Decomposition of Boolean Functions
Specified by Cubes®

J. A. BRZOZOWSKI
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

email: brzozoOuwaterloo.ca

T. LUBA
Institute of Telecommunications
Warsaw University of Technology
Nowowiejska 15/19
00-665 Warsaw, Poland
email: luba@tele.pw.edu.pl

ftp://cs-archive.uwaterloo.ca/cs-archive/CS-97-01/CS-97-01.ps.Z

Abstract We study the problem of decomposing a Boolean function into a set of
functions with fewer arguments. This problem has considerable practical impor-
tance in VLSI. For example, for digital circuits designed with field-programmable
gate arrays, it is necessary to express Boolean functions in terms of ‘smaller’ func-
tions that fit the cells of the array. The decomposition problem is old, and well
understood when the function to be decomposed is specified by a truth table listing
the function’s minterms, or has one output only. However, modern design tools,
such as Berkeley’s Espresso, handle functions with many outputs and represent
them by Boolean cubes rather than minterms, for reasons of efficiency. In this
paper we develop a decomposition theory for multiple-output, partially specified
Boolean functions represented by cubes. The theory uses ternary algebra and gen-
eralized set systems.

Keywords: blanket, Boolean function, cube, decomposition, disjunctive, “don’t
care,” multiple-output, set system, ternary algebra, type fr

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant No. OGP0000871. This work was done while T. Luba was a
Visiting Professor at the University of Waterloo.

1 Introduction

Decomposition is a fundamental problem in modern logic synthesis. Its goal
is to break a logic circuit into a set of smaller interacting components. Such
an implementation is desirable for a number of reasons. In the case of designs
using field-programmable gate arrays (FPGAs), particularly those with look-
up table structures [4], decomposition is a necessity, since FPGA cells can
only accomodate functions with very few inputs and outputs. In PLA- and
PLD-oriented designs, a decomposed circuit often leads to a smaller silicon
area and shorter signal delays [6]. Consequently, decomposition methods
are increasingly exploited in today’s logic synthesis systems [17].

Mathematically, decomposition is the process of expressing a function of
n variables as a function of functions of fewer variables [7]. For example, a
function F(X) is decomposable if it can be expressed as F = H(U,G(V)),
where U and V' are proper subsets of the set X of input variables, and G
and H have fewer input variables than F.

Numerous decomposition algorithms have been developed. Ashenhurst,
in his fundamental paper [1], stated the disjunctive decomposition theorem
based on decomposition charts. Curtis extended Ashenhurst’s results to
multiple decompositions [7], of the form F = H(U,G1(V),...,Gr(V)). The
use of charts for decomposition of logic networks is applicable only to re-
stricted classes of functions. To remedy this, Roth and Karp used a more
compact representation of a function in the form of a cover of the on-set
and a cover of the off-set [15]. However, their method does not deal directly
with multiple-output functions.

In the early 1980’s, functional decomposition methods received less at-
tention because of the rapid development of synthesis techniques for multi-
level logic. Algebraic division of sum-of-product expressions represented by
sets of cubes has been a basic operation in the procedures of so-called kernel
extraction widely used in multi-level synthesis of Boolean functions [3].

A renewed interest in functional decomposition in recent years was caused
by the introduction of field programmable gate arrays by Xilinx in 1986, and
other companies (AT&T, Actel, Altera) in succeeding years. FPGAs are
modern logic devices which can be programmed by the users to implement
any logic circuit [4]. Because of their short turnaround time compared with
that of the standard ASIC process, they have recently become very popular
in rapid system prototyping. Many FPGA architectures have been pro-
posed; the architecture based on look-up tables is one of the most popular
ones. It consists of many identical logic blocks, each of which can implement

any Boolean function of k inputs, where k is a small integer. For example,
in Xilinx XC3000 architecture, k is 5.

When they found that the earlier algebraic methods could not be easily
adapted to the look-up-table model, researchers switched to decomposition
methods based on functional dependencies [11, 12, 14, 17, 19, 20, 21, 23].
However, despite the fundamental nature of the functional decomposition
problem and its many applications, there does not exist any uniform ap-
proach to decomposition which could be applied to completely or incom-
pletely specified multiple-output Boolean functions represented compactly
by covers using Boolean cubes.

In this paper we extend previous results concerning functional decom-
position to the case where the given function is specified by cubes in the
so-called fr type description [2]. We develop a new framework, based on
ternary algebra, and on certain generalizations of set systems, which we call
“blankets.” The remainder of the paper is structured as follows. Section 2
presents some notions from ternary algebra. In Section 3 we discuss two
generalizations of partitions: blankets and set systems. Multiple-output
Boolean functions and their representations are presented in Section 4. The
use of blankets for Boolean functions is described in Section 5. The notion
of “disjunctive serial separation”—a functional decomposition without any
constraints on the size of the components—is defined in Section 6, where we
also prove a generalized version of a theorem of Curtis [7]. Section 7 extends
our methods to nondisjunctive decompositions. Section 8, discusses decom-
positions with constraints on the number of arguments of the components.
The use of cubes in the decomposition process is illustrated in Section 9.
The overall decomposition algorithm is next described in Section 10, and
Section 11 concludes the paper.

2 Notions from Ternary Algebra

In this section we present for later use some concepts and notation from
ternary algebra. For more details see [5].

We use 0 and 1 to denote the usual logic values, and ® to denote a third
value, which will have several interpretations. The uncertainty partial order
C on the set {0,®, 1} is defined as follows:

0C0,®C&,1C1,0C®, 1C P,

and no other pairs are related by C. The value @ is considered uncertain,

whereas 0 and 1 are certain. The converse of C is denoted by J; the notation
t C t' is used interchangeably with ¢’ 1 ¢.

In general, n-tuples will be denoted by unsubscripted letters, for example
t, and their components by subscripted letters, for example ;. Also, to
simplify the notation we often write tuples without parentheses and commas.
For example, (®,1,®,0,1) will be written $1$01.

The partial order C is extended to {0, ®, 1}™:

tCt if and only if t; C ¢, for all 4, 1 <4 < n,

where t = (¢1,...,t,) and ¢/ = (¢,...,t,). For example, 01 C $1P.

In the partially ordered set ({0,®,1}, C), the concept of least upper
bound lub is defined as usual. Thus, ub{0} = 0, lub{1} = 1, and the lub
of every other nonempty subset of {0,®,1} is equal to ®. The definition of
lub is also extended to {0, ®,1}" to be the component-by-component least
upper bound. For example,

lub{®001,1101,0101} = $$01.

As usual, we define a binary operation, U-addition, on {0, ®, 1} to correspond
to the least upper bound, as follows:

tut = lub{t,t'}.

Then we have
tCt ifandonlyift Ut =¢.

The U-addition is idempotent, commutative and associative. For any nonempty
subset S of {0,®,1}", we use the notation

wbS =| |iest.
We define the following compatibility relation ~ on {0,®,1}:
0m0,3~® 1~1,0~nd 1nd &~n0, &~ 1,
but the pairs (0,1) and (1, 0) are not related by ~. Compatibility is reflexive
and symmetric, that is, for all ¢,¢' € {0,®,1},¢ ~ ¢, and ¢ ~ t' implies t’ ~ t.

However, it is not transitive, since 0 ~ ® and ® ~ 1, but 0 ¢ 1. Note that

t C t' implies t ~ ¢/,

and
t ~ t' implies that either t C ¢ or ¢’ C ¢.

The compatibility relation ~ is extended to {0, ®,1}"™:
t ~t' if and only if t; ~ ¢t for all 4, 1 < i< n.

For example, 019 ~ $10®.
The greatest lower bound, g¢lb, exists only for some subsets of {0, ®,1}.
Thus ¢l6{0,1} does not exist, but glb{0,®} = 0. The binary operation, M-

Table 1: The operation I1.

tl
tne |0 & 1
0,0 0 -
t 0 & 1
1/- 1 1

product, corresponding to glb is given in Table 1; ¢ M ¢’ is defined only if ¢
and t’' are compatible. When we M-multiply a certain value by an uncertain
value, the certain value prevails. Also,

tCt ifand only ift Mt =t.

