
Distributed Scienti�c Data Processing Using the DBC�

James Du� Kenneth Salem Miron Livny
Dept� of Computer Science Dept� of Computer Science Computer Sciences Dept�
University of Maryland University of Waterloo University of Wisconsin�Madison
College Park� MD ����� Waterloo� ON N�L �G	 Madison� WI 
����

USA Canada USA
jimdu�
cs�umd�edu kmsalem
uwaterloo�ca miron
cs�wisc�edu

Keywords� distributed data processing� batch processing� atmospheric science� satellite data

processing� Java� PVM� Condor�

Abstract

The Distributed Batch Controller �DBC� supports scienti�c batch data processing� The DBC dis�
tributes batch jobs to one or more pools of workstations and monitors and controls their execution�
The pools themselves may be geographically distributed� and need not be dedicated to process�
ing batch jobs� We describe the use of the DBC in a large scienti�c data processing application�
namely the generation of atmospheric temperature and humidity pro�les from satellite data� This
application shows that the DBC can be an e�ective platform for distributed batch processing� It
also highlights several design and implementation issues that arise in distributed data processing
systems�

� Introduction

The Distributed Batch Controller �DBC� is a tool for scienti�c data processing� Its function is the
execution of batch data processing jobs in pools of workstations� While it can be used to control
jobs in a single pool� it is primarily intended for users who wish to combine more than one pool
into a single computational engine� For example� a collaborative research team could use the DBC
to combine the computational resources of individual team members�

The workstation pools used to process DBC jobs remain autonomous and are not assumed to
be dedicated to DBC�related work� Furthermore� they may be widely distributed� For example�
the DBC system we will describe later in the this paper utilizes workstation pools located in
Washington� Wisconsin� and Maryland� The DBC addresses computational issues that arise in this
environment� For example� pools may join or leave the DBC system at any time� the processing
power available at the pools may �uctuate with time� job input data may have to be shipped to
remote pools� and output data must be collected� and failures of various types must be detected
and corrected� In addition� such a system must provide a centralized administrative interface to
allow its users to monitor and control distributed batch execution�

A previous paper ��� described our initial prototype of the DBC and reported the results of some
preliminary experiments� Since that time� DBC V	� a more stable PVM�based implementation�
has been released� The purpose of this paper is to show that wide�area scienti�c data processing�
as supported by the DBC� can be e�ective and practical� We do so by describing the application
of DBC V	 to a large scienti�c data processing application� Our experience with this application

�CS������� Dept� of Computer Science� University of Waterloo



���� �� ��

user

DBC master

DBC agent DBC agent

buffer

buffer

Pool 1
Pool N

repository repository
input output

meta-data
repository

Figure 	� Architecture of the DBC

has also highlighted some of the strengths and weaknesses of the DBC design� We discuss these�
and describe how we are addressing some of the weaknesses in DBC V��

� DBC Overview

A single DBC job consists of the execution of one or more programs� or jobsteps� Jobs are speci�ed
using a scripting language de�ned by the DBC� though the jobstep programs themselves may
be written in any language� A job�s script may include a set of formal parameters� Typically�
these parameters are used to represent input and output �le names and run�time parameters for
the jobstep programs� Once a script has been prepared� jobs may be created by supplying the
necessary actual parameters� A batch is a set of jobs� each an instance of the same script� In the
scienti�c domains to which the DBC is targeted� batches are often large and long�running�

A DBC run�time system is used to process a batch� Each instance of the run�time system pro�
cesses a single batch� However� nothing prevents multiple DBC systems from running concurrently
and sharing available resources� Figure 	 illustrates the architecture of the DBC run�time system�

Computational power is provided to the DBC by one or more resource pools� A DBC agent
controls jobs at each pool� and a single DBC master coordinates the agents� The master maintains
information about the entire batch� assigns jobs to agents� and is informed when jobs are com�
pleted� The master also supports user interfaces that provide a central point of control for a human
administrator�

A DBC pool consists of one or more �execution resources�� plus some disk bu�er space� An
execution resource is something� e�g�� a workstation� or a cluster of workstations� that is capable of
executing the jobstep programs� Jobstep programs running at any of the execution resources in a
pool are are assumed to have access to the pool�s common disk bu�er� The collection of pools that
comprise a DBC system is dynamic� Pools are autonomous and may join� leave� and rejoin the
system at any time� If a pool leaves the system� the master may reassign its tasks to other pools�



Each pool�s agent manages all DBC jobs at that pool� The agent transfers the job�s input �les
from the input repository to its pool�s disk bu�er� �DBC jobs are not assumed to have direct access
to data in the repository�� It then arranges for the jobstep programs to run on the pool�s execution
resources� and monitors their progress� If the jobstep programs generate output data� the agent
moves them from the local disk bu�er to the output repository�

The DBC agent has a modular design and can be customized to operate with di�erent types
of execution resources� In DBC V	� each execution resource is a workstation cluster managed
by the Condor �	� �� resource management system� This allows the DBC to exploit the power
of idle workstations� since Condor assigns jobs to unloaded machines in the cluster� The DBC
agent submits jobs execution requests to Condor� which in turn takes care of assignment of jobs to
individual workstations� and job migration �within the cluster� when necessary�

� Implementation

The scienti�c application discussed in the next section uses Version 	 of the DBC� In Version 	�
the DBC master �see Figure 	� is implemented by a master process plus one or more front�end
processes� which provide user interfaces� The DBC agents are implemented by an agent process�
plus a job�monitor process for each job being managed by that agent� Communication among these
processes is implemented using the Parallel Virtual Machine �PVM� ��� system�

All front�end processes communicate with the master process through a standardized API� The
API de�nes methods for starting and stopping pools and jobs� for monitoring job progress� and for
setting some system parameters� A number of useful front�end processes have been developed� The
console front�end is a text command interpreter that generates API calls� The dbc submit front�end
parses pool descriptions� job scripts� and job creation commands and submits them to the master
process� There is also a simple GUI tool for visual monitoring of batch progress� Since there is a
standard API� users can also write custom front�end programs for speci�c applications�

The master process is responsible for spawning pool agent processes� and for providing jobs to
those agents at their request� Agent processes are started by PVM using the Unix remote shell
mechanism� Once running� an agent requests jobs from the master and spawns �using PVM� a
job�monitor process for each job it is assigned� Each job�monitor arranges for its job�s input and
output data to be transferred to and from the repositories by spawning calls to the Unix FTP �
�
utility� It executes its jobstep programs by submitting execution requests to Condor�

Condor �	� �� is a resource management system that runs on pools of Unix workstations� Condor
harnesses the computational power of unused workstations in the pool� Jobs submitted to Condor�
including those submitted by DBC job�monitors� are sent automatically to idle workstations in the
pool for processing� Should a workstation become busy� Condor is capable of checkpointing and
moving its job to another machine� However� we are currently using Condor in a mode in which
such jobs are simply restarted�

Since the DBC uses Condor� it e�ectively draws its computational power from idle workstations
in each pool� Jobs submitted to Condor by a DBC job�monitor must compete with other Condor
jobs for the available resources in a pool� Job scheduling policies may vary� as a Condor pool�s
owner can set the scheduling policies for that pool�

� A DBC Application

DBC V	 is being used as a data processing engine for the TOVS Polar Path�nder �TOVS Path�P�
project at the Polar Science Center Applied Physics Laboratory �APL� at the University of Wash�
ington� This project� part of the NOAA�NASA Path�nder program� is producing daily Arctic



0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Tu 6pm Wed 6am Wed 6pm Th 6am Th 6pm Fri 6am Fri 6pm Sat 6am

Jo
bs

 C
om

pl
et

ed

Time

Total

CESDIS

APL HPUX
Wisc SunOS
Wisc Solaris

APL SunOS

Figure �� Progress of the a Typical DBC Batch Run

atmospheric temperature and humidity pro�les for a �� year period� Pro�les are being generated
using data from approximately 	������ orbital passes� Each execution of the pro�le retrieval pro�
gram uses two input �les� one containing infra�red data and the other containing microwave data�
The total size of these �les is about �
� kilobytes compressed� The program generates about 	
megabyte �compressed� of output data�

The time to execute the pro�le retrieval program ranges from about �ve minutes of CPU time per
orbit on a dedicated Sun Sparc������� to about twelve minutes per orbit on a Sparc�	�� Assuming
no I�O�related delays� sequential processing of this data set would occupy such a workstation for
approximately one to two years� Since the APL team expects to be reprocessing the data two or
three times� this application alone may represent three to �ve workstation�years of computing�

The DBC job script for this application contains a single jobstep program which uncompresses
the input �les� runs the pro�le retrieval program� and compresses the output� The DBC run�
time system used consists of three widely�distributed workstation pools� The largest pool is at
the University of Wisconsin Computer Science Department in Madison� Wisconsin� consisting of
about �� Sun�Solaris workstations� �� Sun�SunOS��	�� workstations� and a 	�� megabyte disk
bu�er� The second pool is at the Center of Excellence in Space Data and Information Systems
�CESDIS�� located at the NASA Goddard Space Flight Center in Maryland� It consists of 	�
Sun�SunOS��	�� workstations and a 	�� megabyte disk bu�er� The third pool consists of the
APL�s own workstations� including two Sun�Solaris workstations� four HPUX workstations� and
a 	��MB disk bu�er� All three pools are shared by other users� so the number of workstations
available for DBC jobs is normally much less than the total�

A RAID storage device at the APL in Seattle is used as both the input repository and the
output repository for the system� The DBC master is also located at the APL site� Jobs are
processed in batches of 
�� to 
��� at a time� and the DBC is typically shut down between batches�



0

5

10

15

20

25

30

35

40

Wisc(Sol) Wisc(SunOS) Wash(HP) Wash(Sol)CESDIS(SunOS)

m
ea

n 
pr

oc
es

si
ng

 ti
m

e 
(m

in
ut

es
)

Pools

�������
�������
�������
�������

��������
��������
��������
�������� ��������

��������
��������

��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

Execution
Overhead

CPU Time

Transfer Time

Restart
Overhead

DBC Overhead

Figure �� Mean Processing Time at Each Pool

�This mode of operation is preferred by the APL� and is not a requirement of the DBC�� So far the
DBC has been used to process over ������ jobs�

Figure � shows jobs completed as a function of time for one typical batch of 
��� jobs� The
�gure shows the jobs completed by each pool� as well as the total� Because the pools at Wisconsin
and APL each included two di�erent types of machines� we have included two lines for each of
those pools in the Figure� Each line represents jobs completed by machines of a particular type in
a particular pool� This batch took �� hours to complete� for an overall throughput of 
� jobs per
hour� The remote CESDIS and Wisconsin pools contributed substantially� processing ��� of all
the jobs in this batch�

Figure � shows �uctuating processing rates for the various pools in the system� Fluctuations
occur as workstation availability changes in the pools� or in some cases because a pool temporarily
leaves the DBC system� For example� the �at portion of curve for the CESDIS pool on Thursday
night was due to a local �le server failure during that period� The Wisconsin pool was not activated
at all until Wednesday evening� �about hour �� of the run�� as new software was being installed
there� Although individual pools were not always operating� the DBC as a whole continued to make
progress for the entire duration of the run� This illustrates one of the advantages of distributing
batch execution over several pools� problems in one pool need not result in the complete suspension
of data processing�

An analysis of DBC job execution times can provide some additional insight into the system�s
behavior� Figure � shows a breakdown of the job response time for each machine type at each pool�
A job�s response time is measured from the time it is �rst assigned to an agent by the master to
the time the agent reports the job complete� In the �gure� the total response time is broken into
�ve parts�

� Transfer Time� the time required to transfer both input and output data to and from the



repository�

� CPU Time� processor time spent executing the pro�le retrieval jobstep program�

� Execution Overhead� this has several sub�components� including Condor scheduling overhead
and resource queueing time� and any delays due to �le system operations once the jobstep
program has started executing at a workstation� Since the pro�le retrieval program is CPU�
limited� we expect that delays for �le operations are minimal for this application� The Condor
scheduling overhead is due to polling performed by Condor to detect the arrival of newly�
submitted jobs� Once a submission has been detected� it must then wait until Condor assigns
it to an idle workstation for processing� This is the resource queueing time� It depends on how
heavily utilized the pool is� and on Condor�s scheduling policies� which attempt to allocate
pool resources equitably among many users�

� Restart Overhead� Since Condor assigns work only to otherwise idle workstations� a job may
be preempted if its assigned workstation becomes busy� In this case� Condor will automatically
restart the job on another workstation� Time spend executing before the preemption is wasted�
and is called the restart overhead�

� DBC Overhead� time spent in the DBC itself� This is calculated as the amount of time
remaining after the other times are subtracted from the total job response time�

The DBC system directly measures total response time� transfer time� CPU time� and the total
overhead �the sum of execution overhead and restart overhead� for each job� Most jobs ���� over
all pools� do not restart� Such jobs have no restart overhead� so our total overhead measurement
for these jobs is really a direct measure of execution overhead� For jobs that do restart� we estimate
their execution overhead to be the same as that of jobs that do not restart� and take the restart
overhead as the balance� The times shown in Figure � are weighted average times over both types
of jobs�

The data in Figure � illustrate several characteristics of this particular DBC system� First� the
data repository itself was not a performance bottleneck� If it were� we would expect to see much
larger transfer times at the Washington pools� Second� the remote pools do experience substantial
data transfer delays due to the limited network bandwidth available� However� as long as su�cient
bu�er space is available at each pool� the DBC agent can hide this latency by transferring data
for some jobs while it is processing others� Thus� we do not believe that data transfer was a
performance bottleneck for this system� even at the remote pools� Third� the execution overhead
time was substantial at all of the pools� We know that only a few minutes of this time is due to
scheduling overhead �Condor polling�� The remaining time is spent waiting for a workstation to
become available� These data show that the system�s performance at all of the pools was limited
by workstation availability� Finally� the data show that the DBC itself does did add any signi�cant
overhead cost�

� Design and Implementation Issues

Our experience with the DBC has brought a number of design and implementation issues into focus�
Three of these� namely failures and recovery� security� and meta�data management� are discussed
here�



Pool Throughput �jobs�hr� �Downtime Ideal Throughput

Wisconsin�Solaris ��� 
��� 	
��
Wisconsin�SunOS ��� 
��� 	���
CESDIS�SunOS ��� ���
 �
�

APL�Solaris ��
 ���� ���
APL�HPUX 	��� ���� 	��

APL�SunOS 	�� ���
 ��	

Total All Pools ���� �
��

Figure �� Throughput at Each Pool

��� Fault Recovery

Failures are inevitable in a long�running distributed system like the DBC� The DBC has been
designed to anticipate many types of failure� and much of the implementation e�ort for DBC V	
has gone into failure detection and recovery� Failures can occur at the global� pool� and job levels�
We have found that while failures at the global and individual job levels are rare� and easily handled�
pool failures can have a major impact on DBC performance�

To examine the impact of pool failures� we analyzed data from a set of seven batches of pro�le
retrieval jobs �about 	
���� jobs total�� The �rst column of Figure � shows the average throughput
for each pool� measured over all of the batches� and the second column shows the percentage of time
that each pool was down while the DBC was running� The third column shows the throughput we
would expect if pools never went down� assuming their average processing rate remained unchanged�
If all pools had run without failure� the overall power of the DBC would have been �
�� jobs per
hour� more than twice the measured value of ���� jobs per hour�

Not all pool downtime is caused by failures� For example� during the batch execution shown
in Figure �� the Wisconsin pool was down during the �rst thirty hours of the batch because new
software was being installed and tested� However� we know that failures are common� They
typically occurred about about once a day at the APL and CESDIS pools� and about � times a
day at the Wisconsin pools� We have observed failures caused by many things� including broken
master�agent TCP�IP connections� local network problems at a pool� Condor software failures� and
process overload� The latter problem is exacerbated by our DBC V	 implementation� which uses
one job�monitor process per job assigned to a pool�

Another cause of pool failures is a mechanism built into DBC V	 that will automatically shut
a pool down if the job failure rate at that pool exceeds a threshold� A small fraction of jobs fail
the �rst time they are executed� Some of these failures are due to application problems such as
bad input data or bugs in the jobstep programs� However� others are due to system�related causes
such as heavy Condor usage �causing a submitted job to eventually time out� or Internet failures
that block repeated attempts to transfer data from the repositories� These types of failures tend
to be bursty� and will sometimes manifest themselves as a pool shutdown by causing the threshold
to be exceeded�

When a pool fails for any reason other than the automatic shutdown mechanism� the master
attempts several times to restart it before eventually giving up� Pools that succumb to the automatic
shutdown mechanism are not restarted automatically� since jobs are likely to fail there again if the
underlying problem is not corrected� When automatic restart fails or is not employed� it is up to
the DBC user to restart the pool manually by issuing the appropriate command from the DBC
console� It is our experience that the DBC must still be monitored several times a day to determine
if manual intervention is required�



Version � of the DBC will incorporate several design changes that we hope will reduce the
cost or the likelihood of failures� In particular� DBC V� will combine the job�monitors into a
single multi�threaded process� and will permit disconnected pool operation in the event of a broken
agent�master connection� We will return to the discussion of DBC V� in Section ��

��� Security

Our current design requires that the DBC user have �login� access to a workstation at a pool before
that pool can be included in a DBC run�time system� Our design is not intended as a mechanism
for allowing strangers to use a pool�s idle resources� Rather� the owners of the pool must be willing
to share their resources with the DBC users�

We assume that a pool�s owners trust a DBC user as they would any other user with login
privileges on pool machines� The DBC does not allow an unscrupulous user to exploit the pool in
any way they could not already do with login access� However� even if we assume that DBC users
are trustworthy� there are still a number of security concerns that need to be addressed in a system
such as the DBC�

First� a mechanism is needed for authenticating remote users when they log in to a pool machine�
This problem is common to many Internet applications� The DBC could exploit a general purpose�
secure facility for remote process creation� if such existed� Second� once running� a DBC agent
should authenticate job requests� �Did this job really come from the Master��� This is to prevent
unauthorized users from trying to exploit a running pool� Other than the mechanisms built into
PVM� we do not address this problem in the current design� The DBC V� is being built in Java�
which does provide some control over the creation of socket connections with outside processes�

Each of the mechanisms described above would protect the owners of pool resources� It may also
be desirable to provide protection for the DBC user� In particular� the master should authenticate
messages from agents� This would prevent �rogue� pools from joining a running system� Rogue
pools could sabotage a batch by processing jobs incorrectly� or they could steal input�output data�
There is no such authentication mechanism built into DBC V	� However� all agents are initiated
directly by the master� which is under the control of the DBC user�

��� Meta�Data Management

Management of information about batch jobs becomes a major concern when batches are large�
Meta�data are important for several reasons�

� Performance Analysis� The DBC user should be able to track how many jobs were processed
by each pool and how long they took� This is particularly important for identifying perfor�
mance problems or failed pools in a running DBC system� It is also useful for con�guring the
run�time system for future batches�

� Interpretation of Results� Di�erent jobs in a DBC batch may run on di�erent types of ma�
chines� depending on the makeup of the pools in the run�time system� The type of machine on
which a job runs may have an impact on the output data it generates� For example� �oating
point numeric calculations may di�er slightly on di�erent machines� To properly interpret
the output of a batch job� a record of the environment in which each job was processed is
essential�

� Debugging� A DBC user�s jobstep programs will not be free of errors� When a job fails�
some record of its state� e�g�� a �core dump�� should be available for subsequent post�mortem



analysis� This is complicated by the fact that job failures may be scattered widely across the
pools�

Currently� the DBC makes several types of meta�data available to its users� Performance statis�
tics are available in real time through the DBC master�s console front end� or the GUI front�end�
This allows the user to determine the status of any job or pool in the system� and the rate of job
completion at the various pools� In addition� a variety of information about job execution environ�
ments and execution times is shipped to the master and logged� Tools are provided for subsequent
analysis of the logs� All of the measurements presented in this paper were produced from analyses
of DBC�generated logs� We are planning a more comprehensive treatment of these data in DBC
V�� as described in the next section�

Debugging data� such as core �les� are not shipped to the master because they are bulky and
because they are not always wanted� Debugging data is saved in each pool�s local disk bu�er�
The amount of data to save can be controlled by run�time parameters� Options include saving
everything �including bulky core �les�� saving just small �les �typically stdout and stderr output��
or saving nothing at all other than the output data �normal operation�� In the current design�
saving lots of debugging data can cause a graduate decline in the performance of a pool� since the
debugging data occupies space in the pool�s disk bu�er� A reduction in disk bu�er space reduces
the amount of data prefetching that can be performed� and may limit the maximum number of
batch jobs that can execute concurrently in a pool�

� Conclusions and Future Work

We have described the DBC system and its application to a large scienti�c data processing problem�
Our work with this system demonstrates that a widely�distributed collection of workstation pools
can be utilized as a data processing engine� Such a system may be particularly valuable to collab�
orative research teams� which may control a variety of widely�distributed computing resources� By
combining the power of several pools� the time required to complete large batch processing tasks
can be substantially reduced� Such a system is �exible� and can provide computing cycles even
when some pools are unavailable� We have also identi�ed some of the issues that arise in the design
and implementation of such a system�

DBC V	 has been stable and in use since early 	���� We are currently developing DBC Version ��
which contains a number of changes inspired by our experience with V	� Whereas V	 is implemented
in C� DBC V� is written in Java� We are exploiting several features of the new language� In DBC
V�� each agent is now a multi�threaded Java virtual machine that incorporates the functionality
that was spread over the agent process and the job�monitor processes in V	� This moves us from a
�process�per�job� design to a �thread�per�job� design� which should reduce the load each DBC agent
puts on its host pool� We are using Java�s remote method invocation �RMI� facility to implement
communication between the master� agents� and front�ends� This replaces �and simpli�es� services
formerly provided by PVM� Finally� Java�s security features permit explicit manipulation of DBC
access restrictions�

The DBC V� agent is designed to interoperate with various kinds of local execution resources�
in addition to Condor� In particular� it will be possible to treat a single Unix workstation as a
DBC pool� We also hope to interoperate with other job queueing systems� such as LSF �formerly
Utopia ��� ��� or DQS ���� In recognition of the fact the batch meta�data is valuable and should
be properly managed� the DBC V� master will support a direct interface to a relational database
system� The database systems will permit more thorough and �exible analysis of the meta�data
than is possible with the simple log and query utilities available in V	�



� Acknowledgments

We are grateful to CESDIS for providing access to its workstations in support of the DBC system
described here� Axel Schweiger and Mark Ortmeyer at the APL have been patient with the system�
and have provided us with access to DBC logs and other data� Victor Wiewiorowski� at the
University of Waterloo� implemented the graphical front�end for DBC V	� Work on the DBC is
supported by NASA through its Applied Information Systems Research Program�

References

��� A� Bricker� M� Litzkow� and M� Livny� Condor technical summary� Technical Report TR ����� Depart	
ment of Computer Science� University of Wisconsin� Oct� �����

�
� C� Chen� K� Salem� and M� Livny� The DBC� Processing scienti�c data over the internet� ��th
International Conference on Distributed Computing Systems� May �����

�
� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM� parallel virtual

machine � a user�s guide and tutorial for networked parallel computing� The MIT Press� Cambridge�
MA� �����

��� M� Litzkow and M� Livny� Experience with the Condor distributed batch system� In Proc� of the IEEE

Workshop on Experimental Distributed Systems� pages ������� Oct� �����
��� J� Postel and J� Reynolds� File transfer protocol �FTP�� Technical Report RFC	���� USC Information

Sciences Institute� �����
��� Supercomputer Computations Research Institute� Florida State University� Talahassee� Florida� DQS

User Manual� DQS version 
���
�
 edition� June �����
��� J� Wang� S� Zhou� K� Ahmed� and W� Long� LSBATCH� A distributed load sharing batch system�

Technical Report CSRI	
��� Computer Systems Research Institute� University of Toronto� Apr� ���
�
��� S� Zhou� J� Wang� X� Zheng� and P� Delisle� UTOPIA� A load sharing facility for large� heterogeneous

distributed computer systems� Technical Report CSRI	
��� Computer Systems Research Institute�
University of Toronto� Apr� ���
�


