
Query Based Stemming

by

Elizabeth Tudhope

University of Waterloo

Department of Computer Science

Technical Report CS-96-31

Waterloo, Ontario, Canada, 1996

© Elizabeth Tudhope 1996

ii

Abstract

In information retrieval the relevancy of a document to a particular query is based on a

comparison of the terms appearing in the query with the terms appearing in the document.

Morphological variants of words (i.e. locate, locates, located, locating) often carry the same

or similar meaning. Such terms should be considered equivalent for information retrieval

purposes. Stemming is a simple application of natural language processing that is commonly

applied at index time to reduce morphological variants to a common root form.

This thesis first examines several approaches to stemming. Some of the problems

associated with the use of stemming as a query expansion technique are then discussed. The

construction of equivalence classes of words for stemming at query time is presented as a

possible alternative method to address some of these problems.

iii

Acknowledgments

I would like to thank my supervisor, Frank Tompa for his sound advice, suggestions,

and attention to detail.

I would also like to thank my readers Forbes Burkowski and Rick Kazman for the

time they took to carefully read my thesis and offer encouragement and suggestions.

A very special thanks goes to Charlie Clarke for always having an open door. His

unending patience, encouragement, and advice is greatly appreciated.

I am grateful for the hardware, software, technical and academic support provided by

University of Waterloo MultiText project.

I gratefully acknowledge funding provided by Natural Sciences and Engineering

Research Council, Information Technology Research Center and the University of Waterloo

Department of Computer Science.

iv

Contents

1. MOTIVATION .. 1

1.1. PROBLEM SETTING .. 1

1.2. RETRIEVAL EVALUATION ... 9

1.3. PROBLEM STATEMENT ..16

1.4. THESIS OUTLINE...17

2. BACKGROUND ...19

2.1. INTRODUCTION TO STEMMING...19

2.2. COMMON APPROACHES...22

2.3. EVALUATING STEMMING ALGORITHMS..27

3. QUERY BASED STEMMING: INDEXING PHASE..33

3.1. INTRODUCTION TO QUERY BASED STEMMING ..33

3.2. PREVIOUS EXPERIMENTS WITH SELECTIVE STEMMING ...36

3.3. OVERVIEW OF INTER-STEM SYSTEM ARCHITECTURE ..38

3.4. STEM FORMATION MODULE ..41

3.4.1. Tokenization/Word Identification...41

3.4.2. Normalization ..43

3.4.3. Transformation ..43

v

3.4.4. Stemming ..46

3.5. CLASS CONSTRUCTION MODULE ...46

3.5.1. Class Formation ...46

3.5.2. Class Pruning...47

3.5.3. Structure Class ...47

3.6. SAMPLE EQUIVALENCE CLASS GENERATION ..48

3.6.1. Tokenization ..49

3.6.2. Normalization ..50

3.6.3. Transformation ..51

3.6.4. Stemming ..52

3.6.5. Class Formation ...54

3.6.6. Class Pruning...56

3.6.7. Structure Class ...56

4. QUERY EXPANSION USING THE EQUIVALENCE CLASSES...57

4.1. CLASS ORDERING ...57

4.1.1. Lexical Distance...58

4.1.2. gram ..61

4.1.3. Term Co-occurrence...63

4.1.4. Term Importance ...64

4.1.5. Concept Clusters ..65

4.2. EXPANSION METHODS ..67

4.2.1. Command Line ..67

4.2.2. Batch ...68

4.2.3. Interactive..70

5. EVALUATION OF QUERY BASED STEMMING..73

5.1. TREC..74

5.1.1. Overview..74

5.1.2. The Task..75

5.1.3. The TREC Test Collection ...76

5.1.4. Query Topics..79

5.1.5. Relevance...80

5.1.6. Evaluation..82

5.2. MULTITEXT RETRIEVAL ENGINE ...82

vi

5.3. EQUIVALENCE CLASS CONSTRUCTION FOR THE TREC COLLECTION ...85

5.4. QUERY BASED STEMMING EXPERIMENTS ...89

5.5. RESULTS ..93

6. CONCLUSIONS ...103

6.1. SUMMARY..103

6.2. FUTURE WORK ...105

BIBLIOGRAPHY...107

APPENDIX A..113

APPENDIX B..118

APPENDIX C..120

APPENDIX D..122

APPENDIX E ..123

APPENDIX F ..124

APPENDIX H..127

APPENDIX I ...130

APPENDIX J...132

APPENDIX K..134

APPENDIX L ..136

vii

List of Figures

FIGURE 1: TYPICAL IR SYSTEM. .. 3

FIGURE 2: SAMPLE DOCUMENT COLLECTION... 4

FIGURE 3: INVERTED FILE ENTRIES FOR TEXT OF FIGURE 2 INDEXED AT THE DOCUMENT LEVEL. 6

FIGURE 4: INVERTED FILE ENTRIES FOR TEXT OF FIGURE 2 INDEXED AT THE WORD LEVEL. 7

FIGURE 5: TYPICAL AVERAGE PRECISION VS. RECALL GRAPH. ...11

FIGURE 6: COMPUTATION OF PRECISION-RECALL VALUES FOR RANKED QUERY RESULTS..................................12

FIGURE 7: GRAPH OF PRECISION VS. RECALL FOR DATA IN FIGURE 6..13

FIGURE 8: INTERPOLATED PRECISION-RECALL CURVE FOR FIGURE 7...14

FIGURE 9: METHOD FOR PRODUCING INTERPOLATED PRECISION-RECALL CURVE..14

FIGURE 10: EXAMPLES OF TERMS THAT SHARE A COMMON ROOT (BASED ON PORTER STEMMER).....................17

FIGURE 11: PERCENTAGE COMPRESSION USING CONVENTIONAL STEMMING ALGORITHMS [LPTW81].20

FIGURE 12: TEXT COLLECTIONS USED AS SOURCE FOR COMPRESSION EXPERIMENT [LPTW81].20

FIGURE 13: SELECTIONS FROM QUERY EXPANSION OF TRENDS AND DEVELOPMENTS IN RETIREMENT

COMMUNITIES. ..22

FIGURE 14: EXAMPLES OF SPELLING EXCEPTIONS [LOV68]...24

FIGURE 15: SAMPLE OF TRANSFORMATIONAL RULES USED IN RECODING STEM TERMINATIONS.........................25

FIGURE 16: EXAMPLE OF A PARTIAL MATCH ALGORITHM [LOV68]. ..25

FIGURE 17: AVERAGE QUERY EXPANSION AND DOCUMENTS RETRIEVED BY STEMMING [HAR91].......................28

FIGURE 18: COMPARISON OF EFFECT OF STEMMERS ON QUERY (BASED ON TOP 10 DOCUMENTS RETRIEVED)

[HAR91]. ..29

FIGURE 19: COMPARISON OF RETRIEVAL PERFORMANCE OF STEMMERS ON CRANFIELD, MEDLARS AND CACM

COLLECTIONS [HAR91]..30

viii

FIGURE 20: THE INTER-STEM SYSTEM. ...39

FIGURE 21: PHASES FOR CONSTRUCTION OF EQUIVALENCE CLASSES..40

FIGURE 22: LIST OF TOKEN TYPES. ...42

FIGURE 23: SAMPLE TEXT, AN EXCERPT FROM ROMEO AND JULLIET [SHAKS] ...48

FIGURE 24: RESULTS OF TOKENIZATION OF SAMPLE TEXT FROM FIGURE 23. ..49

FIGURE 25: OUTPUT RESULTS OF NORMALIZATION OF SAMPLE TEXT FROM FIGURE 23.51

FIGURE 26: OUTPUT RESULTS OF THE STEMMING PHASE APPLIED TO THE NORMALIZED TERMS IN FIGURE 25.53

FIGURE 27: ORDERING OF SAMPLE CLASS RUN BASED ON LEXICAL DISTANCE. ..58

FIGURE 28: ORDERING OF SAMPLE CLASS ORIENT BASED ON LEXICAL DISTANCE. ..60

FIGURE 29: ORDERING OF SAMPLE CLASS ORIENTAL BASED ON LEXICAL DISTANCE.60

FIGURE 30: COMMAND-LINE EXPANSION OF TERM FLOOD USING THE DEFAULT LOW SETTING.67

FIGURE 31: COMMAND-LINE EXPANSION OF TERM FLOOD USING THE HIGH SETTING..68

FIGURE 32: QUERY MARKED FOR BATCH PROCESSING. ...69

FIGURE 33: RESULTS OF BATCH PROCESSING APPLIED TO FIGURE 32. ...69

FIGURE 34: BASIC INTERFACE FOR QUERY BASED STEMMING. ..71

FIGURE 35: COMPARISON OF TEST COLLECTIONS[HAR93][HAR96]. ..78

FIGURE 36: SAMPLE TREC DOCUMENT..79

FIGURE 37: TREC POOLING METHODOLOGY ...81

FIGURE 38: EXAMPLE TEXT DATABASE...83

FIGURE 39: CLASS CONSTRUCTION STATISTICS. ..85

FIGURE 40: SELECTIONS FROM THE NON EQUIVALENCE CLASS. ...86

FIGURE 41: SELECTIONS FROM LARGE EQUIVALENCE CLASSES. ..87

FIGURE 42: USER NEED STATEMENT FOR TREC QUERY 250 ..90

FIGURE 43: ORIGINAL QUERY USED BY MULTITEXT PROJECT IN TREC-4...90

FIGURE 44: QUERY 250 WITH MORPHOLOGICAL VARIANTS REMOVED. ...91

FIGURE 45: QUERY 250 MARKED FOR EXPANSION. ...91

FIGURE 46: SUMMARY OF QUERY BASED STEMMING EXPERIMENTAL RESULTS...94

FIGURE 47 : COMPARISON OF QUERY BASED STEMMING AND FULL STEMMING RESULTS...................................95

FIGURE 48: COMPARISON OF STEMMING PERFORMANCE TO BASELINE ON A QUERY BY QUERY BASIS96

FIGURE 49: NON-RELEVANT DOCUMENT RANKED HIGHLY BY FILTER 1...99

FIGURE 50: NON-RELEVANT DOCUMENT RANKED HIGHLY BY FILTER 1 AND NOT RETRIEVED BY FILTER 2.101

FIGURE 51: EXAMPLES OF THE MEASURE OF A WORD...114

FIGURE 52: ANANALYSIS OF APOSTROPHE DATA. ...119

1

Chapter 1

1. Motivation

1.1. Problem Setting

Since the 1940’s the problem of information storage and retrieval has attracted increasing

attention [WMB94]. The growth of scientific literature, the computer revolution, and more

recently the advent of the World Wide Web has produced an information explosion.

Presently, it is estimated that the amount of information in the world doubles about every 20

months [WMB94]. The accuracy of these statistics may be debatable, but they underscore

the rapid advance towards an information driven society.

There are two main challenges when dealing with huge volumes of data. The first is

storage, which deals with filing the data efficiently. The second is retrieval, which deals with

providing efficient and effective access to the data [WMB94]. In this thesis we focus on one

method for improving effective access to electronic document collections.

It was not long ago that information retrieval meant going to a filing cabinet and

pulling the appropriate file, or perhaps consulting the local library’s card catalogue to find an

Chapter 1. Motivation

2

appropriate item. This traditional method of storing documents on paper (or in books) is

very expensive in terms of the physical space and the time required to locate and access

information.

It is now commonplace for home computers to come equipped with drives that can

store a gigabyte or more of data. A gigabyte of storage is approximately equivalent to a

thousand books. The fact that this quantity of information can be stored on a device that is

smaller than the average book makes electronic storage extremely attractive.

