
Using Inverted Lists to Match Structured Text

Sheng Li

Department of Computer Science

University of Waterloo

Waterloo� Ontario� Canada

N�L �G�

Technical Report CS�������

August �	� ����

�This report is a reprint of a thesis that embodies the results of research done

in partial ful�llment of the requirements for the degree of Master of Mathematics

in Computer Science at the University of Waterloo�

Abstract

Inverted �les have long been used as an e�ective way to implement sec�
ondary key retrieval in traditional database systems� For information re�
trieval systems� postings lists use a similar inverted �le structure to accom�
modate the special characteristics of text data�
This thesis explores extensions to these ideas for structured text databases�

especially concerning direct containment of structures� Two kinds of data
structures are presented� and for each structure� six basic operations are de�
scribed and analyzed� Two complex forms of query expressions concerning
hierarchical and lateral relationships between text structures are also exam�
ined� Examples are presented to demonstrate the e�ect on performance of
each data structure�

Acknowledgements

I am thankful to everyone who supported me throughout the years lead�
ing to the completion of this thesis� I would like to thank especially Prof�
Frank Wm� Tompa� my supervisor� who gave me much valuable advice and
guided me through the di�cult times� I also thank Prof� Gordon� V� Cor�
mack and Prof� Ian Munro who served as readers and o�ered several useful
suggestions� I gratefully acknowledge the Natural Sciences and Engineering
Research Council of Canada �NSERC� and the Information Technology Re�
search Centre �ITRC� for their �nancial support� Last but not least� I thank
my parents for the encouragement� love� and caring that kept me going all
the time�

Contents

� Introduction �
	�	 Problem domain �

	�� Background and related work � � � � � � � � � � � � � � � � �
	�
 Problem description � thesis outline � � � � � � � � � � � �

� Conventional inverted �le processing �
��	 Classical inverted lists � 	�
��� Classical inverted �le processing � � � � � � � � � � � � � � 	�
��
 Partitioned inverted lists � � � � � � � � � � � � � � � � � � � 	�

� Simple structure matching ��

�	 Assumptions and de�nitions � � � � � � � � � � � � � � � � � ��

�� Exploitation of text structure � � � � � � � � � � � � � � � � ��

�
 Basic operations � algorithms � � � � � � � � � � � � � � � �

�
�	 Simple inverted lists � � � � � � � � � � � � � � � � � � ��

�
�� Region lists partitioned by parent type � � � � � �
�

�
�
 Analysis and critique � � � � � � � � � � � � � � � � �
�

� Complex structure matching �	
��	 Matching a chain �
�

��	�	 Simple inverted list � � � � � � � � � � � � � � � � � �
�
��	�� Region lists partitioned by parent � � � � � � � � � ��
��	�
 Analysis and critique � � � � � � � � � � � � � � � � � ��

��� Matching a tree �

����	 Simple inverted list � � � � � � � � � � � � � � � � � � ��
����� Region lists partitioned by parent production � � �

����
 Analysis and critique � � � � � � � � � � � � � � � � � ��

��
 Application examples ��

�

 Overlapping Lists ��
��	 Overlap of regions of distinct types � � � � � � � � � � � �
�
��� Overlap of regions of one type � � � � � � � � � � � � � � �
�

� Conclusions and extensions ��

A Basic de�nitions and notation ��
A�	 De�nitions ��
A�� Notations ��
A�
 Basic Operations ��

B Table of algorithms and complexities ��
B�	 Two�way merge algorithm �page 	�� � � � � � � � � � � � � � � � �

B�� Multiway merge algorithm �page 	
� � � � � � � � � � � � � � � �

B�
 Selection tree algorithm �page 	�� � � � � � � � � � � � � � � � � ��
B�� Intersection algorithm �page 	
� � � � � � � � � � � � � � � � � � ��
B�� Generalized two�way intersection algorithm for text regions

�page ��� ��
B�
 Filtering algorithm �page ��� � � � � � � � � � � � � � � � � � � ��
B�� Finding Parent and Child algorithm �page

� � � � � � � � � � ��
B�� Find descendent algorithm �page
�� � � � � � � � � � � � � � � ��
B�� Find ancestor and descendent algorithm �page
�� � � � � � � � ��
B�	� Recursive multiway merge algorithm �page
�� � � � � � � � � � ��
B�		 Three attribute merge algorithm �page ��� � � � � � � � � � � � ��
B�	� Tree like merge algorithm �page ��� � � � � � � � � � � � � � � � ��
B�	
 Recursive tree merge algorithm �page ��� � � � � � � � � � � � � ��
B�	� Overlapped list merge algorithm �page

� � � � � � � � � � � � �	

C Parent�based partition of OALD structures 	�

List of Tables

�	 Categorized basic containment operations � � � � � � � � � � � � �

�� Worst case computation times for basic containment � � � � � �

��	 Worst case computation times for chains � � � � � � � � � � � � �

��� Worst case computation times for trees � � � � � � � � � � � � � ��
��
 Performance comparison for basic containment query � � � � � ��
��� Performance comparison for simple chain query � � � � � � � �
	

�

List of Figures

��	 Structure of classical inverted �le � � � � � � � � � � � � � � � � 		
��� Sample organization of a cellular inverted �le � � � � � � � � � � 	�
��
 Multilevel physical layout for the inverted �le �C���� � � � � � � ��

�	 Illustration of region lists combined with posting lists � � � � � ��

�� Structure of inverted lists partitioned by parent region type � �
�

��	 Overlapping of distinct region types � � � � � � � � � � � � � � �
�
��� Example of �ltering with overlapping region lists � � � � � � � �
�
��
 Solving chain P�C�D� with overlapping regions � � � � � � � � ��

�

Chapter �

Introduction

��� Problem domain

Text processing� although it has received an increasing amount of attention
in recent years� is still mostly handled in an ad hoc fashion �BCD����� This
can be attributed to a lack of attention being paid to the structure of the
text� Traditionally� text has been viewed as simply a collection of character
strings� and only words in a document are indexed �CCB���� Now� with the
rise of text databases� more and more people are trying to organize text into
structured form for ease of use and update�

Conventional database systems have been o�ering users the means of or�
ganizing collections of business data in a structured way� At the same time�
they also provide utilities to update� sort� and retrieve stored data conve�
niently� Combining the power of databases with the versatility of text data
would let users maintain the �exibility of string processing� while gaining the
advantage of consistency and e�ciency of record processing� However� the
distinct characteristics of text raise some unique problems for query process�
ing in a text database system�

Unlike conventional data in a relational database� text cannot be well
represented in the form of records �GT���� Instead� text is better stored in
variable length unstructured blocks �e�g�� paragraphs� chapters�� The fact
that extensive nesting of data is common in text undermines traditional
normal forms in relational databases� In addition� searching can be performed
on structured units �or patterns� rather than just words �Kil��� BCD����� A
simple index on words is su�cient to support many common operations in a

text database� Hence� we need to harness the bene�ts of existing implicit or
explicit document structure to make text processing simpler� more versatile
and e�cient�
To enhance the text processing ability� many researchers �CCB��� KM�
�

GT��� have built secondary indexes on those internal structures in textual
databases� Ideally� such secondary indexes capture document structure� sup�
port e�cient structural search on documents� and incur low spatial and com�
putational overhead�
As stated by Clarke� Cormack� and Burkowski �CCB���� one should be

able to refer to the structural components of a document when issuing a query
in a text database� Therefore� it is important that the secondary indexes can
present the user with a well summarized document structure� In addition�
we do not want to lose processing speed over the enhanced ability to support
structural queries� We present in this thesis a simple variant of inverted
indexes that supports e�cient structural and content querying� Despite its
simplicity� it is extremely powerful�

��� Background and related work

Over the years� people have mainly used three types of structure to im�
plement secondary indexes for large structured text� They are� signature
�les� bitmaps� and inverted �les� also known as posting �les or concordances
�WMB����
A signature is created by �rst generating bit patterns on key words of

a record using hash functions� The hash values are represented in binary
format� and are superimposed� ORed together� to form one bit vector� A
signature �le is the collection of those signatures to facilitate retrieval �Fal����
To retrieve a particular record� the bit patterns of all keywords in the query
are superimposed� then all records that match this signature are retrieved and
scanned to check their validity� The possibility of retrieving and scanning
false matches can be decreased by using a longer signature�
Bitmaps� on the other hand� are extreme case of the signature �le ap�

proach� Each term sets one bit in a signature that is as wide as the num�
ber of distinct terms in the collection� and the hash function is one�to�one
�WMB���� This structure is most e�ective for indexing texts having many
words in common� since most of the bits are set in that case�
The most popular choice of implementation is perhaps inverted �les� An

�

inverted �le is a type of lexicographical index� It is perhaps the most natural
way of indexing a large text� closely resembling the way books are indexed
�FBY��� WMB���� For each term in the given text� sorted in alphabetical
order� there is an entry of the inverted �le containing a list of pointers in
occurrence order to all instances of a particular term in the lexicon� Each
term is typically a simple word� but it could be a phrase or any string in
the set of documents� Finding all occurrences of a single term in the text
requires the scanning of its inverted list entry and following the corresponding
pointers �FBY����

��� Problem description � thesis outline

In many text processing applications� an index on words alone is not suf�
�cient� Even for an electronic text� a slightly complicated query� such as
�nding all entries that were �rst quoted in a Shakespeare play� relies on con�
cepts such as �eld or document� Therefore� there is a need for indexes to be
built on text units of varied granularity�
The purpose of this research is to design an alternative secondary index

structure which is e�cient in space and time� Various structural queries that
exploit many common relationships among document structures will be used
for testing� This will demonstrate the advantages and disadvantages of the
new structure over simple lists by comparing them mainly in terms of the
processing time�
The next chapter focuses on algorithms for processing several common

user queries using simple inverted �les� Chapter
 covers two di�erent in�
verted �le structures and their corresponding algorithms for solving some
simple matching problems� We then show some more complex structural
queries with some examples and comparisons in Chapter �� Chapter � dis�
cusses the implications of using overlapping� instead of non�overlapping� in�
verted lists for query processing� In the last section� we draw conclusions from
the analytical comparisons� and describe some extensions that remain to be
investigated� A summary of fundamental de�nitions� notations� and opera�
tions can be found in Appendix A� It is followed by a comprehensive list of
algorithms discussed in the body of this thesis along with brief descriptions�
Appendix C is a representation of the parent�based partitioned inverted list
built on the Oxford Advanced Learners Dictionary �OALD� internal tags�

�

Chapter �

Conventional inverted �le

processing

In a conventional database management system� a data record or row in a
table is the unit of information which contains all the pertinent data relating
to a unique identi�er �DL
��� Records are composed of a collection of related
�elds or columns� Fields in such a record describe some speci�c instance� e�g��
a person� an object� or an event �Wie���� Fields that can uniquely identify
a record are called candidate keys� One of these candidate keys is usually
chosen as primary key� which can be used to order the records sequentially for
retrieval purposes� For example� in a vehicle licensing division database� the
license plate number can be chosen as the primary key because it uniquely
identi�es each record� Other �elds� such as car model� manufacturer� color�
year� and principal driver� are secondary attributes� A primary key retrieval
would be�

Give me the record of the vehicle with license plate number XXX
			�

However� in many conventional database applications� primary key re�
trieval operations alone will not su�ce to answer many common queries� For
example� in a case of hit and run� police might be looking for�

A white 	��� Pontiac Grand AM driven by a teenage male�

Here� we need to search on �elds such as vehicle make� model� color�
registered owner information� etc� Therefore� database management systems

�

must look for other methods to evaluate this query� These methods search the
databases based on values of the �elds in records that are not primary keys�
These �elds are often referred to as �secondary keys� or �attributes� �Knu�
��
and thus� the name used for such searching is secondary key retrieval�

��� Classical inverted lists

One of the most popular techniques of performing secondary key retrieval
is to use secondary indexes �AB���� From as early as the 	����s� one of the
important classes of technique to implement secondary indexes for database
systems has been the inverted �le �Knu�
� Sta��� CCB���� The name inverted
�le is derived from the observation that the role of records and �elds are
reversed �Knu�
�� In conventional databases� an inverted �le contains a set
of entries� one for each possible value of the indexed �eld in a relation� Each
entry is a list L�E� of pointers to all records that contain a particular term
E� The set of lists may be arranged in alphabetical order of the term E in
the inverted �le to provide rapid access� Each list L�E� has variable length
and is maintained in monotonic sequence for e�cient logical manipulation�
Each such list is referred to as an inverted list �Knu�
� FBY����
In this section� we will describe several conventional inverted �le pro�

cessing algorithms and their advantages and disadvantages� This discussion
provides the necessary background to comprehend the new structures pro�
posed in this paper�

��� Classical inverted �le processing

Many models and variants of inverted �les have been developed �DL
�� Lef
��
Lum��� Knu�
� C����� The list processing algorithms handle the following
operations �Lef
���

	� Logical conjunction of nonnegated terms is accomplished by list inter�
section within the inverted �le�

�� Disjunction of nonnegated terms is accomplished by list union within
the inverted �le�

� Conjunction of a nonnegated term with a negated term is accomplished
by taking the di�erence of two lists�

	�

DATA
BASE

actual data store
Record pointers to

C

B

A

D

W

Links to start of
inverted listsvalues

V

field
Possible

Empty B list

Figure ��	� Structure of classical inverted �le

		

Merging �or collating� means the combination of two or more ordered �les
into a single ordered �le representing the union of the entries from the input
�le �Knu�
�� Merging algorithms were developed by John von Neumann� who
�rst suggested them as early as 	��� �Knu�
�� Many specialized structures
�e�g�� union��nd and heaps� have later been developed to make the merging
process more e�cient� However� the most common merging algorithm is the
standard list merging algorithm� All merging algorithms rely on the fact that
the initial input lists are already sorted by the same criterion�
Since we deal with lists extensively in our discussions and algorithms� it

is necessary to de�ne some common operations that will be applied to them�

nonempty return true if the list is not empty
headof retrieve the �rst element in the list
mark raise a �ag to output the �rst element later
advance remove the �rst element in the list
output append the �rst element to the output list�

lower the �ag if necessary

In addition� give a particular list name� there is an implicit mapping to
retrieve the corresponding list� Thus� we will not be concerned with the
details of �nding a particular inverted lists within an inverted index�
Simple merging of two lists in main memory is the most basic form of

list merging� First� the system loads both lists into primary memory and
allocates space for the resulting list� The records of both lists are compared�
starting from the �rst ones� We assume� without loss of generality� that the
keys are in ascending order� The record with the smaller key gets written
to the output bu�er and taken o� the input list� The next record in that
list will be used for the next comparison� This process continues until one
of the lists is exhausted� The system then moves the rest of the remaining
list into the output merge list as is� Following is a detailed description of the
algorithm�

Algorithm �
�
� Two�way merge� This algorithm merges the ordered
�les X � fx� � x� � � � � � xmg and Y � fy� � y� � � � � � yng into a single
sorted �le of the form z� � z� � � � � � zm�n�

TwoWayMerge�X�Y�
while �X� Y are NONEMPTY�
if �headof�X� � headof�Y��

	�

output X�
advance X�

else
output Y�
advance Y�

endif�
endwhile�
while �X is NONEMPTY�
output X�

endwhile�
while �Y is NONEMPTY�
output Y�

endwhile�

This is called an internal merging algorithm and is useful only for small
lists� However� database �les are generally large in size� and everything
cannot be loaded into internal memory at once� In these cases� we have
to use an external merging algorithm which utilizes secondary storage to
alleviate this space constraint�
For external merging purposes� the algorithm above must be modi�ed so

that bu�ering is used through either virtual memory� which is handled by
the operating system automatically� or explicit I�O instructions� At �rst�
only the initial portion of the input lists is loaded into the internal memory�
and the space for an output bu�er is then allocated� The merge process is
performed as usual on loaded data� but when the output bu�er is full� it is
written out to the external memory to free up the space� Furthermore� the
merge input bu�ers must be repeatedly re�lled with the next sequence of
items from the same merge �le until the entire input is read �Wie����
Building on the algorithm above� a multiway merging algorithm which

works on more than two input lists at the same time can be easily derived�
The most obvious way would be to compare records from all lists with each
other� again� starting with the lowest ones� The record with the smallest key
value is written to the output merge bu�er� and deleted from the input list�
At any one time� we only need to look at P keys �one from each input bu�er�
and select the smallest �Knu�
�� The process repeats itself until all except
one list remains non�empty� The system moves the rest of the remaining list
into the output merge bu�er�

	

Algorithm �
�
� Multiway merge� X��X�� � � � �XP are ordered inverted
lists� This algorithm will produce one single inverted list with the same or�
dering as the Xs as a result of merging all Xi lists�

MultiwayMerge�X��X�� � � � �XP �
while �at least two lists are NONEMPTY�
kmin � minimum key value in headof�X��X�� � � � �XP ��
output kmin�
let Xk be one list that contains kmin�
advance Xk�

endwhile�
output the rest of the NONEMPTY list�

end�

Note that this algorithm keeps all duplicates and places them together
in the output list� Eliminating duplicates can be accommodated easily by
advancing all lists that contains kmin in a loop once a kmin is found�

One clever way to speed up the comparison process when the number of
lists P becomes large was suggested by Knuth� use a selection tree to �nd the
smallest element every time in O�log�P �� instead of O�P � time �Knu�
�� For
example� consider the case of four�way merging� with a two�level selection
tree�

Step �

Selection Treez �� �
���

������
�����
���

�
���
	��

	��

�
	��

	�

Rest of Listsz �� �
��
 �
��� �
��

�
 �
�

Step �

��� 	��

������
�����
	��

�
��
 �
	�� ��� �

	��

�
	�� ��

�
 �

	� �

	�

Step �

��� 	�� 	��

������
�����
	��

�
��
 �
	�� ��� �

��

�
��

�
 �

	� �

Step �

��� 	�� 	�� ��
 ��

	�
�
 ��� �

������
�����
�

�
�
�

�

�
�
�

An additional key ��� has been placed at the end of each list to allow
graceful termination of the merging algorithm� as suggested by Knuth� Since
the input lists are usually quite long� adding this terminal record does not
signi�cantly increase the length of the data or amount of work involved in the
merging� The example also leaves the impression that actual keys and records
are moved around in the tree� whereas this can be done using pointers to save
on space and computation time� The pseudo�code for tournament selection
is provided below�

Algorithm �
�
� Selection tree� A binary tree rooted at T is built such
that each of its leaf nodes ti point to the �rst element of an inverted list xi�
Note that� in order to simplify the algorithm and ensure it exits gracefully�
we append a dummy element with the key of � at the end of each inverted
list� The algorithm will merge all elements of inverted lists Xi into one single
list� assumed to be in ascending order�

UpdateTree�R�
if �keyof�R� is ��
return�

endif�
if �R is a leaf node�
advance the associated inverted list Xi�

	�

return�
endif�
if �LeftChild�R� �� R�
�UpdateTree�LeftChild�R���

else
�UpdateTree�RightChild�R���

endif�
R � node with the lesser key of �LeftChild�R� and RightChild�R���

end�

The above algorithm keeps track of the �winners� �smaller value� of each
comparison� There are other methods that can be employed to possibly
improve the performance �e�g�� parallel list merging �LC���� interpolation
�Gon���� tree of losers �Knu�
��� However� we will not discuss these structures
any further� because either the performance improvement is not signi�cant
or additional hardware is required� and the speci�c algorithm for merging is
orthogonal to the thrust of this paper�
Notice we can treat several lists as a single list by adding a few other list

ADT operations as follows�

union multiple lists are merged and the element order is preserved
createvirtuallist conceptually take the union of several lists to form a single list
list	 � list� elements of list� are excluded from list	

For example� if L is a virtual list implemented by a selection tree� then

advance L � UpdateTree�L�

The other operators output� headof� nonempty� and mark perform simple
operations that deal with the root node of the tree�
As mentioned above� list intersection can be used to resolve conjunctive

queries such as

colour � �white� AND year� ������ AND make � �Pontiac�

AND model � �Grand Am�

based on an algorithm very similar to list merging� A two�way intersection
on P sorted lists can be accomplished by the following simple process� The
algorithm relies� again� on all lists being sorted by the same criterion�

Algorithm �
�
� Intersection algorithm

	

Intersection�X�Y �
while �X� Y are NONEMPTY�
while �NONEMPTY�Y� and headof�Y� � headof�X��
advance Y�

endwhile�
if �NONEMPTY�Y��
while �NONEMPTY�X� and headof�X� � headof�Y��

advance X�
endwhile�
while �NONEMPTY�X� and headof�X� � headof�Y��
output X�
advance X�
advance Y�

endwhile�
endif�

endwhile�
discard all remaining elements�

end�

��� Partitioned inverted lists

The organization of the simple inverted �le creates one and only one inverted
list for each possible value of the attribute that has been indexed� There are
also other implementations of inverted �les that further partition each list�
In the later chapters of his 	�
� book �Lef
��� Lefkovitz also explained the

notion of cellular inverted list� The idea is to de�ne logical cellular boundaries
throughout the secondary storage into which records may be placed according
to some predetermined storage strategy �Lef
��� The conventional inverted
lists are partitioned into sublists that will be placed at the beginning of a
cell� The inverted �les contain the addresses of heads of each partitioned
list� which also represents the cell addresses that must be searched when
evaluating a query�
Consider a query involving the conjunction of attributes with values X

and Y � A scan through the top�level inverted �le will select only those cells
that contain sublists for both X and Y � since one cannot expect to �nd the
intersection of X and Y unless both of those lists are present in a cell� The
system will then search for list intersections within the cells selected� The

	�

W X Y Z

W X Y Z

W X Y Z

W X Y Z

W X Y Z

Cell 0

Cell 1

Cell 2

Cell 3

1.2 / 2

3.5 / 1

1.4 / 3
2.0 / 1

0.9 / 1
1.4 / 2
2.1 / 1

2.2 / 3
3.7 / 1

0.6 / 3

2.3 / 1

0.3 / 2 1.5 / 2

Key Directory

0.6, 0.7, 0.9 0.3, 0.7 0.9

1.9

2.0

3.5

3.7

1.6
1.5

0.7

0.3

0.9

1.7

2.1

2.7
2.5

2.2
2.3

1.21.4

Cell
Number

Record number
within the cell

List
Length

Database

0.6

1.2, 1.9 1.4, 1.5, 1.9 1.4, 1.6 1.5, 1.7

2.3 2.0 2.1 2.2, 2.5, 2.7

3.5 3.7

Cell level
Inverted Lists

Cell Boundary

Data Records

Figure ���� Sample organization of a cellular inverted �le

	�

advantage of this system is the possible shorter search time of the inverted
lists� A number of cells�sublists are likely to be eliminated before any inverted
lists are accessed� and shorter lists will terminate the intersection algorithm
sooner�
A more generalized description of the partitioned inverted �le organiza�

tion was published by Alfonso F� C�ardenas in 	����Figure ��
�� C�ardenas
proposed dividing everything into four levels of blocks� data blocks� record
address blocks� key�value index blocks� and a track index block� Each block is
the unit of transfer between secondary and primary memory as a result of a
single I�O operation �C�����

	� Data blocks are complete records in the database including the key
values�

�� Record address blocks are accession blocks which contain lists of pointers
to actual records� Each list is ordered by pointer values�

� Key�value index blocks are the inverted list headers� Each entry of the
list contains an access key� which is the key name�key value pair� In
other words� the entries are ordered by key name� then by key value�
Each entry also contains a pointer to one of the lists in the record
address block� along with a list length�

�� Track index block provides an easy way to reach the beginning of each
block in the key�value index blocks� The entries have the same format
as the key�value index blocks� Each contains the access key value that
appears at the top of each key�value block and the pointers to these
blocks�

C�ardenas� approach treats the inverted �le index itself as a database
problem� The track index block is a simple yet e�ective index built on top of
the inverted �le� and the inverted lists are partitioned by the physical transfer
unit � blocks� The database engine can quickly jump to the beginning of
the block where the �rst entry of a key name�key value pair occurs� This
arrangement reduces the time required to search through irrelevant index
records� which can be substantial when the lists are huge�
The above mentioned cellular and partitioned inverted lists have an in�

teresting property� they are both divided according to the record placement
in secondary storage� This is interesting because partitioning according to

	�

‘‘Index’’ or ‘‘Directory’’ in Fast
Random Access Storage

Block
Track
Or Page

...

...

...

...

..

.
...

...

...

...

...

DATA
BASE

I kl Value Ptr Lgth

K
ey

-n
am

e
K

ey
-V

al
ue

 L
en

gt
h

Po
in

te
r

K
ey

-V
al

ue

L
is

t L
en

gt
h

Key-Value Format

Accession
(Record Address)
Blocks (Pages)(Pages)

Index Blocks
Key-Value

Block (Page)
Track Index

Pointers
to Data
Base
Records

Figure ��
� Multilevel physical layout for the inverted �le �C����

��

physical boundaries determines another important property for partitioned
lists� That is� any sublists of an attribute value X can only merge with at
most one sublist of another attribute value Y � That is why merging with
inverted lists performs so much better than arbitrary relational joins where
each record of X must be compared with every record of Y �
All the algorithms above are well suited for supporting selection from

relational databases where a well�de�ned and well�recognized structure exists
among data� Modi�cations are needed for text databases� as we will see in
the next chapter�

�	

Chapter �

Simple structure matching

Inverted �les have been popular for text databases as well as relational
databases �Sal
�� Sal��� Ger�
� WMB��� Tom��� KLMN��� Sta��� BBT���
FBY��� ST�
� CCB���� An inverted �le closely resembles the way books are
indexed� The format of an inverted �le changes slightly when used in a text
database� mainly because text databases lack the kind of explicit structures
that are present in conventional databases� Indexes reference lexical items
instead of records� An indexed term together with its referents in a text
database is sometimes called a postings list� while each referent is a posting�
thus� inverted �les are commonly referred to as postings �les� Each term is
typically a simple word� but it can also be a phrase or any arbitrary length
string in the set of documents �SM�
� WMB���� The references to the actual
occurrences of terms can point to the term itself� or to �elds or documents
that contain it� In the case where the text consists of a set of independent
documents and all postings reference documents as a whole� a postings �le
operates similarly to a conventional inverted �le �i�e�� documents play the
role of records�� If documents can overlap one another or postings refer to
sub�elds of documents� then the processing of the postings lists must be
modi�ed from conventional inverted �le algorithms�

��� Assumptions and de�nitions

Before we start investigating the modi�cations necessary for text processing�
we state a few assumptions on which this paper is based and some de�nitions
for terms and notations that will be used�

��

A text segment or region is a prede�ned contiguous piece of text of arbi�
trary length�

The type of a text segment is a prede�ned role that this segment plays
in the whole document or set of documents according to some speci�cation
�e�g�� a grammar� �ST�
�� For example� paragraph can be the type of some
text segments in a document�

We assume there is a known� �nite collection of unique text segment
types x�� x�� � � � � xn� The set of possible text types forms a universal set S�
In other words� S � �x�� x�� � � � � xn�� New text types can be added to the
universal set only after they are de�ned� the text is scanned� and indexes
are updated� From this point on� when we mention text segments in the
following discussion� it is always with respect to this universal set�

Since the main purpose of this paper is to discuss query performance�
we will assume that indexes using the various structures under examination
have been built� index building techniques will not be discussed in this pa�
per� Some examples of modern text index building methods can be found in
�Wie��� GBYS��� WMB����

One text segment is said to contain another if the latter begins at or after
the start of the former and ends before or at the end of the former� When
a text segment A contains a distinct text segment B� and there does not
exist a distinct text segment C that contains B and is contained in A� we
say that text segment A directly contains text segment B �ST�
�� Because
of its similarity to a Parent�Child relationship in a tree structure� we refer
to that text segment A as the parent of text segment B� Conversely� we
refer to text segment B as the child of text segment A� If the existence of
text segment C cannot be determined or is immaterial� then we simply say
that text segment A contains text segment B� Finally� when text segment A
appears before segment B without overlap in a document� we say A is followed
by B �regardless of whether other segments also follow A and are followed by
B�� A summary of fundamental de�nitions� notations� and operations can be
found in Appendix A�

For the body of this thesis� we assume that two regions are either disjoint
or properly nested with respect to each other� That is� the collection of all
regions in a text is assumed to form a tree structure� This assumption is
relaxed in Chapter ��

�

��� Exploitation of text structure

To improve text retrieval� users need to exploit the implicit structures present
within the text� Loe�en �Loe��� and Baeza�Yates and Novarro �BYN�
�
provide extensive surveys of models to retrieve both contents and structures
from text� The PAT system� which was used to construct the online Oxford
English Dictionary at the University of Waterloo as well as serving as the
basis of the Open Text Index� one of the search engines on the World Wide
Web� relies on the notion of region to handle structure queries �Tom��� ST�
�
BCD����� A region is de�ned by a pair of references to the start and the end
of a contiguous segment of text of arbitrary length� All pairs of references to
the same type of text segment �e�g�� paragraphs� are stored in a single list�
Therefore� there are as many such lists in the system as there are types of text
fragments identi�ed by the text design� For example� in documents de�ned
by an application of the Standard Generalized Markup Language �SGML�
�Gol���� there may be a region list for each element type identi�ed in the
document type descriptor�
To illustrate� consider a collection of email messages�Figure
�	�� Region

lists can be built on various header �elds� such as senders� and on the body
of the messages� such as paragraphs� Furthermore� the presence of region
lists is in addition to the existing postings lists�
As a baseline� we will examine a structure similar to the standard inverted

list� which will index regions ��elds� as well as postings for words or phrases�
Just like the standard inverted lists� the new lists are sorted in monotonically
increasing order of the occurrences of the regions in the indexed text�
For simplicity�s sake� we will refer to the conventional lists for regions as

simple inverted lists from this point on�
Since we will operate in terms of regions and region lists in our discussion�

it is necessary to de�ne a few operations that will be used on those abstract
data types�
The following notations are �rst introduced in the MultiText project

�CCB���� Elements a and b are particular regions each containing a pair
of references �s� e� to the start and end points of the underlying text� we
de�ne�

a� b to mean a contains b� fa�s � b�s and a�e � b�eg

a� b to mean a contained by b� fa�s � b�s and a�e � b�eg

��

I have exactly what you are looking for. Why don’t you come down
here and take a look for yourself.

