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Summary

The Symbolic Computation Group has as its primary goal the research and development of
algorithms for computer algebra, including both symbolic computation and hybrid symbolic-
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numeric computation. The algorithms developed are incorporated into the Maple computer
algebra system.

Particular areas of research and development which have been targeted during the past
year include symbolic integration, computing solutions of ordinary and partial differential
equations (both symbolically and numerically), extended-precision numerical evaluation of
special functions, facilities for handling piecewise functions, pattern matching, matrix com-
putations, and tensor computations.

Detailed descriptions of progress in the past year are presented in the following sections.

Project Reports

1 Hypergeometric Function Representations 2
2 Symbolic Integration 5
3 Elliptic Integration 9
4 Integral Transforms 10
5 Hybrid Symbolic-Numeric Solutions of ODEs 10
6 Partial Differential Equations 11
7 Special Functions 14
8 Piecewise Functions 18
9 Pattern Matching and Functional Programming 20
10 Matrix Computations 27
11 Tensor Computations 27

1 Hypergeometric Function Representations

The hypergeometric function F can be defined by

L7 - (C_i)j Z& a-+ ‘71_; j
F(a;b;z)zzﬁj—!:ZF( J )z

7=0 7=0 va—l_]v]-—l_.j

Various simple expressions and special functions of applied mathematics can be expressed
in terms of F. Hypergeometric functions are applicable to symbolic integration, differential
equations, closed-form summation, and difference equations [7], [16], [20]. Various methods
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create answers in terms of F [17], [19]. The development of an algorithm to compute formula
representations of instances of F described in Roach[22] is an important advance that converts
many such answers in terms of F into answers in terms of elementary or special functions.
The basic idea of the algorithm is to enlarge a known table of summations infinitely by the
use of differential and contiguity relations. The known table is implemented by a Lookup
routine. The differential and contiguity relations are implemented by shift operators A; and
B; and inverse shift operators A;! and B;'. The shift operators A; and B; are defined by

A=D1
a;
z
B; = D+1
b; — 1 +
Supposing

L= zﬁ (2D + aj) — (2 D) ﬁ (zD+b; —1)
j=1
:ad(c_i,b,z) Af—l—...—l—ao(&’,g,z)
= pa(d,8,2) Bf+... 480 (.5,2)

is the differential operator for the differential equation satisfied by F(a; g; z), the inverse
shift operators A;! and B; ! are defined by

1 dlan_H(_’ el,g,) .
Ail__nz:o ao(c_i—e“b,z) 4

Bl _dzzl Bot1 (a b+ é;, )

=0 o (a,b+ei,2)

With some restrictions, the operators A;, B;, A", and B! are used to increment and
decrement indices a; and b; appearing inside F(a; g; z).

If we need to compute F(a; g; z) where m = d —dp € Z, . = b — b € Z, and F(do; go; z)
1s available to us through Lookup, the simplest idea that might occur to us would be to
compute F(a; g; z) by use of the equation

P q
F (c—i; b; z) = H Al H B F (c—io;bo;z)

However, this equation can be wrong and the simple approach will not always work because of

restrictions on where A;, B;, A7', and B; ' are defined. Roach[22] presents a better strategy

that resembles this simple idea but which applies the operators in a proper sequence starting

at a suitable origin.
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A sequence S of shift and inverse shift operators A;, B;, A;', and B! is a proper
sequence if the composition S|g| ... 51 is defined. A pair (do; go) is a suitable origin if a,
and by are free of nonpositive integers, dp and by are disjoint, and integer elements of by are
> d = max(p,q+1). A pair (a; g) is accessible from a pair (do; gg) if there exists a proper

sequence S of shift and inverse shift operators A;, B;, A;', and B! such that

F(J;g;z) =Ss| --- SlF(&'O;go;z)

Given any vector v, define [v], to be the subvector of elements of v which are congruent to
r mod 1. Given any permutation 7 of {1,...,[v]} define 7(v) = (vrq),...,Vr(s)). Then
Roach[22] obtains the following very general theorem.

Theorem. Let

(1) @ and b be free of nonpositive integers.

(2) a and b be disjoint.

(3) ® sort & = (aq,...,ap,b1,...,b0y) into nondescending order
(4) (60;50) be a suitable origin

(5) @ — dio,b— by € Z

(6) o = (ao1, - - -, aop, bo1s - - -, bog)

(7) [7(Zo)] be nondescending for every r € [0,1)

Then (a; g) is accessible from (do; go).

The Lookup routine part of the algorithm supplies the initial “table” that is extended
infinitely by the use of shift operators and inverse shift operators as described above. Cur-
rently, the Lookup routine consists of an actual table of 71 different [JO,EO,B,C, M, p]
entries called certificates plus procedures which implement 19 different formulas, each of
which, in effect, add infinitely many more certificates to the lookup table. The numbers of
different formulas implemented so far are summarized by the following table:

oo 1 of 1

1 Fy 1 1 Fh 3

1F 3 2 4

ol 2 oFy 1

Deriv 1 Lerch ® 1
PED Dupl 1

Roach[22] describes the Derivative Formula, the Lerch & Formula, and the PFD Duplication
Formula shown here.

The main accomplishment of the algorithm described in Roach[22] is the essential repro-
duction of 1504 formulas in 9 tables of representations of F(a; g; z) listed in Integrals and
Series, Volume 8: More Special Functions [20]. The following examples are some formulas
produced by this algorithm.