The current interest in information retrieval has grown from the need for accurate and

timely access to a growing information base. Information retrieval (IR) can be defined

loosely as the study of methods and structures to represent and access information

[WMB94]. One structure that has historically played an important role in the access to

information is the index.

Indexes in the back of books make it possible to find sections of interest without

resorting to a linear scan of the books pages. Often it is helpful to have an index to a

collection of books (i.e. Works of Shakespeare, the Bible). Using manual techniques, the

task of compiling an index or concordance can take a lifetime: in 1875, Mary Cowden

Clarke wrote in the preface to her Shakespeare concordance, “Sixteen years of hard work,

but delightful work, sufficed to complete the manuscript” [Cla1894]. In contrast, the same

index could be compiled electronically in seconds. When electronically compiling an exact-

word index, all words in the document can be viewed as keywords and no human

intervention is required.

Looking for information in a book without an index can be a frustrating and time

consuming activity. For the average book it is possible to scan each page and with the help

of chapter and section headings, zoom in on the desired information. Electronic text

collections are often gigabytes in size. Manually scanning collections of this magnitude is

prohibitive, even with mechanical assistance [ELK91]. Just as an index is an important tool

Chapter 1. Motivation

3

for accessing print material, accurate and comprehensive indexing is critical to the success of

a computerized information retrieval system.

There are a variety of index methods that have been used in modern IR systems.

Three of the more popular index structures are inverted files, signature files and bitmaps.

The method that most closely resembles a conventional concordance is the inverted file

structure.

Figure 1 illustrates a typical IR system. The data in our typical IR system is assumed

to be a collection of separate documents. Each document is represented by a set of terms.

These terms may be the actual text of the document, an abstract, or a set of keywords.

Queries entered in the system will return a list of documents that the system judges as

relevant to the information need expressed by the query.

Various systems have diverse definitions of document. For example, an index to The

Complete Works of Shakespeare could reference each play/poem or each Act or each Scene

or even each verse as a separate document. The choice of document unit should be one that

logically groups pieces of text in a way that suits the intended application of the system.

Database

I
N
T
E
R
F
A
C
E

Information
Requi rement

Index Documents

query

relevant
document set

ranked l ist of
documents

s temmed and
stopped query

Figure 1: Typical IR System.

Chapter 1. Motivation

4

An inverted file index contains an entry for each term. Each term’s entry stores a list

of pointers to the occurrences of the term in the document collection. The pointer is often a

unique identifier for the document (document id) in which the term occurs. These pointers

are sometimes referred to as postings, and the term entry as a postings list.

For example, Figure 2 shows a selection of text from Green Eggs and Ham by Dr.

Seuss, where each line is considered to be a document. Figure 3 shows the inverted file that

would be generated for the document collection. Figure 4 is an inverted file generated for

the same document collection, but with indexing at the word rather than document level.

The granularity of an index is the degree of accuracy that is used when indicating the

location of a term. A course-grained index would identify a document block (where such a

block contains several documents). A moderate-grained index would store locations in

terms of documents. A fine-grained index would return a paragraph, sentence of even the

exact location of each word. The coarser the grain of the index, the less storage is required.

This is because even though a term may appear multiple times in a region, only one posting

is required. However, one of the disadvantages of a course grain index is false matches for

queries with multiple terms. A match will occur whenever all the desired query terms appear

in the same block, even if the various terms may actually appear in different and unrelated

documents within the block. Indexing at the word level requires more storage, but has the

Document Text

1 I could not, would not, on a boat.

2 I will not, will not, with a goat.

3 I will not eat them in the rain.

4 I will not eat them on a train.

5 Not in the dark! Not in a tree!

6 Not in a car! You let me be!

Figure 2: Sample document collection.

Chapter 1. Motivation

5

advantage of being able to handle queries that involve proximity of terms. For example if

the index was built at the word level, the postings in the inverted file could easily be used to

determine whether the phrase, let me be occurs in the document collection.

In addition to granularity, a decision has to be made about what defines an indexable

term. The simplistic approach is to index all alphabetic and alphanumeric strings unaltered.

This approach has several serious drawbacks. Indexing terms exactly as they appear in the

document means that their case will be preserved. This means that Not and not will have

separate entries in the inverted file (see entries 13 and 14 in Figure 4). Additionally, a search

will fail if there is not a case match between the query and the term as it appears in the

document. The solution to this problem is to index all terms as lower-case only (case

folding). The result is that Not, not, nOt, noT will all be indexed as not. Similarly, all query

terms will be converted to lowercase before consulting the inverted file. There are instances

such as acronyms and proper names when case is important. For example time vs. Time (the

magazine), zeppelin vs. Zeppelin, and of vs. OF (designation for old French in the Oxford

English Dictionary). Situations where case is important can be handled by performing case-

sensitive post-processing of the search results.

To save space, numeric data is often not included in an index. However, in some

domains it is important for numbers to be indexed. For example in a movie database users

will expect the capability to search for a list of a particular movie type (i.e.

Action/Adventure) released in a particular year. In such cases numeric information should

be indexed.

Chapter 1. Motivation

6

Entry
Number

Term Document

(Postings
List)

1 a 1,2,4,5,6

2 be 6

3 boat 1

4 car 6

5 could 1

6 dark 5

7 eat 3 4

8 goat 2

9 I 1,2,3,4

10 in 3,5,6

11 let 6

12 me 6

13 not 1,2,3,4

14 Not 5,6

15 on 1,4

16 rain 3

17 the 3,5

18 them 3,4

19 train 4

20 tree 5

21 will 2,3,4

22 with 2

23 would 1

24 You 6

Figure 3: Inverted file entries for text of Figure 2
indexed at the document level.

Chapter 1. Motivation

7

Entry
Number

Term Document

(Postings List)

1 a (1,7) (2,7) (4,7) (5,7) (6,3)

2 be (6,8)

3 boat (1,8)

4 car (6,4)

5 could (1,2)

6 dark (5,4)

7 eat (3,4) (4,4)

8 goat (2,8)

9 I (1,1) (2,1) (3,1) (4,1)

10 in (3,6) (5,2) (5,6) (6,2)

11 let (6,6)

12 me (6,7)

13 not (1,3) (1,5) (2,3) (2,5) (3,3)
(4,3)

14 Not (5,1) (5,5) (6,1)

15 on (1,6) (4,6)

16 rain (3,8)

17 the (3,7) (5,3)

18 them (3,5) (4,5)

19 train (4,8)

20 tree (5,8)

21 will (2,2) (2,4) (3,2) (4,2)

22 with (2,6)

23 would (1,4)

24 You (6,5)

Figure 4: Inverted file entries for text of Figure 2 indexed at
the word level.

Chapter 1. Motivation

8

A stop list is a mechanism that is often used to decrease the size of an index. Stop

words are frequently occurring words that carry very little information value. Frequently

occurring terms such as the, of, and, to etc. have low discriminating value, when used

individually. Such terms are likely to occur in almost every document in the database.

Typically the 10 most frequently occurring words in English account for 20 to 30 percent of

the tokens in a document [Fox92]. Ignoring these terms speeds up document processing,

reduces the index size and normally does not adversely effect retrieval. An exception would

be a search for the phrase to be or not to be or The Who. In systems that use a stop list,

none of the query terms would appear in the index, and these queries would fail.

The ideas behind a typical IR system, such as the one we have just described, are quite

simple. The system consists of a store of documents and a means for the user to issue a

request for information. The answer to the user’s information request is a set of documents

likely to be relevant to the user’s needs. The conventional role of an IR system is to inform

users of the existence (or non-existence) of documents related to their request [Van79]. In

contrast to traditional database systems, an exact match between the user’s request and data

(documents) is difficult to achieve because of the flexibility of expression in natural

language. In a database system a query can be formulated that completely specifies the

information needed. However, in IR systems the specification of what constitutes a relevant

document is often ambiguous and incomplete.

Deciding the relevance of a document is a relatively straightforward (although not

deterministic nor well-defined) intellectual task for humans. However, computers need a

model on which to base relevance judgments. Much of the research in IR has focused on

developing such models.

The majority of IR systems compare query and document terms on a lexical, rather

than on a semantic level. In order to decide whether a document matches a query, the

system must determine whether terms present in the query appear in the document. The

problem is that word occurrence in a document does not necessarily mean that the word

matches precisely or completely the concept intended by the query. There are two main

Chapter 1. Motivation

9

problems with basing IR on keyword search. The first problem, called synonymy, is that

relevant documents will not be retrieved if they do not contain the terms specified in the

query. A search for documents containing the word cinema will not necessarily find

documents containing synonyms such as theater or movie. Other problems are homography

and polysemy. Homography refers to words that have the same spelling but differ in origin

and meaning. Polysemy refers to words that have many meanings. Ambiguous words in a

query may cause non-relevant documents to be returned. For example: a search for walks in

Boston may return documents containing At home in Boston ... Johnston walks 4 in the

bottom of the fifth, as well as documents about scenic neighborhood walks. These problems

arise because many words can represent one concept, and one word can represent several

concepts.

A query is normally expressed in a query language and contains a list of terms that are

relevant to the user’s information need. When formulating a query, the user must try to

predict the word combinations that are likely to occur in relevant documents while

simultaneously avoiding words that are likely to occur in non-relevant documents. Since it

is not possible to predict all possible uses of language, it is highly unusual for a user to

formulate a query that both retrieves all relevant documents, and eliminates all non-relevant

documents. Normally, some relevant documents will be missed because they include few or

none of the query terms, and some non-relevant documents that nevertheless contain terms

used in the query will be retrieved.

The difficulty in representing the concepts present in queries and documents is a

central problem in IR. Presently there is no satisfactory solution. One intermediary solution

is to provide tools that help users select better search terms.

1.2. Retrieval Evaluation

Central to information retrieval is the idea of relevance. The goal of an IR system is to

retrieve all the relevant documents while retrieving as few non-relevant documents as

Chapter 1. Motivation

10

possible. Retrieval performance is normally evaluated by using the interrelated measures of

precision and recall. Precision is defined to be the ratio of the number of relevant

documents retrieved to the total number of documents retrieved. Recall is defined to be the

ratio of the number of relevant documents retrieved to the total number of relevant

documents.

precision

recall

=

=

number of relevant documents retrieved

total number of documents retrieved

number of relevant documents retrieved

total number of relevant documents

The ideal IR system would achieve 100% recall and 100% precision for all queries.

However, in practice precision and recall tend to vary inversely. A very specific query

formulation tends to produce high precision, but it also generally results in low recall.

Conversely a broader query formulation is likely to retrieve a greater pool of documents, but

the portion relevant is normally smaller, resulting in lower precision [Sal86]. Most attempts

at improving one variable tend to have a negative effect on the other.

Calculation of recall requires knowledge of the total number of relevant documents in

the collection. For a small document collection this is possible. But for larger collections

determining the number of relevant documents may not be practical. Recall figures for

larger collections are often calculated by estimating the number of relevant documents.

Using sampling techniques is one method for doing this. Another method is to perform a

series of searches using various retrieval techniques. The top results of these searches are

combined to produce the relevant documents. This technique, called pooling, is based on

the assumption that the combination of independent retrieval techniques will retrieve

all/most relevant documents.

Chapter 1. Motivation

11

The following chart and graph illustrate an example of a recall-precision computation

for a hypothetical query that retrieves a set of 14 documents, including all 7 of the relevant

documents in the collection. The documents are listed in ranked order.