T E X T

Region R:

a) Schematic showing pointer pairs for regions of type R

Offset Text

Hi,

Date:
From:
To:
Subject:

Patrick Li <s3li@uwaterloo.ca>
Do-it-all@auto.dealer.com

Buying a car

Fri, 26 May 1996 11:50:20-0500 (EST)000
045
081
111
134
135
139
140
207
274
275
342
409
474
503
504
572
573
581
582
583
584
585
617
660
696
722
723
789

... ...

Regards

If you have something that fits my description, please let me know.

and stereo cassette are must!
on it. Standard transmission would be nice, but air conditioning
$14,000 - $15,000. I prefer a used car with about 2 yrs/30,000 km
I’m looking for a small and economical vehicle in the price range of

have a large selection of automobiles and very competitive prices.
I am referred by one of your customers, Frank, who told me that you

Senders

Paragraphs

"car"

135 138 140 273 504 571 573 580275 502

Subject: Re: Buying a car

From:

To: Patrick Li <s3li@uwaterloo.ca>
Date: Fri, 26 May 1996 14:10:30-0500 (EST)

Do-it-all@auto.dealer.com

723 823

045 080 585 616

095 098 130 132 163 173 312 318 378 380 601 604 718 720

b) Sample region vectors using byte offsets

F
igu
re

�	�

Illu
stration

of
region

lists
com

b
in
ed
w
ith
p
ostin

g
lists

��

Direct

Containment
P.C#

A..D#

Inner Outer

Return Type

A#..D

P#.C P#.C#

A#..D#

Both

General

Containment

Table
�	� Categorized basic containment operations

a�� b to mean a does not contain b� fa�s � b�s or a�e � b�eg

a�� b to mean a is not contained by b� fa�s � b�s or a�e � b�eg

We also introduce two additional operators that are simple extensions to
those de�ned for the MultiText Project�

a � b to mean a starts before b� fa�s � b�sg

a a b to mean a ends before b� fa�e � b�eg

As before� given a particular region type name� there is an implicit map�
ping to retrieve the corresponding region list containing all instances of that
region type�

��� Basic operations � algorithms

The basic operations and accompanying algorithms supported in all systems
to be examined are shown below� Queries involve containment of descendents
�D� within ancestors �A� or direct containment of children �C� within parents
�P�� they also specify which of the qualifying text segments to return�
Following syntax proposed earlier �BCK����� we de�ne six variants as

shown in Table
�	� Query A��D� asks the engine to �nd all instances of
descendent region type D that appears anywhere� directly or indirectly� inside
text type A� Query A���D is very similar� except that we are interested in
the As instead of the Ds� and for A���D�� we are interested in regions of

�

both types� Alternatively� P�C� speci�es a request to �nd all instances of
region type C directly contained within a region of type P� Notably� PAT and
the MultiText system support only forms of containment returning a single
type and not requiring direct containment �i�e�� A��D� or A���D only��
We shall now examine how inverted list structures can support the above

queries�

����� Simple inverted lists

If region types are represented by postings lists and we wish to evaluate con�
tainment queries �e�g�� A��D��� it is obvious that list merging of some sort
must be employed� The list merging algorithm used here is based on the
conventional ones mentioned in the previous section with one major modi��
cation to suit the need of text� During the comparison of the top elements in
each list� the system will be looking for region containment instead of point
equality�
Algorithm
�
�	 depicts the procedure of merging two ordered inverted

lists� retaining all regions that satisfy the containment relations�

Algorithm �
�
� Generalized two�way intersection for text regions�
For any two ordered inverted lists of regions X � fx�� x�� � � � � xmg where
x� � x� � � � � � xm and Y � fy�� y�� � � � � yng where y� � y� � � � � � yn�
the algorithm will produce two similarly ordered inverted lists that are either
shorter or equal in length� Each element of all lists is a pair of reference
pointers �s� e� that de�nes the boundaries of a region�

RegionMerge�X� Y�
while �both X and Y are NONEMPTY�
while �NONEMPTY�Y� and headof�Y� � headof�X��
advance Y�

endwhile�
while �NONEMPTY�Y� and headof�X� � headof�Y��
output Y�
advance Y�
mark X�

endwhile�
if �X is marked�
output X�

��

endif�
if �NONEMPTY�Y��
while �NONEMPTY�X� and headof�X� a headof�Y��
advance X�

endwhile�
endif�

endwhile�
discard all remaining elements�

end�

Note that similar to the two way intersection �Page 	
�� this algorithm
also discards the list that has not been exhausted� because the remaining
elements cannot contain nor be contained by a region of the other type�
To solve general containment problems of the form A��D� a system using

the simple inverted �le organization would apply RegionMerge to the inverted
lists for regions A and D� This algorithm takes O�jAj jDj� time to compute�
where jXj is the cardinality of the inverted list for text type X�
The general merge algorithm keeps both the A list �ancestor� and the

D list �descendent�� If we are only interested in the contained regions �i�e��
elements of D list�� we need not mark and output X� If we are only interested
in containing regions �i�e�� elements of the A list�� then we need not output
Y�
Although neither PAT nor the MultiText system supports the variant of

this operation that maintains both lists �i�e�� A���D��� it can be simulated
in those systems by issuing the other two operators sequentially�
The problem of direct containment �i�e�� P�C�� is signi�cantly more dif�

�cult� The simple inverted list structure provides little assistance to such
queries� because it does not distinguish direct from general containment�
First� the engine can use Algorithm
�
�	 to �nd all regions that satisfy the
general containment P���C�� Then� for each instance of C in the interme�
diate result� either a string search in the actual text must be used �assuming
there is su�cient mark�up in the text to identify all regions that could contain
regions of type C� or all indexes for every other text type must be examined
to ensure that no other region containing that C text region is also nested
within the corresponding P region� For large data collections� either approach
would result in signi�cantly increased I�O operations caused by the loading
of possibly numerous text segments� or even all of the index �les� scattered
over the secondary storage�

��

The following algorithm formally describes the second approach where
all other region indexes are used in a �ltering process to guarantee direct
containment� The two lists of interest are repeatedly compared against each
list of some other type� eliminating elements that are found to be not in
direct containment� �N�B� Since self�nesting of region types is not permitted�
we need not check for interceding regions of type P or of type C��

Algorithm �
�
� Filtering� Given the inverted lists X � x� � � � xm and
Y � y� � � � yn be the output of Algorithm 	�	�
 when applied to types P and C�
This algorithm will compare those lists against every other list in the system
and produce two lists less or equal in size to X and Y� but all elements of X
directly contains some elements of Y and all element of Y is directly contained
by some element of X� L is the set of all inverted �les that are de�ned over
the universal set S�

Filter �X� Y�
forall �lists W � fL� fP�Cgg�
while �X� W� Y are NONEMPTY�
while �NONEMPTY�W� and headof�W� � headof�X��
advance W�

endwhile�
while �W� Y are NONEMPTY and headof�X� � headof�Y��
if �headof�X� � headof�W��
while �NONEMPTY�Y� and headof�Y� � headof�W��
output Y�
advance Y�
mark X�

endwhile�
while �NONEMPTY�Y� and headof�W� � headof�Y��
advance Y�

endwhile�
while �NONEMPTY�W� and headof�W� a headof�Y��
advance W�

endwhile�
else
while �NONEMPTY�Y� and headof�X� � headof�Y��
output Y�
advance Y�

��

mark X�
endwhile�

endif�
endwhile�
if �X is marked�
output X�

endif�
advance X�

endwhile�
X �� output list for X�
Y �� output list for Y�

endfor�
end�

FindDirect �P� C�
RegionMerge�P� C��
Filter�P� C��

end�

As we discussed before� the RegionMerge�� function take O�jP j jCj�
time� where jXj is the cardinality of the inverted list for text type X� The
Filter�� function on the other hand� loops through all other inverted lists
for any region other than P and C and compares each one with the results
produced by RegionMerge��� Thus� the time it takes is

P
li ��P�C�jlij jP j jCj�

where li � L� Assuming each list size is bounded by some constant n� then�
in the worst case� the function takes O�n 	 jLj� time to compute� where jLj
is the number of region types�

����� Region lists partitioned by parent type

It is clear that one of the main problems inherent in simple inverted lists
is the lack of ability to distinguish direct from general containment� There
is no explicit information concerning the hierarchical relationships between
structural units� One approach is to avoid the problem� as proposed by Con�
sens and Milo �CM���� Wherever possible� they reduce direct containment
operations into general containments with the additional knowledge of inter�
nal document structure� However� this approach only works under certain

�

circumstances �e�g�� when region A is constrained to be contained and only
contained by region B��
Here� we present a new data structure based on simple inverted lists to

handle the direct containment problem e�ciently� while introducing little
overhead in space and in the time needed to answer general containment
queries�
Intuitively� the easiest way to solve the direct containment problem is to

set up a link from each parent region to its children �like a tree�� However�
that would mean at least two additional pointers to every entry in the in�
verted �le� one for the �rst child and another for the next sibling� This would
virtually double the primary and secondary memory requirement of the in�
dex structure� Consequently� this added demand will slow down response
time to queries because of increased input�output operations� On top of
this� the intersection would still be costly� because of the need to traverse all
the appropriate children links during retrieval� Such a drastic performance
hit is unacceptable� we must avoid incurring too much space overhead while
adding extra structural information�
Instead� we will partition the inverted lists and reorder them in such a

way that �nding the children of a particular region type is almost as easy
as �nding the region itself� By reordering� we only have to keep track of
the bounds of each sublist without creating huge spatial and computational
overhead�
The new structure as depicted in Figure
�� can be described in the

following way�

	� A set of inverted lists for text region types�

�� A simple partition of those inverted lists �with references to division
points� based on the type of the parent� where elements in each partition
is ordered by position�

Each inverted list contains references to all instances of a region type�
Furthermore� within those lists� the elements are sorted in a prede�ned �e�g��
alphabetical� order by the type of their parent� This is possible because of the
assumption of strict hierarchical nesting� However� the important distinction
between this structure and the simple inverted lists is that each sublist�group�
can be accessed as an independent unit� while loading the complete list for
any region type is just as easy as before� since all partitioned inverted lists
are stored contiguously on physical storage�

	

Links to start
of partitioned
sublists Links to start of

inverted lists

Region pointers

to actual

data store

F

D

C

A

E

W

V

W

E

B

A

B

A

Region Parent Region
Index BlockIndex Block

Inverted Lists

Text

Types

Region
Parent
Region

Types

Figure
��� Structure of inverted lists partitioned by parent region type

�

With this arrangement� one can easily answer queries represented by ex�
pression P�C�� because all quali�ed regions are already grouped into one
ordered inverted list� Only two pointers �for C� then P� must be traversed
to locate the result set�
Using this structure� the processing of query P��C or P��C�� however�

is not as easy� Since we only have the type of the parent entry but not the
reference to the parent itself� it is not possible to retrieve this information
with one step� Storing a reference to the parent region is feasible� but requires
additional space in the index� Instead� we could use the algorithm that was
applied to the simple inverted list �i�e�� �nding both P and C lists� and then
merge them in a similar fashion as with the simple inverted lists�� The
only complication is that there could exist multiple lists for P� since it too is
partitioned by parent� However� we can utilize the createvirtuallist operation
de�ned earlier �page 	
� to hide the fact that there is more than one list for
P� Since we now conceptually form a single list for P� and there exists at
most one list for Cs directly contained by P� the conventional two�way region
merge can be performed on them as before�

Algorithm �
�
� Finding Parent and Child� Given two region types P
and C� This algorithm �nds all P regions that directly contains C� Both P
and C are kept in the answer set� X is a reference to an inverted list� Find��
is a simple operation that retrieves an inverted list that corresponds to its
parameter�

FindBoth �P� C�
X �� Find�P�C��
RegionMerge�createvirtuallist�all lists for P�� X��

end�

Assuming that the virtual list is implemented using the selection tree
algorithm discussed before� the run time of this algorithm is O�I � log�J
	� jXj�� where � �

P
�i jPij� In other words� � is the sum of the sizes of

all partitioned lists for region type P� I is the constant time to traverse the
pointers to �nd P�C� jXj is the size of the list X� and J is the total number
of input lists that formed the virtual list� In this case� J is the number of
sublists for P� The log�J 	� part of the formula is derived from updating
of the selection tree�
In the worst case analysis� we know the upper bound of any complete

region list is n� therefore� � is O�n�� Furthermore� jXj is also O�n�� Of

course� if P can be contained by every other region type in the text� J 	
is O�l�� the total number of region types� Finally� we note that I is O�	��
Thus� the formula can be simpli�ed to O�n log�l���
Like the simple inverted lists� we need only remove output Y �i�e�� the child

region list� from RegionMerge if we are only interested in solving P��C� Since
the removal of one output step does not change the computation complexity�
the analytical time will remain the same�
To answer queries represented by expression A��D�� the engine will �rst

determine the result set of A�D�� since it is a part of the answer� and more
importantly� it can be retrieved with very little e�ort� Secondly� the engine
must retrieve all other partitioned inverted lists for text type D �i�e�� lists
that do not have A as their parent�� and all of the inverted lists for region
A� Thirdly� two virtual lists will be created� one for region A and another for
region D� using the createvirtuallist operation� Then� merge those two lists
together �as for simple inverted lists� using the modi�ed two�way merge that
only keeps the children� Lastly� take the union of the list for A�D� with the
list produced by the merge to arrive at the correct result�

Algorithm �
�
� Find Descendent� X is an entry point to an inverted
list�

FindDescendent �A� D�
X �� Find�A�D��
Y �� RegionMerge�createvirtuallist�all lists for A�� createvirtuallist�all lists for D � X���
return union�X�Y��

end�

The run time of this algorithm is O�� log�J 	� � log�K� I�� where
I is the time taken to retrieve A�D� � �

P
�i jAij� � �

P
�i jDij� J is the

total number of partitioned inverted lists for A� and K is the total number
of partitioned inverted lists for D� Again� using the same reasoning as above
�Algorithm
�
�
�� we see that the time is O�n log�l���
Intuitively� one can see that the process to solve query A���D and A���D�

would be very similar to query A��D�� In these cases� we cannot merely
prefetch A�D� so we resort to what is essentially the algorithm for simple
inverted lists� two virtual lists built from all sublists of A and sublists of D
will be used in the two�way merge� With query A���D�� no modi�cation to
RegionMerge is needed since we do need both the ancestor and the descen�
dent in the answer� On the other hand� query A���D is only interested in

�

the ancestor� therefore� removing the code to output Y �i�e�� the child region
list� from RegionMerge is necessary�

Algorithm �
�

 Find Ancestor and descendent� This function is used
to �nd two sets of regions of type A and D that satisfy the condition fa �
d j a � A� d � Dg�

FindAD �A� D�
RegionMerge�createvirtuallist�all lists for A�� createvirtuallist�all lists for D��

end�

Clearly� the computational cost of this algorithm is again O�n log�l� be�
cause the computationally intensive part of the algorithm is exactly the same
as the previous algorithm�

����� Analysis and critique

Looking at the worst case analytical results of the algorithms for both simple
inverted lists and parent�based partitioned inverted lists� we can make several
observations� First of all� each structure performs better than the other under
certain circumstances� More speci�cally� the simple inverted lists structure
shows its strength in resolving general containment queries �i�e�� A��D�� while
the partitioned inverted lists wins hands�down for direct containment type of
queries �i�e�� P�C��
Following is a summary of analytical computation time between the sim�

ple inverted lists and the partitioned inverted lists� We will review the results
in the subsequent paragraphs�
How much better the simple inverted list is for general containment

queries depends on the total number of possible parents that each region
type may have� The fewer the possible parents� the better the partitioned
inverted list will perform� If most of the queries concentrate on region types
with a small number of parents �e�g�� one or two� then both structures will
have similar performance� Note that the input�output cost for solving these
queries need not increase because all partitioned inverted lists can be stored
together on secondary storage� Once we �nd the address of the �rst sublist
for any region� all lists can be loaded into main memory in blocks�
However� for direct containment� the partitioned inverted lists would sig�

ni�cantly out�perform the simple model� With the simple inverted list struc�
ture� the engine needs to merge almost every list in the database system

