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Abstract

For a document collection where structural elements are identified with markup,
it is sometimes necessary to retrospectively construct a grammar that con-
strains element nesting and ordering. An approach to this problem is de-
scribed based on a grammatical inference method that generates stochastic
finite automata. Improvements are made to the algorithm based on ex-
periments with data from the Ozford English Dictionary. The problems of
understanding results and interactively adjusting the algorithm’s parameters
are also considered.
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Chapter 1

Introduction

Text, whether stored electronically, printed in a book or spray-painted on the
wall of an alley, can always be thought of as having some level of structure,
and this structure can be thought of as following certain rules. The term
structure as applied to text refers to the organization expressed by grouping
words into phrases, sentences, paragraphs, sections, chapters, titles, head-
ings, footnotes, or generally, any of the various elements used to subdivide
documents. The rules that these elements follow take the form of restrictions
on how and where the elements can be used. A title element, for example,
should not normally contain other sub-elements such as paragraphs, while a
chapter element may admit several levels of sub-nesting.

Structural elements can be identified implicitly in text through spacing
and punctuation patterns, font changes or typesetting instructions, while
rules constraining the nesting and ordering of elements can be implied by
how the elements are used. Many manipulations of computerized documents
stored for purposes such as information retrieval or electronic publishing,
however, first require that such implicit information be interpreted and un-
derstood. In such situations, there are well known advantages to having the
information specified explicitly [AFQ89, Ber89, CRD87]. Several standards
exist for including explicit structural information in documents. Of these,
SGML (standard generalized markup language) [ISO86] is the most widely
known and used.

The standard way to identify structural elements explicitly in a document
is to interleave the text with appropriately labeled tags. The following text.
for example, contains SGML-style tags that identify the entire fragment as
a quotation and the sub-clements as a reference and three sentences.



<quotation>

<reference>The Art of War: Chapter 3 paragraph 18<\reference>
<sentence>

If you know the enemy and know yourself, you need not fear the
result of a hundred battles. <\sentence>

<sentence>

If you know yourself but not the enemy, for every victory gained
you will also suffer a defeat. <\sentence>

<sentence>

If you know neither the enemy nor yourself, you will succumb in
every battle. <\sentence>

<\quotation>

Documents marked up in this way can be updated and interpreted much more
robustly than if the structural elements are identified with codes specific to
a particular system or typesetting style. It can also be used to support
operations such as searches that require words to occur within particular
elements.

The standard way to express the rules that govern ordering or nesting
of structural elements is with a grammar. The above example, for instance,
can be thought of as conforming to the following grammar represented as a
regular expression:

quotation — reference sentence®.

In SGML, a grammar is specified in the form of a document type definition
file or DTD. Grammars can be used to verify that newly created documents
conform to an existing model; to perform searches for specific structural com-
binations; or, generally, to perform operations that require an understanding
of a document’s structure. A grammar for a collection of documents can be
thought of as serving much the same purpose as a schema for a traditional
database: it provides an overall description of how the data is organized.
Many documents are created with their structural elements and the gram-
mar controlling these elements only implicitly specified. This gives rise to
the problem of making both these types of information explicit. The recog-
nition of structural elements involves converting forms of markup such as
typesetting instructions to descriptive tags. This requires an understanding
of the original conventions used to map element types to their current layout.
Approaches have been based on interactive systems [FX93, KLMN90|, and



manual trial and error construction of finite state transducers [Kaz86, Cladl].
A second problem involves extracting implicit structural rules from docu-
ments and representing them as a grammar. This requires that the original
intentions of the author be reconstructed by extrapolating from the available
examples in some appropriate way.

This thesis presents a novel approach to the problem of automatically
generating a grammar for the structure of a collection of documents. This
can be considered an application of grammatical inference — the general
problem that deals with constructing grammars consistent with training data.
Grammatical inference 1s a difficult problem because of several factors:

o It is usual for the target language to be infinite, while the training data
is always finite, i.e. many strings that should be allowed by the model
will not be present in the training data.

o Infinitely many possible grammars will be consistent with a given finite
sample. Some way is needed not just to construct a possible grammar,
but to choose from among the possibilities.

e Some of the restrictions regarding what constitutes a good result may
be difficult to evaluate objectively or automatically. For example, a
grammar may have to be understandable to a human reader.

Unlike previous approaches to grammatical inference for text structure,
the method described here uses frequency information associated with the
examples to produce a stochastic grammar — one that associates a proba-
bility distribution with the strings of the generated language. The specific
method that we have chosen to use is based on a grammatical inference algo-
rithm presented in ICGI 94 [CO94b] and modified here with some generally
applicable improvements.

Stochastic grammatical inference is usually applied to problems where the
probabilistic accuracy of the resulting model is the primary consideration.
For text structure, however, the understandability of the model is at least
as important. For this reason, some additional mention is made here of
techniques for understanding and visualizing stochastic grammars, as well as
using this understanding to tune the parameters of the inference method.

Experiments and testing were done using data from the computerized
version of the Ozford English Dictionary (OED) [MBCO33]. This is an ex-

tremely large document with complex structure [Ber93], containing over sixty



types of elements which are heavily nested in over two million element in-
stances. It has been converted from its original printed form, through an in-
termediate keyed form with typesetting information, to a computerized form
with explicitly tagged structural elements [Kaz86]. No grammar is explicitly
defined. The text is broken up into roughly two hundred and ninety thousand
top level elements (dictionary entries). The grammar inference problem can
be considered as one of finding a complete grammar to describe these top
level entries, or it can be broken into many subproblems of finding grammars
for lower level elements such as quotation paragraphs or etymologies.

The rest of this thesis is organized as follows: Chapters 2 and 3 are back-
ground. They overview grammatical inference in general and its application
specifically to text structure. Chapter 4 is a complete description of the in-
ference method investigated in this work. Chapter 5 describes techniques for
understanding results in the form of stochastic grammars and using this un-
derstanding to tune parameters of the inference method. Chapter 6 presents
experimental results. Chapter 7 gives conclusions and suggestions for future
work.



Chapter 2

Grammatical Inference

2.1 Introduction

Grammatical inference encompasses theory and methods concerned with the
problem of learning grammars from training data [Vid94]. It is a well-
established discipline that dates back to the sixties [Gol67, Hor69], thus
predating the broader field referred to today as machine learning [Ang92]
but still clearly falling within its boundaries. Specifically, grammatical in-
ference 1s classified by machine learning as a type of inductive inference,
the term given to learning techniques that try to guess general rules from
examples.

The traditional application domain of grammatical inference has been
syntactic pattern recognition. Here it is assumed that pattern classes can
be represented by grammatical models, and it is often useful to be able to
learn these models automatically. Other application areas have included
speech and natural language processing, information retrieval, gene analysis,
sequence prediction, cryptography and compression.

The basic problem is to find a grammar consistent with a given training
set of positive examples. The situation where both positive and negative
examples are available i1s also sometimes considered, although this does not
correspond to most real applications. In either case, inference must usually
be concerned with more than just consistency with the training data. To be
useful, a grammar must generalize outside of the available examples in some
reasonable way.

This chapter 1s a brief overview of grammatical inference. Section 2.2
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outlines theoretical learnability results that have been developed; Section 2.3
lists grammar models that have been used as target representations; Sec-
tion 2.4 discusses constructing default models in these representations to be
used as starting points for inference; Sections 2.5 and 2.6 discuss probabilistic
and non-probabilistic inference approaches.

2.2 Theoretical Learnability Frameworks

The classic formalization of grammatical inference, introduced by Gold in
1967 [Gol67], is known as language identification in the limit. Two sets
of strings are assumed: R+ the positive examples, and R— the negative
examples. A language is said to be identifiable in the limit if it can be
learned by some method for sufficiently large R+ and R—. Put another way,
adding new examples to R+ and R— must only produce a finite number of
changes to the hypothesized model.

Two decidability results exist within this framework. The first is negative
and says that no infinite language can be identified in the limit from only pos-
itive examples. This is intuitively a consequence of over-generalization since
adding more positive examples can never imply that a string mistakenly in-
cluded in the model should subsequently be removed. In fact, a consistent
generalization of any set of positive examples would be a language containing
all finite strings constructible using the alphabet. The second decidability
result is positive and states that any member of an enumerable class of recur-
sive languages (context-sensitive and below) is identifiable in the limit given
both positive and negative data.

While of interest from a theoretical point of view, this framework has
limited applicability to practical problems. This is primarily because no
concrete, finite bound is given defining what a sufficiently large sample is.
The first decidability result would therefore not have been very constructive
even if reversed. The second is also not useful since negative examples are
usually not available in real applications, and even if they are, their use
can lead to intractable problems. Finding the smallest finite automaton
compatible with given positive and negative example sets, for instance, has
been shown to be NP-hard [Ang78, Gol78]. A polynomial time algorithm
has recently been introduced that constructs a non-minimal solution to this
problem in the limit [0a92], however, the difficulties remain that negative
examples are required and that no guarantees are made about just how big

11



the sample sizes might need to be.