Rather than determining relevance on a boolean, “yes or no” answer based on all the

terms appearing in the document, a more flexible approach is to compute the probability of

relevance based on the number/frequency of query terms that appear in the document. The

more terms that occur, the greater the probability that the document is relevant. A

document that contains even one of the terms is viewed as a potential answer, but

documents that contain all or most of the terms will receive the highest ranks. The ranking

approach to information retrieval retrieves documents in decreasing ranked order of likely

relevance to the user’s query.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

ci
si

o
n

Figure 5: Typical average precision vs. recall graph.

Chapter 1. Motivation

12

The problem with precision-recall graphs such as the one in Figure 7 is that important

information is not represented. Information such as the actual number of documents that

were retrieved and the size of the document collection are not present on the graph. Also,

the data points are discrete, but the graph is continuous. Multiple precision values can exist

for a given recall level, making the graph difficult to interpret.

Rank Document ID
��

 indicates relevant

Recall Precision

1 DOC900425-0174� 0.1428 1.0

2 DOC900712-003� 0.2857 1.0

3 DOC900611-0080 0.2857 0.6667

4 DOC900518-0197� 0.4286 0.75

5 DOC880929-0026 0.4286 0.6

6 DOC881102-0259� 0.5714 0.6667

7 DOC901126-0005 0.5714 0.5714

8 DOC900131-0219� 0.7143 0.625

9 DOC900128-0036 0.7143 0.5555

10 DOC207342-254� 0.8571 0.6

11 DOC900102-2314 0.8571 0.5455

12 DOC275289-1034 0.8571 0.5

13 DOC912954-8932� 1.0 0.5385

14 DOC708416-0921 1.0 0.5

Figure 6: Computation of precision-recall values for ranked query results.

Chapter 1. Motivation

13

Smooth graphs such as Figure 8 are normally used in place of the raw precision vs.

recall plots. The curve in Figure 8 is achieved by starting at the highest point for the highest

level of recall and drawing a horizontal line leftward from each peak point of precision to a

point vertically below the next peak point of precision (see Figure 9). This interpolated

curve is representative of the best performance a user can expect to achieve. For example

the interpolated precision at recall 0.10 (after 10% of all relevant documents for that query

have been retrieved) is the maximum precision at all recall points greater than or equal 0.10.

The interpolated average precision is often used for combining the results from multiple

queries and computing average precision-recall values.

Figure 7: Graph of precision vs. recall for data in Figure 6.

Chapter 1. Motivation

14

Figure 8: Interpolated precision-recall curve for Figure 7.

Figure 9: Method for producing interpolated precision-recall curve.

Chapter 1. Motivation

15

The formula that measures the performance a user can expect from a system can be

defined by taking the average over a series of sample queries.

Recall
Number of Relevant Documents Retrieved

Total Number of Relevant DocumentsRL
i

ii

num

num
=

=
∑1

1

Precision
Number of Relevant Documents Retrieved

Total Number of Documents RetrievedRL
i

ii

num

num
=

=
∑1

1

where num is the number of queries

Since the recall and precision values for each individual query are uniquely defined, the

values for RecallRL and PrecisonRL are also uniquely defined. These values can be used to

calculate average precision values for arbitrary recall intervals. One of the standard

measures of system effectiveness is to calculate average precision values for each of 11

recall values from 0 to 1.0. When these values are plotted they usually result in a graph

similar to Figure 5. The left-hand portion of the graph corresponds to narrow/specific query

formulations where precision is high and recall is low. The right-hand portion of the graphs

corresponds to broad/general queries where a large number of documents are retrieved, but

precision suffers.

Another popular measure is the average precision (non-interpolated) over all relevant

documents. This precision is calculated after each relevant document is retrieved. All

precision values are then averaged together to get a single number for the performance of

the query. For example, for the data in Figure 6 the average precision is 0.74. Conceptually

this is the area underneath the precision-recall curve. The values can then be averaged over

all queries for an overall system performance measure.

Similarly, precision can be measured after X documents (relevant or not) have been

retrieved. If fewer than X documents are retrieved in total, then all missing documents are

assumed to be non-relevant. Experimental results often list the precision for various values

of X (e.g. 5, 10, 15, 30).

Chapter 1. Motivation

16

1.3. Problem Statement

In information retrieval the decision of whether a document is relevant for a given

query is generally determined by the number and frequency of terms that the document and

query have in common. Query expansion is a method of increasing the number of

documents matched by a query. The addition of well selected terms to the original query

provides the opportunity for more relevant documents to match. The additional relevant

documents are retrieved as a result of matches with documents that contain terms related to,

but not included in, the original query specification. There are a variety of methods that can

be used for query expansion. These include the addition of term variants (morphological,

phonetic, typographical), synonyms, and hypernyms/hyponyms. In this thesis we will be

exploring query expansion using morphological variants of the query terms.

For example, given the query Recycling in Waterloo, obvious morphological variants

of recycling, such as recycled, recycles and recycle, would not be considered matches with

the term recycling unless some form of natural language processing is performed. As this

example illustrates, morphological variants of a common term often have a similar meaning.

To address the problem of variation in terms, algorithms have been developed to reduce

term variants to a root form. This process is referred to as stemming, which syntactically

approximates the lexicographical notion of lemmatization.

Although in many cases morphological variants of a term represent a similar concept,

this is not always the case. For example, the following chart lists some terms that share a

common root, but do not necessarily represent the same concept.

Chapter 1. Motivation

17

In IR systems, stemming is usually done when the documents are indexed. In such

systems the index for a document collection is based on the stems (roots) of words, rather

than on the full text of the term. As seen in Figure 10, a stem usually corresponds to several

full terms. The effect of stemming is to expand the original query to include morphological

variants of each of the query terms. The disadvantage is that not all morphological variants

share the same semantic meaning. So, although useful terms are added to the query, there is

the potential for the addition of irrelevant terms to the query.

1.4. Thesis Outline

In this thesis we examine the use of a stemmer for building equivalence classes of

words. The resulting classes of words can be used as the basis for a query expansion tool.

This tool can be used to provide a facility for leveraging the knowledge of the user during

the query expansion process. The goal is to expand the query to include only morphological

variants that have the same semantic sense as the original query terms.

The structure of this thesis is as follows: first we present an overview of stemming as a

method for query expansion. Then we look at some of the limitations/problems of current

stemming techniques. Next, an architecture for a system to build equivalence classes of

Root Terms

busi busy, busied, busies, business, businesses

commun commune, communicate, communication, communism,
community

orient oriental, orientalism, orientalize, orients, oriented, orientating,
orientation, orientability

Figure 10: Examples of terms that share a common root (based on Porter Stemmer).

Chapter 1. Motivation

18

words for use in query based stemming is presented. Finally, we present an analysis of the

effectiveness of applying stemming at query time to avoid some of the inherent problems of

index time stemming.

19

Chapter 2

2. Background

2.1. Introduction to Stemming

Stemming is a syntactic approximation to a morphological process, and it is used in many

IR systems to reduce different word forms to common roots [Frakes92a]. For example

the Porter stemming algorithm [Port80] reduces runs, running, runner to the common

root run. One way to view stemming is as the construction of equivalence classes of

words. Each class consists of words that have been grouped together based on sharing a

common root [CX95]. In our run example, runs, running and runner would be grouped

together.

Stemming is usually done during the document indexing phase. The terms in the

document are stemmed, and the index is built based on the resulting stems. Since each

stem typically represents several full terms, the process has the desirable effect of reducing

the index size. Figure 11 illustrates the compression rates of various stemmers on different

document collections.

Chapter 2. Background

20

IR experiments often use test collections that consist of a document database,

queries and a set of relevance judgments. Traditionally, the actual size of test collections

has been quite small. Figure 12 gives a brief summary of the contents of the test

collections used to produce the compression data in Figure 11.

Stemmer Cranfield National
Physical
Laboratory

INSPEC Brown
Corpus

INSPEC [Field75] 32.1 40.7 40.5 47.5

Lovins [Lov68] 30.9 39.2 39.5 45.8

RADCOL [LRK73] 32.1 41.8 41.8 49.1

Porter [Port80] 26.2 34.6 33.8 38.8

Figure 11: Percentage compression using conventional stemming algorithms [LPTW81].

Test Collection Number of
Words

Subject Area

Cranfield 4,486 Aeronautics

National Physical
Laboratory

11,989 Electronics, computing, physics and
geophysics

INSPEC title, abstract
and free index term fields

19,798 Electronics, computing, physics and
control engineering

All words occurring more
than once in the Brown
corpus

26,067 Very wide range including newspaper
cuttings on sports and politics,
scientific journal articles, religion and
hobbies

Figure 12: Text collections used as source for compression experiment [LPTW81].

Chapter 2. Background

21

The decrease in index size that results from stemming depends on the characteristics

of the document collection and on the granularity of the index, as well as the stemming

algorithm used. Indexes built at the word or paragraph level will not be compressed as

much as indexes built at the document level, since fewer term variants are likely to occur.

The more aggressive the stemming algorithm, the more terms that share a common root,

and as a result the greater the index compression. The above data indicates that the Porter

and Lovins Stemmer are the more aggressive stemming algorithms. These are described in

the next section.

As described in Chapter 1, stemming has the effect of expanding the original query

to include morphological variants of the query terms that occur in the document collection.

Use of these related word forms improve the system’s ability to match the query to the

document vocabulary, leading to an increase in the number of documents retrieved. Figure

13 shows an example of how the query trends and developments in retirement

communities might be expanded by the use of the Porter Stemmer. The expansion of most

of the terms is relatively consistent with the meaning of the original query terms.

However, the expansion of the term communities adds several terms that are not

appropriate for this query. If documents in the collection contain several such misleading

terms, they will be returned to the user in spite of their non-relevance to the original query.

The disadvantage of stemming is that for each useful term added, some non-useful or

misleading terms may also be included. These misleading term expansions cause non-

relevant documents to be retrieved, and may negatively influence document ranking.

Stemming is an effective method for increasing recall. However, the problem of non-

relevant terms being added to the query needs to be addressed.

Chapter 2. Background

22

2.2. Common Approaches

A variety of methods have been suggested as effective stemming algorithms. These

include suffix removal, strict truncation, word segmentation, n-grams, and linguistic

approaches to morphology [LPTW81]. The stemmers commonly used in IR systems

reduce words to stems by the removal of suffixes. Two of the more popular suffix

removal algorithms were suggested by Lovins [Lov68] and Porter [Port80].

Iterative methods for stemming algorithms are based on the observation that more

than one suffix is often appended at the end of a word. Such a method attempts to peel

the suffixes off one at a time. A word such as successfulness would have -ness removed

on the first iteration, and -ful on the second. Alternatively, longest-match algorithms

involve a single iteration only, during which the longest recognized suffix is removed. A

longest match system includes a master list of recognized suffixes and compound suffixes,

called a suffix dictionary. Using a longest match stemming algorithm, where the suffix

dictionary contains the suffixes -ful, -ness and -fulness, the word successfulness would be

Query Term Terms Added by Use of the Porter Stemmer

trends trend trended trending

developments development develop developers developing

retirement retire retires retired retiring

communities commune communes communicate communicated
communicates communication communicator communism
communities community

Figure 13: Selections from query expansion of trends and developments in retirement
communities.

Chapter 2. Background

23

reduced to the root success by the removal of -fulness [LPTW81]. Longest match

algorithms are easier to code, but they require a much larger dictionary (suffix list) to

accommodate all the possible combination of suffixes. Some stemmers implement a

combination of these approaches, known as an iterative longest match algorithm

[Frakes92a].

The first longest match stemmer was developed by Lovins [Lov68]. The Lovins

Stemmer takes a two phased approach. The first phase consists of the actual stemming

algorithm. This involves identifying the stem by removing the longest possible suffix that

matches a pre-defined list. The second phase handles spelling exceptions that arise. The

term “spelling exceptions” is used by Lovins to refer to cases where a stem may be spelled

in more than one way. Figure 14 gives examples of the types of spelling exceptions that

can occur. The two main approaches for dealing with these types of exceptions are

recoding and partial matching.

Recoding involves making changes to stems that have identified spelling variations,

so that they will ultimately conflate to the same class. The recoding procedure is

incorporated into the stemming process and takes place immediately following suffix

removal. The order that the recoding rules are applied is important. An example of

recoding rules is given Figure 15 [Lov68].

The recoding procedure makes the assumption that most of the exceptions are

predictable and can be handled by a small set of transformational rules. However, it is not

possible to predict all exceptions, and there will be situations where terms are accidentally

transformed. Such mistakes are not expected to be frequent enough to significantly effect

the stemming process, much less the performance of later document retrieval.

Chapter 2. Background

24

producer produc

production product

stems to

stems to

 → 

 → 
consumed consum

consumption consumpt

stems to

stems to

 →

 →

induced induc

induction induct

stems to

stems to

 →

 →

attending attend

attention attent

stems to

stems to

 →

 →

expanding expand

expansion expans

stems to

stems to

 →

 →
input input

inputting inputt

stems to

stems to

 →

 →

registering register

registration registr

stems to

stems to

 →

 →

resolved resolv

resolution resolut

stems to

stems to

 →

 →

circle circl

circular circul

stems to

stems to

 →

 →
matrix stems to matrix

matrices stems to matric

 →

 →

hypothesized hypothes

hypothetical hypothet

stems to

stems to

 →

 →
analysed analys

analyzed analyz

analytical analyt

stems to

stems to

stems to

 →

 →

 →

Figure 14: Examples of spelling exceptions [Lov68].

Chapter 2. Background

25

An alternative approach for dealing with such exceptions is partial matching. The

partial matching method assumes that rules for the exceptions are indicative of changes

that may occur. Partial matching is not included as part of the stemming procedure.

Instead, it is applied to the index that is created from the output of the stemmer. Retrieval

from the index using this method does not require exact matches. Within certain pre-

defined limits, such as illustrated in Figure 16, partial matches are retrieved from the index.

These matches are then further processed to produce the final result.

1. Remove one of double b,d,g,l,m,n,p,r,s,t inputting⇒ inputt⇒ input

2. iev ⇒ ief believes⇒ believ⇒ belief

3. uct ⇒ uc induction⇒ induct⇒ induc

4. umpt ⇒ um consumption⇒ consumpt⇒ consum

5. rpt ⇒ rb aborption⇒ absorpt⇒ absorb

:
24. end ⇒ ens except following s extended⇒ extend⇒ extens

:

28. her ⇒ hes except following p,t

29. mit ⇒ mis admitting⇒ admitt⇒ admit⇒ admis

30. end ⇒ ens except following m

:

33. yt ⇒ us

34. yz ⇒ ys analyze⇒ analyz⇒ analys

Figure 15: Sample of transformational rules used in recoding stem terminations.

1 start with the stem S1 of a query term

2. search the index for all stems that begin with S1 minus its last two letters

3. discard all stems that are more than two characters longer than S1

4. the result is a set of terms that will then be processed further to determine the final list of
matches for the query term

Figure 16: Example of a partial match algorithm [Lov68].

Chapter 2. Background

26

Partial matching algorithms are clearly more flexible than the use of predetermined

recoding rules. This flexibility may not produce fewer wrong matches, but it has the

potential for producing more correct matches The disadvantage to this method is an

increase in index size, as well as an increase in retrieval overhead.

The Porter stemmer is based on the iterative approach and uses a five step process

consisting of a set of condition/action rules. Despite involving more phases, code for the

Porter algorithm is actually more compact than for the Lovins algorithm [Frakes92a].

Whereas Lovins has 260 suffixes (many of them compound) in its suffix dictionary, the

Porter Stemmer recognizes only 60 simple suffixes.

The first phase of the Porter algorithm is the removal of plurals and past participles.

The next three phases involve suffix stripping based on a pre-defined list of recognized

suffixes, as well as context sensitive rules. Simple suffixes are removed in a series of steps

that are dependent on the form of the remaining stem (measured in syllables). The final

phase of the algorithm takes care of tidying up stem endings (e.g. removal of double

constants controll⇒ control), much like the recoding rules described for the Lovins

algorithm. A more detailed presentation of the Porter algorithm appears in Appendix A.

There are some obvious problems associated with these methods of conflation. All

of these stemming methods ignore word meaning. This leads to errors when words with

different meanings are conflated, or when words with similar meanings are not conflated.

Example : Words with different meanings that are conflated using the Porter Stemmer

responsive and responsibility

oriental and orienteering

factory and factorial

Chapter 2. Background

27

The stems that are produced by suffix removal algorithms are often not valid words.

For example the Porter Stemmer returns locat as the stem for the word located. This

makes it difficult to use the output from a stemmer for purposes other than retrieval (e.g.,

word frequency or dictionary lookup). Interactive techniques that require user input for

term selection (i.e., for query expansion) are made more difficult when the full text of the

words is no longer available (for an example see [HWW86]).

2.3. Evaluating Stemming Algorithms

Establishing a quantitative measure of the effectiveness of a stemming algorithm is a

difficult task. One possible measure is to compare the stems produced by the automatic

algorithm with those produced manually by a person [LPTW81]. However, this makes the

assumption that the stem produced by the human is correct and the one most effective for

retrieval. In IR, producing the linguistically correct root is not as important as grouping

terms together that will increase retrieval effectiveness.

There have been several studies that analyze the impact of stemming algorithms on

IR performance. A good overview of the various studies can be found in [Frakes92a].

None of the more popular stemmers seem to decrease the overall retrieval effectiveness,

but the beneficial effects of stemming vary and are sometimes quite small. The average

performance of the common stemming algorithms is quite similar [Frakes92a][Krov93].

Collections with short documents generally show greater increases in performance over

collections with longer document lengths. Krovetz reports an increase of 15-35% in

Example: Words with similar meanings that are not conflated using the Porter Stemmer

matrix and matrices

absorb and absorption

angle and angular

Chapter 2. Background

28

precision at various levels of recall when stemming was used with the CACM and NPL

test collections [Krov93], which both contain short documents and queries.

Most research on stemming has concentrated on producing new algorithms. Much

of the focus has been on domain/subject specific stemmers (e.g. those for medical

applications [PP78][UD83]) or linguistic based stemming algorithms (i.e. those based on

derivational and inflectional information [Hull96][Krov93]).

No

Stemming

S

Stemmer

Porter
Stemmer

Lovins
Stemmer

Cranfield1

number of terms added 10 16 28 39

total number of documents retrieved 736 837 886 943

Medlars2

number of terms added 11 18 28 40

total number of documents retrieved 296 356 398 444

CACM3

number of terms added 13 22 47 58

total number of documents retrieved 894 1253 1403 1459

Figure 17: Average query expansion and documents retrieved by stemming [Har91].

When stemming does not provide meaningful improvements, it is not because

retrieval is unaffected. As Figure 17 illustrates, experiments have shown that the number

of documents retrieved is consistently increased by the use of stemming. However, for

each of the stemming techniques, it is not uncommon to find that the number of queries

1Aeronautics domain, 1400 documents, 225 queries.

2 Medical domain, 1033 documents, 33 queries.

3 Computer Science domain, 3204 documents, 64 queries.

Chapter 2. Background

29

that show improvements in performance is rivaled by the number of queries that show a

degradation in performance (see Figure 18). Thus, the increase in matching documents

needs to be offset by an increase in the discriminating power of the ranking algorithm.

Very little research has been done on the interaction of stemming and ranking algorithms.

Queries with
improvement in
performance

Queries with
decrease in
performance

Cranfield (255 queries)

Lovins vs. full word

Porter vs. full word

S stemmer vs. full word

51

49

34

44

37

32

Medlars (30 queries)

Lovins vs. full word

Porter vs. full word

S stemmer vs. full word

8

8

6

9

11

7

CACM (64 queries)

Lovins vs. full word

Porter vs. full word

S stemmer vs. full word

23

20

12

12

10

7

Figure 18: Comparison of effect of stemmers on query (based on top 10
documents retrieved) [Har91].

Chapter 2. Background

30

No

Stemming

S

Stemmer

Lovins

Stemmer

Porter

Stemmer

Cranfield
Average precision for three
intermediate points of recall

0.377 0.397 0.388 0.402

Total relevant retrieved

At 10 documents retrieved 650 654 655 666

At 30 documents retrieved 946 958 984 972

Medlars
Average precision for three
intermediate points of recall

0.522 0.538 0.574 0.539

Total relevant retrieved

At 10 documents retrieved 188 187 190 185

At 30 documents retrieved 387 389 412 394

CACM
Average precision for three
intermediate points of recall

0.304 0.323 0.318 0.319

Total relevant retrieved

At 10 documents retrieved 153 159 171 169

At 30 documents retrieved 278 293 324 313

Figure 19: Comparison of retrieval performance of stemmers on Cranfield, Medlars and CACM
collections [Har91].

Like IR systems more generally, stemming experiments are evaluated by measures

such as average precision and recall. The common methodology is to:

1. Propose a new stemming method which is designed to improve retrieval

performance.

2. Find an experimental text collection with queries and known relevant documents.

3. Run experiments using the new strategy and a baseline obtained from a standard

approach.

4. Compute traditional evaluation measures such as recall and precision.

Chapter 2. Background

31

The average measures do not always describe adequately the overall performance

of an algorithm. There is a great deal of additional information that can be discovered by

analyzing the performance of individual queries across methods. This is particularly

important with stemming, where there does not seem to be a significant difference in

average performance between the commonly used algorithms.

Hull suggests that there are three major patterns which lead to high variance in

precision [Hull96]:

1. Many related documents are ranked higher by some method(s).

2. The query has a few relevant documents, and as a result scores are sensitive to
changes in the rankings of a few relevant documents.

3. Relevant documents tend to have low ranks due to the difficulty of the query.
Some methods manage to rank a few documents well, which boosts their
evaluation measures.

The first scenario is the preferred behavior for a retrieval method. A method that

produces scenarios two and three may be valuable, but such results are a less reliable

indicator than improvement in the ranking for a large number of the relevant documents.

Analysis of average performance figures does not explain why or when one

stemming algorithm works better than another. In order to understand the difference in

stemmer performance, the analysis needs to examine specific examples where the

stemming algorithm makes a significant difference. Hull suggests that a detailed analysis

of the results of queries that produce the first scenario is valuable for making general

conclusions about the performance of different experimental methods. This type of

analysis is also key to motivating improvements to current stemming algorithms.

Hull has proposed that in addition to the conventional evaluation measures a method

that involves ranking the scores for each algorithm on a query by query basis be used.

Evaluation results can be summarized by computing the average rank for each method.

Chapter 2. Background

32

Statistical methods can be applied to the ranking data to determine if they represent a

significant difference between algorithms. Since ranked-based analysis is a relative

measure, it should not be used alone, but rather as a complement to traditional evaluation

measures [Hull96].

33

Chapter 3

3. Query Based Stemming: Indexing Phase

3.1. Introduction to Query Based Stemming

The addition of useful terms that help to represent the user’s information need seems

an intuitive way to improve retrieval effectiveness. But, as we saw with stemming, when

expansion occurs inappropriately, retrieval effectiveness is often adversely effected.