�

Sample

Queries

Simple Inverted

Lists

Partitioned

Inverted Lists

A..D#

A#..D

A#..D#

P.C#

P#.C

P#.C#

O(n)

O(n)

O(n)

O(1)

O(nlog(l))

O(nlog(l))

O(nlog(l))

O(nlog(l))

O(nlog(l))

O(nl)

O(nl)

O(nl)

n =upper bound of unpartitioned inverted list size

l = total number of region types

Table
��� Worst case computation times for basic containment

against the lists produced by performing P���C�� regardless of whether the
parent or the child or both region types are requested by the user and re�
gardless of the number of parent types for any given type in the database�

With the partitioned inverted list structure� the engine can take full ad�
vantage of the extra hierarchical information to speed up query processing�
First of all� the computation cost for P�C� is constant� because the engine
needs only one access to the parent region index block to �nd the exact loca�
tion and size of the partitioned inverted list for P�C�� If the query requires
identifying the parent regions� however� the worst possible scenario is that
all instances of the child region occur within the parent type but could have
any other region types come in between them�

There is a special case� however� where �nding the parent regions only
takes a constant time� when the answer to the query is empty� In this
case� no children would satisfy the criteria and thus the search can be halted

without list merging� This is impossible to achieve for the simple inverted
lists because no such hierarchical information is built into the index�
Note that the worst case computation time for partitioned inverted lists

for most queries are the same� This is because multiway list merge and
selection trees are employed in all those cases�
In terms of space requirements� naturally� the partitioned inverted list

will require more than the simple inverted list� The extra information� child
region index block� will take at most l� units of space� Each unit is the o�set
into the actual inverted �le where the �rst entry in the sublist is stored�
In general� the total number of distinct region types will not be large� Even
applications as complicated as the electronic Oxford English Dictionary� have
only �fty to seventy di�erent tag types� Assuming each o�set takes about
four bytes� the whole table would take up around �k of memory or about
	 page in many systems� With the size of today�s primary and secondary
storage media� this is not of any burden� In fact� the system should be able
to load this table into the main memory at start up time and keep it there
for the duration of the program�
Another extra requirement that the partitioned inverted lists demand

is the creation of the parent�child index block at index building time� If the
regions are based on tags in the text� such as SGML� the information required
to build the blocks should be readily available during the scanning of the text�
Therefore� all that is added is the allocation of a bu�er in the main memory
for building the indexes and in the secondary storage for a permanent copy�
During the creation� the actual inverted list records along with their parent
type is written to the secondary storage in the order that they appear in
the document when scanning� After the whole text is scanned� those lists
will then have to be read back into the system� again� one list at a time� to
reorganize them according to the parent� The records will then be written
back to the secondary storage in blocks� ready for use� Thus� in terms of
computation time� every region record will be read in and written out once
more than for the simple inverted lists� However� this is only a one�time cost�
which is a small price to pay compared to the time that this will save during
retrieval�

�

Chapter �

Complex structure matching

��� Matching a chain

We have de�ned the basic operations in the previous section involving two
region types� These operations may su�ce for the requirement of a simple
search engine� but in a more sophisticated application� users are likely to ask
questions about more than two nested regions at once� Thus� it is important
to �nd out how di�erently the simple and partitioned inverted lists will be�
have under the increased complexity in queries� We call such queries with
three or more attributes a chain�
Let us consider a slightly more complicated form of query�

A���D��C� ���	�

This query describes a piece of text such that there is an instance of region
D that is the parent of some C region and is contained in an instance of A�
All collections of quali�ed As� Ds� and Cs are to be kept as the answer�
We have requested all three regions be kept in the result set because

from our experience in the previous section� the cost of determining one
region instead of two� with the exception of �nding the child in the case
of the partitioned inverted lists� is the same under most situations for both
structures�

����� Simple inverted list

There are two approaches to process this query� iteratively apply each oper�
ator or perform the multiway merge on all three attributes at the same time�

�

The exact procedure is not as simple as it sounds� Because of the direct con�
tainment relationship in D�C� we have to �lter out all the irrelevant regions
by comparing the C and D lists against all other region lists� This process
should not be done during the merge step because otherwise all inverted
lists in the system need to be loaded and compared against each potentially
valid A��D pair� That will cause excessive I�O if all lists cannot �t into the
memory simultaneously� which is fairly common in practice� Thus� the direct
containment query should be resolved before the multiway merge�
The merge process is an extension to the two attribute RegionMerge��

algorithm� If the direct containment relationships are already resolved� it
will only need to worry about general containments� The algorithm takes
�rst two successive lists in a chain� X and Y� and �nds a matching pair using
the technique shown in two way RegionMerge��� It then descends the chain
using Y and its descendent as the parameter� If a match is found� then the
program calls itself again� until the end of the chain is reached or no valid
descendents are found� The algorithm will terminate when one of the lists is
empty�

Algorithm �
�
� Recursive multiway merge� X and Y are inverted
lists� Upon �rst invocation� they correspond to the �rst two region types
written in the original query� This algorithm produces a number of inverted
lists that satisfy the chain�like query and is required to be kept�

RecursiveMerge�X� Y�
while �all lists are NONEMPTY�
while �NONEMPTY�Y� and headof�Y� � headof�X��
advance Y�

endwhile�
while �NONEMPTY�Y� and headof�X� � headof�Y��
if �Y is the last term in the chain�
output Y�
advance Y�
mark X�

else
if �RecursiveMerge�Y� next list in the chain��
mark X�

endif�
endif�

�

endwhile�
if �X is marked�
output X�
signal �� TRUE�

else
signal �� FALSE�

endif�
if �all lists are NONEMPTY�
while �NONEMPTY�X� and headof�X� a headof�Y��
advance X�

endwhile�
endif�
if �X is not the �rst list in the chain or not all lists are NONEMPTY�
return�signal��

endif�
endwhile�

end�

The above algorithm follows a depth��rst traversal in that it descends the
chain �rst to �nd proper containment and traverses upward when it discovers
whether it is possible to �nd an instance of the chain on this path� Every
time a comparison is invoked� either an element of some list is processed
�advanced� or a recursion occurs and a list is advanced before the return�
Thus� the computation time needed to solve query A���D��C� is O�n� plus
the time to calculate direct containment� where n is the upper bound for the
number of elements in a list�
The alternative way is to decompose the query into a sequence of smaller�

two element basic operations such that each component of the query is a basic
operation �rst� like the ones listed in Section
�
� The components are solved
individually using algorithms described in the previous section� The results
of each component are combined together in the end� using a multiway merge
as above but with shorter lists� to eliminate partially quali�ed regions�
The example query combines both the direct containment ��� and the

general containment ���� operators� It is quite logical to divide the query
into two parts� namely� A��D and D�C� Let us process this in sequence� We
will �rst resolve A��D using the basic algorithms described earlier� keeping
both As and Ds as the intermediate result� Using the Ds obtained in the
�rst step� we will evaluate D�C in our second step� Ignoring the ine�ciency

��

of the direct containment problem� we will obtain a set of Cs from the second
step� and possibly� a smaller set of Ds will be obtained as the result of this
evaluation� since some of the A��Dsmay not have a C as a child� If that is the
case� the query engine will have to go back to the �rst step and reevaluate
A��D using the As obtained in the �rst step and the Ds obtained in the
second step to eliminate unquali�ed selections�
There are several choices in determining which subquery should be pro�

cessed �rst� For example� a simple way is to process the subqueries in the
order that they appear in the original query� This is simple to implement and
easy to understand� If the probability of every query pattern is the same and
the data is distributed evenly� then on average� this method is going to work
as well as any others� However� in reality� most queries tend to repeat certain
patterns and most collections of data are not evenly distributed� Therefore�
other means of choosing the processing order are needed�
Generally� there are two criteria that could be taken into consideration

for selecting the processing order of the subqueries�

 Size of the participating lists �i�e�� frequency of the indexed element�

 Selectivity of the containment conditions

As the size of the inverted lists increase� so does the computation time to
process them� More importantly� the likelihood of creating large intermediate
results increases as well� Since the intermediate results are passed to the next
subquery as input� having larger intermediate results at the start can have a
ripple e�ect on the processing of all subsequent operations� Therefore� it is
better to choose smaller lists to be processed �rst� A list�s size is implicitly
stored in the inverted list structure �e�g�� by taking the di�erence between
two adjacent list header addresses and dividing by the list element size� and
can be retrieved without any di�culty�
However� it is possible to merge two large lists and produce small or

even empty intermediate results� That depends on the join selectivity or
how often those two structures appear within each other� This information
can be collected and calculated at index building time� and stored with each
inverted list�
In fact� the selection criteria mentioned above are very similar to the op�

timization issues in determining join order in conventional database systems�
Therefore� the strategies mentioned above are similar to those often applied
in conventional query optimization processes� However� unlike a normal join�

�	

we do not carry forward both sets of quali�ed regions for execution of the
subsequent subqueries �whereas tuples are joined together in the intermedi�
ate relations for a join�� This distinction makes containment queries more
similar to semijoins� where only partial information is passed on to the next
relation to save transmission cost �Ull���� Although� some of the techniques
used in semijoins might also be e�ective for the chains� they will not be
discussed further in this paper�
For simplicity� we will only incorporate the frequency of indexed terms

into our algorithm below for the simple inverted lists�

Algorithm �
�
� Three attribute merge� A�� D�� and C � are the results
produced by functions RegionMerge�� �page
�� and FindChildren�� �page

���

ThreeWay�A�D�C�
if �jAj � jCj�
RegionMerge�A� D��
FindChildren�D�� C��
if �D� has changed��
RegionMerge�A�� D���

endif�
else
FindChildren�D� C��
RegionMerge�A� D���
if �D� has changed�
RegionMerge�D�� C���

endif�
endif�

end�

There are possibly two phases in Algorithm ��	�� after the original query
decomposes into subcomponents� In the �rst phase� the engine will solve each
of the resulting subqueries in the order determined by list size� The second
phase starts after one pass through the sequence of the queries� If any of the
intermediate region sets �e�g�� D�� reduced in size� another pass through the
sequence of queries in reverse order is necessary to eliminate selections that
are no longer valid� In the second pass� the regions that are either requested
by the user or that will be used by the next basic operation in the sequence
are kept as the intermediate result� The total time required in the worst

��

case is the sum of computation time for executing RegionMerge�� twice and
FindChildren once� which turns out to be O��n nl� � O�nl�� However�
if indirect containment is the only type of operation involved in the original
query� then the computation time is O�n�� These times are independent of
whether we execute A��D or D�C �rst�
Now� let us look at a more general query� such as

for R� op� R� op� � � � opm�� Rm extract Ra�� Ra�� � � � � Rak �����

where the Ris are the regions involved in the query� k � m and opi can
be either a direct containment operator ��� or a general containment ����
operator� The region names listed after the keyword extract are the ones
that are requested by the user�
As before� using the simple inverted list structure� we can break down a

long chain query into a sequence of basic operations �rst in the form below�

R� op� R� ���
�

R� op� R� �����
��� �����

Rm�� opm�� Rm ���
�

We will order the the subqueries by the sum of their two region lists in
increasing order for the �rst pass� That way� in the absence of other informa�
tion� the size of the intermediate results may be expected to be minimized� Of
course� if the selectivity information is also available� it can be incorporated
into the calculation to further optimize the query evaluation� For example�
given a query

A��B�C�D��E��F �����

we can break it down into subqueries and order them as below according to
the sum of participating region list size�

B�C �����

D��E �����

A��B ���	��

E��F ���		�

C�D ���	��

�

However� on the second pass� all subqueries must be sequenced according to
their order in the original query from the point where the last subquery was
located in the �rst pass �e�g�� C�D�� In this case� the last subquery happens
to appear in the middle of the original query� then the second pass should be
broken into two phases� One starts at B�C and proceeds backward �towards
A��B� until no more regions are marked to its left� another phase starts from
D��E and proceeds forward �towards E��F � until no more regions are marked
to its right� Each phase would stop if the execution of the previous subquery
did not change the answer set� By reordering the second pass this way�
we have guaranteed that new information� if there is any� is always passed
to the subquery in the sequence� and avoided the possibility of performing
additional passes through the subqueries�
The algorithm is very similar to the ThreeWay function described above�

All we need to do is to change the outer if statement to a small routine that
orders the subqueries according to the sum of their input list sizes� The
computation time would then be the following�

with direct containment� O�m	 nl�
without direct containment� O�m	 n�

where m is the number of operations�
Note that the recursive merge function discussed earlier �page
�� can

also be used to solve any form of the chain� The preprocessing of direct
containment relationships still needs to be done� because if it does not� one
of the following situations would occur� First� if the processing of direct con�
tainment is done inside the recursive merge� then for every pair of possible
parent�child� we have to run through all other region lists to check for invalid
answers� That means loading every existing region list into the memory� Ob�
viously� this would require too much I�O and�or place tremendous demand
on main memory space� The second way is to perform the task after the
recursive merge is done� However� if any region types that are marked to be
kept as the answer occur after the last direct relationship in the query� the
algorithm will have to reexecute the merge down the chain again and then
go up the chain� after solving the direct relationship to eliminate dangling
regions� Another advantage of resolving the direct containment �rst is that
smaller lists are likely to be produced by the process� which saves computa�
tion time during the merge� The analytical run time of the RecursiveMerge
as applied here is exactly the same as with query decomposition� because
each recursive call corresponds to the execution of a decomposed subquery

��

in a forward sequence� and the back tracking corresponds to the backward ex�
ecution of the subqueries� However� one drawback with the RecursiveMerge
is that we cannot take advantage of the information on list size or selectivity�
Thus larger intermediate lists are more likely to result� leading to increased
running time�

����� Region lists partitioned by parent

With the partitioned inverted lists� we can� again� take advantage of the
hierarchical information when processing the chain queries�
First of all� we can check the original query to determine whether every

direct relationship described in it exists in the collection of text� For example�
if there does not exist a parent�based partitioned inverted list for D�C then
the remainder of Query ��	 �A���D��C�� would not need to be executed�
Secondly� the improved structure does not require a merge operation to �nd
a child nor does it require �ltering to �nd the parent� which makes direct
containment queries a lot faster�
The steps involved here to solve long chain queries �e�g�� Query ���� is

exactly the same as with the simple inverted lists� except that the basic
operations will be evaluated as described in Section
�
��� Both the recursive
and the decomposition algorithm can be adopted here� except that in the case
of recursive algorithms� no preprocessing of direct containment is needed�
Therefore� the computational complexity in the worst case is O�m	 n log l�
with or without direct containment operations�

����� Analysis and critique

Looking at the following summary� parent�based partitioned inverted lists
outperform the competition when direct containment is involved� and they
lose when it is not� However� it should be noted that if even one direct con�
tainment operation is involved in the original query� the partitioned inverted
lists should typically perform better�
Interestingly� the computation time for both structures grows at the same

rate from basic operations to chain queries� This results from the fact that
the way to divide the original queries and the selection of processing order
for the subqueries in both cases are the same�
Again� as a special case� there will be an additional gain for partitioned

inverted lists if the �rst operation in the original query is direct containment

��

and the parent is not required by the user� Unfortunately� this advantage
becomes less signi�cant in practice as the length of the chain grows�

O(mnlog(l))

Without Direct

Containment

Containment

With Direct

Queries

Chain Like Simple Inverted

Lists

O(mnl)

O(mn) O(mnlog(l))

Partitioned

Inverted Lists

m = number of operations in the original query

n = upper bound of unpartitioned inverted list size

l = total number of region types

Table ��	� Worst case computation times for chains

��� Matching a tree

Besides the simple nesting relationship� lateral� or sibling� relationships are
also present in structured text� These are best modelled by a tree� For
example� in some email systems �e�g�� pine�� saved email message headers are
arranged in di�erent sequence depending on whether they are for incoming
mail or outgoing mail� In particular� the order of sender and date �eld is
reversed for those messages �see Figure
�	�� Therefore� to �nd all incoming
email� we need only retrieve messages that have the sender �eld located before
the date �eld�
Pekka Kilpel!ainen has derived a query model relying on a single primitive

tree inclusion that deals with sibling relationships �Kil���� The idea is to
model both the structure of the database and the query as trees� to �nd an
embedding of the pattern into the database which respects the hierarchical

�

relationships between nodes of the pattern� The matching is done by deleting
intermediate nodes and then connecting their children to their parent� This
allows data independent queries to be issued� but in the worst case� the whole
database structure must be searched in order to �nd all matches �KM�
��
This structure also requires the text to be stored as tree structures where each
node records where its children are� This approach requires extra storage and
run�time space compared to single inverted lists for each region�
We will use the following notation in our discussion of tree�like queries

�BCK�����

P��A�� B�� ���	
�

P���A���B�� ���	��

The �rst query de�nes a particular text structure such that there is a
type A region that is indirectly contained in a region of type P and is also
followed by instances of region type B within that same P� All three regions
are requested in the result�
Similarly� Query ��	� requests all instances of text regions that satisfy

the following conditions� there exists a type A region that is followed by a
type B region� and both regions are children of �directly contained in� the
same P type text region�
In the following subsections� we will examine how simple inverted lists

and partitioned inverted lists by parent types deals with tree�like queries�

����� Simple inverted list

To solve the three attribute tree�like query� the engine will have to perform
a list merge using three inverted lists� namely� the lists for the regions P� A�
and B� We cannot merely decompose the query into basic operations� because
it is not possible to resolve the �followed by within ancestor� relationship
with only two attributes at a time� For example� query P��A��B�� can be
decomposed into the following steps�

	� perform P���A�

�� perform P ����B�

� perform P �����A��

��

�� resolve A��� followed by B �� when under the same P ��� instance

where X � represents the intermediate result produced by the previous opera�
tion involving X� As in step �� at least three lists are needed simultaneously
to solve any tree�like query�

Algorithm �
�
� Tree like merge� We will modify the two�way merge
algorithm to add on the capability of computing the �followed by� clause�

Followedby�A�B�
while �NONEMPTY�B� and �headof�B� � headof�A� or headof�B� a headof�A���
fB is before A� contains A� or is contained by Ag
advance B�

endwhile�
end�

Tree�P�A�B�
while �P� A� and B are NONEMPTY�
while �NONEMPTY�A� and headof�A� � headof�P��
advance A�

endwhile�
if �NONEMPTY�A� and headof�P� � headof�A��
Followedby�A�B��
if �headof�P� � headof�B��
while �headof�P� � headof�B��
output B�
LastB �� headof�B��
advance B�

endwhile�
while �NONEMPTY�A� and �headof�A� � LastB and headof�A� a LastB��
output A�
advance A�

endwhile�
mark P�

endif�
while �NONEMPTY�A� and headof�P� � headof�A�� fclean up rest of invalid Ag
advance A�

endwhile�
endif�

��

if �P is marked�
output P�

endif�
while �NONEMPTY�P� and headof�P� a headof�A��
advance P�

endwhile�
endwhile�
discard all remaining elements�

end�

Note that we performed the Followedby operation after a valid A type
descendent is found inside an instance of P� If a valid B instance is found� then
we will output all valid B instances inside that same P� It is guaranteed to be
correct because all instances of B following the �rst valid B will also follow
the same A and thus satisfy the condition imposed as long as it is inside the
same P� We can use the same trick to �nd all the valid As under that P as
long as it is followed by the very last B �represented by LastB�� It can be seen
from the algorithm that during the execution of any loop iterations� one list
element is removed from the input list� Thus� this still yields a linear time
algorithm in terms of the input size� Thus� the computation time is O�n��
The algorithm used to solve P��� A��� B�� is very similar to the one

used to solve P��A��B��� In fact� we can view the direct containment
relationship as a specialization of the general containment relationship� Thus�
anything that can be used for general containment can also be used on direct
containment� In this case� we will need to preprocess the direct containment
before executing the merge� just as we did for the chains�

Algorithm �
�
� Tree for direct containment� Let P �� A�� and B � be
the resulting lists produced by FindChildren for regions of type P� A� and B
respectively�

DirectTree�P�A�B�
FindChildren�P�A��
FindChildren�P ��B��
Tree�P ��� A�� B���

end�

Since FindChildren requires O�nl� time to run� and Tree takes O�n� time�
the computation complexity of this algorithm is O�nl�� With a more compli�
cated query which involves more than three region types and�or more than

��

two levels of tree structure� the computation time will grow accordingly� For
example� with a query such as

for R� � op� T�� op� T�� � � � � opm Tm� extract Ra�� Ra�� � � � � Rak ���	��

where the Ris are the region list involved in the query� a Ti can be either a
tree or a region list� and opi can be either a direct containment operator ���
or empty� which indicates that it is general containment� Ris listed after the
keyword extract are the ones that are requested by the user�
A chain is a special class of tree where all regions involved are nested

within each other� and there are no siblings� In other words� it is a one
branch tree� With that in mind� we can construct an algorithm that combines
the Tree algorithm used for three region tree and the RecursiveMerge for the
chain� We will modify the RecursiveMerge algorithm to add on the capability
of handling the �followed by� clause�

Algorithm �
�
� Recursive tree merge� X� Y are pattern trees of the
following form�

pattern�tree � f
list�of�region regions�
pattern�tree child�
pattern�tree sibling�
region last�
g

where regions is an inverted region list attached to each node in the pattern
tree� child is the subtree rooted at the �rst child of the current as stated in
the query� sibling is the subtree rooted at the �rst sibling of the current node
�to the right� as stated in the query� and last stores the value of last valid
region of the current type output�
For the sake of simplicity and ease of understanding� we will de�ne a few

utility routines for the recursive algorithm�

discardYbeforeX�X�Y�
while �NONEMPTY�Y�regions� and headof�Y�regions� � headof�X�regions��
advance Y�regions�

endwhile�
end�

��

The routine discardYbeforeX takes two pattern trees X and Y� and dis�
cards all regions in Y�s region list that start ahead of the top element in the
X�s region list�

discardXbeforeY�X�Y�
while �NONEMPTY�X�regions� and headof�X�regions� a headof�Y�regions��
advance X�regions�

endwhile�
end�

Similarly� this routine discards all regions at the front of the X inverted
list that end before the top element of the Y list�

discardYinX�X�Y�
while �NONEMPTY�Y�regions� and headof�X�regions� � headof�Y�regions��
advance Y�regions�

endwhile�
end�

The above routine is invoked when we determined that all regions of Y
that are contained by the top element of X are invalid� This situation would
occur when the last instance of Y�s sibling is found to be ahead of the current
�top� element of Y�s region list�

ProcessValidY�X�Y�
output Y�regions�
Y�last �� headof�Y�regions��
advance Y�regions�
mark X�regions�

end�

This routine is used to output a valid instance of Y region and at the
same time raise a �ag for the X region that contains it�

ProcessX�X�Y�
if �X�child � Y� fif Y is X�s �rst childg
if �X�regions is marked�
output X�regions�
signal �� TRUE�

�	

else
signal �� FALSE�

endif�
if �all lists are NONEMPTY�
discardXbeforeY�X�Y��

endif�
endif�
return�signal��

end�

Process X is invoked almost at the end of the recursive function to process
the top level node �i�e�� X� after all its siblings and children are processed
�i�e�� after all recursive calls are returned�� Notice that we will only output
the current top element of X�s region list because that is the only one that
can possibly be matched with the query pattern� We then advance the X list
until the top element of X ends after the top element of Y�s region list�
The following three algorithms� namely RecursiveTree� FindNextSibling�

and OutputTree are the ones that perform the major work� RecursiveTree
is the core of the algorithm that traverses the tree using depth��rst traversal
from left to right� trying to �nd one instance of the tree pattern in the
database� FoundSibling is the routine that RecursiveTree calls to process
siblings to the right of the current child node Y� Upon returning from the
FindNextSibling routine� all subtrees to the right of the current child node
Y should be processed �i�e�� either a match is found or it is impossible to
�nd a match under the current parent X�� The routine OutputTree is used
to output a subtree from right to left and bottom up� It is necessary because
RecursiveTree cannot output any branch if there are any other branch to
the right of it without �rst checking for a complete match� Therefore� after
traversing a branches and discovering a partial match� RecursiveTree will
have to backtrack and process the next branch without any output� Only
after the right�most leaf node of the tree is reached and a complete match is
found can we then start to output the regions�

OutputTree�X�Y�
discardYbeforeX�X�Y��
if �NONEMPTY�Y�regions� and headof�X�regions� � headof�Y�regions��
signal �� TRUE�
if �Y�sibling �� NULL�

��

OutputTree�X�Y�sibling��
endif�
while �NONEMPTY�Y�regions� and headof�X�regions� � headof�Y�regions��
if �Y�child �� NULL�
signal �� OutputTree�Y�Y�child��

endif�
if ��signal� and ��Y�sibling � NULL� or
�headof�Y�regions� � headof�Y�sibling�last�
and headof�Y�regions� a headof�Y�sibling�last����
ProcessValidY�X�Y��

else fsimply discard the top element of Yg
advance Y�regions�

endif�
endwhile�

else
signal �� FALSE�

endif�
return�signal��

end�

The task of the OutputTree routine is to print all valid matches within the
subtree rooted at X� Similar to the way chain works� we have to output the
last node of the tree �rst and then proceed from bottom up for every branch�
In addition� we must also output the elements from right to left to preserve
the followedby property� Therefore� when arriving at any child node �Y � in
the tree� we process its right sibling �rst� then its children� and �nally the
node itself� The value returned by this routine is used to indicate whether a
match is found with the current instance of X�

FindNextSibling�X�Y�
Followedby�Y�regions�Y�sibling�regions��
if �RecursiveTree�X� Y�sibling��
signal �� TRUE�
while �OUTPUTTING and headof�Y�regions� � headof�Y�sibling�last�

and headof�Y�regions� a headof�Y�sibling�last��
if �Y�child �� NULL�
signal �� OutputTree�Y�Y�child��

endif�

�

if �signal�
ProcessValidY�X�Y��

else fsimply discard the top element of Yg
advance Y�regions�

endif�
endwhile�

else
signal �� FALSE�

endif�
if �OUTPUTTING� fclean up rest of invalid Y�regionsg
discardYinX�X�Y��

endif�
return�signal��

end�

The above routine is used by the recursive algorithm both to �nd a match
�i�e�� will process the next appropriate node as soon as one valid partial
pattern up to the current node is found� and to output each sibling after
a match is found �i�e�� must print out all possible paths that matches the
pattern and no outputting is done�� The boolean OUTPUTTING is used to
di�erentiate those two states� We �rst locate the �rst sibling to the right of
the current child node Y � then call the RecursiveTree routine with the parent
X and the right sibling Y�sibling as the parameter� Upon returning from this
call� three things can happen� we may have found a complete match� or we
may have determined that no match can be found with the current path�
otherwise� a partial match is found with this branch of the tree� but there
are still parts of the query pattern that not been processed� In the �rst case�
we will output every Y that appears ahead of the last instance of its right
sibling� If we also need to match some children of Y � then we must traverse
the subtree rooted at Y as well to output the children for each instance of
Y � In the second case� we will simply return with the value of FALSE to
indicate that a new path needs to be sought� In the last case� a value of
TRUE will be returned instead when the function ends� so that the next
region in the query pattern can be processed� In the �rst case� the function
will always return TRUE because there are at least one match with the
current path�
RecursiveTree is the function �rst invoked to start this recursive algo�

rithm� X is the root of the original query tree� and Y is X�s left�most child

��

upon �rst invocation� After the some initialization� we start to compare
the parent X and the child Y regions� There are three possible cases when
comparing two regions�

	� X starts after Y

�� X contains Y � X starts before and ends after Y

� X ends before Y

Therefore� we start with eliminating the �rst case by calling discardYbeforeX�
In the second case� which is the one of interest� we may run into three possible
scenarios�

	� Y is the right�most leaf node in the tree �last term in the query�

�� Y is any other leaf node

� Y has children or siblings or both

Thus� for each Y �X� we must check for every situation listed above� If Y is
the right�most leaf node� we output Y �using ProcessValidY� and set the �ag
to indicate that a complete match is found� If Y is any other leaf node� then
we set the �ag to indicate a successful partial match and mark its parent X
for output� In the third case� we process Y �s children and sibling subtrees
in that order� Note that if we couldn�t �nd a match with the children� then
we can skip processing Y �s siblings and return to the caller� Upon returning
from this function� either a match is found for subtree rooted at X or no
match can be found and X is advanced to the next possible position�

RecursiveTree�X� Y�
while �all lists are NONEMPTY�
OUTPUTTING �� FALSE�
signal �� FALSE�
discardYbeforeX�X�Y��
if �NONEMPTY�Y�regions� and headof�X�regions� � headof�Y�regions��
signal �� TRUE�
if �Y is the last term in the tree�
while �NONEMPTY�Y�regions� and headof�X�regions� � headof�Y�regions��
ProcessValidY�X�Y��
OUTPUTTING �� TRUE�

��

endwhile�
else
if �Y�child �� NULL�
signal �� RecursiveTree�Y� Y�child��

endif�
if �signal and Y�sibling �� NULL�
signal �� FindNextSibling�X�Y��

endif�
if �signal�
mark X�regions�

endif�
endif�

endif�
signal��ProcessX�X�Y��
if �X is not the �rst term in the original query or not all lists are NONEMPTY

or X�child �� Y�
return�signal��

endif�
endwhile�

end�

Of course� whenever there are direct containment relationships presented
in the query� we have to process them �rst as we did for the recursive algo�
rithm for chains�

Since each node in the tree will be traversed twice� once to �nd a match
and once for output� for am�node tree� the computation time will beO��mn��
O�mn� for trees without any direct containment relationship� and O�mn
fnl� or O�n�m fl�� where f is the number of direct relationships�

����� Region lists partitioned by parent production

As with the chains� the parent�based partitioned inverted lists provide an
advantage over simple inverted lists when direct containment is involved�
By prechecking the satis�ability of all direct containment relationships� by
determining whether a particular partitioned inverted lists exists or not� the
algorithm can terminate in constant time if the answer set is empty� Based on
the same algorithms �e�g�� RecursiveTree�� the absence of direct containment