Alternative frameworks have been developed that explicitly assume the
stochastic nature of the grammars being inferred and are applicable to learn-
ing schemes based on probabilistic criteria. Using probabilistic information
to discover rules is in fact a basic paradigm in the field of information theory,
and Shannon established very early that language learning can be seen as a
problem of estimating probabilities of sequences of n symbols or n-grams as n
approaches infinity. Another framework for approximate learning is probably
approzimately correct (PAC) identification [Val84]. Here, a learning method
is evaluated in terms of how well it can find models which, with arbitrarily
high probability, are arbitrarily precise approximations to an unknown data
source. Overall, it can be argued that probabilistic frameworks are more
applicable to the practical requirements of real situations than other criteria
such as identification in the limit.

2.3 Target Representations

Before the problem of generating a grammar can be considered, an appropri-
ate grammar representation must be chosen. The main consideration in this
choice is the standard tradeoff between the expressive power of the repre-
sentation and the difficulty of the inference process. Context free grammars,
for example, are more powerful than regular grammars, but their inference
is much more difficult and computationally expensive.

Within the standard Chomsky hierarchy studied in automata theory
[HUT79], grammatical inference research has focused mainly on regular gram-
mars because of their relative simplicity. Restricted regular grammars, usu-
ally referred to as characterizable subclasses, are also commonly targeted.
k-reversible languages [Ang82|, for example, generalize from 0-reversible lan-
guages which are those generated by finite automata that remain determinis-
tic if all of their arcs are reversed. The main justification for using restricted
language classes is to reduce the time complexity of the inference process.
The defining restrictions do not themselves usually have any relevance to real
world applications.

Relatively little work has been done on inference of higher level grammars.
Some research has been done on inferring non-regular subclasses of context
free grammars, and on inferring context free grammars given training data
consisting of positive examples plus additional information in the form of
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unlabeled derivation trees.

The final requirement of many practical applications is a grammar that
assigns a probability distribution to the strings of the generated language.
Such a stochastic grammar can be viewed as being composed of separate
structural and probabilistic components. The structural component is just
a standard grammar. The probabilistic component specifies the probabil-
ities associated with individual strings. This can be done by assigning a
probability to every production of the grammar, or equivalently for regular
grammars, by assigning a probability to every transition of the associated
finite automaton. The probability of a string is then the product of the
production or transition probabilities used in its generation. Note that non-
deterministic stochastic finite automata are sometimes referred to as Markov
models or hidden Markov models in the context of probabilistic modeling.

2.4 Inference Paradigms

Most grammatical inference algorithms use an approach of starting with a
model chosen so as to accept the finite language composed of exactly those
strings that are in the training set. This de-facto model is highly specific
and the inference process operates by applying generalization operations to
transform it into a final result. Such a paradigm can be seen as analogous to
a natural learning process where the “model” starts off as a complete memory
of specific examples and large enough groups of similar examples are then
combined into general rules.

The form of the de-facto model depends on the target representation. The
training set {abb, bb, aabb, abba}, for example, can be represented by the de-
facto grammar in Figure 2.1, the de-facto non-deterministic finite automaton
in Figure 2.2, the de-facto deterministic finite automaton in the Figure 2.3,
the de-facto deterministic stochastic finite automaton in Figure 2.4, or by
appropriately chosen models in other representations.

Generalization operations conceptually operate by combining specific ex-
amples into descriptions that cover those examples and possibly others with
similar characteristics that are not present in the training data. Of course,
operations that arbitrarily expand the language generated by the model (by
adding symbols to the alphabet or adding strings that have nothing in com-
mon with any of the training examples) are also possible, but these are not
useful for inference purposes. Therefore, all generalization operations of in-
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S — abb
S — bb

S — aabb
S — abba

Figure 2.1: A de-facto grammar.

...O

Figure 2.2: A de-facto non-deterministic finite automaton.

Figure 2.3: A de-facto deterministic finite automaton.
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Figure 2.4: A de-facto stochastic finite automaton.

terest essentially just merge sub-components of the model, even if they are
not explicitly formulated as merges. Finite automata, for example, are always
generalized by merging states, thus creating new loops or paths. Grammars
are also generalized by merging productions that are in some sense similar.

While virtually all approaches classified as grammatical inference use the
paradigm of moving from specific to more general models, the opposite strat-
egy 1s also possible. This involves starting with a completely general model
and then modifying it to describe specific rules or patterns. This could be
done in the previous example by starting with the finite automaton having
a single state and transitions back to that state on input of @ and b. If it 1s
then observed that b’s always occur in pairs, then a new state can be split
off to express this rule. Which paradigm is more appropriate depends on
whether, for the specific application, it is more useful in cases of inadequate
information to default to allowing anything or to allowing only what has been
specifically observed.

Rather than just specifying default behavior in cases of inadequate in-
formation, another valid strategy is to assume the availability of a teacher
or oracle that can answer the question “Is this string a member of the lan-
guage?” One of the earliest grammatical inference algorithms used this idea
[CMb57]. It takes every string in the training set and then asks the teacher,
for every substring, whether the strings formed by deleting or repeating this
substring are also valid members of the language. This information can then
be used to infer a regular grammar. That the number of queries required
increases exponentially in the size of the input, however, prevents this ap-
proach from being useful. Still, the basic idea of requiring user feedback 1s
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valid for some applications provided a realistic amount of interaction is called
for. It is conceivable that some applications may require some form of inter-
action to produce acceptable results. For example, if the data may contain
ambiguities or be composed of multiple components that must be treated in
slightly different ways.

2.5 The Inference Process

We have mentioned two possible general paradigms, in Section 2.4, for mov-
ing through the infinite space of all languages consistent with a given training
set. A specific control strategy is also needed that defines the order of gener-
alization or specialization operations and when the inference process should
be terminated. This section discusses the general principles of these strate-
gies.

2.5.1 Non-Probabilistic Grammatical Inference

Most work on grammatical inference has focused on the problem of producing
non-stochastic grammars given only positive examples. It is not obvious what
kinds of general criteria beyond consistency with the training data can be
used to characterize appropriate answers in this situation.

Probably the only generally applicable principle that is easy to define
and quantify is that results should be “as simple as possible” in some sense,
thus satisfying the principle of Ockham’s razor. The additional criteria that
have been proposed by researchers to construct practical algorithms are ad
hoc. Justifications are often given in the form of specific examples for which
the results seem in some sense “intuitively correct.” Standard approaches
have included limiting results to some characterizable subclass of the target
representation, as mentioned in Section 2.3, or making use of a-priori knowl-
edge about the target language to guide heuristic searches. Miclet [Mic90)]
provides a good overview of these methods, while Angluin and Smith [AS83]
discuss the 1ssues and goals associated with inductive inference in general.

2.5.2 Probabilistic Grammatical Inference

Stochastic grammatical inference applications typically have access to only
positive examples, however, counts associated with each example are avail-
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able. Thus, the input is essentially a statistical sample of an unknown distri-
bution. It can be used either to construct a stochastic model, or as an aid to
constructing a non-stochastic model. This situation has several advantages
over the non-probabilistic case:

o Inference is more effective since the frequencies represent an additional
source of information, effectively taking the place of negative examples
as a means to control over-generalization.

e Probabilistic models can be evaluated in a relatively objective manner
by comparing the models to the training sets using statistical tests or
comparisons based on information theory.

e Probabilistic methods are better able to deal with large, noisy input
since unlikely or erroneous examples should have lower frequencies and
are therefore less significant.

The fundamental advantage of using frequencies is the ability to ob-
jectively evaluate any strings generated by the model but not present in
the training set. Such strings are required to have low enough probabili-
ties to be consistent with the assumption that the training set is a random
sample of the language generated by the model. Consider the training set
T = {(a,20), (aa,10), (aaa,b)}, consisting of three (string, frequency) pairs
for a total frequency of 35. One possible model might be {a" | p(a™) = 0.5"}
which assigns a total probability of 0.125 to strings of four or more a’s
even though no such strings are present in the sample. A simple statis-
tical test, however, verifies that since T' contains only 35 strings it could
in fact have realistically been generated by the model. Specifically, a x?
test can be used to calculate that the chance of getting T' or any less likely
sample from the model is somewhere between 0.20 and 0.50 — probably
not unlikely enough to conclude that the model is a bad one. For the set
T" = {(a,200), (aa, 100), (aaa, 50)}, on the other hand, this probability is less
than one in a thousand. This reason is that a random sample of 350 strings
from the model should have included at least a few longer strings such as aaaa
or aaaaa. Alternative evaluation criteria can be based on things other than
strict probability of occurrence. Other approaches include Bayesian com-
parison to prior probability distributions [SO94] and divergence comparisons
based on information theory [SB94].

Since a probabilistic model can be viewed as a non-probabilistic struc-
ture augmented with a probability distribution, it is possible to consider
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the inference of such a model as comprising two separate components: the
learning of the underlying grammar or structure, and the learning of a proba-
bility distribution for an already determined structure. The first component
1s basically just non-probabilistic grammatical inference as discussed in the
previous section. The second is sometimes referred to as probabilistic es-
timation. There are several probabilistic estimation methods that attempt
to optimize probability assignments for a fixed structure with respect to a
training set. These can be used as simple grammatical inference techniques
themselves if the approximate size of the target model is known. Regular
languages, for example, can be inferred by first estimating probabilities for a
fully connected finite automaton and then deleting the low probability arcs.
Better results should be possible, however, by attempting to learn both the
structures and the probabilities simultaneously.