If ¢, t/, and t” are pairwise compatible, then the M-product (¢ M ¢') M¢” is
defined and equal to ¢ M (¢ M ¢”). Thus M is associative. The M-product can
be extended to any nonempty set C' of pairwise compatible elements:

g C = lcc t.

The M-product can be further extended to compatible tuples. For example

019® 11 $10® = 0109.
With each t € {0, ®,1}"™ we associate a set bint of binary tuples:

bint = {bec {0,1}" | b C t}.

For example, if ¢t = 01®®, then bint = {0100,0101,0110,0111}. If b is in
{0,1}" and b C ¢t for some tuple ¢ € {0,®,1}", then b € bint and we say
that b belongs to t, or that t contains b. One verifies that

t = lub bint.

Proposition 1 Let C C {0,®,1}". The following two conditions are equiv-
alent:

° ﬂteC t is defined, that is, the elements of C are pairwise compatible.

o o bint is nonempty, that is, there exists b € {0,1}" such that b C t
for each t € C.

If the conditions of the proposition are satisfied, then

[ec t=LI(N bint).

teC

For example, let C' = {0®1®,$11P,01$P}; then |_|tec t =011,

N bint = {0010,0011,0110,0111}N {0110,0111,1110,1111}N
teC

{0100, 0101,0110,0111} = {0110, 0111},
and 0110 L 0111 = 011&.

3 Blankets and Set Systems

A blanket on a set S is a collection! 8 = {Bjy,..., By} of nonempty and
distinct subsets of S, called blocks, whose union is S. For example, if S =
{1,2,3}, then B8 = {{1,2},{2,3}} and B’ = {{1}, {1, 2}, {2, 3}} are blankets
on S. To improve the notation, we often write 8 = {I,2; 2,3}, instead
of 8 = {{1,2},{2,3}}, etc. Also, when it is possible to avoid reference to
the number k of blocks in a blanket 8 = {Bj,..., By}, we simply write
B ={Bi}.

Define the “nonempty” operator ne as follows. For any set {S;} of
subsets of a set S,

ne{S:} = {Si} — {0},

is the set {S;} with the empty subset removed, if it was originally present.
The product B*8' of two blankets is defined as follows:

B+B' = ne{B; N B; | B; € and B; € §'}.

We call such a collection a blanket, because it covers S.

For example,

and

{1,2,3; 3,4,5}%{1,2,3; 3,4,5} = {1,2,3; 3; 3,4, 5}.

The last example shows that blanket product is not idempotent.

Let Bg be the set of all blankets on a set S. Let 15 = {S} be the one-
block blanket, and let 05 = {{s;} | s; € S} be the blanket consisting of one-
element blocks. Then the algebraic system (Bg, *,1g,0g) is a commutative
monoid with unit 15 and zero Og, that is, for all 8, ', 8", we have g%’ =
B'+B, (B3 48" = Bx(B'+B"), Bxls = LB = B, and fx0s = 054 = Os.

If 3 and B’ are blankets on S, we write 3 < ' if and only if for each B;
in 3 there exists a B; in 8’ such that B; C B;. For example, {1; 2; 3} <
{1,2; 2,3}, and {1,2; 2,3} < {1,2; 2,3; 1,3}

The relation < is reflexive and transitive, that is, for all 3, ', 8", we
have 8 < 3, and 8 < 3 and B’ < 3" implies 8 < B”. The relation is not
antisymmetric, since {1; 1,2} < {1,2} and {1, 2} < {1; 1,2}. Also, we have
the following property:

pxp' < B and pxp’ < B'.

Next, we consider some special blankets called set systems [8]. A set
system on a set S is a blanket ¢ = {Bj,..., By} in which the blocks are
maximal in the sense that B; C B; implies i = j. For example, if S =
{1,2,3}, then o = {{1,2}, {2,3}} is a set system on S. As above, we also
write o = {1, 2;2, 3}. Note that set systems are not closed under the blanket
product. For example {1,2; 2,3}*{1,2; 2,3} is not a set system.

If 3 = {B;} is any blanket on S, then

mazf = {B C S| B = B; for some %, and B C B; implies B; = B}.

Note that maz maps blankets to set systems. The product o o ¢’ of two set
systems [8] is defined as follows:

000’ = maz(oxd’).

For example,

{1,2,3;3,4,5} 0 {1,3,4;1,5; 2,3,4} = {1,3; 2,3; 3,4; 5}.

One verifies that set system product is idempotent, commutative, and asso-
ciative.

A partition on a set S is a set system m = {B;}, where the blocks are
disjoint, that is, B; N B; = 0, if ¢ # j. For example, if S = {1,2, 3}, then
m = {{1,2},{3}} is a partition on S.

In the sequel, we will be using blankets on rows of ternary matrices. Let
M be any h x k matrix with entries from {0, ®,1}. Assume that the rows of
M are numbered 1,..., h. Let 7 be the set of rows of M; then we denote
blankets on 7 by blankets on the set {1, ..., h}. Borrowing the terminology
from logic design, we refer to ternary k-tuples as cubes.

In particular, we define a row blanket 8 = ne{T 33}, where b € {0, 1}*
and

Ta={teT|tIb}.

Thus 7o is the set of all cubes in 7 that “cover” b, in the sense of the
partial order J. For example, consider the matrix M in Table 2. One
verifies that T;ooo = {3, 5, 6}, T;OOl = {5, 6}, T;om = {3, 5}, T;Oll = {5},
T;lOO = {1,3,4,6}, T;l()l = {6}, T;llo = {1,2,3,4}, T;lll = (. The
blanket 3 is therefore

B B, By By By By _ B
B =1{3,565,6;3,5; 5;1,3,4,6; 6;1,2,3,4},

where the blocks have been numbered as shown.

Table 2: Matrix M.

[« I BT JURE ORI
B O = B =
=
B o oo o

The representative r; of block B; of a row blanket 3 is the glb of the
cubes in B;. Thus, in our example, r; = ®®0M0®P11$0® = 000, r, = 002,
rs = 090, ry = 09P, r5 = 100, rg = 09, and r7 = 110. Let R be the set

of block representatives of 3; in our example, R = {ry,...,77}. One verifies
that the mapping g : § — R is a one-to-one correspondence. In fact, we
have the following result:

Proposition 2 Let 3 be the row blanket of a matric M. Let (8,D) be the
set of blocks of B partially ordered by inclusion, and let (R,C) be the set of
representatives partially ordered by the relation C. Then the two partially
ordered sets are isomorphic.

It is a consequence of the proposition that »; C r; if and only if B; O B;.
Two representatives r; and r; have a glb if and only if B; U B; is a block of 3.
In fact, r; M r; = 7y, if and only if B; U B; = By. For example, 71 M7y = 74
and B1UB2:B1, 7’2|_|7‘3:7‘1 and BQUB3:B1.

4 Multiple-Output Boolean Functions
We will be dealing with functions of the form
F:D— ({0,2,1}" - {(®,...,®)}),

where D C {0,1}", and (&, ..., ®) is the tuple of n ®s. Such a function will
be used to specify a combinational logic circuit with n inputs, 21, ..., z,,
and m outputs, y1, ..., ¥m. Since “don’t care” conditions frequently arise in
logic design, the function outputs may be undefined for some input n-tuples.
Hence the domain D of F is, in general, a subset of {0,1}". Also, for some
input n-tuples, some of the outputs may be undefined, although at least
one of the outputs has to be defined. Such undefined output values will
be represented by ®s. For example, the (partial) truth table for a 4-input,
2-output function F is shown in Table 3. We will use this function as our
running example. For two of the input 4-tuples, 0100 and 1100, no outputs
are defined, so these rows are omitted from the table.

An element of {0,1}" is called a minterm. As usual, a minterm may be
interpreted as a zero-dimensional Boolean cube, or as a product of variables
Z1,...,2¢, and their complements. For example, if n = 4, the 4-tuple 0111
corresponds to the product zi*zoxx3*x4, where z is the complement of z,
and # denotes Boolean multiplication. We usually denote Boolean multipli-
cation by juxtaposition. For example, we write £; 5 23 24. An element c
of {0,®,1}" is called an input cube; if ¢ has p components that are & (and
hence n — p components that are either 0 or 1), then it is a p-dimensional

Table 3: Truth table of F'.