4456z +42%
15z7w

. 2
F<—§,—1;2;z>:—4+24z 28 2z
15z7w

S =3 K (Vz) + E(vz)
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1 11
F<__71;_7_7§;Z>
27424
:1+z1/4\/§ﬁe2ﬁerf(\/§zl/4) —zl/4x/§ﬁe_2ﬁerﬁ (\/§z1/4)
— 2/ zmerf (\/§z1/4) erfi (\/§z1/4)

F <§, §,5;z>
22
42— 2:;+ %62, (2v5) + 432 + 159z2;2+ 822 (2v2)
— o (B (2v) L (2v3) — B (2v2) Lo (25))
F<_1”1J”§’§”>
227272
—_31_6:22 332_;;2 (log (1—\/2) — log (1+\/E))—|-8\/—L12 (\/E)

This algorithm has already been extended to compute representations for F(a; l_;; —z),
therefore making the algorithm encompass even more elementary and special functions. In
the future, we expect to generalize this algorithm to Meijer G function representations,
representations of multiple hypergeometric functions (e.g. Appell and Lauricella functions
[8]) and to investigate F(a; g; 1) representations for p = ¢ 4 1, a special case the current
algorithm does not fully address.

2 Symbolic Integration

The Meijjer G function is defined by the contour integral

G b d — fl‘\ 5 o yzd
(Gh&Edz) =5 ¢ (b—y,l—d—l—y) oW

where L is one of three types of integration paths L.i;~, Ly, and L_,. The Meijer G
function is important to the theory of definite integration because, first, it is a generalization
of the hypergeometric function F and can represent a wide range of simple expressions
and special functions of applied mathematics and, second, because there are some general
theorems about definite integrals of integrands involving the Meijer G function.

The following theorem shows how to integrate a single G function.

Theorem. (One G Function.)
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t41

0 — — ]_
/ ztG(J;b;E;d;ulog(z)+v) dz = —e_(T)”I‘(
0

u

byl g1t

u

—a+1—-H 4 ﬁ)

The next theorem shows how to integrate a product of two G functions.

Theorem. (Two G Functions.)

/ 2t G (c_il; gl; ¢1; d?;ulog(z) + vl) G (62; 52; Co; d_;:;ulog(z) + v2) dz
0

_= 1 6_(%)1}2
(73

t+1 - - t4+1
><G<C_l:1,—c_§——+ —|—1,b1,—d2——+ —|—]_,
U

u

t+1 - - t+1
0_17_62_%+1;d17_b2_%+1;v1_v2>

Products of more than two G functions can be integrated in terms of so-called multiple
hypergeometric functions which may or may not be able to simplify into more recognizable
functions.

Since Heaviside functions can be represented by Meijer G functions, either or both of the
limits of integration 0 and oo can be changed to positive reals by making the integrand more
complicated.

The integrand need not be a polynomial in Meijer G functions, but could be expressible
as a converging infinite sum of Meijer G function products. In this case, an infinite sum can
be integrated and frequently simplified into Zeta functions or hypergeometric functions.

Differentiation under the integral sign combined with the Meijer G approach can be
applicable to integrands containing logarithms. Easy to recognize substitutions that convert
various types of integrals into other integrals that are more suited to the Meijer G approach
is also quite common.

The Meijer G function has various basic properties [7], [16], [20]. Among the more
interesting of these are the Duplication Formula:

Theorem. (Duplication Formula.)
G <c—i; l_;; c; J, i)
n
=(2 ﬂ)_(n_l)ﬁ/2 ntt/i o G (A (a,n); A (b, n) ;A (Gn); A (J, n) 1z + n510g(n))

and Slater’s Theorem:
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Theorem. (Slater’s Theorem.) Ifd <0 or (6 =0 and Re(z) < 0) and the elements

of ¢ are distinct mod 1, then

><F(l—c_i—l—ch,l—g+ch;1—c*—l—ch,l—J—l—ch;(—l)n_p ez)>

where ¢ = ¢ with ¢, omitted.

Example 1. We show how to compute

/00 (ax+ b)ﬁ_l d WPdP —afcP
T e =
0 (c:z;—l—d)ﬁJrl (ad—bc) B

The two binomials in the integrand can both be expressed as Meijer G functions.

. bﬁ 1G( —B+1;; —log(z) + log (S))

(aw—l—b)

L(=p+1)
1 _dPG (15584 1;; ~log(e) + log (£))
(c:n—l—d)ﬁ-l'l_ I'(g+1)

So, applying the Two G Functions Theorem we get

o0 b,B—l
/ R
0 (cz+d)

bﬁ 1dﬁ1 ;
:/ F (/B‘I‘ )G(l;;_/3+1;;—10g(;13)+10g (5))

G (1; B+ 1;; —log(z) + log (g)) de

:_bﬁ—ld—ﬁsin(wﬁ) ( NI ﬁ—l—l,,log(b)—log(%l))

cm 3
8.8 _ pB -8
_a’c vd Fl;;ﬁ
dBa ad

where the final Meijer G function is reduced to a single hypergeometric F function by Slater’s
Theorem. This hypergeometric F function

be ad
F(l”ﬁ) - ad—"bec
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is easily computed by the algorithm in Roach[22]. So, finally, we get the answer

/00 (az+ )" d VdP —alcP
- dr = —
0 (c:z;—l—d)ﬁJrl (ad—bc) B

Example 2. We show how to compute

o] b b2
/0 Ve Jai (bﬁ) Jy (cx) du = gz v (E)

The two Bessel functions in the integrand can both be expressed as Meijer G functions.