Most combined approaches to inferring probabilistic models follow the
standard grammatical inference paradigm of generalizing a de-facto model.
The strategy used to guide the generalization process is usually heuris-
tic. In addition to heuristics created specifically for this purpose, many
non-probabilistic methods have the potential to be adapted to probabilistic
analogs.
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Chapter 3

Grammatical Inference of Text
Structure

3.1 Introduction

The problem of generating a grammar for the structure of a document collec-
tion is an application of grammatical inference. Consider the marked up text
in Figure 3.1, taken from the Ozford English Dictionary (OED) [MBCO33].
A de-facto model can be constructed by first ignoring the content and ex-
tracting the tags as shown in Figure 3.2. It can then be represented by
the derivation tree, shown in Figure 3.3, where the nodes are labeled with
corresponding tag names. The equivalent grammar representation shown in
Figure 3.4 includes a production for every non-leaf node along with the root
of its subtrees. Frequency information can also be collected by counting how
often each production occurs, as shown in Figure 3.5. Each unique non ter-
minal can now be considered separately, by taking all strings associated with
a common left-hand side and considering them as a training set for a single
sub-problem.

The goal is to generalize these de-facto grammars to reflect the structure
of unseen entries, hopefully reconstructing a model close to that used by the
original authors in the process. Of course realistically, many more than two
example entries will be required to do this effectively.
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<E><HG><HL><LF>salamandrous</LF><SF>sala&sm.mandrous</SF>
<MF>salama&sd.ndrous </MF></HL><b>,</b> <PS>a.</PS></HG>
<LB>rare</LB><su>-1</su>. <ET>f. <L> L.</L> <CF>
salamandra</CF> <XR><XL>salamander</XL></XR> + <XR>
<XL>-ous</XL></XR>.</ET> <S4><S6><DEF>Living as it were

in fire; fiery, hot, passionate. </DEF><QP><Q><D>1711</D>
<A>G. Cary</A> <W>Phys. Phyl.</W> 29 <T>My Salamandrous
Spirit..my &Ae.tnous burning Humours.</T></Q></QP></S6>
</S4><S4><DEF>So </DEF><SE><BL><LF>salamandry</LF><SF>
sala&sm.mandry</SF> <MF>salama&sd.ndry</MF></BL><DEF>
<PS>a.</PS></DEF></SE><(QP><EQ><Q><D>1610</D> <A>Boys</A>
<W>Expos. Dom. Epist. &amp. Gosp.</W> Wks. (1629) 76
<T>If a Salamandry spirit should traduce that godly labour,
as the silenced Ministers haue wronged our Communion Booke.
</T></Q></EQ></QP></S4></E>

<E><HG><HL><LF>understrife</LF><SF>&sm.understrife</SF>
<MF>u&sd.nderstrife </MF></HL><b>.</b> </HG><LB>poet.</LB>
<ET><XR><XL>under-</XL><H0>1</HO0> <SN>5</SN> <SN>b</SN>.
</XR></ET> <S4><S6><DEF>Strife carried on upon the earth.
</DEF><QP><EQ><Q><D>C. 1611</D> <A>Chapman</A> <W>Iliad</W>
xx. 138 <T>We soon shall..send them to heaven, to settle
their abode With equals, flying under&dubh.strifes.</T>
</Q></EQ></QP></S6></S4></E>

Figure 3.1: Two marked up dictionary entries.

20



<E>

<HG><HL><LF></LF><SF></SF><MF></MF></HL>
<b></b><PS></PS></HG>

<LB></LB>

<su></su>

KET><L></L><CF></CF><XR><XL></XL></XR><XR>
<XL></XL></XR></ET>

<84><S6><DEF></DEF><QP><Q><D></D><A></A><W></W>
<T></T></Q></QP></36>< /84>

<S4><DEF></DEF><SE><BL><LF></LF><SF></SF><MF></MF>
</BL><DEF><PS></PS></DEF></SE><QP><EQ><Q><D>
</DOKA>C/A><US/UDLKT></T></Q></EQ></QP></S4>

</E>

<E>

<HG><HL><LF></LF><SF></SF><MF></MF></HL><b></b></HG>
<LB></LB>
<ET><XR><XL></XL><HO></HO><SN></SN><SN></SN></XR></ET>
<84><S6><DEF></DEF><QP><EQ><Q><D></D><A></A><W></W>
<KT></T></Q></EQ></QP></S6></S4>

</E>

Figure 3.2: Two entries with the text removed.
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Figure 3.3: The two parse trees.
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E -> HG LB su ET 5S4 54
E -> HG LB ET S4

HG -> HL b PS

HG -> HL b

ET -> L CF XR XR
ET -> XR

sS4 -> S6

S4 -> DEF SE QP
HL -> LF SF WF
XR -> XL

XR -> XL HO SN SN
S6 -> DEF QP

DEF ->

DEF -> PS

SE -> BL DEF

QP -> Q

QP -> EQ

BL -> LF SF MF
Q->DAWT

EQ -> Q

Figure 3.4: The de-facto grammar.
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: E -> HG LB su ET S4 S4
: E -> HG LB ET S4
: HG -> HL b PS

: HG -> HL b

: ET -> L CF XR XR
: ET -> XR

: S84 -> S6

: 84 -> DEF SE QP

: HL -> LF SF MF

: XR -> XL

: XR -> XL HO SN SN
: S6 -> DEF QP

: DEF -> PS

: SE -> BL DEF

: QP -> Q

: QP -> EQ

: BL -> LF SF MF
:Q->DAWT

: EQ -> Q

B W R NRFRRFRFRNDNRARNDMRRNDR R R R R

Figure 3.5: The de-facto grammar with production frequencies.
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3.2 Existing Work

Three existing approaches to this problem operate by specifying rules that
are used to rewrite and combine strings in the training set, while a fourth con-
structs a de-facto finite automaton which is generalized using state-merges to
arrive at a characterizable subclass of the regular languages. None of these
approaches take frequency information into account during the inference pro-
cess.

A research proposal by Chen [Che91] follows the first approach of applying
rewrite rules to generalize or simplify productions. The following rule, for
example, generalizes a grammar by expanding the language that it accepts:

e ab™c — abtc if n is greater than or equal to a given value
Other rules simplify a language by combining productions:

o abc A\ ac — ab’c

e abTc A ac — ab*c.

Despite the fact that inference of regular languages can always be reduced to
state-merging, Chen justifies the rule rewriting approach by giving the anal-
ogy that high level programming languages are useful even though they are
all ultimately equivalent in functionality to machine language. No satisfying
theoretical framework for this type of approach has ever been developed, and
some questions therefore exist. Is there any way to characterize a set of rules
that is, in some sense, both complete and orthogonal in functionality? Given
that results may depend on which order rules are applied in, can theoretically
justifiable rather than heuristic strategies be formulated? How do the effects
of rules interact with each other?

Fankhauser and Xu [FX93] describe a similar approach used in a system
called MarkItUp! that attempts to manage the entire conversion process of
marking up a collection of plain documents and constructing a grammar for
them. The user is required to manually mark up some examples by delimiting
and providing names for elements. The system then tries to determine the
context information needed to identify these elements in other documents.
An initial grammar is constructed and then incrementally modified as the
system comes across new documents that do not fit the current model and
asks the user to provide clarifications. The grammar is simplified and gen-
eralized as it 1s constructed by using production rewrite rules in a manner
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similar to that described above. An example session given in the article
seems to indicate that this approach is workable, although it is not obvious
whether it scales effectively to larger inputs.

Shafer [Sha95] describes a C++ library, the GB (Grammar Builder) En-
gine which produces a grammar by generalizing examples marked up in an
SGML-style. The generalization is done using production rewriting in the
same manner as the two systems mentioned above, although the set of rewrite
rules is slightly different. Shafer does not report what kind of results are
obtained. It is implied, however, that the system has been used on some
real-world document collections.

Work by Ahonen, Mannila and Nikunen [AMN94b, AMNO4a| uses a
more classical grammatical inference approach based on the notion of a
(k — h) contextual language, an extension that they propose to the idea of k-
contextuality. A language is (k— h) contextual if any two identical substrings
of length k that appear in separate example strings or different places in the
same example string are guaranteed to pass through the same last h states of
a recognizing automaton. With this definition, a de-facto finite automaton is
first constructed from the examples and then modified with state merges to
produce the minimum (k — h) contextual language for chosen values of k and
h. The algorithm basically looks for length k paths through the automaton
that are labeled with the same strings, and merges their last h states. This
can be formulated equivalently using n-grams rather than a finite automa-
ton to construct a more efficient implementation. In either case, the final
result is then converted into a grammar. The approach is augmented with
some basic interactive operations that allow the user to view example strings
contained in the final language and delete those judged to be incorrect (as
long as their removal doesn’t prevent the language from remaining (k — h)
contextual). Frequency information is also given limited consideration by
discarding examples less frequent than an arbitrarily chosen threshold. Ex-
perimental results show that the final grammar for complex documents can
be excessively large and unwieldy, requiring significant manual rewriting to
extract common subexpressions before being understandable.