Inappropriate expansion can occur in a variety of ways, depending on the expansion

technique being used. When term co-occurrence is used, terms may be added that co-

occur with a sense of the term other than the sense used in the query. For example the

query, fishing on the bank of the Mississippi, could have terms such as financial, money

etc. added based on co-occurrence with the word bank. The result is a skew of the query

towards documents that deal with the financial institution sense of the word bank. With

stemming, problems often occur when morphologically similar words which are not

conceptually equivalent are included (e.g., author expanded to include authority and

authoritarian).

Chapter 3. Query Based Stemming: Indexing Phase

34

A weakness inherent in most query expansion techniques is that expansion terms are

selected based on how strongly they relate to one of the query terms. A term-term

similarity measure is computed, and terms that are above a certain threshold are added to

the query. However, a large number of terms that would be viewed as consistent with the

concept expressed by the query often do not meet the threshold for term-term similarity

[QF93]. Although this similarity measure is a good starting point, a better criterion for

query expansion is consistency with the overall query concept.

The weakness of the conventional implementation of stemming at index time is that

the query expansions are pre-determined. The retrieval system does not have the ability to

alter the expansion dynamically based on query context. As a result a given term will

always be expanded in the same way, without regard for the concepts represented by the

query in which it occurs.

When an index stores only the word stems, it fixes at index time an equivalence

relationship between all words that share the same stem. Specifically, posting information

is stored based on stems, and the original terms are lost to the query and ranking

processes. This introduces the disadvantage that all occurrences of words with the same

stem are treated identically. Since commune and community have the same stem, they are

viewed as equivalent. The system does not distinguish that commune is a variant of the

original query term community, and that a document containing commune may not be as

good a match as a document containing the original community

Croft has identified stemming as “one of the main sources of occasional bad

mistakes…” in information retrieval [Croft95]. Clearly what is needed is a facility that

reduces the number of bad mistakes caused by stemming, while retaining the effective

gains. This can be accomplished by only expanding a query to include variants that are

both consistent and close in meaning with the intent of the query.

Chapter 3. Query Based Stemming: Indexing Phase

35

No automatic technique has been found for separating out useful term variants (for a

given query) produced by stemming, from the non-useful ones [Har88]. Filtering out bad

term expansions has proved a difficult task to perform automatically (see section 3.2).

A problem with fully automatic query expansion, such as stemming, is that it tends

to diminish the role of the user. Leaving the user out of the interaction can lead to

confusion when modifications are made to the query which are not consistent with its

original intent. For example a user looking for articles about The Lakers, does not want to

be presented with a large number of articles about lakes and streams that resulted from

unsolicited query expansion.

It is worth considering the user as more than a mechanical receptor of data produced

by the system. The user could be a potential source of intelligence that can be leveraged

to strengthen the quality and effectiveness of a retrieval system. What has not been

explored in stemming research is whether the users’ knowledge can be incorporated

effectively to determine when to expand query terms, and what appropriate term

expansions should be.

An approach that has been suggested but not explored is the idea of moving

stemming from index time to query time. When stemming is moved to query time, there is

an opportunity to filter the terms that will be added to the query. In query based stemming

all decisions about word conflation are made dynamically when the query is formulated,

rather than statically at index time [CX95].

Query based stemming greatly increases the flexibility of stemming. The full word

form is used for indexing, and stemming becomes part of query processing. An aggressive

stemmer is used to identify the words that could be conflated, and then user judgments are

used to initiate the conflation. When a query is entered, the equivalence class for each

query term is used to generate a set of options for expanding the query.

The advantages of performing stemming at query time are that the user of the system

can be consulted as to the applicability of particular word forms, and queries can be

Chapter 3. Query Based Stemming: Indexing Phase

36

restricted to search for a specific word form. For example, when looking for articles about

specific drug related deaths, the word over-dose is a good discriminating term. However,

the word over-doses is less useful, as it will tend to be used in more general stories. This

is an example of a situation in which a user could decide that it is better not to expand a

term. These advantages can be significant in cases where small differences in word forms

can result in large differences in the relevance of the retrieved documents. Query based

stemming can be used as a tool to offer guidance to users wishing to improve their queries

in a full-text environment.

One disadvantage to query expansion is that queries tend to become longer, and that

can potentially increase processing time. Although the query will become larger when

stemming is performed at query time, the effective term expansion actually decreases,

because not all expanded terms will be selected.

3.2. Previous Experiments With Selective Stemming

The problem with using stemming as an automatic method for query expansion is that

some inappropriate terms are added. Defining what constitutes an inappropriate, term and

developing methods to automatically exclude them from the query expansion is a difficult

problem.

Ideally stemming should only be applied in situations where it results in improved

performance. Donna Harman performed a series of studies where she tried to perform

selective stemming based on the collective results of earlier stemming research [Har91].

Her study was an attempt to predict and apply stemming when it is advantageous.

The first approach was based on the observation that shorter queries and collections

with shorter length documents seem to benefit the most from stemming. Intuitively this

makes sense since making a match between queries and documents is difficult when they

contain few terms. Tests were performed against the Cranfield collection where only

queries with fewer than ten terms (≅ 54% of the collection) were stemmed. The results

Chapter 3. Query Based Stemming: Indexing Phase

37

proved to be no better than without stemming, but worse than automatically stemming all

terms.

The next approach was based on the hypothesis that stemming should only be

applied to important terms in the database. Since terms that are widespread in the

database are not generally good discriminators, adding morphological variants of these

terms is likely to degrade the query. The results of the experiments involving the

stemming of only important terms showed no improvements over full stemming. Term

distribution in the database is apparently not a good indicator of whether a term in a

specific query will benefit from stemming.

The third approach that was tested was altering the ranking algorithm so that terms

that were added via stemming were weighted as less important than the original query

terms. When added terms were heavily down weighted, the results were similar to no

stemming. Without down weighting, terms with many variants tended to dominate the

query. No compromise was found.

Automatic selective stemming has proved to be a difficult problem. This opens the

question whether or not human interaction in the selective stemming process might

improve the results.

Harman performed some initial experiments to explore the feasibility of a system that

would allow the user to provide the necessary separation of useful and non-useful terms

produced by stemming [Har88]. The goal of these experiments was to estimate how much

improvement could be gained by expanding a query with term variants that were chosen by

a user. No users were involved in this experiment, but user filtering was simulated.

Initially the user’s choice was simulated by choosing all term variants that appeared in

relevant documents retrieved by the non-expanded query. The method had a positive, but

limited, effect on retrieval. The second method used was to simulate a perfect user’s

choice. The perfect user would choose all the term variants that appear in relevant

documents in the collection. This method showed significant (≈ 8%) improvements. The

Chapter 3. Query Based Stemming: Indexing Phase

38

conclusion of this study was that there is evidence that a user could provide the necessary

filtering of expansion terms based on stemming and that substantial improvement in

retrieval effectiveness should be possible.

3.3. Overview of Inter-Stem System Architecture

The premise behind the Inter-Stem system is to allow users to play an active role by

allowing them to determine what query terms should be expanded and which of the

potential term expansions are most appropriate.

This system is based on the idea that stemming really acts as the construction of

equivalence classes of words. Each class contains a set of words that appear in the

document collection and share a common stem. For example the words beam, beams,

beamed and beaming appear together in a class because they all share the common stem

beam.

The role of the stem is to be the key by which terms in the classes are accessed,

rather than a representative that replaces the original terms. The system acts as a front end

interface to be used with existing retrieval systems (illustrated in Figure 20). The current

implementation of the system assumes that the back end retrieval system can perform exact

match, case independent searches.

Chapter 3. Query Based Stemming: Indexing Phase

39

There are two main components to the Inter-Stem system: the equivalence class

generator, and the query expansion module. The equivalence class generator is the tool

that processes the document collection and builds classes of words based on stemming.

Similar to stemming at index time, the Inter-Stem System forms equivalence classes that

are based on the actual terms that appear in the document collection. Classes are built by

pre-processing the document collection and parsing it into terms. Each of these terms is

then stemmed and placed into an appropriate class based on the resulting stem. Figure 21

illustrates the phases involved in the construction of the equivalence classes. These classes

will then be used by the query expansion module for interactive query expansion. The

query expansion module is designed to read in queries expressed in a query language (the

current implementation accepts queries written in GCL [CCB95a]) and expand terms

identified by the user. The proposed expansions are then presented to the user, who

determines which expansions will be added to the query. Once the user is satisfied with

the expanded query, it is passed along to the retrieval engine for processing.

User 's In i t ia l QueryExpanded Query

Retrieval
Engine

Inter-Stem
System

Equivalence
Classes

Interact ive Query
 Expansion

Documents

Figure 20: The Inter-Stem System.

Chapter 3. Query Based Stemming: Indexing Phase

40

��������	���

���
 �
��	�����	���

�	������

����� �����	���

����� �������

�	���	��� �����

���������	���

����������	���

Classes ready for loading into a term database

Stem Format ion
 Module

Class Construct ion
Module

Figure 21: Phases for construction of equivalence classes

Chapter 3. Query Based Stemming: Indexing Phase

41

3.4. Stem Formation Module

The first module of the equivalence class generator is responsible for identifying terms and

producing the associated stem for inclusion in the equivalence classes. The input to the

stem formation module is a collection of documents. The output is a stream of normalized

term and stem pairs.

3.4.1. Tokenization/Word Identification

The first phase of the class construction process is to parse the document collection into

tokens. The purpose of the tokenization stage is to eliminate noise (i.e., data not to be

included in term expansion), while identifying terms to be included in the equivalence

classes. The strategy adopted for parsing the document collection is to adopt a

conservative definition of what constitutes a word in the document. Thus for example,

SGML tags, numbers, and acronymns (e.g. <DATE>, 01/02/92, IBM) are not considered

words. This approach was decided upon in order to avoid many uninflectable terms. It

was felt that the system would lose credibility if the user was presented with noisy lists for

term selection.

The tokenizer parses the text into the token types listed in Figure 22. Word and

word with hyphen or apostrophe are identified as distinct tokens in

anticipation that some transformations will be necessary on tokens of the latter type before

they are passed along to the stemmer.

The purpose of the present system is to build equivalence classes based on words.

However, it is conceivable that equivalence classes based on SGML or numbers could be

useful. For example, SGML tags such as <doc>, <document>, etc. might be viewed as

equivalent for query expansion purposes (especially queries based on structure or

proximity). For this reason, SGML and numbers are identified as separate tokens,

although they are not processed in the present implementation. The decision was made

that words that contain mixed case (other than initial capital letter) or embedded numbers

Chapter 3. Query Based Stemming: Indexing Phase

42

are most likely noise and should be discarded. Words that are all upper case are also

discarded. The majority of words that appear in all upper case are either acronyms or

proper names (i.e. USA, NAFTA, WATCOM, APPLE, IBM) and would not be suitable

for inclusion in the equivalence classes.

Token Name Properties
word Series of either all lowercase alphabetic, or initial

uppercase followed by all lower case alphabetic.

word with hyphen or
apostrophe

A sequence of words (as defined above)
connected by one or more non-sequential
apostrophes or one or more non-sequential
embedded hyphens.

word with embedded caps A word (as defined above) but containing one or
more upper case letters in a position other than
the initial character.

word with embedded number A word (as defined above) that contains one or
more numbers.

number A string of digits that may include one or more
non-sequential decimal points and/or one or more
non-sequential commas.

markup Anything enclosed in < >, including the angle
braces themselves.

other Does not satisfy any of the previous token
definitions.