1 1 b
J2u41 (bﬁ) =G (;;V+ 53 TV~ gilog(e) + 2log (5))

14

Jo(cz) =G <; 3 —g;2log(:n) + 2log <§>>

Applying the Duplication Formula for Meijer G functions to the first Meijer G function
produces

G (; v+ 1, —v;log(z) 4+ 2log (g))

v v 11 v v b

So, applying the Two G Functions Theorem we get

/OOO VrJa,i1 (bﬁ) Ju (cx) de

00 v v 11 v v b
v v c
x G <,,§,—§,210g(:13)—|—210g <§>> dz

V2 2v+3 2v+1 b c
- MG 1 4 y 4 7_410g(2) ‘|‘410g 5 —210g <§>

2—4—31/ c—3—1/ b3—|—21/ b4
=— Fl;v+2,——
I'(vr+2) 64 c2

where the final Meijer G function is reduced to a single hypergeometric F function by Slater’s
Theorem. This hypergeometric F function
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is easily computed by the algorithm in Roach[22]. So, finally, we get the answer
/OO NER ! (bﬁ)J (cx) dw——iJ i
0 2v+1 v — 2 C2 v+1 4 c

3 Elliptic Integration

Let R(z,y) be a rational function in the variables z and y with y® a polynomial in z of degree
3 or 4. For the past two versions, Maple has had the ability to reduce elliptic integrals of
the form

/ab R(z,y)dz

to its Legendre normal form in terms of Legendre’s elliptic F', E, II and K functions. In
the past year, work has gone into improving the computation of such a normal form. In
particular, the ability to work with symbolic quantities has been greatly improved. For
example, we now obtain the following result.

assume(0 < b,k < 1,1 < z,z < 1/k):

/OZ\/(1 — ) (1 - Ka?)da

= 1/32VR2A + 1 — 22 — k222 + (1/3 — 1/3572) K (k) +

(1/3 +1/3k%) E(k)
k2

—1/3i(2F( it ‘1,\/1—k2)—(1+ k2)H( Zz_lz‘l,l—k2,\/1—k2))

11—k 1— &2
Maple now also converts elliptic integrals represented in trigonometric form
b
/ R(sin(z),cos(z),y)dx

where y? is a quadratic form in sin(z) and cos(z). For example,
assume(0 < k, k < 1):

/1/27T \/1 + k2 (sin(z))

2
2 ™ LRy ) L T (1+4E)
2+ sin(z) de =k (1/4k +1/2 arcsm( k 1/4 ——

V3 +12k2

—1 42k 1 k 1
— = (1+4K 7—215"}(( )
\/3+12k2)( )\/3+12k2 V1I+E2) 1+ k2

—1/2 arctan (

2 k L
+2/3 (1+44*) 10 (—1/3’ \/1+k2) VIt R

Additional work has been done to ensure that the elliptic functions evaluate over the
entire complex plane. Thus we now have
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1

1 11
dZB = ]_/4 11 5
/0 (1+24)y/(1 —a?)(1 — 1/42?) a:Root%f(zm) <O‘ 2>

which evaluates numerically to 1.293415691.

Further work on this project is continuing. In particular, the normal form is only unique
up to a Landen transform, and so a number of different answers are possible. We plan to
investigate a new algorithm that reduces the number of algebraic quantities in the result.
For example,

V14 z*
[,
o 1—uxt
produces a result containing a few hundred lines of output. However, it is possible to
determine that this integral is, in fact, elementary and takes the form

This project is being carried out by Professor G. Labahn.

4 Integral Transforms

During the past year, we have completed approximately half of the second phase of this
project. The first phase consisted of the creation of a new Maple package for computing
a variety of new integral transforms (e.g., Hilbert, Fourier Sine, etc.). The second phase
involves strengthening the capabilities of the package to cover all the material in classical
tables of transforms. This work has been completed for the Fourier and Laplace transforms.
The remaining transforms will be completed with the aid of an undergraduate student,
R. Shahidi, this coming summer.

The primary investigations on this topic have been done by an undergraduate student,
K. Hare, under the direction of Professor G. Labahn.

5 Hybrid Symbolic-Numeric Solutions of ODEs

Research work is continuing into the enhanced problem-solving capabilities which can be
achieved by hybrid symbolic-numeric techniques, building on previous successes in hybrid
methods for definite integration [9, 10]. For his Masters project under the supervision of
Professor K.O. Geddes, H.F.J. Chan [4] has investigated methods for the solution of systems
of ordinary differential equations based on a divided-difference calculus proposed by Kahan.
This approach requires a computer algebra system to carry out the divided-difference calcu-
lus, and then a problem-specific numerical method is generated which can be very efficient
even for high precision requirements. While the results are promising, more work is required
before this approach can be incorporated into a production system.

A project carried out by F. Beardwood, on a work-term as a senior undergraduate and
supervised by Professor K.O. Geddes, implemented improved algorithms for computing series

10
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solutions of ODEs. In particular, techniques were implemented for developing series solutions
of a linear ODE around an irregular singular point.

6 Partial Differential Equations

For the past six months we have been designing and implementing a package for the symbolic
manipulation of polynomial differential equations, with ordinary or partial derivatives. The
package provides functionalities for differential equations close to that offered by the Grobner
basis package for algebraic polynomials.