8
=
8
X
&
w
8
N

[e = === ==
F R ROO0OO0OORHRHRHROOOO
_ O R OORRFEORRFROOOD
—_— O OO OMOFO
CORWO R MHKMFOORFROOR = ~%
—_ O OO RO B~ B =S

input cube. Such a cube may be interpreted as a product of n — p vari-
ables in the usual way. For example, 0910 is a one-dimensional input cube
corresponding to the product z; z3 z4.

It is clear that the partial order C represents the usual containment
relation between cubes. For example, we have ®010 C 090, which corre-
sponds to the fact that cube z5 3 z4 is contained in cube z5z4. If c is a
cube, then binc is the set of minterms contained in that cube. The compati-
bility relation applied to cubes has the following meaning. Two cubes ¢ and
¢’ are compatible if and only if they have a nonempty common subcube. For
example, 01®P ~ $10P means that cubes z; #, and z, z3 have a nonempty
common subcube. In fact, this subcube, z; 25 z3, is denoted by the tuple
019® 11 $10® = 0102.

We now introduce our notation for incompletely specified multiple-output
Boolean functions. A function F', defined as above, with n inputs and m
outputs will be specified as a set F of (n+ m)-tuples, called function cubes,
in which the first n components correspond to the inputs and the last m
components, to the outputs. We usually represent F as a matrix, as illus-
trated below.

10

Example 1 The seven 6-tuples numbered 1 through 7 in Table 4 define a
4-input, 2-output function. In particular, the table specifies that y; = 1 for

Table 4: An fr function.

Number =z,
1

EN = Y NG SR XY

(=T I)
reqn—tn—l&ooolff
opeqn—ln—tore-ll-e-lcff
_ o= Bo o8
o o= = =R
N = - =l

the input cubes 0090, 1090, $00®, and 0901. Thus the set of minterms for
which y; must be 1, which is called the on-set of y;, can be described by
the Boolean expression

on_ ——— —_—— —— ——
Y1 = 2Tr2o2ygt+ 2122y + 2223+ 21 T3 24.

Similarly, the off-set of y;, the set of minterms for which y; is 0, is described
by the expression
0 _
ylﬁ: T3 T4 + T2 T3 2y,

One verifies that these two expressions are never 1 at the same time; hence,

the specification is proper. Finally, all minterms that are not described by

y?™ or yfﬁ belong to the “don’t care” set yldc. Similarly, we obtain the

following expressions for ys:
on _ ————
Yy = T1T3Ty+ TaTy,

and
off —
Y = 212224+ T22324.
O]

For an (n+m)-tuple t = (¢1,...,tnm) € {0, ®,1}"™ the input projec-
tion of tist; = (t1,...,t,), and the output projection is t" = (tpy1,-- -, tnim)-

11

A set of (n + m)-tuples does not necessarily define a Boolean function,
because it is possible to assign conflicting output values. An fr function [2],
is any set F of (n+ m)-tuples from {0, ®, 1}"*™ that satisfies the following
consistency condition, which guarantees that there are no contradictions.
For all t,t' € F,

if ¢, ~t], then tT ~ ¢T. (1)

Furthermore, F does not contain any (n + m)-tuple ¢ such that t" consists
of ®s alone.

We say that a minterm b is involved in a function cube ¢, if b C ¢;. We
call a minterm b relevant to F if b is involved in some function cube t € F.
The consistency condition on F implies that, if a minterm b is involved in
two cubes ¢ and ¢’ of F, then, for every output y;, the values t,,; and t;,;
specified for y; by the two cubes are either equal or one of them is ®. It
follows that, for all the cubes of F involving b, the (n + 7)th entries that are
not ® must be identical.

From any fr function F, we can construct its truth table in the following
manner. If b is not relevant to F, then b is absent from the table. Otherwise,
let

Fxpp={t€ F|t, Db},

be the set of all cubes involving b. By the consistency condition, all these
cubes are pairwise compatible, and their ¢glb exists. The value of the function
F for minterm b is

Fby =1, Fra ¢l

To illustrate this, we consider the fr function of Table 4. Minterm 0000
is involved in cubes 1 and 3; thus F x50000 = {1, 3}. The output projections
of these two cubes are 11 and 1®. Thus F(0000) = 111 1% = 11. Minterm
0111 is involved in cubes 4 and 6. The values assigned to y;y, for these
two minterms are 0® and 1. Hence, in the truth table, the outputs are
0% M @1 = 01. Also, F(1001) = 1®, etc. One verifies that the completed
truth table is identical to that in Table 3.

In this paper we study the decomposition of fr functions. A specification
in the form of Table 4 can be viewed as an abbreviated version of the truth
table of Table 3. Such specifications are widely used; for example, the
function representations of type fr used with the program Espresso [2] satisfy
our definition.

12

5 Blankets for Boolean Functions

We will use blankets to characterize decompositions of fr functions. For each
input z; in the table of F, we define a two-block blanket 3; = {F.; 50, Fo; 01}
on F as follows:

Fuigo={t € F[t; 0}

and
.7:1.,;1 = {t € .7:| t; J 1}.

For example, for Table 4 we find

ﬁl = {173a475a6a7; 2a374a5’6}a

52 = {1a2a374a7; 4’576’7}’
ﬁ3 = {1a213a6a7; 172a4a5’6}a
ﬁ4 — {1a273a5a 374a6’7}'

For any subset V of the set X = {21, ..., 2,} of input variables we define
the (input) blanket of V'

Bv =[] 8

z, €V
where II is the blanket product *. Note that we permit V' to be empty, in
which case By = By = {F} is the one-block blanket on F.
Suppose V = {z;,,...,z;.} is a subset of the set X of input variables,
and ¢ is a function cube; denote by tf the r-tuple (¢;,,...,%,).

Proposition 3 Blanket By can be calculated as follows: By = ne{Fyaa},
where d € {0,1}", and

Fvaa={teF|t] Jd}. (2)

For example, for the function of Table 4, and V' = {24, 23, 24}, we have

000 001 010 011 101 110 111
By =1{1,2,3;3,7;1,2; 4;6,7; 5; 4,6},

where we have indicated the values of the variables z,, 23, 4 corresponding
to each block.

If cubes ¢t and ¢’ both appear in some block of a blanket 3, then we write
tBt’'. From Proposition 3 it follows that,

tByt’ implies tf ~ t’f.

13

We also use blankets for output variables. We define a two-block blanket
f; for each output y;. In the example, 3; = {4,5,6;1,2,3,6,7}, and By =
{2,3,4,5,7;1,3,4,6,7}. We will also need a blanket S, called the output
blanket corresponding to the product of all the blankets of output variables.
Thus

Br =[] B:.
=1

Proposition 4 The output blanket can be found as follows: Br = ne{Fy 3.},
where e € {0,1}™ and
Fyage={te F |t Je}. (3)

For example, for the function of Table 4,

6 Disjunctive Serial Separations

The following is a generalization of the work of [7] and a formalization of
the work in [12].

We use the following notation. Let X = {z;,...,2,} be the set of in-
put variables of an fr function F(zy,...,2,). Let U and V be two disjoint
subsets of X such that U UV = X. For convenience, and without loss of
generality, we assume that the variables zq, ..., z,, have been relabeled in
such a way that U = {z,,...,2,} and V = {2,41,...,2,}. Consequently,
for an n-tuple z, the first 7 components are denoted by zU, and the last
s =n — 7 components, by 2.

Definition 1 Let F be an fr function, with n > 0 inputs and m > 0 outputs,
and let (U, V) be as above. Assume that F is specified by a set F of function
cubes. Let G be an fr function with s = n — r inputs and p outputs, and
let H be an fr function with r + p inputs and m > 0 outputs. The pair
(G, H) is a disjunctive serial separation of F with respect to (U, V), if, for
every minterm b relevant to F, G(bV) is defined, G(b") € {0,1}?, and

F(b) 3 H(Y,G(")). (4)

Note that we allow the case r = 0; then (4) becomes F(b) J H(G(b)). We
also permit the case s = 0; here we have F(b) J H(b,G), where G is a

14

constant binary p-tuple. Finally, we allow the case p = 0; now (4) becomes
F(b) O H(Y). If U # X, this would show that the outputs of F are
uniquely determined by a proper subset of the input variables.

