and amortized response time that
are bounded by constants.

The results for the linear arrays and the detailed proofs form a convenient starting point for
various generalizations. We mention just a few of the generalizations that are under investigation.
For example, how do the results generalize if one permits more parallelism between handshakes
on the left-hand side and on the right-hand side? How do the results generalize if one allows
behaviours where handshakes on the right-hand side are conditional on communicated data values?
And finally, how do the results generalize if we consider tree-like networks.
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