Given any system of polynomial differential equations S (homogenous or inhomogenous),
the package computes a representation of the radical b of the differential ideal generated
by S. This can be used to solve problems such as:

1. To decide membership in b through simple reductions. Thus, given any two differential
polynomials p and ¢ one can use the representation to decide if p is equivalent to ¢
modulo S and hence, to compute in differential fields or rings presented by generators
and relations. Such problems arise for instance when studying symmetries of differential
and partial differential equations.

2. To obtain information about the structure of the set of the solutions of S by computing
invariants of this set. Information of this type includes determining if S has any
solutions (triviality of the ideal b), or determining if there are functions in S which
can be chosen freely (i.e. the differential dimension of b). One can also express some
quantities in terms of some others. This is important in a number of applications
in Physics, the compatibility conditions for partial differential equations and, in the
case of Nonlinear Control Theory, observability, parameter identification, input—output
nversion, etc.

3. To compute formal power series solutions of S, in the case where the initial conditions
do not cancel the denominators of the terms of the series.

The primary research in this work concerns the underlying mathematical theory of dif-
ferential algebra. This work is being carried out by Francois Boulier, a postdoctoral fellow
with our group.

An optimization of the keystone Rosenfeld’s lemma and an analogue of Buchberger’s
second criterion were proved. These results save unnecessary computations during the com-
putation of the representation of b. These results have been submitted [3] to IMACS’96, and
reported at the closing session of the “Special Year in Differential Algebra and Algebraic
Geometry” organized by Professors Sit and Hoobler at the City College of New York in
January 1996.

Example 1

> read differential_algebra;

11
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The package allows to manipulate differential polynomials of differential polynomial rings
in many different differential indeterminates, endowed with many derivations over quite
general ground fields.

The field K = Q(a, b) defined below is a purely transcendental field extension of the field
of rational numbers. The differential polynomial ring R is the ring of all the differential
polynomials in two differential indeterminates v and v, endowed with derivations w.r.t. =
and y, over G = K(z,y). The ground field G or R contains K as subfield of constants and
the two independent variables x and y associated with the derivations.

> K := ground_field (generators = [a, bl);
K := your_field
> R := differential_ring (field_of_constants = K, derivations = [x,y],

ranking = [tord[u, v]]);
R := your_ring

A ranking is a total ordering over the set of all the derivatives of the differential indeter-
minates of R. Given a ranking, any differential polynomial (which does not belong to the
ground field) has a leader. Here, all the derivatives of u and v are ordered according to tord
which is an orderly ranking. The package provides a function which describes rankings.

> which_ranking_between (u, v, R);

tord: _U [theta] > _V [phi] when
|thetal > |phi| or
|thetal = |phil| and theta > phi for the lexicog. order: x > y or
theta = phi and _U > _V according to: u > v

>pl :=a* v[] * ulx,x] - ulx];
> p2 := ulx,yl;
> p3 :=uly,yl"2 - b;

> leader (pl, R);

u:t:t

The main function of the package is called Rosenfeld-Grobner. It is described in [2]
but the implementation involves many nontrivial optimizations which were developed in the
Symbolic Computation Group.

It represents the radical ideal of the differential ideal generated by p;, p; and ps as an
intersection of two regular differential ideals presented by triangular systems of differential
equations and inequations.

> ideal := Rosenfeld_Groebner ([pl,p2,p3], R);
ideal := [regular, regular]

> map (equations, ideal);

12
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Huzy = b, U], [0 Uy — Uy Uy, uzy —b, v,]]

> map (inequations, ideal);

[[tgyls [v; tyy]]

The representation computed by Rosenfeld-Grobner provides an algorithm to decide
membership in ¢deal through simple reductions: a differential polynomial belongs to ideal if
and only if its reduced form is [0, 0].

The computations below show that v, belongs to the second regular ideal but not to the
first and that u, belongs to the first regular ideal but not to the second. Therefore, the
decomposition is minimal. In general, the decomposition may contain redundant regular
ideals. Deciding the inclusion between regular differential ideals presented by systems of
equations and inequations is an open problem.

We see also that u,v, belongs to ¢deal. Thus the ideal is not prime.

> reduced_form (v[y], ideal);

[vy, 0]
> reduced_form (ul[x], ideal);

[0, ]
> reduced_form (ulx]*v[y]l, ideal);

[0, 0]

Formal power series can be computed from regular differential ideals but are only valid
for initial conditions which do not cancel the denominators of the terms (the inequations
of the system). The general problem: given a system of polynomial PDEs and a set of
initial conditions, “ does there exist a formal power series solution of the system for these
conditions 7 7 is undecidable.

> unevaluated_formal_power_series (u(x,y), [x,yl, 4, ideal [1]);

u(0,0) + u,(0,0)y + 1/2 RootOf (_Z* — b) y*
> unevaluated_formal_power_series (u(x,y), [x,yl, 4, ideal [2]);
u,(0,0) z?
av(0,0)
(u(0,0) av,(0,0) — u,(0,0)) z*
a? (v(0,0))*

w(0,0) + uz(0,0) = + u,(0,0)y — 1/2 +1/2 RootOf (_Z* — b) y?

+1/6

> unevaluated_formal_power_series (v(x,y), [x,yl, 4, ideal [2]);

v(0,0) 4+ v,(0,0) & + 1/20,4(0,0) 2% + 1/6 v442(0, 0) z°

13
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Example 2

Consider the problem of computing the compatibility conditions of the system w,, — yu,, =
0, ty, = 0. This example is quite famous (it has been treated by Janet, Pommaret and
Mansfield) but easy, since it is linear. To compute the compatibility conditions, we just call
v the first equation, w the second one and we eliminate .