3.3 Proposed Approach

It is the premise of this thesis that stochastic grammatical inference ap-
proaches are better suited to the application domain of text structure than
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the non-stochastic ones that have been used to date. The primary gain from
using a stochastic approach is expected to be in the effectiveness of the in-
ference process. Realistic document collections with complex structure are
likely to be large and to contain errors or pathological exceptions. Both these
characteristics are known to be better addressed by stochastic approaches.
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Chapter 4

Inference Method

4.1 Introduction

This chapter details the stochastic inference algorithm we have chosen to
adopt (Section 4.2), and the modification made to it (Section 4.3). Factors
that influenced the original choice included the following:

o Stochastic finite automata were judged to be an appropriate target
representation for modeling text structure.

o An inference paradigm that generalized from a specific de-facto model
seemed appropriate for application to text structure.

o The algorithm produces a stochastic model directly rather than us-
ing separate grammatical inference and probabilistic estimation com-
ponents.

o The algorithm is statistically justifiable rather than relying on arbitrary
heuristics.

Even though the choice appeared to be a good one based on these character-
istics, there are no overwhelming reasons to suppose that other algorithms
might not have turned out to be better. Investigation of alternative ap-
proaches is left for future work.
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4.2 Basic Method

This section gives a complete description of the algorithm ALERGIA pro-
posed by Carrasco and Oncina [CO94b]. ALERGIA is itself an adaptation
of a non-stochastic method described by Oncina and Garcia [0a92].

4.2.1 Target Representation

The algorithm generates deterministic stochastic finite automata. Formally,
a stochastic finite automaton or SFA is defined as follows: Let A be a finite
alphabet, and A* be the set of all strings over A. A stochastic finite au-
tomaton, A = (A, Q, P, q), is defined by an alphabet A, a finite set of nodes
Q =199, .9}, with go the initial node, and a set P of probability ma-
trices p;;(a) giving the probability of a transition from node ¢; to node ¢; on
the symbol a € A. py is the probability that a string terminates at node ¢;.
(This does not denote a transition to some separate, final state. Any node ¢
with a non-zero value of p;r is a final state.)

For a deterministic stochastic finite automaton or DSFA, a given state
¢; and symbol a has at most one other node ¢; such that p;;(a) > 0. In
this case, we can unambiguously denote the probability for a transition as
pi(a), and define a transition function d(g;,a) = ¢; that returns the unique
destination node. The probability p(w) for the string w = ziz225... to be
generated by a DSFA is defined as:

p(w) = po(w)
Vi, 0 < 1 < |Q|

oy - b pi(®)ps(gien (2ams ), |w] > 1
pi(w) { Dis lw| =0

The language generated by an automaton A is defined as:
L ={we A" | p(w) # 0}

An SFA should be consistent, i.e., the probability of all strings in the
language should add up to 1. This is ensured if the following constraint
holds for every node ¢;:

pir + Z Zpij(a) =1

q;€EQ acA
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Note that deterministic and non-deterministic stochastic finite automata are
equivalently expressive. See the book by Fu [Fu82] for a more complete
description of the properties of stochastic automata.

4.2.2 Inference Paradigm

Generalization is performed on the de-facto model using a state-merging
paradigm. The primitive operation of merging two states replaces them with
a single state, labeled by convention with the smaller of the two state identi-
fiers. All incoming and outgoing transitions are combined and the frequencies
associated with any transitions they have in common are added, as are the
incoming and termination frequencies. This is related to the merging opera-
tion used in the algorithm for minimizing a non-stochastic finite automaton
[HU79]. The difference is that merges are allowed that change the accepted
language.

State merging paradigms rely on a non-stochastic theoretical framework:
given a language L, the minimum DFA generating L is called the canonical
acceptor C(L). Let T be the de-facto deterministic finite automaton or prefix
tree for a finite sample S. If 7 is a partition of the set Q) of nodes of T', 7(T')
i1s the automaton obtained by merging all nodes in each block of 7. It is
well known that, for a sample S that covers every transition of the canonical
acceptor, there exists a partition = such that 7(7') is exactly C'(L). Therefore,
the problem of identifying L is reduced to finding the partition #. This can
be accomplished by testing nodes for equivalence and merging them two at
a time. An algorithm must define two things: how to test the equivalence of
two nodes, and the order in which nodes should be tested.

4.2.3 Equivalence Criterion

Two nodes are defined to be equivalent if their outgoing probabilities are the
same for every symbol a € A and their destination nodes are also equivalent:

pi(a) = p;(a)
qiqu<:>Va€.A Dif = Pjf
(g, a) = d(g;, a)

Therefore, two nodes are compared by checking the equivalence of their ter-
mination probabilities and each of their transition probabilities, followed by
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a recursive check of any destination nodes reachable via transition symbols
they have in common.

The equivalence of two transition or termination probabilities is checked
using a statistical test. The test used in ALERGIA will be presented here in
a more standard framework than given by Carrasco and Oncina so that later
modifications can be seen to fit in more naturally. Elementary statistical
hypothesis tests (and scientific tests in general) follow a standard procedure

[Chr92]:

1. Formulate a null and alternative hypothesis (H, and H,) concerning
the parameter of interest.

2. Design an experiment that a “reasonable” person would regard as pro-
viding proof concerning the truth of the alternative hypothesis. This
includes choosing a significance level a that will be used to make the
final conclusion.

3. Decide on a meaningful test statistic chosen to model the distribution
of the parameter of interest.

4. Conduct the experiment and compute the value of the test statistic.
Calculate the probability of getting this value or any value more ex-
treme assuming the null hypothesis H, is true. This probability is often
called the p-value for the test.

5. If the p-value is small (p < «) it signifies that the probability of getting
that particular sample statistic is remote when the null hypothesis is
true. Therefore, “reasonable” persons would reject the null hypothesis
in favor of the alternative. (What value of a can be considered “small”
1s a matter of choice, but common practice uses the guideline of letting
0.05 or less signify that condition.) Note that a small p-value does
not necessarily mean the null hypothesis is false. It may indicate a
problem with how the data was obtained, or that the model chosen for
the distribution of the parameter was inappropriate, or that the null
hypothesis is true and a very unlikely outcome has occurred. If however,
we assume that (1) the model is correct, and (2) the data is valid, then
a small p-value logically calls the validity of the null hypothesis into
question.

The test used in ALERGIA for checking whether two transition or ter-
mination probabilities p; and p, are equal, can now be presented as follows:
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1. The null and alternative hypotheses are

H, : p1 = ps (the two probabilities are the same)
H, : p1 # p» (the two probabilities are different)

2. Let ny, ns be the number of strings that arrive at the two nodes. Let
f1, f2 be the number of strings that arrive and then satisfy the event of
interest (either termination at the current node or transition on a given
symbol). Let « be a significance level chosen as the cutoff probability
below which H, will be rejected.

3. p1 and p, represent the unknown true probabilities and will be experi-
mentally estimated by fi/n; and fo/n, respectively. It is assumed that
these can be modeled by a binomial distribution. (A binomial distribu-
tion f(x,n,p) gives the probability of getting x positive outcomes when
taking n samples from an infinite population where a positive outcome
has probability p and a negative outcome has probability 1 — p.) The
test statistic T'S will be the absolute difference of the observed propor-
tions:

4. We now wish to calculate the probability of a given value of T'S assum-
ing H, is true (the unknown true probabilities p; and p, are equal). Be-
cause exact calculations involving binomial distributions are expensive,
the following approximation is used. The Hoeffding bound [Hoe63],
states that for a binomial distribution with probability p and observed

frequency f out of n tries
/1 2
! <t/ —log —
2n a

‘p__
n

with probability larger than (1 — «). For two binomial distributions
with equal probabilities, the two inequalities can be added giving

1 2 1 1
T HS = /= log —
S < RHS 2Og2a(\/n_1+\/n_2)

with probability larger than (1 — «). Although this does not allow the
exact calculation of the p-value, we can conclude that it is less than «
if T'S 1s experimentally observed to be greater than RHS.

32



5. If, based on the above decision rule, we conclude that an observed value
of T'S has a p-value less than «, the implication is that the observed
frequencies were very unlikely to have come from the same distribution.
We therefore reject the null hypothesis and assume the two probabilities
are different. Otherwise, the null hypothesis stands and we assume the
two probabilities are equivalent.

4.2.4 Testing Order

The final detail that must be mentioned before giving the algorithm is the
order in which nodes are compared. This is defined by numbering nodes,
starting at 0, in a lexical order based on the string prefixes that arrive at
those nodes. Pairs of nodes (¢;, q;) are then tested by varying j from 1 to
the number of nodes, and ¢ from 0 to 5 — 1.

The order in which nodes are tested and merged can have a fairly arbitrary
effect on the final result. This is because the merging operation replaces
multiple nodes with a single representative which may not test equal to all
of the nodes that the original components would have. This is basically the
problem of reversals seen in the task of clustering points or vectors when
centroid or median representatives are used [And73].

Whether the testing order described has any real significance is unclear.
For a non-stochastic version of the algorithm, the ordering is necessary to
prove the ability to identify languages in the limit. For the stochastic version,
it only ensures that node comparisons will take place roughly in order of
entering frequency, since nodes with lower indices, being closer to the root
of the tree, will usually have higher frequencies.

4.2.5 Algorithm

Figure 4.1 is the main pseudo-code for ALERGIA. n;, n; denote the entering
frequencies of nodes ¢ and j; fi(a), f;(a) denote the transition frequencies on
input of symbol a from nodes ¢ and 7; and, fir, fr denote the termination
frequences at nodes ¢ and j. Figures 4.2, 4.3 and 4.4 are the supporting
subroutines.