Figure 22: List of token types.

Chapter 3. Query Based Stemming: Indexing Phase

43

3.4.2. Normalization

The normalization process is used to eliminate variations in the data with which the user

need not be concerned. Any variation in the data that is not supported by the targeted

back end retrieval system is a candidate for normalization. A typical normalization

operation is the conversion of all tokens to lower case. Without this normalization

operation Not and not would be considered distinct words (see discussion and example in

Section 1.1). If the back-end system is restricted to performing case insensitive searches,

there is no need to preserve case in the equivalence classes. Furthermore, case-folding

decreases the number of distinct tokens to be passed on to the transformation phase.

Some retrieval systems treat hyphens as whitespace. If the retrieval system has proximity

operators, hyphenations may be preserved in the classes so that proximity operators can be

implemented in the query expansion stage to mimic hyphenation. However, if proximity

operators are not available, or not used, hyphenated words may be normalized by

decomposing them into their constituent words.

3.4.3. Transformation

The role of this phase is to perform any transformations necessary for the token to be

accepted and processed by the stemmer. The amount of transformation necessary is

dependent on the stemmer, and this phase can be customized to the stemmer being used.

The current implementation of Inter-Stem uses the Porter Stemmer, which was chosen

because it is an aggressive stemmer and publicly available.

The Porter Stemmer does not have the ability to handle words that contain any kind

of punctuation. This includes hyphens and apostrophes. Rather than modify the stemmer,

the tokens of the type word with hyphen or apostrophe are modified before

being sent to the stemmer. For example the word wanderin’ is transformed to wandering.

Chapter 3. Query Based Stemming: Indexing Phase

44

3.4.3.1. Apostrophe Transformation

An apostrophe is used to indicate the possessive, the omission of one or more letters from

a word, and plurals. The purpose of the transformation stage is not to replace missing

letters, but to add the token to the most appropriate equivalence class and to determine the

most appropriate word form to be passed along to the stemming phase.

A list of common occurrences of apostrophes was development by analyzing a large4

test collection. This collection was tokenized using the method described in Section 3.4.1.

All the terms of type word with hyphen or apostrophe that contain one or

more apostrophes (some terms contain hyphens only) were sorted into groups and a list of

the most frequently used forms of apostrophes was compiled. The results of this analysis

appear in Appendix B. Based on this analysis the following transformational rules were

developed.

Suffixes

1. in', 'ing → ing

 (examples : fixin’, blowin’, spec’ing, ho-ho-ho’ing)

2. ' , 's, n't , 'll, 'em, 've, 'd, 're, 'n → removed

 (examples : sink’n, nuke’em, maitre’d, they’re)

Prefixes

1. a', o', j', l', n', d' → removed

 (examples : a’roaming, o’clock, j’ai, l’ville, d’etats)

2. e’ → e

(examples : e’tude, e’vent, e’re)

4 Approximately 2 gigabytes of text.

Chapter 3. Query Based Stemming: Indexing Phase

45

3.4.3.2. Hyphen Transformation

A hyphen is used between the parts of a compound word, or between the syllables of a

word when the word is divided at the end of a line of text. Once again, in order to develop

an algorithm for transforming words containing hyphens, a list of common occurrences of

hyphenated words was developed. Several transformations of hyphenated words were

considered.

The list of common occurrences of hyphenation was developed by analyzing the

same large test collection. Some examples of the hyphenated words that were considered

are: Computer-aided, over-the-counter, m-i-c-k-e-y m-o-u-s-e, re-election and table-top.

There does not seem to be any clear algorithmic way of identifying which part of a

compound word should be used to determine the target equivalence class. In the case of

re-election, the second term, election is most appropriate for determining class

membership. For table-top, the first term is more appropriate. Since word order cannot

be used to determine which part of the term should be sent to the stemmer, it was decided

to allow hyphenated words to be added to multiple classes.

Example :

computer-aided appears in both the computer and aided equivalence classes

over-the-counter appears in the over, the, and counter classes.

Other

For all other cases the apostrophe was merely removed. Through various trials it was

determined other processing introduced as many errors as were fixed.

Chapter 3. Query Based Stemming: Indexing Phase

46

3.4.4. Stemming

The stemming phase takes each term produced by the transformation phase and

produces its stem. The choice of stemming algorithm determines the composition of the

classes produced, so the algorithm should be chosen carefully. An aggressive stemming

algorithm was chosen to aid in building comprehensive equivalence classes. A weak

stemming algorithm would tend to build small, limited classes. Since the user will be

deciding what terms from the class will be added to the query, the introduction of more

than one concept in a class does not introduce the problems that aggressive algorithms

pose in traditional applications of stemming.

3.5. Class Construction Module

The second module of the equivalence class generator is responsible for taking the list of

normalized term and stem pairs produced by the stem formation module and constructing

equivalence classes. These classes can then be loaded into a database for use by the query

expansion module.

3.5.1. Class Formation

When processing the term/stem pairs, the stem is used as the key to determining in which

equivalence class the normalized term will appear. If a term already appears in a class it is

not added. A class may optionally contain frequency or other statistical information about

the occurrences of its members. The class formation process produces a list of terms,

beginning with the stem, such as:

agenc agencies agency agencys

brass brass brasse brassed brasses

catch catch catches catching catchings

Chapter 3. Query Based Stemming: Indexing Phase

47

Notice that not every item need be a proper word. Stems are often not proper

words, but since they are used only for access and are not presented to the user, this is not

a concern.

This phase also handles such idiosyncrasies as the cases where a stems to b, but b

stems to c. The Porter Stemmer occasionally makes such incomplete conflations. This

phase is responsible for ensuring that a, b, and c all appear in the same class. An algorithm

for collapsing classes in this manner is presented by Croft and Xu [CX95].

3.5.2. Class Pruning

In this phase a decision is made whether or not to eliminate some of the classes. For

example, the word m-i-c-k-e-y would appear in the m, i, c, k, e, and y classes. It is

doubtful that one letter classes will be useful for expansion, and thus can be eliminated.

Classes that consist wholly of stopwords, or that have only one member with a very low

frequency are also candidates for pruning.

3.5.3. Structure Class

In order to speed up access to the equivalence classes at query time, Inter-Stem loads then

into a text database. By annotating the classes with markup, the classes can be structured.

Initially a simple set of tags have been used, but these may be modified later to introduce

more internal structure to the classes.

Example:

<stem>agenc</stem><term> agencies agency agencys</term>

<stem>brass</stem><term>brass brasse brassed brasses</term>

<stem>catch</stem><term>catch catches catching catchings</term>

Depending on the size of the classes it may be beneficial for the terms to be ordered.

However, this is probably better performed dynamically at query time, since the optimal

order of terms is dependent on the query context (see Chapter 4).

Chapter 3. Query Based Stemming: Indexing Phase

48

3.6. Sample Equivalence Class Generation

The following takes the example text in Figure 23 and traces the processing performed by

the equivalence class generator.

<doc><doc-no>SHAK-PLAY-ROMEO-AND-JULIET</doc-no>

<act><act-number> 1 </act-number><scene><scene-number> 1 </scene-number>

<direction>Enter Sampson and Gregory, with swords and bucklers, of the house of bucklers
</direction>

<speaker>Sampson:</speaker><speech>Gregory, on my word, we'll not carry coals.</speech>

<speaker>Gregory:</speaker><speech>No, for then we should be colliers.</speech>

<speaker>Sampson:</speaker><speech>I mean, an we be in choler, we'll draw.</speech>

<speaker>Gregory:</speaker><speech>Ay, while you live, draw your neck out of
collar.<speech>

<speaker>Sampson:</speaker><speech>I strike quickly, being moved.</speech>

<speaker>Gregory:</speaker><speech>But thou art not quickly moved to strike.</speech>

<speaker>Sampson:</speaker><speech>A dog of the house of Montague moves me.</speech>

<speaker>Gregory:</speaker><speech>To move is to stir, and to be valiant is to stand.
Therefore, if thou art moved, thou runn'st away.</speech>

<speaker>Sampson:</speaker><speech>A dog of that house shall move me to stand. I will
take the wall of any man or maid of Montague's.</speech>

<speaker>Gregory:</speaker><speech>That shows thee a weak slave; for the weakest goes to
the wall.<speech>

<speaker>Sampson:</speaker><speech>'Tis true; and therefore women, being the weaker
vessels, are ever thrust to the wall. Therefore I will push Montague's men from the wall and thrust
his maids to the wall. </speech>

<speaker>Gregory:</speaker><speech>The quarrel is between our masters, and us their
men.</speech>

<speaker>Sampson:</speaker><speech>'Tis all one. I will show myself a tyrant. When I have
fought with the men, I will be cruel with the maids--I will cut off their heads. <speech>

<speaker>Gregory:<speaker><speech>The heads of the maids?<speech>

<speaker>Sampson:<speaker><speech>Ay, the heads of the maids, or their maiden-heads.
Take it in what sense thou wilt.</speech>

<speaker>Gregory:</speaker><speech>They must take it in sense that feel it.</speech>

<speaker>Sampson:</speaker><speech>Me they shall feel while I am able to stand; and 'tis
known I am a pretty piece of flesh.</speech>

<speaker>Gregory:</speaker><speech>'Tis well thou art not fish; if thou hadst, thou hadst
been Poor John. Draw thy tool! Here comes the house of Monagues.
... </doc>

Figure 23: Sample text, an excerpt from Romeo and Julliet [Shaks]

Chapter 3. Query Based Stemming: Indexing Phase

49

3.6.1. Tokenization

The purpose of the tokenization phase is to eliminate noise and identify candidate

terms for the equivalence classes. Figure 24 shows how the sample text would be broken

into tokens. Notice that SHAK-PLAY-ROMEO-AND-JULIET is of token type other.

All tokens of type other are discarded. In this example, duplicate tokens have been

eliminated for the sake of brevity.

Token Type Tokens

number 1

markup <doc> <doc-no> </doc-no> <act> <act-number> </act-
number> <scene> <scene-number> </scene-number>
<direction> </direction> <speaker> </speaker> <speech>
</speech>

word with hyphen or

apostrophe

we'll run'st Montague's maiden-heads ‘Tis ‘tis

word Enter Sampson and Gregory with swords bucklers of the
house Capulet on my word not carry coals No for then we
should be colliers I mean an in choler draw Ay while you
live your neck out collar strike quickly being moved But
thou art to strike A dog Montague moves me To move is
stir valiant stand Therefore if away that shall will take any
man or maid That shows thee a weak slave wall weakest
goes true therefore women weaker vessels are ever thrust
push men from his maids The quarrel between our masters
us their all one show myself tyrant When have fought civil
cut off heads Take it what sense wilt They must that feel
Me they am able known pretty piece flesh well art fish
hadst been Poor John Draw thy tool Here comes two
Montagues

Other SHAK-PLAY-ROMEO-AND-JULIET

Figure 24: Results of tokenization of sample text from Figure 23.