Theorem 1 An fr function F specified by a set F of function cubes has a
disjunctive serial separation with respect to (U, V) if and only if there ezxists
a blanket Bg on F such that

e By < fBg, and

o Buxpc < Br,

where By and By are the input blankets of U and V', and BFr is the output
blanket.

Proof: (a) Necessity of the conditions

The reader may wish to look at Example 2 below when following this part
of the proof.

Suppose first that a (disjunctive serial) separation (G, H) exists. Then,
for every binary s-tuple b¥, such that b is relevant to F, the function G is
defined and its outputs are all binary. Define blanket S5 on F as follows.
Let f € {0,1}?, and let B¢ = ne{Fg—s}, where

Fo—s ={t € F|3d € {0,1}" such that t] Jd, and G(d) = f}. (5)

We first verify that By < Bg. Suppose that t8yt’ for a pair ¢ and
t' of cubes of F. By Proposition 3, there exists a d € {0,1}* such that
tf 1 d and t’r Jd. Let a € {0,1}"* be such that | J ad; clearly, at
least one such a can always be found. Similarly, let &’ € {0,1}"* be such
that ¢| O a'd. Since b = ad and b’ = a'd are relevant to F, the value
G(bV) = G(d) = G(¢"V) is defined by definition of separation; suppose that
value is f. By construction of B¢, both ¢ and t' belong to block Fg—f of
Be. Hence By < Bg.
Next, we check whether By*8g < Br. If tByt’, then there exists ac € {0,1}"
such that tf J ¢, and t’f O e. If tBgt’, then there exist f € {0,1}?,

d € {0,1}*, and d' € {0,1}* such that tY Jd, and t’f Jd, and G(d) =
G(d') = f. Consider now the n-tuples b = c¢d and b’ = cd’; clearly, t; J b,
and ¢’y J b'. Now these two n-tuples b and b’ agree in the first 7 components,
and result in the same value of G from the last s components, that is bY = 'V

and G(bY) = G(¢'V). Consequently, H(bY,G(6Y)) = H(¥'Y,G(v"Y)).

15

Now define blanket Sy as follows. Let e € {0,1}™ and let By =
ne{F e}, where

Frae={t € F|3b € {0,1}" such that ¢, I b and H(3Y,G(6")) T e}.
(6)
For ¢t and ' from the previous paragraph, ¢8gt’. Altogether, we have shown
that tfyt’ and tfet’ together imply t8yt’. In other words, t(Br*fa)t’ im-
plies tBgt’.

We now claim that ¢8gt’ implies t8rt’. Suppose that t and ¢’ are in the
same block Fge of Bg. Then there exists b € {0,1}" such that ¢; J b
and H(bU,G(bV_)) 1 e. Then b is relevant to F and, by the assumption
that (G, H) is a separation, we have F(b) J H(bY,G(b")). Consequently,
F(b) Je. But F(b) = |_|u€]:ijuT. Since ¢, J b, we have t € Fxg. Since
t1 is one of the factors in the M-product for F(b) it satisfies ¢ J F(b). Thus
t" 3 F(b) J e, and t is in block Fy, of the output blanket 3. By the
same argument, ¢’ is also in block]:yg_e of Br. Thus tBrt’. This proves that
Bu*Pe < Br, and concludes the first part of the proof.

(b) Sufficiency of the conditions

The reader may wish to look at Example 3 below when following the second
part of the proof.

Suppose that a blanket g exists and has ¢ blocks. We define an fr
function G with s inputs and p = [log, ¢] outputs as follows. Encode the
q blocks of 8¢ by p variables in such a way that each block B is assigned
a distinct p-tuple a(B); otherwise, the coding is arbitrary. For each d €
{0,1}?, find the set Fyoq = {t € F | tf J d}. If this set is empty, omit d
from the truth table for G. Otherwise, note that Sg satisfies the condition
Bv < Bg; hence each block Fy o4 of By is contained in a block B of 3g.
Let G(d) = a(B). (If Fyoq4 is contained in more than one block of B¢, pick
any block, arbitrarily.) In this way we obtain a (partial) truth table for the
function G.

Next we construct a (partial) truth table for a function H with » + p
inputs and m outputs. For each h = ¢f with ¢ € {0,1}" and f € {0,1}?,
we will either assign to h a block Bj of the blanket By*f8g, or h will be
absent from the table of H. Find the set Fyg. = {t € F | t¢U dec}. If
this set is empty, omit h from the truth table for H. Otherwise, continue.
Either the set Fg—y is nonempty, in which case it is a block of 3¢, or not. If
By = FyaeNFo=y # (), associate with h that block of By*Bg. Otherwise,
omit A from the table for H. By the condition By*8g < Br, we know that

16

every block By, of By#8¢ is contained in some block B of the output blanket
Br. But, if ¢ and ¢ are in the same block of Sz, then ¢t ~ t'T. Hence, we
know that |_|teBh t" is defined. Let H(h) = |_|teB;. tT. Thus we obtain the
truth table for H.

It remains to be proved that the functions G and H constructed above satisfy
the conditions of the definition of disjunctive serial separation. Let b be a
minterm relevant to F; then

Fb)y=[1, Frxa th. (7)

Let d = bY; then Fyad is not empty, since b is relevant. Suppose that
Fvyaa4 is contained in block B’ of B¢, and that a(B’) = f; by construction,
G(bY) = f. Note that

Fxap C Fyaa C B'.

If ¢ = bY, then the input tuple to H is A = cf. The set B = Fy, = {t |
t¢U 7 ¢} is not empty, because ¢ = bV, and b is relevant to F. Note that

Fxap € Fuze = B;

hence, h appears in the table for H, and we assign block B, = BN B’ to h.
Then we set

H(h) = rlteB;,tT' (8)

Since Fx, C B and Fxgp C B’, we have Fxo3 C BN B’ = By.
Hence, F(b) O H(h). This concludes the proof of the claim that F(b) O
H(8Y,G(bY)), and also the proof of the theorem. O

Example 2 In this example we construct a blanket Sg from a given decom-
position (G, H) of a function F, thus illustrating the first part of the proof
of the theorem. The fr function F' of Table 4 is decomposed with respect to
U= {2} and V = {24, 23, 2z4}. Table 5 shows the truth table of a function
G. Note that the truth table is incomplete, but G does satisfy the condition
that G(b") is defined and binary whenever b is relevant to F. Consider
the triple d = 000; we have G(d) = 00. The triple d appears in cube 1 of
Table 4, in the sense that the last 3 components of cube 1 are compatible
with d. Hence, cube 1 is assigned to block Fg_gg. Triple 000 also appears
in cubes 2 and 3; hence these cubes are also assigned to this block. Next,
001 appears in cubes 3 and 7; since G(001) = 00, cubes 3 and 7 also belong
to Fg—oo. Using 010, we conclude that cubes 1 and 2 are in Fg_qp. Since

17

Table 5: Function G.

8
X

&
w

8
N
Q
s
)
N

___,OoO0O0oO
- O OO
—_ O O O
_—OoORRF~ROOO
—_ o~k ooo

G is equal to 00 only for these three triples, we have Fg_oo = {1,2,3,7}.
Similarly, we find Fg_o1 = {5}, Fg=10 = {6, 7} and Fg_11 = {4,6}. Thus,
we have the blanket S¢ = {1,2,3,7; 5; 6,7; 4, 6}.

One verifies that By < Bg, where By is given after Equation (2). Also,
Bu =1{1,3,4,5,6,7; 2,3,4,5,6}, Br = {4,5; 4,6; 2,3,7; 1,3,6,7}, and

Thus the conditions of Theorem 1 are satisfied. O

Example 3 In this example we illustrate the second part of the proof of
the theorem. We will find a decomposition of the function of Table 4 using

Table 6: Defining function G from S¢.