> read differential_algebra;
> R := differential_ring (derivations = [x,y,z], ranking = [u,[v,w]]);
R := your_ring

> which_ranking_between (u, v, R);
elimination: u [theta] > v [phi] for all theta, phi

> which_ranking_between (v, w, R);

tord: _U [theta] > _V [phi] when
|thetal > |phi| or
|thetal = |phil| and theta > phi for the lexicog. order: x > y > z or
theta = phi and _U > _V according to: v > w

> pl
> p2 :

vl - ulz,z] + y * ulx,x];
wll - uly,yl;

> ideal := Rosenfeld_Groebner ([pl,p2], R);
ideal := [regularl]

> map (equations, ideal);

[ 4* Wozoe + 2Y° Wanze — U* Vouyy + Y7 Vyyoz + 29 Vony — Y2 Wane — 29 Vo + 20z — 20,
Y2 Wew + Y2 Vyy — Y2 Wy — 29 0y + 2Y Uy + 20 — 2,
V= Uy + Y Ugy
=W F Uy
Wowazze Y T Y2 Vezzoyy — S Y Wawswze — 2Y Vazwwy + 3Y Wanzzze — 2Y Vaayyzs

F2Vpuyzz — Wazzzzz + 2 Vowe + Vyyzzes
Wy Y + 3 Wee + Vyyy — Wy ||

Looking at the equations, we see that the two last equations are free of u. These equations
give the compatibility conditions of the initial system.

7 Special Functions

Maple improved in many ways in its handling of special functions during the last fiew years
with the two most significant of these being the extension to the complex plane of the
arbitrary precision evaluation of the Bessel functions (and the introduction into Maple of

14
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many Bessel-related functions), and the improvements to series codes to properly handle
branch cut information.

In addition to these, work was done (and continues to be done) on extending or improving
the evaluation of other special functions over the complexes; improving the random testing
of floating point code; and researching the mathematics of the Lambert W function.

7.1 Bessel functions

Through Maple V Release 3, Bessel functions could only be evaluated for real orders and
arguments, and the implementation was poor with respect to both efficiency and accuracy.
With Release 4, Maple is able to evaluate these functions for complex orders and arguments.
This new implementation is accurate, and generally more efficient for the real cases. There is
still room for improvement for certain (hard) cases, so work is continuing on these functions.

In addition to extending the four basic Bessel functions (J, Y, K and I) to the complexes,
several families of Bessel related functions were introduced into Maple, complete with sym-
bolic manipulation capabilities and arbitrary precision evaluation over the complexes. These
were:

— Hankel functions: HankelH1 and HankelH2; these functions are also known as the
Bessel functions of the third kind

— Kelvin functions: KelvinBer, KelvinBei, KelvinHer, KelvinHei, KelvinKer, KelvinKei;

these functions are sometimes known as Thompson functions
— Struve functions: StruveH, StruveL

— Anger and Weber functions: AngerJ, WeberE

Furthermore, the Airy functions were overhauled (and renamed to AiryAi and AiryBi),
and their first derivatives included (available as AiryAi(1,x) and AiryBi(1,x)). Higher deriva-
tives can be evaluated in terms of the 0’th and 1’st derivatives.

Maple is able to recognize and solve the differential equations satisfied by each of these
(families of) functions, and is able to convert between them, compute series expansions, and
manipulate them using recurrence relation identities.

7.2 Improvements to series

It can often happen that a limit computation requires knowledge of local behaviour of a
function near a branch cut (or branch point) of the function. Such local information is
supposed to be obtainable from series(), but until recently, series did not account for branch
cuts. For example, we have this evolution:

Maple V Release 1:

> series(1ln(x) ,x=-1,3);
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In(-1) - (x+ 1) - 1/2 (x+1) +0((x+ 1))

Maple V Release 2 and Release 3:

> series(1ln(x) ,x=-1,3);
Error, (in series/ln) series of 1n(x) over branch cut does not exist

Maple V Release 4:

> series(1ln(x) ,x=-1,3);
2 3
- Tcsgn(Ix)Pi-(x+1)-1/2 (x+1) +0((x+1))

The Release 1 result is wrong, as it suggests that In(z) is analytic in a neighbourhood
of -1, which is not true for the principal branch function (which is what In(z) represents in
Maple). The Release 2 & 3 approach was a stopgap measure to avoid returning completely
incorrect results. The Release 4 result is the correct one.

In addition to In, the branch cut information has been encoded into the series expansions
for arctan, arctanh, arccot, arccoth, and polylog.

Conspicuously absent from this list are the functions arcsin, arccos, arccsc, arcsec and
their hyperbolic relatives. The reason for this is that the correct series expansions on the
branch cuts for these functions involve terms of the form /1 — ', where n is a non-negative
integer. When n is odd, the square root term remains. However, series() insists on rewriting
such terms in the form ¢"+v/& — 1, which is a mathematically invalid transformation. The
inability of series() to return results involving powers of (ax + b), where a # 1, is a very
serious weakness in the design of series() and the series data structure. Without this ability,
correct series expansions for many functions with branch cuts will not be possible in Maple.

Another serious deficiency in the design of series() is highlighted by attempts to code the
series for the Bessel functions. For example, the series for J,(z) can be written in the form

Zoes (=274
%) kz:%k! T(v+k+1)

but unless v is an explicitly given rational number, series() cannot handle the (z/2)” term.
This shortcoming severely limits the usability of series with respect to functions which are
“analytic up to a factor”.
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7.3 Other special functions

Peter Borwein provided a new algorithm for the evaluation of the Riemann ( function
(Maple’s Zeta(x)) which has much potential, particularly for high precision. While some
work was done with respect to including this algorithm in Maple’s evalf/Zeta, this study is
not yet complete, so the algorithm is not part of the Release 4 version of evalf/Zeta.

Dawson’s integral, known in Maple by the name dawson(x), has been extended to com-
plex arguments. This extension was relatively straightforward, using the identity relating
Dawson’s integral to the error function.

The two-argument arctan function, which is most commonly used to compute the ar-
gument (also known as the phase) of a complex number, also has a natural extension to
complex input arguments, via the formula

ban(y, o) 1 T+ 1y
arctan )= —t1n | —(————
y7 /:B2 —I— y2

This extension has been implemented.
The hypergeometric series is usually expressed using the Pochhammer symbol, which, for
complex z and non-negative integer n is defined to be

(Z2)n=2(z4+1)...(z+n—-1).

This can be more compactly written in the form I'(z 4+ n)/T'(z), and this form immediately
provides the extension of the Pochhammer symbol to non-integer (and negative integer) n.
Maple now implements this symbol, for complex z and n, with the name pochhammer(z,n).
Study of the mathematical properties of the Lambert W function has continued, resulting
in a paper which has appeared in Comptes Rendu, entitled “Sur I'inversion de y®e¥ au moyen
de nombres de Stirling associés”, by D.J. Jeffrey, R.M. Corless, D.E.G. Hare and D.E. Knuth,
and a paper which is to appear in The Mathematical Scientist, entitled “Unwinding the
branches of the Lambert W function”, by D.J. Jeffrey, R.M. Corless and D.E.G. Hare.

7.4 Accounting for architecture differences

Maple now runs on both 32-bit and 64-bit architectures. The Maple software floating point
number systems on these different architectures are themselves substantially different, a fact
which Maple itself can recognize and utilize. To accomplish this, a routine called Maple floats
was written, which is essentially a query engine operating somewhat along the lines of the
evalhf interface to the hardware floats parameters. For example, evalhf(Digits) returns the
number of digits (base 10) available from the underlying hardware double precision num-
ber system. Maple floats(MAX DIGITS) returns the maximum number of digits (base 10)
available from Maple itself.

There is a set of keywords whose values are substituted for in expressions passed to
Maple floats(). These keywords are consistently named (unlike the evalhf keywords, which
were inherited from the IEEE standard), using all capital letters and underscores between
words.
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This routine has option remember, so it is quite efficient to use. Several evalf routines,
such as exp, GAMMA, etc, now use Maple_floats to enable them to tailor their behaviour to
the particular architecture Maple is running on.

7.5 Testing

In 1993, a system of regularly testing floating point code at randomly generated arguments
and precisions was implemented. This system has been extremely successful in locating
problem areas and ensuring the robustness of the code.

The system underwent several revisions in 1994 and 1995, and has been extensively
enhanced. In the first place, tests of routines taking different numbers and types of arguments
have been unified, so that it is even simpler now to add new functions to the test runs.

Secondly, tests of special cases, such as integer arguments, 0 arguments, purely imaginary
arguments, etc, were included.

Thirdly, a new test designed to verify that a Maple evalf/ routine has the same continuity
properties as the function it is supposed to be evaluating was developed. This test checks
to see that small changes in input values which cause significant differences in execution
path through the code yield only small changes in output values. Typical situations are
code which handles exact integer arguments differently from general arguments and real
arguments versus arguments with small imaginary parts. This test also validates continuity
onto branch cuts to ensure that changes to the code don’t change the closure properties with
respect to the branch definitions.

Finally, a test designed to verify that Maple evalf/ routines satisfy the same mathematical
identities as the functions they are supposed to evaluate 1s being developed. This test is still
in its infancy, and there are some difficulties which will need to be understood and overcome.

8 Piecewise Functions

The piecewise function facilities of Maple have been extended. Based on Technical Re-
port CS-96-14, “A Normal Form for Function Rings Of Piecewise Functions” by Martin
v. Mohrenschildt, the algorithm to compute composition of piecewise functions has been

improved.
Example 1
f(:n):{x2 z>—1 and z<1
x  otherwise
Simplified:

r o<-1
f(w):{w2 z <1

r 1<z

Define a second function:
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g(:n):{w—l_l 0<g

Jx otherwise
Compositions:
3z r < —1
simplify (¢(f(z))) = {w2 +1 z<1
r+1 1<z
RE z<—1/3
simplify (f(g(z)) { 92> x<0
z+1 0<z
Example 2
cx

We can convert this to piecewise notation:

_ e 2=0
R

g = piecewise(x < —5,3(x — 5),z >= -5 and © <=2,0,2 < z,z — 2)

{3:13—15 < —H

glz) =<0 r <2
x—2 2<z
For c=1
simplify (g(f(z))) = 0
For ¢ =3 0 <
. . x iy
simplify (9(f(=))) = { 22 9oy
For ¢ =6
-3z <5
simplify (g(f(z))) = { 0 z<1/2
2 % 1/2 < w
Example 3

Some examples using the composition operator @.
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>m := x->piecewise(x <=0,-x,x>0,x);
m := x -> piecewise(x <= 0, -x, 0 < x, X)

> convert( abs(2-abs(x-1)), piecewise , X);

{-1-x x <= -1
{
{1 +x x <=1
{
{3 -x x <3
{
{x-3 3 <=x

> convert( m(2-m(x-1)), piecewise , x);

{-1-x x <= -1
{
{1 +x x <=1
{
{3 -x x <3
{
{x-3 3 <=x
> convert( (mOm) (x), piecewise , X); # this is abs(abs(x))
{ -x x <=0
{
{x 0 < x

9 Pattern Matching and Functional Programming

Maple did not previously have a general pattern matching facility. Implementing a pattern
matcher gave us the possibility to enhance Maple’s concepts of functional programming and
applying rules. In this report by Martin v. Mohrenschildt, we describe the different functions
implemented to support the above ideas in Maple.

The functions which have been implemented are: patmatch, compiletable, tablelook, de-
fine, definemore, applyrule.

9.1 Pattern Matching

The function patmatch implements real pattern matching into Maple. This functionality
is entirely created in the Maple library.
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Syntax: patmatch(expr, pattern) or patmatch(expr, pattern, ’s’)

The patmatch function returns true if it is able to match expr to pattern, and false
otherwise. If the patmatch is successful, s is assigned a substitution set such that subs(s,
pattern) = expr.

A pattern is an expression containing variables typed by ::. For example, a::radnum
means that a is matched to an expression of type radnum. Note that in a sum, e.g.
a:realcons+x, a can be 0, and in a product, e.g. a:realcons®x, a can be 1 (not 0). This
behavior can be overridden using the special keyword nonunit around the type. For example,
a::nonunit(realcons)*x does not match x.

Some examples:

> patmatch(x,a::realcons*x+b::realcons,’la’);la;
true

[a=1, b = 0]

> patmatch(sqrt(3)*x-1n(4)*Pi/5-exp(1) ,a::realcons*x+b: :realcons,’la’);la;

true
1/2
[a =3 , b=-1/5 1n(4) Pi - exp(1)]
> patmatch(exp(1/2%Pi) ,exp(n::radnum*Pi),’la’);la;
true
[n = 1/2]

The pattern matcher knows about these special default values:
exp®tupe matches also exp if a = 11if 1 is of type type
a ::type + exp matches also exp if a = 0 1f 0 1s of type type
a :: type * exp matches also exp if a = 11if 1 is of type type

We have the special constructor nonunit(..) to make sure that the matching of the
above examples does not happen.

a::nonunit(algebraic)+b::nonunit(algebraic) matches a sum of two or more terms
a::nonunit(algebraic)+b::algebraic matches a single term or the sum of terms

> patmatch(atb+c,A: :nonunit(algebraic)+B: :nonunit(algebraic),’la’);la;
true

[A =a, B=b + c]
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> patmatch(a,A::nonunit(algebraic)+B: :nonunit(algebraic),’la’);
false

> patmatch(atexp(x)-Pi,A: :nonunit(algebraic)+B: :nonunit(algebraic),’la’);la;
true

[A = a, B = exp(x) - Pil

> patmatch(atexp(x)-Pi,A: :nonunit(algebraic)+B::algebraic,’la’);la;
true

[A = a, B = exp(x) - Pil

> patmatch(a,A::nonunit(algebraic)+B::algebraic,’la’) ;la;
true

We have the special keyword conditional to express patterns having additional condi-
tions. This is used for programming patterns in tables with additional conditions on the
pattern. The syntax is conditional(pattern,condition) and conditional(pattern=right-hand
side, condition) for rules in tables or define. For example, it can be used for patterns of this
kind:

int(a::algebraic,x: :name)=a*x,_type(a,freeof (x))
This is not the same as int (a: :freeof (x),x: :name)since at the point the pattern matcher
matches a, x is not yet known. Note that the condition has to be unevaluated or in inert
form: use an _ in front of every name. For example, _type(a, .freeof (x)).

> patmatch(2*x+5,conditional(a: :integer*x+b: :integer,a”2<b),’la’);la;
true

[a =2, b= 5]

> patmatch(2*x+2,conditional(a::integer*x+b: :integer,a”2<b),’la’);
false

> patmatch(11*x+6,conditional(a::integer*x+b::integer,a>b and _type(a,prime)

> and not a<0),’la’);
true
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9.2 Functional Programming

The idea of functional programming is implemented with the function define in Maple. With
define it is possible to give evaluation and simplification rules for functions and operators.
define creates a procedure applying the properties to the function. Note that properties are
used in the order they are given, hence if a pattern is more general than another one it has
to be first, e.g. f(z) = z before f(a :: algebraic) = g*. With definemore it is possible to
add additional properties to a function or operator which was defined by define.

The define function understands the following keywords:

linear a function linear in the first argument
multilinear a function linear in all arguments
orderless a function with no order in the arguments
flat a function not being nested

diff(function,x)=exp define the derivative to be exp

Examples:
> define(f,linear,f(1)=tt);
> £(2%x+4);
2 f(x) + 4 tt

> define(g,g((a::algebraic) "n: :nonunit(integer))=n*g(a),g(a: :realcons)=a);
> g(x~2);

2 g(x)
> g((x-2)"(-1));
-g(x - 2)
> g(Pi*sqrt(2));
1/2
Pi 2

To define commutative and associative operations use the keywords orderless and flat.
Orderless means that there is no order in the arguments of a function, and flat means that

for example f(a.f(b,c)) is f(a,b,c).
> define(h,orderless,flat);
> h(a,b)-h(b,a);

> h(a,h(b,c))-h(h(a,b),c);