Note that the algorithm guarantees a deterministic output by merging
any destination nodes reached via transitions that leave the same state but
have a different label. Nodes merged in this way will always have been found
to be equivalent since the indeterminism in their common parent will have
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algorithm ALERGIA
imput:
S : sample set of strings
a : significance level
output:
stochastic deterministic finite automaton
begin
A = stochastic prefix tree acceptor from S
for j = successor(firstnode(A)) to lastnode(A)
for ¢ = firstnode(A) to j
if compatible(i, y)
merge nodes ¢ and j
determinize(A, 1)
exit (i-loop)

end if
end for
end for
return A

end algorithm

Figure 4.1: Algorithm ALERGIA
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algorithm compatible

imput:

i,7 : nodes
output:

boolean
begin

if different( n;, fif, ny, fjf )
return false
end if
for (Va € A)
lf different( n;, fi(a), ny, fj(a) )
return false
end if
if not compatible( d(¢,a),d(j,a))
return false
end if
end for
return true
end algorithm

Figure 4.2: Algorithm compatible recursively checks ¢; = g;.
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algorithm determinize
imput:
A : finite automaton
¢ : node in A, possibly with duplicate arcs
output:
equivalent deterministic finite automaton
begin
do (Va € A)
if (node ¢ has two transitions d1(¢,a) and ds(7,a) on
a)
merge nodes d1(7, a) and d»(i, a)
determinize( A, d;(¢,a) )
end if
end do
end algorithm

Figure 4.3: Algorithm determinize eliminates nondeterminism by merging
nodes.

algorithm different
imput:

ny, My : number of strings arriving at each node

f1, f2 : number of strings ending/following a given transi-
tion
output:

boolean
begin
1

> 210g§(\/}1—1—|-\/}1—2)

return

H_ £
1

n2

end algorithm

Figure 4.4: Algorithm different checks if the difference between two observed
proportions is statistically significant.
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been created by merging two nodes found to be equivalent using the recursive
test.

The worst case time complexity of this algorithm is O(n®). This cor-
responds to an input where no merges take place, thus requiring that all
n(n — 1)/2 pairs of nodes be compared; and furthermore, where the aver-
age recursive comparison continues to O(n) depth. In practice, the expected
running time is likely to be much less than this. Carrasco and Oncina report
that, experimentally, the time increases linearly with the number of strings
in the training set, as generated by a fixed size model. A better test might
have varied the size of the target model. This could be expected to affect the
time quadratically.

Carrasco and Oncina give a proof that the global probability of the al-
gorithm making an error asymptotically approaches zero as the size of the
training set increases relative to the size of the target model. They do not,
however, characterize the speed of this convergence, nor do they consider the
effect of errors in the data. The problems and modifications discussed in the
next section essentially address the problem of applying the algorithm to real
data whose adequacy must be checked rather than assumed.

4.3 Modifications

Problems with the original algorithm were identified when applying it to the
OED data. This section describes these problems, their interpretation, and
the resulting modifications that were made to the method.

4.3.1 Low Frequency Components

A serious problem resulted from how the algorithm treats nodes having very
low entering frequencies (this was initially only noticed for nodes with enter-
ing frequencies of 1). Such nodes would tend to get merged inappropriately.
Specifically, they always tested equal to the first node with which they were
compared.

The mechanical explanation for this can be seen by looking at the equa-
tions on page 32. If either n; or ns is small enough, the value of RHS can
be greater than one. Since observed proportions cannot differ by more than
one, nodes with low frequencies will tend to test equal to any other.
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Low frequency nodes can be interpreted as being components of the data
that are impossible to distinguish with the required confidence (as specified
by «). This essentially means that insufficient information is available to
apply a statistical test. Such nodes may correspond to errors in the data or
just to unlikely strings.

The overall problem is that the algorithm defaults to merging nodes (ac-
cepting the null hypothesis) in cases of inadequate information. This dam-
ages the resulting structure (although a strictly probabilistic evaluation may
not catch the inaccuracy since the bad transitions have relatively low prob-
abilities). Note that this behavior is somewhat worsened by the fact that
the Hoeffding bound used to construct the test is not a very tight inequal-
ity. The fundamental problem would remain, however, even if the required
probability values were calculated exactly.

Some way is needed to separate the adequate and inadequate components
of the training data. Cases where RHS will be greater than one and merging
will therefore be automatic are easy to single out as inadequate. It must also
be assumed, however, that borderline cases will exist for which incorrect
merges may not be automatic but will be unacceptably likely. Ideally, it
would be desirable to have a testing framework that better characterizes the
relevant interactions. The criterion for identifying borderline cases could
then be formulated in some statistically justifiable way.

Statistical experiments often require sample sizes to be considered, and
therefore, the relevant relationships are well understood. A hypothesis test
can make two types of errors. The null hypothesis can be incorrectly rejected
when it is in fact true, or it can be incorrectly accepted when it is in fact
false. The significance level a used in most statistical tests is a bound on
the chance of the first type of error. Another bound, usually called 3, can
also be be made on the second type of error (1 — /3 is sometimes referred to
as the power of the test, 1.e., its chance of being able to correctly reject the
null hypothesis). The relationship between the four possible outcomes of a
statistical test and these two parameters is shown in Figure 4.5.

a and [ are closely related to sample size. Specifically, any two of these
are free parameters from which the third is determined. For the basic test
used in ALERGIA, the sample sizes were predetermined by the data and
a was chosen by the user. [, the chance of incorrectly accepting H, and
concluding that two nodes were equivalent, was therefore implied, and could
vary arbitrarily depending on the sample size. It could, for low enough sample
sizes, increase to the point where incorrect merging was automatic.
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DECISION

Reject H, Accept H,
. Type I Error Correct Decision
actuar  Homstme | |«
SITUATION ) Correct Decision | Type II Error
H, is true 13 3

Figure 4.5: The four possible outcomes of a statistical test and the parameters
associated with their probabilities.

It is now clear that there are three ways of choosing the test parameters:

e « can be chosen and 8 can be allowed to vary arbitrarily. Therefore,
the default behavior for cases of insufficient information (i.e. too small
sample sizes) will be to merge nodes.

e [ can be chosen and « can be allowed to vary arbitrarily. The default
behavior will be to leave nodes separate.

e both a and 3 can be chosen. Nodes where the sample size prevent these
bounds from being satisfied can be flagged for alternative treatment.

It is the third option that fulfills our goal of providing a method for sepa-
rating the input into adequate and inadequate components in a statistically
justifiable way.

We now detail an alternative test that explicitly relates all the parame-
ters of interest. Assume as before that p;, ps represent the unknown, true
probabilities and that f;/n;, fo/n, will serve as the estimates. The following
transformation can be used to map the difference of two binomial proportions
to a distribution that is approximately normally distributed with a mean of
zero and variance of one [Sil49]:

L ‘2arcsin \/ fi/n1 — 2arcsin \/ fa/ny ‘
B V1/ng + 1/n,y

This transformation is used because quantiles of the standard normal distri-

bution can easily be calculated. Therefore, t can be used as a test statistic,
and a p-value can be obtained. Let z, represent the ¢ value at which the
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cumulative probability of a standard normal distribution is equal to 1 — x.
The p-value for a two-sided test will be greater than 1 — aif ¢ > z,/5.

The probability of incorrectly accepting H, cannot be bounded by speci-
fying only a single 3 parameter. This is because that probability is dependent
on the unknown true difference between p; and p,. (A very small true differ-
ence implies a high likelihood of incorrectly concluding the proportions are
equal whereas a large true difference makes this unlikely.) Therefore, it is
not possible to guarantee that H, be correctly rejected with probability 1— g
in general, but it is possible to make this guarantee provided p; and p, differ
by more than some specified difference e. The power requirement can now
be stated as follows:

P(t> zqps|pr—p2>€) < 1-p.

This requires that the sample sizes satisfy

L S s ’

ny N Zaj2 + 28
where €* = 2arcsin /p; — 2 arcsin /ps. Unfortunately, €* depends on the po-
sitions of p; and p; in the unit interval and not just their absolute difference.
In the absence of known constraints on their positions, it is standard practice

to use the minimum possible value (which will somewhat overestimate the
required sample sizes):

€. = arcsin 1/0.50 + €/2 — arcsiny/0.50 — €/2.

For experimental design, the next step would be to solve for the required
sample sizes for chosen values of «, 3 and e. For our purposes, sample sizes
cannot be chosen, and it i1s therefore enough that we now have equations
relating all of the parameters.

The new test can now be integrated into the algorithm. Nodes that
are too infrequent to satisfy the global probability bounds specified by «, g
and € can be marked as low frequency components and left for some other
treatment. The specific procedure that we have chosen to accomplish this
is shown in the updated algorithm in Figure 4.6. Algorithm bigEnough in
Figure 4.8 checks whether two node frequencies n; and n, allow the global
probability bounds to be satisfied. The updated Algorithm different in
Figure 4.7 implements the new decision test. The procedures compatible
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and determinize remain unchanged. In the main procedure, an boolean
size flag is associated with every node and initially set to false. A size flag 1s
set to true as soon as the node is involved in a successful call to bigEnough.
Low frequency components are those that still have their size flags set to
false when the algorithm terminates.