Ty T3 B4 Block of By Block of B¢ g1 g2
0 0 O {1,2,3} {1,2,3,7F7 0 O
0 0 1 {3,7} {1,2,3,7} 0 O
0 1 0 {1,2} {1,2,3,7F4 0 O
0 1 1 {4} {4,6} 1 1
1 0 0 — — - -
1 0 1 {6,7} {6,7} 1 0
1 1 0 {5} {5} 0 1
1 1 1 {4,6} {4,6} 1 1

a given blanket g = {1,2,3,7; 5; 6,7; 4,6}. Encode the blocks of B¢ using

18

two variables as follows:

00 01 10 11
ﬁG: {1a2a3171 5;6,7; 4’6}

In Table 6, if possible, we first assign (uniquely) a block Fy o4 of By to each
d € {0,1}*. Then we find a block of B¢ containing Fyg4; in this case there
is no choice. The resulting table with don’t care rows omitted is the same
as Table 5.

Next, we construct the function H. The steps of the algorithm are
indicated in Table 7. 0

Table 7: Defining function H.

1 g1 9o Bu Bae BuxBc y1 Y2
0 0 0 {1,3456,7 {1,23,7% {1,377 1 1
0 0 1 {1,3,4,56,7 {5} (5} 0 0
o 1 o0 {1,3,456,7 {6,7% {67} 1 1
0 1 1 {1,3,4,56,7% {461 {46} 0 1
1 0 0 {23456 {1,237 {23} 1 0
1 0 1 {23,456} {5} (5% 0 0
1 1 0 {23,456 {67} 6y @ 1
1 1 1 {2,3,4,56} {46} {46} 0 1

If the construction in the proof of Theorem 1 is used, the result of

Theorem 1 cannot be strengthened to equality, as we now show. When
zq,...,24 = 1001, we have F(1001) = 1&. We also have G(001) = 00, and
H(100) = 10. Thus F and H are not equal in this case.

We close this section by showing that our results remain true if we use
set systems instead of blankets.

Theorem 2 An fr function F specified by a set F of function cubes has a
disjunctive serial separation with respect to (U, V') if and only if there ezists
a set system og on F such that

e oy < og, and

e oyoog < OF,

19

where oy = maz Py and oy = maz Py are the input set systems of U and
V, and o = mazfBFr is the output set system.

Proof: Suppose F has a separation (G, H). Let 0 = maz ¢, where f¢ is
defined in the proof of Theorem 1. Since By < B¢, we also have mazfy <
maz fBg. Similarly, maz Sy*xmazBg < mazfr. Consequently, the required
conditions are satisfied.

Conversely, suppose a set system og exists. The reader can verify that

the sufficiency proof goes through for this case also, in a manner parallel to
that of Theorem 1. 0

The advantages of using blankets are discussed further in Section 9.
Theorem 2 assures us that, if there is a decomposition based on blankets,
then there is one based on set systems, but there are many decompositions
based on blankets corresponding to the same set system. On the other hand,
set systems may be preferable from the computational complexity point of
view, since they may have significantly fewer blocks.

7 Nondisjunctive Serial Separations

In this section we consider the decomposition problem when the restriction
that U and V be disjoint is removed. Let U and V be two subsets of X such
that UUV = X. Assume that the variables z1, ..., z,, have been relabeled in
such a way that U = {2,...,z,}and V = {2,,_441, ..., 2, }. Consequently,
for an n-tuple z, the first » components are denoted by 2V, and the last s
components, by zV .

Definition 2 Let F be an fr function, with n > 0 inputs and m > 0 outputs,
and let (U, V) be as above. Assume that F is specified by a set F of function
cubes. Let G be an fr function with s inputs and p outputs, and let H be
an fr function with r 4+ p inputs and m outputs. The pair (G, H) is a serial
separation of F with respect to (U, V), if, for every minterm b relevant to F,

G(bY) is defined, G(bV) € {0,1}?, and
F() 3 HEY,G(Y)).
Theorem 3 If there ezists a blanket Bg on F such that

o By < fBg, and

20

e Buxpc < B,

then F has a serial separation with respect to (U, V).

Proof: The construction described in the proof of Theorem 1 (sufficiency)
applies equally well here. We leave the details to the reader. (Example 5
below shows that the conditions are not always necessary.) O

Example 4 For the function of Table 4, consider a nondisjunctive de-
composition with U = {z;,24} and V = {zs,23,24}. We find By =

Table 8: Function G for Example 4.

Ty T3 T4 g
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 1 0
1 1 0 1
1 1 1 1
00 01 10 11 000 001 010 011 101 110 111

{1,3,5 ;3,4,6,7,2,3,5,3,4,6}, Bv = {1,2,3, 3,7, 1,2; 4;6,7; 5;4,6}.
It is easily verified that f¢ = {1,2,3,6,7; 4,5,6} satisfies the conditions

Table 9: Function H for Example 4.

L1 T4 g Y Y2
0 0 0 1 1
0 0 1 0 0
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 1 1
1 1 1 0 1

21

0 1
of Theorem 3. If we use the encoding B¢ = {1,2,3,6,7; 4,5,6}, the truth
tables of functions G and H are as shown in Tables 8 and 9, respectively. In
many cases, a serial separation with overlapping sets U and V—sometimes
called a nondisjunctive decomposition [7]—is useful. For example, suppose
we have an FPGA structure with 3-input, 1-output cells. Then the nondis-
junctive decomposition above requires one cell for G and two cells for H (one
for each output). Thus, we need a total of three cells. A disjunctive decom-
position of the form H (21,22, G(23,24)), with G having one output would
also cost three cells. However, no such decomposition exists. There does
exist a disjunctive decomposition of the form H(z1, G(z2, 23, 24)), where G
has two outputs, but it would require four cells (two for G and two for H). [J

Example 5 The following example shows that the construction used in the
proof of the necessity of the conditions of Theorem 1 cannot be used in the
nondisjunctive case. Consider function F' of Table 10 and functions G and

Table 10: Function F' for Example 5.

Table 11: Functions G and H for Example 5.

Function G Function H
Ty T3 T4 g9 L1 T2 g Y
0 0 1 0 0 0 0 0
0 1 1 1 0 0 1 1
1 0 1 1 0 1 0 1
1 1 1 0 0 1 1 0

H of Table 11. Let U = {1, 25} and V = {z,, 23, 24}. One verifies that
(G, H) is a separation of F with respect to (U, V). Note, however, that
Bu = {1,2}, By = {1; 2}, and Br = {1; 2}. The blanket constructed from
G is Bg = {1,2}. This blanket fails to satisfy the condition By*8g < BF.

22

Still, there is a blanket, namely Sx = {1; 2}, that satisfies both conditions
of Theorem 3. However, §;, is not derived from G. O

8 Serial Decompositions

Suppose we have a serial separation (G, H) of a function F' of n variables,
where G has s inputs and p outputs, and H has r+ p inputs and m outputs.
Such a separation is not quite a decomposition, because in a decomposition
we want G and H to have strictly fewer inputs than F. Thus we should
insist that s < n. Furthermore, to guarantee that H has fewer inputs than
F, we insist that r + p < n.

Definition 3 A serial decomposition of F with respect to (U, V) is a serial
separation (G, H), in which s < n, and r + p < n.

Proposition 5 If a serial separation (G, H) based on blanket B¢ is a serial
decomposition, then s < n and the number q of blocks of Bg satisfies

e 7+ [log,q] < n.

We now develop a useful necessary condition for the existence of a de-
composition. Let 8 be a blanket on a set, and 8’ = {B}}, a blanket on the
same set. The quotient of a block B of 8 by 3’ is a set system on the set B
defined by

B/B' = maz{BnN B;}.

The block-cover cost ¢(By, ') is the minimum number of blocks of B/f’
required to cover B, in the sense that the union of these blocks is B. For

example, let
Bi By By By
B=1{1,2,33,6,7,1,2,5 4,6},

and
B ={1,3,6,7,2,3,7,4,6;4,5}.