�

O(mnlog(l))

Without Direct

Containment

Containment

With Direct

Queries

Tree Like Simple Inverted

Lists

O(mnl)

O(mn) O(mnlog(l))

Partitioned

Inverted Lists

m = number of operations in the original query

n = upper bound of unpartitioned inverted list size

l = total number of region types

Table ���� Worst case computation times for trees

means that the total computation time would beO�mn log l� with partitioned
inverted lists�

����� Analysis and critique

In the previous two sections� we analyzed the processing behaviour of both
simple and parent�based partitioned inverted lists with more complicated
query patterns� namely tree�like queries� Table ��� summarizes the compu�
tation time with and without direct containment relationships�
It is interesting to note that the chart indicates the same execution time

as for chain�like queries� Chains are a special kind of tree� but the addi�
tional complexity added on by the siblings only increases the programming
complexity by a constant factor�

��� Application examples

We have thus far discussed the simple and partitioned inverted lists with
corresponding algorithms and analyzed their performance in terms of the

��

input list size� In this section� we illustrate the algorithms with a few practical
examples taken from the Oxford Advanced Learner�s Dictionary �Cow��� to
demonstrate the performance di�erence in those two structures for some live
data� There are �� distinct region types in OALD� and all regions are enclosed
between an opening tag and a closing tag �e�g�� �ent� and ��ent� marks
the boundary of an entry�� In total� there are

��
�
 tags in the online
OALD �see Appendix��
Let us start with a few simple queries� For example� in the OALD� a cross

reference takes several forms�

top
� indicates a cross reference to the �rst entry for top� and is encoded in
the source as �RFW�top�hn����hn���RFW�

mind�boggling�mind�� references to the compound mind�boggling un�
der the �rst entry for mind� That is encoded as �RFW�mind�boggling
�hw�mind�hn����hn���hw���RFW�

If we wish to �nd all cross references directly to words that have several
entries in the OALD� we will issue the query RFW�hn to avoid picking up
those references to compound forms� On the other hand� if we are interested
in all cross reference to words with multiple entries� regardless of the reference
form� then we will issue RFW��hn instead�
The columns in Table ��
 under the heading of input list size are the size

of input lists to the merge algorithm� Note that only the lists relevant to
the processing of query are shown in the cell� The columns under output
list size are size of lists produced by the algorithm� The number in bold
is the size of �nal result� The fourth major column in Table ��
a displays
information about the total number of lists and the total number of regions
involved in the �ltering process other than the lists involved in the current
direct relationship subquery� Since for direct containment� the algorithm
will �lter through all other region types� the number of �lter region types
are in fact the number of possible regions in the text subtracting two� That
region count is obtained by subtracting the original size of the inverted lists
in the subquery �i�e�� RFW and hn� from the total number of regions in the
text �i�e��

��
�
�� On the other hand the corresponding two columns in
Table ��
b show the number of partitioned inverted lists that need to be
manipulated to form virtual lists during merging�
With the simple inverted lists� solving RFW��hn� �general containment�

requires a straight two�way merge� and the cost is proportional to the sum

��

Subqueries
RFW hn

RFW..hn#

RFW.hn#

hn’RFW’

Input list size Output list size

of types # of regions

Filter list size

9,720 22,823 2,574 72 600,100

2,9179,720 22,823

RFW#..hn

RFW#.hn 2,574

2,917

9,720

9,720

22,823

22,823

72 600,100

Subqueries
RFW hn

RFW..hn#

RFW.hn#

hn’RFW’

Input list size Output list size

2,574

2,9179,720 22,823

RFW#..hn

RFW#.hn 2,574

2,917

9,720

9,720 22,823

ancestor descendent

of partitions involved

11 3

11

11

1

3

2,574

2,574

Cost

Cost

0

56,792

36,200

69,800

32,543

1,052,691

32,543

1,052,691

a) Input and output list sizes using simple inverted list structure

b) Input and output list sizes using partitioned inverted list structure

Table ��
� Performance comparison for basic containment query

��

of both input lists� which is �� ��� ��� ��
� On the other hand� solving
RFW�hn �direct containment� needs a �ltering process after the two�merge�
Since we are comparing the lists RFW � and hn� against every other region list
in the system� in the worst case� every element of those two lists is considered
�� times �i�e�� once for every other list used for �ltering�� For example� if we
load the �ltering lists in the order listed in Appendix C� then we will �rst
use list ALD� which has 	�� elements� and none of the elements in hn will be
eliminated� Next� we �lter through ALT � and again� both RFW and hn lists
are not reduced� In fact� nothing will be eliminated until we �lter with the list
hw� Hence� in the worst case� it is possible that nothing with be �ltered out
until we come to the last list� Of course� the algorithm will not compare the
elements of any remaining lists if one of the lists is exhausted� For example�
the list BTY only has one instance� and the chances are very high that not
all elements of RFW � and hn� will need to compared� However� if this BTY
region appears after all RFW and hn regions� then all comparisons still need
to be carried out� Therefore� the worst case cost of RFW�hn� is proportional
to ��� ��� ��� ��
� ��� �	� �� �	�� 	 ��
��� 	���
With the simple inverted lists� the cost of �nding child or parent is the

same� and the cost of �nding ancestor or descendent is the same� but it is
di�erent for partitioned lists� In Table ��
b� we know that solving RFW�hn�
�child� does not require any comparisons� but �nding RFW��hn �parent�
does require merging� Since� there are multiple sublists for RFW � we need to
create a virtual list� with a cost proportional to the logarithm of the number
of sublists� in order to facilitate the merge� Thus� RFW��hn has the cost of
�� ��� 	 log 		 �� ��� comparisons� This is approximately one third of the
cost as compared to the simple inverted lists� On the other hand� Finding
RFW���hn �ancestor� requires �� ��� 	 log 		 ��� ��
 	 log
 comparisons
which is a little more than twice the cost when compared to simple inverted
lists� Finding a solution for RFW��hn� is similar� but by taking advantage
of knowing that RFW�hn� is in the answer set� we can reduce the number
of comparisons to �� ��� 	 log 		 ���� ��
 � �� ���� 	 log � �� �	�� �� �	�
is added to the cost because we need to eventually merge the list RFW�hn�
into the calculated answer set�
Table ��� shows the list sizes for a chain�like query ent���lsen�GEO�

asking which entries contain at least one subsense that has a speci�c meaning
to some geographic region� In the table� the original query has been broken
down into components� and the rows are arranged in the order of execution�
Unlike Table ��
� the number under the heading input list size can be either

�

Output list size
Subqueries

Input list size

ent lsen GEO ent’ lsen’ GEO’

ent#..lsen# 22,283 12,635 3,952 12,635

lsen’#.GEO# 4,354 208207

ent’#..lsen’’ 3,952 207 162

Filter list size

of types # of regions

72 615,65412,635

Output list size
Subqueries

Input list size

ent lsen GEO ent’ lsen’ GEO’

ent#..lsen# 22,283 12,635 3,952 12,635

lsen’#.GEO# 208 208207

ent’#..lsen’’ 3,952 207 162

descendent

12,635

ancestor

of partitions involved

1 1

1 1

1 8

Total Cost

Total Cost

Costs

665,547

Costs

34,918

4,159

704,624

60,188

12,843

4,159

77,190

a) Input and output lists sizes using simple inverted list structure

b) Input and output lists sizes using partitioned inverted list structure

Table ���� Performance comparison for simple chain query

the original size of the lists or the intermediate list sizes produced from
previous operations�
Notice the input sizes for GEO using the two structures are very di�erent

for the subquery lsen��GEO� This is because we are using one partitioned
list with parent�based inverted lists instead of the whole list as with simple
inverted lists� The total number of comparisons is the sum of comparisons
for each step� For the simple inverted lists� ent���lsen��s cost is the sum of
two input lists� while lsen���GEO� have to go through the �ltering process�
again� Two numbers that are not shown in the table are the output list
size of lsen� and GEO after performing a two�way merge� They are ���
and �
� respectively� which are important in calculating the input list size
for the �ltering routine� Thus� the cost of lsen���GEO� is calculated as�
�	��

� ��
��� ���� �
��	 ��
	��
��� The last step� �ent����lsen����
again� has the number of comparisons equal to the sum of its input lists�
With the partitioned inverted lists� notice that except for the �rst sub�

query �ent���lsen��� the rest of the operations do not need any virtual list
manipulation� This is because the algorithm uses the output list of the pre�

	

vious operation as the input list� and those outputs are already sequenced�
As a result� the algorithm is just as e�cient as simple inverted list when
performing general containment later in the query �i�e�� ent����lsen���� We
can see that using the partitioned inverted lists drastically improves the per�
formance of this chain�like query� from ����
�� comparisons down to ��� 	��
comparisons� This shows the strength of parent�based partition for direct
containment and how there may be little or no degradation when dealing
with general containment�
With our algorithms� postings lists for words� can be treated as region

lists when processing queries� For example� if we want to �nd all deriva�
tives that are intransitive verbs� a query in the following form may be issued�
drivgp��PAT�"#I�� This query asks the engine to look for a derivative group
�drivgp� that directly contains a verb pattern �PAT �� which in turn directly
contains an intransitive verb symbol �"#I��� This query would o�cially pro�
cessed be if we have a parent�based partitioned inverted list structure� How�
ever� if we are using a simple inverted list index structure� then following
Consens and Milo �CM��� we could change the query to drivgp��PAT��"#I�
since we might know that any verb symbol must be directly contained in the
verb pattern tags �PAT �� and the processing of general containment is much
more e�cient than direct containment with this structure� In this case� the
cost of the query for simple inverted list is the sum of input lists PAT and
"#I� 	�� ��� �� ��� � �	� ���� and plus the cost of merging drivgp with
PAT �� 	�� ��� 	� ��� � 	�� ��
� and �nally� the cost of �ltering drivgp� and
PAT ��� �
�	 �

� 	 ��
�	
�� �

� �
�� Therefore� the total cost is
����
�
� and the �nal answer set includes 	
� instances of drivgp regions�
On the other hand� with partitioned inverted lists� we can take two par�

titioned lists drivgp�PAT� and PAT�"#I��� and merge them �rst �	� ���
�� ��� � �� ����� Then� use the resulting PAT � list and merge with drivgp�
The number of comparisons is as follows� ��� 	�� ��� � 	��

� Note that�
since drivgp only has one possible parent� no virtual tree is needed� The
total cost is �� ��� 	��

 � 	�� ��� comparisons� which is less than
$ of
the cost for simple inverted list�
Finally� if we are looking for the roots form for the above derivatives� we

would modify the query to ent�HWD�� drivgp�PAT �"#I���� where HWD is
the tag that encloses the headword �or the root� of an entry� The original
sizes of the ent list and HWD list are ��� ��
 and ��� ��� respectively� Both
lists have only one partition �ent has no parent because it is the outermost
structural unit�� Since both simple and partitioned inverted list use the

�

same algorithm for tree�like queries� except the need to preprocess direct
containment with simple list� we will just show the result for the partitioned
inverted lists� According to our RecursiveTree algorithm� the cost of the
query is the sum of all lists involved� adding the cost of maintaining any
virtual tree which happens to be zero in this case� For this particular query
the cost is ��� ��
 ��� ��� 	�� ��� 	� ��� �� ��� �
	�
	�� The �nal
result contains 	

 HWD regions�

Chapter �

Overlapping Lists

In the previous chapters� we have assumed that no overlapping regions are
allowed� In this chapter� we will show why we have chosen not to relax this
restriction�

��� Overlap of regions of distinct types

Allowing overlapping of regions of distinct types would enhance our inverted
lists model by making it able to process non�hierarchically structured text�
For example� a region list for pages will most likely overlap with another
region list for paragraphs in a publication document� Thus� allowing for
overlaps is a useful extension�

In fact� pattern matching against non�hierarchical texts can be handled
by some of the existing systems� such as PAT� Similarly� the simple inverted
lists structure and algorithms� general or direct containment� described in
this thesis will also not be e�ected by the addition of this characteristics�

However� when it comes to parent�based partitioned inverted lists� the
characteristics of one parent per child is lost� For example� in Figure ��	�
according to our de�nition of parent� both U� and V� would qualify as the
parent of Y�� We can resolve this potential problem if we store duplicates
of a single region in di�erent sublists of the inverted lists �e�g�� store Y� in
lists U�Y and V�Y�� Unfortunately� this increases the worst case list size from
O�n� to O�nl�� This will require more main memory to hold each list in
total� or we will need more I�O to process a single list� Furthermore� the
computation time for solving general containment relationships and �nding a

�

X 1

Y 1

V 1

U 1

Y 4

X

U

V

Y

X 2 X 3

Y Y 3 Y Y 6 Y 7 Y 8 Y 9

V 3

U 4U 3U 2

V 2

2 5

Figure ��	� Overlapping of distinct region types

parent with parent�based inverted lists change from O�n log l� to O�nl log l��
This degradation in performance extends to chain�like and tree�like queries
as well�

��� Overlap of regions of one type

We have seen that allowing overlapping for distinct region lists has caused
problems for partitioned inverted lists� Now� let us discuss what impact
results from overlapping within a single inverted list�
An overlapping inverted list� as is Figure ���� is an inverted list where the

regions marked by each element can overlap with each other without being
completely contained by one another� In other words� the only ordering
condition in an overlapping list is that each element region starts before the
next element starts and also ends before the next element ends� For example�
in an inverted list X � fx�� x�� � � � � xm��� xmg� X is an overlapping inverted
list if and only if f
i � m �xi � xi��� � �xi a xi���g� The observation
that such overlapping regions are not necessarily problematic is one of the
insights of GC�lists �General Concordance Lists� �CCB��� over PAT �ST�
��
Alternatively� Dao et al� �DSDT�
� introduced SC�lists �Simple Concordance
Lists� which extend GC�lists to allow self�nesting within a single type� We
examine overlapping with GC�lists only�

�

We start with the simple indirect containment query introduced in Chap�
ter
� A���D�� This was straightforward to implement with the non�overlapping
simple inverted lists� All that was required was a two�way region merge �page
���� However� processing overlapping lists using the same algorithm would
yield incorrect results because we cannot simply output and advance the de�
scendent list� any descendent might also be a valid descendent for one or
more of the next elements in the ancestor list� If we ignore this� we might
discard some valid ancestor regions� The following algorithm works around
the problem using a trick similar to that used for �followed by� and still
keeps the algorithm linearly bounded� The key here is to realize that if one
ancestor region is to contain any descendent regions that are also contained
by another ancestor region ahead of it in the list� it must contain the very
last descendent of that other ancestor region� Therefore� if we record what is
the last descendent found by each ancestor region� we can make a comparison
between the last descendent and the next ancestor to make sure no ancestor
regions get thrown out mistakenly�

Algorithm

�
� Overlapped list merge� Lists X� Y are inverted lists
allowing overlaps� This algorithm will produce two lists X � � X and Y � � Y
having the same property such that all elements in Y � are contained in one
or more elements of X � and all elements in X � contain one or more elements
of Y ��

OverlapMerge�X� Y�
while �X� Y are NONEMPTY�
while �Y is NONEMPTY and headof�X� � headof�Y��
output Y�
lastY �� headof�Y��
advance Y�

endwhile�
while �X is NONEMPTY and headof�X� � lastY and headof�X� �� headof�Y��
output X�
advance X�

endwhile�
while �X is NONEMPTY and headof�X� � headof�Y��
advance X�

endwhile�
if �head�X� �� headof�Y��

Y 1

2Y

X 3

X 2

U 2

X 1

Y 3 Y 4
Y 5

U 3U 1

X

U

Y

Figure ���� Example of �ltering with overlapping region lists

advance Y�
endif�
while �Y is NONEMPTY and headof�Y� � headof�X��
advance Y�

endwhile�
endwhile�
discard all remaining elements�

end�

In the above algorithm� we record the most recent valid descendent re�
gions �LastY �� and in the second inner while loop� check to see whether the
next ancestor region �X� that would otherwise be discarded also contains
LastY � If so� we output that X region and then advance� otherwise� we
simply advance the X list� This way we can maintain the computation time
to be the same as for non�overlapping inverted lists at O�n��
However� direct containment is not as simple� For example� to solve

the basic operation P�C� for non�overlapping inverted lists� we invoked a
�ltering process to eliminate regions that satisfy general containment� but
not direct containment� In Algorithm
�
�� in Chapter
� we �rst invoked
the general containment routine to �nd the answer to P��C and then �ltered
the intermediate results against all other region lists� Consider now the
overlapping regions� Since we have to process at least three region lists at
the same time during the �ltering process� the problem depicted in Figure
��� might occur� Let us use the algorithm for the simple non�overlapping
inverted lists to �lter out all region lists such as U that might come between

�

X and Y � Assume that theX and the Y lists are output of the OverlapMerge
routine such that all Xs contain some Y � and all Y s are contained by some
X� We can see that X� �U� � Y� in the �gure� in which case� the algorithm
would toss out Y� by advancing the Y list� However� we also notice that
X� � Y� and X� �� U�� Thus Y� is a valid child of X� and should be kept
as the answer� The region Y� would similarly get discarded by the normal
Filter routine� Therefore� we cannot simply discard any descendent regions if
a double containment �i�e�� Xi �Ui � Yi� is found� Instead� we must append
that Yi to another list T � Once Xi has processed all its descendents� �i�e��
when X� encounters Y��� we must process Xi�� starting with elements of T �
then the X list� If Ti happens to be a child of Xi��� then it will be added to
the output list and removed from the T list� Otherwise� either of two things
might occur�

 if Ti � Xi��� then remove Ti from the list� since it cannot be in any
other X region�

 otherwise� leave Ti intact� and process Ti���

This process continues� until the whole T list is processed� After that we
start again with the Y list� The way that all U lists are handled is similar
to the X list �i�e�� advance U if and only if Ti � Ui�� except that it never
outputs anything�
Thus� in the worst case� all elements of Y must be compared against all

elements of the rest of the inverted lists �i�e�� X and all U lists�� That would
drastically degrade the performance of the algorithm from O�nl� to O�n�l��
With the improvements that we made to the inverted list structure by

partitioning it based on parents� we again need to allow for repeated regions�
and thus not a partitioning� when overlaps are permitted� Again� we don�t
have any problem �nding the child of any region type� The time would
still be constant� However� once we want to �nd the parent of some region
type �e�g�� P��C�� we run into the same problem as we did with the simple
inverted lists� The problem here is manifested in a di�erent form though�
In the non�overlapping lists� the engine will �rst retrieve P�C� and create
a virtual list for all lists of type P � A two�way merge is then performed on
those two lists� because for each child Ci� there must be one and only one
parent region Pi� With the introduction of overlapping� this is no longer the
case� any Ci can be contained in more than one region of type P � Thus to
determine the valid parent regions� we have to go through the same �ltering

�

process as with the simple inverted list� Obviously� the computation time
would increase accordingly to O�n� log l�� Although� it is still better than
the simple inverted lists� the di�erence is incomparable to the magnitude of
increase in computation time over dealing with non�overlapping regions��
Patterns with chains would only make the problem worse� In fact� under

most circumstances� a simple chain that only asks for children of certain re�
gions� would still be ine�cient even for our parent�based partitioned inverted
lists� For example� to solve a chain of the form A��P�C�� we can either solve
A��P �rst� or solve P�C �rst� If we solve A��P �rst� then we have to merge
P �� the intermediate results with list C list� That would require �ltering�
If we process P�C �rst� then we have to keep P � in order to merge with A�
That means �nding the parent region� and again� �ltering would be required�
Furthermore� a query containing only direct containment relationship would
still cause ine�ciency because of the inability to avoid �ltering� Consider
Query P�C�D and the data as depicted in Figure ��
� Note that P� contains
both C� and C�� and in turn both C� and C� contains D�� In addition� D� has
a parent of type C �i�e�� C��� and C� has a parent of type P in P�� However�
U� comes between C� and P� and U� comes between D and C�� If we simply
take the parent�based partitioned list P�C and merge it with C�D� D� would
be included in the answer set� However� we can see from the �gure that it
should not be kept� The problem is that each D could be contained by more
than one C� Since D� has a parent of type C and C� is an ancestor of D�� we
have mistaken C� to be a valid parent of D�� Therefore� �ltering is required
at this stage to eliminate those false matches� Because chain�like queries are
a special class of tree�like queries� we can see that having overlapping lists
with tree patterns would only create more di�culty�
In this section� we analyzed the impact of adding the overlapping property

to the inverted lists of same type would have on all algorithms and struc�
tures� We showed that overlapping� except in limited applications� would
signi�cantly degrade the performance of our algorithms for both simple and
parent�based inverted lists whenever direct containment is present in a query�
The computation time turned from linear �O�nl� for simple and O�nl log l�
for parent�based inverted lists� to cubic �O�n�l� for simple and O�n�l� log l�
for partitioned inverted lists��

�

U 1

P 1

1D

C 1 C 2

P

D

C

U 2U

Figure ��
� Solving chain P�C�D� with overlapping regions

��

Chapter �

Conclusions and extensions

Exploitation of the text structure certainly adds another dimension to the
processing of text beyond string matching� Integrating conventional postings
with regions allows structural search to be performed alongside word and
phrase matching� Several forms of text structure query have been examined�
This provides the basis for a more powerful search engine that makes text
retrieval easier for the users�

In this thesis� we described and analyzed the algorithms that can be used
to handle general and direct containment queries for traditional simple region
lists� such as those used in the PAT system� and parent�based partitioned in�
verted lists� We started by comparing the algorithms and their performance
for basic operations that involve only two region types� We then extended
those basic algorithms and built some complex �e�g�� recursive merges� al�
gorithms in order to handle chain�like queries where three or more regions
types are linked in a query with strictly nested relationships �i�e�� general and
direct containment only�� The performance of the algorithms for both forms
of inverted structure are compared and analyzed� After that� a more compli�
cated form of query� tree�like query where hierarchical sibling relationships
such as Q�A�B��C�D�� E� are allowed� is used to compare the performance
of the two inverted list structures� Again� the performance is analyzed�

With all three forms of query� we have found that the simple inverted
lists are more suited for general containment relationships� where the level of
nesting is not important� However� as soon as direct containment relation�
ships are present in the queries� parent�based partitioned inverted lists came
out on top� With a relatively small amount of additional information in the
index� better algorithms can be found for some speci�c types of query�

�	

Finally� we discussed the properties of overlapping inverted lists� and
how it would impact on containment operations� Overlapping inverted lists
were �rst incorporated in the MultiText project �CCB��� to extend PAT
regions and make the query engine more �exible� Like PAT� the MultiText
system chose to ignore the direct containment relationship� and thus it did
not encounter the kind of problems that we have described here� The problem
is that when dealing with direct containment queries� allowing overlapping
in our inverted lists structures� simple or partitioned� would turn our linear
time algorithms into cubic time algorithms in terms of the input size�
We have used worst case analysis instead of average case in all of our

performance analyses� However� in most structure text documents� there are
rarely more than four or �ve possible parents for each region type� This was
illustrated by examining the actual structures in the OALD� as summarized in
Appendix C� Thus� the computation time of the partitioned inverted lists will
more typically be close to the simple inverted lists for general containment
query� and improve more signi�cantly for direct containment queries�
In this thesis� we have studied the e�ects of the inverted lists for con�

tainment queries� The e�ects of partitioning the inverted lists when queries
include non�containment operators such as those for proximity matching can
also be investigated further�
This thesis has dealt mainly with theoretical algorithm design� and more

practical experiments with real data should be conducted to validate the
model� Many factors such as memory size and cache replacement policy can
e�ect the performance of our algorithms� Care has to be taken to select a
suitable environment for e�cient performance�
It can be seen that the performance of either indexes are not very e��

cient when dealing with complex structural queries such as the tree� Further
modi�cation to the parent�based partitioned inverted lists might be possible
to deal with this type of query� However� we must be careful not to add too
much overhead for processing other type of queries when optimizing for this
one�
We have mentioned that join selectivity and list size can be used to de�

termining the join order when processing a chain�like query� Whether more
statistical information can be utilized for optimization purposes is a topic
worth further studying� Based on the similarity between the order to pro�
cess the subqueries and the join order problem� especially semijoin order�
it is worth further investigation whether other improvements based on join
algorithms can be incorporated into our model�

��

Finally� we have ignored the problem of creating and maintaining indexes�
Before our algorithms can be incorporated into production systems� these
aspects must also be addressed�

�

Appendix A

Basic de�nitions and notation

A�� De�nitions

ancestor the outer region involved in a containment relationship

child the inner region involved in a direct containment relationship

containment if the start of A occurs before or at the start of B and the
end of A occurs after or at the end of B� then A contains B

descendent the inner region involved in a containment relationship

direct containment when a region A contains a distinct region B� and
there does not exist a distinct region C that contains B and is contained
in A� we say that region A directly contains region B

parent the outer region involved in a direct containment relationship

partitioned inverted list a sequence of simple inverted lists� all for the
same region type and each list containing pointers to those regions
having parents of one speci�c type

region a contiguous piece of text of arbitrary length

siblings two distinct regions with the same ancestor and does not contain
each other

simple inverted list a contiguous sequence of pointers to regions of one
speci�c type� kept in order of position in the text

��

A�� Notations

a� b means a contains b� fa�s � b�s and a�e � b�eg

a� b means a contained by b� fa�s � b�s and a�e � b�eg

a�� b means a does not contain b� fa�s � b�s or a�e � b�eg

a�� b means a is not contained by b� fa�s � b�s or a�e � b�eg

a � b means a starts before b� fa�s � b�sg

a a b means a ends before b� fa�e � b�eg

A�� Basic Operations

A��D� means to return a list of type D regions such that each element of
that list is contained by some type A region

A���D means to return a list of type A regions such that each element of
that list contains some type D region

A���D� means to return a list of type A regions and a list of type D regions
such that each element of the type A list contains some element of the
type D list and each element of the type D list is contained by some
element of the type A list

P�C� means to return a list of type C regions such that each element of
that list is directly contained by some type P region

P��C means to return a list of type P regions such that each element of
that list directly contains some type C region

P��C� means to return a list of type P regions and a list of type C regions
such that each element of the type P list directly contains some ele�
ment of the type C list and each element of the type C list is directly
contained by some element of the type P list

��

Appendix B

Table of algorithms and

complexities

Here� we list the algorithms that was presented in this thesis� For each
algorithm there is a brief description of functionality� input� expected output�
and the computation complexity� The page numbers refer to the place where
the complete algorithm is discussed in detail�

B�� Two	way merge algorithm
page ���

function� Simple merging of two lists in main memory

input� Two lists of maximum length n sequenced in the same order

output� One list of maximum length �n with the same ordering as the input
lists

computation complexity� O�n�

B�� Multiway merge algorithm
page ���

function� Merging of more than two lists into a single ordered list

input� P ordered lists of length n

output� One list of maximum length nP with the same ordering as the input
lists

�

computation complexity� O�nP �

B�� Selection tree algorithm
page ���

function� A faster way of performing multiway merging by comparing pairs
of list instead of comparing one list against every other lists

input� P ordered lists of length n

output� One list of maximum length nP with the same ordering as the input
lists

computation complexity� O�n log P �

B�� Intersection algorithm
page ���

function� Find the intersection of two lists ordered by the same criterion

input� Two ordered lists of length n

output� One list of maximum length nP with the same ordering as the input
lists

computation complexity� O�n�

B�� Generalized two	way intersection algorithm

for text regions
page �
�

function� For any two ordered inverted lists of regions X and Y � the al�
gorithm will produce two similarly ordered X � and Y � such that all
elements in X � contains some element of Y � and all elements in Y � is
contained by some element of X �

input� Two ordered region lists of length n

output� Two ordered region lists of length at most n

computation complexity� O�n�

��

B�� Filtering algorithm
page ���

function� It takes the results of the Generalized two�way algorithm inter�
section for text regions of compare them against every other region list
in the system to satisfy the direct containment constraint�

input� Two ordered region lists of length at most n

output� Two ordered region lists of length at most n

computation complexity� O�nl� where l is the number of distinct region
types in the system

B�
 Finding Parent and Child algorithm
page

���

function� Given all partitioned inverted lists for regions of type P and C�
This algorithm �nds all P regions that directly contains C� Both P
and C are kept in the result

input� All partitioned region lists with total length at most �n

output� Two ordered region lists of length at most n each

computation complexity� O�n log�l��

B�� Find descendent algorithm
page ���

function� Given all partitioned inverted lists for regions of type A and D�
This algorithm �nds all D regions that is contained A

input� All partitioned region lists with total length at most �n

output� One ordered region lists of length at most n

computation complexity� O�n log�l��

��

B�� Find ancestor and descendent algorithm

page ���

function� Given all partitioned inverted lists for regions of type A and D�
This algorithm �nds all A regions that contains D� Both A and D are
kept in the result

input� All partitioned region lists with total length at most �n

output� Two ordered region lists of length at most n each

computation complexity� O�n log�l��

B��� Recursive multiwaymerge algorithm
page

���

function� Recursively perform the Generalized two�way algorithm intersec�
tion for text regions down a chain�like query� If there are direct contain�
ment relationships involved in the query� then they have to be resolved
before performing this algorithm

input� Two inverted lists for the �rst two attribute in the query and a data
structure that record what is the next attribute in the chain

output� A number of inverted lists of length at most n corresponding to the
query

computation complexity� O�nl� where l is the number of participating
lists in the query

B��� Three attribute merge algorithm
page

���

function� Execute a three attribute chain�like query by decomposing them
into two�attribute basic operations �rst and then execute each one in
decreasing order of the sum of participating lists size�

input� Three inverted lists of length n

��

output� Three inverted lists of length at most n

computation complexity� O�nl� with direct containment and O�n� with�
out direct containment

B��� Tree like merge algorithm
page ���

function� Added the capability of computing the �followed by� clause on
top of the Generalized two�way intersection algorithm for text regions
to solve a three attribute query that deal with hierarchical as well as
sibling relationships

input� Three inverted lists of length n

output� Three inverted lists of length at most n

computation complexity� O�n�

B��� Recursive tree merge algorithm
page

���

function� By combining the power of Recursive multiway merge algorithm
and Tree like merge� this algorithm will recursively perform three at�
tribute tree merge on the input tree structures

input� Two records of type pattern�tree where each record associates with
one inverted list and a pointer to the pattern�tree that associates with
the next attribute in the original query

output� A number of inverted lists of length at most n corresponding to the
query

computation complexity� O�mn� without direct containment andO�mnl�
with direct containment� where m is the number of attributes in the
query