Note that there are circumstances where low frequency nodes can be
compared, and will be merged if they test equal. This can happen since
the check for adequate size is only done for the initial call to compatible.
Recursively called comparisons are allowed to take place even if the nodes
would have been classified as low frequency. When this happens, and the
nodes test equivalent, the ancestor nodes at the top of the recursion can also
test equivalent and merge. The low frequency nodes are then merged in the
determinization phase.

The next step after the algorithm has run its course is to do something
with the remaining low frequency components. Possible approaches are:

o Assume the most specific possible model by leaving the components
separate. This strategy is the same as leaving 3 fixed and allowing «
to grow arbitrarily high.

o Assume the most general possible model by merging every low fre-
quency node with its immediate parent. This is not the same as fixing
a and letting 3 grow arbitrarily high, since the low frequency nodes are
merged into specific places rather than with the first nodes to which
they are compared. The result of merging all low frequency nodes with
their immediate parents is that any terminals occurring in a low fre-
quency subtree are allowed to occur any number of times and in any
order starting at the closest high-frequency parent.

o Merge low frequency nodes into parts of the automaton based on other
criteria.

Many possible criteria can be invented for the third approach. Note, however,
that statistical approaches or ones that make use of frequency information
are unlikely to work in general, since it has already been determined that the
relevant components have insufficient frequency information for meaningful
statistical comparison. The situation is therefore basically a reversion to non-
probabilistic inference, except that we have at our disposal a partial model
into which we can try to fit the low frequency cases.
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algorithm updated-ALERGIA
imput:
S : sample set of strings
a : l-confidence level
output:
stochastic deterministic finite automaton
begin
A = stochastic prefix tree acceptor from S
Vi sizeFlag(i) = false
for j = successor(firstnode(A)) to lastnode (A)
for ¢ = firstnode(A) to j
if bigEnough(n;,n;)
sizeFlag(i) = true
sizeFlag(j) = true
if compatible(i, y)
merge nodes ¢ and j
determinize(A, 1)
exit (i-loop)

end if
end if
end for
end for
return A

end algorithm

Figure 4.6: Algorithm updated-ALERGIA
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algorithm different

imput:
ny,my : number of strings arriving at each node
f1, f2 : number of strings ending/following a given transi-
tion
output:
boolean
begin

2arcsin/ f1 /n1 —2arcsin 4/ f2 /12

\/1/1’1,1-|—1/’I’L2

return > Zaj2

end algorithm

Figure 4.7: Algorithm different checks if the difference between two observed
proportions is statistically significant using a transformation to a unit normal
distribution.

algorithm bigEnough
imput:
ny,my : number of strings arriving at each node
output:
boolean
begin ,
return nl—l + nl—2 < {ij:%}

end algorithm

Figure 4.8: Algorithm bigEnough checks whether two sample sizes are large
enough to satisfy the probability bounds specified by « and 3.
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One simple approach based on this observation is to locate a position in
the high frequency model from which an entire low-frequency subtree can
be parsed. This subtree can then be merged into the rest of the model by
replacing it with single transitions to the identified position. If more than one
possible position exists, the merge can be treated as tentative and adjusted
in a later interactive stage.

In fact, the idea of tentative merging can be used as the basis of a general
strategy. An ordered list of heuristics such as the one just mentioned can be
defined. All low frequency components can then be merged into positions in
the model determined by the first heuristic in the list. If a problem is later
identified with a particular resulting tentative transition then the subtree can
instead be merged into a position determined by the next heuristic in the list.

4.3.2 Generalization versus Reconstruction

The algorithm as described so far is appropriate for reconstructing exact
models. This is the task usually used to test stochastic grammatical inference
algorithms. It is less suited for the task of generalizing real data, which may
not behave as if generated by an exact model.

For reconstruction, it is only appropriate to generalize to the point where
statistically insignificant features of the data are discarded. This is what the
algorithm 1s doing when it concludes that nodes with small differences could
have come from identical sources. For data not generated by an exact model,
a good answer may necessarily generalize to the point where features of the
data that are definitely statistically significant are neglected.

The level of generalization determines how significant the features that
can be neglected are allowed to be. Ideally, this should be adjustable so that
the size of the final model can effectively be chosen to vary smoothly from a
single state all the way up to the unmodified de-facto model.

Note that the overall purpose of generalization in learning tasks is to avoid
models that are over-fitted to incidental features of the specific training data
being used. This is done so that models are more likely to be applicable to
data outside of the training sets used to construct them. The distinction that
we have pointed out is that over-fitting when reconstructing exact models can
be easily avoided by just ignoring statistically insignificant components of the
data; for data not generated by an exact model, the level of generalization
should be adjustable and may have to be chosen through experimentation.

Generalization can be increased in the algorithm in its current form by
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adjusting the equivalence test so that larger differences between proportions
are treated as insignificant. This can be done by decreasing the value of « or
increasing the value of 3, both of which widen the confidence intervals. This,
however, creates a problem due to the additional effect that these parameters
have on the sample size requirements. Specifically, the cutoff point between
high and low frequency components will increase quadratically with the size
of the confidence intervals.

An alternative approach that does not affect required sample sizes is to
change the hypotheses for the statistical tests. Rather than testing whether
two proportions can plausibly be equal, test whether they can plausibly differ
by less than some specified parameter +:

Ho3|P1_P2| §7
H,:|p1—p2| > 7.

This can be done by simply subtracting v from the observed difference in the
proportions and then checking for equality. Note that the transformation
applied to proportions must be taken into account when incorporating this
into the described test. This is shown in the modified different algorithm
in Figure 4.9.

4.4 Summary of Parameters

A drawback of the modified algorithm is that the number of parameters has
been increased from one to four.

o v is the maximum difference in true proportions for which the algorithm
should merge two states.

e « is the probability bound on the chance of making a type I error
(incorrectly concluding that the two proportions differ by more than

)

e [ is the probability bound on the chance of making a type II error
(incorrectly concluding that the two proportions differ by less than «)
when the true difference in the proportions is at least v+ ¢ (e being the
fourth parameter)

Being able to adjust these parameters to correct for specific problems requires
an understanding of their practical effects.
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algorithm different
imput:
ny, My : number of strings arriving at each node
f1, f2 : number of strings ending/following a given transi-
tion
output:
boolean
begin
Ty — fi/m
Ty < fa/n9
if |7y — 0.5] < |me — 0.5]
w1 ¢ mp +y-sign(mwe — )

else

To ¢ mo+ 7 -sign(m; — )
end if
return | 2 arcsin |/ —2 arcsin /7 | S 5

\/1/1’1,1-|—1/’I’L2 Oé/2

end algorithm

Figure 4.9: Algorithm different checks if the difference between two observed
proportions could realistically be less than ~.
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Choosing ~ controls the amount of generalization that will take place.
Setting it to 0 may result in very few states being merged whereas setting it
to 1 will always result in an output with a single state (effectively a 0-context
average of the frequency of occurrence of every symbol).

Changes to a and g affect two things. Increasing these values will change
the width of confidence intervals and increase the cutoff point between high
and low frequency components. Direct control over the second characteristic
is more likely to be of interest for the purpose of interactive adjustment. If it
is observed that too many nodes have been classified as low frequency then
these parameters should be increased. For the sake of simplification, it is
possible to always have both of these values equal and adjust them together
as a single parameter. This does not seriously reduce the level of useful
control over the algorithm’s behavior.

The € parameter determines what difference the 3 probability applies to.
This must be specified somewhere but is not an especially useful value over
which to have control. It should probably be fixed or tied to the size of the
input and the value of 4. If the second option is used, possible considerations
include the fact that € should not be less than the smallest possible difference
in proportions as determined by the two largest states, and the observation
that a value larger than 1 — v is not meaningful.

Overall then, it can be seen that control is only really needed over two
major aspects of the inference process. Choosing a combined value for «
and [ effectively sets the cutoff point between the significant data and the
low frequency components. Choosing the value of v effectively controls the
amount of generalization. Both of these adjustments will be demonstrated
in Chapter 6.
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Chapter 5

Understanding Stochastic
Automata

5.1 Introduction

Grammars for text structure serve two purposes: they support automatic
operations such as data validation, and they provide general understanding
of the text. The understandability of a grammar is, to some extent, a charac-
teristic of the grammar itself, dependent on its simplicity, representation and
organization. It i1s also related, however, to what techniques are available to
support understanding. This chapter is concerned with techniques applicable
to stochastic finite automata. Three approaches will be presented: summa-
rization using metrics (Section 5.2); visualization using graphs (Section 5.3);
and generation of characteristic samples (Section 5.4).

While operations such as editing and query formulation require under-
standing of the final form of a grammar, intermediate models generated
during the inference process should also be understood to allow interactive
evaluation and feedback. The algorithm described simply produces a model
using a given set of parameters. We therefore assume that the overall infer-
ence will be conducted as an iterative process of generating a model using a
starting set of parameters, understanding the model, identifying problems,
and making adjustments.
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5.2 Metrics

An elementary understanding can be gained about a model by examining
summary values or metrics. For stochastic finite automata, these can be
simple counts, such as the number of states and edges, or other values, such
as the maximum depth or the number of cycles. These can give an overall idea
of an automaton’s characteristics but are not generally useful for pinpointing
specific problems.