To calculate ¢(Bj, '), we first intersect B; with all the blocks of 8, obtaining
1,3;2,3; 0; 0. Applying the maz operation, we get B;/B8' = {1,3; 2,3}.
Since both blocks are needed to cover Bj, we have ¢(Bj, ') = 2. Similarly,
we find B,/B’ = {3,6,7}, Bs/B = {1;2;5}, and By/B = {4,6}. Thus
¢(B2,p') =1, ¢(Bs,8') = 3, and ¢(B4,8') = 1.

23

The cover cost, c¢(8, '), is now defined as the largest block-cover cost,
that is,

c(8,B') = maz{c(B, ') | B € B},

where maz is used here to denote the largest integer in a set. In the example

above, ¢(8,8) = 3.

Theorem 4 Let F be an fr function, and let U and V be subsets of X,
UUV = X, where X has n elements, U has r < n elements, and V has
s < n elements. If a serial decomposition of F based on blanket Bg ezists,
then

n—r > [log, ¢(Bu, Br)] -

Proof: Suppose a decomposition (G, H) based on S¢ exists. By Proposi-
tion 5, if B¢ has ¢ blocks, then

n—r > [log,q].

Suppose that, for some d € {0,1}", there is a block Fr34 of By that requires
at least k blocks of 8z to be covered. Let this cover be Cy. If B, is a block
of Cy4, then B, cannot be removed, implying that there is at least one cube
t of Fyag that is contained only in B, but not in any other By from Cy. In
other words, B, is essential for ¢. Hence there must be at least k different
cubes t. in Fyog, such that each cube is associated with a distinct output
value e, in the sense that tJ J e, but #'T Z e, for any ' assigned to a
different block of C;. Hence, for this d, when the input to F is of the form
(2z1,...,2,) = de, the output may take on any one of k values depending on
the value of e. In the decomposed function, the role of e is taken over by
the [log, ¢] outputs from function G. These outputs can produce at most
g different combinations of values for H. The number of these values must
be greater than or equal to the cost of covering fr, that is

q> C(ﬁUa ﬁF)
Consequently,
n—-r> (10g2 q—‘ 2 (10g2 c(ﬁUa ﬁF)—‘)
as required in the theorem. O

Example 6 Let us find all the sets U for which a decomposition of the
function F of Table 4 is not ruled out by the condition of Theorem 4. For
convenience, we will use ¢g as a shorthand for [log, ¢(Bv, Br)].

24

Recall that

ﬁF = {415a 41—6a 2a317a 113a6’7}'

For one-variable sets, that is, for U = {z;}, we have n — » = 3. The
condition of the theorem is satisfied, because the number of blocks in Gz is
4; consequently, the cost ¢(B, r) cannot be greater than 4 for any block B
of Brr. Therefore, cg <2 <n—r=3.

For larger sets U, some computation is required. For U = {z1,z,}, we
have:

B; By Bg By
Bu=1{1,3,4,7,4,5,6,7; 2,3,4 4,5, 6},

Bl/ﬁF = mcw{Z, Za 3a7a 113’7} = {41 113a7}a
Bs/Br = maz{4,5; 4,6; 7; 6,7} = {

and

By/Br = maz{4,5; 4,6; 0; 6} = {4,5; 4, 6}.

The corresponding costs are ¢(B1, fr) = 2, ¢(Bz, fr) = 2, ¢(Bs, Br) = 2,
¢(B4,Br) = 2. Hence ¢ =1 < n —r = 2, and the condition is satisfied.
For U = {z1, 25},

B, B> Bs B,
ﬁU — {113a6777 1a475a6; 273a6a 274a576}'

Here U fails to satisfy the condition, because

By/Br = maz{4,5; 4,6; 2; 6} = {4,5; 4,6; 2}.

Hence, co =24 2=n—r.
Altogether, the condition is satisfied for the following subsets of X:

{z1}, {22}, {23}, {24}, {21, 22}, {21, 24}, and {25, z4}.

After the verification of the necessary conditions from Theorem 1, we find
that only three of these sets, namely Uy = {21}, Us = {22}, Us = {23}, lead
to disjunctive serial decompositions.

25

9 Decomposition Method Using Cubes

The decomposition of a function F' is completed when truth tables for com-
ponents G and H have been found. For convenience and simplicity, in the
proof of Theorem 1 we used minterms to construct these tables. Thus, we
considered {0,1}* and {0,1}"*? as inputs to G and H, respectively. Note,
however, that F is specified by cubes, and it would be desirable to have a
method that handles all functions uniformly as cubes. We now present such
a method.

Example 7 Table 12 shows a function F' to be decomposed with respect to
U={z,,z2} and V = {23, 24, 5, 2z5}. Blanket Fy is

Assume that we have found a blanket og, in this case a set system, that
satisfies the conditions of Theorem 1. Assume that the blocks of og are
encoded as shown.

00 01 10 11
oc=1{3,4,7,83,5,8 6,8 1,2,5,8}.

To define a function G by a set G of function cubes, in this case 6-tuples,

Table 12: Function F.

L1 T2 T3 Tg Ty Tg Y Y2 Ys
1 ® 0 1 & 0 0 1 & <
2 0 @ 1 1 0 0 1 & <
3 1 & & & 0 1 ® 1 @
4 0o ¢ 0 @ & 1 ® 1 @
5 1 ¢ 1 & 0 @ ® ¢ 1
6 & 1 0 1 & 0 0 0
7 ® & 0 @ O 0 ® ¢ 0
8 1 1 ¢ ¢ @ P 0o & @

we must represent all the minterms relevant to G. These are all the binary
4-tuples that are covered by the V columns of F. Because of row 8, all
16 minterms are relevant to G. The relationship between blocks of Sy and

26

Table 13: Function F.

Block of By Cubes of F Minterms of G

B, {7,8} {0000,0100}

B, {3,4,8} {0001, 0101}

Bs {8} {0010,0110,1110,1111}
B, {4, 8} {0011,0111}

By {1,5,8} {1000}

Bg {3,5,8} {1001,1101}

By {6, 8} {1010,1011}

Bg {1,2,5,8} {1100}

minterms of G is shown in Table 13, where minterm d € {0, 1}* is assigned
to block B if and only if that block is equal to Fyoq.

Consider the following typical situation. Minterm 0011 of G is repre-
sented by the two cubes of block By: 4 and 8. As far as this block is
concerned, we need to worry only about the minterms 0011 and 0111, even
though cubes 02®1, and $®®P of B, cover other minterms. Since each
minterm d of G defines the block Fy g4, other minterms will be accounted
for by other blocks. Translating this to G, each minterm d belongs to block
Gvaq. Consequently, we lose nothing by using the glb of the cubes in Gyg4.
Now we have 0®®1 11 $PPP = 0PP1 as the representative of block By.
Notice that it covers the two minterms: 0011 and 0111, as required, since
Gvaoo1r = Gvooi1r in this case. Computing the representative for each
blozk, we obtain the second column of Table 14. (For now, ignore the line
between B3 and Bj.) In effect, we have now represented all the relevant
minterms of G by the block representatives in Table 14.

Depending on the set system og used in the decomposition, we assign
output values of og to the representatives we have generated. In our exam-
ple, the outputs will be assigned as in the third column of Table 14. Block
B; = {7,8} is contained only in block {3,4,7, 8} of o¢; hence, its represen-
tative should be assigned the output 00. The same type of argument applies
to all the other blocks, except Bs, which is contained in all four blocks of
o0¢. The representative $PPP of this block has a nonempty M-product with
the representative 0900 of B;. This does not matter, since we assign the
same output to all the common minterms. But ®®®® also shares 1$00 from
Bj, which will be assigned a different output. To avoid conflicts, we must

27

Table 14: Cubes for G .

Block of By Representative Outputs Final Cubes

By 0 ¢ 0 0 00 0 @ 0 O
B, 0 ¢ 0 1 00 0 & 0 1
Bs ® ¢ & @ 00 0 ¢ ¢ @

00 ¢ 1 1 ¢
By 0 ¢ ¢ 1 00 0 ¢ ¢ 1
Bs 1 & 0 0 11 1 & 0 0
Bg 1 & 0 1 01 1 @ 0 1
B 1 01 ¢ 10 1 0 1 ¢
Bg 1 1 0 0 11 1 1 0 O

subtract cubes 1900, 101, 101®, and 1100 from $®PP. The result is two
cubes, 02®® and 11P, and this remainder can be safely assigned output
00.