Functional programming:
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\%

define(fac,fac(0)=1,fac(n: :posint)=n*fac(n-1));
> fac(b);
120

> define(fib,fib(0)=1,fib(1)=1,fib(n: :posint)=fib(n-1)+fib(n-2));

> £ib(7) ;
21

# An example of programming a one-line GCD:

> define(GCD,GCD(a: :integer,0)=a,GCD(a: :integer,b: :integer)=GCD(b,a mod b)) ;
> GCD(6,3);
3
> GCD(120,12%120);
120
> GCD(13,11);
1

An example of an integrator created with define:

> define(INT,linear,
> conditional (INT(a: :algebraic,X: :name)=a*X,_type(a,freeof(X))),
> INT(X: :name,X: :name)=1/2%X"2) ;

With this definition it works for any variables:

> INT(2*%x+4,x);

> INT(z+x,z) ;
2
1/2 z + x 2z

definemore (INT,
conditional (INT( 1/(a::algebraic*X::name+b::algebraic),X: :name)
=1n(axX+b)/a,_type(a,freecof (X) &and _type(b,freeof(X)))));
INT(1/x,x);

vV V V V

In(x)

> INT(1/(2%x+3),x);
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1/2 1n(2 x + 3)

> definemore(INT,INT(\
> (x::name) "n::nonunit (integer) ,x: :name)=1/(n+1)*x"(n+1));
> INT(2*x"2,x);
3
2/3 x
> INT(1/x,x);
In(x)

> definemore(INT,

> conditional (INT(sin(a::algebraic*x+b: :algebraic) ,x: :name)
=-1/ax*cos(a*x+b) ,_type(a,freeof (x)\

> &and _type(b,freeof(x)))));

Still if INT does not know the pattern it returns unevaluated:

> INT(sin(x)+cos(x),x);
-cos(x) + INT(cos(x), x)

And a example of what Maple can compute knowing that a function is linear and it’s
derivative is a:

> define(f,linear,f(1)=1,diff(£f(x) ,x)=a);
> diff(£f(x),x);

> £(0);

> int (£(x) ,x);
2
x f(x) - 1/2 x a

> int (exp(f(x)),x);
exp(f(x))

> int(f(sin(x)) ,x);
x f(sin(x)) - (cos(x) + x sin(x)) a
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> limit (f(x),x=0);

> series(f(x),x=1);
6
1 +a(x-1) +0((x-1))

Derivatives of functions can be defined using the keyword diff:

> define(P,diff (P(x),x)=1/P(x));
> diff(P(x),x);

1
P(x)
> diff (P(exp(z)),z);
exp(z)
P(exp(z))
> diff (1/P(x°2),x);
x
_2 ——————
2 3
P(x )

9.3 Applying Rules

With applyrule a rule or a list of rules can be applied to a given expression. applyrule
computes the fixed point, i.e. it applies the rules until no rule can be applied any more. It is
more powerful than the command algsubs, but it does not do mathematical transformations
as algsubs does.

Syntax: applyrule(rule, expr) or applyrule([rulel, rule2, ...], expr).

> applyrule(atb=x,f (atb+c));
f(x + ¢)

> applyrule(x=y,x"2);
2

y

> applyrule(x~2=y,f(x"2,exp(sin(x)+2*x"2)));
f(y, exp(sin(x) + 2 y))
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> applyrule(f(a::integer*x)=ax*f (x),f(2*x)+g(x)-p*f(x));
2 f(x) + g(x) - p £f(x)

> applyrule([a::even=even,a::prime=prime],[1,2,4,3,5,6,4,8,15,21]);
[1, even, even, prime, prime, even, even, even, 15, 21]

> applyrule(sin(2*x)=2*sin(x)*cos(x),sin(x)+sin(2*x)-cos(x));
sin(x) + 2 sin(x) cos(x) - cos(x)

10 Matrix Computations

In 1994 we developed two new probabilistic algorithms [23, 24] for the computation of Her-
mite and Smith forms of polynomial matrices. Since then we have created new deterministic
algorithms for computing both Hermite and Smith normal forms of matrices. In the case of
Hermite normal forms, the paper [25] provides an asymptotically faster way of computing
the form over the integers. In addition, in the important class of rectangular matrices we
have also determined a sparse structure for computing the multiplier matrix. This leads
to important improvements for computing such applications as one-sided matrix greatest
common divisors of integer matrices along with the solution of the accompanying matrix
diophantine equations. Also, in the case of Smith normal forms, the paper [26] provides a
new algorithm for deterministically computing the form over the integers.

In both cases, the algorithms presented are faster than any previously known results.
In particular, in the case of [26] the algorithm computes the invariant factors of an integer
matrix in approximately the same time as computing the fraction-free decomposition of the
matrix, and hence the determinant of the matrix. Thus the algorithm can be thought of as
having optimal complexity, since knowing the invariant factors allows for computation of the
determinant.

The primary research on this topic has been done by A. Storjohann. Mr. Storjohann
completed his Master’s thesis under Professor Labahn in late 1994 and has been employed
as a research associate with the group until the end of February 1996. In March 1996
Mzr. Storjohann began his Ph.D studies at ETH, Zurich.

11 Tensor Computations

M. Kavian, a Ph.D student co-supervised by K.O. Geddes (with R.G. McLenaghan of Applied
Math), is investigating new methods for tensor calculations based on applying sophisticated
search techniques to a database of rules. One aspect of the new approach is to apply genetic
algorithms which have evolved in applications such as DNA classification. A conference
paper [14] reports on progress to date.
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