��

B��� Overlapped list merge algorithm
page

���

function� Given two overlapping inverted lists X and Y � This algorithm
will produce two lists X � � X and Y � � Y having the same property
such that all elements in Y � are contained in one or more elements of
X � and all elements in X � contain one or more elements of Y �

input� Two overlapping inverted lists of length n

output� Two overlapping inverted lists of length at most n

computation complexity� O�n�

�	

Appendix C

Parent�based partition of

OALD structures

Region Parent region types�counts
Types

ALD comp	gp
�� compgp

	� driv	gp
�� drivgp
�	�

hwdgp
��� idmgrp
�� lsen

� nsen
���

vppgrp
�

ALT comp	gp
�� compgp
���� driv	gp
��� drivgp
	�	�

hwdgp
���� idmgrp
�� lsen
���� nsen
�
�

BTY DEF
�

CFR comp	gp
	� compgp
		� driv	gp
��� drivgp
����

hwdgp
��	�� isen
�� lsen
����� nsen
����

COM ALT
	� EXA
��� IPA
	��� IRF
����

IRT
�� MOD
�� VAR
�� VPR
��

YPR
	�� compar
��� compgp
�� driv	gp
��

drivgp
�� ent
�� hwdgp
��� ipr
	��

irr
��� irrgrp
��� isen
��� lsen
���

nsen

� sengp
�

COMP compgp
�
��

��

COMP	 comp	gp
���

DEF comp	gp
	
�� compgp

���� driv	gp
�	�� drivgp
��
	�

hwdgp
������ idmgrp

���� isen
�� lsen
�		�	�

nsen
	��	�� vppgrp
	���

DRIV drivgp
�	�
�

DRIV	 driv	gp
�
��

EXA UNO
��
� comp	gp
��� compgp
����� driv	gp
����

drivgp

���� hwdgp
����� idmgrp
��
�� isen
���

lsect
��� lsen
�
��	� nsect
�	�� nsen
������

vppgrp
�	���

GEO DEF
�� UNO
�� VAR
�� comp	gp
	��

compgp

��� driv	gp
��� drivgp
���� hwdgp
��	�

idmgrp
���� ipr

� irr
��� lsen
	���

nsen
����� vargrp
���� vppgrp
��

GLS DEF
�� EXA
��	�� UNO
�� comp	gp
��

compgp
��� driv	gp
��� drivgp
���� hwdgp
����

idmgrp
	
�� isen
�� lsect
	� lsen
�	
	�

nsect
�� nsen
����� vppgrp
��

GRA ALT
�� EXA
�� USE
	� VAR
		�

comp	gp
��� compgp
����� driv	gp
���� drivgp
��	��

hwdgp
����� idmgrp
�
� lsen
	���� nsen
����

HOM hwdgp
	���

HWD hwdgp
			��

IDM idmgrp
�����

ILL comp	gp
	� compgp
��� driv	gp
��� drivgp
���

ent
�� hwdgp
���� idmgrp
	�� lsen
���

�

nsen
��� vppgrp
��

INT DEF
	� IPA
�� comp	gp
�� compgp
�	��

driv	gp
��� drivgp
�	�� ent
�	� hwdgp
��	�

idmgrp
��� ipr
�� irr
�� isen
	��

lsen

�� nsen
�
�� vargrp
�� vppgrp
�

IPA ipr
	�
�

IRF irr
����

IRL IRF
�� irr
���

IRT ipr
���	

LET UNO
	� lsect
��� lsen
�	
��

MOD ALT
���� DEF
�� EXA
	� GEO
�����

GRA
�		�� INT
�� IRF
�� IRL
�	�

PAT
���� REG
���� RTY
�

� SBJ
����

USE
��� VAR
���

NUM isen
�	��� nsect
		�� nsen
����
� vsen
���

PAT comp	gp
��� compgp
���� driv	gp
�
� drivgp
�����

hwdgp
��

� isen
��� lsen
����� nsen
������

vppgrp
�

PNC IPA
�� IRF
�� comp	gp
�� compgp
�
�

driv	gp

	� drivgp
	��� hwdgp
���� idmgrp
	��

ipr
���� irrgrp
	��� lsen
��� nsen
����

vargrp
�� vppgrp
��

POS comp	gp
���� compgp
����� driv	gp
�
��� drivgp
�	��	�

hwdgp
	����� idmgrp
�� isen
�� nsen
	�

POS	 comp	gp
	� compgp
��� driv	gp
��� drivgp
���

��

REG EXA
	� GLS
	� IDM
�� VAR
��

comp	gp
	�� compgp
��	� driv	gp
��� drivgp
�	
��

hwdgp
�
�	� idmgrp
		��� lsen
���
� nsen
�����

vppgrp
��

RFW COM
	� comp	gp
	�� compgp
��
� driv	gp
	��

drivgp
	��� hwdgp
	�
	� idmgrp
�
��� isen
��

lsen

��� nsen
	���� vppgrp

�

RTY comp	gp
	�� compgp
���� driv	gp
	�� drivgp
	���

hwdgp
	���� idmgrp
�	� isen
�� lsen
����

nsen
	�
	� vppgrp
��

SBJ comp	gp
�� compgp
���� driv	gp
�� drivgp
��
�

hwdgp

�
� idmgrp
��� lsen
���� nsen
����

vppgrp
	�

SORT hwdgp
�	�� lsen
�

UNO ent
���

USE comp	gp
�� compgp
��� driv	gp
��� drivgp
��
�

hwdgp
���� idmgrp
���� isen
�� lsen
����

nsen
�	��� vppgrp
�	�

VAR vargrp
����

VPP vppgrp
����

VPR ipr
���

YPR ipr
		��

bold COM
���� DEF
�	� GLS
	� GRA
��

INT
��� MOD
	� RFW
�� USE
�	

comp	gp compgp
�
�� drivgp
���� ent
	�

��

compar comp	gp
�� compgp
�� driv	gp
	� drivgp
��

hwdgp
��� isen
�� lsen
�� nsen
�

compgp ent
�
��

driv	gp compgp
	�	� drivgp
��
�� ent
	�

drivgp ent
�	���

ent none
			��

form UNO
����� lsect
��� nsect
���

hn RFW
	���� UNO
�� hw
���

hw RFW
��	�

hwdgp ent
			��

idmgrp hwdgp
�� isen
���
�

ipr COM
	� COMP
	� DEF
��� EXA
��

GLS
�� IDM
	� IRF
�� MOD
	�

UNO

�� USE
	� VAR
�� comp	gp
���

compgp
��	� driv	gp
���� drivgp
����� hwdgp
	���	�

idmgrp
��� irr
��
� lsen
�� nsect
	�

nsen
��� vargrp
���

irr irrgrp
����� vargrp
�

irrgrp comp	gp
�� compgp
	��� driv	gp
�� drivgp
����

hwdgp
����� lsen
�	� nsen

�� vppgrp
�

isen comp	gp
�� compgp
���� driv	gp
�� drivgp
����

hwdgp
	���� lsen
�� sengp
��

italic CFR

� COM

��� DEF
���� GEO
��

GLS
	�� GRA

�� ILL
�
�� INT
�
�

�

IRF
�� MOD
���� RTY
�� UNO
����

USE
	���� VAR
�� VPP
�� lsect
�
�

nsect

�

lsect UNO
�� nsect
��

lsen comp	gp
�	� compgp
���� driv	gp
��� drivgp
�	��

hwdgp
����� idmgrp
���� nsen
����� vppgrp
�			

nsect UNO
		�

nsen comp	gp
	�� compgp
����� driv	gp
���� drivgp
��

�

hwdgp
	��
�� sengp
		�� vppgrp
�

pos RFW
�

ps RFW
���

roman CFR
�� EXA
	
� IRF
�� MOD
���

RFW
��� VAR
	� VPP
�

sengp hwdgp

�

senlb sengp

�

smcaps BTY
�� COM
��� DEF
���� INT
��

UNO
�� USE
��� nsect
�

sn RFW
���� hw
	�

sup COM
	�� DEF
���� EXA
��� GLS
��

INT
�� UNO
�� USE
��� nsect
���

vargrp comp	gp
	�� compgp

	�� driv	gp
��� drivgp
����

hwdgp
���
� idmgrp
��� isen
�� lsen
��	�

nsen
��	� vppgrp
�

vpar vsen
���

��

vppgrp vpar
����� vsen
��	�

vsen compgp
�� drivgp
���� hwdgp

�	� lsen
	�

sengp
��

��

Bibliography

�AB��� H�D� Anderson and P�B� Berra� Minimum cost selection of sec�
ondary indexes for formatted �les� ACM TODS� ��	��
�����
March 	����

�BBT��� G� Elizabeth Blake� Tim Bray� and Frank Wm� Tompa� Shorten�
ing the oed� Experience with a grammer�de�ned database� ACM
Transactions on Information Systems� 	��
���	
��
�� July 	����

�BCD���� G�E� Blake� M�P� Consens� I�J� Davis� P� Kilpel!ainen� E� Kuikka�
P��%A� Larson� T� Snider� and F�W� Tompa� Text�relational
database management systems� Overview and proposed sql ex�
tension� Technical Report CS������� University of Waterloo� June
	����

�BCK���� G�E� Blake� M�P� Consens� P� Kilpel!ainen� P��%A� Larson�
T� Snider� and F�W� Tompa� Text�relational database man�
agement systems� Harmonizing sql and sgml� In G� Goos and
J� Hartmanis� editors� Proceeding of the First International Con�
ference� ADB���� pages �
������ Springer�Verlag� June 	����

�BYN�
� Ricardo Baeza�Yates and Gonzalo Novarro� Integrating contents
and structure in text retrieval� SIGMOD RECORD� ���	��
�����
March 	��
�

�C���� Alfonso� F� C�ardenas� Analysis and performance of inverted data
base structures� Communications of the ACM� 	�������
��

�
May 	����

�CCB��� Charles L� A� Clarke� G� V� Cormack� and F� J� Burkowski� Fast
inverted indexes with on�line update� Technical Report CS�������

��

University of Waterloo Computer Science Department� Novem�
ber 	����

�CCB��� Charles L� A� Clarke� G� V� Cormack� and F� J� Burkowski� An
algebra for structured text search and a framework for its imple�
mentation� The Computer Journal�
��	���
��
� 	����

�CM��� Mariano P� Consens and Tova Milo� Optimizing queries on �les�
SIGMOD Record� �
����
�	�
	�� June 	����

�Cow��� A� P� Cowie� editor� Oxford Advanced Learner�s Dictionary� Ox�
ford University Press� fourth edition� 	����

�DL
�� D� R� Davis and A� D� Lin� Secondary key retrival using an ibm
�����	
�	 system� Communications of the ACM� �������
���
�
April 	�
��

�DSDT�
� Tuong Dao� Ron Sacks�Davis� and James A� Thom� Index�
ing structured test for queries on containment relationships� In
Proceedings of the �th Australasian Database Conference� Mel�
bourne� Australia� January 	��
�

�Fal��� Christos Faloutsos� Access methods for text� ACM Computing
Surveys� 	��	�������� March 	����

�FBY��� William B� Frakes and Ricardo Baeza�Yates� editors� Information
Retrieval� Data Structures � Algorithms� Prentice Hall� 	����

�GBYS��� G� H� Gonnet� R� A� Baeza�Yates� and T� Snider� New Indices for
Text� PAT Trees and PAT arrays� chapter �� page

� In Frakes
and Baeza�Yates �FBY���� 	����

�Ger�
� Brenda Gerrie� Online Information Systens� use and operating
characteristics� limitations� and design alternatives� Information
Resources Press� Arlington� Virginia� 	��
�

�Gol��� C� F� Goldfarb� The SGML handbook� Oxford University Press�
	����

�Gon��� Gaston H� Gonnet� Handbook of Algorithms and Data Structures�
Addison�Wesley� 	����

��

�GT��� Gaston H� Gonnet and Frank Wm� Tompa� Mind your gram�
mer� a new approach to modelling text� In Peter M Stocker
and William Kent� editors� Proceedings of the Thirteenth Inter�
national Conference on Very Large Data Bases� pages

��
�
�
Morgan Kaufmann Publishers Inc�� September 	����

�Kil��� Pekka Kilpel!ainen� Tree Matching Problems with Applicaitons to
Structured Text Databases� PhD thesis� University of Helsinki�
November 	����

�KLMN��� Pekka Kilpel!ainen� Greger Lind�en� Heikki Mannila� and Erja
Nikunen� A structured document database system� In R� Furuta�
editor� Proceedings of the International Conference on Electronic
Publishing� Document Manipulation � Typography� pages 	
��
	�	� Cambridge University Press� September 	����

�KM�
� Pekka Kilpel!ainen and Heikki Mannila� Retrieval from hierarchi�
cal texts by partial patterns� In Edie Rasmussen Robert Korfhage
and Peter Willett� editors� Proceedings of the Sixteenth Annual
International ACM SIGIR Conference on Research and Develop�
ment in Information Retrieval� pages �	������ 	��
�

�Knu�
� Donald E� Knuth� The Art of Computer Programming� volume
�
Addison�Wesley Publishing Company� Inc�� 	��
�

�LC��� G� S� Liu and H� H� Chen� Parallel merging of lists in database
management system� Information Systems� 	
�������� 	����

�Lef
�� David Lefkovitz� File Structures for On�line Systems� Spartan
Books� N� Y�� 	�
��

�Loe��� A� Loe�en� Text databases� A survey of text models and systems�
SIGMOD RECORD� �
�	�����	�
� March 	����

�Lum��� V� Y� Lum� Multi�attribute retrieval with combined indexes�
Communications of the ACM� 	
�		��

��

�� Nov� 	����

�Sal
�� Gerard Salton� Automatic Information Organization and Re�
trieval� McGraw�Hill� New York� 	�
��

�	

�Sal��� Gerard Salton� Dynamic Information and Library Processing�
Prentice�Hall� Inc�� Englewood Cli�s� New Jersey� 	����

�SM�
� G� Salton and M� J� McGill� Introduction to Modern Information
Retrieval� McGraw�Hill Computer Science Series� McGraw�Hill�
NY� 	��
�

�ST�
� Airi Salminen and Frank W� Tompa� Pat expressions� an algebra
for text search� Acta Linguistica Hungarica� �	�����
�
� 	��
�

�ST�
� Airi Salminen and Frank Wm� Tompa� Grammars for mod�
elling information in text� Centre for The NewOED and Text
Research� University of Waterloo� Unpublished� 	��
�

�Sta��� Craig Stan�ll� Partitioned posting �les� A parallel inverted
�le structure for information retrieval� In Proceedings of the
Thirteenth Annual International ACM SIGIR Conference on Re�
search and Development in Information Retrieval� pages �	
�����
	����

�Tom��� Frank Wm� Tompa� What is �tagged� text& In Fifth Annual
Conference of the UW Centre for the Oxford English Dictionary�
pages �	��
� September 	����

�Ull��� Je�ery D� Ullman� Principles of database and knowledge�base
systems� volume � of Principles of computer science series� Com�
puter Science Press� 	����

�Wie��� Gio Wiederhold� File Organization for Database Design�
McGraw�Hill Inc�� 	���� multi�attribute partial match�

�WMB��� Ian H� Witten� Alistair Mo�at� and Timothy C� Bell� Managing
Gigabytes� Van Nostrand Reinhold� 	����

��

