
A Method of Program Understanding using Constraint

Satisfaction for Software Reverse Engineering

by

Steven Woods

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo� Ontario� Canada� ����

c�Steven Woods ����

I hereby declare that I am the sole author of this thesis�

I authorize the University of Waterloo to lend this thesis to other institutions or

individuals for the purpose of scholarly research�

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or by other means� in total or in part� at the request of other institutions or individuals

for the purpose of scholarly research�

ii

The University of Waterloo requires the signatures of all persons using or photocopying

this thesis� Please sign below� and give address and date�

iii

Abstract

The process of understanding a source code in a high�level programming language is a

complex cognitive task� The provision of helpful decision aid subsystems would be of great

bene�t to software maintainers� Given a library of program plan templates� generating a

partial understanding of a piece of software source code can be shown to correspond to the

construction of mappings between segments of the source code and particular program

plans represented in a library of domain source programs �plans	� These mappings can

be used as part of the larger task of reverse engineering source code� to facilitate many

software engineering tasks such as software reuse� and for program maintenance�

We present a novel model of program understanding using constraint satisfaction�

The model composes a partial global picture of source program code by transforming

knowledge about the problem domain and the program structure into constraints� These

constraints facilitate the e
cient construction of mappings between code and library

knowledge� Under this representational framework� earlier heuristic approaches to pro�

gram understanding may be uni�ed� contrasted� and compared�

We describe an empirical study which demonstrates the feasibility of our model in

the program understanding subtask of partial local explanation� In addition� we incor�

porate this local model into the larger task of combining these local explanations into a

coherent global picture of the code� While many heuristic global models are possible� we

describe an encompassing structure and demonstrate� through a careful depiction of the

algorithm and several domain examples� how constraint satisfaction o�ers a rich paradigm

for exploiting both library and program structural constraint information� One primary

advantage of the constraint satisfaction paradigm �CSP	 is its generality� many previous

program understanding e�orts can be more easily compared� Another advantage is the

improvement in search e
ciency using various heuristic techniques in CSP�

iv

Acknowledgements

As with any work of this size� many people must be acknowledged for their concern�

interest and e�orts on my behalf� Much of the work presented in this thesis has resulted

from collaborations with Dr Qiang Yang �University of Waterloo	 and Dr Alex Quilici

�University of Hawaii	� In particular I would like to thank Qiang for literally hundreds

of hours of conversations on many topics� several of which actually included program

understanding
 As well� thank you Qiang for your continuous mentoring and encourage�

ment without which this thesis would never have been completed� Thanks Alex for your

interest in the application of some of my ideas to your previous work� and for encourag�

ing a very successful� ongoing collaborative e�ort to extend the possibilities of program

understanding�

To my Waterloo Ph�D� committee members� Drs Robin Cohen� Grant Weddell and

Rick Kazman� thank you for frequently �nding time to discuss related aspects of your

work and for many helpful suggestions and criticisms of my wanderings� Thank you to

my external examiners� Drs Rudolph Seviora �University of Waterloo� Computer Engi�

neering	� and Hausi M�uller �University of Victoria	 for taking the time to read my thesis

and o�er speci�c and valuable observations� Drs Peter van Beek �University of Alberta	�

Josh Tenenberg �University of Indiana	� Jim Ning �Arthur Andersen Consulting	 and

Premkumar Devanbu �AT�T Bell Labs	 all receive my thanks for their discerning com�

ments� pointers� and references which I have undoubtedly incorporated without citation

into this thesis� Thank you to Drs Martha Pollack �University of Pittsburg	� Sandra

Carberry �University of Delaware	� and Robert Holte �University of Ottawa	 for o�ering

their valuable insight and encouragement on early aspects of my work�

During the course of my �second	 tenure as a graduate student I have received sub�

stantial �nancial and equipment support from a variety of groups� all of whom I would like

v

to acknowledge� In particular� thanks to the Natural Sciences and Engineering Research

Council of Canada �NSERC	 for two years of valuable support� In addition� thank you

for continuous monetary and administrative support from the University of Waterloo De�

partment of Computer Science and the Information Technology Research Centre �ITRC�

Waterloo	� Special mention to the Intelligent Software Group �ISG	 of Simon Fraser

University� and the Department of Electrical Engineering of the University of Hawaii for

providing me with both computer support and space to work during my visits�

Portions of the work in this thesis evolved out of related work I undertook while em�

ployed with the Commonwealth Scienti�c and Industrial Research Organization �CSIRO	�

Division of Information Technology in Canberra� Australia and the Department of Na�

tional Defence� Defence Research Establishment Valcartier �DREV	 in Qu�ebec� Canada�

Thank you to the Spatial Information System and Tactical Information Fusion research

groups respectively for providing interesting and dynamic work environments�

The University of Waterloo is blessed with tremendous administrative sta� who take

an unprecedented interest in helping graduate students with a never�ending stream of

di
culties� I owe debts to them all� however� I would like to especially thank Wendy Rush

for going far above and beyond in helping me with the complicated task of submitting

and getting approvals for various phases of this thesis� and Jane Prime for helping me

untangle the web of administration actually required to graduate�

Several members of the Logic Programming and Arti�cial Intelligence Group �LPAIG	

from the University of Waterloo merit special mention for their willingness to talk at all

hours of the day and help with the inevitable� arcane and unsolvable problems � technical

and otherwise� Thanks for all your help Stephanie and Toby � I guess all of LPAIG owes

a special thank you to the folks at the Grand China for so many wonderful meals
 Several

fantastic friends put up with me �and in fact� put me up	 during my often hectic Ph�D�

pursuit� Thank you for everything ��� especially Ruth� Megan� Kelly� Wendy and Bart�

vi

My parents Dorothy and Frank have been supportive through all of my endeavours and

I can�t begin to thank them enough for all of their patience� love� and encouragement over

all the years� Last and most importantly� I owe a tremendous debt to my closest friend

and co�conspirator � my �anc�ee� Kirsten Wehner� Thank you for not only reading� editing�

listening� and o�ering insightful suggestions in response to hours of mostly unintelligible

and always confusing techno�babble� but also for retaining both your sanity and mine

during what has been an exciting but also di
cult and trying adventure

It should be clearly noted that portions of this work have been published by the

author and collaborators prior to the delivery of this dissertation� While it is impos�

sible to localize this material speci�cally within the thesis� the following publications

cover most of Chapters �� �� and preliminary work extended in Chapters �� �� and

�� �Woods and Yang� ����b�� �Woods and Yang� ����a�� �Woods and Yang� ����a��

�Woods and Quilici� ����a�� �Woods and Quilici� ����c�� �Quilici et al�� ����� and

�Woods and Quilici� ����b��

vii

Dedication

��� Software entities are more complex for their size than perhaps any other

human construct� because no two parts are alike ��� �Brooks� ����� p� ����

Man with Cuboid� M�C� Escher� �����

��� Yesterday�s complexity is tomorrow�s order� The complexity of molecu�

lar disorder gave way to the kinetic theory of gases and the three laws of

thermodynamics� Now software may not ever reveal those kinds of ordering

principles� but the burden is on you to explain why not� I believe that some�

day the �complexity� of software will be understood in terms of some higher

order notations ��� Steve Lukasik� �Brooks� ����� p� ����

For Kirsten� in all your complexity ���

viii

Contents

� Introduction �

��� Software Engineering and Program Understanding Goals � � � � � � � � � � �

��� A Brief Look at Program Understanding �

��� My Approach to Modeling Program Understanding � � � � � � � � � � � � � �

��� Program Understanding and Arti�cial Intelligence � � � � � � � � � � � � � �

��� Primary Research Assumptions and Context � � � � � � � � � � � � � � � � � ��

����� A Tool�based Vision of Program Understanding � � � � � � � � � � � ��

����� Software Repository ��

����� Procedural Software and Plans ��

����� Program Plan De�nition ��

����� Software Structure�Analysis Tools � � � � � � � � � � � � � � � � � � ��

����� Phases of Analysis ��

������� Empirical Analysis ��

����� Global Analysis ��

��� Thesis Outline ��

ix

I Foundations ��

� The Understanding Process ��

��� Software Engineering and Program Understanding � � � � � � � � � � � � � ��

����� Software Engineering� an attempt at de�nition � � � � � � � � � � � ��

����� Reverse and re�engineering ��

����� Understanding ��

��� Program Understanding Methodologies ��

����� An illustrative example of program understanding � � � � � � � � � ��

����� A Review of Past Program Understanding Work � � � � � � � � � � ��

������� The Programmer�s Apprentice � � � � � � � � � � � � � � � ��

������� Wills� Graph Parsing Method � Graspr � � � � � � � � � ��

������� Concept Recognizer � � � � � � � � � � � � � � � � � � ��

������� Decode � Quilici�s Memory�based Method � � � � � � � � ��

������� UnProg � Hartman ��

����� Visualization of Software Structure � � � � � � � � � � � � � � � � � � ��

����� My Two�Phased View of Program Understanding� Local and Global ��

� Plan Recognition ��

��� The Relation between Plan Recognition and Program Understanding � � � ��

����� Software Engineering and Planning � � � � � � � � � � � � � � � � � � ��

����� Motivation and Introduction ��

����� The Plan Recognition Paradigm ��

����� Program Understanding Recalled ��

����� Program Understanding as Plan Recognition � � � � � � � � � � � � ��

����� Comparing PR and PU ��

����� Dimensions of Comparison ��

x

����� Comparative Summary of PR and PU � � � � � � � � � � � � � � � � ��

����� Looking Ahead� Adapting PR for PU � � � � � � � � � � � � � � � � ��

II Modeling Framework ��

� The Constraint Satisfaction Paradigm ��

��� Motivation and Background ��

��� A Simple Example ��

��� CSP Solution Approaches ��

����� A naive solution� Generate�and�Test � � � � � � � � � � � � � � � � � ��

����� Local Consistency ��

������� Simple or Node Consistency � � � � � � � � � � � � � � � � ��

������� Arc Consistency ��

����� Combining Generation and Constraint Propagation � � � � � � � � � ��

����� Backtrack�based Algorithms ��

����� Hybrids of Backtracking and Propagation � � � � � � � � � � � � � � ��

������� Intelligent Backtracking ���

������� Heuristic extensions to the search process � � � � � � � � � ���

����� Local Search ���

������� Locality Heuristics in Spatial Problems � � � � � � � � � � ���

� Understanding as Constraint Satisfaction ��	

��� Introduction ���

��� CSPs for Two Phases of Program Understanding � � � � � � � � � � � � � � ���

����� Partial Local Explanation as MAP�CSP � � � � � � � � � � � � � � � ���

��� Program Understanding as a CSP ���

����� Concept Recognizer Program Understanding � � � � � � � � � � ���

xi

����� An Initial CSP Framework ���

��� Heuristic Program Understanding as a CSP � � � � � � � � � � � � � � � � � ���

����� Decode�s Heuristic Approach to Program Understanding � � � � � � ���

������� Representation ���

������� Control ���

����� Decode�s Approach to Program Understanding as a CSP � � � � � ���

��� An Example of MAP�CSP In Action ���

��� Some Comparative Experiments ���

����� Experimental Description ���

����� Methodologies Tested ���

������� MAP�CSP ���

������� Memory�CSP ���

����� Decode and Concept Recognizer Experimental Results and

Discussion ���

����� Summary of Results and Analysis � � � � � � � � � � � � � � � � � � ���

��� Conclusions ���

III Partial Local Explanation ���

 Partial Local Explanations �MAP�CSP
 ���

��� Program Template Recognition Model ���

��� Complexity Issues ���

������� Program Template Matching is NP�hard � � � � � � � � � ���

������� The Program Template Matching Problem � � � � � � � � ���

������� Program Template Matching is NP�hard � � � � � � � � � ���

����� MAP�CSP and Search ���

xii

� MAP�CSP Experimental Results ���

��� Source Data and Program Plans ���

����� Program Plan Templates ���

����� Generated Examples ���

����� Problem Instances ���

����� Experimental Results ���

������� Detailed Individual Results � � � � � � � � � � � � � � � � � ���

������� Comparative Results ���

����� Implications for Program Understanding Research � � � � � � � � � ���

����� Conclusions ���

IV Global Explanation ���

� Managing Global Explanations �PU�CSP
 �	�

��� Overall Understanding Model ���

��� PU�CSP Complexity Issues ���

����� Simple Program Understanding Problem � � � � � � � � � � � � � � � ���

������� The Modeling Process ���

����� NP�hardness Proof ���

����� Applicability of Local and Global Strategies � � � � � � � � � � � � � ���

����� Applying Local Constraint Propagation � � � � � � � � � � � � � � � ���

������� A Simple PU�CSP Example using Local Constraint Prop�

agation ���

��� The Modeling Process ���

����� General Hierarchical Constraint Satisfaction Model � � � � � � � � � ���

������� Hierarchical Domain Representation � � � � � � � � � � � � ���

xiii

������� And�Or Arc�Consistency Algorithms � � � � � � � � � � � ���

����� Hierarchical CSP and Program Understanding � An Example � � � ���

������� Downward Hierarchical Revision � � � � � � � � � � � � � � ���

������� Upward Hierarchical Revision � � � � � � � � � � � � � � � ���

����� One Uni�ed Algorithm for Program Understanding � � � � � � � � � ���

������� Algorithm Understand Explanation � � � � � � � � � � � � ���

������� Algorithm MergeRevise Explanation � � � � � � � � � � � � ���

	 Hierarchical CSP� A Detailed Solution ���

��� A Generic Hierarchical Example ���

��� My Hierarchical Arc�consistency Algorithm � � � � � � � � � � � � � � � � � ���

����� Algorithm Apply ���

������� Informal Description ���

����� Algorithm Revise ���

������� Informal Description ���

������� Aggressive Revision Description � � � � � � � � � � � � � � ���

������� Stepped Revision Description � � � � � � � � � � � � � � � � ���

����� Hierarchical Arc�consistency ���

������� Generic Hierarchical Examples � � � � � � � � � � � � � � � ���

��� Conclusion ���

����� Variations of Hierarchical CSP ���

����� Novelty ���

����� Correctness ���

V Conclusions ���

�� Conclusions ���

xiv

���� Program Understanding ���

���� Arti�cial Intelligence ���

���� Research Extensions and Future Work ���

Bibliography ���

A Constraint Satisfaction Algorithms ���

A�� Path and K�consistency ���

A�� Utility of constraint propagation ���

A�� Partial Arc Consistency ���

A�� Intelligent Backtracking ���

A���� BackJumping ���

A���� BackMarking ���

A������ Sharing AC work in hybrid search � � � � � � � � � � � � � ���

A������ Upward Sharing ���

A������ Implications ���

A�� Partitioning and Hierarchical Methods ���

A���� Partitioning CSP ���

A������ Simple partitions ���

A������ Embedded CSPs using partitions � � � � � � � � � � � � � � ���

A���� Abstraction and CSP ���

A������ What abstraction means in this context � � � � � � � � � � ���

A������ Abstraction as partial solution of CSP � � � � � � � � � � ���

A���� Combining partitions and abstraction � � � � � � � � � � � � � � � � ���

A���� Decomposition and user interaction � � � � � � � � � � � � � � � � � ���

B Mechanism Matching ���

xv

C Details of Hierarchical CSP Algorithms ���

C�� Algorithm DeleteSourcePropagateAggressive � � � � � � � � � � � � � � � � � ���

C�� Algorithm KeepSourcePropagateAggressive � � � � � � � � � � � � � � � � � ���

C�� Algorithm DeleteSourcePropagateStepped � � � � � � � � � � � � � � � � � � ���

C�� Algorithm KeepSourcePropagateStepped ���

xvi

List of Tables

��� Example abstract data type ��

��� The Kautz Non�dichronic Program Understanding algorithm � � � � � � � ��

��� PU versus PR Comparison of assumptions � � � � � � � � � � � � � � � � � � ��

��� Generic CSP Search Algorithm ��

��� Program statement type distribution ���

��� Equal program statement type distribution � � � � � � � � � � � � � � � � � ���

��� Skewed program statement type distribution � � � � � � � � � � � � � � � � ���

��� The overall understanding algorithm ���

��� Merging partial local explanations to global view � � � � � � � � � � � � � � ���

��� Example hierarchic constraint f�n between V� and V� � � � � � � � � � � � ���

��� Example hierarchic constraint f�n between V� and V� � � � � � � � � � � � ���

��� Example hierarchic constraint f�n between V� and V� � � � � � � � � � � � ���

��� OR� logical operator ���

��� AND� logical operator ���

��� NOT� logical operator ���

��� The ApplyR algorithm ���

xvii

��� The ApplyUp algorithm� part � of ���

��� The ApplyUp algorithm� part � of ���

���� The ApplyDown algorithm� part � of ���

���� The ApplyDown algorithm� part � of ���

���� The ApplyDown algorithm� part � of ���

���� The Aggressive Revise algorithm ���

���� The Stepped Revise algorithm ���

���� The Simplify hierarchical reduction algorithm � � � � � � � � � � � � � � � ���

���� The SimplifyUp reduction algorithm ���

���� The SimplifyDown reduction algorithm ���

���� The AO�HAC arc�consistency algorithm � � � � � � � � � � � � � � � � � � ���

���� The AO�HAC�New arc�consistency algorithm � � � � � � � � � � � � � � � ���

���� Hierarchical arc�consistency algorithm results � � � � � � � � � � � � � � � � ���

C�� The DeleteSourcePropagateAggr propagation algorithm � � � � � � � � � ���

C�� The KeepSourcePropagateAggr propagation algorithm � � � � � � � � � � ���

C�� The DeleteSourcePropagateStep propagation algorithm � � � � � � � � � � ���

C�� The KeepSourcePropagateStep propagation algorithm � � � � � � � � � � ���

xviii

List of Figures

��� Conceptualizing source with expert knowledge � � � � � � � � � � � � � � � � �

��� Conceptualizing source with a plan library � � � � � � � � � � � � � � � � � � �

��� Sommerville�s software engineering world � � � � � � � � � � � � � � � � � � ��

��� Program understanding in software engineering � � � � � � � � � � � � � � � ��

��� C source code mapped through a String ADT instance to C�� code � � � ��

��� String ADT within a hierarchical program plan library � � � � � � � � � � ��

��� Action hierarchy for the cooking domain ��

��� An Example Action Hierarchy ��

��� Another Example Action Hierarchy ��

��� A Map Coloring Problem ��

��� Map�Coloring CSP ��

��� A search tree for a backtrack�based algorithm � � � � � � � � � � � � � � � � ��

��� SCH Example with level � solution ���

��� SCH Example limiting range of level � instances � � � � � � � � � � � � � � ���

��� An example code pattern ���

��� MAP�CSP representation of TRAVERSE�STRING plan �index shaded	 � � � � ���

��� Spatial situation with ��� objects of four types� � � � � � � � � � � � � � � � ���

xix

��� One complete �WarpCross� template instance and two partials� � � � � � � ���

��� An example code pattern ���

��� Decode�s algorithm for automatically recognizing plan instances in code� ���

��� MAP�CSP representation of code patterns � � � � � � � � � � � � � � � � � � ���

��� CSP�based internal representation for plans � � � � � � � � � � � � � � � � � ���

��� The representation for a plan index ���

���� The median results for each of � algorithms � � � � � � � � � � � � � � � � � ���

��� The String ADT in MAP�CSP ���

��� Program Template Matching ���

��� Extended program plan quilici�large� ���

��� Instance of quilici�t��index plan� ���

��� Instance of quilici�t� plan� ���

��� Instance of quilici�t��large plan� ���

��� Instance of quilici�t� plan with �� inserted statements� � � � � � � � � � � ���

��� Standard BackTrack ��� conf� interval	 � � � � � � � � � � � � � � � � � � ���

��� BackTrack� variable order ��� conf� interval	 � � � � � � � � � � � � � � � ���

��� BackTrack CPU�time� variable order ��� conf� interval	 � � � � � � � � � ���

��� Forward Checking� DR ��� conf� interval	 � � � � � � � � � � � � � � � � � ���

���� Forward Checking� DR CPU�time ��� conf� interval	 � � � � � � � � � � � ���

���� AC�� with FCDR ��� conf� interval	 ���

���� Memory�CSP with FCDR ��� conf� interval	 � � � � � � � � � � � � � � � ���

���� A range of strategies �medians graphed	 ���

���� BT adv Constraints vs Time� Standard distribution � � � � � � � � � � � � ���

���� FCDR adv Constraints vs Time� Standard distribution � � � � � � � � � � � ���

���� FCDR �Random	� Standard Template� Standard code distribution � � � � ���

xx

���� FCDR �Random	� Standard Template� Equal code distribution � � � � � � ���

���� FCDR �Random	� Standard Template� Skewed code distribution � � � � � ���

���� FCDR �Random	� Standard Template� three distributions � � � � � � � � � ���

���� FCDR Standard Template� Standard code distribution � � � � � � � � � � � ���

���� FCDR Standard Template� Equal code distribution � � � � � � � � � � � � � ���

���� FCDR Standard Template� Skewed code distribution � � � � � � � � � � � � ���

���� FCDR� Standard Template� three distributions � � � � � � � � � � � � � � � ���

���� Index Template� Standard code distribution � � � � � � � � � � � � � � � � � ���

���� Index Template� Equal code distribution ���

���� Index Template� Skewed code distribution � � � � � � � � � � � � � � � � � � ���

���� FCDR� Index Template� three distributions � � � � � � � � � � � � � � � � � ���

���� Large Template� Standard code distribution � � � � � � � � � � � � � � � � � ���

���� Large Template� Equal code distribution ���

���� Large Template� Skewed code distribution � � � � � � � � � � � � � � � � � � ���

���� FCDR� Large Template� three distributions � � � � � � � � � � � � � � � � � ���

���� Extended results� strategy range ���

��� C source code mapped through a String ADT instance to C�� code � � � ���

��� String ADT within a hierarchical program plan library � � � � � � � � � � ���

��� Simple Program Understanding ���

��� One �Blocking� of a Source Fragment ���

��� Library Fragment ���

��� Initial PU�CSP ���

��� PUCSP Formulation� CSP Graph exploded in Figure ��� � � � � � � � � � � ���

��� PUCSP Graph ���

��� Library knowledge constraints ���

xxi

���� A single action with criticality hierarchy ���

���� Criticality�based action hierarchy for PickupBlock � � � � � � � � � � � � ���

���� A simple decomposition hierarchy ���

���� Specialization and decomposition represented � � � � � � � � � � � � � � � � ���

���� Image Processing Plan Library Fragment � � � � � � � � � � � � � � � � � � ���

���� Example � PU�CSP formulation ���

���� Example � Area Management Plan Library Fragment � � � � � � � � � � � ���

���� Example � PU�CSP formulation ���

��� An example �!attened	 CSP structure ���

��� An example hierarchical domain value structure � � � � � � � � � � � � � � � ���

��� Close�up of CSP justi�cation linkage ���

��� Example complete justi�cation linkage ���

��� Upward cases for source� target structure � � � � � � � � � � � � � � � � � � ���

��� Downward cases for source� target structure � � � � � � � � � � � � � � � � � ���

��� Justi�cation of V � domain values w�r�t� V � � � � � � � � � � � � � � � � � � ���

��� Justi�cation V � w�r�t V � and V � w�r�t� V � � � � � � � � � � � � � � � � � � ���

��� Final example justi�cation structure ���

���� Final example hierarchic structure ���

���� The recent Program Understanding world � � � � � � � � � � � � � � � � � � ���

A�� Example of BackJumping Behaviour ���

A�� Partially Instantiated Constraint Graph ���

A�� Contamination trickling through graph ���

A�� Constraint propagation between unbound variables � � � � � � � � � � � � � ���

A�� Problem space before upward propagation � � � � � � � � � � � � � � � � � � ���

xxii

A�� Problem space after upward constraint ���

A�� Problem space after upward constraint ���

A�� Embedded Constraint Satisfaction ���

A�� One abstraction hierarchy in a PCSP space � � � � � � � � � � � � � � � � � ���

xxiii

Chapter �

Introduction

��� Software Engineering and Program Understanding Goals

Software is an artifact created by human experts as a means to encode knowledge about

a speci�c domain� Once created� software will be repeatedly accessed by other experts

as part of routine software upgrades� maintenance and debugging� Those constructing

software are� however� seldom those who maintain it afterwards� with the consequence

that the software itself constitutes highly speci�c modes of communication between the

constructors of software and those accessing it throughout its lifespan� The encoding of

knowledge of various domains in software and the lack of direct communication between

constructors and maintainers means that the processes by which maintainers understand

the knowledge encoded in software are central to continued use of legacy software� Legacy

software is typically thought of as a constantly evolving corporate asset� critical to cor�

porate goals� and which needs to be maintained against depreciation� Indeed� studies of

software maintenance indicate that as much as �� of software maintenance costs are

directly attributable to time software maintainers spend attempting to understand what

is being conveyed in particular software�

�

CHAPTER �� INTRODUCTION �

The process by which software maintainers understand a software system may be

best viewed as a primarily conceptual process� wherein the software expert develops a

mapping between his�her knowledge of both conventions of software construction and

the domain knowledge and the given source� A successful understanding is thus the

successful construction of a mapping between some portion of the expert�s store of relevant

knowledge and the structures and components inherent in the source code� Figure ���

illustrates such a mapping�

and Plans

and Plans
General Algorithms

Expert Programmer Knowledge

Expert Domain Knowledge

General Data Structures

Domain-specific Algorithms

Existing Program Libraries

Domain terminology

Specific Documentation

Programming Design and Style

Specfic Language Syntax

for (int i=0; B[i]; i++){

 print(B[i]); }

 C[sz-j] = B[sz-j]; }

sz = 7;

Domain-specific Data Structures

C[sz] = "3";

for (int j = sz; j>0; j--){

 outchar(A[k]); }

for (int j=0; j++){

 printf("%s",C[i]); }

main()

{

A = "s" + "t" + "r" + "i" + "n" + "g" + "1";

B = "string2"

 char* A, B, C;

} // end of main

// reference to outdated documentation, old library

// comment referring to non-existent code

// documentation describing an older version of code

// description of non-existing variables, omitting current these artifacts ?

How can I
explain

for (int k=0; A[k]; k++){

Legacy Source Code Artifacts

Figure ���� Conceptualizing source with expert knowledge

The task of program understanding� that is� the process of successful mapping between

the expert�s knowledge and the source� may be assisted by both physical representations of

relevant knowledge and by automated decision support tools� Software systems are inher�

ently extremely complex �Brooks� ������ Software is highly multi�dimensional in terms of

causation and e�ect� and there is little necessary correlation between physical representa�

CHAPTER �� INTRODUCTION �

tion and program execution behaviour in large scale software constructs� Consequently�

visualization and physical representation of software is a di
cult task� Nevertheless�

commercial software developers are seeking to create packages of software in the form of

software libraries and object sets that provide both general computational and speci�c

domain functionality� Software development �rms themselves are seeking to extend the

e
ciency of their software divisions through highly organized programs of software reuse�

Although humans are adept at interpreting material representations of knowledge created

by others� the sheer complexity and volume of software often hinders this process� The

usefulness of such visualization tools for understanding software systems depends upon

creators and perceivers of these representations sharing an understanding of the context

of both its production and reception� In order to be useful to a programmer� any vi�

sualization tool must deal with complicated issues in separating and integrating various

code views� trade�o�s in information hiding and complexity brought on by viewing code

abstractly or in greater detail�

In addition to visualization tools� other decision support tools have been proposed to

assist in the program understanding process� These include con�gurable pattern match�

ing systems and case�based reasoning systems for retrieval of software appropriate to a

particular task� Both of these approaches are directed at increasing the e�ectiveness of

constructing mappings between software and existing bases of software knowledge or li�

braries� The central focus of this thesis is the development of automated tools that can

assist the expert software maintainer in the task of program understanding� In particular�

a tool that can help in constructing mappings between existing knowledge sources and

highly complex but also highly structured source code is developed� This interactive tool

should be seen as a part of a larger expert�driven toolset which includes e�ective software

visualization tools�

The interactive tool described in this thesis is based on algorithmic methods for iden�

CHAPTER �� INTRODUCTION �

tifying portions of code structure that correspond to known program plans or sets of

program plans� These recognized portions are intended to supplement and complement

the knowledge of the reverse engineer during the process of working with the code� In par�

ticular� the algorithms discussed are designed with the intention of supporting interactive

interpretation of the code� Consequently� expert�supplied knowledge can be utilized dur�

ing recognition to reduce the overall complexity of the problem� and to generate �views�

on the code that the expert has had a role in constructing� The power of the algorithms

lie in their ability to propagate small pieces of understanding through the space of all

interpretations in order to limit the set of possible interpretations� In this way the soft�

ware expert can take advantage of the recognition capability of such algorithms in very

noisy and complicated situations� and yet not be overly limited by the problems with the

inevitable inability of an understanding algorithm to explain an entire program�

The construction of mappings between existing knowledge� either embodied in an

expert or represented physically� and source code permits the software expert to make

inferences about the source program�s possible higher�level goals� This process of inference

permits� through abstraction� perceptions of the source as actual code statements to be

re�conceptualized at the more general level of the existing representation �or language

of expression	 of the domain knowledge� This abstract understanding may be exploited

in many ways� including� ��	 as part of a process of translating the program into the

source code of another programming language� ��	 recognizing errors in the code �or

design�requirements	 and assisting in debugging the system at the more abstract level�

and ��	 replacing understood code portions with generic application code or calls to

other code libraries� In addition� in many real�world circumstances� a reduction in the

size of an existing source code through adoption of standard code libraries or reduction

of redundancy by only a small percentage can result in a substantial reduction of the

ongoing maintenance cost� simplify future extensions to code� and reduce the probability

CHAPTER �� INTRODUCTION �

of introducing errors through such modi�cations and extensions� Consequently� creating a

mapping �even a partial one	 between existing domain knowledge and a particular source

code o�ers a possible lever for the software expert to employ�

Within the broader context of software reverse and re�engineering� program under�

standing is a sub�task based upon one of the primary goals of software engineers� This

goal is to provide a solid and clear shared context for communication between a software

creator and a software maintainer� The construction of this solid medium of readable�

understandable software is based upon standard software engineering principles such as

information hiding which is embedded in object�oriented methodologies� Another such

principle for shared context standardization is represented in focused e�orts at stan�

dardizing software re�use� The attempt to implement rigid� shared standards for system

and code design� documentation and coding is based upon the need to maintain a co�

herent shared context of presentation for the entire group of future expert maintainers�

In essence� this shared standardization forms the basis for any partial automatic un�

derstanding of code� As a medium of communication� software has the potential to be

highly structured and regular� especially when compared with more general and !exible

communication forms such as natural language�

��� A Brief Look at Program Understanding

In Arti�cial Intelligence research� the problem of program understanding has been ap�

proached indirectly from the perspective of plan recognition� In Section ��� I discuss

in some detail how much of this plan recognition work fails to meet the requirements

of the program understanding task� In other research more closely related to the soft�

ware engineering community� a more direct approach to program understanding has been

undertaken in which an explicit library of program plan templates and concepts is con�

CHAPTER �� INTRODUCTION �

structed� and various top�down and bottom�up search strategies are utilized to imple�

ment a mapping process between them� These approaches are introduced in detail in

Section ������

As I have introduced� program understanding methodologies typically attempt to con�

struct formal mappings between knowledge sources and code� For example� in Figure ���

a subset of expert knowledge about a particular application domain is represented in a

fragment of a hierarchical library of program templates� One possible mapping is shown

between a plan template from the library and a speci�c source fragment� in this case a

single source statement� The existence of such a mapping essentially explains the pres�

ence of the low�level source statement at a higher level of abstraction� in this case as an

instance of the plan template copy�character speci�ed in the library�

index when:
 "near instance" of
 copy−character

Program Plan Library (excerpt)

AND

AND

OR

main()
{
 char* A, B, C;
 ...

 A = "s" + "t" + "r" + "i" + "n" + "g" + "1";
 ...

 B = "string 2";
 ...
 sz = 7;
 for (int j = sz; j > 0; j−−) {

 C[sz − j] = B[sz − j];
 ... }
 ...
 C[sz] = 3;
 ...

 for (int i=0; B[i]; i++)
 ...
 print(B[i])

 ...

 for (int j=0; C[j];j++) {

 printf("%s",C[i]);
 ... }
 ...
 for (int k=0;A[k]; k++) {
 ...
 outchar(A[k]);
 ... }
 ...}

specialize when:
 contains = "$string"

copy−character loop−through
 character array

builtin−char* copy loop−initialize
 string

initialize−string

String ADT plan

plan instance

Legacy Source Code

Figure ���� Conceptualizing source with a plan library

CHAPTER �� INTRODUCTION �

Much of the previous program understanding work has failed to demonstrate heuris�

tic adequacy in even partially generating �understanding� of large problems� Speci�cally�

many recognition algorithms presented may be viewed as partially disjoint collections

of heuristic tricks� Some of the landmark e�orts are described in Section ������ Such

heuristic construction makes it di
cult for one to perform a systematic analysis of dif�

ferent search methods� or to understand how the addition or deletion of certain types of

domain�speci�c knowledge may a�ect performance� I am unaware of concrete examples

or experiments which might suggest that these approaches might scale up for speci�c

uses in large sources� However� both �Wills� ������ and �Quilici� ����� present empirical

results promising in identifying partial mappings from sources of up to ����� lines to a

small library of program plans�

��� My Approach to Modeling Program Understanding

This work is part of a research e�ort structured towards� ��	 unifying previous heuristic

approaches to program understanding with a single model capable of representing both

structural knowledge and control knowledge in a single framework� and ��	 demonstrating

that an e�ective approach to automatic partial program understanding is possible with

large code examples� Speci�cally� I intend to clearly categorize the circumstances in which

this use is possible� and the preconditions which must �rst be met in terms of represen�

tation and application of domain knowledge� In response to these two primary goals� I

present a generalized representation of program understanding as a Constraint Satisfac�

tion Problem �CSP� �Mackworth� ������ and represent previous program understanding

algorithms within the CSP framework�

In this CSP approach� a large source code is decomposed into a series of functionally

related source �blocks� or �components� which may then be partially explained inde�

CHAPTER �� INTRODUCTION �

pendently� These independent explanations may be used to locally reduce the range

of explanation of logical neighbour components� This divide�and�conquer approach to

program understanding relies on several new algorithms which I present in this thesis�

program plan recognition algorithms� hierarchical constraint satisfaction algorithms and

local constraint propagation methods�

I represent program understanding in two parts� and in two corresponding CSPs� The

goal of the �rst part is to identify local instances of program plan templates in the source�

These local instances may be thought of as partial local explanations of the code in which

they reside� The CSP representation of the �rst part is known as MAP�CSP�� The goal

of the second part� or PU�CSP� is to integrate these local partial solutions into a coherent

global view� Ongoing work such as has been reported in �Quilici� ������ is motivated by

cognitive studies �Pennington� ����a� which support this two�phased approach�

There are at least two advantages in the constraint�based approach� The �rst is

its generality� most of the previous recognition methods and heuristics can now be

uni�ed under the constraint�based view� Another advantage is an increased ability to

address heuristic adequacy� or scalability� by casting program understanding as a

CSP� the previously known constraint propagation and search algorithms may be applied�

It is possible to now perform a systematic study of di�erent search heuristics� including

both top�down and bottom�up as well as many other hybrids� in order to discover their

applicability to a particular source code�

�The term �MAP� derives from the process of constructing aMAPping between a known library plan
and an arbitrary piece of course code�

CHAPTER �� INTRODUCTION �

��� Program Understanding and Arti�cial Intelligence

I have identi�ed AI problem�solving approaches as applicable to the program understand�

ing problem domain in at least three primary ways�

�� First� plan recognition is a sub�domain of AI in which the plans and goals of an agent

are interpreted based on a set of perceptions of that agent�s actions and a library

of �hierarchical	 actions of which that agent is capable� In Chapter � I identify

the program understanding problem as a special case of plan recognition in which

software reverse engineering algorithms have been designed to address the restricted

plan recognition domain� In particular� these algorithms are able to exploit speci�c

restrictive problem features to empirical advantage�

�� The constraint satisfaction problem �CSP	 sub�domain of arti�cial intelligence has

recently received a lot of attention as a standard approach to modeling and solving

hard problem instances� The application domain of software reverse engineering

and program understanding is identi�ed in this thesis as a rich testbed for CSP

representation and solution schemes� Through a �bridging� thesis such as this�

I have provided the opportunity for application of local� global and hierarchical

work in constraint satisfaction to the program understanding domain� Similarly�

program understanding researchers are provided with the opportunity to see the

value of formally representing problems in the CSP framework in terms of increased

scalability and standardization of heuristic representations�

�� Finally� through working in the software engineering world with the CSP modeling

paradigm� a novel algorithm for propagating consistency in a constraint graph is

presented in Chapter � which signi�cantly advances the current state of the art

in CSP� In particular� this algorithm is intended to accommodate domain values

CHAPTER �� INTRODUCTION ��

situated in a hierarchical structure consisting of both is�a �inheritance	 and is�

part�of �composition	 relationships whereas previous work accommodated only is�a

relations� This work is easily generalizable to other problems in which domain

values can be hierarchically structured�

��� Primary Research Assumptions and Context

��	�� A Tool
based Vision of Program Understanding

Program understanding may be considered as an integral sub�task of software reverse

and re�engineering� Within this context� large�scale program understanding is typically

most pro�tably undertaken with the assistance of a software visualization toolset such

as provided by Rigi �M�uller et al�� ������ I understand a visualization tool of this kind

to form the basis of a code understanding decision support system in which automated

program understanding tools may be embedded�

��	�� Software Repository

In accordance with the work upon which I build �Wills� ����� Quilici� �����

Kozaczynski and Ning� ������ the existence of a software repository is assumed from

which program plans of a domain�speci�c or domain�independent nature are situated�

Such a repository could be populated through the use of existing commercial class and

template libraries in languages such as C��� or possibly through the utilization of generic

application libraries constructed by many companies as part of software reuse� While

other work is concerned with the population or abstraction of such a repository� I restrict

myself to its application�

CHAPTER �� INTRODUCTION ��

��	�� Procedural Software and Plans

During the course of this research I have focused on procedural languages and plans

which correspond to algorithms in the procedural sense� This choice was motivated by

the constant desire to be relevant to the community sporting the largest set of deployed

code � COBOL� That said� I regard the relationship between procedural plans and func�

tional implementations �as might be evidenced in PROLOG for example	 as an open

research issue� It may well be that abstracted procedural plan representations have a

poor canonicalization of functional implementations�

��	�� Program Plan De�nition

The abstract program plans �clich�es or idioms	 utilized for program understanding have

been primarily de�ned by understanding researchers attempting to generate canonical

representations of particular algorithms� The language of representation tends to be

pseudo�code�like and capable of mapping to many programming languages� Standard

algorithmic devices such as �loops� are represented abstractly in terms of fundamental

concepts such as �loop�begin�� �loop�end� and �loop�until� and matching methodologies

are devised to instantiate these abstract terms to particular instantiations�

The acquisition of domain and generic program knowledge is clearly a labor�intensive

task� roughly analogous to the work performed by systems analysts in learning about a

particular domain� Wills�Wills� ����� pp� ������ devotes an entire chapter of her Ph�D�

thesis to describing a clich�e library and experiences in obtaining it� In Wills� work� e�ort

was expended both bottom�up in �nding more than one implementation of a particular

clich�e before an attempt was made to generate an �abstract� representation� and top�

down in mapping deliberately abstract descriptions of algorithms �i�e� from textbooks	 to

the clich�e representation� Other subsequent work �Quilici� ����� is pushing forward this

CHAPTER �� INTRODUCTION ��

de�nitional phase through an attempt to create an interactive� visual tool which will allow

an expert to select a piece of code� abstract it partly through as yet undetermined methods

of automated canonicalization� and support the expert in editing these representations�

As a result of the impossibility of de�ning �perfect� algorithmic abstractions� any au�

tomated understanding support tool which attempts to assist an expert in understanding

source code must be able to accommodate partial and local explanations� and be able to

successfully interact with the expert during interaction�

��	�	 Software Structure
Analysis Tools

It is a recognized advantage in software understanding to have a range of possible source

code views with which to examine a given source code� In particular� code visualizers

discussed in Section ����� provide ways of both abstracting out and elaborating detail

depending on the desire of the analyst� Views of software based on data�!ow or control�

!ow tend to be related� but each provides di�erent information� and only together does

their individual power become apparent to an expert attempting to understand software�

Views based purely on the use of given data structures and executable traces provide

examples of a range of other possible code examination techniques� Each of these software

views provides a unique set of constraint information about the construction of a given

source code� Throughout this work I assume the existence of the tools which provide

this constraint information� In particular� I assume the existence of control and data�

!ow analyzers such as Gen�� �Devanbu and Eaves� ����� which annotates an abstract

syntax tree view of software� In the absence of such a tool�� I approximate such constraint

information through direct reasoning with source code examples� In verifying a constraint

without explicit data and control�!ow information� it is necessary to analyze the source

�Due to licensing di�culties� an annotating parser could not be obtained for nearly a year� In ����
this license was obtained� and current research is underway incorporating the annotated ASTs�

CHAPTER �� INTRODUCTION ��

program directly for the possible existence of such a data�!ow� This type of as�required

checking is more expensive computationally than a simple check for a pre�identi�ed data�

!ow� however� since I am primarily measuring computation in terms of constraint�checks

required� this assumption does not skew the check�counting results�

��	�� Phases of Analysis

����
�� Empirical Analysis

While I examine the speci�c structure of experiments performed in Chapter �� it is im�

portant to note the assumptions that lead us to examine the MAP�CSP closely� I assume

that local partial explanations are a crucial sub�task in program understanding� and fur�

ther� one which could bene�t from a constraint�based tool assisting an expert in very

large program analysis� Partial explanations of this type are utilized by at least Quilici�

Wills� Ning and Kozacyznski albeit in varying representational forms� All of these works

have attempted to work towards models that will have the potential to scale to usefully

sized code instances�

��	�
 Global Analysis

It is di
cult to conduct an empirical study of the e�ectiveness of structure�identi�cation

tools in the absence of an integrated program analysis tool� Such a tool would utilize

a combination of program visualization� program structure extraction� a hierarchically

structured program plan library and the constraint�based local and global explanation

assistance tools� I anticipate that such combination and study will occur in the future� and

the goal of this aspect of my research is primarily to ascertain that constraint technology

is adequate for the representation and solution of this problem in this context� The

discussion in this thesis of speci�cally extended constraint algorithms is a step towards

CHAPTER �� INTRODUCTION ��

this combination�

��� Thesis Outline

The remainder of this thesis is divided into �ve primary parts�

Part I� Foundations� presents necessary background material to acquaint or re�

acquaint the reader with the tools that I will use to build my thesis arguments� I present a

short introduction to the problem of program understanding in software engineering� out�

line how semi�automatic analysis of structured software typically proceeds� and provide

an overview of crucial previous work in program understanding and plan recognition�

Part II� Framework� describes the modeling paradigm I have selected to represent

the program understanding problem� and outlines related algorithms used in the solution

of problems represented in this way� I introduce the conception of the two primary stages

of program understanding� partial local� and global explanation� The description of these

two sub�tasks within the context of my chosen modeling framework forms the background

for the next two thesis parts�

Part III� Local Explanation� details the �rst stage of my program understanding

model� Analysis of problem complexity and description of experimental empirical results

are presented along with an analysis of how local explanations are mirrored in earlier

program understanding work�

Part IV� Global Explanation� completes my program understanding representation

with a complete description of an integrative model for partial local explanations� This

model does not represent the only possible way in which local explanations may be in�

tegrated into a more comprehensive view� Like other integrative approaches� it exploits

both the presence of inter�component relationships and partial knowledge about program

plan content� Unlike other approaches� my approach makes the explicit use and value of

CHAPTER �� INTRODUCTION ��

program plan knowledge and structural constraint information in program understanding

clear� In addition to a second complexity analysis of the integration problem� I present a

set of illustrative examples and carefully describe the algorithmic approach of the global

strategy in terms of a cooperative interactive system� The integration of constraint prop�

agation �limited inferencing	 with expert interaction is a crucial component of any useful

decision support tool�

Part V� Conclusions� summarizes the �nding of my research� In addition� I position

myself with respect to other closely related work in program understanding� and outline

the future direction of this project which in many ways is only now commencing�

Part I

Foundations

��

Chapter �

The Understanding Process

��� Software Engineering and Program Understanding

The main task of program understanding �ts within the context of both software en�

gineering and reverse engineering� Several important questions need to be posed and

answered before one can discuss program understanding cogently� First� what do the

often�used but seldom de�ned terms software engineering and reverse engineeringmean"

What underlying process of software development requires that a software expert ap�

proach an existing piece of software and attempt to understand its function" How does

program understanding �t into the larger world of software development"

����� Software Engineering� an attempt at de�nition

A great range of de�nitions of software engineering have been presented in a variety of

texts and articles� Software embodies the controlling logic governing the application of

a computer to solving a given domain problem� Software encodes domain knowledge�

domain methodologies� and domain data into a particular language designed to be com�

piled into machine�executable instructions� As an embodiment of logic� software is a very

��

CHAPTER �� THE UNDERSTANDING PROCESS ��

precise speci�cation of a domain process� The speci�cation itself� however� is only as

accurate a representation of the true system as the particular speci�er�s understanding

of the process itself allows� In addition� errors can be made during speci�cation in the

encoding process itself� Consequently it is more accurate to say that any piece of software

is only an approximation of the process it represents and models� This approximation

has two dimensions� First� the software is based on an approximate understanding of the

process itself� Second� the software is only an approximately�correct representation of

this understanding�

The process of constructing this model or software has traditionally been referred to

as �writing� software� re!ecting the perception that software construction is more about

the manipulation of concepts rather than materials� However� as attempts have been

made to instill software with a higher degree of both accuracy to the modeled process

and intended logic� the process of software development has become known as software

engineering�

Software engineering is concerned with the theories� methods� and tools which

are needed to develop the software for these computers� In most cases� the

software systems which must be developed are large and complex systems�

They are also abstract in that they do not have any physical form� Software

engineering is therefore di�erent from other engineering disciplines� It is not

constrained by materials� governed by physical laws� or by manufacturing

processes�

Software engineers model parts of the real world in software� These models

are large� abstract� and complex so they must be made visible in documents

such as system designs� user manuals� and so on� Producing these documents

is as much part of the software engineering process as programming� As the

CHAPTER �� THE UNDERSTANDING PROCESS ��

real world which is modeled changes� so too must the software� Therefore�

software engineering is also concerned with evolving these models to meet

changing needs and requirements� �Sommerville� ����� p� ��

As Sommerville points out� the correctness and reliability of software is of more than

critical importance�

In all industrialized countries� ��� computer systems are economically critical�

More and more products incorporate computers in some form� Educational�

administrative and health care systems are dependent on computer systems�

The software in these systems represents a large and increasing proportion

of the total system costs� The e�ective functioning of modern economic and

political systems therefore depends on our ability to produce software in a

cost�e�ective way� �Sommerville� ����� p� ��

Not only is software only an approximate speci�cation of a real process� but it must

necessarily be an evolving speci�cation as well� These software models are �large� in the

sense that they can easily total several million lines of coded instructions� and �complex�

in the sense that software entities are ����more complex for their size than perhaps any

other human construct�����Brooks� ������ This complexity is attributable at least partly

to the fact that no two parts of a software model are alike in a semantic sense� The

engineering of computers di�ers from the engineering of buildings� automobiles and almost

any physical construction in this important respect�

Complexity hinders software in signi�cant ways� Complex software has more opportu�

nity to vary from the modeled process� Complex software is by de�nition hard for a third

party to understand after it has been written� Complex software is dangerous to change

for fear of adverse or unintended e�ects of a given change� Large� complex software is

di
cult to write and maintain since it will need to be segmented across members of a

CHAPTER �� THE UNDERSTANDING PROCESS ��

team� introducing problems of communication� coordination and mutual understanding�

Brooks identi�es three other primary inherent di
culties with the engineering of soft�

ware in addition to size and complexity� First� software must conform to pre�existing

speci�cations and interfaces that are arbitrary when viewed with respect to the task at

hand� The result of forcing a given software model to conform to this set of arbitrary

constraints is to increase software complexity even further� Second� software is highly

changeable since it is �embedded in a cultural matrix of applications� users� laws� and

machine vehicles� which themselves change continuously� Third� software is di
cult to

visualize since it is not embedded in space and consequently has no ready geometric rep�

resentation in the vein of other engineering applications such as� say� circuit diagrams�

Graph�based representation models of software fail in their dimensionality since software

has a multiplicity of parallel �views� such as control�!ow� data�!ow� dependency graphs�

time sequence charts� name�space relationships and the like�

Software is very large� incredibly complex� changeable �and frequently changed	�

forced to conform to often arbitrary structures� and highly di
cult to visualize spatio�

temporally� One is tempted then to re�de�ne software engineering as simply the attempt

to de�ne control logic with a maximal reduction in complexity of software� However�

Brooks� further observation that �The complexity of software is an essential property�

not an accidental one�� helps dissuade us from this simple de�nition�

What then is software engineering" The answer is that there is no single answer�

Many techniques have been proposed as �software engineering� over the years� Software

design and development methodologies such as structured analysis and design� rapid pro�

totyping� waterfall�design and a myriad of other approaches have been and continue to

be hailed as the next and best method for software development� The quest for Brooks�

famed but mythical �silver bullet� for instituting a massive jump in software development

productivity continues� Software engineering is an accumulation of the processes of an�

CHAPTER �� THE UNDERSTANDING PROCESS ��

alyzing an existing system and a set of user requirements� designing an appropriate and

exacting model of the existing system with careful emphasis on how an automated set of

tasks would �t within the existing system� design of software logic for these automated

tasks� implementation of the software required to perform these automated tasks while

minimizing complexity and still satisfying conformability constraints� and attempting to

minimize the number and e�ect of changes required after�delivery while still satisfying

functional requirements�

����� Reverse and re
engineering

If software engineering covers such a wide range of tasks� it is necessary to segment it

in order to focus the scope of interest more precisely
 Sommerville �Sommerville� �����

proposes a convenient breakdown as follows�

� Forward engineering is the conventional development of a software product from

domain analysis through design to software production� This process typically

includes the delivery of a software product and accompanying documentation and

manuals�

� Re�engineering is the systematic re�implementation of an existing software system

so as to make it more maintainable�

� Reverse engineering is the derivation of a design or speci�cation of a system from

its source code�

Sommerville further summarizes each of these methodologies in terms of the primary

tasks and sub�products involved in each as shown in Figure ����

During the �automated analysis� phase of reverse engineering� automated �or partially

automated	 tools collect information about the structure of the system� As Sommerville

CHAPTER �� THE UNDERSTANDING PROCESS ��

System
specification

Design and
implementation

New
system

Existing software
system

Understanding and
transformation

Re-engineered
system

Re-engineering

System to be
re-engineered

Manual
annotation

Automated
analysis

System
information
store

Document
generation

Program structure
diagrams

Data structure
diagrams

Traceability
materials

Forward engineering

Reverse engineering

Figure ���� Sommerville�s software engineering world

CHAPTER �� THE UNDERSTANDING PROCESS ��

points out� the structural information collected is insu
cient to recover the system de�

sign itself� Rather� engineers �understand� information from the system� add this to

the source code and the structural model�s	� to produce an �information store�� typ�

ically represented as some kind of directed graph or set of directed graphs of varying

types� Further analysis can be undertaken using various source and graphical browser

combinations in the subsequent annotation of the model of the source system� While

these tools are aids for program understanding they are primarily intended as naviga�

tional and view tools intended to aid the expert in his�her correlative task between

source code and internalized� expected abstracted programming concept or plan repre�

sentations� It is important to note that the understanding tools cited as relevant by

Sommerville �Sommerville� ����� p� ���� do not include those proposed and discussed

elsewhere �Wills� ����� Quilici� ����� Kozaczynski and Ning� ����� which take a more cor�

relative focus between source and some type of abstract conceptual representations�

Sommerville importantly notes that the process of analysis and document generation

is necessarily an iterative one� That is� the process of the analysis is one in which the

system in question is analyzed to determine not only its structure� but rather that the

structure itself is further used as a framework on which the expert may append knowledge

about what semantic tasks the system achieves� This structure may be viewed as evidence

of a programmer�s �or programmers�	 plan for achieving the task encoded in the software�

Gamma �Gamma et al�� ����� and others support this plan�based view of software�

Studies of expert programmers for conventional languages ��� have shown that

knowledge is not organized simply around syntax� but in larger conceptual

structures such as algorithms� data structures and idioms� and also plans that

indicate steps necessary to ful�ll a particular goal �Gamma et al�� ����� p� ����

CHAPTER �� THE UNDERSTANDING PROCESS ��

While reverse engineering seeks to delineate the original system structure from source

code� re�engineering intends to �improve� the system structure� generate new system

documentation� and make the system easier to understand� The bene�ts of this task are

seen directly during subsequent software maintenance and extension� The re�engineering

task mirrors the reverse engineering task� however� in at least one very important area�

understanding� In both cases� an expert or a team of experts must develop a clear

understanding of an existing software system�

Sommerville outlines the factors that directly a�ect the cost �and success	 of a re�

engineering process as�

� Existing quality of the software and documentation�

� Tool support for re�engineering� In particular� �re�engineering software is not nor�

mally cost�e�ective unless some automated tool support can be deployed to support

the process���Sommerville� ����� p� �����

� Extent of Data Conversion required�

� Availability of Expert Sta�� In particular� the availability of the sta� who maintain

the system is critical as these people can greatly reduce the amount of time spent

by system re�engineers in understanding the software system of focus�

Software re�engineering is instantiated in both the task of software translation and

software restructuring� Translation is typically a largely �although not frequently to�

tally	 automated process involving the mapping between structured representations of

logic in one language to identical representations in another language� Much of this

process is potentially one�to�one if the target language has functionality both mirroring

and extending that of the source� In addition� tools such as Refine �Software Re�nery	

CHAPTER �� THE UNDERSTANDING PROCESS ��

�Burn� ����� and TXL �Cordy et al�� ����� support basic syntactic pattern matching and

program transformations for the translation process�

Ongoing maintenance of software systems tends to destroy program structure and

further complicate any understanding attempt� Control restructuring is intended to sim�

plify the overall program structure so that conditionals and loop constructs are �parsed�

to provide a more readable form such as that o�ered through a series of embedded if�

then�else statements� Other restructuring such as program modularization is typically

undertaken manually� During this process� constraints and relationships between pro�

gram components are identi�ed and the function of components deduced� Sommerville

�Sommerville� ����� states that �it is therefore impossible to automate this process� al�

though some experimental systems have been produced to provide some computer�aided

assistance for modularization�� These systems rely on an analysis of references to data

and procedure call structures to infer which program components may be part of the

same module� Once well or tightly�coupled modules are identi�ed� it may be possible to

totally or partially explain their interconnection structure and data�!ow with reference

to other templates of similar structure� In fact� in well�written programs that already

provide tightly�coupled modules with shared data structures� the understanding task is

much simpli�ed�

In Figure ��� Sommerville�s view of the understanding process is extended some�

what to focus more on the interactive aspect of understanding� and on the tool support

Sommerville identi�es as critical� This extended model accommodates both reverse and

re�engineering subtasks of expert understanding� The automated analytical tools are uti�

lized by a software expert to the degree desired� in conjunction with manual explanatory

techniques� and domain and programming knowledge� Most importantly� this new model

acknowledges the fact that a particular expert is dealing with a speci�c subset of knowl�

edge about domain programs and structure and about general programming techniques�

CHAPTER �� THE UNDERSTANDING PROCESS ��

and clich�es �Wills� ������ If one considers that some subset of this domain�speci�c and

domain�independent knowledge may be formally representable �or represented	 in the

form of in�company or generic software re�use libraries �for instance	� then portions of

the perceived structure in the software system can be mapped to these existing software

structures�

Generic
software
information
store

System
information
store

Domain
specific
software
library

Traceability
materials

Program structure
diagrams

Data structure
diagrams

Automated
analysis

System to be
re-engineered

Manual
annotation

Interactive
understanding

Program understanding

Figure ���� Program understanding in software engineering

This extended representation supports the view that complexity management can be

addressed� at least partially� through information hiding paradigms such as that o�ered

CHAPTER �� THE UNDERSTANDING PROCESS ��

by object oriented technologies� Indeed� Brooks argues that information hiding is �the

only way of raising the level of software design� �Brooks� ����� p� ����� In the extended

model� the identi�cation of repetitious �or clich�ed	 functionality could be extracted and

replaced through calls to the existing library� thus e�ectively hiding the details underlying

that call from the system of focus�

Brooks further states that� �The most obvious way to �attack the essential di
culties

of complex conceptual constructs� is to recognize that programs are made up of conceptual

chunks much larger than the individual high�level language statement# subroutines� or

modules� or classes�� The understanding process of Figure ��� can be thought to express

this conceptual chunking through the identi�cation of clich�ed chunks of source code�

While it is di
cult �today	 to imagine that such a breakdown of a software system might

be undertaken entirely automatically� it is much easier to envisage an automated support

system for the expert undertaking this task�

It is often observed that well�chunked code is easy to understand and poorly�chunked

code is di
cult� The implication of this statement is that we are primarily interested in

automating the di
cult portions �as opposed to the easy	� and yet these are in fact the

hardest to consider even partially automating� Brooks says �If we can limit design and

building so that we only do the putting together and parameterization of such chunks

from pre�built collections� we have radically raised the conceptual level� and eliminated the

vast amounts of work and the copious opportunities for error that dwell at the individual

statement level�� Clearly� automated analysis of code built entirely from the program

plans or clich�es in a known software library will be much easier to undertake than the

general instance in which only few clich�es will be present� However� it is possible to reduce

the realm of explanation of an entire chunk of source code through the identi�cation of

even some clich�es� Consequently� an iterative process in which partial local explanations

contributes to an expert understanding of the larger context can still be highly useful�

CHAPTER �� THE UNDERSTANDING PROCESS ��

����� Understanding

Software engineering methodologies imply that there exist program parts or modules

which have been formulated at a much higher level of abstraction than mere program

statements� Any perception of this higher�level de�nition or view of source programs must

have originated through an identi�cation or understanding of shared conceptual chunks

between the creator �original software developer	 and receptor �the expert undertaking

understanding	� It has been seen how it is reasonable to assume that some subset of these

potentially sharable software concepts may be resident in� for example� re�use libraries� In

object technology� these shared conceptions are encapsulated as objects in object libraries

often structured hierarchically� In this work I examine previous approaches at specifying

and implementing the partial automation of concept recognition in source code� Further�

I propose a new model for both representation and solution of the partial explanation

of code which integrates well with the interactive model of understanding sketched in

Figure ����

I motivate the picture of an expert understanding a software system in terms of an

expert constructing a mental model in which his�her set of existing knowledge is mapped

against the system in question� This view of program understanding is supported in

earlier software engineering work�

It has already been suggested that the cognitive process of developing a pro�

gram involves building an internal semantic model of the problem and its

solution� Building this model may involve utilizing existing knowledge and�

except for trivial problems� is an iterative process� �Sommerville� ����� p� ����

I explore this conception further speci�cally in Section ������ and in a broader fashion

throughout this work�

The theory of program understanding upon which most understanding e�orts has been

CHAPTER �� THE UNDERSTANDING PROCESS ��

based is described by Rich �Rich� ����� as�

Plan instances can be recognized in existing programs to recover the program�

mer�s abstract concepts and intentions�

I describe program understanding in two primary parts� partial local explanation

which identi�es instances of a particular program plan in code fragments� and global or

integrative understanding in which the partial local explanations are combined to give

a broader interpretation of the given fragment�s	� Following other understanding e�orts

�Hartman� ����b� I describe the understanding tasks as hierarchical � both in terms of the

source program and the plan library� In practice� any plan library is going to be incapable

of completely �explaining� a complex program� Consequently� partial explanations will

have to su
ce as provided by an expert�assistant understanding toolset� I therefore build

understanding tools based on a weaker� but still useful theory�

Plan instances can be recognized in existing programs to recover some of the

programmer�s abstract concepts and intentions�

��� Program Understanding Methodologies

I have de�ned program understanding loosely as the process of constructing consistent

mappings between a source program and its many possible representations such as control�

!ow and data�!ow graphs� and some set of existing knowledge which may be partially

represented formally and partially contained in an expert�s general knowledge�

It has been reported from programmer studies �see �Pennington� ����a� and

�Pennington� ����b�	 that code understanding is undertaken di�erently based on the con�

text of the task� For instance� understanding by novice programmers or by programmers

unfamiliar with the code or domain in question is performed initially bottom�up� search�

ing for low�level structures or clich�es in the code� Subsequent to this low�level analysis�

CHAPTER �� THE UNDERSTANDING PROCESS ��

large structures are generated based on examination of the control�!ow and data�!ow

constraints among the identi�ed low�level structures� In contrast� when an expert is

examining familiar code� it has been demonstrated �Soloway and Ehrlich� ����� that pro�

grammers approach code top�down� �rst looking for familiar high�level constructs and

only then determining their relative functional relationships� Most previous approaches

to assisting program understanding have either implicitly or explicitly recognized this

need to support both top�down and bottom�up understanding� Few� however� have de�

scribed how these might be integrated into a single model of understanding� In a real

sense� both top�down and bottom�up understanding involve mapping source code to a

set of knowledge about programs� In the bottom�up sense the mapped sets of related

source statements constitute microstructures �Citrin et al�� ����� or clich�es� while in the

top�down sense larger sets of related source functional components are recognized as cor�

responding to known source systems� In each case� the key to successful recognition is

a correspondence between a set of related or constrained components and a typical or

known set of components related in the same fashion� Throughout this work the view of

program understanding as mapping between an original source code and known program

plans �templates or clich�es	 will be assumed�

����� An illustrative example of program understanding

Consider the C program fragment outlined on the left hand side of Figure ���� This

example contains declarations� initializations and an embedded print loop for each of

three strings� As an illustration� strings are treated as a primitive data type by the

programmer� with no shared functionality assumed for string output�

To understand this program� one might use as a basis a library of program plans�

as shown in Figure ���� which represents a portion of previously compiled knowledge

about program composition within a particular domain� Figure ��� shows a program

CHAPTER �� THE UNDERSTANDING PROCESS ��

String ADT

main()
{
 String A("string 1");
 String B("string 2");

 String C("string 3");
 ...
 A.printString;
 ...
 C.printString;
 ...
 B.printString;
 ...
 }

main()
{
 char* A; char* B; char* C;
 A = "string 1";
 B = "string 2";

 C = "string 3";
 ...
 for (int i=0; B[i]; i++)
 print("%s",B[i]);
 ...
 for (int j=0; C[j];j++)
 {
 print("%s",C[i]);
 }
 ...
 for (int k=0;A[k]; k++)
 print("%s",A[k]);
 ... }

Figure ���� C source code mapped through a String ADT instance to C�� code

plan from the Abstract Data Type �ADT	 or class String which is part of this library

of plans� I consider that an ADT represents a �focal point� for a collection of plans or

methods applicable to the data type represented� In particular� one may imagine that

a particular ADT may have a subset of necessary operations for that type� and another

subset of possible operations� Consequently� I view an �ADT� plan as merely a collection

�necessary or and�ed	 of related plans� Once a mapping is constructed between the source

and compiled knowledge� one could replace the redundant functionality of the relevant

portions of the source code with a single inclusion of the ADT from Table ���� as shown

in the C�� code of Figure ����

Given the source code on the left side of Figure ���� we would like to understand or

explain some portions of the source program within the known context of the program

plans� The C�� code shown at the right of Figure ��� is obtained with replacement

of C source with references to String ADT functionality� This understanding process

might be executed in two steps� First� one identi�es all instances of a particular abstract

program plan in a source code� I refer to this step as the Template Matching or Mapping

problem� Second� one relates some set of identi�ed plan blocks or components to conform

CHAPTER �� THE UNDERSTANDING PROCESS ��

Class String {
 char localStr [MAXSIZE];

 String(char* inStr)
 {
 for (int j=0; inStr[j]; j++)
 localStr[j] = inStr[j]; }

 printString()
 {
 for (int j=0; localStr[j]; j++)
 printf("%s",localStr[j]); } }

Table ���� Example abstract data type

index when:
 "near instance" of
 copy−character

index when:
$function in {printf, sprintf}loop−through

 character−array

print−string

AND

loop−initialize
 string

copy−character

AND

format−character

AND

OR

builtin−char*−copy

initialize−string

String ADT plan

specialize when:
 contains ... = "$string""

Figure ���� String ADT within a hierarchical program plan library

CHAPTER �� THE UNDERSTANDING PROCESS ��

to the hierarchical structure in a given program�plan knowledge base� The latter process

I refer to as the Program Understanding problem solution�

I identify two important bene�ts of locating local mappings between a programming

plan library and an existing source code� First� the resulting replacement of code with

ADT instances can result in substantial reduction in the amount of code required for a

particular task� This size savings can reduce the amount of e�ort required for subsequent

code understanding or maintenance by programmers� Second� the local mapping�s	 be�

tween source and library plans can be used as building blocks in attempting to understand

and translate a larger context of source code�

����� A Review of Past Program Understanding Work

Recently� researchers have adopted a direct approach to program understanding

in which an explicit library of programming plan templates and concepts is con�

structed� and various top�down and bottom�up search strategies are utilized to

implement the mapping process between source and templates� Over the past

decade� researchers have proposed and implemented a wide variety of plan�based

program understanding algorithms� These e�orts have included �Quilici� ������

�Kozaczynski and Ning� ������ �Wills� ������ �Rich and Waters� ������ �Hartman� ����b��

�Johnson� ������ and �Johnson and Soloway� ������ Other work including that of

�Kontogiannis et al�� ����� which extends code to code similarity measurement� has at�

tempted probabilistic recognition of individual abstracted concepts with promising empir�

ical results� It is currently open issue whether probabilistic or constraint�based approaches

o�er the most �exploitable� methodology for the construction of program understanding

tools� It is interesting to note� however� that users of expert systems have frequently put

a premium on systems which are able to explain their decisions on demand in simple easy�

to�understand terminology� For this very reason� many expert system implementations

CHAPTER �� THE UNDERSTANDING PROCESS ��

have avoided probabilistic or statistical explanations� One advantage of a constraint�based

approach in which problem constraints are propagated as part of the limited reasoning

process is that a ready�explanation exists for the removal of any partial explanation in

terms of a constraint violation�

While some of the plan�based research e�orts including �Wills� ����� and

�Quilici and Chin� ����� have reported promising empirical results in mapping plan li�

braries to reasonably sized program segments �up to ����� lines	 of source code� none

have been clearly demonstrated#either analytically or empirically#as scaling up for use

in understanding real�world sized software systems� In addition� little work has been done

comparing the relative performance of these approaches or analyzing in detail the similar�

ities and di�erences among these algorithms� In part� this situation has resulted because

the algorithms tend to be based upon di�erent representational frameworks �such as !ow�

graphs� components and constraints� regular expressions and transformation rules� and

so on	 and because they tend to use collections of heuristic tricks to improve performance

�indexing� specialized rule and constraint ordering� and so on	� This lack of a common

framework means it is di
cult to systematically compare these di�erent approaches to

program understanding or to understand how their performance will be a�ected by vari�

ants in the plan library such as removals or additions of new plans� or the recognition of

speci�c program plans in part of the existing source code�

What is needed is a framework for describing these heuristic approaches that sup�

ports empirical and analytical comparisons of their behavior� I propose� in Chapters �

and �� that viewing program understanding as a constraint satisfaction problem �CSP	�

can provide such a framework� For this framework to be useful� existing understand�

ing algorithms must be mapped into this constraint satisfaction framework despite their

�See Chapter 	 or
Kumar� ����� for an overview of constraint satisfaction� or see
Tsang� ���
� for
more detail�

CHAPTER �� THE UNDERSTANDING PROCESS ��

di�ering representations and heuristic tricks� If this framework is su
ciently general

to unify these approaches� then I can use it to compare their relative performance

and better understand where these algorithms succeed and fail in attacking the pro�

gram understanding problem� In addition� I can potentially achieve improved scalability

of these approaches by augmenting them with the mechanisms developed for e
cient

heuristic solving of di�erent classes of constraint satisfaction problems� These mecha�

nisms range from global �Kondrak and van Beek� ����� and local search�based methods

�Sosic and Gu� ����� Minton et al�� ����� Yang and Fong� ������ constraint�propagation

problem simpli�cations �Nadel� ����� Dechter� ����� Prosser� ������ hierarchical exploita�

tion of problem structure �Freuder and Wallace� ������ as well as hybrid combinations of

these approaches�

In the following subsections� I very brie!y describe several program understanding

e�orts that have motivated this work� In later sections of this thesis I elaborate on some

aspects of these e�orts where they directly impact my own work�

������� The Programmer�s Apprentice

Rich and Waters �Rich and Waters� ����� Rich and Waters� ����� headed the Program�

mer�s Apprentice project which focused on the development of a demonstration system

�Knowledge�Based Editor in Emacs or KBEmacs	 with the ability to assist a programmer

in analyzing� creating� changing� specifying and verifying software systems� In addi�

tion� Rich and Waters �Rich and Waters� ����� pp� �������� describe a clich�e recognizer

Recognize based in KBEmacs�

������� Wills� Graph Parsing Method � Graspr

Wills �Wills� ����� Wills� ������ building upon the earlier work of Rich and Waters

�Rich and Waters� ������ outlined an approach to recognition in which stereotypical pro�

CHAPTER �� THE UNDERSTANDING PROCESS ��

gram or data structures known as clich�es are represented as a type of graph grammar� A

source program is translated into an intermediate representation as a !ow graph� These

!ow graphs are parsed so as to identify all possible derivations of the !ow graph based

on the known clich�es� These derivations each represent a possible partial interpretation

of the source program or mapping to the library of clich�es� Wills notes that although the

parsing problem is NP�complete in general� experience suggests that attribute constraint

checking signi�cantly prunes the search space� Wills evaluates the e�ectiveness of such

an approach empirically for two medium�size source code examples�

Wills� work di�ers from the approach described in this work in at least three important

ways� ��	 clich�e and program representation� ��	 library knowledge representation and

exploitation during search� and ��	 method of integrating clich�e instances in the larger

understanding problem� The purely graph�based parsing approach to explaining program

source has several drawbacks which I believe are ameliorated using a constraint�based

approach� the most important of which is that the representation of a graph is signi�cantly

distanced from the parsing �search	 strategy� hiding somewhat the e�ect of structure on

search performance� I construct my representation from the other viewpoint� that is�

I adopt the terminology and structures of program understanding methodologies into a

framework more closely coupled with search performance and search algorithm design�

Kozaczynski and Ning �Kozaczynski and Ning� ����� observe that during experiments

users had di
cult adapting to a strange syntax and semantic plan language� and the

graph�based language may be equally awkward for software developers to utilize�

Rugaber� Stirewalt� Wills and others are part of an e�ort in reverse engineering being

conducted at the Georgia Institute of Technology� Recent work �Rugaber et al�� �����

describes one major research area in program understanding known as interleaving in

which program plans intertwine�

CHAPTER �� THE UNDERSTANDING PROCESS ��

������� Concept Recognizer

Kozaczynski and Ning �Kozaczynski and Ning� ����� describe a method of automatically

recognizing abstract concepts in source code given a library of concepts and rules for

how to recognize the higher�level concepts in lower�level language concepts� essentially

controlling the concept search in a top�down fashion� This system is referred to as the

Concept Recognizer�

In the Concept Recognizer� source code is processed to add control and data�

!ow constraint information to an intermediate representation based on abstract syntax

trees �AST	� Code is described as having several progressive representations� from the raw

ascii representation to an syntactic AST� to a �semantic� AST with control and data�!ow

annotations� eventually to the �conceptual� annotated AST with additional annotation

of semantic or abstract concepts in the AST� The knowledge concepts which form the

conceptual level of source code exist in a hierarchical is�a knowledge library� The intent is

not to totally explain a source code with respect to a library� but rather recognize that a

great deal of unrecognizable code will exist� and rather recognize �islands� of concepts in

the source code� It is implicitly recognized that abstract concepts are not tightly related

by syntactic structure� rather the existence of �semantic� information such as control and

data�!ow relationships is more closely related to the abstract concept level�

An abstract concept consists of sub�components and constraints among them �paral�

leling control and data�!ow factors	� and an unspeci�ed matching process is undertaken

to recognize these concepts� Since concepts may be built upon other concepts� a need

is recognized to somehow order the recognition process so as to recognize lower�level

concepts �rst� This process� however� is largely unspeci�ed in the published work�

Concept Recognizer uses program plans as rules for recognition of concepts� That

is� the structure of program plans identi�es the portions of a concept to be recognized�

CHAPTER �� THE UNDERSTANDING PROCESS ��

Thus the recognition of a plan element suggests the possible existence of the plan to which

the element belongs� In essence� program plans are represented as AST entries which are

then compared against a particular program plan AST searching for matches� Real�source

examples are brie!y reported for COBOL source code instances of approximately ������

lines of code� In recognition of approximately �� abstracted concepts� results are reported

to be on the order of one minute to recognize instances of a single concept per ��� lines

of code� The ultimate conclusion of this work was that a severe bottleneck existed in the

pattern�matching portion of the problem�

While the complete Concept Recognizer algorithm is unfortunately not published�

it is observed in �Kozaczynski and Ning� ����� that the following methods are of use in

improving recognition performance for a single concept�

� Early constraint evaluation� In particular� constraints describe the relationship of

sub�concepts� and are formulated as concept recognition rules �Hartman� ����b� or

plans� A portion of these recognition rules includes logical expressions �constraints	

which may be thought of as including information about at least control�!ow� data�

!ow� data dependencies and binding constraints�

� Reordering of sub�concept instances� In particular� a heuristic approach to ordering

sub�concepts during attempts to identify concept instances is based upon static

meta�knowledge about �relevance� between variables and constraints� and domain�

independent problem�instance information such as the size of �instance� sets� This

size information used to reduce the search space is precisely the kind of information

which domain�independent constraint satisfaction algorithms described in Chapter �

e�ectively exploit�

� Grouping sub�concept instances based on variable bindings� This may be thought

of as another mostly domain�independent search strategy which selects sub�sets of

CHAPTER �� THE UNDERSTANDING PROCESS ��

variables to instantiate according to their particular inter�relationships� Attempting

to instantiate sets of well�constrained variables may result in an earlier pruning of

the search space and more e
cient search� Once again� such search issues are raised

further in Chapter ��

The actual Concept Recognizer code was passed on to another researcher� and

I touch on this extension to Concept Recognizer next� I examine an approxima�

tion of Concept Recognizer�s matching process in Section ����� where the observed

performance enhancements are speci�cally modeled and discussed in some detail� It is

important to note that Kozaczynski and Ning observe that ���� a limitation with the

current �����	 version of the concept recognizer is that the user cannot provide active

guidance to the concept recognition process to reduce search space and resolve recognition

con!icts��� The method presented in this thesis has been designed with the intent of ac�

commodating exactly this de�ciency of knowledge integration� Chapters � and � outline

in detail an approach to understanding which supports an expert�determined amount of

interactive search control�

������� Decode � Quilici�s Memory�based Method

One recent approach for program understanding by Quilici �Quilici� ������ a derivative of

earlier work by Kozaczynski and Ning �Kozaczynski and Ning� ������ is based on a con�

struction of an explicit library of programming plan templates� complete with an indexing

ability� which can quickly associate a particular recognized source code fragment with pro�

gram plan templates in the knowledge base� In this �code�driven� fashion� a combination

of top�down and bottom�up search strategies is utilized to implement the matching pro�

cess� With his Decode system� Quilici demonstrated how simple C programs could be

CHAPTER �� THE UNDERSTANDING PROCESS ��

translated to C�� programs� This approach marks one recent cognitively motivated�

attempt to extend program understanding using a hierarchical library of program plans�

Program plans �such as those composed through ADTs	 are organized hierarchically

in a library as shown in Figure ���� These source examples may be thought of as deriva�

tive from typical class libraries� Software source code in the form of an abstract syntax

tree is mapped to the plan library through the use of indices� which are pointers from

the source code to parts of the plan library� Index tests indicate when to specialize or

to infer the existence of other plans according to a set of conditions� As an example of

specialization� consider Figure ��� in which the program plan initialize�string is spe�

cialized to builtin�char��copy when a direct string assignment is observed in the source

code� An example of an inference test is also shown in Figure ���� where the existence of

loop�initialize�string is inferred when an instance of loop�through�character�array

is �near� a related instance of copy�character in the source code�

Given a source code and a program plan� Quilici describes an approach to under�

standing the source based on a search in the plan library� Search behaves bottom�up

when existing index tests indicate possible higher�level explanation plans for a particular

lower�level component in the library� Quilici observes that people only make bottom�up

inferences in particular �well�known� circumstances� and consequently limits the number

of upward explanations by inferring only those speci�ed by explicit indexes� On the other

hand� search behaves top�down when low�level components are indexed and subsequently

matched based on some hypothesized high�level plans� Quilici�s algorithm attempts to

specialize any matched plan as much as possible according to prede�ned specialization

tests� and directs search for low�level plans based on high�level hypothesized plans�

There are� however� a number of shortcomings� First� the lack of a general mathe�

�Quilici�s work has included observation of the behaviour of student programmers in manipulating
source examples�

CHAPTER �� THE UNDERSTANDING PROCESS ��

matical model of the indexing and search process makes it unclear as to how one should

coordinate the top�down and bottom�up search� Second� Quilici�s algorithm depends on

a number of heuristics� such as specializing a plan as much as possible� It is not clear

how these heuristics integrate or how they scale�up when the problem size increases� Fi�

nally� Quilici makes a substantial e�ort in capturing actual programmer�s methodologies

as heuristic enhancements to search control� but presents no empirical results�

Decode represents the current �����	 state�of�the�art in program understand�

ing implementations� and is built upon earlier work regarded as foundational

�Kozaczynski and Ning� ������ Consequently� I use Decode as a typical example

for comparative purposes� I describe Quilici�s extension to Kozaczynski and Ning�s

Concept Recognizer in detail in Section ����

������� UnProg � Hartman

Hartman �Hartman� ����b� provides an excellent overview of the range of historical ap�

proaches to program understanding based upon one or other of these theories� From

Hartman it is possible to observe how constraint exploitation has played a pivotal role in

almost all recognition strategies� In e�ect� the constraints are formed from the described

structure in library program plans and are satis�ed through identi�cation of source code

fragments which satisfy these control�!ow and data�!ow constraints�

Following other understanding e�orts �Hartman� ����a� Wills� ����� I choose to repre�

sent source code in an abstract model which make control�!ow and data�!ow information

explicit along with the syntactic structure provided by a parser� The recognition of

a particular fragment of code as an instance of a program plan may be thought of as

a very limited reasoning problem� Hartman �Hartman� ����b� indicates that the heart

of a program understander is the �comparison� algorithm among plans �represented by

schemas and knowledge constraints	 and code �represented by abstract syntax trees an�

CHAPTER �� THE UNDERSTANDING PROCESS ��

notated with structural constraints	� Wills �Wills� ����� and Hartman �Hartman� ����b�

Hartman� ����a� both observe that even partial recognition is an exponential problem

in the worst case� This result� con�rmed in �Woods and Yang� ����a� �and discussed in

Section �������	� is in itself uninteresting in that it is entirely possible that many �or even

all	 practical instances are well�constrained enough to be readily solved� In particular�

Wills� Graspr and Hartman�s UnProg both exploit constraints in unique ways during

matching search�

Hartman �Hartman� ����b� identi�es several research insights as potentials for ad�

vancing the state of understanding� These issues� which have been addressed in previ�

ous work �Woods and Yang� ����b� Woods and Yang� ����c� Woods and Quilici� ����a�

Woods and Quilici� ����c� Quilici et al�� ����� Woods� ������ include� ��	 new for�

malisms� ��	 new program and plan decomposition methods� ��	 plan representations

and pre�processing� ��	 empirical study� ��	 work towards isolating the e�ects of program

characteristics� and ��	 alternative reasoning methods� including existing paradigms� In

particular� the focus has been on producing empirical results which can isolate precisely

the usefulness of value�added plan representations and alternative reasoning methods in

the shared context of algorithms for solving constraint satisfaction problems �CSPs	��

����� Visualization of Software Structure

All of the aforementioned understanding approaches assume that partial automatic under�

standing of a piece of source code is necessarily based upon mapping existing knowledge

about how program plans are constructed into a particular source code instance� It is a

general assumption� from which I do not deviate in this work� that the more knowledge

that can be derived from a source instance� the more accurate and e�ective the under�

�See
Kumar� ����� for an excellent overview of constraint satisfaction� or
Tsang� ���
� for more detail�

CHAPTER �� THE UNDERSTANDING PROCESS ��

standing task� Two of the most di
cult issues �outside the actual understanding task	

in dealing with large and complicated source are visualization and knowledge annotation

and extraction�

E�ective visualization of software is an important sub�problem of user�interaction for

the understanding problem� Program understanding is a knowledge�intensive task im�

mensely di
cult for human experts� Computers have traditionally been of great use to

human experts in such tasks in very speci�c ways� Computers can do highly repetitive

tasks very quickly and without fatigue� Mathematical correlations can be derived where

a human eye or expert would be confused hopelessly with irrelevant clutter� As an ex�

ample� variable pattern recognizers such as that discussed in �Woods� ����� can recognize

�template instances� or speci�cally arranged collections of objects dispersed in a �eld of

objects in seconds whereas a human expert is generally unable to perform the task at all�

On the other hand� humans are far superior in their ability to bring to bear particular

information to a given problem instance� Experience and comprehension abilities might

be said to typically outweigh speed in complicated tasks� Happily� a synergy of human

and machine o�ers even better performance than human alone� Traditionally� decision

support systems are designed so as to make use of computer functionality in visualization�

what�if analysis� complexity organization and mathematical calculation�

Program understanding systems are one form of decision support system� Conse�

quently e�orts at partially automating program understanding are �or should be	 directed

towards providing useful tools to aid the expert analyst in their task of understanding�

The work in this thesis is directed towards suggesting ways in which the automatic partial

understanding of programs through mappings to existing abstract program plan libraries

can be improved� This function is a tool # one of many # that should be provided

to an expert� In order for this functionality to be of any use to an expert it must �t

within the model of some toolset� Typically these toolsets are built in conjunction with

CHAPTER �� THE UNDERSTANDING PROCESS ��

a visualization tool� that allows the expert to dynamically con�gure the focus on source

code in particular� useful ways� Visualization e�orts seek to �nd an e�ective manner in

which to both hide and emphasize information� according to an expert�s desire and ability

to perceive�

In addition to observing raw source code� many possible views on code are possi�

ble� These include views showing control�!ow and data�!ow� views showing modularity

of source code� real or implied� views of call�graphs� execution traces� and many other

software features� In addition� tools exist to display dynamic algorithmic behaviour at ex�

ecution� Visualization purports to support the rapid isolation of problems� reveal unantic�

ipated behaviour� reveal areas for program improvement �i�e� pro�ling revealing execution

bottlenecks	� and generally support e�orts to explain application behaviour� Industrial

application and experience is growing rapidly # examples of industrial�strength tools

include IBM�s Ovation and PV �Kimeham et al�� ����� De Pauw et al�� ������

Typical partially automated understanding tools exploit as much constraining infor�

mation about a software source as possible� Consequently� other tools such as annotating

parsers are exploited to build a rich structure of information on top of or in conjunc�

tion with the source statements themselves� This information can itself be presented

to the experts for their own bene�t as mentioned earlier� One such tool for generating

annotated source code is described below� In addition� one representative visualization

research e�ort that has received a good deal of attention lately is also described�

Rigi

As part of the e�ort at providing explicit structure for maintenance engineering� reverse

engineering and re�engineering� M�uller et al� �M�uller et al�� ����� M�uller et al�� �����

�I make particular mention of such tools as Refine
Markosian et al�� ���	b�� and Rigi

M�uller et al�� ���	� which is mentioned in Section ����
 below�

CHAPTER �� THE UNDERSTANDING PROCESS ��

Tilley et al�� ������ are involved in the construction of Rigi� a system for analyzing soft�

ware systems which includes visual representations of data and control�!ow structures in

a code for the identi�cation of subsystems and hierarchies of structure in the code� Rigi

is designed to analyze and summarize the structure of large software systems through

the use of two complementary interfaces for browsing software� a multiple�windows view

similar to hypertext� and a �sheye view �Storey and M�uller� ����� of nested graphs� Clus�

tering techniques have been successfully used to to identify related clusters of program

statements�

Any utilization of algorithms for program plan pattern recognition is only useful in the

context of such a visualization tool� Comprehensive models of how expert analysts exploit

source code are integrated into the very conception of such a tool� and consequently

any e�ective decision support system can only exploit additional structured �what�if�

suggestions through careful presentation� and an interactive paradigm which allows an

expert to accept or reject any such hypothetical reasoning�

Genoa and Gen��

One basic view of software structure is the abstract syntax tree� Others include control�

!ow and data�!ow graphs� Parsers and annotated parsers that are capable of providing

such information are available as commercial products� One system providing this ability

is Refine �Burn� ������ Other researchers have created similar tools as part of ongoing

research� and under various kinds of agreements make them available for academic use�

One such tool is Genoa �Devanbu� ������ a language�independent code analyzer� With

Genoa� Devanbu and Eaves �Devanbu and Eaves� ����� have constructed Gen��� a pro�

prietary tool which generates tools for analysis of C�� code� Speci�cally� Gen�� can

generate tools which in turn generate annotated abstract syntax trees �ASTs	 of C��

code showing control and data�!ow information�

CHAPTER �� THE UNDERSTANDING PROCESS ��

����� My Two
Phased View of Program Understanding� Local and

Global

The PU approaches described brie!y in this chapter provide �non�iterative� or all�at�once

partial local explanations of a source code given a particular program plan library� The

primary origin of information is program source annotated for control�!ow� data�!ow and

other statically available information that strongly constrains explanations for any ele�

ment of the code� The implicit assumption in this type of model is that a great deal of

contextual information is available in advance of any plan recognition� Consequently� ex�

planatory conclusions are reached through controlled reduction of sub�part explanations�

by exploiting the fact that structural constraints must match knowledge constraints for

consistent explanations�

In particular� all of these approaches conceive of a generic� abstracted local program

plan or clich�e instance in a piece of a source code as a partial local explanation� That is�

an instance of a program plan in a piece of source code describes at least �spatially	 that

subset of the code taken up in forming the particular plan instance� The explanation

is necessarily local to the code a�ected by the particular instance� Thus� the task of

recognizing instances or all instances of one or a set of program plans gives a series of

partial explanations� These explanations are necessarily partial in the sense that some

code elements are not covered by a particular instance and so remain unexplained� The

integration of these local explanations into a coherent �but still possibly partial	 picture

of what program plans are represented by the combination and inter�relationship of the

local explanations may be thought of as global explanation� Throughout the rest of

this work I will make careful use of the distinction between partial local explanations �as

evidenced in program plan template matching	� and global explanations �which try to

draw conclusions about the inter�relations of local explanations	�

CHAPTER �� THE UNDERSTANDING PROCESS ��

While studying earlier program understanding approaches� I determined that the pro�

gram understanding problem could be broken down into a number of choice points� Ex�

amples of these choices include� ��	 choosing among candidate unexplained components�

��	 choosing among multiple initial plan assignments for a component� ��	 choosing among

several plans whose existence is implied top�down� and ��	 choosing a particular index or

specialization test from a candidate set� The existence and interactions of these decisions

are buried in Quilici�s presentation� but are very important in addressing the e
ciency of

the search problem� In Chapter � I will introduce a mathematical model known as con�

straint satisfaction which constitutes a possible method for representing and exploiting

these types of choice points during the search for local and global program explanations�

Chapter �

Plan Recognition

In Arti�cial Intelligence research� the problem of program understanding

has been approached indirectly from the perspective of plan recognition

�Kautz and Allen� ����� Carberry� ����� Carberry� ����a� van Beek et al�� �����

Song and Cohen� ����� Song� ������ In this work� existing human knowledge in

a particular domain is represented in hierarchies �of varying types	 of plans that

describe relevant actions and goals� Program understanding research has taken

similar representational approaches� For example� my own hierarchical program

plan representational scheme described in Chapter � is closely related to that of

�Ardissono and Cohen� ����a� Ardissono and Cohen� ����b� in which Kautz�s hierarchi�

cal representation is extended to clarify how sub�components may be shared between

specialized children of a given abstraction� Given a hierarchy of this type� and an

observation of another agent�s plan� a plan�recognizer would typically construct a

mapping from input plan fragments to the leaf nodes of the knowledge�base and infer

upwards toward a goal� To disambiguate among alternative goals� the mapping processes

may employ knowledge about relations between parts of the plan� Many plan recognition

examples rely heavily upon temporal relationships� while paying less explicit attention

��

CHAPTER �� PLAN RECOGNITION ��

to other types of constraint information� Plan recognition also frequently makes use

of cognitively�motivated heuristics such as evidenced through the way context or focus

models are used to restrict alternative explanations� These plan recognition programs

have been applied mostly to toy domains �such as the cooking domain	� involving small

knowledge bases and a small amount of search�

Plan recognition is the task of interpreting the actions of agents in the environment�

in the context of the knowledge possessed about how action occurs in the world� and

why� The recognition task involves constructing a mapping� possibly partial� between an

existing repository of plan and domain knowledge and observations of some subset of the

actions taken toward a goal� Program understanding can be viewed as a variant of plan

recognition� where the task is to recognize the plans used to construct a program� and it

therefore appears sensible to apply standard plan recognition algorithms to program un�

derstanding� This chapter demonstrates that this view is� however� too simplistic� I show

��	 that program understanding di�ers signi�cantly from generalized plan recognition

along several key dimensions� ��	 that these di�erences lead to inadequacies in applying

typical plan recognition algorithms to program understanding� and ��	 that the program

understanding task has properties that make it particularly amenable to constraint sat�

isfaction techniques discussed further in Chapter � which can lead to appropriate and

e�ective solutions for the program understanding problem�

CHAPTER �� PLAN RECOGNITION ��

��� The Relation between Plan Recognition and Program

Understanding

����� Software Engineering and Planning

Planning �see for example �Yang� ����� Allen et al�� �����	 is the process of generating

sequences of actions in order to provide a method for agents to modify the state of the

world in which they are situated� Typically in planning� plan operators are speci�ed

which describe the types of actions a particular agent or system is capable of performing�

These operators are de�ned in terms of preconditions which must be met before a given

operator �or action	 may be applied or undertaken� and postconditions� the set of e�ects�

either primary or incidental that result from the application or use of the chosen operator�

The planning �world� or state is typically de�ned in terms of a set of predicates which

model the �real� world in which the planning or executing agent�s	 are situated� These

predicates are exactly those which preconditions and postconditions may a�ect� Thus�

given a particular initial state and a desired goal state� the job of a planner is to determine

an appropriate sequence of actions which will essentially change the situation from the

initial to the desired� A very wide range of approaches have been taken to this problem� In

classical planning an entire sequence is traditionally determined in advance of execution

based primarily on the assumption that the world will not change during deliberation or

execution �other than as intended	� and that actions have their desired e�ects� In reactive

planning �Agre and Chapman� ������ long�range goal�based plans are not generated� but

rather� an agent undertakes very small �reactive� actions in accordance to environmental

stimuli� In anytime problem solving or planning� a system plans only for an arbitrary

amount of time� returning a �best�guess� solution at the end of this time period� Other

approaches exist also and �Yang� ����� provides a wide breadth of background for the

CHAPTER �� PLAN RECOGNITION ��

planning process�

Just as planning is a process of action generation to meet goals� the construction

of computer programs is also a process of sequencing actions so as to meet goals� For

example� the use of design patterns �Gamma et al�� ����� Gamma et al�� ����� in software

design mirrors case�based planners� Case�based planning �Hammond� ����� is an area of

planning in which previously constructed plans are placed in a library� and when a new

situation arises requiring a new plan� an attempt is made to �nd a �closely related� old

plan and modify it to �t the new situation� Similarly� in software or design reuse e�orts�

e�orts are being made to compile libraries of typical design patterns and then apply them

to appropriate situations with only minor changes�

These analogies to planning are currently being exploited in the software�development

side of software� and rely on the similarity of forward engineering �see Section �����	 of

software and the process of generating a plan appropriate to a given situation� However�

a similar parallel can be drawn between the process of reverse engineering �Section �����	

or understanding software and plan recognition� If one assumes that the current state

of some world viewed through a set of perceptions is the result of the execution of some

agent�s plan �constructed as already introduced	� then it seems reasonable to observe that

it may be possible to discern this plan based on the perceptions� This process may be

loosely de�ned as plan recognition� It is obvious to observe that software is an artifact of

intelligent planning and execution� In fact� it may be thought of as exactly the desired

�or nearly so
	 result of some agent�s process of planning a design� planning a program

to meet that design� and executing an implementation plan to create such a program�

Further� the resulting program is in fact a very precise representation of some plan in

the domain of implementation� A program accepts a set of inputs �or preconditions for

its execution	� and creates a set of outputs �or postconditions	 that may be thought to

change the world into which they are sent� If the domain in which the program or plan

CHAPTER �� PLAN RECOGNITION ��

was intended to function is well known� it would be possible to describe the purpose or

goals of the program or plan� In this chapter I discuss more closely the relation of plan

recognition research and the task of understanding software�

����� Motivation and Introduction

Every day people make decisions about how to act and what to say based on the coupling

of perceptions of actions and events undertaken by other actors or agents in the world and

interpretation or understanding of these actions and events� In particular� we understand

that people react to their environment in ways that they believe will help them satisfy

their own goals� From this assumption� and our perceptions of the actions of others�

we plan our own actions in the world� In a similar manner people interpret human�

generated artifacts which they encounter in their everyday lives� For example� we all

expect that reports� tools� books and phone messages are created by intelligent agents

in our world who have ful�lled speci�c goals of their own in creating the artifacts which

we perceive� Programmers routinely conceptualize software source code as created with

particular goals in mind in order to further the process of deciphering exactly what is or

was intended in the code� In general we all infer the goals of other agents in a similar

manner as a matter of course each day�

Plan Recognition �PR	 is the task of creating a contextual model of the intentions

underlying the actions of agents� Program Understanding �PU	 is the task of creating a

contextual model of the intentions underlying actions encoded into program source code�

From these simple descriptions of PU and PR� it may be tempting to view PU as simply

an instance of PR� and further� recognize that methodologies presented for PR should

readily apply to PU� This chapter will clarify the classes of problems that PR and PU

methodologies intend to address� and describe the ways in which these classes both di�er

and resemble one another� As part of this explanation� I show that a straightforward

CHAPTER �� PLAN RECOGNITION ��

interpretation of PU as a particular kind of PR is incapable of exploiting the particular

temporal and causal structures embedded in source code� I point out that PU may be

thought of as a simpli�ed or more tightly�constrained version of PR that remains NP�

hard �see Section ���	� PU provides an interesting example problem on which to build

methodologies which may be extended to e�ectively address instances of the more general

PR problem�

I describe the close relationship between PR and PU in the following Sections� In

Sections ����� and ����� we examine each of PR and PU in turn� and attempt to clarify

the structural di�erences in these problems through use of examples� In Section ����� I

describe an attempt to model an approach to PU in the spirit of one seminal� typical PR

algorithm� and illustrate the inadequacy of this approach� In Section ����� I summarize

the relationship between PR and PU before continuing�

����� The Plan Recognition Paradigm

Plan Recognition can be thought of as the task of determining the best� uni�ed context

which causally explains a set of perceived events as they are observed� A context is

essentially a hierarchical set of plans and goals that accounts for the observed actions�

This process generally assumes a speci�c body of knowledge which describes and limits

the types and combinations of events that may be expected to occur� This knowledge

body is frequently represented as a specialization and decomposition structure of events

and actions�

Kautz and Allen �Kautz and Allen� ����� formalized an approach to PR that has

served as a primary building block for many subsequent PR methodologies� including

�van Beek et al�� ������ In addition� others address similar issues of explanation selection

�Best is a highly subjective term which changes de�nition depending on the intent of the particular
plan recognition application�

CHAPTER �� PLAN RECOGNITION ��

in separate representational and conceptual schemes �Carberry� ����� Carberry� ����a��

Kautz and Allen de�ne the PR process as that by which �a set of observed or described

actions is explained by constructing a plan that contains them�� A model of PR is

formed with the intent of both representing actual events or occurrences� and of proposing

hypothetical explanations of actions� Explaining action through PR involves uncertainty�

and therefore it is necessary to somehow recognize some particular plan that another agent

is performing from a possibly large set of explanatory plans� The process of arbitrating

this uncertain selection process is the primary focus of the work of Kautz and Allen� and

of plan recognition systems in general� For the purposes of this study� I focus on the

interpretation of Kautz and Allen primarily�

MakeSpaghetti
Carbonara

MakeFettucini
Alfredo

MakeFettucini
Marinara

MakeChicken
Primavera

MakeChicken
Marinara

StackBlocks

TopLevelAct

PrepareMeal

MakeMeatDish
GoToKitchen

Boil

MakeNoodles

MakeFettucini

MakeSpaghetti

MakePastaDish

MakeMarinara

MakeSauce

MakeChicken

Figure ���� Action hierarchy for the cooking domain

Kautz and Allen�s approach is based upon ordinary deductive inference� The rules for

CHAPTER �� PLAN RECOGNITION ��

Compute-Print-Avg

Find-Input-Avg Print-Avg

Compute-Print-Sum

Print-Sum

Calc-Avg

Divide ?Sum-From-Array Direct-Sum

Sum-ArrayFill-Array

Print

Calc-Input-Sum

Figure ���� An Example Action Hierarchy

deduction are rooted in the exhaustive body of knowledge about actions in a particular

domain encoded in the form of an action hierarchy� The hierarchy of Figure ��� taken

directly from �Kautz� ����� depicts specialization relations as dark arrows from speci�c

to general actions� The thinner lines encode decomposition of actions into a set of sub�

actions� Not encoded in this �gure are additional domain constraints such as temporal

relations among sub�actions� although this information is assumed to be available for

the plan recognition process� For instance� in MakePastaDish it is assumed that the

constraint that Boil precedes MakeNoodles is included�� For illustrative purposes� a

similar hierarchy in the program understanding domain �note that composition is indi�

cated by an arc and specialization with an arrow	 is given in Figure ����

The action hierarchy describes all ways in which any expected action may be per�

formed or used as a step in a more complex action� The trigger for deduction is the

�Note that MakeNoodles refers to the process of transforming dry noodles to hot noodles ready for
serving� not the process of actually making the individual noodles from pasta dough�

CHAPTER �� PLAN RECOGNITION ��

perception of an action� As an example� observe that the hierarchy encodes that Boil

andMakeNoodles are sub�actions ofMakePastaDish� and further that they are sub�

actions of no other action� Perception of an instance of Boil then results in the deduction

that the more abstract task being undertaken is MakePastaDish� and similarly� Pre�

pareMeal and TopLevelAct� Actions are perceived one at a time� with a model of the

agent�s intention maintained incrementally following each perception� Although at any

point in the process the determination of the perceived agent�s plan may be ambiguous�

�or rather� disjunctive	� speci�c predictions about future activities can still be made� For

instance� imagine the perception of an action which is identi�ed as eitherMakeSpaghetti

or MakeFettucini� Since both of these actions are instances of MakeNoodles� it can

be deduced that the higher level task MakeNoodles is being undertaken� Now� since

MakePastaDish has the additional sub�action Boil� we can expect to perceive Boil in

the future �if it indeed has not yet been perceived	�

PR as described by Kautz and Allen� depends upon several important assumptions�

� Open Perception� It must always be assumed that a given set of perceptions of the

observed agent or situation may be incomplete� In particular� the perceiver may

at any time realize an observation of an act that will result in the need to update

current beliefs about the agent�s plans�

� Closed Specialization� The known ways of performing an action are the only ways

of performing that action�

� Closed Generalization� All the possible reasons for performing an action are known�

� Closed Decomposition� The given decompositions of actions into sub�actions are the

�Other work in PR
van Beek et al�� ���
� addresses the issue of resolving ambiguity only when nec�

essary through interactive dialogue focusing on explanatory plans that share particular faults � where a
fault is an inability of a plan to perfectly match the observations�

CHAPTER �� PLAN RECOGNITION ��

only decompositions�

� Full Sensibility� All actions are purposeful� that is� any non top�level action occurs

only as part of the decomposition of some top�level action�

� Simplicity Heuristic or Minimum Cardinality Assumption� When several actions

are observed� assume that the observations are all part of the same top�level act�

In general� prefer that as few top level actions occur as possible�

Kautz and Allen explain the plan recognition process as follows� First� the plan

hierarchy is processed into a set of axioms according to the hierarchy structure and the

assumptions stated� Next� a specialized forward chaining reasoning process embodying

a particular inference strategy over these axioms is undertaken� As each observation

is received� the system chains up both the abstraction and decomposition hierarchies

until a top�level action is reached� The intermediate steps may include many disjunctive

statements� such as in the MakeFettucini� MakeSpaghetti example introduced in

Section ������ The action hierarchy is used as a control graph which directs and limits

this disjunctive reasoning� After more than one observation arrives� the system will have

derived two or more top�level action instances �that is� it will have found a set of paths

from each observed action� through the action hierarchy� to top�level actions	� The system

then applies a simplicity heuristic to unify the disjoint explanations� This heuristic is to

prefer as few high�level actions as possible� or� in other words� to reduce the explanation to

the set of actions and the minimal set of higher�level plans that �cover� all of them� When

this heuristic is applied� the result is a set of restrictive assertions about the functions

of each observed actions� If this causes an inconsistency� the system backtracks up the

explanation path to where the simplicity heuristic incorrectly merged the explanation

paths�

Kautz �Kautz� ����� identi�es two primary problems that must be dealt with in incre�

CHAPTER �� PLAN RECOGNITION ��

mental recognition systems� The �rst of these is the combinatorial problem which arises

when the minimum cardinality assumption is relaxed to include two or more primary

actions� This relaxation allows the number of possible ways of grouping together the set

of observations to grow exponentially� � The second problem identi�ed is the persistence

problem� once two observations are tied together or interpreted in a particular context

�say as a result of the minimum cardinality assumption	� entirely discarding this context

simply on account of the arrival of a contradictory piece of information seems unnatural

from a human reasoning viewpoint�

The simplicity heuristic is the key to Kautz�s model� By minimizing the number of

hypotheses which account for all observations and accepting this event covering set as

the current adopted plan� a description is given precisely as to how to recognize a plan

from observation� Consider the following example of the use of minimum event cover in

unifying the contextualization of two action perceptions�

Refer once again to Figure ��� from page ��� A Boil action is perceived� Boil

only occurs as part ofMakePastaDish� and consequentlyMakePastaDish is adopted

as the covering plan� Next� a MakeMarinara action is perceived� MakeMarinara

can be covered by MakeFettuciniMarinara� and subsequently MakePastaDish� or

by MakeChickenMarinara� and subsequently the additional high�level covering plan

MakeMeatDish� What then is the plan being undertaken" According to minimum

cover� MakePastaDish covers both Boil and MakeMarinara� and so MakePas�

taDish is accepted as the current plan� MakeChickenMarinara and MakeMeat�

Dish may be denied� Now suppose the next perception is a MakeChicken action�

�Kautz explicitly recognizes that in some domains the combinatorial problem may be largely mediated
through various constraints on event types� however� he imagines that in realistically sized problems
additional principles will be required� In the later discussion of PU as a special type of PR� we show
that both action type and other structural problem feature constraints are used to mediate combinatorial
explosion in exactly this manner�

CHAPTER �� PLAN RECOGNITION ��

MakeChicken can only be part of a MakeChickenMarinara or MakeChickenPri�

mavera action and subsequently the high�level plan MakeMeatDish must be inferred�

The uni�ed conclusion is forced to include two high level actions now� MakeChicken can

only be covered byMakeMeatDish� Boil can only be covered byMakePastaDish� and

MakeMarinara can be covered by either or both ofMakePastaDish andMakeMeat�

Dish� Even this minimization of the high�level actions leaves a great deal of disjunctive�

ness� For example� it could be the case that MakePastaDish covers MakeMarinara

and Boil� and a di�erent chicken dish is being made� or� it could be the case thatMake�

MeatDish covers bothMakeMarinara andMakeChicken� and that a di�erent pasta

dish is being made� In fact� it is possible that theMakeMarinara action is being shared

by MakePastaDish and MakeMeatDish� When such action sharing occurs between

plans� additional constraints such as temporal relationships can be very useful in limiting

disjunctive conclusions�

Kautz�s algorithm

There are three versions of the Kautz approach �Kautz� ������ Each version is based on

a di�erent interpretation about how to integrate or group multiple observation expla�

nations and implement the concept of the minimal explanation� The �rst� �known as

non�dichronic	� returns the same result independent of the order of observation of events�

and identi�es the current conclusion as the disjunction of all hypotheses of minimum

size� A hypothesis is of minimum size if it involves a minimum number of top�level acts�

The second version� �known as incremental minimization	� tries to keep the number of

top�level acts under consideration to a minimum and only increases when no other op�

tion exists� The third version� �known as sticky	� prefers to explain each observation by

integrating it with the most recently added top�level action�

Kautz�s algorithm �Kautz� ����� as depicted in Table ���� has three main parts� ��	

CHAPTER �� PLAN RECOGNITION ��

ExplainObservation in which the plan hierarchy is traversed bottom�up� from the ob�

servation instance to a top�level plan� giving an independent explanation or explanation

set according to all possible disjunctions in the hierarchy� ��	MatchGraphs which at�

tempts to merge two independent observation explanation graphs into a single covering

explanation graph based on unifying the �End� or top�level plans involved # a failure

to unify or merge signals the need to consider higher�cardinality explanations� and ��	

Group� which continuously inputs observations and groups them into sets to be explained

with independent explanation graphs� From Group� a particular minimization function

is called� selecting the particular set of explanation graphs which cover all observations�

Recognition summary

Kautz and Allen�s model is designed for iterative or incremental re�nement of a model

of an agent�s plans as successive observations are made of the agent� and as action oc�

currences are revealed� Following each perception� a possibly disjunctive� non�monotonic

model is maintained which hypothesizes the agent�s goals� The implicit assumption in

this model of plan recognition is that at any time� all observations are not available

for deduction� Consequently� non�monotonic conclusions are reached through controlled

deduction on the basis of the current� possibly incomplete� observation set�

����� Program Understanding Recalled

In contrast to PR� PU is the attempt to construct a �possibly partial	 mapping be�

tween the expert�s store of relevant knowledge structures and components inherent in the

source code� This mapping may be viewed as the task of determining the best uni�ed con�

text which causally explains a well�structured set of known program source statements#

essentially� trying to infer which programming plans were instantiated by the actions in

the program�

CHAPTER �� PLAN RECOGNITION ��

Algorithm KautzRecognize�Obsset� Hier	�
Input� A set of observations Obsevent� Obsset� a plan hierarchy Hier structure�
Output� A hypothesis Hypo consisting of all explanation graphs ExplGraph instanti�
ating part of the hierarchy covering the set of observations Obsset�

SubRoutines

A� ExplainObservation�Obsevent� Hier	 �returns an event graph ObsEventGraph
which explains Obsevent �

B� MatchGraphs�ObsEventGraph� ExplGraph	 � returns a new ExplGraph
including ObsEventGraph and TRUE� or FALSE�

Main Routine

� Hyposet �$ NULL�
� for each Obsevent in Obsset do

� ObsEventGraph �$ ExplainObservation�Obsevent� Hier	�
� for each Hypo in Hyposet do

� Hyposet �$ Hyposet �Hypo�
� Hyposet �$ Hyposet � Union�Hypo�ObsEventGraph	�
� for each ExplGraph in Hypo do
� �ExplGraphnew �MatchOkay	 �$

MatchGraphs�ObsEventGraph� ExplGraph	�

� if MatchOkay
then

Hyposet �$ Hyposet � Union��Hypo� ExplGraph	� ExplGraphnew	�
endif

�� endfor �step �	
�� endfor �step �	
�� endfor �step �	

�� Return Hypo � Hyposet with minimum cardinality�Hypo	�

Table ���� The Kautz Non�dichronic Program Understanding algorithm

CHAPTER �� PLAN RECOGNITION ��

Recent work in PU �of which this thesis is also an example	

�Woods and Yang� ����b� Woods and Yang� ����a� Woods and Yang� ����c�

Quilici� ����� Quilici and Chin� ����� Quilici� ����b� Quilici and Chin� �����

Kozaczynski and Ning� ����� Rich and Waters� ����� Wills� ����� Wills� �����

Rugaber et al�� ����� has tended to describe approaches to PU based on the exis�

tence of a domain�dependent knowledge library which consists of programming plan

templates and concepts� Source code is interpreted within the context of a speci�c body

of knowledge that describes how programs in general� and domain�programs in particular�

are known to be structured� Various top�down and bottom�up search strategies are

utilized to construct partial mappings between the source code and knowledge� To some

extent� these approaches are all aimed at improving the e�ectiveness of the mapping

process through exploiting heuristic knowledge� One primary goal of this thesis is to

bring together the range of program understanding strategies and heuristics into a single

representational framework�

In Figure ��� on page �� a subset of expert knowledge about a particular application

domain is represented as a fragment of a hierarchical library of program templates�� The

encoded structure� or knowledge constraints� includes temporal� control�!ow� and data�

!ow relations among the components of plans� In addition� typical or expected structure

can be represented in the hierarchy as preferences for certain common specializations or

indices for frequently related plans� Figure ��� shows one possible mapping between a

plan template from the library and a speci�c source fragment� in this case a single source

statement� The existence of such a mapping essentially explains the presence of the low�

level source statement at a higher level of abstraction� in this case as an instance of the

plan template copy�character speci�ed in the library�

�In PR� the existence of hierarchical plan libraries for a particular domain is assumed�

CHAPTER �� PLAN RECOGNITION ��

As in PR� PU frameworks make several key assumptions about the domains in which

they work and the task in general� including�

� Closed Perception� The source program under consideration at any point in time�

together with any derived structural constraints� makes up all of the perceptual

information that will be available� In particular� it will never be the case that a

program statement or part that was absent in the previously encountered functional

speci�cation will be perceived� Although the focus of PU may be only a sub�part

of a larger program� the part in question is in itself complete�

� Closed Specialization� The known ways of specializing a particular abstract plan are

the only ways to consider� despite the fact that others may exist�

� Open Generalization� All possible reasons for performing a particular source state�

ment or abstract plan can never be known� however� the known specializations are

the only ones of interest in constructing partial explanations�

� Open Decomposition� The given decompositions of plans into sub�plans are only a

subset of all possible decompositions in any domain� however� the known decompo�

sitions are the only ones of interest in constructing partial explanations�

� Partial Sensibility� All source statement actions are purposeful� that is� any recog�

nized non�top�level plan occurs only as part of some top�level plan� However� this

top�level plan may not reside in the knowledge hierarchy� Further� program state�

ments will necessarily exist that cannot be explained with the partial knowledge

hierarchy�

Just as plan recognition has adopted simplicity measures as a way of dealing with com�

binatorial problems in explaining the relationship between two or more observed actions�

CHAPTER �� PLAN RECOGNITION ��

PU work has attempted to adopt preferences based on various types of locality� In par�

ticular�

� Ordinary spatial locality� Programs exhibit spatial and temporal locality� That is�

statements that are spatially near tend to be related to one another with a higher

likelihood than those that are spatially distant�

� Temporal locality� If one were to observe a program�s execution trace� it would be

possible to recognize patterns of commonly executed program parts� These pat�

terns could be used to identify possibly related program parts based on previously

collected knowledge about the way in which various program parts inter�relate�

� Functional locality� Programs can be statically decomposed into abstract syntax

trees annotated with control and data�!ow information� This additional structure

greatly strengthens the notion of spatial locality� in that relatedness is made explicit

rather than inferred� In contrast to the weak or preferential constraints indicated

by other localities� functional structure can be thought of as strong constraints�

The ability to check correspondences between such structure and expected rela�

tions embedded in the hierarchical knowledge library provides an excellent source

of information to use in reducing the combinatorics of explanation�

In Chapters � and � I present results which demonstrate that an e�ective approach

to partial PU is possible with large source code examples� In particular� I utilize existing

technology in the form of specialized algorithms for solving a class of problems which

is shown to include program understanding� Additionally through this project I have

represented the particular problem structures� constraints� and solution strategies in a

uni�ed framework� The model I have chosen for this generalized representation of PU is

as a constraint satisfaction problem �CSP	� as described in detail in Chapter ��

CHAPTER �� PLAN RECOGNITION ��

����	 Program Understanding as Plan Recognition

The Kautz and Allen approach to plan recognition is elegant and the basis for much

subsequent work in plan recognition� Given that program understanding appears to be a

form of plan recognition� it is now worth considering whether this approach is applicable

to program understanding�

It is apparent that the PR and PU problems are closely related� In particular� a

solution to either problem must be based upon mapping sets of actions to elements of

hierarchical libraries of plans in a consistent fashion� As I am concerned with identifying

good solution strategies for program understanding� and since a large body of work has

been produced based on the generic plan recognition strategy of Kautz and Allen� a

natural question to ask is whether or not this algorithm can be applied directly to PU�

One key di�erence between plan recognition and program understanding is that plan

recognition assumes Open Perception and program understanding assumes Closed Per�

ception� That is� at any point in time� the plan recognition algorithm has an incomplete

set of observed actions and� as a result� the plan recognizer is making a best guess as to

what plan is present� and much of the work in forming this algorithm is in coming up with

this best guess� In contrast� in program understanding exactly the opposite is true� The

source program under consideration� together with any derived structural constraints�

makes up all of the perceptual information that will ever be available� That is� it will

never be the case that a program statement or part that was absent in the previously en�

countered functional speci�cation will be perceived at a later time� Although the focus of

program understanding may be only a sub�part of a larger program� the part in question

is itself complete�

Incorrect Plan Recognition with Kautz

For a moment let us assume that we will try to apply the Kautz plan recognition repre�

CHAPTER �� PLAN RECOGNITION ��

sentations and algorithm to a simple program understanding example� As a consequence

of the Open Perception assumption and the simplicity heuristic used to deal with it� the

Kautz and Allen approach can �nd an incorrect explanation� despite there being su
cient

knowledge to eliminate it as a candidate� To illustrate� consider the following simple line

of code representing a self�contained plan or function�

c �� �a � b���	

Consider for this example the hierarchy of Figure ���� One may view this example as a

pair of observed actions� Sum�Pair� Divide�Pair� and Assign� Ignore assignment and

other structural constraints for this example� We wish to �nd plans for explaining this

program fragment with response to the hierarchy of Figure ���� Consider that each portion

of this complex program statement constitutes a block or program action that must be

explained in the context of the program plan hierarchy� Note that in this example and

throughout the remainder of this thesis� I adapt the hierarchical representational scheme

for specialization and composition� specialization relations are indicated with upward

arrows �from speci�c to general	 and composition as a set of joined arcs from a parent to

its children� This compositional scheme is framed clearly in Figure ���� on page ����

Print-Avg-Pair

Sum-Pair Divide-Pair

Print-Pair

Print

Calc-Middle-Pair

Figure ���� Another Example Action Hierarchy

CHAPTER �� PLAN RECOGNITION ��

Upon recognizing Sum�Pair� the explanation is Sum�Pair is�part�of Calc�Middle�

Pair is�part�of Print�Avg�Pair� After recognizing Divide�Pair� the explanation is

substantially the same� except that it now covers the Divide�Pair as well� However� if

the Print never occurs� the problem is that this explanation cannot be the case� The

explanation� in fact� should be that Sum�Pair and Divide�Pair are a part of Calc�

Middle�Pair�

The problem is that the explanation Print�Avg�Pair is actually wrong� given that

we know no more actions relevant to these plans will appear in the program� Although

this explanation is minimal in terms of top�level actions� it allows for the assumption that

future actions will be encountered� In program understanding� it is inappropriate for the

covering set to cover more actions than have already been encountered� Consequently�

an exact covering set that is not necessarily minimal would give the correct explanation�

Situations like the one in this example can occur frequently in program understanding

because of incomplete plan libraries� It is unlikely that a plan library will contain all the

plans necessary to understand a program �Chin and Quilici� ����� Quilici� ����a�� Sum�

Pair� for example� has a myriad of uses� only some of which will be captured by any plan

library� The result is that any algorithm we use must be capable of producing a forest of

intermediate plans and not attempt to infer potentially incorrect high�level groupings�

This example clearly demonstrates the inappropriateness of allowing a covering set

to cover more actions than have been encountered� Although the explanation is mini�

mal in terms of top�level actions� it allows for the expectation that future actions will

be encountered� With advance knowledge that there are in fact no more applicable ob�

servations �as is the case with PU	� this assumption is not justi�ed� Consequently� a

non�minimal covering would be the correct �possibly partial	 explanation� In addition�

any partial recognition algorithm must account for the fact that it may not be possible

to root every low�level perceived action to a top�level plan� much less the same top�level

CHAPTER �� PLAN RECOGNITION ��

plan or minimal set of plans�

It is reasonable to wonder whether Kautz�s approach can easily be modi�ed to ad�

dress this problem� An initial modi�cation might be to change it so that� after all events

have been processed� it runs through all of the explanation chains it forms and eliminates

any that covers an event that did not occur� This guarantees that the algorithm never

terminates with an incorrect explanation� However� since this algorithm does not carry

along every candidate explanation� it may lose the correct portion of the overall expla�

nation �Calc�Middle�Pair� in the example	� To address this� it is necessary to modify

the algorithm to carry around all potential explanations and to use search to eliminate

those that are missing events� a process which is likely to be ine
cient�

Ine�cient Plan Recognition

Another problem with applying the Kautz approach directly is the Combinatorial Problem

that occurs because any given action can be a component of a multitude of plans that

can themselves be actions within a multitude of plans� and so on� The result is that the

number of possible explanations for a given set of observations can grow exponentially� To

determine a minimal event cover of perceived actions from a plan hierarchy� it is necessary

to generate potential covers and search to select the minimal one� This problem can be

thought of as de�ning a search space of covers� Each action needs to be covered by

some plan� Consider the analogical program understanding problem� Each perceived

program statement needs to be covered by a program plan� in the order in which they

appear in a source code� The Kautz method essentially imposes a single ordering on

the domain values or program statements� resulting in a statically de�ned search order�

hence a potentially very ine
cient search tree� The e�ects such ordering are analytically

evaluated in the search strategy discussion in Chapter �� and empirically in the program

understanding domain in Chapter ��

CHAPTER �� PLAN RECOGNITION ��

This problem is especially relevant to program understanding since most programs

involve thousands and thousands of actions� Kautz explicitly notes this problem� and sug�

gests that in some domains the combinatorial problem may be largely mediated through

constraints on event types� however� he asserts that in realistically sized problems addi�

tional principles will be required�

����� Comparing PR and PU

The simple aforementioned example highlights one important di�erence between PU and

PR� Program understanding is a special form of plan recognition in which PU has more

knowledge about the source domain structure available� However� the di�erences between

general plan recognition and program understanding also imply very di�erent approaches

for tackling the problems�

In general plan recognition� it is fundamental to assume that the observations are

incomplete� This makes it necessary to use algorithms that leave as much room as possible

for incorporating potential new observations in the future� In plan recognition� given the

fact that any observation set may be incomplete� it is therefore natural to judge all

potential explanations on an equal basis # the minimality basis built on cardinality �of

covering plans	�

On the other hand� for program understanding� the observations are always complete

the entire source program is available to the programmer at once� and no guesswork

is permissible� In this case� cardinality�based incremental algorithms are no longer the

best choice� Instead� explanations must be found in such a way that

�� explains all observations �program source code	� and

�� does not admit anything else�

That is� the recognition algorithm for PU must be as tight as possible�

CHAPTER �� PLAN RECOGNITION ��

It is also important to distinguish whether the knowledge base� or plan hierarchy�

can be assumed complete or not� If the plan hierarchy is assumed to be incomplete� as

in the case of general plan recognition� one must utilize non�monotonic algorithms to

account for potential new observations� When the plan hierarchy is complete� however�

the algorithm designed for recognition is monotonic� once a hypothesis is ruled out� it is

never considered again�

����
 Dimensions of Comparison

The inputs to a plan recognition algorithm and a program understanding algorithm� are

the following�

�� observations�

�� plan hierarchy�

One may therefore discuss the similarity and di�erence of PR and PU approaches

according in terms of the following points�

� The plan library is assumed to be complete or incomplete at the time of reasoning

or during the deductive step�

� The observation set is assumed to be complete or incomplete at the time of

reasoning or deduction�

� The set of observations or perceived actions is either strongly or weakly causally

constrained� For example� in PU there is no ambiguity regarding the causal relat�

edness of some actions �such as in the case of actions in a loop structure	� while

in PR for the cooking domain� action perceptions require additional assumptions

to connect them causally� This di�erence is of great importance in controlling the

combinatorial problem Kautz outlines� the structural constraints available through

CHAPTER �� PLAN RECOGNITION ��

Observation Set � � Library Structure � InComplete Complete

InComplete Extended PR Kautz PR Algorithm

Complete Partial PU Special case PU

Table ���� PU versus PR Comparison of assumptions

preprocessing of source code are what support e
cient solution of large PU prob�

lems� It is important to note that Kautz makes use of this type of source constraint�

where possible� in the form of observable temporal relationships in the cooking do�

main�

Below� the PU and PR approaches are categorized based on their assumptions about

hierarchy and observation set completeness� These results are highlighted in Table ����

and discussed as follows�

� Library InComplete� Observation Set InComplete

The Kautz approach is di
cult to apply to this most general case due to the assump�

tion that a complete library is integral to Kautz�s minimal cover approach� Some

more recent PR work �Spencer� ����� Cohen and Spencer� ����� has attempted to

extend PR in this direction� Program understanding approaches capable of admit�

ting partial understanding �such as the constraint�based approach	 are applicable

in any library�incomplete situation� Program understanding typically fails to ad�

dress the case of incomplete observations except in the case of partial understanding

situations� where it is explicitly understood that a code fragment is the source in�

put� In these partial PU cases� it may be assumed that the incomplete observation

sets are locally �spatially and functionally	 connected and consequently exhibit the

same degree of structural constrainedness as a complete observation set� In the

cases of partial recognition where it is expected that the source will map to only

CHAPTER �� PLAN RECOGNITION ��

some subset of the library� no di�erence in behaviour will be expected for a partial�

functionally complete source�

� Library InComplete� Observation Set Complete

Once again Kautz�s approach requires a complete library assumption� and in this

case there is an additional di
culty� Kautz�s PR algorithm assumes that the obser�

vation set is incomplete and that recognition is done incrementally� We have seen

that the PR minimal cover can be incorrect if one applies an incremental algorithm

to a complete observation set� Partial program understanding algorithms apply in

this situation�

� Library Complete� Observation Set InComplete

At any point in time of any reasoning about plan�based explanation of behaviour�

this situation is the precise expectation of PR approaches such as that of Kautz�

Non�monotonic decisions or interpretations are made after each successive obser�

vation� anticipating that another observation will be forthcoming� Most program

understanding work is based upon a strong assumption that it is impossible to com�

pletely specify a su
cient program plan library to cover all program source� even in a

limited domain� Some approaches �such as the constraint�based and memory�based

�Quilici� ����� approaches	 can make strong claims about their ability to recognize

the correct plans in cases where a complete library is known in advance�

� Library Complete� Observation Set Complete

It would appear that this most strongly constrained situation would admit the most

constrained algorithms as a result� However� Kautz�s approach will not apply here�

For instance� a minimal set covering can imply the existence of observations that

are in fact not present at any point during the incremental approach� This situation

CHAPTER �� PLAN RECOGNITION ��

is in fact a special case for PU� One may view this as the case where an attempt

is being made to recognize source code generated solely through automated use of

the library� Thus� the library completely covers the source by de�nition�

����� Comparative Summary of PR and PU

Planning and software forward engineering are highly related� Similarly related are plan

recognition and software understanding as part of reverse or re�engineering� In particular�

past PR and PU approaches exhibit a great deal of similarity�

� PR and PU strategies share a representation of understanding as the successful

construction of a mapping between hierarchical pre�existing knowledge libraries

and some input observation set�

� Both strategies attempt to reduce the combinatorial di
culties of integrating multi�

observation explanation by exploiting available knowledge constraints on action

composition as required temporal ordering of sub�actions�

However� the approaches di�er in very signi�cant ways�

� The Kautz PR strategy assumes a complete library and incomplete observation set�

and consequently is di
cult to apply to a more restricted PU domain in which an

incomplete library and complete observation set are the norm�

� The di�ering assumption sets can result in over�committed solutions when the PR

concept of observation set minimal covering is applied to PU� The assumption of

an incomplete observation set is the basis for preferring few top�level plans rather

than a number of apparently disjoint partial plans�

� PR has a less�restrictive constraint set upon which to limit the combinatorial prob�

lem of disjunctive explanation� While PU may exploit the wealth of structural

constraints easily�extracted from the source before recognition� PR examples have

CHAPTER �� PLAN RECOGNITION ��

been typically largely limited to explicit temporal constraints�� Consequently� one

may expect to solve larger PU problems more e
ciently than comparably sized PR

problems�

� PU can be thought of as a special� well constrained� case of PR which remains di
�

cult �NP�hard	� While we have seen why general PR approaches are inapplicable to

typical PU problem instances� it should be emphasized that one important result

of this study is the suggestion that the techniques used in PU be considered for

the more general PR problem� In particular� certain PR problem instances could

admit pre�processing of the observation set to identify particular causal relation�

ships� These explicit relationships should be applied in conjunction with action

representations so as to increase the number and type of constraints available in

the problem solution�

In addition to signi�cant similarities and di�erences in approaches to mapping a set

of perceived artifacts to a knowledge body� plan recognition and program understand�

ing are related in other ways as well # a large body of work in plan recognition is

highly complimentary to program understanding e�orts� In particular� that work which

intersects user modeling and plan recognition can be utilized in program understand�

ing� This work focuses on cooperative solution of the plan recognition problem between

an �expert� advisor�type system and a particular user who is undertaking a particular�

possibly unknown� goal� Examples of such work includes �Ardissono and Cohen� ����a�

Ardissono and Cohen� ����b� van Beek et al�� ����� Carberry� ����b�� In such systems�

plan recognition is undertaken by the advising system in an e�ort at determining exactly

goals the user is pursuing� and adapting responses and information�provision strategies

appropriately� As outlined in Chapter �� any successful e�ort at providing automated

�Of course� related work in user modeling has attempted to restrict the range of explanation with
�focus� heuristics which may be thought of as explicit constraints an explanation�

CHAPTER �� PLAN RECOGNITION ��

tools to assist the program understanding e�ort is predicated on the existence of good

interaction strategies and e�ective user interface tools� This plan recognition and user

modeling work is a necessary step in bridging the gaps between visual tools for recogni�

tion� representation of hierarchies� user interaction and understanding tools such as are

described more precisely in the following chapters�

����� Looking Ahead� Adapting PR for PU

In some sense� program understanding has more knowledge available than is present in

typical AI plan recognition domains� In particular� program understanders have the

complete set of actions that are present in the program and many detailed data�!ow and

control�!ow constraints among those actions� This allows program understanding to take

a breadth��rst approach to plan recognition� which avoids carrying along uncon�rmed

and possibly incorrect hypotheses� There exist other similar domains appropriate to

plan recognition techniques which exploit all�at�once action knowledge� For example�

text comprehension or examination of execution or action traces o�er much the same

advantages as program understanding in terms of complete action sets� However� it is

di
cult to envisage other plan recognition domains which have as rich a set of inter�action

or structural information available about the connectivity of action�

One way to characterize AI plan recognition approaches is to say that they try to

hypothesize complete explanation chains that cover each action� and that they use sub�

sequent actions to shrink the set of explanations �when the actions can be combined

under some high�level action	 or hypothesize additional explanations �when they cannot

be combined	� At the end of a pass through all actions� the plan recognizer has a set of

preferred hypothesized explanations for those actions�

In program plan recognition� one may immediately verify a portion of any hypothe�

sized explanation chain� and gradually construct explanation chains from veri�ed pieces�

CHAPTER �� PLAN RECOGNITION ��

In particular� given an action that is potentially part of a set of plans containing only

actions �and not sub�plans	� one can immediately verify whether that plan actually exists

by locating the plan�s other actions and verifying any constraints between them� That is�

it is possible to use each action in the AST �abstract syntax tree	 as an index to the set

of potential plans that might contain it� and then check whether each of those plans are

present� Thus� at the end of a pass through all actions� the plan recognizer has located

veri�ed�single plan explanations for each of the actions� Quilici �Quilici� ����� adopts just

such an approach which is discussed in detail in Chapter ��

One simple� complete way to locate total� veri�ed�explanation chains is to organize

the plan library in layers� where the �rst layer consists of those plans that are solely

events in a program�s AST� the next layer consists of those plans that depend only on

the events in the AST and plans in the �rst layer� and so on� After recognizing those

plans in the initial layer� the plan recognizer runs through each of those plans and veri�es

whether the plans in the next layer that can contain them are actually present� creating

a new set of veri�ed recognized plans� This process is repeated until there are no newly

recognized plans�

A question remains as to how to perform this veri�cation process� That is� given

that an action suggests a set of possible plans that might explain it� how can one verify

which of these plans are actually present" Given the presence of many constraints among

the actions in any plan� this suggests using a constraint satisfaction approach� which I

discuss in detail in Section � and apply to recognition of local sub�plans for programs in

Chapter � and global program plans in Chapter ��

A Constraint Satisfaction Problem consists of three major components� A

set of variables� a �nite domain value set for each variable� and a set of con�

straints among the variables which restrict domain value assignments� A so�

lution of a CSP is a set of domain value to variable assignments such that

CHAPTER �� PLAN RECOGNITION ��

all inter�variable constraints are satis�ed� These mechanisms include global

�Kondrak and van Beek� ����� and local search�based methods �see �Sosic and Gu� ������

�Minton et al�� ������ and �Yang and Fong� �����	� constraint�propagation problem sim�

pli�cations �see �Nadel� ������ �Dechter� ������ and �Prosser� �����	� hierarchical exploita�

tion of problem structure �Freuder and Wallace� ������ as well as hybrid combinations of

these approaches�

In using a CSP for the task of verifying whether a single plan is present in a particular

program fragment �or situation	� the variables correspond to the actions in the plan�

the domain values are the source statements �or sub�plans	 with the same type within

the program� and the constraints are re!exive type constraints on each variable� along

with inter�variable constraints such as data and control�!ow� Variables here can have

attributes such as �print� for	 that may be seen as constraints on allowable assignment

of program statements �values	 to plan features �variables	� Other constraints are on the

sharing of information among variables� and on the order in which plan components or

variables are expected to appear in source code� Example plans using this representation

have been presented in �Woods and Quilici� ����c� and �Woods and Yang� ����b�� and

are given here in Chapter ��

A solution to the CSP consists of the set of all assignments of plan features by source

code statements� where each assignment must satisfy all constraints� The solution to

a CSP provides a mapping that explains the matched source statements as parts of an

instance of the abstract program plan or ADT� When one start solving a particular CSP

for recognizing a particular plan� the variable which represents the action which triggered

this plan�s consideration is restricted to the single domain value corresponding to that

action� Thus� in some sense� each CSP is starting o� partially solved� For example�

if a recognized sub�part of a program plan template for computing an average was a

summation of a vector� then the template variable for �summation� would be instantiated

CHAPTER �� PLAN RECOGNITION ��

to the recognized summation code� and other� currently unrecognized plan sub�parts such

as �compute�set�size� would be initially uninstantiated�

Applying ordinary plan recognition to program understanding imposes an ordering

of the program statements # essentially they are considered in temporal order� top to

bottom� Consider the simple case of attempting to recognize a single program plan in

the CSP framework using the Kautz imposed order� A search space results in which the

components of the CSP have domain ranges which include all program statements� A

�cover� of the components that satis�es the existing component constraints is a potential

solution� The domain ranges are ordered temporally �early program statements �rst	�

thus resulting in the generation of potential solutions with �earlier� combinations �rst�

�later combinations� second� and an eventual generation of all combinations� Kautz�s

insight that �additional principles� would be required to mediate the search can be at least

partially satis�ed for program understanding through the use of intelligent backtracking

strategies during this process� In contrast� a constraint satisfaction algorithm relaxes

the temporal ordering of domain ranges by dynamically re�arranging the domains �in the

spirit of some types of forward checking algorithms	� and reaping the bene�ts of improved

search results through more e�ective constraint applications which reduce entire sub�parts

of the search space�

Program understanding is often viewed as a task of understanding the plans inherent

in a software code� I have demonstrated that there are serious problems with the naive

notion of simply applying AI plan recognition algorithms� and that these problems in some

sense justify the rejection of this AI algorithm by researchers in program understanding�

However� as we shall see in subsequent chapters of this work� as a result partially of

careful analysis of the problems that arise in applying at least one existing AI plan

recognition algorithm to program understanding� it is possible to construct a variant of

that algorithm that appears e�ective in e
ciently recognizing certain classes of plans in

CHAPTER �� PLAN RECOGNITION ��

real�world programs�

I investigate the constraint satisfaction paradigm in some depth next in Chapter ��

Part II

Modeling Framework

��

Chapter �

The Constraint Satisfaction

Paradigm

��� Motivation and Background

I present here a framework in which to represent program understanding� and a

corresponding approach for attempting to generate solutions from a base of situational

information� One possible method of expression for this problem would be as a

constraint satisfaction problem �CSP	� CSPs have been studied extensively� and a

variety of problem domains have been formulated in this framework� To list even a

representative cross section of these papers would be di
cult� however� some recent

applications and evaluations include �Tolba et al�� ������ �Yang and Fong� ������

�Norvig� ������ �Van Hentenryck et al�� ����b�� �Guan and Friedrich� ������

�Nadel� ����� and �Nadel� ������ Many authors have been noted for contin�

ued interest in broad discussions of the applicability of CSP and speci�c

theoretical and practical contributions� however� the most notable are per�

haps Mackworth� Dechter and Freuder �see for example �Mackworth� ������

��

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

�Mackworth� ������ �Mackworth� ������ �Mackworth and Freuder� ������

�Mackworth and Freuder� ������ �Mackworth� ������ �Dechter and Pearl� ������

�Dechter and Pearl� ������ �Dechter and Meiri� ������ �Dechter and Dechter� ������

�Dechter� ����a�� �Dechter� ����b�� �Dechter� ������ �Hubbe and Freuder� ������

�Freuder and Mackworth� ������ �Freuder and Wallace� ������ �Freuder� ������ and

�Freuder� �����	�

In this section I intend to provide a brief description of constraint satisfaction prob�

lems� and of how they are typically solved with a combination of heuristic search and

constraint propagation �CP	 techniques� I discuss how the issues of constraint propaga�

tion and search a�ect a speci�c problem instance� Of particular interest in this discussion

will be the performance of solution strategies� and possible ways in which interaction with

the user of a constraint�based system might be engineered� In a later section I will for�

mulate a spatial template recognition problem as an example of how domain heuristics

such as spatial locality are exploited in solving CSPs�

Constraint satisfaction problems �CSPs	 provide a simple and yet powerful framework

for solving a large variety of AI problems� The technique has been industrially applied

in a wide variety of domains �Van Hentenryck� ������ A successful application of this

technique to knowledge�based planning is presented in �Yang� ������

A good introduction to CSP can be found in �Kumar� ������ which presents a general

overview of the formulation of many AI problems as CSP including those in machine

vision� belief maintenance� scheduling� temporal reasoning� graph problems� !oor plan

design� genetic experiment planning� and the satis�ability problem� Kumar outlines sev�

eral di�erent approaches to solving these problems such as backtracking search� constraint

propagation� and some hybrid combinations of the two� A more detailed discussion of the

�eld and a complete description of relevant algorithms may be found in �Tsang� ������

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

��� A Simple Example

A constraint satisfaction problem �CSP	 can be formulated abstractly in terms of three

components�

�� a set of variables� Xi� i $ �� � � � �n�

�� for each variable Xi a set of values fvi�� vi�� � � �vikg� Each set is called a domain

for the corresponding variable� denoted as domain�Xi	�

�� a collection of constraints that de�nes the permissible subsets of values assignable

to particular variables�

The goal of a CSP is to �nd one �or all	 assignment of values to the variables such that

no constraints are violated� Each assignment� fxi $ viji � i $ �� �� � � � � ng� is called a

solution to the CSP�

Red, Green, or Blue

Red, Green, or Blue

Red, Green, or Blue

Country A

Country B

Country C

Figure ���� A Map Coloring Problem

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

Variable A Variable B

Variable C

B domain = { Red, Green, Blue }

C domain = { Red, Green, Blue }

(adjacent−to A B)

(adjacent−to A C) (adjacent−to B C)

A domain = { Red, Green, Blue }

(not A Red)

Figure ���� Map�Coloring CSP

As an example of a CSP� consider a map�coloring problem� where the variables are

regions A�B�C that are to be colored �see Figure ���	� In any �nal solution every region

must be assigned a color such that no two adjacent regions share the same color� The

CSP representation of this problem is given in Figure ���� A domain for a variable is the

set of alternative colors that a region can be painted with� For example� a domain for A

might be fGreen�Red�Blueg� A constraint exists between every pair of adjacent variables

which states that the pair cannot be assigned the same color� Between adjacent regions

A and B� for example� there is a constraint Color�A	 �$ Color�B	� An additional �node�

or local constraint is given that region A must not be assigned the domain value or color

Red� A solution to the problem is a set of colors� one for each region� that satis�es the

constraints�

In a problem speci�ed in this way� it should be noted that if a constraint relates only

two variables then it is called a binary constraint� A CSP is binary if all constraints

are binary� For any two variables X and Y � one says X $ u and Y $ v is consistent if

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

all binary constraints between X and Y are satis�ed by this assignment� The power of

constraint�based representations lies partly in the !exibility of a constraint de�nition� In

the binary case �a n�ary constraint scheme is convertible to a binary case	� a constraint

is de�ned as a decision function �returning true or false	 between domain values from

the source and target variables� Any computable function may be thus represented as a

constraint�

In Chapter � I utilize the CSP representation scheme of components and constraints

to correspond to program plan components �variables	 and known data and control�

!ow constraints� The domain of each variable ranges over all program statements� In

Chapter �� I utilize the CSP scheme to represent physical program components �variables	

and structural constraints among these components� The domain of each variable ranges

over all program plans in a known library�

��� CSP Solution Approaches

A solution to a CSP is simply an assignment to each variable of a domain value

from that variable�s domain such that all constraints restricting assignments are sat�

is�ed� In some cases we may be interested in only a single satisfying assignment�

while in other problem instances all possible satisfying assignments may be of inter�

est� Much research has been done in creating algorithms for solving CSPs� These

mechanisms include global �Kondrak and van Beek� ����� and local search�based meth�

ods �see for example �Sosic and Gu� ������ �Minton et al�� ������ �Yang and Fong� ������

�Gent and Walsh� ������ �Gu� ������ �Selman et al�� ������ �Selman and Kautz� ������

and �Minton et al�� �����	� constraint�propagation problem simpli�cations �see for ex�

ample �Nadel� ������ �Dechter� ������ and �Prosser� �����	� hierarchical �or partial	 ex�

ploitation of known problem structure �see for example �Freuder and Wallace� ������ and

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

�Mackworth et al�� �����	� as well as hybrid combinations of these approaches� Many

real�world implementations merge these approaches in various ways�

It is important to note here that a particular problem instance such as the map

colouring problem may be represented in many di�erent ways� each a di�erent constraint

satisfaction problem with di�erent numbers of variables� domains� and constraints� The

particular representation chosen directly a�ects the structure of the problem search space

and consequently the performance of various search methods applied to this space� In

�Nadel� ������ the relative costs and bene�ts of selecting di�erent representations for the

same problem are discussed� In addition the performance trade�o�s are determined both

experimentally and theoretically�

In terms of program understanding� CSP solution approaches represent methods of

identifying both local program component explanations and global interpretations of

source code� The methodologies described in this section are domain�independent� They

may� however� be easily adapted to make use of domain�dependent knowledge and heuris�

tics�

����� A naive solution� Generate
and
Test

The most straightforward method to solving a CSP is to generate possible solutions and

to test if the constraint set is satis�ed for a given instance� In the simple example of

Figure ���� a simple search is undertaken through the space of all possible assignments of

colours to variables� and each assignment found to be consistent with the set of constraints

is a solution� Of course� such a method is quite ine
cient and will not be adequate for

more complex examples involving more variables� larger domain sizes� and more elaborate

constraint networks� Speci�c search methods and heuristics that have been shown to

reduce the overall search for certain types of problems will be discussed later in this

paper�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

This example exhibits constraints between pairs of variables indicating that certain

pairings of assignments are not acceptable �arc constraints	� One could have also added

constraints on a particular individual variable or node� that restricted the set of allowable

domain values which that particular variable could be assigned �node constraints	�

In terms of partial local program understanding� generate�and�test would correspond

to the very expensive process of permuting all program statements combinations for each

program plan component and identifying which combinations were consistent with the

expected control and data�!ow constraints�

����� Local Consistency

An alternate approach to solving CSPs is known as constraint propagation and is an at�

tempt to take advantage of the limiting characteristics of constraints among the variables

in the CSP� Essentially� any solution of a CSP has the quality that domain assignments

to the variables must be consistent with one another� Any inconsistency discovered with

a domain assignment and a constraint signals that a particular assignment is invalid and

may be discarded� An inconsistency discovered as a result of a constraint between two�

variables indicates that that a particular pairwise assignment is invalid and that pair of

assignments may be discarded�

Local consistency methods follow the theme of preprocessing� That is� before a more

costly method is used� a consistency�based method could be applied to simplify a CSP and

remove any obviously incompatible values� Often these methods yield tremendous head�

way toward eventually solving the problem by reducing the total search space involved

with a relatively small� often predictable amount of pre�search e�ort�

Let X and Y be two variables� If a domain value A of X is inconsistent with all

�Note that for simplicity I refer to the simple case in which only binary constraints are allowed� In
general� constraints may involve many variables�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

values of Y � then A cannot be part of a �nal solution to the CSP� This is because in

any �nal solution S� any assignment to X must satisfy all constraints in the CSP� Since

X $ A violates at least one constraint in all possible solutions� A can be removed from

the domain of X without a�ecting any solution�

If for a pair of variables �X� Y 	� for every value of X there is a corresponding consis�

tent value of Y � then one says �X� Y 	 is arc�consistent� By the above argument� enforcing

arc�consistency by removing values from variable domains does not a�ect the �nal solu�

tion� A CSP in which every pair of variables has been made arc�consistent is said to

exhibit arc�consistency�

Local consistency can be used in local program understanding to reduce the expla�

nation set of locally constrained program plan components� For instance� the knowledge

obtained through the identi�cation of one program statement as corresponding to a given

plan component could be propagated by following constraints from this component to

other related components and appropriately eliminating explanations for those compo�

nents which fail the constraint in question�

������� Simple or Node Consistency

If for each variable Vk we were to enforce any node constraints pertaining to its domain

Dk by removing elements di from Dk where di violates a node constraint of Vk� then the

resulting constraint graph would exhibit node consistency� If one or more of the variables

were to have a resulting domain which is emptyDk� then the CSP has no possible solution�

Algorithms for making a CSP node consistent are straightforward in that each potential

domain value di for a particular variable Vj must be checked for all node constraints nc

applicable to Vj � The worst case complexity of this process can be determined simply by

taking the factor of the number of variables n� the largest number of domain values A of

any of the n variables� and the largest number of node constraints applicable to any of

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

the n variables� Of course� the actual performance will be considerably better than this

since each variable v will have fewer than the maximum number of constraints on average�

and fewer than the maximum domain size also� In addition� once a domain value for a

particular variable fails one node constraint there is no need to check that value against

subsequent node constraints for that variable� This fact suggests a simple heuristic in the

ordering of node constraint checking� where those constraints most strict� or most likely

to fail are checked �rst for a particular variable and domain value�

It is known that if a solution can be found via search for the original CSP problem�

then one can be found for the problem formulated in a node consistent fashion� CSPnodeC �

The CSPnodeC is nothing more than a version of the original CSP with many possible dead

ends and their subsequent derivation paths removed from the search space in advance�

One would expect the e�ect on search performance of making a CSP graph node consistent

to be quite noticeable as the search space branching factor implied by the set of domain

values has been reduced with each removal�

In global program understanding terminology� input and output typing information

available about program functional blocks and program plan templates forms the range

of node constraints� For example� only those library program plans which agree in terms

of input and output typing are possible explanations of a given functional source code

block�

������� Arc Consistency

If for each pair of variables Vi and Vj one were to enforce all constraints cij from Vi to

Vj � and remove each domain element dj of Dj where dj is not consistent for cij with

any assignment of di from Di to Vi� then the resulting constraint graph would exhibit

arc consistency� Once again completeness is retained and any solution reachable in the

original CSP can be found in the arc consistent CSP� CSParcC �

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

Several algorithms have been published that can convert a general CSP graph into

an arc consistent CSP graph� Mackworth�s algorithm �Mackworth� ����� AC�� is cer�

tainly the most well known� AC�� and other variations of arc consistency algorithms

are discussed and presented in a common framework in �Nadel� ������ An optimal algo�

rithm� AC��� for arc�consistency is presented in �Mohr and Henderson� ����� where the

worst case complexity of AC�� is shown to be O�ed�	 where e is the number of arcs

�constraints	 in a CSP graph� and d is the size of the largest variable domain in the prob�

lem� This algorithm is generalized further into AC�� in �Van Hentenryck et al�� ����a��

where AC�� can be instantiated to produce an O�ed	 algorithm for a number of classes

of constraints�

See Appendix A�� for a discussion of a generalized version of arc consistency� and

Appendix A�� for a discussion of the utility of constraint propagation� and Appendix A��

for a discussion of algorithms for arc consistency which propagate only a subset of all arc

constraints�

����� Combining Generation and Constraint Propagation

I have so far considered two approaches to solving constraint satisfaction problems� The

�rst� generate�and�test� is inherently simplistic� and the size of the search space is clearly

going to be enormous in any complex domain� The second� constraint propagation can be

either an incomplete solution as in the case of those algorithms which insure a degree of

consistency short of total n�consistency for a problem of size n� or extremely ine
cient�

as in the case of total n�consistency algorithms� Several options present themselves for

immediate improvement of this situation� First� generate�and�test can be replaced by a

complete and more e
cient heuristically directed depth �rst search approach� Second�

one can take advantage of the simpli�cation properties of arc consistency algorithms

in several di�erent ways� An obvious approach is to use some degree of arc consistency

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

propagation as a preprocessing phase� simplifying the original CSP and thus limiting much

of the search required to solve the problem� This preprocessing behaviour is discussed

in �Dechter and Meiri� ������ I have already mentioned this option� and I will discuss

it further through this paper� Still another option is to consider a slightly di�erent

hybridization of search and constraint propagation which has been suggested and has

been the focus of experimental analysis by several authors including �Nadel� ������

Consider the nodes of a search tree as each representing a new CSP which is simpler

in that one variable from the original CSP has already been instantiated� At each level of

the tree� another variable is instantiated as in normal search� but each node is considered

independently now� and a consistency algorithm may be �rst applied to that node before

attempting a solution or re�nement from that level� Essentially this process interleaves

search and constraint propagation so as to limit the branching options further at each

search node and the particular CSP problem that node represents� Several search algo�

rithms and variations of search algorithms behave as if there were a particular degree of

constraint processing being performed at each node� even if this fact is not stated explic�

itly� Nadel �Nadel� ����� attempts to standardize this behaviour in order to determine

how much constraint processing is of bene�t during search� and consequently developed

the notion of fractional arc�consistency algorithms which make a problem graph only

partly arc�consistent for some particular subset of constraints and domain values�

One could possibly locate a solution �if the variable domains become all size � and

the CSP is arc�consistent	 or prune the node �if a variable domain becomes empty	� or

generate successor nodes in the search space �for some selected variable one generate all

possible assignments to that variable	� Each new successor CSP will be progressively

�smaller� than its parent since the variable chosen at the succession point will never be

selected again� and there is now have one less variable in the CSP�

Experiments reported in �Haralick and Elliott� ����� and �Nadel� ����� have indicated

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

that best performance is obtained across a variety of domains when constraint propaga�

tion is only applied in a limited form� Results with hybrid algorithms are discussed in

the context of partial constraint propagation in �Nadel� ������ and many other papers

give experimental results for particular search strategies that exhibit partial constraint

propagation without explicitly stating their behaviour as such� In the next section I

will discuss various search approaches often utilized and presented in conjunction with

constraint satisfaction problems�

In global program understanding terms� combinations of generation and constraint

propagation correspond to hypothesizing particular candidate explanations of given func�

tional program blocks at one time� and making a limited degree of inference based on

the relative structural constraint information based on these hypotheses� The amount

of inference is modeled by the amount of constraint propagation� while the number of

hypotheses is modeled by the number of generations�

����� Backtrack
based Algorithms

CSPs can be solved using search alone� using consistency propagation alone� with search

and using consistency propagation as a preprocessing phase� or by using some hybrid

approach interleaving constraint propagation and search�

Arc�consistency algorithms only work on pairs of variables� and as such can only

handle binary constraints and cannot always guarantee a �nal solution to a CSP� A

more thorough method for solving a CSP is backtracking� where a depth��rst search is

performed on a search tree formed by the variables in the CSP� A thorough examination of

these techniques can be found in �Nadel� ����� and �Kumar� ������ During a backtracking

search� each variable instantiation might be interpreted as extending the partial solution

one step further�

A backtracking algorithm instantiates the variables one at a time in a depth��rst man�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

Root

...

...

Backtrack!

X1=v11 X1=v12 X1=v13 X1=v1k

X2=v21 X2=v22 X2=v2k

Variables:

X1

X2

Xn

Figure ���� A search tree for a backtrack�based algorithm

ner� The algorithm �backtracks� �or re�instantiates a previously instantiated variable�

typically the most recent	 when the constraints accumulated so far signal inconsistency�

In Figure ���� I show this process� First� variables are ordered in a certain sequence�

Di�erent orders of variables might entail di�erent search e
ciency� and heuristics for

good ordering of variables are called variable�ordering heuristics� Similarly� for each

variable� the values are tried out one at a time� and the heuristics for a good ordering of

values are called value�ordering heuristics�

Using the CSP representation� one could also consider a more systematic study of

di�erent search algorithms� In Table ��� I present a general interpretation of a backtrack�

ing algorithm for solving a CSP� In this algorithm� there are a number of hooks where

one could place di�erent search heuristics� They correspond to heuristics for ordering

variables and constraints� as well as heuristics for deciding the amount of constraint

propagation�

There are several choice points which both individually and in combination a�ect the

resulting search performance� These choice points are explained as follows�

�Thanks to Qiang Yang for the use of this �gure�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

Generic CSP Search
V � variables in a CSP� Dom�X	� the domain values of X �

�� �Initialization� for each variable Xi � V � �nd the set of domain values for Xi�
�� �Initial Constraint Propagation� Reduce Dom�X	 by constraint propagation�
�� Solution $ NULL
�� �Variable Selection� Select and remove a variable X from V
�� �Value Selection� Select and remove a value of X from Dom�X	�
The value must be consistent with all assignments in Solution�

�� �In�search Propagation� Apply a subset of constraints to V �
�� �Backtrack Point Selection� Backtrack if any Dom�X	 in V becomes empty�
�� �Solution Evaluation� If V is empty� exit with Solution �if all�solution� continue	�
else� goto Step ��

Table ���� Generic CSP Search Algorithm

�� Initialization and Initial Constraint Propagation are the determination of variables

and domain values before the search starts� It can be viewed as a special type

of localized constraint propagation algorithm� but one that is directed according

to pre�de�ned domain knowledge� The determination of the set V and of Dom�X	

controls how much work is done in advance� This reduction could also be performed

as an in�search propagation at Step � of the Generic CSP algorithm�

�� Constraint Propagation is the reduction of domains locally or globally within the

CSP problem graph via AC algorithms introduced earlier�

�� Variable Selection is the determination of which component variable should be cho�

sen next for instantiation during search� The decision may be based on domain

independent measures� such as the size of a variable�s domain� on information spe�

ci�c to the domain and problem instance� or based on some combination of these

types of information�

�� Domain Value Selection is the determination of a particular variable domain value

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

to assign to the current variable� Typically this selection should be made so as to

most e�ectively limit the remaining variable ranges� that is� to be the most context

limiting�

�� In�search Propagation is the reduction �as for Step �	 of the remaining uninstanti�

ated variable domains according to some constraint propagation algorithm� Prob�

lem characteristics such as variable domains that exceed some average or absolute

bounds are potential signals that constraint propagation may be useful before con�

tinuing search� In �Nadel� ����� the advantages of exploiting various algorithms for

achieving a limited degree of partial consistency amongst variable sets are examined�

�� BackTrack point selection is the determination� after it has become evident that

no possible solution exists along a particular variable�instantiation path� of which

instantiation to retract� Intelligent backtracking approaches such as BackJumping

and BackMarking� attempt to determine the origin of the con!ict that caused the

failure� and to BackTrack as far up the search tree as possible to avoid a repeated

failure of the same condition�

�� Solution Evaluation determines whether or not a particular solution is satisfactory�

In a cooperative interactive approach to program understanding� it is at this point

that an expert might interact and evaluate a particular partial solution for ade�

quacy� Similarly� if there exist particular measures of adequacy �such as soft or

preferential constraints that may have been relaxed during search	� such measures

may be applied here�

In the generic search algorithm a set of choice points are presented in the new context

of CSP solving� Variations that I shall examine empirically later in this dissertation

�These and other intelligent backtracking algorithms are described in detail by Nadel in
Nadel� ������

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

include applying AC�� as Step � combined with BackTracking� and an intelligent search

algorithm known as Forward Checking �Haralick and Elliott� ������ which performs a

limited amount of in�search propagation at Step �� In addition� the intelligent search

algorithm dynamically rearranges the order of variables during search according to the

size of the variable domains� selecting the variable with the smallest domain value set

�rst�

The order in which constraints are applied can dramatically a�ect search performance�

Constraint ordering or selection would occur at Step �� In particular� it is advantageous

to apply constraints that are inexpensive computationally and that �potentially	 prune a

large number of domain values� In a particular domain it may be possible to determine

or estimate such relative bene�ts either from past empirical results or through analysis

of the domain structure itself� For instance� in Section ������� it is seen that the prop�

erty that spatially de�ned template components features tend to be found spatially near

each other can be exploited through heuristics that limit the range of search for related

components� The e�ectiveness of such abstraction�inspired heuristics has been reported

in �Holte et al�� ����� and �Woods� ������

There are� in addition� several other ways to improve search e
ciency� One method

is to exploit particular hierarchical structure of the domain values using a hierarchical

constraint satisfaction algorithm �Mackworth et al�� ������ In such an approach� a value

hierarchy represents sets of values at varying levels of abstraction� A set of low�level

hierarchical values mapped to a particular variable may be grouped according to their

functional similarity and form a single higher�level component� This abstracted compo�

nent may now be treated as a domain value with regard to constraint application� Should

a failure or success be detected using this abstracted value� the children of the abstract

value may �inherit� the success or failure� In this way� many values which share a func�

tional relationship can be processed with a single constraint application� I discuss an

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

extended novel approach along these lines in Chapter ��

In the global program understanding problem� backtracking may be thought of as

simply generating successive candidate explanations of functional program blocks which

are consistent with previous explanations� If a block �variable	 has no consistent expla�

nations� one of the previous explanations must have been wrong and should be retracted�

����	 Hybrids of Backtracking and Propagation

For the purposes of search in CSPs� if one makes the assumption that each successive

search layer results in one more variable instantiated� then each node towards a leaf repre�

sents a simpler CSP left to solve� So if there are n variables in some CSP� then the search

space will be exactly n levels deep� Since all total solutions are necessarily leaf nodes� any

complete search strategy �such as directed depth �rst search	 identify all possible solution

instances� The algorithms often cited in constraint propagation search literature include

Simple Backtracking� Forward Checking� and Partial Lookahead� Full Lookahead� Really

Full Lookahead �Haralick and Elliott� ������ Kumar �Kumar� ����� describes Nadel�s work

�Nadel� ����� which shows an empirical comparison of the performance of these algorithms

in a uni�ed framework constructed by Nadel� In this comparison� these algorithms are

described primarily in terms of the degrees of arc consistency which is performed at the

nodes of the search tree� essentially what level of hybridization they each represent� The

de�nitions are shown below with a depiction of each algorithm as a combination of pure

tree search and algorithms which guarantee at each backtrack node varying fractions of

arc consistency as described earlier�

� Generate�and�Test �GT	

� Simple Backtracking �BT $ GT � AC ���	

� Forward Checking �FC $ GT � AC ���	

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

� Partial Lookahead �PL $ FC � AC ���	

� Full Lookahead �FL $ FC � AC ���	

� Really Full Lookahead �RFL $ FC � AC	

In global program understanding terms� the structural and knowledge constraints are

utilized in varying degrees of inference� For example� Forward Checking involves checking

of approximately ��� of all possible arc constraints between selections of component

hypotheses�

I will look at each strategy in more detail in subsequent subsections� I am interested

in how each method combines various consistency checking with search� and in later

experiments in determining which may be appropriate and e�ective in a speci�c domain�

BT� Simple Backtracking

BT incorporates some consistency checking implicitly since whenever a new variable is

selected for instantiation� any values which are inconsistent with previous instantiations

indicates a successor that may be pruned� This di�ers from Generate and Test in that

GT would only determine consistency or inconsistency at the leaf nodes� All possible

combinations would be generated� and then tested�

FC� Backtracking with Forward Checking

FC utilizes consistency checking more than BT by �ltering all yet uninstantiated variables

for consistency with previously instantiated variables values at successor creation time�

In this way� one avoids generating some successor nodes that will fail against previous

instantiations�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ��

FCDR� Backtracking with Forward Checking and Dynamic Rearrangement

The Dynamic Rearrangement heuristic is basically an adjustment to any Forward Check�

ing algorithm so that after a particular node is �ltered removing any domain values for

the remaining variables that are inconsistent with previous instantiated variable assign�

ments� the next variable selected for instantiation is the one with the smallest domain

size� This is essentially an additional attempt to limit the branching factor of the tree by

selecting the next variable to be instantiated more intelligently�

RFL� Really Full Lookahead

Really Full Lookahead� Full Lookahead� and Partial Lookahead are essentially augmented

versions of FC in that they perform additional arc consistency checks even between unin�

stantiated variables� RFL essentially limits all remaining domains by insuring full arc

consistency before selecting the next variable for instantiation using the Dynamic Rear�

rangement or some other method�

FL� Full Lookahead

Full Lookahead di�ers from RFL in that it utilizes the partial consistency algorithm

�AC ���� described by Nadel in �Nadel� ������ Essentially� this algorithm is the same as

Haralick�s �Look Future� described in �Haralick and Elliott� ������

PL� Partial Lookahead

Partial Lookahead� essentially Haralick�s �Partial Look Future�� is described by Nadel in

terms achieving a degree of consistency suggested by his algorithm �AC �����

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

������� Intelligent Backtracking

In previous results including those presented in �Nadel� ����� and

�Haralick and Elliott� ������ it has been observed that during the constraint appli�

cation in consistency checking� some constraints are repeatedly checked between pairs

of variables despite no possibility of a di�erent result in each subsequent case� Also�

portions of the search space that have been discarded in earlier search as a result of arc

inconsistency are revisited in later search� This behaviour is referred to in the literature

as thrashing� Modi�cations have been suggested by several authors to try to avoid

this redundant constraint checking and search� Two methods known as BackJumping

and BackMarking are discussed in Appendix A��� Other more complex and expensive

methods are described in �Kumar� ������ some of which minimize redundant checking

even further� but at a much greater computational� space and complexity cost�

������� Heuristic extensions to the search process

In any domain it is possible to exploit domain�speci�c knowledge during search� For ex�

ample� in the global understanding domain� if one knew that a particular program plan

only occurred in conjunction with another program plan� this is a very strong local con�

straint� This constraint might be used such that whenever the �key� plan was suggested

as an explanation� the related plan must occur as the explanation of one of the compo�

nents related to the component explained by the �key� plan� If the pair�plan did not

exist� it would be fruitless to explore the �key� plan as an explanation further� In this

way speci�c knowledge can be used to reduce search� Each of the following paragraphs

describes one such exploitation of domain knowledge during search for coherent global

explanations�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

Preprocessing with advance consistency checking

It has been seen in earlier sections how CSPs can be solved using various search approaches

alone� using consistency algorithms without search� or using a hybrid combination of

search and some degree of partial consistency checking during search� A more simplistic

approach is possible in which some degree of consistency checking is performed prior to

search only� and then some search strategy is performed on the simpli�ed version of the

CSP resulting�

Preprocessing with variable ordering

It is known that the order in which variables are selected for instantiation directly de�

termines the shape and structure of the search tree for a particular CSP� Dynamic rear�

rangement is one such heuristic improvement to Forward Checking search which attempts

to control the shape of the search tree by selecting the variable with the smallest domain

for next instantiation�

It is also known that if given a particular CSP� one can either attempt to solve it or

other simpli�ed versions obtained through advance consistency checking by some search

method� Since the search space is determined by the order in which the variables are

selected for instantiation� it is conceivable that some heuristic for ordering these exists

in a particular domain that may be of bene�t� Certainly one option is to simply order

the variables from smallest domain size to largest which is similar to the approach taken

by Dynamic Rearrangement� except that this would be more accurately labeled Static

Advance Rearrangement�

Constraint application ordering

As a consequence of backtracking search� each domain value selected as a variable as�

signment at some branching point in the search space must be checked to see if it is

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

consistent with each variable assignment made at previously visited search levels� Any

constraints between this variable and already instantiated variables must be checked� As

with node constraints� a single such arc failure is enough to signal a backtracking point�

and consequently it would be advantageous to attempt evaluation of these constraints in

an order which would maximize the chances of �nding a failure earlier� In other words�

satisfying the �tightest� constraints �rst would seem to be an appropriate heuristic for

avoiding unnecessary constraint checks�

Heuristic Application

I have identi�ed several interesting areas for development of appropriate heuristics during

search for this domain� These areas include�

�� Propagating only certain types of constraints after variable instantiation� Speci��

cally� in a spatially�oriented domain� one might consider propagating spatial con�

straints that limit the ��eld of vision� of remaining variables at little cost� Some

form of spatial index might be used to quickly �lter variable domain sets� or pos�

sibly this �ltering could be done via some kind of call to a data parallel machine�

passing sets of variables and requesting the same elimination process applied to all

sets simultaneously�� This type of domain�exploitative strategy has a potentially

tremendous search improvement potential through the elimination of many search

dead�ends�

�� Dynamic selection of variables to instantiate can dramatically reduce the branch�

ing factor of search� Whether or not to undertake this action would depend on

understanding better the amount of work that results from more or less constraint

checking� This is an open area of research�

�This parallelized conception was realized in collaboration with Dr� Guy Vezina of the Defence Re�
search Establishment Valcartier�

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

�� During search� even in depth��rst search� the question of which domain value to

attempt to instantiate next �or the order	� is an issue of heuristics� Abstraction

may be viewed as an attempt to impose a partial order on variable selection during

search �see for example� �Woods� �����	� however� the question of instance selection

is not addressed� Conceivably it might be bene�cial to choose instances with close

�logical� proximity to some other value already assigned� At any rate� some ordering

might be imposed on domain instances according to space or other method�

�� As discussed in Appendix A������ and A������� it may be possible to propagate

certain constraint reductions of a problem through the entire search space in lim�

ited instances� Determination of what heuristics might identify when this e�ort is

justi�ed is an open area of research�

�� The order in which constraints are applied during constraint propagation or veri�ca�

tion of variable instance consistency during search is a matter of heuristic� Selection

of expensive constraints which seldom yield a negative response can result in much

wasted computation� In some fashion one would want to order the application

of these such that if a negative response was anticipated� the most �cost�e�ective�

and �restrictive� constraints would be applied �rst� perhaps according to some ratio

measuring their chance of returning a negative value to cost of application�

����� Local Search

Local�search methods exempli�ed by �Minton� ����� and GSAT �Selman and Kautz� �����

represent a kind of greedy approach to CSP solution currently enjoying popularity� While

I do not examine local search solutions in detail in this dissertation� the later use of CSP

as a modeling tool has been structured so that local�search might be eventually adopted�

Selection of an appropriate search strategy can be highly problem dependent� For

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

instance� if one requires all solutions� then some form of complete search will be required�

likely with addition of heuristics to shorten the search time� If any single solution will

satisfy the requirements in a particular case� then some type of quick but incomplete

search may be what is required in order to more e
ciently �nd the single answer� Possi�

bly some combination of these two search strategies will be appropriate in cases where a

single solution may be inadequate but several solutions may su
ce� or where a particular

solution must meet some outside �possibly manual	 criteria to determine it�s appropri�

ateness� If possible� an interactive search utilizing an algorithm for ALL solutions may

be appropriate if it can be stopped after a �satisfactory� solution has been detected� In

such cases where a complete strategy is used� the order of arrival at various solutions can

be accommodated directly into the search strategy in the form of control heuristics for

the selection of variables to instantiate� the order of domain values to attempt to assign�

and for the control of expanding the search strategy deeper or wider in the quest for a

�good enough� solution� A later section of this paper will be dedicated to the discussion

of this type of interaction and with the presentation of a particular overall heuristic to

add to complete search that facilitates this ongoing interaction in search of appropriate

or satisfactory solutions�

One single solution strategy that has shown great promise in various domains is re�

ferred to as �Local Search�� Local Search works by performing a random assignment of

domain values to each of the variables in the CSP� and then by attempting to repair the

assignment according to some heuristic function� One common repair heuristic is to min�

imize the con!icts that arise with a particular assignment using a hill climbing approach�

Local Search has been shown in �Minton et al�� ����� Sosic and Gu� ����� to be orders of

magnitude faster than previous methods at �nding single solutions for di
cult problems

involving large variable and domain sets with many constraints� Recent ongoing work

in the university course scheduling domain has also been discussed with similar results

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

�Yang and Fong� ������

����
�� Locality Heuristics in Spatial Problems

In Appendix A�� I discuss several advantages and methods of decomposing constraint

satisfaction problems� and also ways in which one may control or guide the recomposi�

tion of these separate solutions with user interaction or�and by heuristics� A primary

observation I make is that� given a certain problem decomposition� it may be possible to

exploit local problem partial�solutions in domain�speci�c ways�

One example of such a domain�speci�c heuristic might be the observation that partial

solutions can be directly exploited in the search for more complete solutions� In particular�

locality heuristics may be employed to restrict the range of solution completion� For

instance� consider the example of the spatial template problem �STR	 �Woods� ����� in

which a template is de�ned in terms of a set of spatially situated objects of varying

types� These objects have positions based solely in relationship to spatial distances and

orientations with respect to one another� Consider each object �or template slot	 as a

variable which potentially corresponds to one of many object instances in a particular

�eld of view� Any set of assignments of instances to template components such that the

set of spatial constraints is satis�ed is a solution�

Spatial locality is an example of an important �simpli�cation� or restriction of the

general CSP nature of STR in my formulation� This heuristic is applicable to CSP

problems that are grounded in spatial coordinates� Essentially� one may take advantage

of the fact that our spatial templates may be �pre�compiled� such that it is possible to

encode rough boundary information for an entire solution based upon only partial variable

assignment information� For instance� if a template has no two slots farther apart than

some measure max� then during search if an assumption is made about the location of

some template slot t� then it may be concluded that no subsequent template slot can be

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

assigned a situation element farther than max from the slot t assignment� Given that one

may easily determine the distance between situation objects �perhaps through a pre�built

index or similar method	� it seems easy to dramatically reduce overall search complexity

by pruning large numbers of situation elements as candidates for slot assignment �locally��

Unit A

Unit B

Unit C

Slot 1

Slot 2

Slot 3

a

b

c

d

e

f

g
h

i

j

k

l
m

n

o p
q

r

s

t
u

v

w

x

Figure ���� SCH Example with level � solution

Once assignments have been made to some variable �or set of variables	� a boundary

is created limiting the scope of this particular solution� Now� when subsequent variables

and constraints are added making the problem more speci�c� the scope of the search

is restricted according to the outlined area for each problem� Thus the earlier partial

solution has not only been used as a basis for limiting later constraint checking� but also

in quickly eliminating some domain values for each of the new�level variable additions� In

the example� Figure ��� shows a partial solution where some template slots �� � and � are

matched to situation elements Units A� B and C respectively� Before search continues� the

spatial locality heuristic derived from A� B and C assignment positions is applied� limiting

the area of search for the remaining slots as shown in the shaded area of Figure ����

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

Unit A

Unit B

Unit C

Slot 1

Slot 2

Slot 3

a

b

c

d

e

f

g
h

i

j

k

l
m

n

o p
q

r

s

t
u

v

w

x

Figure ���� SCH Example limiting range of level � instances

Consequently the only candidate instances in the selected area for the next level slots are

j� k� v� l� r� d s and e � while the others outside this area are excluded�

Locality is an important part of restricting the combinatorics of problems of this

nature� and need not be limited to purely spatial problems� In Chapter � I examine how

to exploit partial local solutions as part of the task of reducing global search in program

understanding�

In this chapter I have introduced the paradigm of constraint satisfaction as a frame�

work for the representation and solution of problems which can be represented in terms

of a set of components and constraints� These components are related with each other in

just exactly those ways speci�ed by the set of constraints� A solution to such a problem is

a mapping between variables and domain values which may co�designate with those vari�

ables such that no constraints are violated� In subsequent chapters I demonstrate how

this model may be seen as an obvious cognitive analog of the program understanding

problem� and further� how representing understanding as a CSP provides for both a basis

CHAPTER �� THE CONSTRAINT SATISFACTION PARADIGM ���

for heuristic and empirical comparison of previous program understanding approaches

and a new set of ready�made algorithms for program understanding�

Chapter �

Understanding as Constraint

Satisfaction

��� Introduction

Over the past decade� researchers have proposed and implemented a wide variety of

plan�based program understanding algorithms �Quilici� ����� Kozaczynski et al�� �����

Wills� ����� Wills� ����� Hartman� ����b� Johnson� ������ Although I show in Sections ���

and ��� that both partial local program understanding and global program understanding

are NP�hard� some of these research e�orts have presented promising empirical results in

mapping plan libraries to reasonably sized �up to ����� lines	 source code �Wills� �����

Wills� ����� Chin and Quilici� ������ None� however� have been clearly demonstrated#

either analytically or empirically#as scaling up for use in understanding real�world sized

software systems� In addition� little work has been done in comparing the relative perfor�

mance of these approaches or analyzing in detail the performance similarities and di�er�

���

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

ences among these algorithms�� Wills �Wills� ����� has� however� provided an extensive

descriptive comparison of PU strategies before �����

In part� this situation has resulted because the algorithms tend to be

based upon di�erent representational frameworks� such as !owgraphs �Wills� �����

Wills� ������ components and constraints �Quilici� ����� Kozaczynski and Ning� �����

Kozaczynski et al�� ������ regular expressions and transformation rules �Johnson� ������

and so on� and to use collections of heuristic tricks to improve performance� such as index�

ing �Quilici� ������ specialized rule and constraint ordering �Kozaczynski and Ning� �����

Kozaczynski et al�� ����� Wills� ������ As a consequence� it is di
cult to systematically

compare these di�erent approaches or to understand how their performance or e�ective�

ness at understanding programs will be a�ected by variants in the plan library� such

as adding large numbers of new plans� or programs being understood� or changing the

distribution of basic syntax tree items and the dependency relationships between them�

What is needed is a framework for describing these algorithms that allows ready

empirical and analytical comparisons of their behavior� In the previous chapter I out�

lined a problem representation and solution technique� the constraint satisfaction problem

�CSP	 technique� In Chapters � and � I demonstrate how a CSP�based approach could

successfully address one portion of the program understanding problem �mapping pro�

gram plans directly to program source code	� As a result� it is natural to wonder whether

other� existing program understanding algorithms� despite their di�ering representations

and heuristic tricks� can also be mapped into this CSP�based framework� If this frame�

work is or can be made su
ciently general to unify these approaches� then one can take

�Much of the work in this chapter has appeared previously in work co�authored with Dr Alex Quilici

Woods and Quilici� ����c�� This collaboration stemmed from a need to accurately represent the work
undertaken by Dr Quilici in his memory�based approach to program understanding
Quilici� ���	�� Dr
Quilici shares my desire to unify program understanding methodologies as part of the e�ort to provide
heuristic e�ciency and scaling as a part of automated understanding tools for software reverse engineers�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

advantage of it to compare their relative performance and better understand where these

algorithms succeed and fail in attacking the program understanding problem� In addition�

there is the potential to achieve improved scalability of these approaches by augmenting

them with the mechanisms developed for e
cient heuristic solving of di�erent classes

of constraint satisfaction problems introduced in Chapter �� including various domain�

independent search guiding heuristics in conjunction with partial constraint�propagation

during search�

In this chapter I describe how a constraint satisfaction framework can model program

understanding� and demonstrate how one well�known heuristic program understanding

algorithm can be placed within that framework� In addition� I discuss how this model

improves understanding of the behavior and performance of understanding� and how this

viewpoint facilitates comparing a speci�c algorithm�s performance with other program

understanding approaches� In particular�

� Section ��� outlines the two phases of program understanding introduced in Sec�

tion ����� in terms of constraint satisfaction representations�

� Section ��� is a more detailed look at a representation for program plans and pro�

gram understanding algorithms� In particular� program understanding is viewed as

a composition of local explanations�

� Section ��� describes an existing extension to Decode�s plan representation and al�

gorithm� and shows how it can be addressed within the constraint satisfaction frame�

work� while preserving both its representational framework and heuristic tricks�

� Section ��� presents a detailed example of my implementation of the extended al�

gorithm in the constraint�satisfaction based framework�

� Section ��� provides a comparison in performance between the constraint satisfac�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

tion approach and the original approach�

� Section ��� summarizes my future research path and the conclusions which have

been from this current work�

��� CSPs for Two Phases of Program Understanding

Section ����� introduced the idea of program understanding being represented in two pri�

mary phases� �partial	 local explanation and �partial	 global explanation� Local explana�

tions consist of identi�ed program plan instances in source code� and global explanations

are consistent interpretations of how sets of local explanations may be �t together in a

particular domain� In this section I brie!y discuss how each of these phases can be mapped

into a constraint satisfaction framework� In particular I label the local explanation phase

as MAP�CSP� and the global phase as PU�CSP� It is important to note that there

are a multiplicity of ways in which local explanations may be combined to give partial

global explanations� For example� plan recognition research as discussed in Chapter �

suggests one set of methods to forming global views from local observations� In addi�

tion� the �partially	 automated approaches to program understanding through mapping

to a knowledge library each take di�erent approaches to this uni�cation� The PU�CSP

methodology which is introduced in Section ��� and expanded in detail in Chapter � forms

one such model of integration which accommodates a variable amount of user�guidance

during search� and which is capable of propagating information about partial local expla�

nations to limit the range of potential global explanations� There are many possible ways

in which source code may be decomposed� and partial explanations might be integrated�

Several decomposition and integrative possibilities are introduced as examples below�

PU�CSP � Decomposition according to spatial locality in which source code is considered

in functional blocks typically connected spatially�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

� Integration in the PU�CSP framework� integrate MAP�CSP solutions as par�

tial explanations of source code blocks which are directly derived from the

source code based primarily on provided functional�procedural separations�

Constraint application based upon the knowledge constraints of a hierarchical

plan library reduces the combinatorics of a coherent global explanation�

Ordered�PU � Decomposition and recomposition based solely on the existence of program

plan instances�

� Integration follows a methodology in which the hierarchical plan library is

structured with the �lowest�level� plans on the bottom of the hierarchy� First

one matches all plans with the �lowest� components in the hierarchy and

identi�es instance parts as belonging to new� abstracted instances of the MAP�

CSP program plan� Progressively� one matches all library plans lowest �rst�

matching higher level plans only after all lower level plans are recognized�

Constraints are applied at each stage based on structural connection�

Scattered�PU � Decomposition based loosely on spatial conceptions� These are extended� how�

ever� through connectivity such as data and control�!ow to enlarge the search

range for related local explanations�

� An integration strategy is based on the observation that Ordered�PU is highly

ine
cient in the sense that very many MAP�CSP applications are required to

match all plan instances� Further� the existence of a complete plan library is

highly unlikely in general� and Ordered�PU would require such a library to

guarantee recognition of higher level plans� Based on identi�ed local explana�

tions� one may select other local explanations that potentially combine with

identi�ed instances and search for these �locally� based on possible segments

of code which are capable of meeting the connectedness constraints between

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

the plans in the knowledge library�

Each of these might be regarded as a simple heuristic strategy for program under�

standing� and each can be modeled as a constraint problem merely as variations on PU�

CSP� While PU�CSP represents only one possible integrative model� it must be kept in

mind that the entire purpose of modeling with CSP and utilizing CSP solution strategies

is to provide a conceptual framework in which other methodologies can be compared�

The PU�CSP formulation provides for an interpretive structure in which to view the

e�ect of mapping hierarchically structured source programs into hierarchical program

plan libraries� Other approaches at integrating local explanations all exploit the relative

constrainedness and connectedness of these locally explained source portions� PU�CSP

merely formalizes this conception and suggests that extended CSP algorithms can be

adapted to represent search with various constraint propagation techniques� In past ap�

proaches frequent mention is made of reducing the space of explanation through the use

of constraints� however� CSP provides a way of formalizing this notion�

Global Explanation as PU�CSP

The broader program understanding problem can be represented as a constraint satisfac�

tion problem� called PU�CSP� This problem is represented in the following way�

Assume the source code is divided into a variety of blocks� A block can be anything

from a single statement to a program slice or other arbitrary collection of related state�

ments� The program understanding problem is then to explain what the entire program

does by explaining what each block does and then determining what various sets of blocks

do in conjunction� The possible explanations correspond to a set of plans� in a hierar�

�While in this description it is imagined that a single domain value or explanation candidate corre�
sponds to precisely one simple program plan� it is quite reasonable to point out that in fact each program
plan is a member of the hierarchical program plan library and consequently has a much di�erent structure
than a simple discrete domain value� The conception of domain values is extended to include hierarchical

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

chically organized program plan library� and an explanation of the source program is a

mapping from members of this library to the program�s components� The PU�CSP prob�

lem is to determine this set of possible explanations for a given set of program blocks

using a constraint satisfaction approach�

The variables in a PU�CSP are the blocks in the program to be understood� The do�

main for each variable ranges over all of the plans that could possibly explain that block�

However� this is only a subset of the plan library� The block may be of a particular type�

in which case only plans that contain that type as a component can explain it �such as

when the block corresponds to a single action in the AST	� or it may have particular

input and output types that are matched by only a small set of plans �such as when the

block represents a function	� Interesting related work in identifying procedural or func�

tional blocks which possess a particular given input�output typing may be found in the

domain of signature matching �Zaremski and Wing� ����b� Zaremski and Wing� ����a�

Zaremski and Wing� ������ In Appendix B I discuss related work in which architectural

components and constraints are dealt with much as program components and constraints

are dealt with here�

Within the CSP framework� constraints are classi�ed into two categories� structural

constraints between blocks and knowledge constraints between plans� The structural

constraints correspond to structural relationships between blocks �e�g�� data�!ow� control�

!ow� and temporal�ordering	� The knowledge constraints correspond to restrictions on

the ways plans may be connected �e�g�� that a plan must fall into a particular category�

that a plan must have certain components� those components have a characteristic !ow

of data among them� and so on	� A mapping between the plan hierarchy and the blocks

is a possible explanation only if the set of knowledge constraints is consistent with the

domain values later in Chapter �� however� for descriptive purposes the simpler explanation is retained
here�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

set of structural relationships present in the source code�

PU�CSP seeks a global explanation of all or part of a program�s source based upon

its particular components and their structural relationships� However� program plans in

the plan library may be based upon sub�plans at lower levels of abstraction� In addi�

tion� programmers often take advantage of their ability to recognize familiar functional�

ity by using these partial explanations when explaining large blocks or chunks of code

�von Mayhrhauser and Vans� ������ One can therefore improve on PU�CSP by augment�

ing it with a mechanism to locate the initial set of possible� low�level explanations for

various blocks� This mechanism is handled by a separate constraint satisfaction problem�

called MAP�CSP which is now introduced�

	���� Partial Local Explanation as MAP
CSP

MAP�CSP represents the problem of locating all instances of a program plan template in

the source code �i�e�� mapping this plan directly to source code entities	� The variables in

the MAP�CSP are the components of the plan� The domain for each variable ranges over

source code components of compatible types� and the actual occurrences of each of those

components in the source code correspond to possible domain values for the variables�

The components within a given plan are constrained by various data�!ow and control�!ow

relationships that must hold among them� and which are represented as arc constraints

in the MAP�CSP� A solution to the MAP�CSP problem is therefore any assignment of

domain values �AST elements	 to template variables �program plan parts	 that satis�es

the constraints among the variables �data�!ow and control�!ow relationships	� A solution

is an instance of the program plan template which is identi�ed in the source code� and

thus explains that part of the source code being mapped� Given a plan library� repeated

naive application of MAP�CSP can be used to recognize all instances of plans whose

components correspond solely to abstract�syntax tree elements� I expand upon this view

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

of program understanding later in this chapter�

The essence of the PU�CSP�MAP�CSP approach is that PU�CSP attempts to combine

individual MAP�CSP solutions that represent only some subset of all program plans in

the hierarchy� The plan instances identi�ed with these MAP�CSP solutions are integrated

into a partial explanation covering some number of source code components which may

be thought of as blocks of �locally explained� source code� Thus� at any point in time

there is some set of blocks �explained� and some set �unexplained�� with these blocks

related structurally through data and control�!ow relationships�

Similarly� the explained blocks are known to relate in speci�c ways to other program

plans in the hierarchy� For instance� consider the case where three blocks A� B and C

exist such that control or data !ow constraints exist among them� Suppose blocks A and

B have been mapped with MAP�CSP to particular program plans in the library� A� and

B� respectively� Block C possibly corresponds to any of three di�erent program plans

in the hierarchy� C�� C� or C�� The knowledge constraints present in the library for

program plans A� and B� may now be usable to constrain the range of block C� For

instance� if A� is known to precede C� according to the library but it is the case that

program block A is structurally constrained in the source to follow block C�� then C� can

be safely eliminated as a possible explanation of C� This process is simply an application

of knowledge constraints against structural relationships� and corresponds to a limited

form of constraint propagation� This behaviour could also be though of as search in which

the leaf node representing A$A�� B$B�� and C$C� is pruned or rejected as a potential

solution�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

��� Program Understanding as a CSP

Program understanding involves recognizing instances of program plans from source code�

This involves representing program plans and then providing an algorithm for hierarchi�

cally matching those plans against the source code� This section describes a straightfor�

ward approach to this task and shows how it can be modeled in a CSP�based framework�

	���� Concept Recognizer Program Understanding

One way to represent program plans� originally used in the Concept Recognizer

�Kozaczynski and Ning� ����� Kozaczynski et al�� ����� and introduced in Section ��������

is as a combination of attributes� components� and constraints�

A concept or plan is de�ned as a set of common implementation patterns� where

each code pattern is a collection of components or particular language items or sub�

plans that must be recognized to have a potential instance of the plan� Attributes are

parameters to the plan components which become instantiated when a plan instance is

recognized� Constraints are simply inter�component relationships that must be found

to be true in order that a particular component set may be said to be a plan instance�

Figure ��� contains an example of a simple representation of a plan� The language utilized

in this �gure is derived directly from �Quilici� ������ and is an intermediate template

representation which encodes a small amount of canonicalization of the templates through

reference to the data dependencies� control�!ow� and variable instantiations determined

to be common to instances of the particular template being speci�ed�

This �gure shows how the plan TRAVERSE�STRING is represented� where this plan

captures the common notion of traversing each character in a C string	� The components

are syntax tree entries and sub�plans� In particular the components are a DECL�ARRAY

to declare the character array� a ZERO sub�plan to initialize the index variable to zero�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

define TRAVERSE�STRING�String� isa TRAVERSE�PLAN

plan TRAVERSE�STRING�String� �a�
components
decl� DECL�ARRAY�Name� �s� Items� �max� Type� char�
init� ZERO�Dest� �i�
loop� LOOP�Test�Result� �r� Body� �body�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
test� BIN�OP�Op�� �i� Op�� �val�� Op� 	
� Res� �r�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
update� INCREMENT�Op� �i�

constraints
declbef� ControlPath�decl� loop�
initbef� DataDep�test� init� �i�
acc�bef� DataDep�test� access�� �val��
testin� DataDep�loop� test� �r�
acc�in� ControlDep�access�� �body�
updaft� DataDep�access�� update� �i�

Figure ���� An example code pattern

a LOOP� two ACCESSes to access an indexed element �one for a comparison� the other to

use the array element	� a BIN�OP to compare the indexed element with a null character�

and an INCREMENT to update the index variable� However� not any combination of these

components is an instance of the plan� There must also be a variety of data and control

dependencies among its components� such as a data dependency between the test of the

index variable and its initialization� Only if all these constraints hold is there an identi�ed

instance of the plan TRAVERSE�STRING�

Given this representation� theConcept Recognizer takes a library�driven approach

to recognize plans� It takes each code pattern in a plan library� matches its components

against the program� and then applies constraints to the set of candidate plans �actually�

it tries to interleave constraint checking and matching	� When a component can itself be

a plan� the algorithm recursively tries to recognize instances in which the recognized plan

may be� in turn� a component� Thus� the Concept Recognizer describes a method�

ology in which all local explanations are incrementally built upon in order to eventually

arrive at all instances of all plans in the program library�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

	���� An Initial CSP Framework

How can one place the Concept Recognizer�s program understanding approach in a

CSP framework" First the MAP�CSP de�nition must be recalled� As was stated in

Chapter �� constraint satisfaction problems �CSPs	 consist of three major components�

A set of variables� a �nite domain value set for each variable� and a set of constraints

among the variables which restrict domain value assignments� A solution to a CSP is a

set of domain value�to�variable assignments� such that all arc constraints are satis�ed�

Also recall that a key aspect of the larger program understanding problem �shared in

all approaches studied	� introduced in Sections ����� and elaborated in ���� is the sub�

problem of �nding all instances of a particular plan within a given program�s internal

representation� The CSP version of this problem is known as MAP�CSP�

MAP�CSP models each plan component as a variable� Each variable has a domain

ranging over the actual AST entries or recognized sub�plans that satisfy a set of con�

straints on the �type� of the variable� and the actual occurrences of each of these com�

ponents in the source code correspond to possible domain values for the variables� These

�type� constraints are re!exive� in that they a�ect one variable only� They are derived

from the partial naming and typing information provided in the component description�

For example� the component DECL�ARRAY is given as an array declaration structure with

three parameters� a name that locally is allowed to range over any value �unconstrained	�

the size of the array �also unconstrained	� and a type of array element �constrained to

character	� Thus� DECL�ARRAYmatches any program statement that declares an array �in

any fashion	 such that the declaration satis�es the constraint that is of type character of

any size or any name� However� it is easy to imagine components that would map into

more tightly constrained CSP variables�

MAP�CSP models the constraints among plan components �such as the various data�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

!ow and control�!ow relationships that must hold among them	 as inter�variable con�

straints between plan variables� For instance� in the example plan of Figure ���� there is

a constraint ControlPath that exists between the DECL�ARRAY and the LOOP� such that

the DECL�ARRAY logically precedes the LOOP� This is directly mapped to the CSP repre�

sentation� where any instance of the variable corresponding to DECL�ARRAY is constrained

to logically precede any instance of the variable corresponding to the LOOP component�

Figure ��� details the variables and constraints of the resulting MAP�CSP for the

example plan�

It is important to note that this transformation to a CSP is representational only�

Many domain�independent methods such as those described in Chapter � exist to solve

a given CSP� In order� however� to model a particular domain�speci�c solution strategy

as a constraint satisfaction search algorithm it is necessary to map the speci�c heuristic

as some subset of a CSP solution approach� A solution to the MAP�CSP is any assign�

ment of domain values �AST elements� or previously recognized plans	 to plan variables

�plan parts	 that satis�es the constraints among the variables �data�!ow and control�!ow

relationships	� and corresponds to an instance of a plan that has been identi�ed�

A single MAP�CSP application corresponds to searching for all the instances of a

given plan� While PU�CSP was described as one methodology towards integrating these

partial local explanations into a global explanation� there are other possibilities� Consider

the following example� It would be possible to make use of only MAP�CSP within a single

control strategy� One can �nd all instances of all plans present in the source by repeated

applications of MAP�CSP� In particular� one can divide the plan library up into layers�

where the plans at each level are constructed only from plans at lower levels� That is� the

bottom layer is those plans whose components are all AST items� the next layer is plans

whose components are a combination of AST items and plans in the bottom layer� and so

on� For example� at the bottom are plans like PRINT�CHAR and INCREMENT that depend

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

Type: Block-end
Name: $Block1

Type: While
Condition: $ResultA boolean

Type: Assign
AssignTo: $ElemB char
AssignFrom: $NameC array
ArrayIndexType: IndexC int

V8
ArrayIndexType: IndexB int
AssignFrom: $NameB array
AssignTo: $ElemA char
Type: Assign

DeclareVar: $NameA
DeclareType: array, char
ArrMinSize: 0
ArrMaxSize: 10000

V7

Type: Increment
Name: $IndexD V5

V9
Type: Zero
ZeroVar: $IndexA V6

before-pwhile-begin

V3 V1

V4V2
Type: Block-begin
Name: $Block1

before-p

before-p
before-p

before-p

Type: Not-Equals
Returns: $ResultB, Boolean
Param1: $ElemC, char
Param2: NULL, char

Type (reflexive) constraints

Data flow, shared variables

Control flow, precedence

Arc Explanation Key

same-name-p

before-p

before-p

Figure ���� MAP�CSP representation of TRAVERSE�STRING plan �index shaded	

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

only on abstract syntax tree items� At the next level are plans� like TRAVERSE�STRING�

that depend on these sub�plans� One then runs through the plan library �bottom up�� by

invoking MAP�CSP for each plan in the bottom layer� then each plan in the next layer�

and so on� The MAP�CSPs at each subsequent layer include all of the recognized plans

at the previous levels as part of the domain of variables� One may rely on the MAP�CSPs

at the lower layers to locate the possible domain values for the components at the higher

levels� The overall result is that one deals with hierarchical plan structure through a

layered plan library and applications of MAP�CSP a layer at a time�

The problem with such a strictly bottom�up application of MAP�CSP is that it relies

on a mapping of every plan instance in the library� As a result� many independent MAP�

CSPs must be solved� It is not immediately obvious how the solution of one MAP�CSP

can be exploited to reduce the e�ort made by other MAP�CSPs��

In contrast� if the PU�CSP approach is considered as a global strategy for controlling

the application of MAP�CSPs and for integrating the MAP�CSP solutions for local code

portions� it may be possible to restrict the range of possible explanations for larger code

components more e�ectively�

In any case� a purely layered approach is not entirely satisfactory when one considers

real�world use of program understanding tools� In particular� any real�world program

understanding tool is going to involve some interaction with users� as there is always

going to be some idiosyncratic code that does not correspond to any plan in the exist�

ing plan library �Quilici and Chin� ������ As a result� the program understanding task

corresponds to e
ciently partially reverse�engineering the code� In the repeated applica�

tion of MAP�CSPs� it is di
cult to imagine how the programmer can help the process�

�It is possible for MAP�CSPs at one level to contribute to the solving of MAP�CSPs at a higher�level
in that failing to recognize certain plans in one MAP�CSP quickly eliminates the consideration of the
higher�level MAP�CSPs involving those plans� However� what is not clear is how MAP�CSPs at one level
can contribute to other MAP�CSPs at the same level�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

However� in the PU�CSP approach� both the algorithm and the programmer can exploit

local partial solutions to restrict other� possibly higher�level solutions� Larger code com�

ponents such as procedures or functions form nicely coupled code chunks with clearly

de�ned constraint relations among them in the form of calling and type relationships�

The identi�cation of plans that interact with one of these function blocks can potentially

reduce the combinations of explaining a set of these function blocks�

Finally� earlier work with spatial templates �Woods� ����� has demonstrated that sets

of complex constraints� such as those involved in MAP�CSP�s plan templates� are very

di
cult for experts to quickly identify in noisy situations� such as are provided by con�

fusing or cluttered source code� Iterative large�scale understanding of complex spatial

situations was greatly assisted by local identi�cation of di
cult�to�see spatial relation�

ships� For example� in Figure ��� ��� spatial objects of four types �plus� diamond� square

and cross	 are presented in an apparently random manner� A �WarpCross� con�gu�

ration consists of two plus objects book�ending a diamond object with all three in a

nearly straight line� and with the diamond and a square book�ending a cross� also all in

a nearly straight line� where the two straight lines cross at between �� and �� degrees�

If one were told that such an instance occurs in the set of spatial objects �within a set

of well�de�ned tolerances	 it is nearly impossible to manually sort through the noise and

recognize the instance� However� the solution shown in Figure ��� can be found easily

using constraint processing techniques similar to MAP�CSP� The idea in this earlier work

was that these micro�solutions can be thought of as initial building blocks on which to

build expert�level explanations� Applying this idea to program understanding suggests

doing as many of these micro�observations �MAP�CSPs	 as is computationally a�ordable�

and then attempting to couple instances with the macro constraints of the larger PU�CSP

so as to maximize the e�ectiveness of the high�level easy�to�identify constraints such as

inter�function control and data�!ow�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

Figure ���� Spatial situation with ��� objects of four types�

An alternative approach is to carefully interleave low�level and high�level MAP�CSPs�

For example� one need not apply all the lowest MAP�CSPs �rst but rather apply the

lowest ones in a particular portion of the planning hierarchy� and then higher ones atop

these low ones� until the point at which a larger code block has been successfully explained�

Then this larger context explanation could be used to select the next MAP�CSP to match�

and so on� As a result� this interleaving may be able to exploit some of the structured

constraints that exist between high�level plans and source code� However� this is exactly

what PU�CSP is meant to do�

In general� there are two primary concerns when trying to model a particular program

understanding methodology in a constraint�based framework� representation and control�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

Figure ���� One complete �WarpCross� template instance and two partials�

It must be ensured that the CSP representation is general enough to capture the com�

plexities and nuances of the original while not abstracting away important details� and

also that the original control strategy can be interpreted in terms of a particular control

strategy for solving CSPs�

In the case described� the CSP representation captures exactly the original component

and constraint representation of plans� The CSP control strategy is analogous to that of

the original Concept Recognizer� except that it imposes a particular layered ordering

in how plans are tried from the library� where this was left unspeci�ed in the original

Concept Recognizer description�

��� Heuristic Program Understanding as a CSP

I have demonstrated how to take the Concept Recognizer�s approach and turn it

into a constraint satisfaction problem� However� although the Concept Recognizer�s

representation of plans and top�down algorithm for recognizing them is simple and

clear and has been successfully applied to real�world COBOL programs� the algorithm

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

is slow and does not scale well� either with program size or with plan library size

�Kozaczynski and Ning� ������

As introduced in Section �������� later work� in a system called Decode

�Chin and Quilici� ������ tried to address these de�ciencies by modifying the

Concept Recognizer�s initial representation and algorithm to re!ect the behavior

observed from studies of users doing bottom�up understanding of function in C code

�Quilici� ������ This extended algorithm had two key changes� First� Decode�s algo�

rithm became code�driven �bottom�up	 rather than library�driven �top�down	� While

library�driven approaches consider all plans in the library� code�driven approaches con�

sider only the subset of those plans that contain already�recognized components� Second�

Decode�s algorithm relies on an extended plan representation that supports careful in�

dexing and organization of the plan library to reduce the number of constraints that must

be evaluated and the amount of matching that must take place between the code and the

plan library� These heuristic tricks are designed to make it more e
cient and to help it

better model the observed user behavior� In the following section these heuristic tricks

are described and their encoding in a CSP�based framework is presented�

	���� Decode�s Heuristic Approach to Program Understanding

In this section� I describe Decode�s more complex algorithm in some detail and then

show how it too can be modeled as a constraint satisfaction problem�

������� Representation

Figure ��� contains several examples of Decode�s extended plan representation�

As in the Concept Recognizer� each plan consists of a set of components and

constraints� However� each plan also has an index that says when it should be consid�

ered� or matched against program pieces and recognized plans� The index combines a

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

define TRAVERSE�STRING�String� isa TRAVERSE�PLAN
define PRINT�STRING�String� isa PRINT�PLAN
define PRINT�CHAR�Char� isa PRINT�PLAN
define ZERO�Dest� isa ASSIGN�PLAN

plan TRAVERSE�STRING�String� �a�
components
decl� DECL�ARRAY�Name� �s� Items� �max� Type� char�
init� ZERO�Dest� �i�
loop� LOOP�Test�Result� �r� Body� �body�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
test� BIN�OP�Op�� �i� Op�� �val�� Op� 	
� Res� �r�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
update� INCREMENT�Op� �i�

constraints
declbef� ControlPath�decl� loop�
initbef� DataDep�test� init� �i�
acc�bef� DataDep�test� access�� �val��
testin� DataDep�loop� test� �r�
acc�in� ControlDep�access�� �body�
updaft� DataDep�access�� update� �i�

index
access� WHEN accin

implies PRINT�STRING�Srting� �a�
with

dump� PRINT�CHAR�Source� �value�
when

dumpaft� DataDep�dump� access�� �v�

plan PRINT�CHAR�Char� �c�
specializes Call�Function�Name� putchar� Args� �c�

plan ZERO�Item� �i�
specializes Assign�Dest� �i� Value� ��

Figure ���� An example code pattern

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

plan component with one or more plan constraints and suggests that the plan should be

considered whenever this component is encountered and the speci�ed constraints hold�

TRAVERSE�STRING� for example� is indexed by an ACCESS that is contained within a LOOP�

That means the understander considers this plan each time it encounters an ACCESS� not

every time it encounters any INCREMENT� ZERO� BIN�OP� LOOP� or DECL�ARRAY �as in most

bottom�up approaches	� Evaluating the index involves checking whether its indexing con�

straints hold �which may in turn involve trying to match additional plan components	�

In this case� it involves determining whether the ACCESS is contained within the body of

a LOOP�

The motivation for indexes is that they suggest when plans are likely to occur as

opposed to when plans might occur� This has the potential to cut down on the number

of plans in the library that are considered during understanding� as any plan that is not

indexed by the elements of a given program will never be considered� It also has the

potential to signi�cantly reduce the number of times any given plan is considered by a

bottom�up understander from the total number of times any of its components occur

in the program to the number of times its indexing component occurs in the program�

Finally� it has the potential to reduce the amount of matching and constraint evaluation

that takes place while recognizing instances of a particular plan� Ideally� the recognition

process should always evaluate any constraint that will fail as soon as possible� since a

single failed constraint eliminates a plan instance from further consideration� whereas all

constraints must succeed before a plan can be recognized� Because indexing places a

partial ordering on both matching �with the indexed component of the plan bound �rst	

and constraint evaluation �with the indexing constraints evaluated �rst	� the better the

indexing constraints are as a predictor of a plan�s presence� the fewer unneeded constraints

will have to be evaluated�

In addition to indexes� Decode�s representation extends the Concept Recognizer

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

to allow plans to be de�ned as being conditionally implied by other plans� After the

understander recognizes a plan that conditionally implies another plan� it checks whether

these conditions hold �which involves checking for additional components and evaluating

additional constraints	� For example� the plan TRAVERSE�STRING implies the existence of

the plan PRINT�STRING when there exists an additional PRINT�CHAR that is conceptually

contained within the LOOP�

The motivation underlying implications is to take advantage of small di�erences be�

tween the implementations of related plans� so that one plan can be recognized as a slight

modi�cation or extension to another� Essentially� plan implementations are organized in

a discrimination net� which allows the understander to use indexing to retrieve general

plans to try �rst and then to use small� additional incremental tests to recognize more

speci�c plans�

There are two alternatives to implications� One is to have related plans be com�

plete� stand�alone implementations that individually contain all necessary components

and constraints� PRINT�STRING� for example� could be de�ned so that it contains all

of TRAVERSE�STRING�s components and constraints� This approach� however� leads to

duplicate component matching and constraint evaluation that can be eliminated by ex�

plicit implication links� The other alternative is to have the speci�c plans contain the

general plans as elements� PRINT�STRING could be de�ned to contain READ�ALL�RECORDS

as one of its components and to have additional constraints that relate it to their other

components� The problem with this approach is that the additional constraints may re�

quire access to TRAVERSE�STRING�s implementation �such as a control !ow relationship

involving its LOOP	� which then forces PRINT�STRING to have additional implementation�

oriented attributes� Although this is just as e
cient as implication links� it makes the

de�nitions of plans much more di
cult� So implications allow a natural representation

of relationships between plans without adding a signi�cant cost�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

Finally� Decode�s representation allows plans to be de�ned as specializations �inher�

itances	 of other plans� that is� as a set of constraints on an existing plan�s attributes�

For example� the plan ZERO is de�ned as a specialization of an ASSIGN whose Source is

� These specializations correspond to plans that contain a single component �the plan

being specialized	� that are indexed by that component� and that have constraints on that

component�s attributes� In fact� at de�nition time� these specializations are automatically

translated into standard plan de�nitions�

The motivation for specializations is to make it easy to de�ne one common class of

plans and to encourage the de�nition and use of specialized plans as components and

indexes� This simpli�es the de�nition of higher�level plans that contain specialized plans

as components by reducing the number of constraints that must be speci�ed� This ability

is simply a convenience� however� with no performance implications�

������� Control

Figure ���� is the algorithm used by Decode� The basic idea is straightforward� run

through the program tree and� whenever a component is an index for a plan and its

indexing constraints succeed� match the remaining pieces of that plan against the code

and evaluate the constraints on the partial plan instances formed by the matching process�

In addition� whenever a plan is recognized and implies another plan� attempt to match

the additional components and evaluate the additional constraints� Then for each plan

recognized� recursively see if it indexes any plans�

There are several complications� One is that at the time an index is evaluated� com�

ponents that are themselves plans may not have been recognized yet� For example� the

INCREMENT in TRAVERSE�STRING may be a sub�plan that is recognized after the index

triggers consideration of TRAVERSE�STRING� To avoid this problem� Decode�s algorithm

�Thank you to Alex Quilici for the use of this representation of his algorithm�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

assumes that the plan library has been organized in layers� just as in the CSP�version

of the Concept Recognizer� The algorithm then breaks the indexing process up into

layered traversals through the program tree� �rst seeing if anything in the �rst layer is

indexed� then if anything in the next layer is indexed� and so on� Implications are handled

in a similar way� with any plan implied by another plan placed in a layer that is both

above it and above any of its new subcomponents�

The other complication is that evaluating constraints and binding components against

the program tree must be interleaved� A simple approach to recognizing plans would

form all the possible combinations constructed by binding each of its components against

program tree entries and then evaluate the constraints on these components� However�

that is far too ine
cient� Decode�s alternative is to have an ordering for constraints and

to form combinations only as they become necessary to evaluate these constraints�

	���� Decode�s Approach to Program Understanding as a CSP

Decode�s approach to program understanding may be captured with several extensions

to the CSP�based framework� The additional parts of Decode�s plan representation

which must be mapped to the CSP methodology are the INDEX and IMPLICATION entries

of a plan� This is done through further specifying MAP�CSP�s search control strategy�

Decode�s algorithm traverses the program source �or� more precisely� it traverses the

abstract syntax tree	 and tries to match a particular program plan whenever it encounters

an index for that plan� Program plans are organized in layers� with indexed plans at

the lowest level of the hierarchy matched �rst� with indexed or implied plans at higher

abstraction levels matched subsequently� Thus� a pass of the source involves checking

each statement against the list of indices for a possible match� A possible match triggers

a closer inspection of the source for an instance of the matched program plan� This closer

inspection is exactly an instance of MAP�CSP in which the index part of the program

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

plan template has already been identi�ed�

One can model this behavior by having the performed MAP�CSP utilize a strict

ordering in which the components and constraints in the plan�s index are matched �rst�

with a successful index signaling the requirement to continue searching further� If the rest

of the program plan components and constraints are successfully matched to the source

code� MAP�CSP has identi�ed an instance of the plan� There are therefore two phases�

The �rst is the index phase in which the indexed portion of the plan is matched in the

source code� giving essentially a list of areas of focus� The second or resolution phase is

the attempted resolution of each of the index hits into full blown plan instances� The

CSP which includes the index behaviour of Decode is referred to as the Memory�CSP�

This separation into two phases is important� as illustrated by the following example�

A template is de�ned with �ve variables� A and B are the index part �say a reference

inside a loop	� while C� D and E are the remainder �assume there are constraints as well	�

Memory�CSP should �rst �nd all solutions to the partial CSP involving only A and B

�rst� These index hits should be viewed as a set of independent partial solutions� Now�

each of these partial solutions should be re�ned in turn� returning only those that �t as

part of whole solutions involving C� D and E� E�ectively� the second phase involves CSPs

of only three variables each�

What has been created here is a view of the CSP in which a subset of the variables

and constraints are solved �rst� and further� in a particular order� One may view this as

a hierarchical view of the CSP in which the �key� portion is �more important� and thus

matched �rst�� If this key portion of the template contains variables that match only a

small subset of all possible program components and the constraints are restrictive� then

this may be seen as an attempt to order the constraints so as to reduce the branching

�See
Freuder and Wallace� ����� Yang and Fong� ����� for a detailed discussion of representing CSPs
as partially ordered sets of variables and constraints�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

factor and size of the subsequent search space� An index by de�nition is a signi�er of

uniqueness� and thus it is only sensible that an index is matched only infrequently� The

result is that indices in memory�based understanding are interpreted as orderings on

variables and constraints in MAP�CSP�

Implication is handled in a similar way to indexing� Any plan that is implied by

another can be thought of as being indexed by the plan and any of the implication

constraints� As a result� when one processes a plan library layer� MAP�CSPs are also done

for any plans in that layer that are implied by plans at earlier layers� with the domain

variables of each MAP�CSP being set up based on the bindings from the previously

recognized plan�

In addition� as one runs through each layer of MAP�CSPs� indexing is relied upon

to guarantee that the MAP�CSPs in a given layer fail quickly if the indexed component

hasn�t been recognized from the previous layer�

��� An Example of MAP	CSP In Action

I have implemented a MAP�CSP version of the memory�based algorithm� This new

algorithm models the identi�cation of plan instances in the following way� A CSP is

formed in terms of variables mapping from the program components of the program

plan� re!exive variable constraints mapping from the type information of the program

plan components �see also �Zaremski and Wing� ����b�	� and inter�variable constraints

mapping from the data�!ow and control�!ow relations in the program plan itself� Each

variable ranges over some subset of the program�s statements� Once the problem is

formulated in this way� the index information speci�ed in the memory�based model is

used as a preliminary ordering heuristic for the constraint set�

Figure ��� is an example showing how the portion of the plan of Figure ��� corre�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

sponding to the index is actually represented�

The index is formed as an instance of a particular kind of array access which is

determined to reside in a loop structure� We represent the array access �labeled ACCESS

in Figure ���	 as a variable v� of a particular type of assignment� Assign� for assigning

a value to a character array� The complex operation LOOP in Figure ��� is mapped as a

combination of a variable v� of type While� a variable v� of type Begin� and a variable v�

of type End� The program plan index constraint that the Assign exist inside the control

environment of the While is represented with the pair of precedence constraints placing

v� after the v� instances and before the v
 instances�

The control proceeds roughly as follows� The �rst variable� v�� is matched against

all program statements� giving a domain ranging over all Assign candidates of the ap�

propriate type� This range can be thought of as the branching factor of the top of the

search space� A large range signi�es a poor key choice� Now� the constraints are applied

in index�order� All satisfying instances of v� are identi�ed such that v� is before v��

Next� for each instance of v�� a corresponding Begin instance of v� is identi�ed� The End

instances of v
 are now identi�ed according to the naming identi�er of the corresponding

Begin instances v�� A solution is then found for each set of assignments of domain values

to variables such that v� is before v
� Each solution is an instance of an index hit that is

a candidate for further search to locate full plan instances� The additional components

are given domain ranges and then the remaining constraints are applied�

A typical CSP strategy would attempt to order variables and constraints independent

of the particular enforced ordering implied by the memory�based index� In particular�

in many intelligent backtracking CSP solution schemes this process would be undertaken

dynamically rather than statically� thus taking advantage of particular problem char�

acteristics in reducing the search space rather than relying on a pre�determined belief

about the nature of the source examples that will be encountered� I discuss a particular

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

approach used for comparison purposes in the next section�

��� Some Comparative Experiments

I have run several experiments to compare the performance of Decode�s heuristic pro�

gram understanding algorithm against various generic techniques for solving constraint�

satisfaction problems� These experiments focused on exploring the scalability of the

various approaches in the problem of locating all of the instances of a particular plan�

The overall approach was to implement a general constraint satisfaction�based framework

and then place Decode�s algorithm within that framework as described�

	���� Experimental Description

My prime interest is the performance comparison of di�erent approaches to program un�

derstanding in terms of the size of the programs being understood� In particular� my

focus is on comparing the amount of e�ort expended �and consequently� time	 in recog�

nizing all instances of a single plan template as the source program is increased in size�

To keep the focus on scale issues alone� our desire was to have programs of varying sizes

available where those programs have the same relative distribution of di�erent program

entities �the same percentage of loops� etc���	 regardless of size� The test programs used

as sources are automatically generated in the following way� An instance �or instances�

depending on the experiment	 of the program plan template is generated� and program

statements are added randomly according to a pre�determined distribution of program

statements� This distribution is derived directly from a cross�sectional study of student

C programs undertaken by Quilici and described in �Quilici� ������

Figure ��� shows the internal representation of the earlier example plan� This preserves

the basic component and constraint representation� although the speci�c constraints vary

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

from those used in the original systems� In particular� I approximate control and data�

!ow constraints using locality and containment constraints� In addition� I require a

same�name�p constraint to capture the notion that a variable appearing in multiple places

represents the same underlying entity� a notion that is implicit in Decode�s represen�

tation for plans� The component set elements consist of a general�component label� a

general�component type� and component�identify constraint information �i�e� component

q��c has type �While�� signifying that the template requires a loop component whose

access is controlled by the boolean value �ResultA�	�

Given this experimental framework� I generated programs of varying sizes at intervals

of �� lines of code� from �� to several thousand added lines� with �� programs generated

and tested at each size interval� Based on these �� data points at each size level� we

generate a �� con�dence interval for the number of constraint checks occurring during

the search� I show both summary charts which compare the mean of the �� experiments

among many algorithms� or individual experiments which indicate the size of the ��

con�dence interval� The working assumption �shared throughout the study of CSP per�

formance	 is that the number of constraint checks performed are a reasonable measure of

relative work performed� While certain methodologies require slightly di�ering amounts

of computational overhead during search� I have veri�ed that the CPU�second graphs of

these same experimental results yields comparable graphs� For comparison purposes� ex�

amples requiring approximately ����� constraint checks utilize roughly six CPU seconds�

Since CPU usage is highly variable across implementations and platforms� constraint

checks o�er a more system�independent reference point�

	���� Methodologies Tested

The primary goal has been is to model Decode�s heuristic approach �Memory�CSP	

as a particular type of constraint�satisfaction problem and compare its performance to

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

various techniques for solving constraint satisfaction problems� In particular� I tried two

variations of Memory�CSP and compared those approaches to two domain�independent

heuristic approaches to solving constraint satisfaction problems� As a point of comparison�

I also generated naive solutions using simple backtracking for as many problem instances

as practicable�

��
���� MAP�CSP

I tried three variants of vanilla MAP�CSP �without the ordering suggested by Decode	�

The �rst is based on Simple Backtracking� This method provides a basepoint for com�

parison with the remainder of the experiments� The second and third strategies utilize

a well known search strategy known as Forward Checking with Dynamic Rearrangement

�FCDR	 which was introduced in Section ������ This method works as follows� Say we

have four variables A�B�C�D� S�A	 is the size of the domain of A� D�A	� Say S�A	 � S�B	

� S�C	 � S�D	 initially� First� variable domains are ordered by size as shown� Next� the

smallest S�v	 is chosen� In the example� the variable A is chosen and can thus be seen

as the root of the search space� Next� a value in D�A	 is chosen� say a�� Based on the

value chosen for A� forward checking is performed in which the domains of S�B	� S�C	�

S�D	 are reduced where any value in these domains inconsistent with a� according to any

constraint applicable between A and B� A and C or A and D � is removed� Next� the

variables are dynamically rearranged� For instance� since the domains of variables B� C

and D are now possibly reduced� they have new sizes� say S��C	 � S��D	 � S��B	� They

are reordered according to smallest �rst and the smallest is selected for instantiation�

The process is now repeated until there are no more variables or values to check�

I experimented with two variations on this strategy� In the �rst� FCDR without

advance variable ordering� the initial variable selection is random� while in the other�

FCDR with advance variable ordering� the initial variable selection is based on the smallest

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

domain size�

��
���� Memory�CSP

As was shown earlier� Decode�s approach to program understanding can be modeled by

a variant of MAP�CSP with two phases� the index phase and the resolution phase� My

implementation models this by dividing the original plans into two parts� the index plan�

which leads to a set of solutions which correspond to those possibly indexed plans� and

the non�index portion of the plan� which is applied to each indexed�solution� Figure ���

shows the index for our earlier example�

Since Memory�CSP has two distinct phases� it is necessary to select search heuristics

and parameters for each of the phases� I show two variations here� the �rst is ��Phased

Memory�CSP with Phase � Simple Backtracking and Phase � FCDR with advance vari�

able sorting� and the second is ��Phased Memory�CSP with both phases utilizing FCDR

with advance variable sorting�

	���� Decode and Concept Recognizer Experimental Results and Dis

cussion

There were � speci�c algorithms tested in this series of experimental runs� Each of these

runs makes use of a single program template instantiation� and the algorithms are run

until all instances are found � in fact� no other instances satisfying the constraints exist�

Figure ���� shows the results of these tests� In particular� this �gure shows a performance

for FCDR in source examples up to ����� lines of code which appears linear� In fact� the

Memory�CSP approach appears relatively stable over this size of problem as well� In later

experiments detailed in Chapter � I extend these preliminary results over larger samples�

The distribution of program statements �derived from the Quilici study	 used is shown

in Table ���� As well� when a variable was to be generated� it was generated with the

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

following type distribution� array type ����	� simple int ����	� char ����	� real ����	�

and boolean ����	� If an array was generated� it was instantiated according to this type

distribution� int ����	� char ����	� real ����	 and boolean ����	� In this experiment� I

allowed that certain of the program examples would have no complete instance� Partial

instances� however� exist� In particular� for problems of size ������� � instance is inserted

for each of the �� cases� For problems of ��� and greater� the number of generated

programs out of �� without an instance are as follows �by size index	� ���� ��� ��	� ����

���� ��� ��	� ���� ��� ��	� ���� ���� ��	�

Statement Type Frequency Percentage

While ���� ���

Zero ���� ���

For ���� ���

Block ���� ���

Increment ���� ���

Not�Equals ���� ���

Print ���� ���

Assign ���� ����

Decl ���� ����

Check ���� ����

Table ���� Program statement type distribution

Test case � refers to ��Phased Memory CSP with Phase � BT and Phase � FCDR

with sorting� Test case � refers to ��Phased Memory CSP with Phase � and � FCDR

with sorting� Test case � refers to MAP�CSP with FCDR� Test case � refers to MAP�

CSP with FCDR and advance sorting� Finally test case � refers to MAP�CSP with

Simple Backtracking� All experiments are limited by a ��� CPU second time limit for

any individual search� All graphed instances completed inside this time restriction�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

	���� Summary of Results and Analysis

The bottom�line of these studies is that heuristic methods for constraint satisfaction other

than simple backtracking signi�cantly outperform Decode	s indexed approach�

In hindsight� there is an obvious explanation for why this situation occurs� One is

that indexing is� by its very nature� static#the assumption is that an expert can look

at a plan� pick its key components� and those components will always be a good �lter

for whether the rest of that plan should be considered� regardless of the actual entities

present in a particular program� By their very nature� the heuristic constraint satisfaction

approaches are dynamic� determining which constraints to satisfy based on properties of

the particular program problem instance being examined�

However� there are some artifacts of my particular experiments that need to be ex�

plored further before the results are validated� One is that the experiments used locality

to approximate data and control�!ow constraints� and the generated test programs did

not necessarily have the same structural properties that real�world programs might have�

Since the indexing approach is designed to exploit these structural properties� it may well

be that its performance has been arbitrarily limited by the arti�cial programs� I discuss

future work and improvements of these experiments in Section �����

��
 Conclusions

This chapter has demonstrated how it is possible take an existing heuristic�based pro�

gram understanding algorithm and model it in a constraint�satisfaction based framework�

Furthermore� it has presented preliminary results that suggest the domain independent

heuristics used by the constraint satisfaction approach lead to signi�cantly better per�

formance than the domain�dependent indexing used in this heuristic�based program un�

derstanding algorithm� These results suggest that by casting program understanding as

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

CSP� one can adapt previously developed constraint propagation and search algorithms

to improve their e
ciency and lead to program understanding algorithms that scale�

The performance results presented here demonstrate the bene�ts of having a common

framework for comparing the performance of di�erent program understanding algorithms�

This framework allows us compare the e
cacy of speci�c heuristic tricks such as indexing

to di�erent methods of solving constraint satisfaction problems� It may well prove out

in the long run that existing methods are su
cient to achieve indexing�s performance

without the need to index� or alternatively� that we will see exactly what bene�ts are

provided by the speci�c knowledge used in indexing �such as the likelihood of certain

components indicating the presence of certain plans or the relative cost of evaluating

certain constraints	 over heuristic constraint propagation methods�

The study of program understanding algorithms in terms of this constraint satisfaction�

based approach appears promising as a unifying framework for describing and comparing

program understanding algorithms� My hope is that others will be able to extend this

constraint�based framework to capture the representations and control strategies used in

other approaches to program understanding� The result of doing so should be a deeper

understanding of the commonalities and di�erences of these algorithms� Ultimately� it

may also lead us to a deeper understanding of the program understanding problem� and

perhaps to a program understanding approach that scales well enough to be demonstrat�

ably applicable in a reverse engineering toolset�

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

Plan Recognition Algorithm

� Initialize the program tree �PT � to the set of elements in the program�s abstract syntax
tree

� For each plan library layer L�

� For each element Ei in PT �

� For each plan implementation Pj in L indexed by Ei�

� Form the set of partial plan instances �PPI� that result from binding Ei to
each Pj�

� Replace PPI with the set that results from processing the indexing con�
straints on the original PPI�

� If PPI is non�null� set the recognized plan instances �RPI� to the result of
processing the remaining constraints on each element in PPI�

� Add each element of RPI to PT and add each plan it implies to the set of
potentially implied plans �PIP ��

� For each plan Pj in L�

� For any corresponding PIPk in PIP �
� Set the implied plan instances �IPI� to the result of processing implication
constraints on PIPk�

� Add IPI to PT �

Process�Constraints�CS �Constraint Set�� PPI �Partial plan instances��

� For each constraint Ci in CS�

� For each PPIi in PPI�

� Form the set of new partial plan instances �NPPI� that result from binding the
components in PPIi that are necessary to evaluate C against elements of PT �

� Form the set of remaining partial plan instances �RPPI� that result from eval�
uating Ci on each item in NPPI�

� Set PPI to the concatenation of all the RPPIs�

Figure ���� Decode�s algorithm for automatically recognizing plan instances in code�

�v� Assign �NameC �array �char��� �IndexC �int�� �ElemB �char���
�v� While �ResultA �boolean���
�v� Begin �Block� �block���
�v
 End �Block� �block���

�before�p �v� v���
�while�begin �v� v���
�same�name�p �v� v
� �Block� Block���
�before�p �v� v
��

Figure ���� MAP�CSP representation of code patterns

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

�� �quilici�t��

� �� Component Set ��

�q��c While �ResultA �boolean���
�q��d Begin �Block� �block���
�q��g Assign �NameC �array �char��� �IndexC �int��

�ElemB �char���
�q��e End �Block� �block���
�q��i Increment �IndexD �int���
�q��a Decl �NameA �array �char� �� ���������
�q��b Zero �IndexA �int���
�q��f Assign �NameB �array �char��� �IndexB �int��

�ElemA �char�� �
�q��h Not�Equals �ElemC �char�� �NULL �char�� �ResultB �boolean��� �

� ��Constraint Set��

�before�p �q��c q��d��
�close�to�p �q��c q��d� ���
�before�p �q��d q��g��
�same�name�p �q��d q��e� �Block� Block���
�before�p �q��g q��e��
�before�p �q��b q��c��
�before�p �q��a q��b��
�before�p �q��b q��h��
�before�p �q��d q��e��
�before�p �q��f q��h��
�before�p �q��g q��i��
�before�p �q��d q��i��
�before�p �q��i q��e��
�same�name�p �q��c q��h� �ResultA ResultB��
�same�name�p �q��f q��h� �ElemA ElemC��
�same�name�p �q��a q��f� �NameA NameB��
�same�name�p �q��a q��g� �NameA NameC��
�same�name�p �q��b q��f� �IndexA IndexB��
�same�name�p �q��b q��g� �IndexA IndexC��
�same�name�p �q��b q��i� �IndexA IndexD�� ��

Figure ���� CSP�based internal representation for plans

CHAPTER �� UNDERSTANDING AS CONSTRAINT SATISFACTION ���

�� �quilici�t��index�

� ��Component Set��

�q��c While �ResultA �boolean���
�q��d Begin �Block� �block���
�q��g Assign �NameC �array �char��� �IndexC �int��

�ElemB �char���
�q��e End �Block� �block��� �

� ��Constraint Set��

�before�p �q��c q��d��
�close�to�p �q��c q��d� ���
�before�p �q��d q��g��
�same�name�p �q��d q��e� �Block� Block���
�before�p �q��g q��e�� ��

Figure ���� The representation for a plan index

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

C
on

st
ra

in
t c

he
ck

s

Program statements

MAP-CSP : FCDR w/ adv sort
MAP-CSP : FCDR, no sort

Memory-CSP: Both FCDR w/ adv sort
Memory-CSP: BT + FCDR w/ adv sort

MAP-CSP : Simple BackTrack

Figure ����� The median results for each of � algorithms

Part III

Partial Local Explanation

���

Chapter �

Partial Local Explanations

�MAP�CSP�

In Section ��� I introduced the conception of global program understanding �in CSP

terms� the PU�CSP	� which resolves integration of partial local explanations of source

code blocks� The identi�cation of these partial local explanations I represent as the MAP�

CSP problem described in Section ������ I have described MAP�CSP as integral to the

more ambitious understanding task� In Section ����� I have described speci�c instances of

MAP�CSP in the context of modeling earlier program understanding approaches� In this

chapter I examine the complexity of the MAP�CSP analytically� Keeping in mind that

the MAP�CSP is a sub�problem of the larger understanding problem I have described�

the question is # what is the relative cost of applying this algorithm in general"

In general� reverse engineers are interested in very large computer programs� programs

with hundreds of thousands or even millions of lines� Just as experts limit their focus

to various functionally or spatially restricted sections of code at one time� the work in

this thesis is directed towards describing a model which is capable of dealing with both

���

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

the size and complexity of such code through careful use or interleaving of narrow and

broad focus on the source at hand� Thus� while it may be overwhelming to consider a

million or even a hundred thousand lines of code looking for semi�global� distributed� or

even partial local explanations� it may be possible to deal empirically with foci of tens

of thousands of lines initially� Subsequently� one may exploit the partial local knowledge

gained �bottom�up� to reduce the potential explanation space of those code segments on

a global scale and thus defeat the size barrier through careful narrowing and widening of

focus�

The empirical challenge is consequently to show applicability in ever larger narrow

focuses� In particular� the ability to scan large segments of code at once increases the

chance that a plan instance spread across several functional blocks may be recognized�

While it is likely that a simple algorithm for constructing template to instance mappings

is an intractable problem� it is nonetheless conceivable that the task of locating partial

local explanations could be achieved through the discovery of a polynomial algorithm of

some kind� The convenient bounding that such an algorithm would provide could be very

useful in a larger understanding context� For example� it would be possible to quickly

estimate how much time a particular query would require in advance� Unfortunately not

all problems have polynomial solutions� In this chapter� I show that the program template

matching approach to partial local explanation construction in fact does not have such a

solution� The consequence of this result is that one is well�justi�ed in pursuing heuristic

approximations or local partial solutions in ways that may not be polynomial in some

worst case� Of more concern then will be discussions about applicability and e�ectiveness

in particular problem instances�

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

��� Program Template Recognition Model

The MAP�CSP or program template matching problem can be stated as follows� given

a plan template with a number of elements and constraints among the elements� �nd

all instances of the template �or idiom	 in a source code� For example� consider �nding

all instances of an abstract data type �ADT	 in a C program� It is considered that an

ADT is a collection of closely related program plans centered about a particular data

structure or set of structures� Figure ��� is a String ADT plan template modeled after

those present in a plan library described in the literature �Quilici� ������ The ADT is

described in terms of �ve features describing various key components of a string class�

In addition� there are constraints among the di�erent parts as well� such as the one that

requires one component to go before another�

I model this problem as a CSP as follows� For the given plan template �or ADT	� each

feature is a variable in the MAP�CSP� The domain range consists of all possible source

program statements� Variables here can have attributes such as �print� for	 that may be

seen as constraints on allowable assignment of program statements �values	 to template

features �variables	� Other constraints are on the sharing of information among variables�

and on the order in which template features or variable are expected to appear in source

code�

A solution to the MAP�CSP consists of the set of all assignments of plan template

features by source code statements� where each assignment must satisfy all constraints�

As an example� consider the ADT of Table ���� When represented as a plan template as

in Figure ���� the variables of the MAP�CSP are� Xi� i $ �� � � � � �� Initially the domain

for each variable ranges through all source statements in Figure ���� The constraints are

as shown in the �gure� The solution to this problem corresponds to the three alternative

consistent assignments to the variables� one for each character string A� B and C� respec�

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

Declare array NameA char (SizeA)

For (index1, initVal, endVal)

Begin block1

Print(NameD[index2]

End block2

A before B

B before C

C before D

D before E

same(
 index1,
 index2
)

same(
 NameA,
 NameD
)

same(
 block1,
 block2
)

Variable X1

Variable X2

Variable X3

Variable X4

Variable X5

Figure ���� The String ADT in MAP�CSP

tively� Thus� the solution to a MAP�CSP provides a mapping that explains the matched

source statements as parts of an instance of the abstract program plan or ADT�

��� Complexity Issues

������ Program Template Matching is NP�hard

As stated earlier� many recognition approaches attempt to recognize typical program

plans or clich�es� and then integrate these instances into a coherent or consistent global

understanding� In Section ��� I show that the simple program understanding problem is�

in fact� NP�hard� Now� what about the seemingly much simpler potential sub�problem of

�nding instances of a given pattern in a program source code" In this section� I establish

that even this �simpler� problem is NP�hard�

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

������ The Program Template Matching Problem

The Simple Program Template Matching Problem �SMAP
 problem is depicted

in Figure ���� Consider that we are given the following�

� There exists a collection B of program blocks Bi� i $ �� �� � � � � m� These blocks can

be viewed in terms of a corresponding graph P $ �B�D	 where D is the set of edges

of the graph Dk� k $ �� �� � � � � n� such that an edge Di�j exists between node Bi and

Bj if and only if a data�!ow exists between the program blocks�

� We are also given a program template plan T $ �N�C	 where each member Ni

of N participates in data�!ow relationships with some other nodes in N � These

relationships are speci�ed by C� the set of edges between nodes N � such that Ck�l �

C exists between nodes Nk and Nl if and only if a data�!ow exists between the two�

Given the above structure� the SMAP problem is to determine if a mapping exists

from the template nodes N to a subset of program blocks in B� The mapping is a function

between relationships among template nodes and data�!ows among program blocks� As

an example� in Figure ���� the following correspondence gives rise to a matching instance

of the program template�

N� �	 B�

N� �	 B�

N� �	 B�

N� �	 B�

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

D

D

2,3

6,1

7,1

B
1,2

D

4
D

2

D
3,4

D4,51

2,5
D

B

4,2

B5
D

B3
Structurally
Related Program
Blocks

Constrained
Template

D

to Program Portion
"Mapping" from Template

B
7,6

Components

B

B6

7

Selected Program Template Plan

3

C

4

C

C

C
1

2

4,2

4,1 2,1

3,1
N

N

N

N

Source Program

Figure ���� Program Template Matching

������ Program Template Matching is NP�hard

One can prove that SMAP is NP�hard by a reduction from the NP�hard problem Sub�

graph Isomorphism� which is known to be NP�hard �Garey and Johnson� ����� p� �����

The Subgraph Isomorphism problem may be stated as follows�

Given a graph G $ �V�� E�	 and a graph H $ �V�� E�	� Does G contain a

subgraph isomorphic to H � i�e�� a subset V
 V� and a subset E
 E� such

that jV j $ jV�j� jEj $ jE�j� and there exists a one�to�one function f � V� � V

satisfying fu� vg � E� if and only if ff�u	� f�v	g � E"

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

The transformation to an SMAP problem can be done as follows� Every vertex of V�

in G is a program block� and every edge of E� in G signi�es a data�!ow between blocks�

Each vertex of V� in H is a program template and each edge of E� in H is a data�!ow

between templates� A mapping between a template T and a subset of program blocks in

a program P exists if and only if H is a an isomorphic subgraph of G�

����� MAP
CSP and Search

So partial local explanation as embodied by MAP�CSP is NP�hard� It is now tempting

to ask �but does it matter "�� The answer of course is that if it is possible to integrate

MAP�CSP as a part of PU�CSP in such a way that the combinatorics that lead to the

abstract NP�hard result can be controlled in practice� then no� it does not matter�

In the worst case we are faced with a situation in which� for a �xed template of N

components� and M situation elements �source code statements	 that possibly match a

given component� that there areMN possible combinations of components and elements�

In practice of course it is not necessary to check all of these
 Consequently� one may say

that for a �xed template size� the solution to this problem is no worse than polynomial

of degree equal to the number of components in the given template� In general� however�

for a template of arbitrary size� the problem is exponential� The good news is that as

M � the size of the source fragment increases� the problem does not become polynomially

worse�

The expression of this problem as a CSP serves the goal of demonstrating this heuristic

adequateness in the simple way that many relatively large CSPs can in fact be solved�

Local search strategies such as GSAT �Selman and Kautz� ����� have been shown e�ective

for very large problems of particular structure� MAP�CSP o�ers only a set of partial local

explanations of source� It is conceivable then that a di�erent� less powerful local strategy

that identi�ed fewer local explanations� but with less e�ort� might still be of use� Since

CHAPTER �� PARTIAL LOCAL EXPLANATIONS �MAP	CSP
 ���

the PU�CSP which is discussed more fully in Chapter � is designed entirely to exploit

such local knowledge it is quite conceivable that these few local solutions can be exploited

to great advantage in practice� This question of local search applicability is to be the

focus of future investigation�

A complete search using the MAP�CSP representation has one de�nite advantage over

a local search� Complete search allows one to make negative claims about the existence of

a solution to a given CSP� For example� one can state categorically that no solution exists

such that the full set of constraints could have been satis�ed� Of course� it is possible that

a solution existed with just one constraint failing� At any rate� this negative information

can be used e�ectively in constraining a set of options� some of which may have required

a positive solution� We discuss the use of such information directly in Chapter ��

Chapter �

MAP�CSP Experimental Results

In Section ����� of Chapter � we brie!y described and outlined some experimental results

obtained though implementing MAP�CSP and modeling several search heuristics in this

paradigm� In particular� in Figure ����� we detailed a summary of several search strategies

for MAP�CSP including the Memory�CSP approach suggested by Quilici�s indexing in

Decode� as well as several domain�independent strategies such as forward checking with

dynamic re�arrangement�

In this chapter a wider range of experimental results are described more completely�

providing more detail and o�ering further comparison and analysis� Over the past decade�

researchers in program understanding have formulated a wide variety of program under�

standing algorithms� Unfortunately� however� there have been few� if any� published

studies on the scalability of program understanding algorithms� This makes it di
cult

to understand the limitations of these algorithms and to determine whether the �eld of

program understanding is making progress�

���

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

�� Source Data and Program Plans

Before examining experimental results from MAP�CSP for recognizing particular in�

stances of program plans� I shall �rst describe precisely the nature of the generated

source programs examined� and also the program plan templates considered�

While this ongoing research e�ort is directed towards the eventual demonstration of

feasibility of both PU�CSP and MAP�CSP techniques in the domain of large commercial

source libraries and software sources� that is not the focus of the experiments outlined in

this chapter� Rather� I am interested in determining whether� with a minimum of struc�

tural constraint information� it is possible to utilize the CSP algorithm for MAP�CSP

template recognition in reasonably size source programs� For example� if the combina�

torics of recognition stopped at ��� lines of code it would be necessary to re�consider

this approach� However� if it is possible to scale to code on the order of a thousand

lines� it is conceivable that MAP�CSP may be seen as a model or prototype of an integral

sub�component of a future understanding toolset� In the future� such a model can be

extended to take advantage of further structural source constraint information�

���� Program Plan Templates

In Section ����� the quilici�t� program plan template is used for purposes of comparison�

This template is derived directly from the TRAVERSE�STRING program plan utilized by

Quilici �Quilici� ������ and which are described in Section ������� of Chapter �� The MAP�

CSP template version is composed of nine primary components and �� constraints� The

index version of this template �quilici�t��index	 is extrapolated from Quilici�s indexing

strategy �described in Chapter �	� is shown in Figure ���� This index�plan is representative

of a smaller program plan �in that it is a connected plan in its own right	� The index

plan contains four primary components and �ve constraints among them� An extended

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

version of the quilici�t� template �quilici�t��large	 has been created in order to evaluate

the empirical results of searching for an instance of a more complex program plan� This

extension represents a TRAVERSE�PRINT program plan from the Quilici domain� and is

shown in the MAP�CSP representation in Figure ���� The TRAVERSE�PRINT program

plan consists of �� primary components and �� constraints�

My experiments are concerned with all�instance template identi�cation in large gen�

erated source instances� One primary concern is how the relative size of a program plan

template �in terms of components and constraints	 will a�ect the empirical performance

of MAP�CSP� Another is how the relative size of a given source a�ects recognition per�

formance�

���� Generated Examples

I have described three particular program plan templates that we shall be utilizing the

MAP�CSP algorithm to search for in generated source code examples� Before describing

the process of source generation that we adopt� an obvious question is� �what does an

instance of these program plans look like"�� In answer to this question� Figures ���� ���

and ��� present sample program fragment instances of the quilici�t��index� quilici�t�

and quilici�t��large plans�

As I introduced in Sections ����� and ������ source examples are generated according

to particular statistical distributions of program statements� In particular� the exper�

iments of Chapter � were based upon a distribution shown in Table ��� provided by

Quilici following a study of student programmers and their programs� In addition to this

distribution� one must also be interested in the e�ect on MAP�CSP of notably di�erent

distributions of program statements� In particular� while I refer to the Quilici distribution

as �Standard�� I also make use of �Equal��see Table ���	� and �Skewed��see Table ���	�

The �Equal� distribution generates variables of the varying types with equal probability�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

and similarly with speci�c array types� The �Skewed� distribution generates variables

with the same type distribution as the �Standard� distribution� array type ����	� simple

int ����	� char ����	� real ����	� and boolean ����	� If an array was generated� it was

instantiated according to this type distribution� int ����	� char ����	� real ����	 and

boolean ����	�

Statement Type Frequency Percentage

While ���� ���

Zero ���� ���

For ���� ���

Block ���� ���

Increment ���� ���

Not�Equals ���� ���

Print ���� ���

Assign ���� ���

Decl ���� ���

Check ���� ���

Table ���� Equal program statement type distribution

Statement Type Frequency Percentage

While ���� �����

Zero ���� �����

For ���� �����

Block ���� �����

Increment ���� �����

Not�Equals ���� �����

Print ���� �����

Assign ����� ���

Decl ����� ���

Check ���� ������

Table ���� Skewed program statement type distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

���� Problem Instances

As discussed in Section ������ experiments with a given search strategy are performed

based on the results of �� MAP�CSP problem instances at each source code sample size�

These �� problem instances are generated according to the particular distribution in use�

If a particular distribution is not discussed in a given experiment� the distribution used

is assumed to be the Quilici �Standard�� Problem instances are created as follows� a

particular program plan instance is generated from the template in question� including

an assignment of line numbers for the instance according to the separation speci�ed in the

template� Source code statements are now generated according to the given distribution

until a source program of appropriate size is generated� The statements are given line

numbers randomly within the range from zero to the maximum line number speci�ed in

the template instance plus one hundred lines� Certain statement types �such as Loop with

a corresponding Begin and End	 require more than a single line in their generation� If a

con!ict occurs in which a new generated line number is already in use� a simple stepping

algorithm selects the next available line number� If this algorithm hits the end of the

allowed line range� the range is extended by one hundred additional lines�

As an example� utilizing the �Standard� distribution� a generated �program� con�

taining one instance of the quilici�t� program plan together with �� generated source

statements is given in Figure ���� The template�related components may be identi�ed

in this �and subsequent	 �gures through the statement labels pre�xed with �ADT�� The

initial template instance has nine related component lines� and the remaining �� added

lines arise as a result of the insertion of a for�loop statement with three associated lines�

Experiments of a particular size are generated at intervals of �� source code lines typi�

cally �although not in all cases	� In such a case� the �� examples at �say	 size ��� would

be graphed according to the average size of the �� examples keeping in mind that each

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

example has a slight variation depending on how many multiple�line insertions are made�

���� Experimental Results

In this section I present a range of experiments which are intended to show the feasibility

of the MAP�CSP representation and related solution algorithms in relatively large �several

thousand lines	 problem instances�

The experimental results depicted here are based upon models of constraint satisfac�

tion described earlier in this thesis� The solution algorithms referenced in the following

�gures include combinations of the following algorithms�

�� Standard BackTracking �BT� see Section �����	�

�� Arc consistency propagation �AC��� see Section �������	�

�� Forward Checking with Dynamic Rearrangement �FCDR� see Section �����	�

This list is not intended to be a complete set of solution strategies to constraint satisfaction

strategies� Rather� these approaches represent a range of strategies that together are

capable of capturing an initial subset of the heuristic strategies undertaken by previous

program understanding researchers� Chapter � provides a more comprehensive overview

of these strategies�

������� Detailed Individual Results

Single template instances

The following examples contain a single template instance in each generated source ex�

ample� All of these examples are generated using the �Standard� Quilici distribution and

make reference to identifying instances of the quilici�t� program plan template� The

results are graphed showing a �� con�dence interval over the �� sampled sources� All

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

of these experimental instances were generated such that the inserted template was not

destroyed� that is� the template was identi�ed successfully in each case� In addition� for

these examples no false solutions were identi�ed� At the end of these complete searches�

one may conclude that no other instance possibly exists that satis�es the template con�

straint set�

�� Simple Backtracking with no advance variable order� Figure ���� The experiment

was terminated for source examples exceeding ��� lines� In fact� several individual

cases failed to complete a total search of the given example in less than �� cpu

minutes� an arbitrary boundary� In particular� at ��� there was � failure� at ���

��	� at ��� ��	 and at ��� ��	�

�� Simple Backtracking with advance variable ordering� Figure ���� This experiment

shows a rapidly increasing number of constraint checks as source example size

increases� In particular� ������ constraints are checked with an example size of

approximately ��� source lines� Simple backtracking displays an extremely large

variance between examples at the same source size� For instance� at ��� source in�

sertions� one of the �� cases required more than ������� constraint checks to solve�

while another at the same size required only ������ For purposes of comparison

between constraint checks with CPU time� Figure ��� details this same experiment

with regard to CPU seconds consumed on a shared SPARCserver ����� running

Allegro Common Lisp�

�� Quilici	s Memory�CSP with FCDR at each level of the problem� including advance

variable ordering at each stage� Figure ����� This experiment shows ������ con�

straint checks taken for approximately ����� source lines� An interesting� unex�

pected and currently unexplained result for this experiment is that one of the ��

source examples proves increasingly di
cult to solve for source examples of size up

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

to and including ��� source insertions� and then becomes easier at approximately

��� insertions� once again increasing in di
culty from ��� upwards� This test case

is notably more di
cult �i�e� by a factor of � to �	 than others at levels of ���

to ��� source insertions� and consequently a�ects the con�dence interval of these

instances signi�cantly� After ��� insertions� this example problem returns to a dif�

�culty similar to its fellows� This behaviour is not noticed in other strategies for

this example�

�� AC�
 with Forward Checking and Dynamic Rearrangement with advance variable

ordering� Figure ����� For this experiment� the ������ constraint check limit is

surpassed at approximately ����� source lines�

�� Forward Checking and Dynamic Rearrangement with advance variable ordering�

Figure ���� This standard CSP solution strategy has typically performed well on

a wide range of problems� The FCDR strategy essentially propagates constraints

between each search assignment to a depth of one �look�ahead� variable� This

experiment results in the checking of only ���� constraints at ����� source lines� A

similar example for FCDR shown in Figure ���� shows a result of ������ constraint

checks for an example source size of more than ����� source lines� For purposes

of comparison between constraint checks with CPU time� Figure ���� details this

same experiment with regard to CPU seconds consumed on a shared SPARCserver

���� running Allegro Common Lisp�

�� Figure ���� graphs the median of the previous examples in a uni�ed chart to show

the relative performances� Note one line is extended for FCDR with advance vari�

able ordering �� solutions	 so as to demonstrate the relative rate of increase for that

heuristic� Figure ���� indicates how this particular heuristic scales in much larger

examples�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

�� Figures ���� and ���� demonstrate the relative utility of estimating e�ort through

constraint checks as opposed to CPU time� In particular� I chart time on the X axis

and constraint checks on the Y axis� Notice that initial overhead matters only as a

constant factor� The results are taken from the experiments utilizing BT and FCDR

�advance ordering	 with the Standard template and Standard code distribution�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

�� �quilici�t��large�

� ��Component Set��

�q��c While �ResultA �boolean���
�q��d Begin �Block� �block���
�q��g Assign �NameC �array �char��� �IndexC �int��

�ElemB �char���
�q��e End �Block� �block���
�q��i Increment �IndexD �int���
�q��a Decl �NameA �array �char� �� ���������
�q��a� Decl �NameA� �char���
�q��a� Decl �NameA� �char���
�q��a
 Decl �NameA
 �char���
�q��b Zero �IndexA �int���
�q��f Assign �NameB �array �char��� �IndexB �int��

�ElemA �char�� �
�q��h Not�Equals �ElemC �char�� �NULL �char�� �ResultB �boolean���
�q��p� Print �NameP� �char���
�q��p� Print �Newline �char��� �

� ��Constraint Set��

�before�p �q��c q��d��
�close�to�p �q��c q��d� ���
�before�p �q��d q��g��
�same�name�p �q��d q��e� �Block� Block���
�before�p �q��g q��e��

�before�p �q��b q��g��
�before�p �q��b q��c��
�before�p �q��d q��f��
�before�p �q��d q��i��
�before�p �q��a� q��g��
�before�p �q��a� q��f��
�before�p �q��g q��p���
�before�p �q��p� q��e��
�before�p �q��i q��e��
�before�p �q��f q��h��
�before�p �q��h q��e��
�before�p �q��a� q��p���
�before�p �q��a
 q��p���

�same�name�p �q��c q��h� �ResultA ResultB��
�same�name�p �q��f q��h� �ElemA ElemC��
�same�name�p �q��a q��f� �NameA NameB��
�same�name�p �q��a q��g� �NameA NameC��
�same�name�p �q��b q��f� �IndexA IndexB��
�same�name�p �q��b q��g� �IndexA IndexC��
�same�name�p �q��b q��i� �IndexA IndexD��

�same�name�p �q��a� q��g� �NameA� ElemB��
�same�name�p �q��a� q��f� �NameA� ElemA��
�same�name�p �q��p� q��g� �NameP� ElemB��
�same�name�p �q��a
 q��p�� �NameA
 Newline�� ��

Figure ���� Extended program plan quilici�large�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

Stmt Id Line Statement

�ADTQ��C ��� �WHILE RESULT��
�ADTQ��D ��� �BEGIN BLOCK���
�ADTQ��G
�� �ASSIGN A IDX ELEMB��
�ADTQ��E ��� �END BLOCK���

Figure ���� Instance of quilici�t��index plan�

Stmt Id Line Statement

�ADTQ��A ��� �DECL ARRAY A CHAR ����
�ADTQ��B ��� �ZERO IDX��
�ADTQ��C ��� �WHILE RESULT��
�ADTQ��D ��� �BEGIN BLOCK���
�ADTQ��G
�� �ASSIGN A IDX ELEMB��
�ADTQ��I ��� �INCREMENT IDX��
�ADTQ��E ��� �END BLOCK���
�ADTQ��F ��� �ASSIGN A IDX ELEM��
�ADTQ��H ��� �NOT�EQUALS ELEM NULL RESULT��

Figure ���� Instance of quilici�t� plan�

Stmt Id Line Statement

�ADTQ��A ��� �DECL ARRAY A CHAR ����
�ADTQ��A� ��� �DECL CHAR ELEMB��
�ADTQ��A� ��� �DECL CHAR ELEM��
�ADTQ��A
 ��� �DECL CHAR NEWLINE��
�ADTQ��B
�� �ZERO IDX��
�ADTQ��C ��� �WHILE RESULT��
�ADTQ��D ��� �BEGIN BLOCK���
�ADTQ��G ��� �ASSIGN A IDX ELEMB��
�ADTQ��P� ��� �PRINT ELEMB��
�ADTQ��I ��� �INCREMENT IDX��
�ADTQ��F ��� �ASSIGN A IDX ELEM��
�ADTQ��H ���� �NOT�EQUALS ELEM NULL RESULT��
�ADTQ��E ���� �END BLOCK���
�ADTQ��P� ���� �PRINT NEWLINE��

Figure ���� Instance of quilici�t��large plan�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

Stmt Id Line Statement

��sit�gen�� �� ��� �ASSIGN FIRSTINT FIRSTINT��
�ADTQ��A �� ���� �DECL ARRAY A CHAR ����
��sit�gen��� �� �

� �NOT�EQUALS FIRSTINT �var�name��� FIRSTBOOLEAN��
�ADTQ��B �� ���� �ZERO IDX��
��sit�gen�� �
 ���� �CHECK FIRSTINT FIRSTCHAR��
��sit�gen�
� �� ���� �ASSIGN �var�name�� �var�name����
�ADTQ��C �� ���� �WHILE RESULT��
�ADTQ��D �� ���� �BEGIN BLOCK���
��sit�gen�� �� ���� �ASSIGN FIRSTARRAYI FIRSTINT FIRSTINT��
�ADTQ��G ��
��� �ASSIGN A IDX ELEMB��
�ADTQ��I ��� ���� �INCREMENT IDX��
��sit�gen�� ��� ��
� �DECL INT �var�name����
��sit�gen�� ��� ��
� �ASSIGN FIRSTARRAYB FIRSTINT FIRSTBOOLEAN��
�ADTQ��E ��� ���� �END BLOCK���
��sit�gen�� ��
 ���� �CHECK FIRSTCHAR FIRSTREAL��
��sit�gen�� ��� ���� �FOR �var�name��� �
 ���
��begin�sid��� ��� ���� �BEGIN �block�����
��end�sid��� ��� ���� �END �block�����
��other�sid�� ��� ���� �ASSIGN FIRSTARRAYI �var�name��� �var�name�����
�ADTQ��F ��� ���� �ASSIGN A IDX ELEM��
��sit�gen
� ��� ���� �CHECK FIRSTINT FIRSTINT��
�ADTQ��H ��� ���� �NOT�EQUALS ELEM NULL RESULT��

Figure ���� Instance of quilici�t� plan with �� inserted statements�

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
on

st
ra

in
t c

he
ck

s

Program statements

BT no adv, dist 1
95% Confidence Interval

Figure ���� Standard BackTrack ��� conf� interval	

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

400000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
on

st
ra

in
t c

he
ck

s

Program statements

BT adv, dist 1
95% Confidence Interval

Figure ���� BackTrack� variable order ��� conf� interval	

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
P

U
 S

ec
on

ds

Program statements

BT adv, dist 1
95% Confidence Interval

Figure ���� BackTrack CPU�time� variable order ��� conf� interval	

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
on

st
ra

in
t c

he
ck

s

Program statements

FCDR adv, dist 1
95% Confidence Interval

Figure ���� Forward Checking� DR ��� conf� interval	

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
P

U
 S

ec
on

ds

Program statements

FCDR adv, dist 1
95% Confidence Interval

Figure ����� Forward Checking� DR CPU�time ��� conf� interval	

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
on

st
ra

in
t c

he
ck

s

Program statements

AC3 + FCDR adv, dist 1
95% Confidence Interval

Figure ����� AC�� with FCDR ��� conf� interval	

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

C
on

st
ra

in
t c

he
ck

s

Program statements

Memory CSP : FCDR adv + FCDR adv, dist 1
95% Confidence Interval

Figure ����� Memory�CSP with FCDR ��� conf� interval	

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

st
ra

in
t c

he
ck

s

Program statements

MAP-CSP : FCDR adv
MAP-CSP : FCDR adv (2 solution)

Memory-CSP: FCDR adv + FCDR adv
MAP-CSP : Simple BackTrack adv

MAP-CSP : Simple BackTrack
AC3 + FCDR adv

Figure ����� A range of strategies �medians graphed	

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

C
on

st
ra

in
t C

he
ck

s

CPU Time in Seconds

BT adv: CPU vs Constraint Checks

Figure ����� BT adv Constraints vs Time� Standard distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
on

st
ra

in
t C

he
ck

s

CPU Time in Seconds

FCDR adv: CPU vs Constraint Checks

Figure ����� FCDR adv Constraints vs Time� Standard distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

Multiple ��
 template instances

The examples shown in the previous paragraphs for single template identi�cation were

conducted only up to a maximum of about ����� source code lines� In the following

experiments I extend these results for the FCDR heuristic with advance variable ordering

over a range of distributions and templates� allowing for multiple ��	 intended template

instances in each example� and performing MAP�CSP in � distributions at each source

code size�

�� Figure ���� graphs a �� con�dence interval using FCDR with random initial vari�

able ordering for Standard quilici�t� template� Standard distribution� while Fig�

ure ���� charts the same for Equal distribution� and Figure ���� for Skewed� Fig�

ure ���� charts the median result for all three distributions� I do not chart the

con�dence interval for the combined tests to avoid clutter # as can be seen� there

exists an extremely large range of values for each problem size in this experiment as

a result of the random variable ordering� For example� using the Equal distribution�

di�erent problems of size ����� took as many as ������� constraint checks and as

few as �������

�� Figure ���� graphs a �� con�dence interval using FCDR with advance variable

ordering for Standard quilici�t� template� Standard distribution� while Figure ����

charts the same for Equal distribution� and Figure ���� for Skewed� Figure ����

charts the median result and con�dence interval for all three distributions�

�� Figure ���� graphs a �� con�dence interval using FCDR with advance variable

ordering for the Index quilici�t��index template� Standard distribution� while Fig�

ure ���� charts the same for Equal distribution� and Figure ���� for Skewed� Fig�

ure ���� charts the median result and con�dence interval for all three distributions�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

�� Figure ���� graphs a �� con�dence interval using FCDR with advance variable

ordering for the extended quilici�t��large template� Standard distribution� while

Figure ���� charts the same for Equal distribution� and Figure ���� for Skewed�

Figure ���� charts the median result and con�dence interval for all three distribu�

tions�

0

25000

50000

75000

100000

125000

150000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist 1
95% Confidence Interval

Figure ����� FCDR �Random	� Standard Template� Standard code distribution

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

C
on

st
ra

in
t c

he
ck

s

Program statements

Equal Dist 2
95% Confidence Interval

Figure ����� FCDR �Random	� Standard Template� Equal code distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

C
on

st
ra

in
t c

he
ck

s

Program statements

Skewed Dist 3
95% Confidence Interval

Figure ����� FCDR �Random	� Standard Template� Skewed code distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

220000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist’n 1, 95% Confidence Interval
Equal Dist’n 2, 95% Confidence Interval

Skewed Dist’n 3, 95% Confidence Interval

Figure ����� FCDR �Random	� Standard Template� three distributions

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist 1
95% Confidence Interval

Figure ����� FCDR Standard Template� Standard code distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

C
on

st
ra

in
t c

he
ck

s

Program statements

Equal Dist 2
95% Confidence Interval

Figure ����� FCDR Standard Template� Equal code distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

C
on

st
ra

in
t c

he
ck

s

Program statements

Skewed Dist 3
95% Confidence Interval

Figure ����� FCDR Standard Template� Skewed code distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist’n 1, 95% Confidence Interval
Equal Dist’n 2, 95% Confidence Interval

Skewed Dist’n 3, 95% Confidence Interval
Dist’n 1
Dist’n 2
Dist’n 3

Figure ����� FCDR� Standard Template� three distributions

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

20000

40000

60000

80000

100000

120000

140000

160000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist 1
95% Confidence Interval

Figure ����� Index Template� Standard code distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 200 400 600 800 1000 1200 1400

C
on

st
ra

in
t c

he
ck

s

Program statements

Equal Dist 2
95% Confidence Interval

Figure ����� Index Template� Equal code distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

20000

40000

60000

80000

100000

120000

140000

160000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

C
on

st
ra

in
t c

he
ck

s

Program statements

Skewed Dist 3
95% Confidence Interval

Figure ����� Index Template� Skewed code distribution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist’n 1, 95% Confidence Interval
Equal Dist’n 2, 95% Confidence Interval

Skewed Dist’n 3, 95% Confidence Interval
Dist’n 1
Dist’n 2
Dist’n 3

Figure ����� FCDR� Index Template� three distributions

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist 1
95% Confidence Interval

Figure ����� Large Template� Standard code distribution

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

Equal Dist 2
95% Confidence Interval

Figure ����� Large Template� Equal code distribution

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

Skewed Dist 3
95% Confidence Interval

Figure ����� Large Template� Skewed code distribution

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

Std Dist’n 1, 95% Confidence Interval
Equal Dist’n 2, 95% Confidence Interval

Skewed Dist’n 3, 95% Confidence Interval
Dist’n 1
Dist’n 2
Dist’n 3

Figure ����� FCDR� Large Template� three distributions

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

������� Comparative Results

Figure ���� shows the same �median	 results charted in Figure ���� for a variety of search

strategies� with the extension that the FCDR with advance variable ordering �median	

tests have been extended to almost ����� lines of code�

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

C
on

st
ra

in
t c

he
ck

s

Program statements

MAP-CSP : FCDR adv
MAP-CSP : FCDR adv (2 solution)

Memory-CSP: FCDR adv + FCDR adv
MAP-CSP : Simple BackTrack adv

MAP-CSP : Simple BackTrack
AC3 + FCDR adv

Figure ����� Extended results� strategy range

I wish to demonstrate that the MAP�CSP representation and algorithm is capable

of providing all�instance results in moderately sized program blocks� An e
cient MAP�

CSP algorithm could make the execution of the larger PU�CSP algorithm more feasible�

In addition� the MAP�CSP algorithm for template matching could potentially be stand�

alone as a tool for assisting in the identi�cation of source portions that may be replaced

with existing source library objects�

Several observations can be made from these test results�

� Standard Backtracking exhibited very unstable performance in examples of the

same size� As hoped� more intelligent strategies behaved in a more stable manner�

Forward Checking was considerably more stable� and the applications using AC��

in advance of search exhibited very small variance across test cases of similar size�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

Stability is an important factor in any application that may be used as part of

an online or interactive tool� In addition� Standard Backtracking was unable to

complete in less than ��� CPU seconds for source instances exceeding ��� program

statements�

� For source examples of up to approximately ��� lines of code� the FCDR strategies

located all instances of the example program plan template in less than approxi�

mately � seconds of CPU time� In examples of up to ����� lines of code� all instances

were identi�ed in approximately �� seconds� In such prototyped �Lisp	 near�real�

time circumstances it would appear that a tool could be fashioned that could be

called up to run as a background process supporting an expert working with some

reasonably sized source code�

In terms of evaluating the scalability of the CSP�Based approach� the results may be

summarized as follows� The �rst set of tests involved expanding the size of the source

examples considered to include various sizes up to approximately ����� lines of code�

For each of these sizes� I used three di�erent distributions of program events� a �Stan�

dard� distribution� an �Equal� distribution� and a �randomly Skewed� distribution� The

standard distribution shown in Table ��� �relative to the example plans	 is arranged this

way�

� While Zero For Array�Access

� Block Arithmetic�Operators Logical�Operators Print

� Assign

� Declare Test

That is� declarations and tests appear four times as frequently as loops and array ac�

cesses� assignments appear three times as frequently� and so on� In an equal �Table ���	

distribution� each construct appears approximately the same number of times� And in a

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

random distribution �Table ���	� I randomly chose particular event types to appear much

more frequently in the program than others�

Figure ���� shows the results of running this set of experiments on a set of plan in�

stances of the template from Figure ���� This template contains � components and ��

constraints� One way to summarize this graph is by the ratio of constraints evaluated

per statement� At ����� statements� this ratio is approximately �%� for all of the ap�

proaches� At ����� statements� the ratio varies between ��%� for the random distribution

to approximately �%� for the equal distribution� At ����� statements it is ��%� for the

standard distribution and �%� for the equal distribution� At ����� statements this ratio

is ��%� for the standard distribution�

These numbers imply several things�

� The distribution of types of components within the program has a big e�ect on the

performance of the CSP algorithm�

� The apparent linearity seen in the original experiments �Woods and Quilici� ����c�

details the results of Figure ����� however� experiments were only conducted up

until approximately ����� insertions �resulting in approximately ����� lines of code	

appears to be the !atter portion of a polynomial curve�

It is clear that the algorithm performs signi�cantly better when all components ap�

pear equally within the program as opposed to either a randomly skewed distribution

or a �xed distribution� A possible explanation for this behavior is that in the Standard

and randomly Skewed distribution� entities that appear frequently as components of the

plan tend to appear frequently in the program� This suggests to us that an extension

�Recall that the size of an unconstrained search space for this problem is bounded by MN where N
is the number of components in a template� and M is the size of the source� Consequently� one would
expect that the relation of increase in work with source size is polynomial�

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

of these results might be useful in future work� In particular� one might generate a dis�

tribution similar to real�world C programs performing a variety of tasks in di�erent real

domains� generate testing programs based on those distributions� and then examine the

performance of the algorithm across a variety of distributions� It may well turn out that

the CSP approach will perform noticeably better on some types of programs than others�

It is also clear the ratio of constraints evaluated to program statements is growing

rapidly for the �standard distribution�� This is problematic� but there are several reasons

to remain optimistic� One is that the �simulated locality constraints� are much looser

than the structural constraints such as control�!ow and data�!ow constraints found in real

programs� I therefore predict that this curve will !atten signi�cantly when experiments

are undertaken in future work using programs that preserve the structural properties of

real�world programs� This is because tighter constraints should reduce the size of the

domain value sets� leading to a speedier solution to the CSP and fewer constraints to

evaluate� It is an open question� however� just how much the curve will !atten and how

much that will slow the rate of growth of the number of constraints evaluated�

The other reason to expect even better scalability using CSP is that� even if real�world

structural constraints do not prevent the currently modeled plan recognition algorithm

from going exponential� it appears from the curves that instances of individual plans

can be recognized in programs in the ����� statement range in a reasonable amount of

time� For instance� the ������ or so constraints needed to evaluate takes less than ��

seconds or so on a shared SPARCserver ���� workstation� While ����� statements is

small compared to the sizes of real�world programs� it is within an order of magnitude

of the size of modules in real�world programs or modules that have been created from

software systems using semi�automatic techniques �Newcomb and Markosian� ������

A second set of experiments has also been run which have been designed to begin

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

exploring the scaling properties of the CSP approach as the program plans or templates

get larger in size� To do this� plan were explored that were both smaller �four components

and give constraints	 and larger ��� components and �� constraints	 than the original

plan�

Figure ���� shows the results of running this set of experiments for the larger plan

over the three distributions� This graph can be summarized using the same ratio of

constraints evaluated per statement� At ����� statements� the ratio varies between ��%�

for the standard distribution to ��%� for the equal distribution� At ����� statements�

the ratio is ��%� for the standard distribution and ��%� for the equal distribution� My

conclusion here is that with smaller programs� at least� doubling the size of plan leads to

approximately double the number of constraints that must be evaluated� This practical

result is encouraging for problems of this size� particularly in light of the analytical results

of Section ����� which demonstrates that the complexity of a template matching problem

for a template of N components with M source statements is bounded by a polynomial

MN �

���	 Implications for Program Understanding Research

This chapter has explored some scalability issues for a constraint�based approach to par�

tial explanation using plan recognition� This� however� is only one part of the overall

program understanding problem� Program understanding is often viewed as a three�step

process�

Parsing� Turning the program into an annotated AST using standard parsing

and !ow analysis techniques�

Canonicalization� Simplifying this internal representation to minimize the

number of di�erent plans that must be in the library� A simple example

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

is transforming all relational expressions so that they involve only the

greater than operator and not the less than�

Plan recognition� Recognizing instances of each plan in a library of program

plans�

This chapter has focused on the scalability of one part of the plan recognition process�

determining whether a given program plan is present based on the existence of the con�

strained plan components in the internal representation of the program� There are other

aspects to this problem� that have not yet been addressed� including how to decide which

plans to try to locate within a given program� and in which order to try those plans�

Chapter � investigates integration issues in detail� and discusses the use of abstraction as

a mode of canonicalization�

My experiments have several important implications� One is that it may well be

necessary to have a modularization step that precedes the plan recognition process� where

this step breaks the program into pieces of whatever size the program understanding

algorithm can comfortably handle before the combinatorics become problematic� In fact�

this is precisely the point of the PU�CSP stage for integrating these partial solution stages�

Some work on semi�automatic modularization of COBOL programs has already been done

that has demonstrated that large COBOL programs can be broken into modules of ������

or so statements �Newcomb and Markosian� ������ This is only a factor of �ve larger

that the point that the CSP approach can comfortably handle� which makes it appear

worthwhile to determine whether those techniques can be extended to break programs

down into even smaller modules�

In addition� even if one successfully recognizes plans at the module level� there also

needs to be a mechanism for combining this modular understanding that needs to follow

the plan recognition process� It is an open question as to how one might accomplish

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

the task of coming up with an understanding for a program as a whole� especially if the

library is incomplete and there exists only partial understanding of what a module does�

Finally� the success in using CSPs in the local or MAP�CSP understanding process

suggests that perhaps they can be applied to other related tasks� such as selecting plans

to recognize� or as part of the canonicalization process� However� it is an open and

interesting research question how to do so�

���� Conclusions

This chapter �and also some results presented in Chapter �	 presented empirical results

on the scalability of program understanding algorithms� I �rst compared the performance

of the CSP approach to a CSP�based version of several existing program understanding

algorithms� The initial results suggested that the CSP approach is signi�cantly more

e
cient than these other approaches� I then took an initial look at scaling properties

of the CSP approach to large programs� Experimental results appear to back up the

observation from Section ����� that the CSP approach takes a polynomially increasing

amount of time to recognize plans as the programs grow in size� In particular� the rate of

increase of this curve has been found to be bearable in the ������statement or less range

for the CSP algorithms tested�

These results may be thought of as some initial� overdue� data points in a progress

report on the state of the art of program understanding� In particular� the speci�c amount

of work done by the CSP recognition algorithm can be reduced� perhaps signi�cantly� by

moving to real control�!ow and data�!ow constraints� an experiment I am intending to

set up in a future extension to this work� This may well mean that signi�cantly larger

programs can be successfully understood� In addition� the relative amount of work done

by the algorithm may increase rapidly as one moves toward exploring larger and larger

plans� rather than slowly as it had with the �rst few plans� This may mean that there is

CHAPTER �� MAP	CSP EXPERIMENTAL RESULTS ���

an practical upper bound on the size of individual plans that can be e
ciently recognized

in a program of a particular size� If the initial empirical results hold up� they suggest

that automatically modularizing large programs and combining modular understanding

are several important areas of future research� The PU�CSP model addresses integration

of these modularized partial explanations�

My hope is that this work will spur others working in the area of program plan recog�

nition to do one of two things� either map their understanding algorithms into the CSP

framework so that others may easily compare their performance with the CSP approach�

or to provide data on the performance of their program understanding algorithms as

programs grow in size� This step is crucial to move beyond the understanding of �toy�

programs and into the world of being a useful aid in the re�engineering of real legacy

software systems�

Part IV

Global Explanation

���

Chapter �

Managing Global Explanations

�PU�CSP�

The entire program understanding problem is now viewed as a constraint satisfaction

problem� In this model� a long program code is �rst divided into blocks� where each

block is a set of closely related source code� The program understanding problem is

to identify the top�level function of each of these program blocks� so that not only the

inter�relationships among the blocks are explained� but also the constraints speci�ed by

a program library on the program plans are respected� A key problem� then� is to assign

one plan component to each block� subject to a set of constraints� This problem is called

the program�understanding CSP� or PU�CSP�

The number of program plan components that one could assign to each block could

be enormous� To be practical� it is crucial to �rst reduce the number of explanations

for each block as much as possible� This process could be helped by a related constraint

satisfaction problem� one that was explained in detail in Chapter �� the problem of �nding

all instances of a given program plan or pattern in the entire source code� or MAP�CSP�

���

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

In the following subsections I explain in detail how to accommodate hierarchically valued

domain plans and partial local explanations in a larger understanding model�

The solution of PU�CSP with a complete search strategy �or one based on consistent

constraint propagation	 completes with a set of all consistent mappings between program

blocks and program plans� Plan recognition approaches such as that described in Chap�

ter � return a similar� possibly ordered set� Each mapping in this set may be thought of

as a consistent explanation of the program blocks� Constraint propagation approaches

�such as arc consistency	 may leave exact mappings partially unspeci�ed� in which case

a search algorithm over the reduced problem could extract the possible solutions�

��� Overall Understanding Model

PU�CSP is formed in the following way� Suppose that an initial decomposition or slicing

of the source code is given� Each block of source code corresponds to a variable in the PU�

CSP� The Variable domains correspond to all possible explanations of an individual source

code block� As an example� consider the source code program statements of Figure ���

�from Chapter �	 as the blocks� Take each block as a PU�CSP variable which ranges

over all possible program plans of corresponding statement type� such as �declaration��

�assignment�� �print�� etc� in the plan library of Figure ��� �from Chapter �	�

��� PU	CSP Complexity Issues

The survey of the approaches to program understanding outlined in Section � has resulted

in the PU�CSP model� Simply put� one is given a source program to understand in terms

of a library of program plan templates� From these� one is to compose a solution in the

form of a mapping from portions of the source code to part of the plan library� In this

section� I prove that this problem is intractable�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

String ADT

main()
{
 String A("string 1");
 String B("string 2");

 String C("string 3");
 ...
 A.printString;
 ...
 C.printString;
 ...
 B.printString;
 ...
 }

main()
{
 char* A; char* B; char* C;
 A = "string 1";
 B = "string 2";

 C = "string 3";
 ...
 for (int i=0; B[i]; i++)
 print("%s",B[i]);
 ...
 for (int j=0; C[j];j++)
 {
 print("%s",C[i]);
 }
 ...
 for (int k=0;A[k]; k++)
 print("%s",A[k]);
 ... }

Figure ���� C source code mapped through a String ADT instance to C�� code

index when:
 "near instance" of
 copy−character

index when:
$function in {printf, sprintf}loop−through

 character−array

print−string

AND

loop−initialize
 string

copy−character

AND

format−character

AND

OR

builtin−char*−copy

initialize−string

String ADT plan

specialize when:
 contains ... = "$string""

Figure ���� String ADT within a hierarchical program plan library

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

����� Simple Program Understanding Problem

������� The Modeling Process

The SPU program�understanding constraint�satisfaction problem �referred to as PU�CSP

when formed as a constraint satisfaction problem	� is formed in the following way� Sup�

pose that an initial decomposition� of the source code is given� Each block of source

code corresponds to a variable in the PU�CSP� The variable domains correspond to all

possible explanations �mappings to the knowledge or library	 of an individual block of the

source code� The constraints between the variables can be speci�ed via both the struc�

tural relationships in the source program� and subsequently� knowledge relationships in

the program plan library� A solution is a mapping between the source code blocks and

the library such that the constraints are satis�ed�

The modeling process may be illustrated in more detail� A Program Understanding

CSP �PU�CSP	 is formulated via four distinct steps shown in Figure ���� First� the

source code is pre�processed� creating an intermediate representation which precisely

captures many interrelationships among the elements of the abstract syntax tree implicit

from a parsing of the source� This representation includes data�!ow and control�!ow

among functional blocks� Second� the source code is partitioned into spatially localized�

cohesive code blocks� which exhibit several inter�block functional relationships� Third� a

�This decomposition is such as would be created from a simple reading of the code in which function
or procedure blocks are identi�ed as the portions of the code to understand� These decompositions are
structurally related as might be discerned from the annotated abstract syntax tree construction presented
in
Devanbu and Eaves� ���	��

�Using� for example� a parsing tool such as Gen�� or Refine�

�These code blocks may be of varying size and complexity� The actual determination of appropriate
blocking characteristics will be investigated empirically in later work� It is important to note that since
the library of knowledge is arranged hierarchically it will often be the case that smaller blocks will tend to
correspond to lower�level program plans and vice�versa� Consequently� the problem itself may be thought
of as the need to generate a sequence of multi�layered �hierarchical� mappings� It has been suggested by
Alex Quilici in a personal communication that these mappings would best be generated bottom�up from
small code fragments and plans to larger� This is� however� not the only possible approach�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

skeleton CSP is formulated consisting of one variable for each identi�ed source block� and

constraints among these variables are derived from the intermediate representation level

artifacts� The combination of �typed� input and output !ows for each particular block

are adopted as re�exive constraints on the corresponding variable� e�ectively limiting the

range of program plans that might explain that block� An example of block typing might

be where an instance of a plan component to update a given database �eld may be known

to required the passing of this �eld both into and out�of a function� and additionally this

�eld may have to be both readable and writable � the typing information thus restricts

which functions are capable of being instances of the given plan� Finally� each CSP

variable is matched �or indexed by type information	 against the templates in the program

plan library� Potentially matching plan templates are then composed as the domain ranges

of each variable�

In a PU�CSP� the constraints among variables are of two types�

� Structural constraints are determined from the source code� They include such

things as scope or called�calling relations� precedence relations� or shared informa�

tion relations among component blocks�

� Knowledge constraints are independent of the source code� These constraints re�

side in the AND�OR hierarchical program plan library� restricting program plan

inter�relationships� The AND connections indicate a parent�child component rela�

tionship� while the OR connections indicate specialization�generalization relations�

Each of ANDs and ORs can serve to indicate important details of the parent�child

relationship� such as the role� of a child as part of the higher level parent� or what

details specialize a child from a parent� Specializing an abstract plan in one of sev�

eral ways� Assigning one program plan as an explanation of a particular PU�CSP

�For instance� a compositional role might describe what data��ows a child provides in its function as
part of a parent� In a more abstract instance� this role might be a service rather than a low�level data��ow�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

variable thus constrains consistent assignments of other component variables� This

detail e�ectively describes the allowable range of known program plan structure�

A solution to the PU�CSP is an assignment to each variable by one program plan

component in the plan library� such that no structural constraint from the source code�

or knowledge constraint from the plan library is violated�

The representation of program understanding as PU�CSP provides a convenient frame�

work for the interpretation of earlier program understanding heuristics as particular con�

straint manipulations� For example� the Quilici�style indexing outlined earlier in which

an index instance in a source code signals the need to attempt to match a particular pro�

gram plan from the library can be thought of as a speci�c constraint ordering during CSP

search� Quilici�style specialization preferences can be viewed as a heuristic for ordering

the application of hierarchical knowledge constraints� essentially reducing the range of

domain variables in a hierarchical CSP� Similarly� Quilici and others refer to inferences

or implications which indicate the likely existence of plans based on the identi�cation of

other plans� Such behaviour can be interpreted as a special kind of dynamic variable�

ordering heuristic in which successful instantiation of a particular variable suggests the

need to attempt to instantiate a related variable next�

My strategy will be to simplify the problem� Consider the following Simple Program

Understanding �SPU
 problem� depicted in Figure ���� We are given the following�

� The source code consists of a collection B of program blocks Bi� i $ �� �� � � � � m�

These blocks can be viewed in terms of a corresponding graph P $ �B�D	 where

D is the set of edges of the graph Dk� k $ �� �� � � � � n� such that an edge Di�j exists

between nodes Bi and Bj if and only if a data�!ow exists between the program

blocks�

� We are also given a library of program plan templates represented as a graph L $

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

�T� C	 where T � the set of templates To� o $ �� �� � � � � t in L are related to one

another through data�!ow relationships� These relations are speci�ed by a set C of

edges� such that an edge Ck�l exists between templates Tk and Tl if and only if a

data�!ow possibly exists between them�

2

B3 4B

1,2

D

D

D4,2

D2,3

T1

T2

C

3,4

C2,4

T3

T4

1,2
5

T6

T7

C3,1

C 6,4 C5,6

C
T

C4,5

C3,6

"Mapping" from Program
to Library Portion

Constrained
Program
Plans

Structurally
Related Program
BlocksB1B

5,7

Library of Program Template Plans

Program to Understand

Figure ���� Simple Program Understanding

Given the above structure� the SPU problem is to determine if a correspondence ex�

ists from program blocks to a subset of templates� The correspondence is of the form

of a mapping between templates and program blocks� and between their data�!ow rela�

tionships� As an example� in Figure ���� the following correspondence gives rise to an

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

understanding of the example program�

B� �	 T�

B� �	 T�

B� �	 T�

B� �	 T�

It may be contended that the SPU problem is representative of many program under�

standing tasks� In Kozaczynski and Ning�s approach in the Concept Recognizer system�

program plans which consist of components and constraints abstracted away from a par�

ticular implementation language or method are utilized� Quilici extends these plans with

the provision of indices �memory	 that control the selection of candidate plans more

selectively than in Concept Recognizer� The library of interrelated program plan tem�

plates in each approach are essentially the same as outlined in SPU� with the exception

that a hierarchical structure may be imposed on the library� In Wills� approach� pro�

gram components are modeled as graph grammars and are used to parse an intermediate

!ow graph representation of a source program� A component�s make�up is constrained

by its grammar� and these components are composed in a library �of constraints	� The

SPU program understanding model abstracts these di�ering representations of compo�

nents and constraints into a unifying constraint�based library format� Understanding

approaches uniformly assume that source programs have been pre�processed into a inter�

mediate representation �annotated abstract syntax trees� annotated !ow graphs	 which

makes explicit use of data�!ow and control�!ow information� This visually implicit and

frequently di
cult�to�see information can be readily obtained with existing polynomial

algorithms� and the exploitation of this structure is precisely the kind of lever that can

assist in the understanding process� In SPU� this information is represented as a simple

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

program graph of related program blocks�

����� NP
hardness Proof

The formal de�nition for the SPU problem is similar to that given in Section ������� for

the SMAP problem� The SPU problem could be stated more formally as follows� Given

a library of program plans L $ �T� C	 and a source program P $ �B�D	� does there exist

at least one subgraph of the library LS $ �T s� Cs	 where the templates in the subgraph

T s
 T � and the constraints among the templates Cs
 C� are matched to the source

program by a mapping function X � de�ned as follows�

� X maps every program block Bi to a member of T s� and

� X maps every program data�!ow edge Di�k to a corresponding member Cu�v of C
s�

where u $ X�Bi	 and v $ X�Bk	�

It is possible to prove the claim that SPU is NP�hard by a reduction from the Sub�

graph Isomorphism problem� described in Section ������� on page ����

The transformation to an SPU problem can be done as follows� Every vertex of V�

in G is a program template� and every edge of E� in G signi�es a data�!ow between two

templates� Each vertex of V� in H is a program block and each edge of E� in H is a data�

!ow between blocks� A mapping between a program P and a subset of a library of related

templates T exists if and only if H is a an isomorphic subgraph of G� Furthermore� this

transformation can clearly be done in polynomial time�

����� Applicability of Local and Global Strategies

The PU�CSP�based solution strategy outlined in this chapter and expressed most gener�

ally in the overall interactive strategy of Table ��� on page ��� includes the MAP�CSP

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

sub�problem as an integral tool in the process of reducing the explanatory range of PU�

CSP program blocks� MAP�CSP� as has been described� is based on complete solution

strategies that �nd all instances of a particular program plan� As has been mentioned

elsewhere� it is possible to utilize local search strategies for MAP�CSP in place of global

ones� The advantage of such a selection is that it may be possible to �nd single local

solutions very quickly� Similarly� the complete strategy of MAP�CSP might be adjusted

to quit after �nding a single instance� In this way� a signi�cant incremental re�nement

may be made to the PU�CSP without paying the entire cost of a complete search� The

downside of such a selection is that negative information such as the con�rmation of the

absence of a program plan cannot be utilized in reducing the range of the PU�CSP expla�

nations� An interesting area for future work is to explore the relative interactive utility

of both local�incomplete and global�complete strategies�

����� Applying Local Constraint Propagation

In general� the more constrained a particular CSP� the easier it is to solve� provided it is

known in advance which parts of the problem are the most highly constrained� It is my

contention that program understanding can be thought of as a well�constrained problem in

many useful instances� Software is ideally well�structured and compartmented by design�

and a rich system of structural constraints between functional blocks can be extracted

through known methods� Program plan libraries such as commercial or shared object

libraries contain a similar structure of knowledge constraints which can be annotated

with design information much more readily than is the case with any particular piece of

software since it has been intended for wider distribution and use�

The large number of knowledge and structural constraints in a particular problem

instance combine to limit the number of consistent explanations or mappings for collec�

tions of related program blocks� In particular� the application of even one such structural

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

constraint among blocks could reduce the domain size of a program block signi�cantly�

This reduction can in turn be cascaded through adjoining block relations into successive

reductions of other domains� This process is known in CSP related algorithms as lo�

cal constraint propagation� An algorithm which enforces that all domains be consistent

with their immediate neighbours is known as an arc consistency�AC	 algorithm�� Many

variations and extensions to the original AC algorithm� AC�� �Mackworth� ����� have ap�

peared in the literature� some of which are mentioned in �Van Hentenryck et al�� ����a��

These algorithms and many variations have been extensively applied and tested with a

wide range of problems�

Consider a pair of variables �X� Y 	 and a relation R�X� Y 	� The arc R is said to be

consistent� if for every domain value of X there is at least one consistent domain value

of Y � If this condition is not satis�ed� an AO�Revise routine can be applied to the pair

to remove any value of X that does not have a corresponding consistent value of Y � If�

for every pair of related variables in a problem� all are consistent� the problem has been

made arc�consistent�

������� A Simple PU�CSP Example using Local Constraint Propagation

In this section I demonstrate the applicability of local constraint propagation with an

example� The repeated application of local constraints to reduce variables domains admits

a solution with no search in this example� For purposes of illustrative simplicity� this

example is constructed using PU�CSP variable domain values that are �!at� only� No

hierarchical domain values are utilized� Examples utilizing hierarchical values are given

in Section ������

A piece of input source code is shown on the left of Figure ���� The code is parsed and

�Other algorithms enforce di�erent degrees of consistency� from only partial arc�consistency over a
subset of all arcs� to consistency along paths of arcs of varying lengths�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

program blocks extracted along with data�!ow information as shown on the right side of

the �gure� This �gure has been signi�cantly simpli�ed for the purposes of this example�

if(intL.first == nil)

 then intL.first = putE
 putE.next = nil

isrt

app

mbr

this:struct1
inL:struct2

out:struct2

out:int

Contains "If" sub-plan

inL=cks:struct2
this=ck:struct1

CALL

inL=inL:struct2
this=putE:struct1

CALL

out:struct2

main()

end isrt

int mbr(struct1 *ck, struct2 *cks)

 try = try.next
end while

while(not(try.id == ck.id) and not(try.next == nil)) do

if (try.id == ck.id)
then return 1
else return 0

end mbr

struct2 isrt(struct1 *this, struct2 * inL)

 if (mbr(this,inL))

else return app(inL,this)

struct1 *try = cks.first

struct2 app(struct2 * intL, struct1 *putE)

if ((cks == nil) or (cks.first ==nil)) then return 0

 then return inL

end app

else struct1 *temp = intL.first
 intL.first = putE
 putE.next = temp
return intL

Figure ���� One �Blocking� of a Source Fragment

I wish to utilize the PU�CSP� framework to understand the source code in terms of

the hierarchical program template library fragment given in Figure ���� This library frag�

ment has been assembled by observing the structure of commercial C��� Smaltalk� and

persistent�object libraries� The source blocks are mapped to variables� and initial domain

ranges are assigned according to block input and output types as shown in Figure ����

Variable isrt� for example� potentially maps to several library plans based solely on input

and output typing� A further �re!exive	 constraint application based on observation of

key components �If	 in the structure of isrt could signi�cantly reduce this set� In this

�PU�CSP corresponds to the SPU model�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

C

E

C

E
C C

If Member

List

DeleteListInsert ListCreate
:C-Insert :C-Create:C-Delete

L:C

El:E
L:C

L:C

El:E
L:C L:C

Cut

Set isA Collection
S isA C
Es isA C

L isA C
List isA Collection

El isA C

Collection

C-Insert C-StructureC-Delete C-Create

C

M

I

P

S:C

Es:E

Bool

S:C

S:C

Putin

E
C

C

If
Bool

typeA
typeA

typeA

Member

C

E
Bool

P
L:C

El:E

L:C

Putin

C

E
C

Bool

Int
(range 2)

EnumType
(cardinality 2)

If Member

Temporal
constraint

input
type

output
type

Aggregation

Inheritance

 Type C
Type A isAA:C

Set

:C-Insert :C-Create:C-Delete
SetInsert Delete SetCreate

S:C

Es:E
S:C

S:C
S:C

Es:E
S:C

C

E
C

Cut

Symbol Key

Figure ���� Library Fragment

example� only plans InsertSet� DeleteSet� and DeleteList satisfy this constraint� Simi�

larly� app maps toMemberSet and MemberList� mbr to PutinSet� PutinList� CutSet�

CutList� InsertSet� InsertList� DeleteSet� and DeleteList�

The domain range of variable isrt may be revised with respect to mbr� In this case no

values may be removed since InsertSet is consistent with valueMemberSet�DeleteSet is

consistent with valueMemberSet� and DeleteList is consistent with value MemberList�

Revising app with respect to isrt yields consistent mappings for values PutinSet�CutSet�

and CutList�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

this:struct1
inL:struct2

out:struct2

out:int

Contains "If" sub-plan

inL=cks:struct2
this=ck:struct1

CALL

inL=inL:struct2
this=putE:struct1

CALL

out:struct2

isrt

mbr

app

Variable

Variable

Variable Member Set

List

SetPutin

Putin

CutSet

CutList

Delete List InsertSet

Delete Set

InsertSet Delete Set

Delete ListInsertList

Member List

ISRT Domain

MBR Domain

APP Domain

Figure ���� Initial PU�CSP

After this revision� no further reductions can be made� one is left with three combined

alternate explanations that are consistent with the structure outlined� These three are�

��	 a set insertion plan� ��	 a set deletion plan� or ��	 a list deletion plan�

This ambiguity can be easily resolved if one more closely expanded the structure of

app� showing that the structure is an insertion rather than a deletion plan on the basis of

the lack of an iteration which a deletion would require� A reduction in the range of app

would result� leaving only the value PutinSet in the range� A revision of isrt with respect

to app would now result in a singleton value InsertSet remaining� and subsequently mbr

could be reduced to only MemberSet�

This example problem is completed with the successful construction of a single map�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

ping to the given program plan library� The source consisting of three slices is an instance

of an InsertSet program plan with two primary sub�plans MemberSet� and PutinSet�

InsertSet occurs in the library fragment only as a part of the Set abstract data type

plan group� and further as part of the Collection abstract data type plan� No other

interpretations are possible given the knowledge constraints and structural constraints of

this example�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

��� The Modeling Process

A Program Understanding CSP �PU�CSP	 is formulated via four distinct steps shown in

Figure ���� and which may be explained as follows�

Template Template
A B

i A2A2 B2ii B2ii

{ }A2i

i

ii

C2ii

A2

ii{ }

C 1-3

C 1-4
C 3-4

C 2-3

A2

Blocks
Legacy

Source
Program Intermediate Representation

Program Template Hierarchy

Skeleton CSP Graph

Block V1

Block V2

Block V3

Block V4

ConstraintConstraint

Constraint
Variable V1 Variable V3

Variable V4Variable V2

Constraint
2-3

1-3

3-41-4

A1 A2 B1 B2

ORAND

OR AND

Assign
Initial

Domains

Create
PU-CSP

Structure

Complete
Program
Analysis

Identify
Program
Blocks

Abstract Syntax Tree

Control Flow Diagram

Data Flow Diagram

{ }A1

PU CSP Graph

Variable V1 Variable V3
B1B2{ }

Variable V4
Variable V2

Figure ���� PUCSP Formulation� CSP Graph exploded in Figure ���

Step �� First� the source is pre�processed creating a set of artifacts that describe some

precise interrelationships in the source� These relationships include data�!ow rela�

tionships between functional blocks� control�!ow among the functional blocks� and

the creation of an abstract syntax tree in an intermediate abstract language via

parsing of the source�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Step �� Second� the source code is partitioned according to existing program decomposition

methodologies �or actual program procedural structure� if applicable	 into spatially

localized blocks of code which are known to exhibit functional relationships among

one another� and cohesive properties within one�s boundaries�

Step �� Third� a skeleton CSP is formulated consisting of one variable for each identi�ed

source block� and constraints between these variables are derived from the inter�

mediate representation level artifacts� Each variable is &typed� via the addition of

re!exive constraints on the variable which describe properties of the block such as

kinds of input or output�

Step �� Finally� each CSP variable is compared against the templates in the program plan

library� Any templates which share input and output characteristics with that of

the variable are added to the variable�s domain�

Figure ��� shows an example formulated PU�CSP in which the domains of each vari�

able are shown as instances identi�ed in the program template hierarchy� During dis�

cussion of the PU�CSP two distinct types of constraints will be used� The �rst type of

constraint is structural constraints� examples of which are depicted in Figure ��� as inter�

variable constraints� or exactly those constraints derived from the intermediate source

representation� Structural constraints describe how program components are structurally

related� The second constraint type is knowledge constraints� examples of which are

depicted in Figure ��� as compositional and specialization constraints in the program

template hierarchy� These constraints describe how program plans or templates may �t

together to form larger �more abstract	 plans in this domain� These may be summarized

in the following way�

� Structural constraints are determined from the source code� They include such

things as scope or called�calling relations� precedence relations� or shared informa�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

B2B1A2i
A2ii

1A

A2ii
C2 ii

A2i

2 i
C C2 ii

A2A1

2C

A2ii

B1 B2

Template Template

Template Template

Template

B

BB2 2i ii

Or

And

PU-CSP Graph (node consistent)

{ }

{ }

Variable V4

Variable V3
Variable V1

Variable V2

Constraint 2-3

Constraint 1-3

Constraint 1-4

Constraint 3-4

Constraint 3-4

{ }

{ }

Template

Template

Or

And

C

TemplateTemplate

Template

Template

A

And

Or

And

Template Template

Template

Figure ���� PUCSP Graph

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

tion relations between component blocks� For instance� in the source in Figure ����

the print statements appear within the scope of for statements� declarations

precede their initial assignment� and print statements act upon array positions

indexed by corresponding for statement indexes�

� Knowledge constraints are independent of the source code� They are program plans

restricted in their relationship by the AND�OR structure given in the plan library�

AND constraints are for composing program plans into higher level plans� and OR�s

are for specializing an abstract plan in one of several ways� Assigning one program

plan as an explanation of a particular PU�CSP variable constrains consistent as�

signments of other component variables�

As an example of a knowledge constraint mandated from the library structure� if a

variable corresponding to program component A � �string �� in Figure ��� were

instantiated to program plan builtin�char��copy as shown in Figure ���� then it

is consistent to assign the last for�loop variable an explanation of print�string�

where the strings are the same�

A solution to the PU�CSP is an assignment to each variable by one program plan

component in the plan library� such that no structural constraint from the source code�

or knowledge constraint from the plan library is violated�

PU�CSP program understanding provides a convenient framework for interpreting

Quilici�s index tests �Quilici� ����� in which candidate explanations are suggested based

on the identi�cation of �key� plan components� One may view such heuristically�guided

constraint applications as one part of a CSP search control strategy as described in Chap�

ter �� It is possible to similarly interpret Quilici�s specialization tests which mandate a

preference for maximally�speci�c explanations� These tests may be regarded as speci�c

instances of knowledge constraints that are used to systematically reduce the range of

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

domain variables in a hierarchical CSP� Quilici�s inference tests identify �related� pro�

gram plan templates according to earlier component instantiation� In CSP terminology�

inference tests may be seen as a special kind of variable�ordering heuristic in which these

�related� program components are explained �next� in a general search strategy�

The program template hierarchy is composed of hierarchically related plan templates��

A template plan may be broken down into several sub�plans� in which case this is recorded

as an And relationship between the sub�plans and the parent plan� Further� any re�

quired structure between the sub�plans such as necessary ordering� data�!ows between

the sub�plans or control�!ow between the sub�plans is recorded with the And relation�

ship� Similarly� a template plan may be a specialization of another plan �or one of many

such specializations	� and in this case the constraints that constitute the specialization

such as restriction of variable type or a particular restriction of data or control�!ow is

recorded with the Or relationship� Figure ��� shows a simple And example in which

Template A is composed of two sub�plans A� and A� where A� provides the data�!ow

r which A� requires� In addition� a simple Or example is given in which Template A

may be specialized by either of the plans B� �which exports n in addition to the primary

exports of B	 or B� �which exports p	�

����� General Hierarchical Constraint Satisfaction Model

In Section ����� of Chapter � I introduced the notion of consistency in a constraint

graph� In particular� I discussed the notion of arc�consistency� Arc�consistent graphs

have the property that all domain values for the source variable in a relation with a target

variable have at least one consistent mapping with a target variable domain value� This

property can be thought as a non�search reduction in the overall combinatorics of solving

�For a formalization of hierarchical planning knowledge� see
Yang� ������

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Template

B2

Template

A2

Template

A1

q ->a -> Template

A
Template

B
m ->c ->

x ->

Template

B1

And

|A | -> |A |

Or

B exports p
1

2

c ->

x ->

c ->

x ->

m ->

p ->

m ->

n ->

a -> q ->r ->

r ->

ra
q

B exports n
1 2

Figure ���� Library knowledge constraints

a particular problem� Well constrained problems can result in a large reduction of the

size of variable domains in such a fashion� Traditional algorithms for arc�consistency are

concerned with simple discrete domain ranges� In other work �Mackworth et al�� �����

domain values are considered in which a value may in fact represent a set of domain

values� The algorithm described in this earlier work is known as HAC or Hierarchical

Arc�Consistency algorithm� In fact� the domain values may be considered to be a limited

form of hierarchy consisting of is�a relationships� More speci�cally� any domain value

with children can be categorized specialized by exactly one of its child values�

Hierarchies are formed in such a way that a failure of a given relation at a high level

signals that all children will subsequently fail to satisfy this same relation� There is� there�

fore� no need to re�apply this constraint to those values� Problem domains supporting

such a decomposition allow for signi�cant reduction of the number of constraint checks

for particular problem instances� Mackworth states�

Indeed� for many real problems the domain elements often cluster into sets

with common properties and relations� Those sets� in turn� group to form

higher level sets� This clustering or categorization into �natural kinds� can be

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

represented as a specialization�generalization �is�a	 hierarchy� �Mackworth et al�� �����

p� ����

Observe that the program understanding domain �ts this suggested need for hier�

archically structured domain values� In particular� domain values will need to represent

possible program�plan explanations of given source code components� In most recent pro�

gram understanding and plan recognition research e�orts� plan libraries are represented

as accumulations of program plans structured with is�part�of relationships �or conversely

has�parts	� and is�a relationships� Consequently� any constraint�based algorithm support�

ing domain values that can be structured in these ways must also be capable of dealing

with the additional complexity of reasoning with these relationships�

Making a constraint graph �more consistent� is a limited reasoning process which

systematically limits the possible solution set of the problem� Considering domain values

as hierarchies rather than simple discrete values implies that one must be capable of not

only keeping or deleting a particular hierarchy� but also of simplifying a given hierarchy�

The remainder of this section is structured as follows� First� I brie!y discuss the issues

of hierarchical representation and justify the particular assumptions made for represen�

tation� Second� I describe a novel algorithm� with several variations� designed speci�cally

to induce arc�consistency in a constraint graph composed of domain values which may be

structured through is�part�of �And	 and is�a �Or	 relations� In contrast to the �or�only	

consistency property HAC imposes� I refer to this expanded consistency as And�Or�

consistency or AO�consistency� In Section ������ I present a pair of program understand�

ing examples of the operation of hierarchical PU�CSP� and in Section ��� I provide an

extended generic hierarchical example from which I describe the operation of hierarchical

CSP�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

������� Hierarchical Domain Representation

Earlier works have frequently �and often loosely	 discussed abstraction hierarchies in what

Wilkins �Wilkins� ����� de�nes as two di�erent senses� I outline these two conceptions as

hierarchical approximation and hierarchical decomposition in the following way�

Holding $x

Not OnTable $x

Not Clear $x

Not Handempty

Criticality Values

Clear $x

Handempty

IsBlock $x

OnTable $x

Holding $x

0

1

2

1

n/a

PreConditions

OnTable $x

Clear $x

Handempty

IsBlock $x

PickupBlock $x

PostConditions

Figure ����� A single action with criticality hierarchy

Early planning systems �Sacerdoti� ����� used abstraction in the sense that hierar�

chies of actions were created based upon precondition and postcondition elimination�

The conditions of an action were assigned a numeric value known as a �criticality�� At

the highest levels of abstraction� an action was viewed only in terms of those conditions

with a criticality at least as great as the current abstraction level �starting at � with the

most abstract level� and increasing to a level corresponding to the maximum criticality

value assigned	� An action condition is then considered more �abstract� �or perhaps more

integral to the action	 if it had a small criticality value and more speci�c �or perhaps more

of a detail to the action	 if it had a large criticality value� I detail one such Blocks�World

action �PickupBlock	 and its associated criticality values in Figure ����� and the resul�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Holding $x

Not OnTable $x

Not Clear $x

Not Handempty

Holding $x

Not OnTable $x

Not Clear $x

Not Handempty

Holding $x

Not OnTable $x

Not Clear $x

Not Handempty

Postconditions

PickupBlock $x

IsBlock $x

PickupBlock $x

OnTable $x

Clear $x

IsBlock $x

PickupBlock $x

OnTable $x

Clear $x

Handempty

IsBlock $x

(abstract)

(more specific)

(most specific)

Preconditions

Figure ����� Criticality�based action hierarchy for PickupBlock

tant action hierarchy in Figure ����� The abstraction of an action by such precondition

elimination �Sacerdoti� ����� Tenenberg� ����� may be viewed more accurately as action

approximation� and I refer to this procedure and resulting hierarchy as hierarchical

approximation�

In plan recognition �see �Kautz and Allen� ������ �Kautz� ������ �Carberry� ����b��

and �Ardissono and Cohen� ����a�	� it is common to represent abstraction in terms of

a view in which a high level action �or plan	 might be decomposed into a set of lower�

level actions that together form a plan for the completion of the high�level action� In

�Ardissono and Cohen� ����a� Ardissono and Cohen� ����b� the abstraction hierarchy is

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

extended to better represent the shared portions of specializations which constitute an

�abstract� action� In Figure ���� I detail a decomposition hierarchy for the same high�

level plan PickupBlock� The speci�cation of an action by replacing it entirely with a

plan consisting of partially ordered sub�actions may �t more closely with the common �in�

tuition� of what abstraction means� I refer to this structuring of actions as hierarchical

decomposition�

EmptyMyHand GrabBlock $x RaiseMyHandClearBlock $x

Clear -> Empty -> Grab -> Raise

PickupBlock $x

Figure ����� A simple decomposition hierarchy

In HAC described earlier� a hierarchical view of domains was encountered in which

the objects of the domain were structured such that each high�level object description

was either ground �at the lowest level of abstraction possible	� or it would be specializable

into two �or� in general� two or more	 objects at the next lower level� This structuring is

similar to the hierarchical approximation approach in so far as the child objects specialize

the parent objects through possession of properties that extend the child over the parent�

and consequently di�erentiate the child from each of its siblings� In this way� a parent

object may be considered to be representative of a class that includes each of the child

objects as members� In Section ����� it was seen that a domain object found to be

inconsistent with all of the objects in another related domain can be removed without

loss of any potential solutions� HAC combined these two conceptions of representation

and consistency to give a new algorithm for propagating consistency in problems where

the domains are arranged in a limited hierarchical manner�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

While the HAC algorithm e�ectively exploits a structure of hierarchical approxi�

mation possessing a particular distribution of objects and sub�objects� this hierarchical

consistency algorithm does not incorporate the notion of abstraction interpreted as hier�

archical decomposition very well� For example� one wonders what it would mean in such

an algorithm for a particular domain object to be de�ned such that it may be decomposed

into an ordered� constrained� set of sub�objects that may be viewed as a plan�

Extending the HAC representation

The hierarchical approximation approach de�nes a hierarchy in which a particular object

is specializable into exactly one of a set of possibilities� I label this type of parent�

children specialization relationship as an �OR� or specialization relation� In contrast�

the hierarchical decomposition approach de�nes a hierarchy in which a particular object

is specializable into a plan composed of many children arranged in a particular way�

Each of the children play a particular role in the specialization� I label this parent�

children specialization as an �AND� or decomposition relation� Combining these two

approaches� one may arrive at a model of hierarchical specialization that contains branch

points of both �AND� and �OR� types� Figure ���� on page ��� shows these relations�

First� Plan A specializes into one of Plan A� or Plan A�� Next� Plan B decomposes

into the composite of Plan b� and Plan b�� Finally� a given plan such as Plan C may

have parents through either a specialization relation� or a decomposition relation� In the

event of specialization� a particular instance of Plan C is assumed to be capable of only

specializing more than one single parent plan� Similarly� in the event of decomposition�

a single instance of Plan C may be a sub�part of more than one parent plan�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Plan A 2Plan A 1

Plan A

Specialization

Plan B

Plan b Plan b 21

Decomposition

Plan C p1 Plan C p2

Plan C

Exclusive Parentage

Figure ����� Specialization and decomposition represented

������� And�Or Arc�Consistency Algorithms

In a CSP with simple� discrete domain values� arc�consistency algorithms check a given

constraint for each source domain value with the range of target values� In the absence

of even one constraint success �or justi�cation	 for that source domain value� it may be

deleted� A side�e�ect of this type of algorithm is that it is possible to generate a set of

justi�cation links which speci�cally records the pairs of source and target domain values

consistent with respect to a particular constraint�

With hierarchically structured domains� the problem is essentially unchanged� The

primary di�erence is that the application of a particular constraint between a given source

and target domain value has a result that is considerably more complicated than simple

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

success or failure� For example� if one considers a source value S with two specialization

possibilities S� and S�� and a target value T with two specialization possibilities T�

and T�� and a constraint that ranges over S� T � and their specializations� then constraint

values of �true�� �false�� or �depends� are possible for each constraint evaluation between

hierarchical domain values at corresponding levels� While �true� or �false� have obvious

meanings� �depends� is unusual� It is possible in such a hierarchical structure to de�ne a

constraint valuation at a particular level in terms of its success or failure at subsequent sub

and super levels� Specialization links are like �or� relations � if something is a T � then it

is certainly either a T� or a T�� The consequence of this relationship is evidenced through

the simple example� For S and T a given constraint C might yield a �local� value of

�depends�� The actual answer for C�S� T 	 might have to be determined by a subsequent

evaluation of C for the children of S and T � If one considers the logical entailment of

the hierarchy� C�S� T 	 can be said to be �true� if and only if one of C�S�� T�	� C�S�� T�	�

C�S�� T�	 or C�S�� T�	 is �true��

Typical arc�consistency algorithms are constructed in the following way� First� a basic

subroutine revise is de�ned which revises a given source domain with respect to a given

target domain by removing any source domain value which is incompatible with any

target domain value� Next� the revise subroutine is used repeatedly until there is no

source domain remaining which can be reduced� If no remaining domain may be reduced

with respect to any target domain� the problem graph may be said to be arc consistent�

The extension of an arc�consistency algorithm to hierarchical domains follows the

same basic approach� The major parts of such an algorithm may be summarized as

follows�

�� A revise algorithm is composed based on the premise that two hierarchical values

are consistent only when their corresponding hierarchies are consistent to a given

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

hierarchical depth� In the case of and�type hierarchical components� both must

succeed� and in the case of or�type components� at least one must succeed� The

revise algorithm is built through repetitive application of one primary sub�part�

apply�

�� An apply algorithm applies a given constraint between a single pair of hierarchical

source and target values� A success at the basic or root level is only achieved if

the constraint holds at the basic level� and both up against the source and target

parent sub�trees� and down against the source and target child sub�trees�

While a source value in a discrete domain is either retained or deleted during a revision�

this is not the only possible result in a hierarchical algorithm� It is possible that some

portion of the hierarchy of a particular value may be removed� while the root value is

itself retained� For instance� if one or�child of a root value was inconsistent with the

appropriate sub�trees of any target value� then that child could be pruned� This process

is broken up into two stages�

�� The �rst stage is marking� performed during a source�target revision� When a

hierarchical child or part�part of a source value is determined to be inconsistent

with a given target hierarchy� that source value is �marked��

�� The second stage is simpli�cation� performed after a given source value has been

checked against the entire range of target values� Any source value marked a number

of times equal to the number of possible target values may be deleted�

Some arc�consistency algorithms attempt to �remember� the constraint application

successes encountered during revisions� For instance� it is possible to build a justi�cation

graph in which the successes of a constraint application between source and a variety of

target values are recorded� It may be said that those target values �justify� the continued

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

existence of the source domain value� If one of those target values is removed through

a later revision� but others remain� then the source value remains justi�ed� However� if

all target �justifying� values are removed� then the source is no longer justi�ed and may

itself be deleted� In this way� it is possible to �chain� deletions� removing domain values

that are known to not participate in any possible solution� without subsequent constraint

application� I refer to this chaining process as DeleteSourcePropagation�

Since we are dealing with hierarchical values� the DeleteSourcePropagation problem

is complicated somewhat� For instance� if a source domain value S� were justi�ed by a

target domain value T�� then one knows that a constraint C between S� and T� holds to a

particular hierarchical depth� That is� the hierarchies of S� and T� have been determined

to be hierarchically consistent with respect to C� However� what if the hierarchy of

the T� domain value is pruned" In this case� the justi�cation relationship needs to be re�

veri�ed in case the hierarchy changed a�ects the C evaluation� A similar chaining process

may ensue in which some domain values are hierarchically simpli�ed� and other domain

values are simply deleted� I refer to this chaining process as KeepSourcePropagation�

DeleteSourcePropagation and KeepSourcePropagation are described in Sections �������

and ������� of Chapter ��

One other distinction is of prime importance in understanding hierarchical arc consis�

tency algorithms� Some discrete arc�consistency algorithms aggressively check all tar�

get values for a given source domain revision� while others simply step through the

target values until a justifying target value is found� It is possible to formulate hier�

archical algorithms in this same fashion� I thus specialize the revision algorithms as

either aggressive or stepped �see Tables ���� and ����	� Subsequent versions of of Delete�

SourcePropagation and KeepSourcePropagation are similarly implied� The algorithms

�Delete
Keep�SourcePropagation�Aggr
Step� are described in detail in Appendix C in

Tables C��� C��� C�� and C���

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

����� Hierarchical CSP and Program Understanding � An Example

In Chapter � I describe the hierarchical arc�consistency algorithms introduced in this

general overview� and provide speci�c examples of the operation of these algorithms� In

this section I demonstrate the utility of such an algorithm in the program understanding

process� We have seen how constraint satisfaction algorithms may be applied to partial

local program explanation� In order to apply constraint satisfaction to the problem of

integrating these local explanations into a global view of a source program one must

be able to match program component�variables to a hierarchically structured program

library�

In this chapter I have described in some detail the operation of a hierarchical constraint

propagation method in terms of generic examples and explicit algorithmic descriptions

and explanation� In particular� Sections ��� and ����� outlined the overall PU�CSP model

and the hierarchical domain structure and Section ������� presented a detailed generic ex�

ample of solving hierarchically structured constraint satisfaction problems� In this generic

example� it was demonstrated how it was possible to limit both the range of domain val�

ues for a particular variable in the spirit of previous arc�consistency algorithms� and also

reduce the hierarchy of particular domain values themselves� This reduced hierarchical

structure provides a �clearer� or more restricted domain value� and consequently a more

constrained solution� Applying this conception directly to the program understanding

problem results in a �clearer� or more precise explanation of a series of program compo�

nents each represented by a CSP variable� In this section I extend the illustration of the

e�ectiveness of this hierarchical approach with a pair of simple examples rooted in the

program plan domain�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

������� Downward Hierarchical Revision

Consider the small hierarchical plan library fragment shown in Figure ����� This selection

of plans have been chosen from the image processing domain� Calc�Area�Rectangle

�C�A�R
 has two sub�parts� Find�Height�Width �F�H�W
 which returns the two

size parameters from a given rectangle object� and Multiply �Mult
 which returns a

product of height and width as an area measurement� and Input�Object �I�Obj
 which

identi�es an object of a particular type in a given scene� Input�Object has two speci�c

instantiations� Input�Rectangle �I�Rect
� and Input�Circle �I�Circ
�

Find-Height
Width

Multiply

Width

Height Area

Calc-Area
Rectangle

Rectangle Area

Input
Object

Input
Circle

Image Object:
CircleInput

Rectangle

Image
Rectangle
Object:

Rectangle Height

Width

Image Object

Figure ����� Image Processing Plan Library Fragment

Suppose that there exist two blocks of code Block � and Block �� Block � has an input

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

typing of a super�type of Rectangle and Circle� Shape� and an output typing of Area�

Block � has an input typing of Image and an output typing of Object� In addition�

a structural data�!ow constraint is identi�ed such that the Object input to Block �

necessarily originates from Block �� One PU�CSP formulation is shown in Figure ����

in which Variable � corresponds to Block � and Variable � to Block �� According to

an initial variable assignment based on input and output typing� the Variable � domain

includes onlyC�A�R� and Variable � only I�Obj� We wish to apply the revision algorithm

introduced in Section ������� �for detail� see Section �����	 in order to revise the domain

of Variable � with respect to Variable �� We follow the execution of such an algorithm as

follows�

Step �� First� a revision is undertaken at depth �� verifying the compatibility of target C�

A�R and source I�Obj with respect to the structural constraint between Block �

and Block �� This constraint holds �locally� since I�Obj is capable of supplying an

Object to C�A�R�

Step �� Next� the revision is undertaken at level � down� Any use of Object at the

next level needs to be veri�ed for compatibility between the two potential plans�

The revision between C�A�R sub�plan F�H�W and I�Obj specialization I�Rect

succeeds in that I�Rect is capable of supplying Object�Rectangle for F�H�W� C�

A�R sub�planMult does not make use of any specialized plan portions from C�A�

R and consequently succeeds by default� Thus both necessary sub�parts of domain

value C�A�R succeed in the downward application against I�Obj left specialization

I�Rect�

Step �� The second downward application at depth � is between target C�A�R�s chil�

dren and source specialization I�Circ� I�Circ�s specialization of Object is Ob�

ject�Circle is not compatible with C�A�R sub�part F�H�W Rectangle input� and

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

consequently� domain sub�value I�Circ fails and is marked for potential deletion�

Step �� The overall constraint application between I�Obj and C�A�R succeeds as a result

of the compatibility between I�Rect and the sub�parts of C�A�R� Since there are

no further domain values of Variable � to check value I�Obj against� the Simplify

sub�algorithm results in the removal of specialization I�Circ� and the explanation

hierarchy of Block � is reduced to a single specialization of I�Obj� I�Rect�

Code
Block
2

Code
Block
1

Variable 1
 Domain

Variable 2
 Domain

Image

Area
Object

C-A-R

F-H-W Mult

I-Obj

I-Rect I-Circ

Figure ����� Example � PU�CSP formulation

������� Upward Hierarchical Revision

Consider the small hierarchical plan library fragment shown in Figure ����� This se�

lection of plans have been chosen from an extension of the previous example to include

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

plans to exploit the area calculations� Calc�Area�Rectangle �C�A�R
 has two possible

�uses� � as a sub�part of Calc�Area�Composite�Object �C�A�C�O
� or as a sub�part

of Approx�Area�Circle �A�A�C
� A new plan Calc�Area�Cost �C�A�C
 has two

possible �uses� � as a sub�part of the larger Calc�Cost �C�C
 plan� or as a part of

Calc�Internal�Cost �C�I�C
�

Calc-Area
Rectangle

Calc-Area
Composite
Object

Area
ExactObject.ptr

Approx-Area
Circle

Approx
Area

Object.ptr

Exact
Area Calc-Internal

Cost
CostCalc

Cost

Exact
Area Cost

Rectangle Area

Calc-Area
Cost

CostArea

Figure ����� Example � Area Management Plan Library Fragment

Suppose once again that there exist two blocks of code Block � and Block �� According

to the input and output typing of these blocks� new variable domains are created such that

Variable ��s domain contains only C�A�R and Variable ��s only C�A�C� A structural

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

constraint is identi�ed such that Block � provides an Exact�Area data structure to

Block �� One PU�CSP formulation is shown in Figure ���� in which Variable � corresponds

to Block � and Variable � to Block �� Once again we wish to follow the revision of a

variable domain� This time we wish to hierarchically revise Variable � with respect to

Variable ��

Step �� At level �� C�A�R successfully provides Area for use by C�A�C and so the con�

straint holds �locally��

Step �� Ascending to apply the constraint checking algorithm to the parents of the source

and target� it may be observed that source value C�A�C�O succeeds with respect

to both target values C�C and C�I�C�

Step �� On the other hand� the source value A�A�C fails in that Approx�Area cannot be

used as Exact�Area�

Step �� The identi�cation of at least one source parent with the target results in an overall

successful application for C�A�R� A�A�C is� however� marked and deleted by the

simpli�cation algorithm previously outlined�

����� One Uni�ed Algorithm for Program Understanding

To this point I have introduced at a high�level the range of algorithms required to deal

with a hierarchically structured domain values� Chapter � provides a level of detail for

those interested in pursuing the hierarchical CSP algorithms in depth� In this section�

I bring all of these algorithms together in an integrated model of program understand�

ing based on the two�phases of MAP�CSP and PU�CSP� The algorithms introduced in

Section ����� extended the discrete CSP model to accommodate the traditional repre�

sentation of program plans within the context of hierarchically structured program plan

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Code
Block
2

Code
Block
1

Variable 1
 Domain

Variable 2
 Domain

Exact
Area

C-A-C

C-C C-I-C

C-A-R

C-A-C-O A-A-C

Figure ����� Example � PU�CSP formulation

libraries� In Section ������ range of examples were identi�ed which clearly map particular

program plan hierarchies within this domain valued representation�

Almost all of the pieces of the program understanding puzzle have now been presented�

Program plans are represented hierarchically as part of a larger program plan library�

Source code is represented as well constrained syntax trees� Partial local explanations of

source are identi�ed through the use of MAP�CSP� In a global sense� hierarchical program

plan libraries themselves may be mapped against source program blocks� reducing the

possible global explanations through hierarchical arc�consistency �and search	 algorithms�

What is missing� however� is an integrated �interactive	 model of understanding that

supports the use of all of these techniques� In this section I outline one such model that

accommodates all of these methodologies in a single model� In particular� this model

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

shows how the partial local explanations of MAP�CSP can be used to reduce the overall

explanation space of the more global PU�CSP explanation problem� The expert �or user	

may direct and control the explanation process interactively as well as select plans to

assist in local explanations�

������� Algorithm Understand Explanation

The algorithm Understand outlined in Table ��� shows the major steps required for in�

tegrating local and global strategies� Recall that the PU�CSP variable�block domains

D are initialized according to input and output typing information as described in the

introduction to PU�CSP setup in Section ���� This initial explanation range could next

be reduced in Step � through application of any of the hierarchical arc�consistency al�

gorithms� In Step �� a heuristic selection �perhaps by the expert� or according to some

estimate of greatest utility	 is made of a template in the knowledge library� In Step �

MAP�CSP is utilized to identify all instances in either the entire source� or perhaps in

some subset of the whole source range� In Step � the recognized instances are utilized

to reduce the range of explanations in the PU�CSP variables� One example algorithm

for MergeRevise is outlined in Table ���� The algorithm revises the variable domains of

D according to information obtained through an identi�ed partial local explanation� Ti�

The algorithms accepts as input� the Ti template instance including Iset the instance set

of D variables �hit� in the instance� and produces as output the revised domain values

for the variables in D�

This example demonstrates how a local plan instance can be used to reduce the

range of explanation � in this case by removing PU�CSP domain values which do not

accommodate the plan instance as a sub�component� Step � from Table ��� re!ects the

existence of a similar revision phase against the variable domains of the PU�CSP� this time

with the new knowledge about the non�existence of a T plan instance in particular variable

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

ranges� Similar algorithms toMergeRevise may be constructed for Step �� For example�

there may be some cases in which the negative MAP�CSP presence of a plan indicate

it�s actual non�presence �such as perhaps when the connectivity of such a hypothesized

plan has a very strong connection to other identi�ed plan portions	 and some negative

revision can be propagated through the set of partial explanations� On the other hand�

in other situations it may be the case that there is less con�dence in the canonical ability

of a given plan and such a negative conclusion would be an example of over�commitment�

In Step � some heuristic or expert decision determines whether the iterative process of

propagation� local explanation� integration of local instances and merging is to continue�

For example� an expert may wish to direct attention elsewhere in the program source� or

perhaps has learned enough from this particular analysis� The key to the usefulness of

this strategy is that the expert is in control of the process � further research is required in

order to better identify which kinds of completion conditions experts would likely employ�

It is important to note that this algorithm is merely an outline of how I have envisaged

the integration of local and global explanation strategies� The primary focus of this

algorithm has been to incorporate MAP�CSP as a tool which the expert may choose

to use or to ignore� Expert generated revisions of the PU�CSP space �or in fact� or

identi�cation of MAP instances	 can be easily accommodated between Steps � and ��

with selective use made of Step � and � in order to propagate the e�ect of new knowledge

acquisition to the model�

In particular� it is important to note the capacity of the Understand algorithm to

exploit expert�provided knowledge during the interactive process� In Table ���� user

interaction can be provided in the following steps�

Step �� Domain initialization provides the �rst� very rough set of possible explanations

for each program block independent of the others� The expert may discard any

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

individuals or subset of individuals before search continues� In particular� it may

be possible to discard large sets of the values based on the determination of a

very�high level goal or domain for the code on the part of the expert�

Step �� Hierarchical arc�consistency propagation eliminates values or portions of values

which have no consistent assignment� Once again it is possible that the expert

may wish to prune from some of the explanation sets�

Step �� During the global explanation process the expert may wish to search for a partic�

ular program plan as a �clue� to reducing the number of possible local or global

explanations� The selection of a template to search for� and the �focus� within

the code in which to search may be computed algorithmically according to some

search�based heuristic �such as maximal partitioning of a particular domain� for

instance	 or directed explicitly by an expert�

Step �� The identi�cation of partial local explanations in the code can be undertaken by

MAP�CSP or in fact directly assigned by the expert� This expert assignment can

then be later propagated via PU�CSP� In addition� the use of constraint relaxation

techniques may be warranted in order to widen the range of possible plan instance

identi�cation� either automatically or perhaps through expert�identi�ed constraints

to relax�

Steps � through �� The propagation of positive or negative template instance information can be guided

by an expert choosing which instances to propagate� For instance� an expert may

determine that a given negative result is too uncertain to allow this information to

propagate and eliminate other possibilities�

Step �� The determination of a completion condition is an excellent example of a decision

best left to a domain expert� However� it may be the case that an expert would

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

like the automated process to run for a period of time and completion signaled by

a detectable condition such as a suitable reduction of possible explanations of some

subset of the total problem� These conditions might be identi�ed dynamically by

an expert and saved for later use for example�

Algorithm Understand�L� S� B�D	�
Input� L library of hierarchical program knowledge� S attributed source rep�n� B set of
procedural source blocks� D the variables and domain values explaining the procedural
blocks�
Output� Incrementally improved explanation of procedural blocks in the context of a
given knowledge library�

� D �$ InitializeDomains�B�L	�
� Input
Output Matching �

� D �$ AO�HAC �or New��D�L	�
� Hierarchical Arc�Consis �

� T �$ SelectP lanTemplate�D�L� S	�
� Local Plan Inquiry �

� Tinstanceset �$MapCSP �M�S	�
� Partial� Local Expl �

� Loop ForAll Ti in Tinstanceset
� Propagate Local �

� D �$MergeRevise�Ti� L� S� B�D	�
� End Loop

� Optionally� MergeRevise negative information about T matches

� if �not Done	
�� then GoTo �
�� else Exit�
��

Table ���� The overall understanding algorithm

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

������� Algorithm MergeRevise Explanation

TheMergeRevise algorithm is a re!ection of the speci�c integration process� and demon�

strates the usefulness of a uni�ed program plan library� Plan instances used for MAP�

CSP matching are members of the hierarchical plan library� and consequently identifying

instances of these plans allows us to reason about PU�CSP explanations based on the

structure of the library�

Speci�cally� MergeRevise �detailed in Table ���	 follows the following procedure�

Step �� Identify the variable blocks a�ected by the identi�ed template T instance� Ti � call

these the Iset�

Step �� If Ti is completely within a single variable block� then any explanation of this block

must contain the partial explanation Ti�

Step �� �A� If Ti is completely contained by two variable blocks �V� and V�	� then if it is

possible to generate a decomposition of T into sub�parts T� and T� where T�

corresponds to the portion of T in V�� and T� to the portion in V� then do so

� if necessary update the hierarchy to re!ect this new fact� Note that if this

decomposition is not possible� for whatever reason� that no conclusions may be

drawn�

�B� With Ti decomposed into T� in V� and T� in V�� for all explanations d� of V�

where there is at least one child with T� as a necessary sub�part� if there exists

an explanation d� of V� such that T� is a necessary sub�part� then prune any

or�subtrees of d� where T� is not necessarily required� More simply� get rid

of possible explanations �or parts of explanations	 of V� which do not have a

T� as a necessary sub�part� and explanations �or parts of explanations	 of V�

which do not have T� as a necessary sub�part�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Step �� In the case where Ti is contained in N variable blocks� split the template T into

N sub�parts� and remove explanations �or parts of explanations	 according to the

logic of Step ��

As a simple example of the potential utility of the integrated MAP�CSP and PU�

CSP approaches look ahead for a moment and consider the example PU�CSP detailed in

Figure ��� on page ���� Consider that a MAP�CSPmatching instance identi�ed that there

was an instance of a U�� plan within the scope of focus assigned the variable V �� Of the

domain values in V �� only value B� contains U�� as a sub�part �within T�	� Consequently�

step � of the overall understanding algorithm would reduce the range of variable V � to

contain only B� in the example� Early elimination of B� and B� would short�circuit

constraints associated with removing B� and B� in the traditional propagation manner�

In larger contexts� multiple instances of program plans of the same template or even

failures of such matching attempts could potentially reduce many variable domains in a

similar fashion� Subsequent propagation of constraints over the reduced domain ranges

�as per the aggressive or stepped revision algorithm	 can be seen as a limited form of

�triggered� reasoning� that is� the enforcement of entailed knowledge based on one small

piece of acquired knowledge�

CHAPTER �� MANAGING GLOBAL EXPLANATIONS �PU	CSP
 ���

Algorithm MergeRevise�Ti� L� S� B�D	�
Input� Instance Ti of template T � Library L� Source S� Blocks B� and D variables and
domains
Output� Revised variable domains D according to Ti position in S

� NumV arsAffected �$ sizeof�Iset	�
� Case�NumV arsAffected $ �	
� V �$ GetAffectedV ar�Ti� D	�
� if V totally covered by Ti
� then ForAll d in domain of V

Remove d i� d �$ T �
� else ForAll d in domain of V

Remove Or�subtrees of d where T not necessary�

� Case�NumV arsAffected $ �	
� V �� V � �$ GetAffectedV ars�Ti� D	
� if �CanDecompose�Ti	� T�� � T��	
�� then

�� if not��T�� in V�	 and �T�� in V�		
�� then ��� add new decomposition of T to L
�� L �$ addNewDecomposition�T� T��� T��	�

�� ForAll d� in domain of V �
�� if Exists d� in domain of V � s�t�
�� T�� necc is�subpart�of d� and
�� T�� necc is�subpart�of d�
�� then Remove Or�subtrees of d� where T�� not necc req�d�
�� else Remove d��

�� ForAll d� in domain of V �
�� if Exists d� in domain of V � s�t�
�� T�� necc is�subpart�of d� and
�� T�� necc is�subpart�of d�
�� then Remove Or�subtrees of d� where T�� not necc req�d�
�� else Remove d��

�� Note� General Case for N variables also possible�

Table ���� Merging partial local explanations to global view

Chapter 	

Hierarchical CSP� A Detailed

Solution

One unique feature of the global� integrative� understanding problem or PU�CSP is that

it involves a mapping between a variable corresponding to a block of program code and

domain values which are members of a hierarchical library of plans� In particular� any

potential explanation of a program block is going to be a hierarchical rather than �simple�

value as is the case with discrete constraint satisfaction problems� For example� the

explanation of a particular block might be a mapping to a �sorting� plan from the library

where �sorting� might later be specialized into one of �bubble� or �quick�� In this chapter

we detail the new algorithms required to deal with this hierarchical domain structure�

and provide a running generic example to illustrate the function of the algorithms�

Throughout this chapter one must recall the terminology of constraint satisfaction

introduced in Chapter � as well as accommodate some new conceptions� The relevant

terminology required for this chapter may be reviewed and introduced as follows�

� CSP variables or variables refer to the program blocks which one wishes to explain�

���

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

In particular� each block corresponds to a variable in a CSP�

� Domain values refer to the values which are candidates for assignment to a CSP

variable� In the understanding domain� domain values are possible explanations for

a program block�

� Hierarchy or plan library refers to the hierarchical structure or program plans

�clich�es� or templates	� A particular domain value in the PU�CSP is actually a

hierarchical value selected with structure as indicated by its presence in the pro�

gram plan library�

In addition� in Chapter � I have introduced several concepts and terms relevant to hier�

archical CSP that should be recalled�

� Hierarchical simpli�cation refers to the process of removing a portion of the hierar�

chy of a domain value based on the discovery that that portion is inconsistent with

any target domain hierarchy for a given constraint�

� Justi�cation Links refer to the links created during constraint application which

indicate that a source domain value is �justi�ed� in its continued existence in the

domain of the source variable as a result of a satis�ed constraint check with a

particular target value� A justi�cation link may have multiple targets if it has been

determined that the source value is consistent with multiple target values�

� DeleteSourcePropagation refers to the algorithm in which the deletion of the last

target value involved in a particular justi�cation link for a source value is removed

and causes a subsequent deletion of the source value� Similarly� KeepSourcePropa�

gation refers to the algorithm called to re�establish justi�cation links in the event

that a target domain value has been hierarchically simpli�ed�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

� Aggressive revision refers to the process of removing inconsistent domain values

from a source variable based on checking against all possible target variable domain

values� In contrast� stepped revision refers to the same process with the exception

that only target values are checked only until one value is found consistent with

a particular source value� A CSP aggressively revised for all source domains may

be thought to have a complete set of justi�cation links which depict every pair of

arc�consistent source and target domain values� A CSP revised in a stepped fashion

has only a subset of all possible justi�cation links� however� any undeleted source

domain value has at least one such link�

��� A Generic Hierarchical Example

In order to better understand the hierarchical domain structure� and for purposes of

a running generic example� Figure ��� outlines a constraint satisfaction problem with

three variables� V �� V �� and V �� V � has two hierarchical domain values E� and E��

V � has three domain values A�� A� and A�� and V � has three values B�� B�� and B��

A directed constraint function Constraint exists among the variables as shown by the

constraint arcs� The hierarchical structure of the domain values in each of the three

variables is shown in Figure ���� The constraint function is de�ned over the hierarchical

values according to the directed constraint function by constraining V � with respect to

V � �Table ���	� V � with respect to V � �Table ���	� and V � with respect to V � �Table ���	�

A successful constraint application between two variables results in the construction

of a justi�cation link from a source domain value to a target domain value indicating that

the directed constraint between these two values is necessarily satis�ed �to a particular

assumed hierarchical depth	� It is possible �as is the case with aggressive constraint

checking	 that more than one source domain value justi�es a particular target domain

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

value� Figure ��� exempli�es this justi�cation structure as it happens to exist for the

given example with respect to variable V � and V � domain values� Figure ��� shows a

complete justi�cation structure as it would exist if each constraint was applied against

all applicable domain values to a hierarchical depth of ��

A3

A2

A1

V1

B1

B2

B3

V2

E1

E2

V0

Constraint(V1 -> V2)

Constraint(V2 -> V0)

Constraint(V0 -> V1)

Figure ���� An example �!attened	 CSP structure

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

P1

Q1 Q2 Q3

P2

A1

Q4

C1 C2

X1 X2 X3 X4

A3

C6

X10 X11 X12

C5

X9

J3

E2

L3

M5

J4

L4

M6

Part-of

Is-a

Symbol Key

V0

V1

V2

J1

K3

J2

L1 L2

M1 M3 M4

K4

E1

M2

R3

S5 S7

R4

B2

T3 T4

U5 U6 U7 U8

R5 R6

B3

T5 T6

U9 U10 U11 U12

R1

S3

R2

B1

S4

T1 T2

U1 U2 U3 U4

S1 S2 S6 S8

P3 P4

A2

C3 C4

X5 X6 X7 X8

Figure ���� An example hierarchical domain value structure

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Constraint(V0 -> V1)

E1

E2

A3

A2

A1

A2

A1E1
Holds(Constraint(V0=E1, V1=A1) = True)

Holds(Constraint(V0=E1, V1=A2) = True)

Links Source Target Values = {A1, A2}

Link Source Domain Value = E1

Link Source Variable = V0

 in the domain of V1 such that Constraint(E1, x in domain(V1)) holds."
"E1 is an acceptable value for variable V0 if and only if there exists a value x

Justifies-E1-Constraint

Justifies-E2-Constraint

V0 V1

Figure ���� Close�up of CSP justi�cation linkage

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

A3

A2

A1

V1

B1

B2

B3

V2

E1

E2

V0
Constraint(V2 -> V0)

LINK

LINK

LINK

LINK

LINK

Constraint(V0 -> V1)
Constraint(V1 -> V2)

Figure ���� Example complete justi�cation linkage

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

V� � V �� A� A� A�

E� T P F

E� P P P

V� � V �� P� P� P� P�

J� T F F F

J� F F T T

J� T F F F

J� F F F F

V� � V �� C� C� C� C� C� C�

L� T F T F F T

L� T F T F T T

L� T F F F T T

L� F F F F T F

V� � V �� X� X� X� X� X� X� X� X� X� X�� X�� X��

M� T F � � T T � � � � F T

M� F F � � F F � � � � T F

M� T F � � T P � � F F F T

M� T F � � P T � � F F T F

M� T F � � � � � � F F T F

M� F F � � � � � � F F F T

Table ���� Example hierarchic constraint f�n between V� and V�

Given a hierarchy of arbitrary depth� hierarchical constraint checking can yield vary�

ing results depending on the depth to which a constraint is checked� Consequently� a

new parameter is required for a constraint application � the depth� The example above

describes an �or� application downwards in a hierarchy� In addition� it is necessary to

check downwards for composition or �and� relationships� and �upwards� against parents�

Once one has an algorithm for determining the value of a source�target domain value

constraint application� it is necessary to elaborate this into a revision algorithm that will

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

V� � V �� E� E�

B� F F

B� F F

B� T F

V� � V �� J� J�

R� F F

R� F T

V� � V �� L� L�

T� T T

T� p P

V� � V �� M� M� M� M�

U� T F T F

U�� F F F F

U�� T F T P

U�� T F P T

Table ���� Example hierarchic constraint f�n between V� and V�

allow us to maximally restrict the range of the source domain both in terms of reduc�

tion of the individual domain value hierarchies and the domain values themselves� For

instance� if the particular specialization linkage of S� of S fails in application against

all possible specialization linkages in the potential target domain� the S� branch can be

eliminated entirely� If all such branches are similarly eliminated for S� S itself may be

removed�

The remainder of this chapter is structured as follows� I �rst describe the hierarchical

application algorithm which applies a constraint between two hierarchical domain values�

This algorithm determines whether the constraint possibly holds� necessarily holds� or

fails� As well� the application algorithm needs to mark portions of the hierarchy which

necessarily fail the constraint �as introduced in Section �������	� These marked portions

can serve to later prune the hierarchy in the revision stage� For example� if a particular

sub�tree of a domain value necessarily fails a constraint with respect to all values possibly

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

V� � V �� B� B� B�

A� P P F

A� P P T

A� F F P

V� � V �� R� R� R� R� R� R�

P� F P P F � �

P� F P F P � �

P� F F F F F T

P� F P T F F F

V� � V �� T� T� T� T� T� T�

C� P F F P � �

C� F F F F � �

C� P F F P T T

C� F F F P F F

C� � � � � P P

C� � � � � P P

V� � V �� S� S� S� S� S� S�

Q� T T F F � �

Q� T F F F � �

Q� F F � � F F

Q� F F � � F F

V� � V �� U� U� U� U� U� U�� U�� U��

X� F T T T � � � �

X� F F F F � � � �

X� F P T T � � � �

X� T F F F � � � �

X� � � P F � � � �

X� � � T F � � � �

X� � � � � T T T P

X�� � � � � F F P T

X�� � � � � T F P P

X�� � � � � P F P T

Table ���� Example hierarchic constraint f�n between V� and V�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

satisfying the constraint� then this sub�tree may be pruned� I next outline a hierarchical

revision algorithm which reduces and simpli�es the source domain accordingly� I present

two instantiations of this revision algorithm� Aggressive� in which all possible reductions

are made as soon as possible� and Stepped in which only those reductions necessary to

justify the continued existence of a particular source domain value are made� Each of

these revision algorithms implies a di�erent amount of reasoning about compatible domain

values� and in particular� a di�erent time at which such reasoning should be undertaken�

Next� I outline how to utilize the revise algorithms in an arc�consistency algorithm� Once

again it is possible to structure this algorithm in two versions� Traditional �AO�HAC 	�

in which arc�consistency is enforced through careful re�application of constraints� and

Simpli�ed �AO�HAC�New	� in which an approximation of arc�consistency with less

constraint application e�ort is accepted� Finally� I compose the two revision algorithms

and two consistency strategies into four possible methodologies for enforcing or increasing

hierarchical arc�consistency�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

��� My Hierarchical Arc	consistency Algorithm

����� Algorithm Apply

	������ Informal Description

The algorithm ApplyR outlined in Table ���� insures AO�consistency for a particular

source and target pair of hierarchical domain values� a corresponding constraint� and

a hierarchical depth� The source domain value may have some or all of its hierarchical

structure pruned to exclude those portions that are not possibly consistent with the given

target�

Inputs �� TRUE FALSE POSS

TRUE T T T

FALSE T F P

POSS T P P

Table ���� OR� logical operator

Inputs �� TRUE FALSE POSS

TRUE T F P

FALSE F F F

POSS P F P

Table ���� AND� logical operator

Input � TRUE FALSE POSS

F T F

Table ���� NOT� logical operator

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

In the ApplyR algorithm� a constraint � is applied against a hierarchical source

and target domain value pair� In order for the constraint to necessarily hold �i�e� return

TRUE	� the constraint must hold at all levels of the hierarchy up to and including MaxD

levels up and down in the hierarchy� This algorithm applies the constraint at the current

level� and calls both the ApplyUp and ApplyDown algorithms which recursively apply

the constraint against appropriate portions of the domain value hierarchies� Note that

the results are �and�ed� together in a ternary logic �see Table ���	 that yields TRUE only

when the operands are all true� yields POSS only when the operands are all POSS or

TRUE� and yields FALSE in all other cases� We now look at the upward and downward

aspects of the apply algorithm in turn�

Algorithm ApplyUp Description

Upward hierarchical revision is an attempt to determine which �if any	 parents of a

domain value� of all possible parents� are consistent with that domain value� a given

constraints� and a particular target domain value hierarchy� For example� imagine that

�in the automated banking domain	 that the act of depositing money to machine can

be part of either a plan to deposit to account or one to pay a bill� Similarly� the act of

�lling out a slip can be part of either a plan to pay a bill or deposit US dollars� This

circumstance can be represented as a simple hierarchy in which deposit to machine is

child to both deposit to account and pay bill� and �ll out slip is child to both pay bill

and deposit US� Consider that two actions have been observed in watching someone at

a bank machine� The only candidate value for the �rst or �source� action is deposit to

machine� The only candidate value for the second or �target� action is �ll out slip� If we

consider that both these actions are known to be �constrained� to be part of the same

transaction� then upward revision is the identi�cation of which parents of the �source�

domain value are compatible with which parents of the �target� domain value� In this

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyR�Node�Xi� Node�Yj � Relation��� int MaxD� Mode CurMode� int
CurDepth	�
Input� Two nodes Xi and Yj � a relation � between the corresponding variables� an inte�
ger MaxD giving the maximum depth to penetrate the hierarchy� CurMode signifying
ascent or descent in the hierarchy� and an integer depth� the current penetration�
Output� TRUE if application of ��Xi� Yj	 holds to a hierarchical distance MaxD from
Xi� POSS if it may� FALSE otherwise�

SubRoutines

A� ApplyDown�Node�Xi� Node�Yj � Relation��� int MaxD� int depth	 � returns one
of TRUE� FALSE� POSS�

B� ApplyUp�Node�Xi� Node�Yj � Relation��� int MaxD� int depth	 � returns one
of TRUE� FALSE� POSS�

C� AND��LogicV al � x� LogicV al � y	 � returns a pessimistic AND
of TRUE� FALSE� POSS�

Main Routine

� Rlocal �$ ��Xi� Yj	�
� if R local $ FALSE

� then if IsRoot�Xi	 then Mark children of Xi�
return FALSE

� else
� switch�CurMode	
� case $ �initial�
� return AND��ApplyDown�Xi� Yj � �� depth	�ApplyUp�Xi� Yj � �� depth		
� case $ �down�
� return ApplyDown�Xi� Yj � �� depth	
�� case $ �up�
�� return ApplyUp�Xi� Yj � �� depth	

Table ���� The ApplyR algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

case� only pay bill admits a consistent evaluation of the constraint for each domain value�

and consequently the deposit to account parent of the �source� value deposit to machine

may be eliminated� Note that in this case the constraint is in fact bi�directional� and

consequently we can consider the target also as the source� and thus parent deposit US

of �ll out slip can also be eliminated�

In the ApplyUp algorithm outlined in Table ���� the source and target domain hier�

archy is checked for an �up� link� Each of the source or target �up� links can be either

absent� AND� or OR� Figure ��� details the four primary source and target hierarchical

combinations� If either of the �up� links are top�leaf nodes� the constraint cannot be

checked at the next up�level �i�e� the next level up in the hierarchy	 and consequently

an indeterminate result POSS is returned� This POSS result is returned based on the

assumption that the lack of de�nition of additional higher�level hierarchical values does

not necessarily negate their existence� In each of the remaining possible source and target

combinations� any pair of source and target parents that satisfy the constraint indicate a

success at the next highest level �see the pessimistic �or� function de�ned in Table ���	�

In addition� if the source�s left parent fails a constraint application against both of the

targets� parents� then this arc is marked by the Mark algorithm for potential deletion�

Speci�cally� such an arc is deleted for a particular source and parent if this parent fails

against all other target parents at this level�

Algorithm ApplyDown Description

In Section �������� an example was given in the automated banking domain� We continue

that example in explaining downward hierarchical revision� The plan for depositing money

in a machine�of currency Cur	 consists of at least two component parts� taking money

out of a wallet�of currency Cur	 and putting money in an envelope�of currency Cur	� The

plan for �lling out a slip can be specialized as either �lling out a US deposit slip�where

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyUp�Node�Xi� Node�Yj � Relation���int MaxD� int depth	�
Input� Two nodes Xi and Yj � a relation � between the corresponding variables� an
integer MaxD giving the maximum depth to penetrate the hierarchy� and an integer
depth giving the current penetration�
Output� TRUE if application of ��Xi� Yj	 holds to a hierarchical height MaxD from
Xi� FALSE if � is known to fail� POSS otherwise�

SubRoutines

A� OR� � returns a pessimistic OR of TRUE� FALSE� POSS�
B� FAIL� � true if ternary logic value is FALSE�
C� MARK�Xi� Xk	 � increment failed arc count between Xi and Xk�
D� TopLeaf�Xi	 � true if Xi is a leaf node at the top of hierarchy�
E� Left�Right	ParentFail�Xi	 � true if the given parent has been deleted

Main Routine

� NewD �$ depth� ��

� if we have exceeded the given hierarchical depth� go no further �

� if �NewD � MaxD	 then set return TRUE�

� if either source or target is a top�leaf� result is indeterminate �

� if �TopLeaf�Xi	 or TopLeaf�Yi		 then return POSS�

� identify the undeleted parents of the current node �

� XLP �$ Xi�LeftParent� YLP �$ Yj �LeftParent�
� XRP �$ Xi�RightParent� YRP �$ Yj �RightParent�
� YLPfail �$ Yj �LeftParentFail� YRPfail �$ Yj �RightParentFail�

� check the left source and left target parent subtrees �

� RLL �$ if ��null YLP 	 and YLPfail	

then FALSE

else ApplyR�XLP � YLP � �� Up�MaxD�NewD	�

��� continued ���

Table ���� The ApplyUp algorithm� part � of �

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyUp�Node�Xi� Node�Yj � Relation���int MaxD� int depth	�
Continued ���

Main Routine

� check the left source and right target parent subtrees �

� RLR �$ if ��null YRP 	 and YRPfail	

then FALSE

else ApplyR�XLP � YRP � ��MaxD�NewD	�

� check the right source and left target parent subtrees �

� RRL �$ if ��null YLP 	 and YLPfail	

then FALSE
else ApplyR�XRP � YLP � ��MaxD�NewD	�

� check the right source and right target parent subtrees �

�� RRR �$ if ��null YRP 	 and YRPfail	

then FALSE
else ApplyR�XRP � YRP � ��MaxD�NewD	�

� Mark source subtrees that fail against both target parents �

�� RL �$ OR��RLL� RLR	� if FAIL��RL	 then MARK�Xi� XLP 		�
�� RR �$ OR��RRL� RRR	� if FAIL��RR	 then MARK�Xi� XRP 		�

� Return true if any source� target subtree pair succeeds �

�� set return OR��RL� RR	�

Table ���� The ApplyUp algorithm� part � of �

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Plan A 1 Plan A 2

Plan A

1Plan b 2Plan b

Plan B

Plan A 1 Plan A 2

Plan A

Plan B 1 2Plan B

Plan B

1Plan a 2Plan a

Plan A

1Plan a 2Plan a

Plan A

1Plan b 2Plan b

Plan B

Plan B 1 2Plan B

Plan B

Source Domain Value Target Domain Value Action

 satisfy Relation(A,B)
 with either Children of
 Plan B.

A Parent of Plan A must

 same

 same

 same

Figure ���� Upward cases for source� target structure

Cur $ �US�	 or �lling out a bill slip� Consider that two actions are observed and the

only candidate for the �rst or �source� action is deposit money in a machine� and the

only candidate for the �rst or �target� action is �ll out slip� If we consider that both these

actions are know to be �constrained� in that currencies involved must be the same if the

plans are related� then downward revision is the identi�cation of which children of the

�source� domain value are compatible with which parents of the �target� domain value�

In this case� neither of the children of deposit money in a machine are consistent with

�ll out US deposit slip �since the currencies do not match	� however� both are consistent

with �ll out bill slip� Since once again the constraint is bi�directional� we can consider

the target as source� and eliminate any children of �ll out slip which are inconsistent

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

with children of deposit to machine� In this case� �ll out bill slip is consistent with both

children� however� �ll out US deposit slip is inconsistent due to the di�erent currency

involved� Thus� the child �ll out US deposit slip can be eliminated as a candidate and we

can thus conclude that the �ll out slip action is actually specialized as �ll out bill slip�

In the ApplyDown algorithm shown in Table ����� ����� and ����� the source and

target domain hierarchy is checked for a �down� link� Each of the source or target �down�

links can be either absent� AND� or OR� Figure ��� details the four primary source and

target hierarchical combinations��

If either of the �down� links are bottom�leaf nodes� the constraint cannot be checked

at the next down�level �i�e� the next level down in the hierarchy	 and consequently an

indeterminate result POSS is returned� This POSS result is returned based on the

assumption that the lack of de�nition of additional lower�level hierarchical values does

not necessarily negate their existence� In each of the remaining four possible source and

target combinations a successful application is determined as follows� In the �rst case�

the target and source both possess �or� child links� The constraint application succeeds

at the next down�level if any pair of the source and target down links succeed� Failure

of the child link for a source value against both targets indicates a potential link for

deletion� In the second case� the target and the source both possess �and� child links�

The constraint application succeeds if all possible combinations of the source and target

children downwards in the hierarchy �down�links	 succeed with the constraint application�

If the application fails� the source�s child links are marked for possible deletion� In the

third case� the source node has an �or� child link and the target node has an �and� child

link� In this case� if either of the source links succeed against both of the target links

�Note that in the cases shown in Figures ��� and ��� it is quite possible that a �diamond� relation
exists in which some Plan B has two parents B� and B� which in turn share a single parent� BB� An
example of such a relationship might be where B is a sub�part of both B� and B�� and where B� and B�
are di�erent specializations of BB�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Plan A 2Plan A 1

Source Domain Value Target Domain Value Action

21

Plan A

Plan a 21

Plan A

Plan A

Plan A 1 Plan A 2

Plan B

Plan b Plan b 21

Plan B

Plan B

Plan b Plan b 21

Plan B

1 Plan B 2

2Plan B 1

Plan a

Plan a Plan BPlan a

Plan A

Plan B

 satisfy Relation(A,B)
 with both Children of
 Plan B.

A Child of Plan A must
 satisfy Relation(A,B)
 with either Child of
 Plan B.

Both Children of Plan A
 must satisfy Relation(A,B)
 with both Children of
 Plan B.

 must satisfy Relation(A,B)
Both Children of Plan A

 with either Child of
 Plan B.

A Child of Plan A must

Figure ���� Downward cases for source� target structure

then the constraint application succeeds at the next down�level� If either of the source

down�links fails against both target child links then it is marked for potential deletion�

In this fourth and �nal case� the source node possesses an �and� link and the target node

possess an �or� link� Here� a successful application at the next down�level occurs if both

source�s child links succeed in conjunction with the same target link �or links	� If both

source links fail� they are marked for deletion�

The ternary logical operators are de�ned in Tables ���� ���� and ���� These operators

have been de�ned pessimistically in the sense that and and is true only in the sense that

all values involved are necessarily true� Similarly� an or is true only if at least one value

is necessarily true�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyDown�Node�Xi� Node�Yj � Relation��� int MaxD� int depth	�
Input� Two nodes Xi and Yj � a relation � between the corresponding variables� an
integer MaxD giving the maximum depth to penetrate the hierarchy� and an integer
depth giving the current penetration�
Output� TRUE if application of ��Xi� Yj	 holds to a hierarchical depth MaxD from
Xi� FALSE if � is known to fail� POSS otherwise�

SubRoutines
A� AND� � returns a pessimistic AND of TRUE� FALSE� POSS�
B� BottomLeaf�Xi	 � true if Xi is a leaf node at the bottom of hierarchy�
C� Left�Right	ChildFail�Xi	 � true if the given child has been deleted

Main Routine

� NewD �$ depth� ��

� if we have exceeded the given hierarchical depth� go no further �

� if �NewD � MaxD	 then return TRUE�

� if either source or target is a bottom�leaf� result is indeterminate �

� if �BottomLeaf�Xi	 or BottomLeaf�Yj 		

then set return POSS�

� identify the undeleted children of the current node �

� XLC �$ Xi�LeftChild� YLC �$ Yj �LeftChild�
� XRC �$ Xi�RightChild� YRC �$ Yj �RightChild�
� XLCfail �$ Xi�LeftChildFail� YRCfail �$ Yj �RightChildFail�
� Xtype �$ Xi�ChildType� Ytype �$ Yj �ChildType�

� check the left source and left target child subtrees �

� RLL �$ if ��null YLC	 and YLCfail	

then FALSE
else ApplyR�XLC � YLC � �� down�MaxD�NewD	�

��� continued ���

Table ����� The ApplyDown algorithm� part � of �

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyDown�Node�Xi� Node�Yj � Relation��� int MaxD� int depth	�

Continued ���

Main Routine

� check the left source and right target child subtrees �

� RLR �$ if ��null YRC	 and YRCfail	

then FALSE

else ApplyR�XLC � YRC � �� down�MaxD�NewD	�

� check the right source and left target child subtrees �

�� RRL �$ if ��null YLC	 and YLCfail	

then FALSE

else ApplyR�XRC � YLC � �� down�MaxD�NewD�

� check the right source and right target child subtrees �

�� RRR �$ if ��null YRC	 and YRCfail	

then FALSE
else ApplyR�XRC � YRC � �� down�MaxD�NewD	�

� Combine pairwise results based on a hierarchical case �

�� switch�XYtype	

�� case $ �OR � OR�
�� RL �$ OR��RLL� RLR	�
�� RR �$ OR��RRL� RRR	�

� Mark source parent inconsistent with both targets �

�� if FAIL��RL	 then MARK�Xi� XLC	�
�� if FAIL��RR	 then MARK�Xi� XRC	�
�� return OR��RL� RR	�

��� continued ���

Table ����� The ApplyDown algorithm� part � of �

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ApplyDown�Node�Xi� Node�Yj � Relation��� int MaxD� int depth	�
Continued ���

Main Routine

�� case $ �AND � AND�
�� RDown �$ AND��RLL� RLR� RRL� RRR	�

� Mark source parents inconsistent with either target �

�� if FAIL��RDown	
�� then MARK�Xi� XLC	� MARK�Xi� XRC	�
�� return RDown�

�� case $ �OR � AND�
�� RL �$ AND��RLL� RLR	�
�� RR �$ AND��RRL� RRR	�

� Mark source parent inconsistent with either target �

�� if FAIL��RL	 then MARK�Xi� XLC	�
�� if FAIL��RR	 then MARK�Xi� XRC	�
�� return OR��RL� RR	�

�� case $ �AND � OR�
�� RL �$ AND��RLL� RRL	�
�� RR �$ AND��RLR� RRR	�

� Mark source parents inconsistent with either target �

�� if �FAIL��RL	 and FAIL��RR		
�� then

�� MARK�Xi� XLC	� MARK�Xi� XRC	�
�� return FALSE�
�� else
�� return TRUE�
�� end switch�

Table ����� The ApplyDown algorithm� part � of �

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

����� Algorithm Revise

	������ Informal Description

In the Revise algorithms overviewed in Tables ���� and ����� a particular source variable

domain is reduced by removing values incompatible with any target domain value with

respect to a particular constraint �� The aggressive revise algorithm checks all target

domain values for a given source and constraint� establishing justi�cation links which

indicate the results of each constraint application� In this way� any domain value �or part

of a domain value�s hierarchy	 which is inconsistent with any target domain value may

be deleted� This deletion is known as revision� Since justi�cation links are generated for

the entire problem graph in the aggressive approach� when a domain value is deleted�

it is possible to see if this value justi�ed the existence of another value in a di�erent

variable� If this is the case� and if no other justi�cations exist for that other variable

value� then it is possible to propagate deletion �as introduced in Section ������� with

DeleteSourcePropagation	� deleting these values which are no longer justi�ed�

In contrast� the stepped revise algorithm checks target domain values only as far as

necessary to determine that a particular source value is justi�ed in its continued exis�

tence as a value for the source variable� In this way� justi�cation links are generated

incrementally as needed� and domain values or hierarchies can be reduced only when

all target values have been encountered� In addition� the removal of a justifying target

domain value results in the need to try to re�justify the connected source value� with

back�deletion possible only after checking all possible justi�ers� The aggressive approach

works on the assumption that the e�ort of aggressively justifying source value will pay o�

through e�ective back�deletion through the justi�cation links� The stepped approach as�

sumes that complete justi�cation is over ambitious� and a more e�ective approach would

be to check constraints only when forced to in order to justify the continued existence of

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

a particular value�

In either aggressive or stepped revision� domain values are deleted only when they

necessarily fail a given constraint� The way in which one or other of the revision algorithms

are used as part of an arc consistency algorithm will determine the relative e�ectiveness

of a given approach� Each algorithm is examined in detail in the following paragraphs�

	������ Aggressive Revision Description

The algorithm AO�ReviseAggr outlined in Table ���� achieves AO�consistency for a

source variable domain given a particular target variable and domain� a corresponding

directed constraint� and a hierarchical depth�

Each domain in the source domain represents a set of domain values according to the

domain value�s particular hierarchical structure� Each source domain value is revised in

turn� The constraint in question is checked against each target domain value� For each

source and target value pair which satis�es the constraint� a Link is created indicating

that the source value �depends� �at least partly	 on the existence of the target domain

value for its continued existence as a source domain candidate� After a particular source

domain value has been checked against all target domain values� the source member may

be deleted if no satisfying target values are found� If satisfying target values exist� then

source target may be pruned insofar as some portions of its hierarchy may not have

satis�ed the constraint with any target domain value� It is important to note that it is

not strictly necessary to check all target values for a particular source domain value in

order to justifying keeping the source value� A single target domain value satisfying the

given constraint with the source value is su
cient� However� each source domain value

represents a hierarchy of other sub�domain value and pruning can consequently take place

within the hierarchical structure corresponding to a particular source domain value even

if that value itself is retained�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

The primary subroutines shared in both aggressive and stepped revision routines may

be summarized as follows�

�� AddLink� which generates a justi�cation link between a source domain value xi and

its justi�er� yj with respect to the constraint �� In the aggressive version of revise�

this link can be one�to�one or one�to�many in the case of many target justi�ers of

xi� As stated� the lack of a valid � justi�er is cause for deletion of yj �

�� DeleteSrcPropagateAggr� which is invoked on the determination that the source

value xi has no � justi�cation� The deletion causes a back propagation in which it

is necessary to delete any other values depending solely on xi for their justi�cation�

Table C�� in Appendix C�� outlines this algorithm�

�� Simplify� invoked on determination that a value xi is to be retained� Since xi

has been checked against all N target values with respect to the constraint �� it

is possible that some subpart of the xi hierarchy is inconsistent with any target yj

value and may be removed� In particular� any arc marked with N failures may be

removed� Tables ����� ���� and ���� outline this algorithm�

�� KeepSrcPropagateAggr� is called on the determination that xi is to be retained�

and further that the source value hierarchy of xi has been simpli�ed� This simpli�

�cation may a�ect the use of xi as a justi�er in some previously identi�ed justi�

�cation� and so any such justi�cation link needs to be re�evaluated� Table C�� in

Appendix C�� outlines this algorithm�

�� ResetHierarchyVisit� is called to reset the hierarchy of a given source value so

that all are unmarked and ready for the next constraint application against a par�

ticular target�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ReviseAggr�Var�Source� Var�Target� Relation��� int MaxD	�
Input� Two variables Source and Target� a relation � between the variables� and an
integer bounding the depth of revision�
Output� List of variables with reduced domains after AO�revision of Source w�r�t�
Target� and ��

� Iterate over all domain values xi of source variable

� Xiok �$ FALSE�
� source value unjusti�ed �

� Iterate over all domain values yj of target variable

� xiyjok �$ ApplyR�xi� yj � �� initial�MaxD� �	�

� if �not FAIL��xiyjok		
� then
� AddLink�xi� Source� yj� Target� �	�
� Xiok �$ TRUE�

� End Iteration over yj �

�� if �not Xiok	
� source value still unjusti�ed �

�� then
�� Add to UpdateV ars� DeleteSrcPropagateAggr�xi� Source�MaxD	
�� else
�� if Simplify�xi� Target� �	
� try revise source hierarchy �

�� then
�� Add to UpdateV ars� KeepSrcPropagateAggr�xi� Source�MaxD	�

� reset source domain hierarchy members as unmarked �

�� ResetHierarchyV isit�xi� �	�

�� End Iteration over xi�
�� Return UpdateV ars�

Table ����� The Aggressive Revise algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

	������ Stepped Revision Description

The algorithm AO�ReviseStep outlined in Table ���� achieves AO�consistency for a

particular pair of variables� a corresponding directed constraint� and a hierarchical depth�

Step di�ers from Aggressive solely in that the target domain is traversed during revi�

sion only so far as required to justify the continued existence of a particular source variable

value involved� Justi�cation linkages are generated as with the aggressive version� with

the exception that the justi�cation structure for a particular source value is incomplete

until such time as each and every target value relevant to a particular constraint has been

checked� Consequently� any back�propagation needs to be undertaken only after such a

restriction is ensured� As a result� a deletion of a source value xi can trigger a series of

re�justi�cation e�orts for other values and constraints�

While the subroutines listed in the previous section for the aggressive revision algo�

rithm are still utilized in the stepped version� the DeleteSrcPropagate and KeepSr�

cPropagate algorithms need to be adapted to account for the new behaviour of dealing

with modi�ed or deleted source values� DeleteSrcPropagateStep is outlined in Ta�

ble C�� of Appendix C�� and KeepSrcPropagateStep in Table C�� of Appendix C���

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm ReviseStep�Var�Source� Var�Target� Relation��� int MaxD	�

� Iterate over all domain values xi of Source variable
� Xiok �$ FALSE�
� source unjusti�ed �

� Iterate over all domain values yj of Target variable
� if yj has no siblings in target variable
� then
� last target value to check �

� ResetHierarchyV isit�xi� �	�
� xiyjok �$ ApplyR�xi� yj � �� initial�MaxD� �	�
� if �not FAIL��xiyjok		
� then
� last target justi�es source �

�� AddLink�xi� Source� yj� Target� �	�
�� Xiok �$ TRUE�
�� if Simplify�xi� Target� �	
�� then
� revised source value hierarchy �

�� Add to UpdateV ars� KeepSrcPropagateStep�xi� Source�MaxD	�
�� else Xiok �$ FALSE�
��
�� else more yj siblings exist
�� xiyjok �$ ApplyR�xi� yj � �� initial�MaxD� �	�
�� if �not FAIL��xiyjok		
�� then
� a justifying target is found �

�� AddLink�xi� Source� yj� Target� �	�
�� Xiok �$ TRUE�
�� else Xiok �$ FALSE�
� target justi�er not found yet �

�� End Iteration over yj �
�� if �not Xiok	
�� then
� source found unjusti�ed �

�� Add to UpdateV ars� DeleteSrcPropagateStep�xi� Source�MaxD	
�� else
� source found justi�ed �

�� ResetHierarchyV isit�xi� �	�
�� End Iteration over xi�
�� Return UpdateV ars�

Table ����� The Stepped Revise algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm Simplify�Val�xi� int�N �	�
I�O Comment� Simplify updates the hierarchy of xi in place�

SubRoutines
A� SimplifyUp � true if one of the parent subtrees is updated� null otherwise
B� SimplifyDown � true if one of the parent subtrees is updated� null otherwise
C� �Left�Right	ChildExists�xi	 � returns true only if xi has a left�right child

Main Routine

� HierUp �$ SimplifyUp�xi� N� �	�
� try to reduce the parent subtrees �

� if LeftChildExists�xi	
� try to reduce if left child exists �

� then

� HierDnLeft �$ SimplifyDown�LeftChild�xi	� N� �� �lc
��	�

� if RightChildExists�xi	
� try to reduce if right child exists �

� then

� HierDnRight �$ SimplifyDown�RightChild�xi	� N� �� �rc
��	�

� if any subtrees updates� return true �

� Return or� HierUp� HierDnLeft� HierDnRight 	�

Table ����� The Simplify hierarchical reduction algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm SimplifyUp�Val�xi� int�N �	�
I�O Comment� SimplifyUp updates the parent subtrees of xi in place�

SubRoutines
A� DeleteUpSubtreeRootedAt�x	 � delete subtree incl x� upwards from x�

Main Routine

� LP �$ LeftParent�xi	� RP �$ RightParent�xi	�
� LPMk �$ LeftParentMark�xi	� RPMk �$ RightParentMark�xi	�
� Update �$ FALSE�

� if LP
� left parent exists � �

� then
� if Equals�LPMk�N	
� parent marked n times � �

� then
� yes� delete upwards �

� DeleteUpSubtreeRootedAt�LP 	� Update �$ TRUE�
� else
� no� but check subtrees �

�� Update �$ SimplifyUpLP�N� �	�

�� if RP
� right parent exists � �

�� then

�� if Equals�RPMk�N	
� parent marked n times � �

then
� yes� delete upwards �

DeleteUpSubtreeRootedAt�RP 	� Update �$ TRUE�

�� else
� no� but check subtrees �

�� Update �$ SimplifyUpRP�N� �	�

� any deletions indicates return true �

�� Return Update�

Table ����� The SimplifyUp reduction algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm SimplifyDown�Val�xi� int�N � 	�
I�O Comment� SimplifyDown updates the child subtrees of xi in place�

SubRoutines
A� DeleteDownSubtreeRootedAt�x	 � delete subtree incl x� downwards from x�

Main Routine

� LC �$ LeftChild�xi	� RC �$ RightChild�xi	�
� LCMk �$ LeftChildMark�xi	� RCMk �$ RightChildMark�xi	�
� Update �$ FALSE�

� if LC
� left child exists � �

� then
� if Equals�LCMk�N	
� child marked n times � �

� then
� yes� delete downwards �

� DeleteDownSubtreeRootedAt�LC	� Update �$ TRUE�
� else
� no� but check subtrees �

�� Update �$ SimplifyDownLC�N� �	�

�� if RC
� right child exists � �

�� then

�� if Equals�RCMk�N	
� child marked n times � �

then
� yes� delete downwards �

DeleteDownSubtreeRootedAt�RC	� Update �$ TRUE�

�� else
� no� but check subtrees �

�� Update �$ SimplifyDownRC�N� �	�

� any deletions indicates return true �

�� Return Update�

Table ����� The SimplifyDown reduction algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

����� Hierarchical Arc
consistency

The necessary parts of an arc�consistency algorithm have now been presented� With a

revision algorithm for a single source variable which ensures consistency for source do�

main values with respect to other targets and constraints� one can assemble an algorithm

that enforces consistency over a set of source variables� Simply iterating over all tar�

get variables and constraints enforcing consistency against applicable source variables is�

however� not adequate� Since revision is done between a source domain set and a tar�

get domain set� a change to a target domain set may require that the source be revised

again since a justifying value from the target may have been removed� Since the revision

algorithms have been written such that explicit records are maintained of justi�cation

linkage� it is possible to exploit such linkage in the process of enforcing consistency�

I describe two separate arc�consistency algorithms here� The �rst� AO�HAC is

a typical implementation which is modeled loosely after the AC�� algorithm described

in Section �������� First� iterate over all the target variables in the problem enforcing

consistency with respect to all relevant sources� If a variable domain is modi�ed� that

variable is returned to the list of targets which must be re�revised� In this way a series

of revision attempts which do not return additional variables to re�revise indicates that

the problem is arc�consistent�

It is possible to envisage this consistency algorithm functioning with either the aggres�

sive or stepped revise algorithm� It is an open research issue under what circumstances

a particular combination would be most e�ective� The second arc�consistency algorithm�

AO�HAC�New� is a somewhat simpli�ed version of AO�HAC � AO�HAC�New simply

iterates through each variable and considers each as a target one at a time� Once consid�

ered� a variable is never re�considered� It appears that this algorithm would only achieve

partial arc�consistency since no re�revisions are performed� Recall that the aggressive re�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

vision algorithm generates a complete justi�cation network for all retained domain values�

This explicit linkage provides a framework on which to back propagate deletions� Such

deletions in e�ect handle any re�revision through re�application of potentially destroyed

justi�cations� The careful handling of this linkage structure is represented in the DSPA�

KSPA� DSPS and KSPS algorithms shown in Tables C��� C��� C�� and C�� in Ap�

pendix C� The space occupied against linkage storage and the relative e�ort to compute

all or partial linkage is thus used to trade�o� against the time of re�revising variables�

Making use of the stepped revision algorithm in AO�HAC�New will� however� achieve

only partial arc�consistency as a result of its incomplete linkage structure coupled with a

failure to return to all modi�ed target variables for re�revision�

Altogether there are four possible arc�consistency algorithms depending on the base

algorithm and the selected revision algorithm�

�� AO�HAC with aggressive revision� or AO�HAC�Aggr�

�� AO�HAC with stepped revision� or AO�HAC�Step�

�� AO�HAC�New with aggressive revision� or AO�HAC�New�Aggr�

�� AO�HAC�New with stepped revision� or AO�HAC�New�Step�

I describe the AO�HAC base algorithm brie!y in Table ����� and the AO�HAC�New

algorithm in Table �����

	������ Generic Hierarchical Examples

In this section I describe the behaviour of the hierarchic arc consistency algorithms

through the use of the example I outlined in the CSP structure depicted in Figure ���

and the inter�variable constraint de�ned in Tables ���� ���� and ���� For simplicity and

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm AO�HAC �Graph�'� int MaxD	�
Input� A graph ' structure containing variables Vi with domains D�Vi	� and relations
among variables ��Vi� Vj	� and an integerMaxD giving the maximum depth to penetrate
the domain hierarchy� �
Output� An AO arc�consistent graph to depth MaxD�

SubRoutines
A� GetSrcV ars�Graph � '� V ar � Vtarget	 � returns list of variables Vsource

where some relation ��Vsource� Vtarget	 exists�
B� GetRelation�Graph � '� V ar � V�� V ar � V�	 � returns relation from '� ��V�� V�	�
C� GetV ariables�Graph � '	 � returns variable list from '�
D� GetDeleteMember�List � L	 � returns element of L� removing from L�
E� Union�List � L�� List � L�	 � returns

S
�L�� L�	�

F� Empty�List � L	 � returns TRUE if L empty� nil else�

Main Routine

� TargetList �$ GetV ariables�'	�

� while not�Empty�TargetList		 do
� ThisTarget �$ GetDeleteMember�TargetList	�
� SrcV arList �$ GetSrcV ars�'� ThisTarget	�

� iterate over SrcV arList with SrcV ar

� � �$ GetRelation�'� SrcV ar� ThisTarget	�
� ReviseV ars �$ Revise�SrcV ar� ThisTarget� ��MaxD	�

� if not Empty�ReviseV ars	
then
TargetList �$ Union�ReviseV ars� TargetList	�

� next SrcV ar� �step �	
�� end while� �step �	

Table ����� The AO�HAC arc�consistency algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Algorithm AO�HAC �Graph�'� int MaxD	�
Input� A graph ' structure containing variables Vi with domains D�Vi	� and relations
among variables ��Vi� Vj	� and an integerMaxD giving the maximum depth to penetrate
the domain hierarchy� �
Output� An AO �possibly	 arc�consistent graph to depth MaxD�

Main Routine

� TargetList �$ GetV ariables�'	�

� while not�Empty�TargetList		 do
� ThisTarget �$ GetDeleteMember�TargetList	�
� SrcV arList �$ GetSrcV ars�'� ThisTarget	�

� iterate over SrcV arList with SrcV ar

� � �$ GetRelation�'� SrcV ar� ThisTarget	�
� Revise�SrcV ar� ThisTarget� ��MaxD	�

� next SrcV ar� �step �	
�� end while� �step �	

Table ����� The AO�HAC�New arc�consistency algorithm

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

the purposes of this example I assume aggressive constraint application in which a given

source domain value is checked against all domain values in a constrained target variable�

Applying a constraint between domain values

In the problem structure of Figure ��� observe that a directed constraint exists between V �

and V �� This constraint �call it C	 is de�ned for these variables in Table ���� In order to

revise the domain of V � to be consistent with respect to this constraint and the domain of

V � it will be necessary to check the individual constraint values between individual values�

as outlined in the ApplyR algorithm of Table ���� Consider the constraint application

between V � domain value A� and V � value B�� This pairing is chosen for simplicity

since both values consist entirely of is�a branchings� In this case the matching pairs

much conform to an �or� logic� with any pair from source or target children or parents

su
cient to produce a successful constraint application as shown in Figure ����

C�A�� B�	 is evaluated as follows� Locally� C�A�� B�	 evaluates to P or possibly

indicating that the constraint itself does not necessarily fail hierarchically� Since A� is

not a root domain value it is necessary to traverse the hierarchy of A� and B� shown in

Figure ��� to further answer the query� Taking the And� of the result of applying both

upwards and downwards in the relative hierarchy portions gives the following evaluation��

� Upward �Table ���	 � A� parent P� possibly succeeds against B� parent R�� Sim�

ilarly� A� parent P� possibly succeeds against B� parent R�� It is necessary to

continue upward another level in each successful case� P� and R� may be resolved

by checking the possible pairings of P� parents Q�� Q� against R� parents S��S��

All combinations succeed except for Q� and S�� thus the C�P�� R�	 constraint has

been determined to succeed� P� and R� may be resolved by checking the possible

�Notice we proceed exactly two levels up and downward in the hierarchical comparison� This corre�
sponds to a particular depth for the hierarchic constraint application�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

pairings of P� parents Q�� Q� against R� parents S��S�� All combinations fail� and

consequently C�P�� R�	 has been determined to necessarily fail� Since A� parent

P� necessarily fails against both B� parents R� and R�� Consequently� P� can never

succeed against any associated value of B� and should be marked indicating this

discovery� Should P� similarly fail against all B values in V �� P� is inconsistent

and may be safely deleted� Thus� the upward portion of the C�A�� B�	 application

succeeds in the P� branch�

� Downward �Table ����	� A� child C� fails against all B� children except T� which

produces a possible success� A� child C� fails against both B� children T� and T��

provoking us to mark C� as incompatible with all children of B�� Should C� fail

similarly against other B values in V �� it may be deleted� Continuing downward�

C��s child X� succeeds with T� child U�� other possibilities necessarily failing� This

success implies a success at the C�� T� level and subsequently a success in the

downward hierarchic direction for C�A�� B�	�

Since both the upward and downward directions succeed� it one may conclude a successful

value for the evaluations of C�A�� B�	� A justi�cation Link is generated between A� such

that B� justi�es the existence of A��

Revising a single value against a domain

In the example so far� P� and C� were marked as incompatible with B��s hierarchy�

In fact� in the example �should one continue similarly	 P� and C� are hierarchically

incompatible with the V � values B� and V� also� For example� based on the revise

algorithm of Table ����� applying the constraint C between A� and each of B� B� and B�

would result in success between A� and B� only� Subsequent application of the Simplify

algorithm �Table ����	 to the A� hierarchy would remove the subtrees up and down rooted

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

at P� and C� respectively�

Revising an entire domain

Following the aggressive revision strategy� applying each value of V � �A�� A�� A�	 against

each value of V � �B�� B�� B�	 would result in a justi�cation set in which A� is justi�ed

by B� �as above	� A� is justi�ed by B� and B� �the justi�cation Link has a single source�

with two targets	� and A� remains unjusti�ed and may be deleted� In particular� the

failure of A� for any V � value is notices after the iteration stage� and the deletion is sub�

sequently handled with the call to DeleteSrcPropagateAggr in line �� of the algorithm

on Table �����

Link propagation of consistency

A link from a source domain value to a target domain value �or values	 indicates that

the source domain value has been found to be consistent �for all constraints between the

source and target variables	 with the linked target values� We de�ne a link in terms of

uni�directional constraints in order to simplify the algorithms for dealing with links� that

is� a bi�directional constraint can be represented by two uni�directional links� While an

implementational scheme would be wise to exploit bi�directional constraints through a

shared link� in the case of our prototype we assume uni�directional links only�

Figure ��� shows a linkage structure which represents an aggressive revision of the V �

domain with respect to V �� Figure ��� on page ��� extends this representation with the

additional linkage after revising variable V � with respect to V ��

Consider that an attempt now is taken to revise variable V � with respect to V �� The

�rst value in the domain of V � is B�� B� fails in any application of C against values E�

or E� of V �� Consequently� B� may be deleted according to DeleteSrcPropagateAggr�

This deletion results in the removal of the only justi�cation for the continued existence

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

of A� in the domain of V �� A� has only a single justi�er �the aggressive implementation

of revise assures this	� and so may itself be removed by DeleteSrcPropagateAggr� In

turn� A� is one of two justi�ers for E� in the domain of V �� and this justi�cation must

be removed� E� remains justi�ed by the existence of A�� As well� A� is the lone justi�er

for E� and so E� is deleted recursively� Continuing in the revision of V �� B� also fails in

any application of C against the lone remaining V � value E� and is subsequently deleted�

The deletion of B� results in the adjustment of the justi�cation Link for A�� leaving

only B� justifying A�� B� succeeds in the application of C against E� and a justi�cation

Link is constructed for B�� This situation now remaining is shown in Figure ���� In

this situation each domain has a single value remaining� and each value is justi�ed� This

situation is in fact a solution�

A3

A2

A1

V1 V2

B1

B2

B3

Link

Link

Figure ���� Justi�cation of V � domain values w�r�t� V �

Example hierarchical arc�consistency

In fact� during these constraint applications which have been described only in terms of the

hierarchically central domain values for each variable� certain portions of the hierarchies

have been pruned themselves� During the aggressive linking and revision� the pruning

of a hierarchy value implies that any justi�cation link based on the pruned value must

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

V0

E1

E2

A3

A2

A1

V1 V2

B1

B2

B3

LinkLink

LinkLink

Figure ���� Justi�cation V � w�r�t V � and V � w�r�t� V �

V0

E1

E2

A3

A2

A1

V1 V2

B1

B2

B3

Link

Link

Link

Figure ���� Final example justi�cation structure

be re�evaluated� For example� If A� was pruned as described in the discussion of single

value revision� any Link which targeted A� would be checked through the application of

the KeepSrcPropagateAggr algorithm described on Table C���

The �nal hierarchical result of applying the revisions in the order described in the

example above �i�e� revise V � w�r�t� V �� revise V � w�r�t� V � and �nally� revise V �

w�r�t� V �	 is shown in Figure ����� Not only is each domain reduced to a single value�

but in fact� these values are reduced with respect to their hierarchical structure� thus

reducing the acceptable range of structure of each of the domain variables� For example�

whereas E� previously had a subcomponent L� which specialized as either M� or M� in

the original problem� M� was found inconsistent� and now L� may only specialize as M��

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Similarly� E� generalized as one of J� or J� previously� however� it is only generalizable

as J� in this instance� In a similar manner� both A� and B� are reduced�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Part-of

Is-a

Symbol Key

U10

V0

V1

V2

J1

K3

J2

L1 L2

M1 M3 M4

K4

E1

M2

R5 R6

B3

T5 T6

U9 U11 U12

P3 P4

A1

C3 C4

X5 X6

Figure ����� Final example hierarchic structure

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

��� Conclusion

����� Variations of Hierarchical CSP

As I have described� there are four separate arc�consistency algorithms available to us

given the component algorithms described� In Table ���� I show the number of constraints

checked in total for each of several initial variable orderings for each of the algorithms� The

only incomplete results appear for stepped revision in the case in which the simpli�ed

AO�HAC�New algorithm is used� In all other cases the example results appear as

described� The variation in constraint application value �or work	 taken in each algorithm

stems from early versus late eliminate of particular domain values which changes the

number of times various constraints need to be checked and which also eliminates the

need to ever check certain constraints in given situations� For instance� the removal of

domain values B� and B� from the domain of V � early during the algorithm�s	 could save

any need to check those values as possible justi�ers of the E values in the V � domain�

Algorithm Order Constraint Checks Solution

AO�HAC�Aggr V �� V �� V � ��� ok

V �� V �� V � ��� ok

V �� V �� V � ��� ok

AO�HAC�Step V �� V �� V � ��� ok

V �� V �� V � ��� ok

V �� V �� V � ��� ok

AO�HAC�New�Aggr V �� V �� V � ��� ok

V �� V �� V � ��� ok

V �� V �� V � ��� ok

AO�HAC�New�Step V �� V �� V � ��� incomplete

V �� V �� V � ��� incomplete

V �� V �� V � ��� ok

Table ����� Hierarchical arc�consistency algorithm results

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

Table ���� has several implications� First� all of the strategies which we have indicated

would provide correct� complete answers to the constructed example problem performed

as expected� Second� the partial strategyAO�HAC�New�Step obtained a nearly�correct

solution with less work� The variations in work performed among the complete strategies

opens an interesting issue # that of identifying under what circumstances each of the

particular hierarchical algorithms is most appropriate or e�ective� We identify further

investigation of the utility of the hierarchical arc�consistency algorithms as an interesting

area for future research�

����� Novelty

The hierarchical CSP algorithm introduced in Chapter � and detailed in this chapter is

novel in that it accommodates hierarchies of both and and or branch points in the de��

nition of domain values in CSP� In particular� both decomposition and is�a relationships

downwards and alternate�use or or relationships upwards are supported� I have shown

how this extension has direct applicability to program understanding� However� this al�

gorithm may well have other applications in hierarchical domains such as those of plan

recognition which were introduced brie!y in Chapter ��

����� Correctness

I do not provide a formal proof of these hierarchical algorithms� All algorithms presented

rely on the very few admissible cases evolving from �upward� and �downward� hierarchy

checking� In particular� all possible combinations of these cases have been enumerated�

with a behaviour speci�ed for each particular resulting combination� After implementa�

tion of the algorithms� a complete set of test data was generated which covered all possible

cases� and the results were veri�ed as corresponding to the speci�ed behaviour� From the

viewpoint of correspondence of code and expected�desired algorithmic behaviour� the al�

CHAPTER
� HIERARCHICAL CSP� A DETAILED SOLUTION ���

gorithms are correct� From the viewpoint of semantic correctness of the algorithms� it

must be noted that the algorithms are designed to only accommodate the upward and

downward cases enumerated� and consequently� situations requiring more !exibility are

not covered at this time�

Part V

Conclusions

���

Chapter �

Conclusions

The work presented in this thesis has several important contributions� The primary area

of focus� program understanding� can be thought of as a fusion of software reverse engi�

neering and arti�cial intelligence� Software engineering issues of software structure and

mechanism are of primary importance in understanding since source code and program

plan libraries form the basis of the input for most understanding methodologies� Arti�

�cial intelligence has long provided a venue for the study of computational knowledge

representation schemes and the algorithmic means of manipulating these representations

to extract new knowledge� In this research� issues in each of program understanding�

software engineering� and arti�cial intelligence have been addressed� In this chapter the

contributions of this work in each of these areas are summarized� At the end of this

chapter possible future directions of this research are outlined�

�
�� Program Understanding

Program understanding was described as a primary sub�task of software reverse engi�

neering and re�engineering in Chapter �� The problems of dealing with large bodies of

���

CHAPTER ��� CONCLUSIONS ���

source code are areas of critical research� and promise to remain of interest for the fore�

seeable future� The timeliness of this work is evidenced in the ongoing quest for a way

in which to dramatically increase the productivity of software development� or as Fred

Brooks �Brooks� ����� puts it� the quest for the �silver bullet�� In addition� as the year

���� looms closer� the need to address the plethora of embedded date calculation prob�

lems� which assume an ever increasing last�two�digit date sequence in COBOL and other

source code� has never been greater� Visualization tools which provide a multiplicity of

integrated �and possibly abstracted	 views have been proposed and created which provide

a basis from which it is hoped that such large scale software re�engineering projects can

be launched� However� the availability of software tools �possibly embedded in such visu�

alization toolsets	 which can assist the expert programmer in the task of understanding

software has been limited to relatively simple pattern matching programs to date� More

ambitious projects performing abstract matching of program plans have been limited to

toy sized problems as a result of� at least� an inability to deal with the combinatorics of

even locally explaining large source fragments in terms of existing software libraries� An

integrative model which demonstrates both how reasonably sized source code segments

may be subjected to local explanatory techniques and how such partial local explanations

might be merged into coherent global partial explanations has not been proposed to date�

In the area of program understanding it is possible to categorize the contributions

of this dissertation in three ways� ��	 a novel construction of a unifying� interactive model

of partial global understanding is presented� ��	 this model is used as the basis for the

standardization of algorithms for search and control strategies for understanding� and ��	

implementation and experimentation with the new model is presented showing improved

scalability for the primary understanding sub�problem of partial local explanation through

program plan matching�

CHAPTER ��� CONCLUSIONS ���

Unifying Model of Understanding

The representational formalism of constraint satisfaction is used to construct a model of

program understanding� This model enforces explicit speci�cation of constraint informa�

tion in inter�component relationships in program plan templates� and among program

plan templates in a hierarchical library� Program plan templates from a hierarchically

structured plan library are composed as sets of components related by knowledge con�

straints� Analysis of source code results in the production of a set of analogous structural

constraints amongst code components� The process of understanding is expressed as the

construction of �possibly partial	 mappings between source and library components such

that relevant knowledge and structural constraints correspond� These mappings may be

made at varying degrees of decomposition and abstraction as a result of the hierarchical

nature of both plan libraries and source code�

The novel algorithmic matching methodology I have presented has two primary algo�

rithmic components which have been identi�ed from analysis of previous program under�

standing methodologies� The �rst component �nds all instances of a given program plan

template in a source code� These instances may be thought of as partial local explana�

tions of the source code� The second component constructs one or more explanations of

a larger source code segment consistent with the program plan library and the current

set of partial local explanations�

Previous understanding representations and approaches can be modeled within the

constraints of this framework� These earlier approaches have tended to focus primarily

on issues of representation and eschewed speci�c discussions of the role which problem

structure and constrainedness plays in overall search e�ectiveness� In contrast� constraint

satisfaction search and consistency�propagation paradigms focus almost exclusively on the

relative constrainedness of certain problem features� and allow us to examine the relative

CHAPTER ��� CONCLUSIONS ���

e�ectiveness of various heuristic approaches and to determine how to best represent and

exploit features of these heuristics in a single model� The goal of this work has been to

provide the program understanding community a shared common reference point for the

discussion of empirical e�ectiveness�

In this thesis� recent understanding e�orts are illustrated within the context of the

CSP model with the direct assistance of the authors of one of these e�orts �Quilici	�

and the collaboration of another �Ning	� The representation of these heuristic un�

derstanding strategies as variants of constraint satisfaction algorithms and heuristics

has allowed us to compare these varying strategies directly both analytically and

empirically� Further� in Section ����� and ����� it is demonstrated that portions

of these strategies can be seen to be out�performed by the application of generic

constraint�satisfaction strategies� The proposition of this model of program understand�

ing has been widely reported �see �Woods and Yang� ����b�� �Woods and Yang� ����a��

�Woods and Yang� ����c�� �Woods and Yang� ����a�� �Woods and Quilici� ����c�� and

�Woods and Quilici� ����a�	� and has met with growing acceptance and enthusiasm in

the program understanding and search communities�

Modeling understanding as a CSP has had the direct bene�t of allowing for the

straight�forward creation of a skeletal model of program understanding� This simpli�ed

model expresses a minimal conception of what is generally referred to in the literature

as program understanding� On the basis of this skeletal but concise model� a proof has

been constructed that the problem of matching program plan templates to source code

is NP�hard� In addition� the complementary problem of explaining source code compo�

nents with respect to a given program plan library is also shown to be NP�hard� While

these results are not particularly surprising� this e�ort marks the �rst formal work to

demonstrate NP�hardness for this problem� The subsequent con�dence in the lack of

existence of a polynomial algorithm for even the sub�problem of partial local explanation

CHAPTER ��� CONCLUSIONS ���

is a strong motivating factor for investigating CSP solution strategies which have been

created speci�cally for exponential but richly constrained problems�

Search and Control Standardization

Recent program understanding e�orts have reported their empirical results either sparsely

or not at all� The small amount of empirical reporting has itself been vague about im�

portant implementational details� For example� in both plan recognition and program

understanding the expression of these tasks as one kind of search or other has been

accompanied by allusions to the relatively �obvious� search�reducing bene�t of propa�

gating unspeci�ed constraints during the recognition process� What has been lacking is

a well�understood and precise model in which this propagation could be studied� My

work builds upon these earlier models by making explicit this important propagation�

Figure ���� details the major works from which my CSP model is derivative�

Quilici extended the Concept Recognizer of Kozaczynski and Ning through the

addition of �indexing�� a strategy in which a subset of the de�nitional constraints of tem�

plates are de�ned in advance and are used as a simpler �restriction� heuristic to identify

possible matches� These indexed matches are later re�ned to check a more con�dent

match condition� The conception behind such a heuristic is that student programmers

were observed exploiting these simpler� more obvious �markers� of interest matching a

particular subset of possibilities� and then re�ning these partial matches to either com�

plete matches or failures�

It is possible to model such a strategy as a constraint satisfaction search heuristic�

A template is partitioned� according to a simple application of the partial constraint

satisfaction �PCSP	 approach of Freuder and Wallace �Freuder and Wallace� ����� into a

subset of all template constraints and components capturing the �marker� aspects of the

template separate from the remaining constraints and components� Identi�cation of all

CHAPTER ��� CONCLUSIONS ���

abstract concepts

hierarchical CSP search

1993
(Kozaczynski, Ning)

1992
(Wills)

Graph-parsing
Concept Recognizer

UnProg
(Hartman)

1991

Decode

(Quilici)
1994

PU/MAP-CSP
(Woods)

1996

Other PU
approaches

empirical structure

student heuristics
Memory-CSP

BT+ CSP

General PR
(Kautz, others)

1987 - now

CSP
Search

1977 - now

interactivity

constraint value

constraint appl’n

Figure ����� The recent Program Understanding world

solutions to the marker constraint and component set results in a set of �index hits�� Each

of these index hits can now be resolved according to the systematic application of the

remaining or completion constraints� This methodology may be thought of as a partial

ordering of the application of constraints during search� If one were able to identify a very

restrictive �and small	 component and constraint set this approach has a very intuitive

appeal� For instance� if a particular program construct happened to occur in only a very

small portion of the total number of plans in a library� it can be seen as an e�ective

marker which e�ectively reduces the number of possible completions� Similarly� if one

were attempting to match all instances of a particular program plan in a given range of

software source� one would select one subset of the template components and constraints

CHAPTER ��� CONCLUSIONS ���

as markers and locate these �rst� In practice� one would likely build indices based on

these identi�ed markers in advance of any matching to further improve performance�

This index�based approach has been implemented and tested as a constraint satisfac�

tion heuristic� The advantage of such an approach over previous un�indexed methodolo�

gies is now obvious in terms of the portions of the search space that can be e�ectively

skipped over through such indexing� However� It can also be seen that in the absence of

a direct indexing advantage to program statement type identi�cation a pre�determined

partitioning may not be advantageous in general� In particular� such an approach relies

on the speci�c assumption that the index portions of the template are rare relative to the

resolution portions� If this assumption breaks down� then the static ordering imposed by

a one�time partitioning can be much less e�ective than a dynamic ordering of template

components that might be undertaken by a generic constraint satisfaction heuristic such

as smallest�domain��rst variable�ordering�

In just this fashion the CSP model can be utilized to investigate the relative merits

of other understanding heuristics with direct reference to the empirical results of such

application and interpretation based on the standard search space given by constraint

satisfaction problems� The task of identifying portions of the space which are being

avoided by a given heuristic is greatly simpli�ed� Previous comparisons of empirical

results have been limited to discussions of relative CPU time and other measures of

computational work� The problems of comparisons across di�erent machine platforms

and highly variable de�nitions of computational work can be alleviated by making the

measure of constraint applications during reasoning the consistent point of comparison

between methodologies�

CHAPTER ��� CONCLUSIONS ���

Improved Scalability in Template Matching

This work constitutes the most comprehensive reporting of experimental results for pro�

gram understanding to date� In particular� I have shown that partial local explanations

in generated source examples can be accomplished with less work �and in less time	 than

previously demonstrated� For example� identi�cation of substantially sized template in�

stances in source fragments of ����� lines of code has been demonstrated with about ��

thousand constraint checks in �� seconds on a shared SparcServer ���� workstation with

the search algorithms prototyped in Allegro Common Lisp� Order of magnitude time in�

creases over these results might be possible with a more powerful� dedicated machine and

production�style C implementation� Consequently� recognition of these code fragments

can be accomplished in very nearly interactive response times� Reducing the fragment

size to half of the ����� lines to ��� lines of code results in a search time frame of about

�ve seconds� and a subsequent order of magnitude speed�up could reduce the e�ective

search time to about one half of one second� It should be noted that these reported

search results are obtained with complete strategies� with negative local results providing

equally valuable information to a global explanation process��

Through modeling the Concept Recognizer and Decode approaches as corre�

sponding constraint satisfaction methodologies� certain generic CSP strategies such as

forward�checking with dynamic�rearrangement have been identi�ed as signi�cantly more

e
cient than domain�speci�c heuristics over a range of generated program examples and

statement distributions� In addition� the experiments undertaken may be thought of as

under�constrained relative to a production�level application� Constraint checking of data�

!ow and control�!ow constraints in the prototype is done at constraint�application time�

�While I have observed previously that the use of local strategies in place of complete strategies is a
promising area for future work� such strategies lose the ability to report necessarily negative results to a
global explanation process�

CHAPTER ��� CONCLUSIONS ���

whereas this work could be more pro�tably performed in�advance of search through appli�

cation of specialized data�!ow extraction routines such as o�ered in Refine �Burn� ������

Gen�� �Devanbu� ����� Devanbu and Eaves� ����� or other similar tools� This en�

hanced representational scheme will reduce the amount of e�ort required to check a par�

ticular constraint by limiting the range of focus around the involved components� While

the current implementation of template matching is restricted to data�!ow constraint

checking� the addition of structural control�!ow constraints to the program representa�

tion can be exploited directly through analogous representations in the template plans

themselves� constraining the matching problem even further�

Uni�ed interactive control

The overall understanding algorithm described in Section ����� supports a view of un�

derstanding as both interactive and iterative� The method of interleaving the discov�

ery of local partial explanations or program plan template instances with the broader

task of explaining the function of larger program components by constraint propaga�

tion can function with or without expert assistance in the form of selecting� ordering�

or rejecting alternative hypotheses during search� This model is capable of integrating

both heuristic control strategies and expert observation and suggestion in an interactive�

expert�con�gurable fashion�

�
�� Arti�cial Intelligence

In the area of arti�cial intelligence the contribution of this work has three primary

aspects� First� the program understanding problem is identi�ed as a special case of plan

recognition in which software reverse engineering algorithms have been designed to ad�

dress the restricted plan recognition domain� In particular� these algorithms are able

CHAPTER ��� CONCLUSIONS ���

to exploit speci�c restrictive problem features to empirical advantage� Second� the new

application domain of software reverse engineering has been identi�ed as a rich testbed

for constraint satisfaction problem �CSP	 representation and solution schemes� My work

has provided the opportunity for speci�c application of local� global and hierarchical

constraint satisfaction methods� Similarly� program understanding researchers have had

the opportunity to see the value of formally representing problems in the CSP frame�

work � increased scalability and standardization of heuristic representations� Finally�

through working in the software engineering world with the CSP modeling paradigm� a

novel algorithm for propagating consistency in a constraint graph signi�cantly advances

the current state of the art� In particular� this algorithm is intended to accommodate

domain values situated in a hierarchical structure consisting of both is�a and is�part�of re�

lationships whereas previous work accommodated only is�a relations� This work is easily

generalizable to other problems in which domain values can be hierarchically structured�

Program understanding �PU� and plan recognition �PR�

While I have identi�ed the understanding sub�task of software engineering as the focus for

my work� it is necessary to make the observation that the plan recognition sub�discipline

of arti�cial intelligence addresses a very similar problem� Plan recognition research has

typically focused on both hierarchical representations of plans and methodologies for

the �possibly interactive	 matching of a sequence of �usually related	 observations to

a hierarchical plan library� Frequently such research has focused on cooperative plan

recognition such as might be encountered with a person interacting with an information�

provider such as a course scheduling advising system� Software understanding di�ers

signi�cantly from this type of cooperative and sequential plan recognition�

Program understanding is often viewed as a task of understanding the plans inherent

in a software code� Plan recognition research claims a similar goal for plans evidenced

CHAPTER ��� CONCLUSIONS ���

in action observation� The results of a comparative study between the foundational

plan recognition work of Kautz �Kautz� ����� Kautz and Allen� ����� and program un�

derstanding is described in detail in Chapter �� and can be summarized through the

understanding that program understanding is a special case of plan recognition� In par�

ticular� PR and PU approaches exhibit several marked similarities�

� PR and PU strategies share a representation of understanding as the successful

construction of a mapping between hierarchical pre�existing knowledge libraries

and some input observation set�

� Both strategies attempt to reduce the combinatorial di
culties of integrating multi�

observation explanation by exploiting available knowledge constraints on action

composition as required temporal ordering of sub�actions�

It is readily observable that PR and PU also di�er in signi�cant ways� In particular�

PU makes stronger assumptions about the format of the input and can exploit these

assumptions in more restrictive algorithms for mapping between observations �code	 and

knowledge �library	� Some of these assumptions include�

� The Kautz PR strategy assumes a complete library and incomplete observation

set� whereas the PU domain of interest in this work focuses on producing as com�

plete a mapping as possible between a complete observation set �program	 and a

�complete� library �partial set of knowledge	�

� PR is necessarily incremental in the sense that knowledge is assumed to be arriving

after a �current� reasoning step� Thus� a PR strategy forms minimal coverings or

explanations which allow for un�encountered knowledge which may later appear�

PU is more restrictive in that un�encountered knowledge can be discounted and

any explanations relying upon such knowledge may be discarded�

� PR su�ers from a less�restrictive constraint set upon which to limit the combina�

CHAPTER ��� CONCLUSIONS ���

torial problem of disjunctive explanation� While PU may exploit the wealth of

structural constraints easily�extracted from the source before recognition� examples

in the literature of PR have primarily dealt with only explicit temporal constraints�

Consequently� one may expect to solve larger PU problems more e
ciently than

comparably sized PR problems�

� PU can be thought of as a special� well constrained� case of PR which remains di
�

cult �NP�hard	� While it has been seen that general PR approaches are inapplicable

to typical PU problem instances� it should be emphasized that one important result

of this study is the suggestion that the techniques used in PU be considered for the

more general PR problem� In particular� certain PR problem instances could ad�

mit pre�processing of the observation set to identify particular causal relationships�

These explicit relationships should be applied in conjunction with action represen�

tations so as to increase the number and type of constraints available in the problem

solution�

This work has demonstrated that PR algorithms have been designed to cover a wider

range of less constrained observations and knowledge that is required for PU� Careful

analysis of the nature of the restrictive assumptions that program understanding has

imposed can result in the specialization of existing plan recognition algorithms such that

the restrictions are more readily program explored in addressing partial understanding�

This thesis has been concerned with the construction of a variant of a plan recognition

algorithm which has been shown to be e�ective in e
ciently recognizing certain classes

of plans in real�world programs�

CHAPTER ��� CONCLUSIONS ���

Arti�cial Intelligence �AI� and Software Engineering Crossover

In any work which seeks to apply techniques across the �borders� of disciplines it is impor�

tant to note where such boundaries have been breached� In particular� AI techniques have

been brought to bear on the software engineering sub�task of program understanding� The

modeling of program understanding as constraint satisfaction and the comparison with

plan recognition work opens both of these worlds to the software engineering community

to some degree� In turn� the program understanding problem is an excellent application

domain for AI researchers� The identi�cation of problems in the real world in which AI

can be immediately useful frequently is of little use due to the di
culty of the problems

found� AI techniques typically based on search have long su�ered from criticism based

on their relative �slowness� and inability to deal well with interaction with users who

frequently needs answers on an �anytime� basis� and who are unused to dealing with

problems in a strictly �logical� framework� By structuring CSP solution strategies in

such as way as to compartment complete search as a selectable tool in an overall strategy

based upon supporting an expert in the execution of the understanding task these types

of failings are at least partially redressed� The conception of AI subsystems as integral to

expert decision support systems is not new� however� as the power of CSP�type algorithms

to limit complexity in certain user�selected areas is further identi�ed� the usefulness of

such tools will become more obvious�

Hierarchical Arc Consistency

Constraint satisfaction is currently a very active area of research in AI� with new

algorithms appearing frequently� Examples of such work includes that of Prosser

�Prosser� ����� and Kondrak and van Beek �Kondrak and van Beek� ����� among many

others� An understanding of both the suitability of particular algorithms to certain

CHAPTER ��� CONCLUSIONS ���

problem classes� and recognition of hard classes of given problem instances is being accu�

mulated �see �Cheeseman et al�� ������ �Smith and Grant� ������ �Gent and Walsh� ������

�Gent and Walsh� ������ �Hogg and Williams� ������ �Crawford and Auton� ������ and

�Mitchell et al�� �����	�

The problem of partially understanding source code through generating correspon�

dences to a hierarchical program plan library requires the ability to create multi�level

mappings between code and hierarchy� Previously developed constraint satisfaction al�

gorithms deal primarily with discrete� non�structured domains� One previous algorithm

Hierarchical Arc Consistency �HAC	 �Mackworth et al�� ����� is capable of produc�

ing a consistency algorithm for domains which have elements that may be structured

hierarchically in is�a �or set�subset	 relationships� However� a simpli�ed program plan

library for program understanding such as has been described involves at least the two re�

lations is�a �OR	 and is�subpart �AND	� In response to this requirement� the algorithm

AndOr�HAC or AO�HAC has been created� This algorithm enforces arc�consistency

throughout a constraint graph in which the domain values belong to complete or par�

tial and�or hierarchies� This novel algorithm consequently supports the propagation of

partial information about the identity of domain value assignments and reduces the com�

binatorial space of integrating related partial explanations�

AO�HAC extends the state of the art in constraint satisfaction by fully specifying

how to exploit a particularly structured hierarchical breakdown of domain values in a

CSP� In Section ����� I have demonstrated the domain�independent utility of AO�HAC

given particularly structured examples� while in Section ����� I have contextualized the

usefulness of AO�HAC in terms of program understanding examples� Chapter � details

our implementation of AO�HAC �

CHAPTER ��� CONCLUSIONS ���

�
�� Research Extensions and Future Work

The work outlined in this thesis is situated within a diverse and complex landscape of

research issues� I have necessarily needed to make many assumptions about where the

scope of this work would need to be limited� Consequently� there are many opportunities

for fruitful extension and elaboration to my research� In this section I brie!y outline some

of the primary future research directions that are suggested by my results�

Full Tool Construction

In order to create a fully functional and useful partial recognition tool for commercial�

scale reverse engineering� several aspects of my work need to be extended and coupled

with other work� These include at least the integration of the matching engine with

an interface for visualizing source code and source libraries� and an extension of the

extraction of structural constraints of di�erent types from the source�

Visual Interface Construction

Any interactive system requires an easy to use and well con�gured user interface� Program

understanding is a particularly complicated task since the object of scrutiny can be an

extremely large source code� Many conceivable views of this code exist other than pure

code viewing� Some of these include data�!ow� control�!ow� and data�based displays

indicating how and where data stores are modi�ed� Of course one may wish to view

parts of the source in detail and abstract away certain details from other parts� Any

combination of these myriad views on code are possible� and it is quite conceivable that

di�erent experts will prefer widely varying views of the code�

Visual systems for code interpretation have been presented and researched by many

researchers and corporations� a few of which include M�uller�s Rigi �M�uller et al�� �����

CHAPTER ��� CONCLUSIONS ���

M�uller� ������ Quilici�s Decode �Quilici and Chin� ����� and Reasoning Systems�s Re�

�ne Language Tools and Software Re�nery Refine �Burn� ����� Markosian et al�� ����a��

These systems and subsequent e�orts surrounding these systems address a myriad of is�

sues which arise from the attempt to present information in a cognitively useful fashion

for extremely complex and large domains such as program source code� If one were to

attempt an adaptation of my recognition toolset so that it would be useful to a software

reverse engineer� it would be critical that these issues be carefully addressed� Even ap�

parently simple issues such as the display and editing of program libraries and program

plans require signi�cant e�ort in understanding how such information is best conveyed

to the potential users of such a toolset�

Extended Structural Constraint Extraction

As mentioned in Section ����� the more structural constraints that are available to match

against library or plan template knowledge constraints� the more e
cient my recognition

algorithm� Tools for the extraction of such information exist� however they are typically

either commercial or proprietary� For instance� AT � T Bell Labs� tool Genoa has

been used to create a C parser Gen�� which is capable of producing ASTs annotated

with control and data�!ow information� AT � T has expressed an interest in future

collaborations towards the goal of connecting my recognition system to Gen�� in order

to explore the bene�t of these additional constraints�

Plan Library Construction

Clearly� any de�nitive e�ort at partial program understanding requires a su
cient space

of related program plans in which to form the basis for limited matching and hence

understanding� Such libraries currently exist only indirectly in the form of diverse shared

libraries of code written in particular languages� Work in automatically abstracting such

CHAPTER ��� CONCLUSIONS ���

representations and combining these plan libraries to form a diverse basis for recognition

is required before any such application can hope to accommodate a su
ciently broad

set of programs� While this e�ort has been outside the scope of this dissertation� a very

useful research e�ort would be to attempt to de�ne �as a starting point	 a minimal plan

library that remains useful for limited reverse engineering of large programs�

Design Pattern Recognition

Interest in the use of �design patterns� for software development is growing� Design pat�

terns may be thought of as high�level plans for software development� possibly domain

independent� These plans� which represent some abstracted programming implementa�

tion are essentially selected and modi�ed to �t a particular design goal� It is possible to

consider that a design pattern library is analogous to a program plan library� Some recent

research �Kazman and Atlee� ����� Kazman and Reddy� ����� in architectural re�design

is interested in analyzing existing design documents to recognize instances of design pat�

terns in a library� essentially the same task being addressed as program understanding�

One goal of this work is to identify some measure of architectural complexity based

on the coverage of a design speci�cation by a given pattern library� For example� if a

large percentage of the source is covered by the library� then one may conclude that

the speci�cation is relatively less complex than a design which is only sparsely covered�

Similarly� if a speci�cation is covered by fewer di�erent design patterns� it may be con�

sidered a simpler design than one covered by many di�erent patterns� Analogies to the

sub�graph isomorphism problem around which I have modeled program understanding�

and to the more generic graph coloring problem are obvious� This work is intended to

be applied to architectural re�design e�orts� An architectural language is in develop�

ment �Kazman and Atlee� ����� which allows for the representation of both design pat�

terns �incorporating architectural styles	 and speci�cation� Thus the �intermediate� level

CHAPTER ��� CONCLUSIONS ���

matching problem of identifying source to an abstracted plan is greatly clari�ed� A col�

laboration has been started in which the CSP model of program understanding is being

extended to apply to the problem of design coverage recognition�

Just as my approach to program understanding can be seen as an attempt to exploit

intended structure in software during the iterative understanding process� an analysis

of the relationship between design patterns� idioms and styles and the rationale for the

internal structure of these objects is also presented in �Kazman and Reddy� ������ in�

cluding a presentation of a theory of primitive design operations or unit operations which

have been derived through a study of software design literature and interviews with ex�

pert designers� Unit operations are structure�modifying operations regularly employed

by designers such as abstraction� resource sharing� is�a decomposition� and the like� The

primary result of this study is a set of design rules clarifying the relationships among unit

operations� system requirements� and non�functional qualities such as style�

Concept Cluster Identi�cation

The identi�cation of partial local explanations of source code through use of MAP�CSP

has application as a sub�portion of the larger understanding process as I have described�

However� this process may also be considered as a stand�alone tool for identifying partic�

ular elements or occurrences in source� If one considers that any related set of program

components is a concept cluster� then it may be useful to identify instances or partial

instances of this cluster in a particular source code� In this way one may distinguish a

concept cluster from a program plan� in that a cluster might represent several portions of

di�erent program plans� or in fact� may not correspond to any know program plan at all�

For instance the Year����� problem involves locating all instances in a particular source

program in which dates are used based on the assumption that the last two digits of a

four digit date are always increasing� For example� ���� comes after ����� Frequently

CHAPTER ��� CONCLUSIONS ���

these dates have been encoded in two�digit �elds such as �� and ��� Unfortunately� as

we progress from ���� to ���� the last two digits change from �� to ��� Consequently�

a great deal of source code will fail as calculations are invoked which attempt to make

reference to the year after ���

There are a nearly in�nite number of ways in which the concept of this date ex�

ploitation may appear in source code� If one could� however� represent even some small

percentage of these instances as concept clusters and recognize these in large source code

segments it would be a great bene�t to those experts charged with altering millions of

lines of source code� As an example� it would be simple to represent a cluster as the

de�nition of a two digit character �eld� the initialization of this �eld through reference

to a system clock or date structure� and the later manipulation of this �eld through ad�

dition of a small integer� or perhaps indexing some secondary structure with this value

�eld� Such cases could easily include year�ahead reporting or table�lookup for a particular

year� Any reverse engineering for this problem will include these types of reference and

a proliferation of others�

Semantics and Syntax

One open question is how to integrate e
cient Unix�type syntactic matching mechanisms

e�ectively with the more �relational� view of source programs that MAP�CSP utilizes�

MAP�CSP is intended to recognize templates �idioms� clich�es	 as instances of sets of re�

lated components in an intermediate representation of source code which makes data�!ow

and control�!ow explicit� PU�CSP is intended to integrate these locally�identi�ed idioms

into a broader �or global	 view which is consistent with respect to the available library

of knowledge about how program plans interconnect� While the existing program plan

library contains merely a set of syntactic template speci�cations� these speci�cation are

representative of actual program concepts� In a sense then� the identi�cation of instances

CHAPTER ��� CONCLUSIONS ���

of these syntactic templates in a source code representation is an annotation of the syn�

tax of the source with the semantics encoded into the plan library� Other methods for

handling syntax can be complimentary to this approach� For example� Unix tools such

as �grep� and �awk� can be con�gured to recognize a range of string�based text combi�

nations in source code� and are powerful enough to combine these instances with respect

to inter�string relationships� While such tools can be complimentary and o�er speci�c�

e
cient algorithms for string�matching� they cannot deal with information about source

code which is textually implicit such as abstract syntax tree structure� This information

can be made explicit through the use of a language�speci�c parser� essentially allowing one

to deal with the intentionally embedded structure of a programming language� whereas

Unix�type matching tools treat source as a !at text�based artifact� Undoubtedly humans

make use of both knowledge of the programming language structure and purely text�based

keys �such as keyword names and their relation to particular idioms	 in understanding

source code� and the integration of these paradigms o�ers an interesting future research

area�

Evaluating CSP E�ectiveness

A totally unconstrained CSP �one with all existing constraints evaluating to true in all

domain value combinations	 has a search space in which� for N variables and M domain

values per variable� there are MN solutions� The �constrainedness� of a given CSP is

related to the degree to which constraints exist among variables� and also to the degree to

which each constraint returns true or false� CSPs range from over�constrained� in which

solutions are very rare or non�existent in the vast space of candidate solutions� or under�

constrained� in which solutions are readily found in the space� Pathological �very di
cult

to solve	 CSPs tend to have a large number of satis�able constraints �leading search

deeply in the space	� but very few total solutions �in which all variables have consistent

CHAPTER ��� CONCLUSIONS ���

assignments	� An interesting area for future work is to determine� through analysis of

CSPs generated from real�world programs� how di
cult program understanding �MAP

and PU	 CSPs really are to solve� In particular� if program understanding CSPs are

not that di
cult� they may be susceptible to more speci�c algorithms that exploit the

properties or structure of the problems that make them easy�

Experimental Improvements

One of the primary criticisms of my work has been the nature of the generated source data

according to the statistical distribution of program statements in real source programs

instead of using actual source programs� One advantage of my approach is the ability

to study many di�erent program instances of the same size and similar composition�

However� in future work it is necessary for us to annotate real programs with data�!ow

and control�!ow constraints and modify my internal representation to use them� rather

than the current approximations� This task is complicated by the need for extended code

parser�annotaters which are generally proprietary� An agreement between the creator of

one such parser� AT � T Bell Labs has been recently arranged� and together with the

creator of Decode� research is moving forward with this important extension� However�

for the purposes of this thesis� the goal of our research has been to export the CSP

modeling paradigm and demonstrate the feasibility of uni�ed comparisons� and this goal

has been met�

Another primary concern from my experiments is that my particular approach to

mapping heuristic program understanding methodologies to constraint satisfaction�based

problems has led to additional constraint matches or work actually excluded in the original

implementations� Despite working in conjunction with the original authors� it is possible

that some subtle side�e�ects have been overlooked� In addition� the CSP models may

now be adapted with particular heuristics for even better performance� For example�

CHAPTER ��� CONCLUSIONS ���

in the Memory�CSP model of Decode� the two phase approach �rst �nds all N index

matches for a given plan and then generates N resolution problems� The intuition is

that as search �re�nement	 continues� these will either quickly fail or will result in a

recognized plan instance� This type of behaviour is observed� however� when N is large

and the beginning parts of the N resolution search spaces look quite similar �or are

nearly identical	� a given constraint check between two candidate statements will be

checked many �up to N	 times� It may well be possible to eliminate these redundant

constraint checks by factoring out commonalities between these problems� Consequently�

a new� improved version of Memory�CSP may evolve superior to both the original and

subsequent generic�CSP solutions�

One important aspect of my continuing research is to attempt to verify these ini�

tial results in more complex experimental situations involving a wider breadth of actual

source programs and program plans� I intend to do so by comparing the performance of

the program understanding algorithms introduced with �real�world� programs as input�

In addition� I wish to explore in more detail the speci�c di�erences between how various

CSP�based understanders perform plan recognition # my goal is to verify that I have ac�

curately captured all of the nuances of indexing with my CSP�implementation of memory�

based understanding� and to better understand exactly why the domain�independent CSP

algorithm appears to perform so much better� Any such examination will involve care�

ful comparisons of the search spaces and behaviour within the CSP framework� and to

this end I wish to work further with previous understanding authors to incorporate more

CSP�models of program understanding approaches�

Bibliography

�Agre and Chapman� ����� P� Agre and D� Chapman� Pengi� An implementation of a

theory of activity� In Proceedings of the �th AAAI� pages ���%���� �����

�Allen et al�� ����� James Allen� James Hendler� and Austin Tate� editors� Readings in

Planning� Morgan Kaufmann� �����

�Ardissono and Cohen� ����a� Liliana Ardissono and Robin Cohen� Extending the role of

user feedback in plan recognition and response generation for advice�giving systems� an

initial report� In Proceedings of the ���� Canadian Arti�cial Intelligence Conference�

May �����

�Ardissono and Cohen� ����b� Liliana Ardissono and Robin Cohen� Improving repsonse

generation by using abstract decompositions of actions and rede�ning relevant plan

ambiguity� Draft version� �����

�Brooks� ����� Frederick P� Jr� Brooks� The mythical man�month� essays on software

engineering� Addison�Wesley Publishing Company� anniversary edition� �����

�Burn� ����� Jules Burn� Overview of software re�nery� Product family for automated

software analysis and transformation� reasoning� Product description� Reasoning Sys�

tems� Palo Alto� CA� jules(reasoning�com� �����

���

BIBLIOGRAPHY ���

�Carberry� ����� Sandra Carberry� Modeling the user�s plans and goals� Computational

Linguistics� ����	���%��� �����

�Carberry� ����a� Sandra Carberry� Incorporating default inferences into plan recogni�

tion� Proceedings of the �th AAAI� �����%���� �����

�Carberry� ����b� Sandra Carberry� A new look at plan recognition in natural language

dialogue� Technical Report ������ University of Delaware� �����

�Cheeseman et al�� ����� P� Cheeseman� B� Kanefsky� and W�M� Taylor� Where the re�

ally hard problems are� In Proceedings of the ��th International Joint Conference on

Arti�cial Intelligence� pages ���%���� �����

�Chin and Quilici� ����� D� Chin and A� Quilici� Decode� A cooperative program under�

standing environment� Journal of Software Maintenance� ���	� �����

�Citrin et al�� ����� Wayne Citrin� Carlos Santiago� and Benjamin Zorn� Scalable inter�

faces to support program comprehension� In Proceedings of the �th IEEE Workshop

on Program Comprehension �WPC����� Berlin� Germany� March �����

�Cohen and Spencer� ����� Robin Cohen and Bruce Spencer� Specifying and updating

plan libraries for plan recognition tasks� Technical Report cs������� University of Wa�

terloo� �����

�Cooper� ����� Martin C� Cooper� An optimal k�consistency algorithm� Arti�cial Intel�

ligence� �����%��� �����

�Cordy et al�� ����� J�R� Cordy� C�D� Halpern� and E� Promislow� TXL� A rapid proto�

typing system for programming language dialects� Computer Languages� ����	���%����

January �����

BIBLIOGRAPHY ���

�Crawford and Auton� ����� J�M� Crawford and L�D� Auton� Experimental results on

the crossover point in satis�ability problems� In Proceedings of the ��th AAAI� pages

��%��� �����

�De Pauw et al�� ����� Wim De Pauw� Doug Kimeham� and John Vlissides� Modeling

object�oriented program execution� In ECOOP 	��� July �����

�Dechter and Dechter� ����� A� Dechter and R� Dechter� Removing redundancies in con�

straint networks� In Proceedings of the �th AAAI� pages ���%���� �����

�Dechter and Meiri� ����� R� Dechter and I� Meiri� Experimental evaluation of prepro�

cessing techniques in constraint s atisfaction problems� In Proceedings of the ��th

International Joint Conference on Arti�cial Intelligence� pages ���%���� Detroit� MI�

�����

�Dechter and Pearl� ����� R� Dechter and J� Pearl� Network�based heuristics for

constraint�satisfaction problems� Arti�cial Intelligence� ��� �����

�Dechter and Pearl� ����� R� Dechter and J� Pearl� Tree clustering for constraint net�

works� Arti�cial Intelligence� ������%���� �����

�Dechter� ����a� R� Dechter� From local to global consistency� In Eighth Canadian Con�

ference on Arti�cial Intelligence� �����

�Dechter� ����b� Rina Dechter� Enhancement schemes for constraint processing� back�

jumping� learning� and cutset decomposition� Arti�cial Intelligence� ������%���� �����

�Dechter� ����� Rina Dechter� From local to global consistency� Arti�cial Intelligence�

�����%���� �����

�Devanbu and Eaves� ����� Prem Devanbu and Laura Eaves� Gen�� � an analyzer

generator for c�� programs� Technical report� AT � T Bell Labs� New Jersey� �����

BIBLIOGRAPHY ���

�Devanbu� ����� P� Devanbu� GENOA�GENII � a customizable� language� and front�

end� independent code analyzer� Proceedings of the ��th International Conference on

Software Engineering� �����

�Freuder and Mackworth� ����� Eugene Freuder and Alan Mackworth� Introduction to

the special volume on constraint�based reasoning� Arti�cial Intelligence� ����%�� �����

�Freuder and Wallace� ����� E� Freuder and J� Wallace� Partial constraint satisfaction�

Arti�cial Intelligence� �����%��� December �����

�Freuder� ����� E�C� Freuder� A su
cient condition of backtrack�free search� Journal of

the ACM� ����	���%��� �����

�Freuder� ����� Eugene C� Freuder� Eliminating interchangeable values in constraint sat�

isfaction problems� In Proceedings of the �th AAAI� pages ���%���� �����

�Gamma et al�� ����� Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides�

Design patterns� Abstraction and reuse of object�oriented design� In Proceedings of the

�th European Conference on Object Oriented Programming �ECOOP�� July �����

�Gamma et al�� ����� Erich Gamma� Richard Helm� Ralph Johnson� and John Vlissides�

Design Patterns� Elements of Reusable Object�Oriented Software� Addison�Wesley

Publishing Company� �����

�Garey and Johnson� ����� Michael R� Garey and David S� Johnson� Computers and In�

tractability � A guide to the theory of NP�Completeness� W� H� Freeman and Company�

Bell Laboratories� Murray Hill� New Jersey� �����

�Gent and Walsh� ����� I�P� Gent and T�Walsh� An empirical analysis of search in GSAT�

Journal of Arti�cial Intelligence Research� ����%��� �����

BIBLIOGRAPHY ���

�Gent and Walsh� ����� I�P� Gent and T� Walsh� Easy problems are sometimes hard�

Arti�cial Intelligence� ������%���� �����

�Gu� ����� Jun Gu� E
cient local search for very large�scale satis�ability problems�

SIGART Bulletin� ���	� �����

�Guan and Friedrich� ����� Qi Guan and Gerhard Friedrich� Extending constraint satis�

faction problem solving in structural design� In F� Belli and F�J� Radermacher� editors�

Lecture Notes in Computer Science� volume ���� pages ���%���� Springer�Verlag� �����

�Hammond� ����� Kristian J� Hammond� Case�based planning� A framework for planning

from experience� Cognitive Science� ������%���� �����

�Haralick and Elliott� ����� R�M� Haralick and G�L Elliott� Increasing tree�search e
�

ciency for constraint satisfaction problems� Arti�cial Intelligence� ������%���� �����

�Hartman� ����a� J� Hartman� Automatic control understanding for natural programs�

Research report ut�ai�tr�������� University of Texas at Austin� �����

�Hartman� ����b� J� Hartman� Understanding natural programs using proper decompo�

sition� In Proceedings of the International Conference on Software Engineering� pages

��%��� Austin TX� �����

�Hartman� ����a� J� Hartman� Pragmatic� empirical program understanding� In Work�

shop Notes� AAAI Workshop on AI and Automated Program Understanding� Tenth

National Conference on Arti�cial Intelligence� �����

�Hartman� ����b� J� Hartman� Technical introduction to the �rst workshop on AI and

automated program understanding� In Workshop Notes� AAAI Workshop on AI and

Automated Program Understanding� Tenth National Conference on Arti�cial Intelli�

gence� �����

BIBLIOGRAPHY ���

�Hartman� ����� J� Hartman� Plans in software engineering � an overview� Technical re�

port� Laboratory for Arti�cial Intelligence Research� Ohio State University� November

�����

�Hogg and Williams� ����� T� Hogg and C�P� Williams� A double phase transition� Ar�

ti�cial Intelligence� ������%���� �����

�Holte et al�� ����� R� Holte� T� Mkadmi� R� Zimmer� and A� MacDonald� Speeding up

problem�solving by abstraction� A graph�oriented approach� Technical report TR����

��� University of Ottawa� March �����

�Hubbe and Freuder� ����� Paul Hubbe and Eugene Freuder� An e
cient cross product

representation of the constraint satisfaction problem search space� In Proceedings of

the ��th AAAI� pages ���%���� �����

�Johnson and Soloway� ����� W� L� Johnson and E� Soloway� Proust� Knowledge�based

program understanding� IEEE Transactions on Sofware Engineering� ��� �����

�Johnson� ����� W� L� Johnson� Intention Based Diagnosis of Novice Programming Er�

rors� Morgan Kaufman� Los Altos� CA� �����

�Kautz and Allen� ����� Henry Kautz and James Allen� Generalized plan recognition� In

Proceedings of the Fifth National Conference on Arti�cial Intelligence� pages ��%���

Philadelphia� Pennsylvania� �����

�Kautz and Selman� ����� Henry Kautz and Bart Selman� Pushing the envelope� Plan�

ning� propositional logic� and stochastic search� Personal communication� �����

�Kautz� ����� Henry Kautz� A Formal Theory of Plan Recognition� PhD thesis� Univer�

sity of Rochester� Department of Computer Science� Rochester� New York� �����

BIBLIOGRAPHY ���

�Kazman and Atlee� ����� Rick Kazman and Joanne Atlee� Design pattern recognition

during the re�design process� April ����� Personal communication�

�Kazman and Reddy� ����� R� Kazman and K� Reddy� An empirical study of architec�

tural design operations� Personal communication� �����

�Kazman et al�� ����� R� Kazman� P� Clements� G� Abowd� and L� Bass� Classifying ar�

chitectural elements as a foundation for mechanism matching� Personal communication�

�����

�Kimeham et al�� ����� Doug Kimeham� Bryan Rosenburg� and Tova Roth� Multi�layer

visualization of dynamic in software system behaviour� In Visualization 	��� October

�����

�Knoblock� ����a� Craig Knoblock� Search reduction in hierarchical problem solving� In

Proceedings of the �th AAAI� volume �� pages ���%���� �����

�Knoblock� ����b� Craig A� Knoblock� Automatically Generating Abstractions for Prob�

lem Solving� PhD thesis� School of Computer Science� Carnegie Mellon University�

�����

�Kondrak and van Beek� ����� Grzegorz Kondrak and Peter van Beek� A theoretical

evaluation of selected backtracking algorithms� In Proceedings of the ��th International

Joint Conference on Arti�cial Intelligence� pages ���%���� �����

�Kontogiannis et al�� ����� K� Kontogiannis� M� Galler� and R� DeMori� Detecting code

similarity using patterns� Working Notes of the Third Workshop on AI and Software

Engineering � Breaking the Toy Mold �AISE�� pages ��%��� August �����

BIBLIOGRAPHY ���

�Kozaczynski and Ning� ����� Wojtek Kozaczynski and Jim Q� Ning� Automated pro�

gram understanding by concept recognition� Automated Software Engineering� ����%���

�����

�Kozaczynski et al�� ����� V� Kozaczynski� J� Ning� and A� Engberts� Program concept

recognition and transformation� Transactions on Software Engineering� �����	�����%

����� December �����

�Kumar� ����� Vipin Kumar� Algorithms for constraint�satisfaction problems� AI Mag�

azine� pages ��%��� Spring �����

�Mackworth and Freuder� ����� A�K� Mackworth and E�C� Freuder� The complexity of

some polynomial network consistency algorithms for constraint satisfaction problems�

Arti�cial Intelligence� ������%��� �����

�Mackworth and Freuder� ����� Alan Mackworth and Eugene Freuder� The complexity

of constraint satisfaction revistited� Arti�cial Intelligence� �����%��� �����

�Mackworth et al�� ����� Alan Mackworth� Jan Mulder� and William Havens� Hierarchial

arc consistency� Exploiting structured domains in constraint satisfaction problems�

Computational Intelligence� �����%���� �����

�Mackworth� ����� A�K� Mackworth� Consistency in networks of relations� Arti�cial

Intelligence� ����%���� �����

�Mackworth� ����� A�K� Mackworth� Consistency in networks of relations� In Webber and

Nilsson� editors� Readings in Arti�cial Intelligence� pages ��%��� Morgan Kaufmann

Publishers Inc�� �����

BIBLIOGRAPHY ���

�Mackworth� ����� A�K� Mackworth� Constraint satisfaction� In S�C� Shaprio� editor�

Encyclopedia of Arti�cial Intelligence� volume �� pages ���%���� John Wiley and Sons�

�����

�Mackworth� ����� Alan Mackworth� The logic of constraint satisfaction� Arti�cial In�

telligence� ����%��� December �����

�Markosian et al�� ����a� L� Markosian� R� Brand� and G� Kotik� Customized software

evaluation tools� Application of an enabling technology for reengineering� In B� Blum�

editor� Proceedings of the Fourth Systems Reengineering Technology Workshop� pages

���%���� Johns Hopkins University Applied Physics Laboratory� Feb �����

�Markosian et al�� ����b� L� Markosian� P� Newcomb� R� Brand� S� Burson� and

T� Kitzmiller� Using an enabling technology to re�engineer legacy systems� Com�

munications of the ACM� ����	���%��� �����

�McGregor� ����� J� McGregor� Relational consistency algorithms and their application

in �nding subgraph and graph isomporphisms� Information Sciences� ������%���� �����

�Minton et al�� ����� Steven Minton� Mark Johnston� Andrew Philips� and Philip Laird�

Solving large�scale constraint satisfaction and scheduling problems using a heuristic

repair method� Proceedings of the �th AAAI� pages ��%��� �����

�Minton et al�� ����� Steven Minton� Mark Johnston� Andrew Philips� and Philip Laird�

Minimizing con!icts� A heuristic repair method for constraint satisfaction and schedul�

ing problems� Arti�cial Intelligence� ������%���� �����

�Minton� ����� Steve Minton� Quantitative results concerning the utility of explanation�

based learning� Arti�cial Intelligence� ������%���� �����

BIBLIOGRAPHY ���

�Mitchell et al�� ����� David Mitchell� Bart Selman� and Hector Levesque� Hard and easy

distributions of SAT problems� Proceedings of the ��th AAAI� pages ���%���� �����

�Mohr and Henderson� ����� R� Mohr and T�C� Henderson� Arc and path consistency

revisited� Arti�cial Intelligence� ������%���� �����

�Montanari� ����� U Montanari� Networks of constraints� Fundamental properties and

applications to picture processing� Information Sciences� ����%���� �����

�M�uller et al�� ����� H� M�uller� M�A� Orgun� S�R� Tilley� and J�S� Uhl� A reverse engineer�

ing approach to subsytem structure identi�cation� Journal of Software Maintenance�

���	����%���� December �����

�M�uller et al�� ����� H� M�uller� K� Wong� and S�R� Tilley� Understanding software sys�

tems using reverse engineering technology� In Proceedings of the Colloquim on Object

Orientation in Databases and Software Enginering� pages ��%��� December �����

�M�uller� ����� Hausi M�uller� Rigi � an extensible system for retargetable reverse engi�

neering� World Wide Web information sheet at tara�uvic�ca�rigi�� �����

�Nadel� ����� Bernard A� Nadel� Constraint satisfaction algorithms� Computational In�

telligence� �����%���� �����

�Nadel� ����� Bernard Nadel� Representation selection for constraint satisfaction� A case

study using n�queens� IEEE Expert� pages ��%��� June �����

�Newcomb and Markosian� ����� P� Newcomb and L� Markosian� Automating the mod�

ularization of large cobol programs� Application of an enabling technology for reengi�

neering� In Proceedings of the Working Conference on Reverse Engineering� pages

���%���� �����

BIBLIOGRAPHY ���

�Nilsson� ����� Nils Nilsson� Principles of Arti�cial Intelligence� Morgan Kaufmann

Publishers Inc� �����

�Norvig� ����� Peter Norvig� Paradigms of Arti�cial Intelligence Programming� Case

Studies in Common Lisp� Morgan Kaufmann� �����

�Pennington� ����a� N� Pennington� Comprehension strategies in programming� In G�M�

Olson� S� Sheppard� and E� Soloway� editors� Empirical Studies of Programmers� Second

Workshop� pages ���%���� Norwood� N�J�� ����� Ablex Publishing Company�

�Pennington� ����b� N� Pennington� Stimulus structures and mental representations in

expert comprehension of computer programs� Cognitive Psychology� ������%���� �����

�Prosser� ����� Patrick Prosser� Hybrid algorithms for the constraint satisfaction prob�

lem� Computational Intelligence� ���	����%���� �����

�Quilici and Chin� ����� Alex Quilici and David Chin� A cooperative program under�

standing environment� In Proceedings of the Ninth Knowledge�Based Software Engi�

neering Conference� pages ���%���� Monterey� CA� �����

�Quilici and Chin� ����� Alex Quilici and David Chin� DECODE� A cooperative envi�

ronment for reverse�engineering legacy software� In Proceedings of the Second Working

Conference on Reverse�Engineering� pages ���%���� IEEE Computer Society Press�

July �����

�Quilici et al�� ����� Alex Quilici� Qiang Yang� and Steven Woods� Applying plan recogni�

tion algorithms to program understanding� In Proceedings of the Eleventh Knowledge�

Based Software Engineering Conference� IEEE Computer Society Press� September

����� To appear�

BIBLIOGRAPHY ���

�Quilici� ����� A� Quilici� A hybrid approach to recognizing programming plans� In Pro�

ceedings of the Working Conference on Reverse Engineering� pages ���%���� Baltimore�

MD� May �����

�Quilici� ����� Alex Quilici� A memory�based approach to recognizing programming

plans� Communications of the ACM� ����	���%��� May �����

�Quilici� ����a� Alex Quilici� Reverse engineering of legacy systems� A path toward

success� Proceedings of the ��th International Conference on Software Engineering�

�����

�Quilici� ����b� Alex Quilici� Toward practical automated program understanding�Work�

ing Notes of the Third Workshop on AI and Software Engineering � Breaking the Toy

Mold �AISE����� August ����� In conjunction with the Fourteenth Int�l Joint Confer�

ence on Arti�cial Intelligence�

�Reddy� ����� Kavita Reddy� The empirical derivation of a design space and design rules

for software architecture� Technical Report CS������� University of Waterloo� �����

�Rich and Waters� ����� C� Rich and R�C� Waters� The Programmer�s Apprentice� A

research overview� IEEE Comput�� �����	���%��� �����

�Rich and Waters� ����� C� Rich and R�C� Waters� The programmer	s apprentice�

Addison�Wesley� Reading� Mass�� �����

�Rich� ����� Charles Rich� Inspection methods in programming� PhD thesis� Massachusets

Institute of Technology� June �����

�Rugaber et al�� ����� Spencer Rugaber� Kurt Stirewalt� and Linda Wills� The inter�

leaving problem in program understanding� In Proceedings of the Second Working

BIBLIOGRAPHY ���

Conference on Reverse�Engineering� pages ���%���� ����� Los Vaqueros Circle� Los

Alamitos CA ����������� July ����� IEEE Computer Society Press�

�Rugaber� ����� Spencer Rugaber� Program comprehension for reverse engineering� In

Proceedings of the ���� AAAI Workshop on AI and Automated Program Comprehen�

sion� ����� San Jose� California�

�Sacerdoti� ����� Earl Sacerdoti� Planning in a hierarchy of abstraction spaces� Arti�cial

Intelligence� �����%���� �����

�Selfridge� ����� Peter G� Selfridge� Report on the first working conference on reverse

engineering� Automated Software Engineering� �����%���� �����

�Selman and Kautz� ����� Bart Selman and Henry Kautz� Domain�independent exten�

sions to GSAT� Solving large structured satis�ability problems� Proceedings of the �
th

International Joint Conference on Arti�cial Intelligence� pages ���%���� �����

�Selman et al�� ����� Bart Selman� Henry Kautz� and Bram Cohen� Noise strategies for

improving local search� Proceedings of the ��th AAAI� pages ���%���� �����

�Sidebottom and Havens� ����� G� Sidebottom and W�S� Havens� Hierarchical arc con�

sistency for disjoint real intervals in constraint logic programming� Computational

Intelligence� ���	����%���� November �����

�Simon� ����� Herbert Simon� The Sciences of the Arti�cial� M�I�T� Press� Massachusetts�

U�S�A�� �����

�Smith and Grant� ����� Barbara Smith and Stuart Grant� Sparse constraint graphs and

exceptionally hard problems� In Proceedings of the ��th International Joint Conference

on Arti�cial Intelligence� pages ���%���� �����

BIBLIOGRAPHY ���

�Soloway and Ehrlich� ����� E� Soloway and K� Ehrlich� Empirical studies of program�

ming knowledge� IEEE Transactions on Software Engineering� SE�����	����%���� �����

�Sommerville� ����� Ian Sommerville� Software Engineering� Addison�Wesley Publishing

Company� �st edition� �����

�Sommerville� ����� Ian Sommerville� Software Engineering� Addison�Wesley Publishing

Company� �th edition� �����

�Song and Cohen� ����� Fei Song and Robin Cohen� Temporal reasoning during plan

recognition� Proceedings of the �th AAAI� pages ���%���� �����

�Song� ����� Fei Song� A processing model for temporal analysis and its application to

plan recognition� PhD thesis� University of Waterloo� �����

�Sosic and Gu� ����� R� Sosic and J� Gu� A polynomial time algorithm for the n�queens

problem� SIGART� ���	� �����

�Spencer� ����� Bruce Spencer� Assimilation in Plan Recognition via Truth Maintenance

with Reduced Redundancy� PhD thesis� University of Waterloo� �����

�Storey and M�uller� ����� Margaret�Anne Storey and Hausi M�uller� Manipulating and

documenting software structures using SHriMP views� In Proceedings of the ����

International Conference on Software Maintenance �ICSM 	���� �����

�Tenenberg� ����� Josh Tenenberg� Abstraction in Planning� PhD thesis� University of

Rochester� Dept� of Computer Science� Rochester� NY� May �����

�Tilley et al�� ����� Scott Tilley� Hausi M�uller� Michael Whitney� and Kenny Wong�

Domain�retargetable reverse engineering� In The ���
 Conference on Software Main�

tenance� pages ���%���� IEEE Computer Society Press� ����� Order number ��������

BIBLIOGRAPHY ���

�Tolba et al�� ����� Hany Tolba� Francois Charpillet� and Jean�Paul Haton� Representing

and propagating constraints in temporal reasoning� In Proceedings of the International

Conference on Tools for Arti�cial Intelligence� pages ���%���� November �����

�Tsang� ����� Edward Tsang� Foundations of Constraint Satisfaction� Academic Press

Limited� ����� Oval Road� London England� NW� �DX� �����

�van Beek et al�� ����� Peter van Beek� Robin Cohen� and Ken Schmidt� From plan cri�

tiquing to clari�cation dialogue for cooperative response generation� Computational

Intelligence� ���	� �����

�Van Hentenryck et al�� ����a� P� Van Hentenryck� Y� Deville� and C�M� Teng� A generic

arc�consistency algorithm and its specializations� Arti�cial Intelligence� ������%����

�����

�Van Hentenryck et al�� ����b� P� Van Hentenryck� H� Simonis� and M� Dincbas� Con�

straint satisfaction using constraint logic programming� Arti�cial Intelligence� ������%

���� December �����

�Van Hentenryck� ����� Pascal Van Hentenryck� Constraint Satisfaction in Logic Pro�

gramming� The MIT Press� �����

�von Mayhrhauser and Vans� ����� Anneliese von Mayhrhauser and A� Marie Vans� Pro�

gram comprehension during software maintenance and evolution� IEEE Computer�

pages ��%��� �����

�Waltz� ����� D� Waltz� Understanding line drawings of scenes with shadows� In P�H�

Winston� editor� The Psychology of Computer Vision� pages ��%��� McGraw Hill� Cam�

bridge� Massachusets� �����

BIBLIOGRAPHY ���

�Wilkins� ����� David Wilkins� Practical Planning� Extending the Classical AI Planning

Paradigm� Morgan Kaufmann� CA� �����

�Williams and Woods� ����� Graham Williams and Steven Woods� Representing expec�

tations in spatial information systems� A case study� In Dave Abel and Beng Chin Ooi�

editors� Proceedings of the
rd International Conference on Large Spatial Databases�

volume ��� of Advances in Spatial Databases�
rd edition� pages ���%���� Springer

Verlag� June ����� Lecture Notes in Computer Science�

�Wills� ����� L� M� Wills� Automated program recognition� A feasibility demonstration�

Arti�cial Intelligence� ����	����%���� February �����

�Wills� ����� L� M� Wills� Automated program recognition by Graph Parsing� PhD thesis�

MIT� July �����

�Wills� ����� Linda Wills� Flexible control for program recognition� In Proceedings of the

First Working Conference on Reverse�Engineering� pages ���%���� ����� Los Vaque�

ros Circle� Los Alamitos CA ����������� May ����� IEEE Computer Society Press�

Baltimore� MD�

�Woods and Quilici� ����a� Steven Woods and Alex Quilici� A constraint�satisfaction

framework for evaluating program�understanding algorithms� In Proceedings of the

�th IEEE Workshop on Program Comprehension �WPC����� Berlin� Germany� March

�����

�Woods and Quilici� ����b� Steven Woods and Alex Quilici� Some experiments in the

scalability of program understanding algorithms� In Proceedings of the Third Working

Conference on Reverse�Engineering� IEEE Computer Society Press� September �����

To appear�

BIBLIOGRAPHY ���

�Woods and Quilici� ����c� Steven Woods and Alex Quilici� Toward a constraint�

satisfaction framework for evaluating program�understanding algorithms� Journal of

Automated Software Engineering� ����� To appear�

�Woods and Yang� ����a� Steven Woods and Qiang Yang� Constraint�based plan recog�

nition in legacy code� Working Notes of the Third Workshop on AI and Software

Engineering � Breaking the Toy Mold �AISE�� August �����

�Woods and Yang� ����b� Steven Woods and Qiang Yang� Program understanding as

constraint satisfaction� In Proceedings of the IEEE Seventh International Workshop

on Computer�Aided Software Engineering �CASE�� pages ���%���� IEEE Computer

Society Press� July ����� Also appears in the Proceedings of the ���� Second Working

Conference on Reverse Engineering �WCRE��

�Woods and Yang� ����c� Steven Woods and Qiang Yang� Program understanding as

constraint satisfaction� Representation and reasoning techniques� Technical Report

CS ������ University of Waterloo� Department of Computer Science� �����

�Woods and Yang� ����a� Steven Woods and Qiang Yang� Approaching the program

understanding problem� Analysis and a heuristic solution� In Proceedings of the ��th

International Conference on Software Engineering� Berlin� Germany� �����

�Woods and Yang� ����b� Steven Woods and Qiang Yang� Hierarchical constraint satis�

faction and program understanding� Research Note in progress� �����

�Woods and Yang� ����c� Steven Woods and Qiang Yang� Program understanding as

constraint satisfaction� Representation and reasoning techniques� Under review� Jour�

nal of Automated Software Engineering� �����

BIBLIOGRAPHY ���

�Woods et al�� ����� Steven Woods� Alex Quilici� and Qiang Yang� Program understand�

ing and plan recognition� reasoning under di�erent assumptions� Technical Report CS

������ University of Waterloo� Department of Computer Science� �����

�Woods� ����� Steven G� Woods� An implementation and evaluation of a hierarchical

non�linear planner� Masters Thesis available as technical report CS������� Computer

Science Department� University of Waterloo� �����

�Woods� ����� Steven Woods� A method of interactive recognition of spatially de�

�ned model deployment templates using abstraction� In H� Merklinger� M� Farooq�

P� Roberge� J� Grodski� and R� Dobson� editors� Proceedings of the Knowledge�Based

Systems and Robotics Workshop� pages ���%���� Department of National Defence� Gov�

ernment of Canada� November �����

�Woods� ����� Steven Woods� A method of program understanding using constraint sat�

isfaction for software reverse engineering� Ph�D� thesis proposal� �����

�Yang and Fong� ����� Qiang Yang and Philip Fong� Solving partial constraint satisfac�

tion problems using local search and abstraction� Technical Report CS������� Univer�

sity of Waterloo� �����

�Yang� ����� Qiang Yang� Formalizing planning knowledge for hierarchical planning�

Computational Intelligence� �� �����

�Yang� ����� Qiang Yang� A theory of con!ict resolution in planning� Arti�cial Intelli�

gence� ������	����%���� ����� Special Issue on Constraint�directed Reasoning�

�Yang� ����� Qiang Yang� Intelligent Planning � algorithms and analyses for plan rea�

soning� ����� Advance copy of forthcoming book�

BIBLIOGRAPHY ���

�Zaremski and Wing� ����� AmyMoormann Zaremski and Jeannette M�Wing� Signature

matching� A key to reuse� Proc� ACM SIGSOFT Symp� on the Foundations of Software

Engineering� December �����

�Zaremski and Wing� ����a� Amy Moormann Zaremski and Jeannette M� Wing� Sig�

nature matching� a tool for using software libraries� ACM Transactions on Software

Engineering and Methodology �TOSEM�� April �����

�Zaremski and Wing� ����b� Amy Moormann Zaremski and Jeannette M� Wing� Speci�

�cation matching of software components� Proc� ACM SIGSOFT Symp� on the Foun�

dations of Software Engineering� October �����

Appendix A

Constraint Satisfaction

Algorithms

A�� Path and K	consistency

Kumar �Kumar� ����� introduces the issues underlying discussions of the relative use

of constraint propagation in reducing or eliminating search for particular domains� A

natural question at this point is whether it is conceivable that one might achieve higher

levels of consistency in our CSP in some manner such that one can save even more search

e�ort� Node and arc consistency are only two possible degrees of consistency� A further

extension is to make a CSP graph path consistent �Montanari� ����� Mackworth� ������

In a most general framework� arc and node consistency may be seen as level � and level

� of what is N�consistency in general� It has been shown in �Freuder� ����� and also

outlined in �Kumar� ����� that any n variable CSP can be completely solved by achieving

N�consistency in the CSP graph� without search� Of course� achieving this N�consistency

can be at least as expensive in general as straightforward search� The cost of achieving

N�consistency is high� and is avoided in most applications since it has been found to be

���

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

less e
cient than combining a smaller degree of consistency application with search� An

optimal algorithm for computing N�consistency� where N is an integer� is given by Cooper

�Cooper� ������

A�� Utility of constraint propagation

In each of the cases of enforcing node and arc consistency we are propagating some of the

constraints through the graph� Essentially we are just creating a simpler CSP from the

original CSP� We might say that given an original problem CSPoriginal we can derive �rst

CSPnodeC and then CSParcC � Intuitively it would now seem that the simpler CSP should

be able to be solved using some heuristic search approach in less computational e�ort than

the more complex original CSP problem� while achieving the same solution� The real is�

sue to resolve though� lies in determining what level of advance consistency computation

should be done on a CSP in order to minimize the overall e�ort of combined preprocess�

ing and search� This question has been addressed empirically in a large body of work

including �Kondrak and van Beek� ������ �Nadel� ������ �Haralick and Elliott� ������ and

�Dechter and Meiri� ������ However� most frequently this work is applied to toy problem

domains such as the N�queens and Confused�N�queens problems which involve arranging

many queens on a chess board so that either they do not challenge each other �N�queens	

or they all challenge others �Confused�N�queens	� Good descriptions of these problems

are given by Nadel in �Nadel� ����� Nadel� ������

A�� Partial Arc Consistency

In some experimental work �Nadel� ����� Dechter and Meiri� ������ it has been observed

that a preprocessing phase accomplishing node consistency for a CSP has been cost e�ec�

tive in terms of overall computational savings for �nding all solutions in some domains�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

but also that the cost of achieving arc consistency has not been found to be uniformly

e�ective� As a result of this work� e�orts have been made in �Nadel� ����� to see if

the actual optimal bene�t point for consistency actually falls somewhere between level

� �node	 and level � �arc	 consistency� The result has been several algorithms which

achieve j�consistency �partial arc consistency	� where j is between � and �� Results in

some experimental domains have shown that these partial arc consistency algorithms

combined with search outperform those utilizing only node consistency as a pre�search

step �Nadel� ������

Several partial arc consistency algorithms are detailed in �Nadel� ������ with each

representing a progressively higher degree of consistency� Their names re!ect the ap�

proximate amount �as a fraction	 of arc consistency checking performed by each� The

algorithms discussed and evaluated in �Nadel� ����� for the Confused�N�queens problem

are listed below� These algorithms can be incorporated into backtracking search to form

hybrid versions which guarantee di�ering levels of arc consistency at each search node�

� Several algorithms are well known for achieving full arc consistency including AC���

AC��� AC��� AC��� and AC��� Nadel in �Nadel� ����� describes the three most well

known in common terms� These three are now known as �AC��� �Mackworth� ������

�AC��� �Waltz� ������ and �AC��� �Mackworth� ������ AC�� di�ers from the other

two in that the others attempt to avoid unnecessary arc checks performed in AC���

This di�erence is elaborated in �Nadel� ������ AC�� di�ers from AC�� in that the

order in which arcs are each in turn checked for consistency is di�erent� Nadel

�Nadel� ����� points out that the issue of avoiding checks is deserving of more re�

search� and observes that it is indeed an analog of the issue of constraint�check order�

ing we brie!y discuss in this thesis in Section �������� Other full arc consistency algo�

rithms are described in other work� particularly AC�� �Mohr and Henderson� �����

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

and AC�� �Van Hentenryck et al�� ����a�� An optimal k consistency algorithm is

presented in �Cooper� ����� as a generalization of AC���

� AC ��� arc consistency� apparently arrived at independently in �Nadel� ����� and

�McGregor� ������

� AC ��� arc consistency� is identical to �Check Forward� as outlined in

�Haralick and Elliott� ������ and as also presented in �McGregor� ������

� AC ��� arc consistency� essentially �Partial Look Future� as described in

�Haralick and Elliott� ������

� AC ��� arc consistency� essentially �Look Future� as described in

�Haralick and Elliott� ������

A�� Intelligent Backtracking

A���� BackJumping

Consider the case where we have three variables for assignment and consequently a search

tree of depth �� Assume that the variables are selected in the order V �� V � and V �� Also

assume that there is a constraint between V � and V �� call it C���� If V � has a domain

of ��� �� �	� and V � has a domain of �A�B�C	� and V � has a domain of �X�� X��X�	�

then consider the section of the tree shown in Figure A�� after we instantiate V � to ��

On the ��rst� instantiation of V � to A� there are no constraints� so we descend to V ��

and attempt to instantiate V � to its domain values one at a time� If the constraint

C��� fails C��� for each domain value of V �� a normal backtracking method would retreat

and attempt a new value for V �� Now� clearly this doesn�t make any sense� since the

con!ict causing the backtrack is unrelated to the current instantiation of V �� We can

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

infer now that the assignment of � to V �� is incompatible with any domain value of

V �� In a sense we have learned something about arc inconsistency in the CSP graph�

We can take advantage of this knowledge now by backtracking to the incompatibility�

namely V �� and assigning a new domain value to V �� and bypassing any other attempts

to instantiate V �� So not only have we saved ourselves the useless work of re�checking

redundant constraints� but we have pruned a considerable portion of the search space

involving each domain value of V ��

This approach will only be bene�cial when there is arc inconsistency present in the

CSP we are attempting to solve�

V1

V2

V3

C_1.3
{ 1,2,3 }

{ A,B,C }

{ X1,X2,X3 }

V1=1 V1=2 V1=3

V2=A V2=B

V3=X1
FAIL
C_1.3

V3=X2
FAIL
C_1.3

V3=X3
FAIL
C_1.3

Figure A��� Example of BackJumping Behaviour

A���� BackMarking

BackMarking is explained in some depth in �Nadel� ������ However to put it simply�

BackMarking attempts to avoid repeating redundant consistency checks where possible�

Whereas BackJumping avoids some cases �and some search space	 where a set of consis�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

tency checks fail� BackMarking searches the same space as Backtracking� but with fewer

consistency checks� The improvement is achieved through a complicated table�save and

table�lookup of previously checked constraint values�

A������ Sharing AC work in hybrid search

An interesting issue to consider in hybridized search and constraint propagation is whether

or not work spent in one part of the search space in locally reducing a particular partially�

solved CSPmight be shared to other parts of the CSP space� either completely or partially�

One method proposed �Nadel� ����� for the solution of constraint satisfaction problems

�CSPs	 is the coupling of traditional breadth��rst or depth��rst search through the space

of all possible variable assignments with some degree of constraint propagation before or

during search� Hybrid strategies interleave the work spent on search and the work spent

reducing variable domains through some kind of constraint propagation algorithm�s	�

Hybrids have been constructed based upon well known search strategies including tra�

ditional backtracking� forward checking� backjumping� and backmarking� All of the hy�

brids utilizing these algorithms have been constructed typically by attempting to achieve

some degree of arc consistency during search� For example� forward checking attempts to

revise or reduce the domains of remaining variables based upon the most recent instan�

tiated variable value�

It is quite often the case that the work spent in performing constraint propagation

is duplicated at various points in the hybrid search space� Essentially identical domain

values at disparate points in the search space are removed as a result of identical constraint

checks being performed� We present here a brief description of a novel hybrid�based search

strategy that can allow for the sharing of constraint propagation work under certain

circumstances� In addition� this strategy can be easily encapsulated in a depth��rst

structure so as to minimize space requirements of search�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

This work is derivative of our ongoing research into constraint satisfaction search and

hybrid application of search and constraint propagation techniques�

A������ Upward Sharing

The general structure of hybrid search may be summarized as selection of a variable�

assignment of a domain value for that variable �instantiation	� some constraint propaga�

tion intended to simplify the remaining problem� and repetition of this sequence until a

solution is found� This approach can be nicely formed as a complete depth��rst strat�

egy which �nds some solution as quickly as possible� and yet which is capable of �nding

all solutions� Forward checking for instance operates precisely in this manner� where

the hybrid aspect appears in that all other variables are revised or have their domains

�reviewed� with respect to the latest assignment� and any values no longer satisfying a

constraint between a particular variable and the newly instantiated one are discarded�

If we were to take the decision point for the assignment to some variable� call it A�

and consider the various subtrees resulting from di�erent domain value selections for A�

we can notice that the resulting problems under each subtree are quite similar to the

parent �before A	 problem� In fact� they di�er only in that A no longer has a domain�

but rather a single value� Each of the A subtrees di�ers only in the choice of domain

value for A�

Figure A�� shows a problem with four variables A� B� C and D in which A has been

selected for instantiation� and in fact the value assigned to A is � in this subtree� If A

has a domain of �� � and � in the parent� then there will conceivably be three siblings

of this nature� In particular� the subgraph consisting of nodes �and domains	 B� C� and

D plus their associated constraints C�� C� and C� will be identical in each of the three

subtrees� Further� this subgraph will exist in earlier ancestors of the parent since in our

search method we never add variables or domain values as we progressively instantiate

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

B
C

D

A = 1

{ 1, 2, 3, 4 }
{ 1, 4, 6, 9 }

{ 2, 6, 10 }

C1 C2

C3

C4
C5

Figure A��� Partially Instantiated Constraint Graph

variables�

Now� if we were to perform some constraint propagation in which the domain of B is

reduced based upon the newly selected value of A� we can say B�s domain has become

�A�contaminated�� This is illustrated in Figure A��� B�s domain has been reduced

based upon our new �conjecture� that A�s value is �� Similarly� for any other variable�s

domain constrained by A� if that domain is reduced based upon an instantiation of A that

domain is considered to be �A�contaminated�� Now� if D�s domain were to be reduced

based upon either B or C �each A�contaminated	� then D�s domain would be said to be

A�contaminated also� The basic intuition of contamination in this context is to allow us

to be aware of what variable assignment conjectures have been used in our arrival at a

particular domain for each variable�

Assume that the order of instantiation in our example is determined prior to any

search� For instance� we will say that the order of variable instantiation is always A� B� C

and �nally D� Therefore� as we progress down our instantiation order and search space�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

B

A = 1

{ 1, 2, 3, 4 }

C1 Revising B from A via C1
 results in a reduction of the
 domain of B and causes B
 to be "A−contaminated".

Figure A��� Contamination trickling through graph

A is instantiated �rst� and in all subtrees after that instantiation� the assignment of A

is a �fact� that can be used in reasoning about other domain values� If we look at the

search space as a whole� the variable commitment point spawns child subtrees� where in

each subtree the value of that particular fact di�ers� The parent of these children has no

�given� fact for A� only a set of possible domain values�

The concept of contamination allows us to keep track of which �facts� have been used

in reducing some possible domain assignments� Since these assignments occur top�down

and one at a time� we can see that the point in time where A is assigned always occurs

before B�s assignment� and further that at any point in the space after B�s assignment�

A must be assigned to some particular value also� In fact� when an arbitrary variable

has just been assigned a particular domain value� all variables earlier in the order have

already been assigned� and all variables earlier in the order have a set of possible values�

If� in a particular instance of constraint propagation during search �say after assigning

A$�	� we reduced the domain of some variable �say D	 based upon the current domain

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

C

D

A = 1

{ 1, 4, 6, 9 }

{ 2, 6, 10 }

C2

C5

The domain of D is revised (reduced) as
 a result of one value being incompatible
 with any domain value of C for constraint
 C5.

Figure A��� Constraint propagation between unbound variables

of some other unbound variable �say C	 and the constraint set between C and D� then

�assuming C is not contaminated	 we should be able to �share� this reduction throughout

our search space� Figure A�� details this reduction� The reasoning that resulted in a

reduction of D�s domain was not dependent on any instantiation explicitly or implicitly�

and this reduction could have as easily been done prior to the start of any search�

In a backtracking paradigm� sharing this information can be thought of as propagating

the domain reduction upwards in the search space� In this particular example� we have

just assigned A$�� and the parent is the original �top	 problem formulation without

assignments� If we propagate the D reduction to each parent up to and including the

top problem� any further successor creations through other instantiations will carry the

reduction� The D reduction will therefore have been made locally in the ancestor tree of

the node where the constraint propagation occurred� It will� however� take global a�ect

as search progresses�

The key to this upward propagation is in the lack of contamination of the domain

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

being propagated� We cannot reduce a domain based upon some variable assignment

�directly or indirectly	� and propagate this result above the �highest� variable which has

taken part in the �contamination�� Figure A�� and A�� show the upward propagation

to the highest level� Figure A�� shows how this revision of D�s domain is later used in a

di�erent instantiation of A�

A=1

A={1, 2, 3}
B={ 1, 2, 3, 4}
C={ 1, 3, 6, 9}
D={ 2, 6, 10}

B={ 1, 2, 3, 4}
C={ 1, 3, 6, 9}
D={ 2, 6, 10}

B C

D

Reduction of domain of D based on
 constraint with C could propagate upwards
 since neither C nor D are contaminated at
 all (A=1 has not affected their domains).

Figure A��� Problem space before upward propagation

For example consider Figure A��� If we instantiated A$� and B$�� then reduce the

domain of D based only on C where neither D nor C have been contaminated by either

A or B� then we may propagate the new D domain to all parents up to and including

the whole problem� All subsequent children resulting from backtracking will include this

reduction� If we instantiated A$�� and B$�� then reduced the domain of C based on

A�s value� then C has become A�contaminated� C�s new domain may only propagate

up to the level where A was instantiated� All subsequent children of the node where

A was instantiated will now re!ect the reduced C domain� We must be careful since if

we attempt to propagate a contaminated reduction past its point of instantiation� we

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

A=1 A=2

A={1, 2, 3}

B={ 1, 2, 3, 4}
C={ 1, 3, 6, 9}

B={ 1, 2, 3, 4}
C={ 1, 3, 6, 9}
D={ 2, 6, 10}

B={ 1, 2, 3, 4}
C={ 1, 3, 6, 9}

D= { 2, 10}

D= { 2, 10}

Upward propagation of revised D domain
 results in a smaller subsequent search space
 for subtrees of the upward affected ancestors.

Figure A��� Problem space after upward constraint

are essentially carrying inferences based upon assignments past where they occur� and

thus would force a reduction in a domain based upon an erroneous assumption� and

completeness will have been sacri�ced�

A������ Implications

As a result of propagating these constraints upward in the depth �rst path where possible�

we can reduce the size of the search space in subsequent instantiation paths� However�

we should note that the work we are sharing could have been performed as part of more

elaborate initial consistency checking prior to the start of search� The advantage of this

approach is that we may be uncertain initially as to how much e�ort to spend on pre�

liminary problem reduction� If some factors appear or are noticed during hybrid search�

we can take advantage of these conditions locally via application of further consistency

propagation� and achieve global improvement for only the cost of replacing ancestor do�

mains where reduction occurs and where the domain contamination determines upward

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

A=1

B=2

Upward with new
D domain

B=3

Revise D based on C,
 uncontaminated by A or B.

Upward with new C
 domain only to level A.

Revise C based
on bound A, so C is
now A−contaminated.

WHOLE

Figure A��� Problem space after upward constraint

propagation is permissible�

This approach will result in savings only if�

�� A constraint propagation algorithm�s	 is utilized which at some point successfully

revises some domain based upon constraints among uninstantiated variables� For

this point� the tighter the constraints the more likely it is that at least one value

will be removed� If no values are removed� there is nothing to propagate�

�� In at least where the above ��	 is successful� we are able to propagate the reduction

at least one level above the current instantiated variable� For instance� if we have

just instantiated B� then in order for a revision to be useful� we must propagate

it to at least A so that A�s later children �the current node�s siblings	� re!ect this

improvement� Of course� the more levels that a removal is propagated� the greater

the potential for savings as the scope of the removal is widened�

Note also �

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

�� This method evolved from thinking about how to share constraint propagation

across the search space in an A� �Nilsson� ����� or breadth��rst search�

�� Since upward propagations occur along the ancestor path of the current node�

the upward propagation of several domain reductions can combine combinatori�

ally within ancestor nodes to produce larger reduction in the size of the search

space expanded following upward propagation� These reductions should form a

multiplicative reduction in the search required�

�� Search strategies that do not pre�order the variable instantiations can still bene�t

from this upward ancestor propagation strategy� Since we are careful to keep track

of the �contamination� level of each domain during search� we never propagate an

erroneous inference above the level in the space where the �trigger instantiation�

was �rst made�

�� This method seems to relate to propagating hypothetical inferences� If identical or

highly similar work has been done� we have been unable to locate it�

�� In Chapter � we elaborate a hierarchical AC algorithm based loosely on this con�

ception� In particular� an e�ort is made to carefully propagate �earlier� constraint

applications in an e�ort to reduce repetitive constraint checks�

A�� Partitioning and Hierarchical Methods

One drawback with the approach to solving constraint satisfaction problems based upon

interleaving search and constraint propagation described in the preceding sections is that

a solution or set of solutions is found for a particular CSP in a particular world situation or

set of domain values� but those �near� misses for CSP solutions are ignored� Essentially�

some particular sets of variable and domain pairs that fails a single constraint� or is unable

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

to match a single variable to a domain value in the world situation does not appear to

the user as a candidate solution� In many domains it is easy to see that this hard and

fast �yes�no� response to a CSP solution is inadequate� It is quite conceivable that there

is a certain degree of uncertainty in the formulation of the CSP itself� to say nothing

of possible inaccuracies in the data expressed as domain values� Certainly some of this

uncertainty may be addressed in the formulation of constraints themselves� but it seems

obvious that some way of specifying the �degree� of match in terms of some prede�ned

�idea� or �desired� match state would be desirable� An ordering or heuristic of this type

could serve also as a means of focusing search e�ort on particularly promising candidates�

In addition to uncertainty or error present in either the template speci�cation or in the

data� we must also recognize that we are attempting with many CSP problems to model

the way in which some agent performs a particular task� The modeling process itself

can easily have missed or been unable to capture certain aspects of the reasoning process

underlying the solution strategy� and a method of interaction with an expert allowing for

dynamic shaping of the search process would be particularly valuable in terms of both

improved search performance and in terms of perceived utility of the problem solving

system itself� In many problem instances� the amount of time allowed for searching for

a potential solution is limited� In many cases� if a solution cannot be found in that time

period� then a �best� partial solution or set of �best� candidates that could possibly be

solutions� would be much more valuable than no solution at all�

In viewing constraint satisfaction as search� each progression down in the search tree

is as a result of the instantiation of a variable with a particular domain value� Further�

if we are performing consistency checking as we go� only consistent assignments will be

reached at each level� As a result� any given node in the search space represents a partial

solution� A total solution is reached only at a leaf node� In fact� if we were to consider

stopping this search before ever reaching a leaf node successfully� many partial solutions

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

were seen� some of which were �closer� to a total solution than others� It is possible to

keep track of these partial solutions and then utilize them in the event of failure to �nd a

total solution� Essentially what this would �relax� the remaining constraints� suggesting

that the resulting partial solution�s	 are �good enough�� Ideally though� we would like

to perform this �relaxation� in a well conceived and systematic fashion so as to obtain

partial solutions that ful�ll all of what we deem �crucial� constraints� and perhaps relax

some of the other less important ones only�

Essentially� we need to shape the constraint satisfaction process so that it can�

� Provide a degree of modeling of uncertainty by ordering or allowing a certain subset

of failed total solutions as �partial solutions��

� Provide an ability for interactive ordering or preferring of partial solutions during

the search for total solutions�

� Allow for �anytime� behaviour� where a demand can be made of the problem solv�

ing system for its� best solution or set of solutions at an arbitrary point in time�

before the search is completed� Ideally� the solutions given would be the �best�

possible �in terms of some predetermined de�ning measure	� given the time spent�

Further� subsequent time spent would �improve� the quality of the solutions� It

seems reasonable that if we are attempting to deal with uncertainty in some mea�

sure� that the �best� quality could be �certainty� or �con�dence�� thus we could

achieve greater con�dence in a particular solution or set of solutions by spending

more time on search�

In subsequent subsections we will outline three di�erent approaches to ordering and

preferring potential partial solutions� The �rst� partitioning� will be concerned with

attempting to break down CSPs into several component parts� solving each independently

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

and then re�composing the solutions to each component into a solution or set of solutions

to the total problem� The second� abstraction� will outline how we may arrange a problem

hierarchically into progressively more constrained version of the problem� and attempt to

search through the space of all simple or constrained solutions in a way in which we can

achieve both timely solutions and are guaranteed increasing solution �quality� over time�

The third subsection will discuss possible hybrid approaches for combining partitioning

and abstraction� In addition� we will look speci�cally at how these approaches relate

with an interactive problem solving paradigm� and also what kinds of heuristics will be

of particular use to a decomposed problem solving approach�

A�	�� Partitioning CSP

A������ Simple partitions

Some problems seem to �naturally� decompose into parts that may be solved indepen�

dently �rst� with the �nal solution being composed of the completed independent solu�

tions� A simple example of this type of decomposition would be in solving mathematical

expressions� Bracketed sections may be solved �rst in an expansion tree structure� with

the results being accumulated upward from the leaves of the tree to the root� with the

root being the ultimate solution� Other problems are less �structured� and yet can also

be decomposed readily� For instance� the problem of constructing an airplane might be

seen as too complex a task� Breaking the task down into manageable pieces might �rst

suggest that we need to �construct a pair of wings�� �construct a body�� and only then

assemble the wings and the body to form an airplane��

Similarly if we were attempting to recognize an airplane in an image� we might �rst

consider trying to recognize portions of the plane �rst that are in some sense more �ele�

�Airplane analogy due to Qiang Yang

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

mental�� for instance the wings� and the body� Once we had recognized what we believed

were wings and bodies in a picture� we could then attempt to put them together according

to the known de�nition of what a plane looks like in terms of the relationships between

wings and the body�

Partitioning implies a divide�and�conquer methodology which relies on the fact that

the divided problems are each simpler than the original problem and which are simpler

to solve as a set than the original problem� Essentially this type of decomposition and

recomposition could only be justi�ed as a sensible approach if the amount of e�ort spent

solving the individual subproblems plus the time spent decomposing and re�composing

was less that the e�ort that would be spent in solving the entire problem all at once�

A������ Embedded CSPs using partitions

We commonly look at a CSP as a problem in which we have a set of variables each with

a domain set� and with a set of constraints on the assignment of domain values to each

variable� Consider now that each �variable� in the CSP could represent a sub�problem�

and each domain value for that variable a possible solution� Figure A�� outlines this

�embedded� problem structure�

If we consider that the �outside� or �external� CSP is made up of the �rules� which

constrain how the individual �internal� CSP solutions may be combined� we see a conve�

nient representation for CSP decomposition�

A�	�� Abstraction and CSP

A������ What abstraction means in this context

In attempting to apply techniques of abstraction to a constraint satisfaction problem

�CSP	� we must �rst understand what abstraction means in the context of constraint

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

Constraint A <−> B

Variable A

Variable B

domain = { all possible solutions to A }

domain = { all possible solutions to B }

V1 V2

V3c1 c2

c3

{ 1,2 } { 1,2 }

{ 1,2 }

V1 V2

V3c1 c2

c3

{ 1,2 } { 1,2 }

{ 1,2 }

Figure A��� Embedded Constraint Satisfaction

satisfaction� Some basic questions must be addressed at this point� such as �How can

abstraction improve problem solving e
ciency "�� �How would abstraction be encapsu�

lated into our problem speci�cation "�� and �How must we modify the way we search for

solutions in order to take this new speci�cation into account "��

��How can abstraction improve problem solving efficiency ���

In order to be of any use� one would expect that abstraction would result in an overall

simpli�cation of either the problem itself� and in tighter control of the process of solving

the problem� It is apparent that simpli�cation of the problem could arise from encoding

more domain information into our representation� Given this additional information�

we would wish to modify our problem solving process so that we basically remove from

consideration e�ort�consuming dead ends earlier in our search� The intuitive appeal of this

use of abstraction lies in the fact that we are attempting to tailor our search for a problem

solution according to speci�c problem attributes� The e�ectiveness of abstraction as a

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

strategy is not well understood theoretically� and in the context of this work the utility of

abstraction is addressed empirically only� The next obvious question in our speci�cation

of abstraction is what domain information can we encode� and how "

��How would abstraction be encapsulated into our problem specification ���

Typically abstraction is applied to a particular problem by creating what is known

as abstraction hierarchies� Hierarchies basically attempt to identify for each aspect of a

particular problem how �integral�� �key�� or �important� that aspect is� These structural

problem aspects are organized into hierarchies from most to least �important�� In terms

of CSPs� problems are structures in terms of N variables� M constraints amongst those

N variables� and a domain of some size for each of the N variables� Consequently� the

speci�cation of an abstraction hierarchy for a particular CSP would involve the identi��

cation of the �important� variables� and constraints� In addition� abstraction is often to

taken to mean detailing the di�erence between �more speci�c� and �less speci�c� prob�

lem representation� In CSPs� constraints are essentially the guardians of speci�city and

so a less speci�c representation of a problem instance could in fact be adjusted to have

less constraining constraints� We then have at least � ways of formulating the di�erences

among levels of an abstraction hierarchy for� or of relaxing� a particular CSP�

�� Ordering Variables by �importance��

In ordering variables� the intent will be that �high� level representation of a par�

ticular problem will include only those variables of �high� importance� At each

successively more speci�c layer of the abstraction hierarchy� more variables would

be progressively added to the representation�

�� Ordering Constraints by �importance��

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

As for variables� the intent is that a �high� level representation of a particular

problem includes only important constraints� Clearly the de�nition of important

constraints depends to some extent on which variables are applicable at each level�

In fact there are two classes of constraints which di�er fundamentally� Node con�

straints or re!exive constraints a�ect only a single variable and as such may be

ordered in terms of importance either with respect to a particular variable� or cat�

egorized in some other way by level for all variables� Arc constraints a�ect a set of

variables and may be categorized with respect to either that set of variables or to

the abstraction level�

�� Relaxing Constraints�

In addition to constraint ordering� constraints may themselves be relaxed or have

their restrictiveness softened� As for constraint ordering� only constraints among

variables which exist at a particular have any meaning in the representation�

In some manner we must formulate the problem representation hierarchy utilizing

these tools� Work has been done in other domains in terms of attempting to automati�

cally create these hierarchies �Knoblock� ����b� Knoblock� ����a� but we assume only the

manual construction of these hierarchies� In conjunction with a domain expert we must

identify the key features of the problem� and in some number of layers represent what that

expert expects will be successive problems whose solution would suggest a progressively

increasing degree of con�dence in the accuracy of the solution� For instance� if a solution

to the �most abstract� representation of a problem is considered to be �quite likely� true�

then the solution of the next �least abstract� representation should result in an overall

increase in con�dence in that solution�

We have now identi�ed one immediate bene�t of applying abstraction to CSP� Prob�

lems may be represented using hierarchies so as to specify a solution strategy for identi�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

fying an approximate��rst approach� In such an approach� the lack of a complete least�

abstract representation solution will not leave the user without some �best�guess� near�

solutions� Further� these near�solutions are arrived at systematically in that the user has

implicitly indicating what constitutes progressively improving con�dence for a particular

problem domain�

��How must we modify the way we search for solutions in order to take

this new specification into account ���

Essentially the hard work is done in the representation phase� What we are now

presented with is a succession of CSPs which may be solved according to the techniques

discussed earlier in this paper� The advantage now lies in that since the hierarchy speci�es

�increasing speci�city�� any solution to the most speci�c representation will also be a

solution to any of the more abstract representations� Thus� once we have solved an

abstract representation completely� we need only �lter the abstract solution set between

levels according to the changes we detail in terms of constraints or variables at that level

change�

In fact� at each level of abstraction in the abstract solution space we essentially have

the problem neatly partitioned� In �Woods� ����� these partitions are described in terms

of representation changes� Since each abstract solution is a candidate to become a next

least�abstract level solution� we may apply the constraints between levels to each candi�

date independently of the others� Failure of the new constraint set application indicates

the failure of the candidate to become accepted as a solution at the next level�

Further� other heuristics essentially independent of the abstraction representation may

be applied at each successive abstraction level shift� For instance� a heuristic speci�c to

problems with spatial orientation �Spatial Cohesion	 is described on page ��� and can be

used as a means to simplify extended abstract solutions before applying the next level

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

constraint set�

A������ Abstraction as partial solution of CSP

We have until this point discussed the concept of �partial solutions� quite loosely� essen�

tially labeling any consistent partial assignment of domain values to variables a partial

solution� To some extent this is true� since the portion of the problem associated with

those assigned variables has been solved� However� such a �partial solution� may be

as useless as no solution at all� What would be valuable is a prede�ned portion of

the whole problem� whose solution indicates something about the entire solution in it�

self� �Freuder and Wallace� ����� introduce the concept of Partial Constraint Satisfaction

Problems �PCSP	 in order to systematically de�ne the relaxation of constraint satisfac�

tion problems� In essence� there are three ways in which a CSP may be �relaxed� or

simpli�ed�

�� The domain of a particular variable can be extended to include more domain values�

�� A variable or constraint may be removed from the original CSP�

�� The domain of a constraint may be enlarged�

In Figure A�� we consider the original CSP as the common root of a graph representing

all possible relaxations of that CSP� Each node in the graph are simpler CSPs obtained by

applying a sequence of relaxations� This graph is not a tree since application of relaxation

steps in di�erent orders can give the same PCSP as a result� Since there is a very large

space of possible applications of the three relaxation steps at any stage of creating a PCSP

space� a domain dependent method is assumed to detail appropriate relaxations� and

indicating bounds on how much relaxation is acceptable for this particular problem� If we

now were to consider the problem as searching through this problem space attempting to

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

CSP_orig

. . .

. . .

. . .

. . .

. . .

PCSP−1a PCSP−1b PCSP−1c

PCSP−2

PCSP−3

PCSP−4

PCSP−5

relax A

relax B

relax C

relax D

relax E

Figure A��� One abstraction hierarchy in a PCSP space

�nd one PCSP that could be solved� a great deal of work must be expended in determining

which ones could not be solved� An appropriate method might interleave search through

the PCSP space� thus not over�committing to either too strict or too relaxed versions of

the CSP�

In a very real sense in building the PCSP space� we have constructed an abstrac�

tion space in which the least constrained PCSPs are the most abstract� and the most

constrained PCSPs are the most speci�c instances of this CSP� However� there are many

possible versions of the least constrained PCSPs� How do we di�erentiate amongst these"

We would like to to arrange these PCSPs into a more systematic hierarchy where some

domain knowledge can be used to structure the hierarchy�

Consider that we could extract the �key� or �critical� information from a CSP� and

form a �most abstract� PCSP �call it PCSP��	 which encapsulates this knowledge� Next�

we extract several common distinguishing features or identi�ers which re!ects how the

set of partial solutions is limited� Each of these sets of distinguishing features is applied

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

to PCSP�� as an inverse instance of the previous three relaxation techniques� Speci�cally�

we can now add a variable� restrict a variable domain� or restrict a constraint domain�

We now construct the more constrained PCSP��� then PCSP��� and �nally our complete

problem� CSP� Figure A�� on page ��� outlines this process� The number of stages or

the groupings of the sets of �making stricter� actions can be dependent on a particular

problem� and on the typical features or keys of that domain� The advantage of this

systematic structuring of the hierarchy of PCSPs is that a constraint satisfaction approach

which solved PCSP�� �rst resulting in a set S� of solutions� then attempted to solve PCSP�

� for S� given the initial starting point as each of the solutions in S�� and so on� would

essentially have the quality of iteratively re�ning rough or partial solutions into speci�c

or total ones� The e�ort spent arriving at the set S� is not spent again in solving for set

S�� as we build on the work done before�

The process described above works very much in a top�down manner� solving PCSP��

giving set S�� then re�ning S� in solving PCSP�� giving S�� �nally re�ning S� in solving

CSP� giving our �nal solution set� One obvious di
culty with such an approach is that

it �nds all of the PCSP�� solutions in S� before attempting to �nd any solution elements

for S�� for example� Basically each level is completely solved before the subsequent level

in a breadth��rst manner� This approach has the advantage that if search were halted

at an arbitrary point in time� all of the �best�so�far� answers are on the same level� It

has the disadvantage that time spent searching the less constrained CSPs might have

resulted in more concrete solutions� In �Woods� ������ a search strategy known as �Left�

Wedge� is described for exploring the multiple level of abstraction solution space which

progresses downwards towards more concrete solutions� and from left to right through the

solutions at each level at the same time� This strategy is a variation on A� �Nilsson� �����

search which � with the expenditure of additional search e�ort	 can provide us with both

concrete solutions and abstract solutions�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

To some extent� the selection of an approach for this type of search depends highly

on how we would wish to take advantage of interaction with the user during search� In

a certain case a user may wish to view and prioritize or eliminate higher level solutions

in order to guide the discovery of concrete solutions� It is also possible that a user may

wish to interleave the various levels of search and interaction�

A�	�� Combining partitions and abstraction

We have outlined how CSPs could be decomposed through either partitioning or abstrac�

tion approaches� An interesting point for further investigation is the issue of interleaving

these concepts in decomposing CSPs� For instance� a complex problem abstracted into

a hierarchy of several layers could have further decomposition within each level� in the

form of a partition� or even further abstraction inside that level� This !exibility allows a

very wide range of de�nition of a particular CSP� and suggests many possible options for

the designer to consider in deciding how to decompose a particular problem�

This type of problem structuring has fairly broad implication to the manner in which

search for solutions could be performed� A global strategy controlling where e�ort is

spent across hierarchies and between partitions would be required� In addition� the very

nature of partitioning suggests that multiple processor or distributed solutions may o�er

many more possible extensions to the control strategy�

A�	�� Decomposition and user interaction

As we have stated earlier� one advantage of partitioning or abstracting a large CSP

problem is that it provides a useful model for solving the CSP in which the user may

interactively guide the search� This guidance can occur in several forms for both parti�

tioning and abstraction� We consider abstraction as an interaction strategy in detail in

�Woods� ������ and only touch on the important issues in this short summation�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

During the search of the PCSP space detailed in the abstraction section� high level

solutions are found for abstracted CSPs� and these candidates are then re�ned if possible

to lower level solutions� This process is repeated until a solution set is found at the lowest

or base level of abstraction� Justi�cations for this approach include�

�� Elimination of high level solutions from the set of solutions will simplify the search�

and can also account for the ability of the user to understand the domain better

than has been captured e�ectively in any pure search pruning heuristic� Basically�

the user is allowed to view and remove candidates before they are passed between

levels� This process can be modi�ed to suit the user and the application in terms

of the degree of interactiveness required or desired�

�� Ordering of high level solutions by �likelihood� or some other user based preference

heuristic that may not be easily captured in an automatic heuristic� If the user can

see and evaluate the possible high level solutions based on his own experience or

preference� the solutions that are eventually found at lower levels may suit better

the user requirements or needs�

An interesting side�e�ect of this user interaction is that observation or analysis of the

selections or ordering of the user may assist in the creation of more automatic methods

of �ltering that can be employed in future versions of the search process� These methods

may become apparent to the user through his mechanized selection process� or perhaps

to other independent analysts observing the �ltering process as employed by the user�

Looking at CSP search as several disjoint CSP searches for separate partitions� and

then re�composing these partitions into complete solutions allows for a similar level of

user interaction in the process� Justi�cations for this approach include�

�� Elimination of elements from any of the partitions will reduce the number of re�

composition attempts that need to be attempted without computational e�ort� De�

APPENDIX A� CONSTRAINT SATISFACTION ALGORITHMS ���

pending on the problem domain� the identi�cation of some or even one part might

be enough to dramatically reduce the possible explanations of that deployment� In

this way partial solutions may be very valuable�

�� While many real world problems may often be solved using a form of reasoning

similar to abstraction� others may have no easily identi�able abstract quality� while

possessing several sub�parts of equal importance�

Appendix B

Mechanism Matching

There is a broad range of research in this area� For example� �Kazman et al�� ����� de�

scribes how architectural components may be classi�ed � particularly in terms of compo�

nent interactions� Component instantiations include objects� programs� processes� tasks�

interactions include RPCs� shared memory� sockets� pipes or rendezvous� In this work

speci�c distinctions are made among di�erent types of conceptual matching� In partic�

ular� mechanism matching may be de�ned as instantiating components�interactions into

language parts that facilitate a particular type and communication� signature matching

as agreements on the form of data !owing between matched elements �types� structures�

parameters	� and semantic matching which assures that computations together satisfy the

behavioural and resource utilization system requirements� This division of functionality

is closely analogous to a breakdown of structural constraints in our PU�CSP approach�

except at a varying degree of abstraction and with emphasis on a variety of programming

devices where we have focused more on static �COBOL�like	 interactions as opposed

to RPCs and the like� In essence� the structural analysis work has been considerably

expanded in this work and could be adapted in our model as additional constraint infor�

mation� In fact� the primary purpose of the work reported in �Kazman et al�� ����� is to

���

APPENDIX B� MECHANISM MATCHING ���

create a system�building paradigm independent of language which enhances re�usability

of components and allows system builders to think in terms of application rather than

programming language� The architectural features described in the paper are meant to

add a semantic element to the previous purely syntactic idiom descriptions in the liter�

ature� In Section ���� we brie!y discuss how some of the work presented in this thesis

could be formulated with this as a methodology for mechanism matching�

Appendix C

Details of Hierarchical CSP

Algorithms

For these algorithms� a set of functionality is assumed as follows�

� Linkage accessor functions are available as follows� Link�srcDom returns the source

domain value of the link� Link�srcVar returns the source variable of the link� Link�targetlist

returns the set of justifying target values in the link�

� The expression A� $ B is shorthand for A $ append�A�B	�

� The function resetMarking�x� fn	 resets the marking to nil of the hierarchy rooted

at x for function fn�

� The function GetNextNotDeletedSibling�x� source	 returns the next undeleted

sibling of x for variable source in order to attempt to re�establish a linkage in

stepped revision� The next function relies on an arbitrary but predictable ordering

for domain values�

���

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

C�� Algorithm DeleteSourcePropagateAggressive

The DSPA algorithm propagates a deletion of a target domain value through any jus�

ti�cation links which utilize this value� If the target value T belongs to a justi�cation

link L for a source value S� S is deleted in the case that no other target justi�ers exist�

The existence of a link in the aggressive case indicates that all siblings of T have already

been checked against S� and the search for justi�ers relies solely on the linkage structure�

If the deletion causes a linkage for S to contain only one target T�� then the relation

is re�asserted with the hope of reducing the hierarchy of the source based on the single

remaining target�

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

Algorithm DSPA�Val�xi�Var�Source�int�MaxD�relation��	�

� DeleteDomainV alue�xi	� AffectList �$ �xi	�
� Tlinks �$ Justi�cation Links which for which xi is target�

� ForAll Link in Tlinks do
� newTlist �$ Link with xi removed�
� if �not null newTlist	
� then

� if Length�newTlist	 $ �
� then

reAssert �$
� ApplyR�Link�srcDom� newTlist�first� �� initial�MaxD� �	�
�� if FAIL��reAssert	
�� then
�� AffectList � $

DSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� else

�� if Simplify�Link�srcDom� �� �	
�� then

�� AffectList � $
KSPA�Link�srcDom�Link�srcVar�MaxD� �	�

�� else
�� Link�targetList �$ newTlist�
�� else
�� Affectlist � $

DSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� End ForAll�

�� Return AffectList�

Table C��� The DeleteSourcePropagateAggr propagation algorithm

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

C�� Algorithm KeepSourcePropagateAggressive

The KSPA algorithm propagates a revision of a target domain value through justi�ca�

tion links� In particular� any linkage which involves this target needs to be re�checked

for the target�s membership as a justi�er� If the target is no longer a justi�er due to

the hierarchical change� it must be removed from the link� This removal may trigger

subsequent calls to DSPA� As is the case for DSPA� in the event that a justi�cation

link declines to a single justi�er� the source hierarchy may be simpli�ed�

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

Algorithm KSPA�Val�xi�Var�Source�int�MaxD�relation��	�

� AffectList �$ �xi	�
� Tlinks �$ Justi�cation Links which for which xi is target�

� ForAll Link in Tlinks do

� newTlist �$ Link with xi removed�
� if �null newTlist	
� then resetMarking�xi� �	�

� reAssert �$ ApplyR�Link�srcDom� xi� �� initial�MaxD� �	�
� if FAIL��reAssert	
� then

�� if �null newTlist	
�� then

�� AffectList� $ DSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� else

�� if �Length�newTlist	 $ �	
�� then

�� resetMarking�xi� �	�
�� lastAssert �$ ApplyR�Link�srcDom� newTlist�first� �� initial�MaxD� �	�
�� if FAIL��lastassert	
�� then
�� if Simplify�Link�srcDom� �� �	
�� then AffectList� $ KSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� else AffectList� $ DSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� else
�� if ��null newTlist	 and Simplify�Link�srcDom� �� �		
�� then
�� AffectList� $ KSPA�Link�srcDom�Link�srcVar�MaxD� �	�
�� End ForAll�

�� Return AffectList�

Table C��� The KeepSourcePropagateAggr propagation algorithm

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

C�� Algorithm DeleteSourcePropagateStepped

The DSPS algorithm propagates a deletion of a target domain value through any justi�

�cation links which utilize this value� In this case� the linkage structure is not known to

be complete� and consequently� this deletion triggers an attempt to �nd a sibling of the

deleted target justi�er to keep justifying the particular source value� If no such justi�er

is found� the deletion propagates to the source recursively� If a found justi�er is the

last sibling� then the source hierarchy may be simpli�ed� The simpli�cation of a justi�er

implies the need to re�establish any a�ected link�

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

Algorithm DSPS�Val�xi�Var�Source�int�MaxD�relation��	�

� DeleteDomainV alue�xi	� AffectList �$ �xi	�
� Tlinks �$ Justi�cation Links which for which xi is target�

� ForAll Link in Tlinks do
� xiSibling �$ GetNextNotDeletedSibling�xi� Source	�
� if �null xiSibling	
� then
� AffectList� $ DSPS�Link�srcDom�Link�srcVar�MaxD� �	�
� else
� foundReEst �$ FALSE�
�� Loop until ��null XiSibling	 or foundReEst	
�� reAssert �$ ApplyR�Link�srcDom� xiSibling� �� initial�MaxD� �	�
�� if �not FAIL��reAssert		
�� then foundReEst �$ TRUE�
��
�� if �not foundReEst	
�� then
�� xiSibling �$ GetNextNotDeletedSibling�xiSibling� Source	�
�� lastSibling �$ TRUE if found last sibling�
�� End Loop�

�� if foundReEst
�� then

�� if �lastSibling and Simplify�Link�srcDom� �� �		
�� then AffectList� $ KSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� else AffectList� $ DSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� End ForAll�

�� Return AffectList�

Table C��� The DeleteSourcePropagateStep propagation algorithm

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

C�� Algorithm KeepSourcePropagateStepped

TheKSPA algorithm propagates a revision of a target domain value through justi�cation

links� In particular� any linkage which involves this target needs to be re�checked for

the target�s membership as a justi�er� If the target is no longer a justi�er due to the

hierarchical change� it must be removed from the link� This removal results in the need

to �nd a sibling replacement justi�er� and failure to do this will trigger subsequent calls

to DSPS� As is the case for DSPS� in the event that a justi�cation link declines to a

single justi�er� the source hierarchy may be simpli�ed �

APPENDIX C� DETAILS OF HIERARCHICAL CSP ALGORITHMS ���

Algorithm KSPS�Val�xi�Var�Source�int�MaxD�relation��	�

� AffectList �$ �xi	�
� Tlinks �$ Justi�cation Links which for which xi is target�
� ForAll Link in Tlinks do

� xiSibling �$ GetNextNotDeletedSibling�xi� Source	�
� if �null XiSibling	
� then resetMarking�xi� �	�

� reAssert �$ ApplyR�Link�srcDom� xi� �� initial�MaxD� �	�
� if FAIL��reAssert	
� then

�� if �null xiSibling	
�� then

�� if Empty�Link�targetlist	
�� then AffectList� $ DSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� else
�� foundReEst �$ FALSE� lastSibling �$ FALSE�
�� Loop until ��null XiSibling	 or foundReEst	
�� reAssert �$ ApplyR�Link�srcDom� xiSibling� �� initial�MaxD� �	�
�� if �not foundReEst	
�� then
�� xiSibling �$ GetNextNotDeletedSibling�xiSibling� Source	�
�� lastSibling �$ TRUE if found last sibling�
�� End Loop�
�� if foundReEst
�� then

�� if �lastSibling and Simplify�Link�srcDom� �� �		
�� then AffectList� $ KSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� else AffectList� $ DSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� else

�� if ��null XiSibling	 and Simplify�Link�srcDom� �� �		
�� then AffectList� $ KSPS�Link�srcDom�Link�srcVar�MaxD� �	�
�� End ForAll�
�� Return AffectList�

Table C��� The KeepSourcePropagateStep propagation algorithm