Single value metrics can also be designed to quantify how well a grammar
fits a given training set. Unfortunately, such metrics usually have no directly
understandable interpretation. They are therefore typically used to support
automatic rather than interactive evaluation by guiding heuristic searches.
For example, the x? value, which is used to support a statistical test that
compares multinomial distributions, is calculated as

3 (fae(s) — fr(s))

et Tu(s)

where T is the training set, fr(s) is the frequency of s in T and fa(s) is
the frequency of s predicted by the model for a training set as big as T'.
This metric is used to guide a grammatical inference method described by
Maryanski and Booth [MB77]. An information theory metric, the divergence

of a model with respect to the training set can be estimated by

> Pao)log 5o

where Pr(s) and Py(s) are the probabilities of s in the training set and the
model respectively. This is used as the evaluation criterion in experiments
described by by Sénchez and Benedi[SB94]. Another metric depends on the
notion of a prior probability — essentially a predetermined constraint on
the distribution of the desired language. A model M assigns a probability
P(T|M) to a given data set T, and independent prior probability distribu-
tions P(M) and P(T) can be defined for the model and the training set.
For instance, an inverse relationship could be defined between P(M) and the
size of M. Bayes’ rule can then be used to calculate P(M|T) (literally, the
likelihood of the model given the data) as follows:

P(M)P(T|M)

P(MIT) = ==pom
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Using a Bayesian metric to guide language learning was first proposed by
Horning [Hor69]. It has more recently been applied in this capacity by Stolcke
and Omohundro [SO94].

5.3 Graphs

Automata can be directly visualized as bubble diagrams. The two main ob-
stacles to this are the general difficulty of finding a good layout for a given
graph, and the possibility that a graph may be too large to be represented
in a single diagram. These are basically problems of graph visualization, a
subject that is a field in its own right. The first task of basic graph layout
involves node placement and edge crossover minimization and was performed
for the examples in this thesis using the graph visualization program da Vince
[FW95]. The second problem of visualizing a large graph, must be addressed
by strategies that display only part of the graph at one time. Possible ap-
proaches include pruning components below a frequency threshold, display-
ing only subtrees reachable from a given prefix, or collapsing subgraphs into
single nodes.

5.4 Representative Strings and Expressions

Another way to understand a model is to list a finite sample of structures
that somehow characterize the generated language. These structures can be
single strings, or expressions that represent sets of equivalent strings. Strings
can be defined as equivalent if they follow similar paths through the graph.
For instance, all paths covering exactly the same subset of transitions could
be defined as equivalent.

To gain general understanding of a model, strings or expressions can be
listed in order of probability, thus indicating typical representatives of the
language. This can be accomplished by performing a traversal of the graph
using a queue prioritized by partial string or path probabilities.

To pinpoint specific problems, it would be better to list in reverse proba-
bility order, thus focusing on low probability strings which are more likely to
represent errors. Unfortunately, there is no clear way to do this. Strategies
can be devised, however, to list in approximate reverse orders.

Feedback based on strings or expressions is straightforward: either a
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string or expression is appropriate to include in the language or its inclu-
sion is an error. For an error, there are two possible adjustments that can be
made to the model. If the string or expression crosses a tentative transition
then the transition can be moved. Otherwise, parameters must be adjusted
and the inference algorithm re-applied. Both of these adjustments will be
illustrated in the next chapter.

The manual task of recognizing erroneous strings or expressions can be
facilitated by comparing the probabilities predicted by the model and those
implied by the training set. How significantly these probabilities differ for a
given string can be measured using any of several comparison values. Abso-
lute difference is one choice, but this does not consider that given differences
are more significant for smaller probabilities. 0.011 and 0.001, for exam-
ple, differ more significantly than 0.80 and 0.81 even though their absolute
differences are the same. Two comparisons that compensate for this are the
contributions of individual strings to the x* and divergence values mentioned
in Section 5.2.

In summary, automata can be understood by listing finite samples of
characteristic strings or expressions. For general understanding, listing 1s
best done in probability order. For pinpointing problems, listing can be done
in some approximate reverse probability order. Once generated, the sample
can be sorted according to various metrics that compare the predicted and
observed probabilities. The model can then be adjusted to remove any strings
or paths that are judged to be errors.
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Chapter 6

Experimental Results

6.1 Introduction

This chapter presents experimental results obtained using a C+-+ implemen-
tation of the algorithm. Section 6.2 gives a small example that illustrates
interactive feedback. Section 6.3 looks at two larger examples to demonstrate
basic techniques for general understanding. Section 6.4 discusses how well
stochastic finite automata were found to model text structure.

6.2 Feedback Example

This section looks at the pseudo-quotation paragraph or PQP element from
the OED data '. The ninety strings representing that element’s examples
are shown in Figure 6.1 and the corresponding prefix tree, which has a 119
nodes, is shown in Figure 6.2. Nodes in the diagram are marked with their id
numbers, followed in square brackets by their entering frequencies and their
termination probabilities. Arcs are marked with transition symbols, followed
in square brackets by their transition probabilities.

The running time for a single application of the algorithm to this data
was around one second on a Sun 4. An initial inference result with o = 3 =
v = 0.025 and € = 0.1 is shown in Figure 6.3. Low frequency nodes in that
diagram are represented as rectangles.

1See the book by Berg [Ber93] for an explanation of the structural elements used in the
OED.
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Figure 6.1: The PQP example strings.
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Figure 6.3: The PQP inference result with a = 8 = v = 0.025.
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Examination of the result reveals two adjustments that can be made to
the inference parameters. The first is based on the observation that nodes
1 and 3 are very similar: they both accept an LQ or SQ or any number
of Qs, and their transition and termination probabilities all differ by less
ten percent. Unless these slight differences are deemed significant enough
to represent in the model, it is better to merge the two nodes. This can be
done by increasing v to 0.1, thus allowing nodes to test equal if their true
probabilities differ by no more than ten percent. The second adjustment
affects nodes 4, 12 and 21. These express the fact that strings starting with
an SQ are much more likely to end with more than two )’s. This rule only
applies, however, to about five hundred of the over one hundred and forty
five thousand PQPs in the dictionary. If we choose to simplify the model at
the expense of a small amount of inaccuracy for these cases, we can reduce
a and [ to reclassify these nodes as low frequency. Trial and error reveals
that this can be accomplished with a = 8 = 0.005.

The result after application of the two adjustments described above is
shown in Figure 6.4. The next step is to do something with the low frequency
components. Merging every low frequency tree into the first node that can
parse it gives the result in Figure 6.5. Tentative transitions in that diagram
are marked with dashed lines.

Based on inspection of the graph, a potential problem can be identified
with the transition from node 1 to 0 on input of SQ. That transition creates
a cycle that allows strings to contain more than one EQ), a situation that
cannot occur in the dictionary. Repointing the tentative transition to the
next node that can parse its low frequency subtree gives the automaton in
Figure 6.6. Based on previous knowledge of the text, that result has been
accepted as a good model for the PQP element.

6.3 Understanding Example

Some graph visualization and string listing techniques were implemented.
These included two methods appropriate for general understanding: pruning
components of the graph below a frequency threshold and listing strings in
probability order.

Two inputs were used. The first was the dictionary entry or E element
which has 644 strings and a prefix tree with 1316 nodes. The second was the
quotation paragraph or QP element which has 1127 strings and a prefix tree
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Figure 6.4: The PQP inference result with « = 8 = 0.005 and v = 0.10.
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Figure 6.5: Figure 6.4 with low frequency components merged into other
parts of the graph.
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Figure 6.6: Figure 6.5 with the tentative transition from node 1 to node 0
on input of SQ repointed.
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with 2601 nodes.

A single application of the algorithm took roughly thirty seconds for both
of these inputs. The pruned graphs of the final E and QP results, arrived
at after five or six adjustments to the inference parameters, are shown in
Figures 6.7 and 6.8. The most frequent strings are shown in Figures 6.9
and 6.10. These high frequency components of the model were judged to be
appropriate based on previous understanding of the text. The low frequency
components and tentative merges could not be completely evaluated since
no appropriate techniques were implemented.

6.4 Applicability of the Representation

It is a concern whether stochastic finite automata reasonably model the se-
mantics of text structure. While representations used for existing grammar
specifications are normally no more powerful than regular languages, it is
possible to imagine constraints that require the added expressiveness of con-
text free languages. For example, a grammar might be required to express
the restriction that documents contain as many citations in the text as en-
tries in the bibliography. In practice, however, restrictions of that type are
not usually required.

For stochastic finite automata, the question is whether the implied prob-
ability distributions are applicable to text structure. The basic assumption
is reasonable: in a given state, possible next elements can be assigned prob-
abilities. It is not obvious, however, whether the probability distributions
implied by loops in an automaton are applicable. Consider the simple au-
tomaton having a single state that terminates with probability 0.5 and loops
back to itself on input of () with probability 0.5. This generates the lan-
guage {(Q",0.5") | n > 0} which has a probability distribution geometric
in the number of Q’s. Is this a useful model, or do repeating symbols in text
structure usually follow some arbitrary distribution? If so, then the graph
will be more complex: an accurate model of any non-geometric distribution
represented as a stochastic finite automaton takes the form of a long string
of states rather than a short cycle.

For the OED data examined, repeating symbols were found to fit quite
well to geometric distributions. That is to say, v or generalization settings
needed to ensure that repeating symbols were represented by cycles did not
have to be any higher than necessary to ensure reasonable structures for
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Figure 6.7: The automaton inferred for E. Components below probability
0.05 are pruned. The parameters were « = = 0.1, v = 0.4.
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Figure 6.8: The automaton inferred for QP. Components below probability
0.01 are pruned. The parameters were a = 3 = 0.1, v = 0.3.
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.188624
.143293
.063461
.055602
.054907
.049357
.041712
.030566
.018707
.018473
.016606
.016185
.015983
.014549
.014368
.012915
.012142
.011440
.009010
.008898
.007998
.007880
.007145
.005445
.005377
.005180
.004895
.004834
.004711
.004653
.004345
.004235
.004182
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.003760
.003536
.003535
.003380
.003330
.002726
.002651
.002623
.002590
.002358
.002328
.002323
.002294
.002093
.002080
.002062

.154857 HG ET S4

.204186 ST HG S4

.024942 HG VL ET 54

.055578 ST HG LB ET S4
.049216 HG ET S4 54

.094361 HG LB ET 54

.000093 ST HG S4 54

047662 HG S4

021825 ST HG LB VL ET S4
.013557 HG VL ET 54 sS4
.016746 HG LB VL ET sS4
.006516 ST HG LB ET S4 S4
.020803 HG ET S4 S4 54
.048177 ST HG LB LB ET S4
010933 HG LB ET S4 S4
.009729 HG LB LB ET S4
.000000 ST HG S4 S4 54
.014308 ST HG ET 54

.007788 ST HG LB S4

.005542 HG S4 S4

.006468 HG LB S4

009469 HG ET S1 S1

.007853 ST HG VL ET sS4
.005436 ST HG LB VL ET S4 54
.010899 HG VL ET 54 S4 54
.006650 HG ET SO

.008628 ST HG LB LB VL ET 54
.004314 HG LB VL ET S4 S4
.001403 ST HG LB ET 54 S4 54
009726 HG ET 5S4 S4 5S4 sS4
.005371 HG LB LB VL ET S4
.001914 ST HG LB LB ET S4 54
.001715 HG LB ET S4 sS4 S4
.001067 ST HG LB LB LB ET sS4
001962 HG LB LB ET S4 S4
004606 ST ST HG S4

.000000 ST HG S4 54 S4 54
.000631 HG LB LB LB ET 54
.002071 ST HG ET S4 s4
.002912 HG VL S4

.005906 HG VL ET S1 S1
000219 ST HG LB S4 S4
001636 HG 54 S4 54

004523 ST HG LB LB S4
.000429 HG LB S4 54

.000799 ST HG LB ET S1 S1
.000007 HG ET S1 S1 sS4
.000830 HG LB LB 54

.001876 ST HG VL ET S4 S4
.001934 HG LB ET S1 51

OO OO O0OO0OO0OO0OO0ODOO0OO0OOO0OO0ODO0OO0OO0ODOOO0ODO0OO0OO0ODO0ODOO0ODOOO0ODO0ODOO0OO0DOO0OOOOO0ODOOOOOOOO OO
OO OO O0OO0OO0OO0OO0ODOO0OO0OOO0OO0ODO0OO0OO0ODOOO0ODO0OO0OO0ODO0ODOO0ODOOO0ODO0ODOO0OO0DOO0OOOOO0ODOOOOOOOO OO

Figure 6.9: The 50 most probable strings generated by the inferred model
for E. The first number is the probability predicted by the model, the second
is the probability in the training set.
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.001473
.001438

.000816 $Q EQ
.000980 SQ Q Q

0.124114 0.088330 Q
0.095091 0.084955 EQ

0.092839 0.090518 Q Q

0.071129 0.056571 EQ Q

0.069444 0.086020 Q Q Q

0.053205 0.055425 EQ Q Q

0.051945 0.069754 Q Q Q Q

0.039798 0.046381 EQ Q Q Q

0.038855 0.051879 Q Q Q Q Q

0.029769 0.034238 EQ Q Q Q Q

0.029064 0.037922 Q Q Q Q Q Q

0.022268 0.023781 EQ Q Q Q Q Q

0.021740 0.026346 Q Q Q Q Q Q Q

0.016656 0.016505 EQ Q Q Q Q Q Q

0.016262 0.018587 Q Q Q Q Q Q Q Q

0.015741 0.015240

0.013623 0.014379 LB Q

0.012459 0.011360 EQ Q Q Q Q Q Q Q

0.012164 0.012853 Q Q Q Q Q Q Q Q Q

0.009319 0.007699 EQ Q Q Q Q Q Q Q Q

0.009099 0.009039 Q R QR QQQQQQ
0.006971 0.005409 EQ Q Q Q Q Q Q Q Q Q
0.006806 0.006345 Q Q Q QR Q Q QQ Q Q Q
0.006355 0.001535 Q LQ

0.005942 0.005864 LB Q Q

0.005214 0.003913 EQ Q R Q Q QR Q Q Q Q Q
0.005091 0.004604 Q Q QR QQQQQQQQ
0.004869 0.016061 EQ LQ

0.004754 0.001276 Q Q LQ

0.003900 0.002687 EQ Q R R QR QQQQ QQ
0.003808 0.003333 Q Q QR QQQQQQQQQ
0.003642 0.010325 EQ Q LQ

0.003556 0.000804 Q Q Q LQ

0.002918 0.001872 EQ QR Q QR Q Q Q Q Q Q Q
0.002848 0.002293 R Q QR QQQQQQQQQQ
0.002724 0.005747 EQ Q Q LQ

0.002660 0.000527 Q Q Q Q LQ

0.002592 0.002366 LB Q Q Q

0.002182 0.001406 EQ Q R R QR QQQQQQQQ
0.002131 0.001720 Q R QR QR QQQQQQQQQQ
0.002038 0.003356 EQ Q Q Q LQ

0.002017 0.002059 LQ

0.001989 0.000314 Q Q Q Q Q LQ

0.001922 0.000587 SQ Q

0.001632 0.000916 EQ Q R R Q R Q3 QQQQQQQ Q
0.001594 0.001178 Q Q R Q QQQQQQQQQQQQ
0.001524 0.001707 EQ Q Q Q Q LQ

0.001488 0.000170 Q Q Q Q Q Q LQ

0 0

0 0

Figure 6.10: The 50 most probable strings generated by the inferred model
for QP. The first number is the probability predicted by the model, the second
is the probability in the training set.
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other parts of the data.
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Chapter 7

Conclusions

7.1 Summary of Main Results

The main results of this work are in three areas:
1. General improvements to the inference algorithm.
2. Techniques for understanding stochastic models.
3. Insights into the application domain of text structure.

The inference algorithm was improved in two ways. A statistically jus-
tifiable test for separating low frequency components of the data was incor-
porated, and the equivalence test was modified to allow adjustment of the
generalization level in an appropriate way. Choices regarding treatment of
low frequency components were clearly defined, and one possible interactive
approach based on tentative merging was proposed.

Various techniques were considered for understanding, evaluation and
interactive feedback. Some graph visualization and string and path listing
approaches were implemented and evaluated informally. Several extensions
to these approaches were also proposed but not implemented.

Overall, it was found that the semantics of the text structure data exam-
ined could be well described by stochastic finite automata. Repeating sym-
bols did conform closely to geometric probability distributions. The modifi-
cations to the algorithm addressed two specific observations that were made
about the data: 1) many low-frequency components were typically present
that needed to be separated from the statistically significant components

65



and, 2) the data did not behave as if generated by an ezact stochastic model,
but rather, an appropriate inference result had to be determined by varying
the level of generalization.

7.2 Future Work

The overall purpose of generating a model is, of course, to use it. Thus, one
possibility for future work would be to try using the models generated by this
approach for traditional text grammar applications such as validation and
editing. Other, novel applications can also be imagined to make use of the
stochastic nature of the results. For example, a system could be constructed
to assist authors in the creation of documents. This could involve flagging
excessively rare structures in the process of their creation or listing possible
next elements of partially complete entries in order of their probability.

Several comparisons are probably called for as part of further exploration
of the inference approach. The algorithm could be tried with different text,
or with different probabilistic modeling applications, to establish whether the
OED data exhibited typical behavior. It might also be useful to evaluate the
predictive power of the generated models by, for example, generating them
using half the entries in the OFD and comparing them to the remainder.
Another possibility might be to compare several alternative algorithms to
establish whether the stochastic approach in general, and this algorithm in
particular, represent any real improvement over existing approaches to text
structure inference.

For understanding, some of the proposed techniques need to be imple-
mented, and many others can also be imagined. For example, graph or
network analysis techniques for finding strongly connected components or
shortest paths could be applied to the results, and might have interesting
interpretations in the context of text structure. It might also be useful to
convert the automata to stochastic grammar representations, although some
way would have to be found to ensure the results were organized for easy
understanding.

Other possible improvements could be made in the area of feedback. Cur-
rently, parameters have clearly defined interpretations with respect to indi-
vidual tests, but not to final results. If appropriate relationships could be
discovered, it might be better to allow feedback to be given by specifying
desired characteristics of the output. For example, the user could require
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that particular nodes be merged or classified as low frequency, or that the
total number of nodes in the result be less than some specified value.
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