From Proposition 2, we know that, if »; M 7y is defined for two block
representatives r; and rs, then the union B; U B; of the corresponding
blocks is itself a block. Thus, when conflicts arise, we must subtract from
the representative r(B), assigned to block B, all the representatives assigned
to blocks containing block B. The subtraction can be easily performed by
intersecting r(B) with the complement of the set of all the cubes to be
subtracted. An efficient method for complementing a set of cubes can be
found in [2].

We can use a similar approach to obtain the table of function H. Here,
we deal with blocks of the product By * og, where

Bu=A1,2,4,6,7;2,4,6,7, 1,3,5,6,7; 3,5,6,7,8},

and

111 110 101 100 011 010 001 000
Br=1{1,2,3,4,51,2,3,4,71,2,51,2,7, 3,4,5,8,3,4,7,8, 5,8, 6,7, 8}.

We find

To compute the table for H we consider each block of 8yy*o¢ in turn, and
generate Table 15 as follows. For B; = {4, 7}, the U cubes from Table 12

28

Table 15: Cubes for H .

Block Bu o¢ Output

By 0% 00 $10
B, $® 10 000
B; 00 11 1P
B, 0 11 1P
By 1¢ 00 $10
Bs 1 01 $11
B 10 11 121
Bs 11 00 010
By 11 01 011
B 11 10 000
By 11 @1 021

are 0® N ®® = 0P, so 0P becomes the first part of an input cube of H.
Since this block is contained in the block of g that has output 00, then 00
becomes the second part of the input cube. The output value assigned to
this cube is 1% M ®®0 = ®10. The remaining rows are completed in the
same fashion. Note that B;; appears in blocks 01 and 11 of og; hence, its
entry is ®1 in the og columns. Finally, the outputs are calculated using the
glb of the output portion of the cubes. For example, the output for block
B; is 1% M $$0 = $10.

10 Decomposition Procedures

Although the goal of this paper is to extend existing functional decom-
position methods to the case of multiple-output fr Boolean functions, some
discussion of decomposition algorithms will be included, particularly as they
relate to logic synthesis optimization algorithms. In this section we show
that the main decomposition tasks can be reduced to graph partitioning or
graph coloring problems [22], or to the computation of maximal cliques or
maximal independent sets in a graph. Other, more detailed tasks are re-
ducible to widely used procedures in modern logic synthesis, for example,
column covering or cube complementation [2, 19].

29

10.1 Maximal Mergeability Classes

The main task in calculating a serial decomposition of a function F' with
given sets U and V is to find a blanket Sg which satisfies the conditions of
Theorem 1. Since B¢ must be > By, we will construct 8¢ by merging blocks
of By as much as possible.

Two blocks B; and B; of blanket By are mergeable, if blanket -;; ob-
tained from By by merging B; and B; into a single block satisfies the second
condition of Theorem 1, that is, if By *v;; < Br. Otherwise blocks B; and B;
are unmergeable. A subset é of blocks of the input blanket By is a mergeable
class of blocks if the blocks in § are pairwise mergeable. A mergeable class
is mazimal if it is not contained in any other mergeable class.

Example 8 For the function of Table 4 with U = {z,}, we have By =
{1,3,4,5,6,7; 2,3,4,5,6},

B, By B; By Bs Bg Br

and Br = {4,5; 4,6; 2,3,7; 1,3,6,7}, where the blocks of By are labeled as
shown.

Let us check whether the pair (Bj, By) is mergeable. Denoting the
blanket resulting from the merger of B; and B; by v;;, we have y;3 =
{1,2,3,7; ...}, and y12 % Bv = {1,3,7; 2,3; ...}, where we have omitted the
rest of blocks in the blankets, since they have no influence on the result.
Since v12 * B < BF, the pair (Bj, Bs) is mergeable. For the pair (Bj, Ba),
we have v14 = {1,2,3,4; ...}, and v14 * By = {1,3,4;2,3,4; ...}. Here,
the inequality v14 * By < BF is not satisfied; therefore, the pair (Bi, By) is
unmergeable.

One verifies that only six pairs are mergeable, namely: (Bi, B,), (B, Bs),
(B2, Bs), (B2, Bs), (B, Bg), and (Bg, B7). For these pairs there are four
maximal classes: {Bj, By, B3}, {Bs, Bs}, {Ba4, Bs}, and {By, B7}.

The problem of finding maximal mergeability classes is identical to that
of finding maximal compatibility classes for the reduction of incompletely
specified finite-state machines [10]. From the computational point of view,
finding maximal mergeability classes is equivalent to finding maximal cliques
in a graph I' = (N, E), where the set N of nodes is the set of blocks of Sy,
and the set E of edges is formed by the set of mergeable pairs. In the next
subsection we describe one method for solving this problem. O

30

10.2 Finding Maximal Classes Using Unmergeable Blocks

In general, the maximal classes can be formed using unmergeable pairs as
shown in the following example.

Example 9 Consider 8y, By, and Br given below. In this particular case
all three are partitions.

By B, By By By Bs Br By
Bvy=1{1;2,8; 3; 4; 5;6,10; 7; 9},

and

The following are the unmergeable pairs: (B, Bs), (B2, B4), (B2, Bs), (Bs, Br),
and (By, Bs). Thus, in forming a maximal class we must omit (either B; or
Bs) and (either By or By), etc. Hence, we have the 2-conjunctive normal
form (2-CNF), that is, a product of sums of two variables,

(B1 + Bs)(B2 + B4)(B2 + Bs)(Bs + B7)(Ba4+ Bs)

describing the choices for the blocks that must be omitted. After “multi-
plying out” this expression and doing some simplifications, we obtain the
following disjunctive normal form (DNF), that is, a sum-of-products expres-
sion:

B3B4Bg+ B2B3BsBg + B1ByB3By+ B1ByB3Bs + ByB7Bg + By Bs By Bg+
BBsB4B7; + B1BsBsB7.

Each product describes a minimal set of blocks to be omitted. For exam-
ple, we can omit Bs, B4, and Bg. The maximal classes are obtained by
complementing the set of blocks appearing in one product term. Thus, the
maximal classes are

{Bla B2a B5a BGa B7}’ {Bla B4a BGa B7}’ {B5a B6a B7a BS}’ {B4a B6a B7a BS}a
{Bla B2a B37 B57 B6}7 {Bla B3a B47 B6}7 {B37 B5a B67 BS}’ {B37 B4a BGa BS}
O

For a discussion of efficient methods of calculating maximal mergeability
classes using unmergeable pairs see [16].

31

10.3 Minimal Covers for Sy

The next step in calculating B¢ is the selection of a set of maximal classes,
with minimal cardinality, that covers all the blocks of 8y. The minimal
cardinality ensures that the number of blocks of #g, and hence the number
of outputs of the function G, is as small as possible. This covering problem is
equivalent to the well-known covering problem encountered in modern logic
synthesis. Several algorithms have been developed for efficient calculation
of minimal covers. The best-known methods inherit ideas developed for
two-level logic minimization algorithms [2, 19]. The minimal cover problem
for the set {B;} can be reduced to the column covering problem [2] if we
represent rows of a binary matrix M by blocks B; of By and columns of
M by maximal mergeability classes C;. Element m;; of M takes on the
value 1 if block B; is contained in class C';. Then minimal column covering
means that every row of M contains a 1 in some column which appears in
a minimal cover.

Covering is not the main procedure in the whole decomposition algo-
rithm; its role is rather auxiliary. In certain heuristic strategies, both pro-
cedures (finding maximal mergeability classes and then finding the minimal
cover) can be reduced to the graph coloring problem.

We continue with Example 9. A minimal cover of the set {B1,..., Bsg} is
formed by the classes: Cy = {By, Bs, By, Bg, B7} and Cs = {Bs, By, Bg, Bs}.
Another solution is { By, B2, B3, Bs, Bg} and { By, Bg, B7, Bs}. These classes
can be used to construct a blanket Sg. Thus, we find

ﬁG = {Bla B21 B51 BG, B7a B3a B41 BG, BS}

or

B& = {B1, B2, B3, Bs, Bg; By, Bs, Br, Bg}.

Translating these to the corresponding subsets of cubes, we finally have g =
{1,2,5,6,7,8,10; 3,4,6,9,10} and B; = {1,2,3,5,6,8,10; 4,6,7,9,10}.

As we will now show, we can reduce the task of generating g to the
graph coloring problem [18]. Blocks of By are treated as nodes v € N and
unmergeable pairs e = (B;, Bj) € E as edges of a graph I' = (N, E).

A k-coloring of the nodes of a graph is a partition of the set N into k
independent sets Sy, ..., Sk, where a set S of nodes is called independent if
no two nodes of S are linked by an edge. The smallest integer k for which
there exists a k-coloring of graph T is the chromatic number of I'. Although,
the problem of finding the minimal chromatic number for a given graph I’
is NP-complete, a number of fast heuristics have been developed for it [22].

32

Calculating Bg corresponds to finding the minimal number k of col-
ors for graph I' = (N, E). In our example, N = {By,...,Bs} and E =
{(B1, Bs), (B2, Ba4), (Bs, Bs), (Bs, B7), (Ba, B5)}. Two colors are needed here;
one for nodes By, By, By, Bg, By and another for nodes Bs, By, Bg. The sets
of nodes assigned to different colors form the blocks of Bg, as before, al-
though the differently colored blocks are now disjoint.

11 Concluding Remarks

A distinguishing feature of our method is an original calculus based on the
representation of a function using generalized set systems called blankets,
which permit us to derive functional dependencies. The proposed serial
decomposition procedure has already been partly included in the logic syn-
thesis tool DEMAIN dedicated to FPGA-based logic synthesis [13]. Because
of the arbitrary number of cell inputs and outputs accepted by DEMAIN,
DEMAIN’s applicability is wider than that of other FPGA oriented tools.
This is because the FPGA logic cell is treated as a universal cell capable
of implementing any n input m output Boolean function. For example,
in the XILINX 3000 family, each cell can be programmed to implement
any single-output function of up to five input variables, or any two-output
function of up to five variables with each output depending on at most four
input variables. This situation in other algorithms is solved by single-output
procedures, the results of which are then merged in special optimization pro-
cedures for fitting in one multiple-output cell. Perhaps the most important
feature of our method is that it permits us to process incompletely specified
multiple-output functions specified by sets of on and off cubes, as a single
n-input, m-output object, for which the result is represented in the same
form. Although existing methods [14, 15, 17, 20] deal with multiple-output
functions, they do not process them as single objects represented by an
Espresso fr matrix. Also, they do not find nondisjunctive decompositions.
Our representation of Boolean functions allows for the same treatment of
disjunctive and non-disjunctive decompositions.

A comparison of the results achieved by DEMAIN with the other pub-
lished results shows that the effectiveness of the proposed method does not
suffer because of its universality; in fact, it provides better solutions in many
cases [12, 13].

Recently, several experiments were performed using the MCNC bench-
mark circuits to compare the results produced by DEMAIN with those pro-

33

duced by ALTERA’s MAX+Plus2 software. For example, the benchmark
circuit rd84 was initially compiled directly using ALTERA’s compiler. AL-
TERA’s dedicated compiler reported that 147 logic cells were required to
implement the benchmark. DEMAIN decomposes rd84 into a netlist of cells,
where the cells have four inputs and one output. The decomposed multi-level
structure of rd84 was then supplied as input to the MAX+Plus2 compiler;
the result was 15 cells. In general, we have an average gain of about 78%
over Max+Plus2 on the MCNC benchmarks.

Acknowledgment The authors thank C.-J. Shi of the University of
Iowa for his many useful suggestions concerning this work, and Radu
Negulescu of the University of Waterloo for his careful reading of the
manuscript.

References

[1] R. L. Ashenhurst, The Decomposition of Switching Functions,
Proc. of International Symp. Theory of Switching Functions, 1959.

2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
U. L. Sangiovanni-Vincentelli, Logic Minimization Algorithms for

VLSI Synthesis, Kluwer Academic Publishers, Boston, MA, 1984.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, MIS: Multiple-Level Logic Minimization System,
IEEE Trans. on CAD, Vol. CAD-6, No. 6, pp. 1062-1081, Novem-
ber 1987.

[4] D. Brown, Field Programmable Gate Arrays, Kluwer Academic
Publishers, Boston, MA, 1992.

[5] J. A. Brzozowski and C-J. Seger, Asynchronous Circuits, Springer-
Verlag, New York, NY, 1995.

[6] M. J. Ciesielski and S. Yang, PLADE: A Two-Stage PLA Decom-
position, IEEE Trans. on CAD, Vol. 11, No. 8, August 1992.

[7] H. A. Curtis, A New Approach to the Design of Switching Circuits,
D. Van Nostrand Co. Inc., Princeton, NJ, 1962.

34

8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of
Sequential Machines, Prentice-Hall, Englewood Cliffs, NJ, 1966.

L. Jézwiak, General Decomposition and its Use in Digital Circuit

Synthesis, VLSI Design, Vol. 3, Nos. 3—4, pp. 225-248, 1995.

Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill,
New York, 1978.

Y. T. Lai, M. Pedram, and B. K. Vrudhula, EVBDD-Based Algo-
rithms for Integer Linear Programming, Spectral Transformation,
and Function Decomposition, IEEE Trans. on Computer Aided
Design, Vol. 13, No. 8, pp. 959-975, 1994.

T. Luba and H. Selvaraj, A General Approach to Boolean Func-
tion Decomposition and its Application in FPGA-Based Synthesis,
VLSI Design, Vol. 3, Nos. 3—4, pp. 289-300, 1995.

T. Luba, H. Selvaraj, M. Nowicka, and A. Krasniewski, Balanced
Multi-Level Decomposition and its Applications in FPGA-Based
Synthesis, in G. Saucier and A. Mignotte, eds., Logic and Archi-
tecture Synthesis, pp. 109-115, Chapman and Hall, 1995.

R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, Improved Logic Synthesis Algorithm for Table Look
Up Architectures, Proc. IEEE International Conf. on Computer
Aided Design, pp. 564-567, 1991.

J. P. Roth and R. M. Karp, Minimization over Boolean Graphs,
IBM Journal of Research and Development, Vol. 6, pp. 227-238,
April 1962.

A. Saldanha, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, Satisfaction of Input and Output Encoding Con-
straints, IEEE Trans. on Computer Aided Design,, Vol. 13, No. 5,
pp. 589-602, May 1994.

A. Sangiovanni-Vincentelli, A. Gamal, and J. Rose, Synthe-
sis Methods for Field Programmable Gate Arrays, Proc. IEEE,
Vol. 81, No. 7, pp. 1057-1083, 1993.

35

[18] P. Sapiecha, M. Perkowski, and T. Luba, Decomposition of Infor-
mation Systems Based on Coloring Heuristics, Proc. Symposium
on Modelling, Analysis and Simulation, CESA’96 IMACS Multi-

conference. Computational Engineering in Systems Applications ,

pp- 1101-1106, Lille, France, Gerf EC Lille - Cite Scientifique 1996.

[19] T. Sasao, Logic Synthesis and Optimization, Kluwer Academic
Publishers, 1993.

[20] T. Stanion and C. Sechen, A Method for Finding Good Ashenhurst
Decomposition and Its Application to FPGA Synthesis, 32 Design
Automation Conference, pp. 60-64, San Francisco, 1995.

[21] W. A. Shen, J. D. Huang, and S. M. Chao, Lambda Set Selec-
tion in Roth-Karp Decomposition for LUT-Based FPGA Technol-
ogy Mapping, 32 Design Automation Conference, pp. 65-69, San
Francisco, 1995.

[22] M. Syslo, N. Deo, and J. Kowalik, Discrete Optimization Algo-
rithms, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[23] W. Wan and M. A. Perkowski, A New Approach to the Decompo-
sition of Incompletely Specified Multi-Output Function Based on
Graph Coloring and Local Transformations and Its Application to

FPGA Mapping, Proc. European Design Automation Conf., pp.
230-235, 1992.

36