Chapter 3. Query Based Stemming: Indexing Phase

50

3.6.2. Normalization

Only tokens of type word or word with hyphen or apostrophe are

processed by the normalization phase. The normalization process is used to eliminate

variations in the data that need not be of concern to the user. The assumption is made that

the back-end system has the ability to handle hyphens, and as such they are not

normalized. In this example the only normalization that takes place is the conversion of all

tokens to lower case. Terms that appear in boldface in Figure 25 are the terms that were

affected by the normalization process.

we’ll
run'st
montague's
maiden-heads
‘tis
‘tis
enter
sampson
and
gregory
with
swords
bucklers
of
capulet
the
house
on
my
word
not
carry
coals
no
for
then
we
should
be
colliers
i
mean
an
in
choler

draw
ay
while
you
live
your
neck
out
collar
strike
quickly
being
moved
but
thou
art
to
a
dog
of
montague
moves
me
to
move
is
stir
valiant
stand
therefore
if
away
that
shall
will

take
any
man
or
maid
that
shows
thee
a
weak
slave
wall
weakest
goes
true
therefore
women
weaker
vessels
are
ever
thrust
push
men
from
his
maids
the
quarrel
between
our
masters
us
their
all

Chapter 3. Query Based Stemming: Indexing Phase

51

one
show
myself
tyrant
when
have
fought
civil
cut
off
heads
the
take
it
what

sense
wilt
they
must
that
feel
me
they
am
able
known
pretty
piece
flesh
well

art
fish
hadst
been
poor
john
draw
thy
tool
here
comes
two
montagues

Figure 25: Output results of normalization of sample text from Figure 23.

Conversion to lowercase reduces the number of distinct terms. For example, after

normalization the following terms are now considered equivalent :

‘Tis and ‘tis

A and a

To and to

Therefore and therefore

That and that

The and the

Take and take

Draw and draw

Me and me

They and they

3.6.3. Transformation

Because the current implementation of the Inter-Stem system uses the Porter Stemmer,

which does not have the ability to handle words that contain any kind of punctuation, the

tokens, we'll, run'st, montague's, maiden-heads require transformation. The purpose of the

transformation is to remove the punctuation with the goal of adding the token to the most

appropriate equivalence class. The following transformations occur.

Chapter 3. Query Based Stemming: Indexing Phase

52

3.6.4. Stemming

The stemming phase takes the term produced by the transformation phase and produces its

stem. The output of this phase is two items, the normalized term and a stem. The list below

is the output produced by the stemming phase for our example text. The stem appears in

boldface.

we we’ll
runst run’st
maiden maiden-heads
head maiden-heads
maiden-head maiden-heads
montagu mantague’s
tis ‘tis
enter enter
sampson sampson
and and
gregori gregory
with with
sword swords
buckler bucklers
of of
the the
capulet capulet
hous house
on on
my my
word word
not not
carri carry
coal coals
no no
for for
then then
we we

should should
be be
collier colliers
i i
mean mean
an an
in in
choler choler
draw draw
ai ay
while while
you you
live live
your your
neck neck
out out
of of
collar collar
strike strike
quickli quickly
be being
move moved
but but
thou thou
art art
to to
a a
dog dog

Token Rule Applied Result

we'll `ll→removed we

run'st remove apostrophe runst

montague's `s→removed montague

maiden-heads each component sent to the stemmer maiden heads

‘tis remove apostrophe tis

Chapter 3. Query Based Stemming: Indexing Phase

53

of of
montagu montague
move moves
me me
move move
i is
to to
stir stir
stand stand
therefor therefore
if if
awai away
that that
shall shall
move move
will will
take take
ani any
man man
or or
maid maid
that that
show shows
thee thee
a a
weak weak
slave slave
weakest weakest
goe goes
true true
therefor therefore
women women
weaker weaker
vessel vessels
ar are
ever ever
thrust thrust
push push
men men
from from
hi his
maid maids
the the
quarrel quarrel
between between
our our

master masters
u us
their their
all all
on one
show show
myself myself
tyrant tyrant
when when
have have
fought fought
civil civil
cut cut
off off
head heads
the the
take take
what what
sens sense
wilt wilt
thei they
must must
that that
feel feel
me me
thei they
am am
abl able
known known
pretti pretty
piec piece
flesh flesh
well well
fish fish
hadst hadst
been been
poor poor
john john
draw draw
thy thy
tool tool
here here
come comes
two two
montagu montagues

 Figure 26: Output results of the stemming phase applied to the normalized terms in Figure 25.

Chapter 3. Query Based Stemming: Indexing Phase

54

Notice that the way the Porter Stemmer handles the words is, us, his and one is not

necessarily as expected. Also, the terms weaker and weakest are unchanged after stemming.

3.6.5. Class Formation

The class formation phase takes the stream of pairs of normalized terms and their stems

produced by the stemming phase, and groups terms into classes based on the stem of the

normalized term. Below is listed the classes produced for our sample text. The stem, which

represents the class appears in boldface.

a a
abl able
ai ay
all all
am am
an an
ani any
ar are
art art
awai away
be be being
been been
between between
buckler bucklers
but but
carri carry
choler choler
coal coals
collar collar
collier colliers
come comes
cruel cruel
cut cut
dog dog
draw draw
enter enter
ever ever
feel feel
fish fish
flesh flesh
for for
fought fought
from from
goe goes

gregori gregory
hadst hadst
have have
head heads maiden-heads
here here
hi his
hous house
i i s
if if
in in
it it
john john
known known
live live
maid maid maids maiden-heads
maid-head maiden-heads
man man
master masters
me me
mean mean
men men
montagu montague montagues
montague's
move move moved moves
must must
my my
myself myself
neck neck
no no
not not
of of
off off
on on one
or or

Chapter 3. Query Based Stemming: Indexing Phase

55

our our
out out
piec piece
poor poor
pretti pretty
push push
quarrel quarrel
quickli quickly
runst run'st
sampson sampson
sens sense
shall shall
should should
show show
slave slave
stand stand
stir stir
strike strike
sword swords
take take
that that
the the
thee thee
thei they
their their
then then
therefor therefore
thou thou

thrust thrust
thy thy
ti ‘tis
to to
tool tool
true true
tyrant tyrant
u us
valiant valiant
vessel vessels
wall wall
we we we’ll
weak weak
weaker weaker
weakest weakest
well well
what what
when when
while while
will will
wilt wilt
with with
women women
word word
you you
your your

Chapter 3. Query Based Stemming: Indexing Phase

56

Even on this short piece of text, a few useful classes have begun to form. For

example:

However, some shortcomings are also apparent. Since the Porter Stemmer does not

handle the suffixes -er and -est, the terms weak, weaker and weakest end up in different

equivalence classes.

3.6.6. Class Pruning

The class pruning phase is where a decision is made whether or not to eliminate some of

the classes. Classes can be eliminated if they are not considered useful for query

expansion. Classes that are candidates for pruning are and, an, be i, of, or, the, to, and

with.

3.6.7. Structure Class

In order to speed up access to the equivalence classes they are placed in a text database.

Before placing the classes in the database the classes should be annotated with markup

tags as described in section 3.5.3. Because of the small size of the equivalence classes in

this example, ordering of the classes is not necessary.

maid maid maids maiden-heads

montagu montague montagues montague's

move move moved moves

57

Chapter 4

4. Query Expansion Using The Equivalence
Classes

For large document collections, the equivalence classes produced have the potential to

become quite large (see example in Appendix C). Selection of appropriate terms from such

large classes can be a difficult task. Ideally a facility should be provided where a user can

choose the level of expansion (using discrete measures such as low, medium, high or by a

sliding scale) and be presented with an appropriate list based on their expansion needs. In

order for such a feature to be possible, an appropriate ordering scheme must be developed.

4.1. Class Ordering

Ordering of classes is also an important basis for developing tools that allow the user to

specify the degree of expansion required. Classes should be ordered in a way that will aid

the user in selecting appropriate terms for expansion. If the selection of terms is a difficult

process because of the size and organization of the classes, query based stemming will not

be practical.

Chapter 4. Query Expansion Using The Equivalence Classes

58

A variety of methods can be used to structure the equivalence classes in a manner that

facilitates term selection. Classes can be fully ordered, either statically at class formation

time or dynamically based on query context. In many cases the information that will be used

in determining class order can be computed and stored at index time. Nevertheless, class

ordering is best performed dynamically at query time because the optimal ordering of terms

is usually dependent on the query term and context. With a fully ordered list the user has the

option of selecting individual terms or selecting a cut off point, where all terms below the

cut off point are discarded. Another option is to partition the class based on a classification

scheme and organize the discrete groups into a partial order. The order of remaining terms

could then be changed based on initial selections from the partial order. This process could

be repeated in a drill down manner, resulting in hierarchical clusters.

4.1.1. Lexical Distance

One method for dynamically creating a total class order is by lexical distance from the query

term. There are a variety of formulas that could be used for such a calculation. A naïve

approach is to count the “edit distance” [HD80] between the candidate term and the query

term. Transformation calculations can be limited to the addition of characters, or may

include complex interchanges and removal of characters. For example, Figure 27 shows the

ordering of a sample class based on lexical distance.

Term Transform

run none (query term)

runs addition of -s

runner addition of -ner

running addition of -ning

Figure 27: Ordering of sample class run
based on lexical distance.

Chapter 4. Query Expansion Using The Equivalence Classes

59

However, determining order solely by the number of transformations performed can be

problematic when words that are lexically close are semantically distant. Continuing with

the run example above, the word rune is lexically very close to run, but the word running is

semantically closer. Similarly the following pairs of terms represent different concepts

despite being syntactically similar :

past paste head heading

on one attache attached

arm army suite suited

A similar problem with lexical distance calculations occurs for query terms that

represent multiple concepts. For example, Figure 28 represents the ordering for a sample

class based on the ambiguous query term orient. The ordering of the orient class by lexical

distance proved not to be helpful. This is because the term orient has multiple semantic

meanings. The addition of -er or -al require comparable transformation, but each suffix is

associated with a different sense of the term orient. As a result, in such cases, the lexical

distance measure produces an interleaving of the various senses of the query term.

However, Figure 29 illustrates that the effectiveness of ordering the orient class by lexical

distance is greatly improved when the query term is oriental.

The problems with polysemous terms, such as orient, may be reduced by the use of

partially ordered lists. A partial order involves presenting the user with a short list of terms,

and then based on initial selections, ordering the rest of the list. For example, if the query

term is orient and the user selects oriental from the initial partial order, the variants of

oriental will rise to the top of the order and the impact of interleaving will be greatly

reduced.

Chapter 4. Query Expansion Using The Equivalence Classes

60

Term Transform

orient none (query term)

orients addition of -s

oriental addition of -al

oriented addition of -ed

orientals addition of -als

orienteer addition of -eer

orienteers addition of -eers

Figure 28: Ordering of sample class orient
based on lexical distance.

Term Transform

oriental none (query term)

orientals addition of -s

orient removal of -al

orients removal of -al
addition of -s

oriented removal of -al
addition of -ed

orienteer removal of -al
addition of -eer

orienteers removal of -al
addition of -eers

Figure 29: Ordering of sample class oriental
based on lexical distance.

Chapter 4. Query Expansion Using The Equivalence Classes

61

The computation of lexical distance can further be refined by considering

transformations based on suffixes rather than just individual characters. Transformations for

plurals, possessives, and past tense (e.g. -s, -ed, -ing) should be considered low cost

operations. Since derivational variations (e.g. the addition of -ize and -ship as in

general→generalize, court→courtship) usually have a greater effect on semantics than

inflectional variation, derivational transformations should have a greater cost. A list of

suffixes, such as the one in Appendix D, could be incorporated into a lookup table where

each entry includes an associated cost.

As a further refinement, the removal and append operations may assigned different

costs. For example, the following two transformations on the word communicate require

the same number of character operations.

communicate → communicational remove -e
add -ional

6 character operations

communicate → commune remove -icate
add -e

6 character operations

One transformation requires more character removals, while the other requires more

character additions. In this example, the character removal operations resulted in a greater

semantic change than the character addition operations.

In summary, the development of a lexical distance algorithm is a non-trivial activity

and needs to be sensitive to the peculiarities of the language.

4.1.2. gram

Another method that could be used for creating a total order of the equivalence class is the

n-gram method. The digram (n=2) method is a measure used to compute the similarity of

terms based on unique pairs of consecutive letters held in common [AB74]. The technique

Chapter 4. Query Expansion Using The Equivalence Classes

62

is not limited to digrams and can be implemented for small values of n, thus the name n-

gram.

The following example uses digrams to compute the similarity between statistical and
statistically.

statistical → st ta at ti is st ti ic ca al

unique digrams = st ta at ti is ic ca al

10 digrams, 8 unique

statistical → st ta at ti is st ti ic ca al ll ly

unique digrams = st ta at ti is ic ca al ll ly

12 digrams, 10 unique

statistical and statistically share 8 unique digrams

In the above example, the similarity measure for statistical and statistically is :

S =) = .892 8 8 10* / (+

Once the unique digrams for the word pair have been identified, a similarity measure is

computed as follows:

S =)2C(A+B

where :

A = the number of unique digrams in the first word

B = the number of unique digrams in the second word

C = the number of unique digrams shared by A and B

Chapter 4. Query Expansion Using The Equivalence Classes

63

The n-gram measure can be used to compute a similarity measure between the query

term and each term in an equivalence class. The class could then be presented totally

ordered by decreasing similarity.

An alternative is to present the user with a partial list consisting of the top 5-7 terms

based on the similarity measure. The rest of the terms could then be ordered based on

similarity to the selections from this initial list.

The n-gram method can also be used to create clusters of terms by creating a similarity

matrix for all terms in the class and applying a single link clustering algorithm [Ras92].

4.1.3. Term Co-occurrence

The term co-occurrence measure is based on the assumption that words that should be

conflated are likely to occur in the same documents or text windows. Croft and Xu suggest

that a variation of the EMIM measure [Van79] may be used to determine the significance of

word form co-occurrence [CX95].

em a b
o a b

n a n b
(,)

(,)

() ()
=

+

where

o(a,b) is the number of times both a and b occur in a text window of predetermined
size (e.g. {<aibj>  distance (ai,bj) < window size} where window size may
equal some unit such as a document)

n(a) is the number of times a occurs in the corpus

n(b) is the number of times b occurs in the corpus

This measure can be repeatedly calculated with a equal to the query term and b equal

to each member of the equivalence class. The class can be linearly presented by decreasing

em value, or as a complex hierarchy based on the results of computing em values for each

pair in the class.

Chapter 4. Query Expansion Using The Equivalence Classes

64

4.1.4. Term Importance

A static method for determining term order of an equivalence class is to base the order on

term importance. The inverse document frequency, noise and term discrimination are all

measures that attempts to identify term importance. These are static measures, in that they

are independent of query context. A class can thus be linearly ordered by decreasing term

importance prior to query time.

Measures of importance based on term frequency and distribution would not be

possible if terms tended to occur randomly and with consistent frequency across a document

collection. Using term frequency to determine term significance is based on the theory that

an author will tend to repeat certain words as they develop their ideas. Thus, repetition of a

word is an indication of emphasis and significance, up to some threshold. High frequency

terms are usually low discriminating stop words (e.g. the, of, and to, a etc.).

According to Zipf’s law, when the terms in a body of text are arranged by decreasing

order of frequency of occurrence, the following holds [Zipf45]:

frequency * position in list ≅ constant

Many automatic indexing techniques will ignore terms with frequency of occurrence

above a certain threshold. Similarly, very low frequency words may occur so infrequently in

the collection that their presence may not be considered to affect performance in a

significant way. Terms below a low frequency threshold are often discarded by automatic

indexing programs. However, eagerness to discard terms should be tempered with the

knowledge that the elimination of high-frequency words can result in loss of recall and the

elimination of low-frequency terms may negatively effect precision. The use of absolute

measures of frequency for measuring term importance is considered naïve and more

sophisticated measures exist [Sal83].

Chapter 4. Query Expansion Using The Equivalence Classes

65

There are two main characteristics of a good discriminating term. First, the term must

be representative of the information content of the document. Second, the term should help

to distinguish the document from other documents. A measure of term importance needs to

compute relative frequency to identify terms that occur with significant frequency in some

documents, but with relatively low frequency in the collection as a whole.

The common measures for term importance are inverse document frequency, noise

and term discrimination. The inverse document frequency measures term importance as

proportional to frequency of occurrence in a document and inversely proportional to the

number of documents that the term occurs in. The noise measure identifies broad non-

specific terms, that are evenly distributed across the document collection. The signal

measure is an inverse function of noise and is used to identify the importance/content value

of a term. Ordering the terms within the equivalence classes by decreasing signal value has

the effect of favoring terms that distinguish one or two specific documents. The term

discrimination value attempts to measure the degree to which a term will help to distinguish

documents from one another. Ordering the terms within the equivalence classes by

decreasing discriminating value has the effect of favoring terms that discriminate the

document they occur in from other documents in the collection.

4.1.5. Concept Clusters

Since actual word meanings have a strong correlation with relevance judgments, it would be

desirable to form concept clusters within each class. This approach views the classes as

discrete conceptual groups, rather than as a linear list of ordered terms. A representative

term from each cluster can be presented to the user for selection. Based on their selection,

the appropriate concept cluster is used for query expansion.

Since a word may have multiple senses, a term must be able to be a member of more

than one concept cluster. The term gravity is an example of a word with multiple senses.

One sense of gravity (great importance or significance; seriousness) dictates it should be

clustered with grave. Another sense of gravity (tendency of objects to fall towards the

Chapter 4. Query Expansion Using The Equivalence Classes

66

center of the earth) necessitates it appear in the same cluster as gravitation. The clustering

algorithm should allow a term to appear in both groups.

The determination of word senses is a major problem both practically and

theoretically. Krovetz developed modifications to the Porter algorithm that incorporate a

machine readable dictionary to provide word-sense disambiguation [Krov93]. He has also

developed inflectional and derivational stemmers that attempt to incorporate word-sense

disambiguation. Unfortunately, there is no one piece of information in current on-line

dictionaries or thesauri that can be used to disambiguate terms consistently. Krovetz, used a

combination of evidence from part of speech, subcategorization, subject area codes etc. The

process of analyzing evidence from multiple sources and handling exceptions is a

complicated heuristic approach.

In addition, no dictionary is exhaustive and many of the document terms may not

appear. Technical, domain specific terms, proper nouns, acronyms, abbreviations and

hyphens are important when working with real world text, but are often not included in a

dictionary. Any attempt to use a dictionary for disambiguation will therefore be incomplete.

Another method that may be applicable to the formation of concept clusters is lexical

chaining. A lexical chain is a succession of semantically related words in a text that creates

a context and contributes to the continuity of meaning [MH91]. Since word-sense

disambiguation is an important component of lexical chaining, it is conceivable that it could

be applied to identifying concept clusters within equivalence classes. St. Onge has

developed a software tool that reads in documents and automatically groups words together

(lexical chains), based on relationships found in WordNet 1.45 [Sto95]. If equivalence

classes instead of documents were provided as input, the chains produced could be used as

the basis for concept clusters.

Research into word sense disambiguation techniques and their retrieval effectiveness

has recently become popular [Gre92][San94][Voo93][Voo94]. Results indicate that more

5 WordNet is a trademark of Princeton University.

Chapter 4. Query Expansion Using The Equivalence Classes

67

basic research is needed into the relationship between sense ambiguity, disambiguation and

retrieval performance. Once mature, disambiguation techniques represent an appropriate

way for clustering terms within an equivalence class.

4.2. Expansion Methods

The purpose of building equivalence classes of words is to use them in query expansion.

When a term is to be expanded, the Inter-Stem tool will stem the term and retrieve the

equivalence class associated with the resulting stem. Either a portion or the complete class

can then be added to the query. The three main ways that query based expansion can be

implemented is command-line utility, batch process or interactive session.

4.2.1. Command Line

The command-line version of the Inter-Stem system is a useful query formation aid. It

allows a user to type :

prompt>expand my_word

where upon a list of the morphological variants of my_word from the equivalence classes is

returned. The command line version is designed to be used as a separate utility that can aid

in determining terms to be included in a query. The current version has a switch for

choosing between low, medium and high levels of query expansion.

prompt>expand flood

flood floods flooded flooding

Figure 30: Command-line expansion of term flood using the default low setting.

Chapter 4. Query Expansion Using The Equivalence Classes

68

4.2.2. Batch

Query based stemming can also be performed as a batch process. A file containing the text

of queries (written in a predefined query language) with the terms to be expanded marked, is

submitted to the Inter-Stem batch facility for expansion. The batch facility will return a text

file with the queries modified to contain all the morphological variants of the marked terms.

The results will normally be submitted directly to the retrieval engine, but the user may

choose to edit the results before submission.

The batch mode has the advantage that it can include understanding of the query

language and make expansions that are consistent with the syntax of the language being

used. Options such as expansion level and handling of hyphens can be specified by

parameters and will be applied to all expansions uniformly.

prompt>expand H flood

flood floods flooded flooding flood's flooding's anti-flood
asia-floods bangladesh-flood bangladesh-floods bog-flooding
china-flood ethiopia-floods flash-flood flash-flooding
flood-battered flood-causing flood-contaminated flood-
control flood-coroner flood-created flood-damaged flood-fill
flood-filling flood-flow flood-free flood-hazard flood-hit
flood-induced flood-insurance flood-irrigate flood-irrigated
flood-lighted flood-like flood-lit flood-loss flood-of
flood-plagued flood-plains flood-polluted flood-producing
flood-prone flood-protection flood-ravaged flood-related
flood-relief flood-scene flood-search flood-stage flood-
stranded flood-stricken flood-struck flood-survivor flood-
swept flood-swollen flood-threatened flood-tide flood-torn
flood-warning flood-water flood-weary flooded-out flooded-
the-carburetor floods-history floods-missing floods-
vignettes fluorescent-flooded half-flooded hard-disk-
flooding hurricane-flooding light-flooded near-flood non-
flood non-flooded non-flooding now-flooded once-flooded
post-flood rain-flooded room-flooding seasonally-flooded
soviet-floods steam-flooding sun-flooded

Figure 31: Command-line expansion of term flood using the high setting.

Chapter 4. Query Expansion Using The Equivalence Classes

69

Since the results of the batch process will normally be submitted directly to the

retrieval engine, more detailed control than the course grained low, medium and high levels

of expansion provided by the command line version are needed. The choice of levels of

expansions need to be detailed and range from very low expansion, such as plurals only, to

expansion that includes all terms in the equivalence class.

Figure 32 is a sample query written in the query language GCL (overview of syntax

appears in Appendix F), ready for submission to the Inter-Stem batch process. Terms to be

expanded are delimited by dollar signs. Figure 33 is the expanded version of the query

produced by the Inter-Stem system.

FEMA = “fema”+((“federal”<>“emergency”<>“management” <>”agency”)
<[4])

DISASTER = $disaster$ + $flood$ + $earthquake$ + $hurricane$ +
$tornado$

QUERY = FEMA^DISASTER

@rank QUERY

Figure 32: Query marked for batch processing.

FEMA = “fema”+((“federal”<>“emergency”<>“management” <>”agency”)
<[4])

DISASTER0 = “disaster” + “disasters”

FLOOD0 = “flood” + “floods”+ “flooded” + “flooding”

EARTHQUAKE0 = “earthquake” +“earthquakes” + “earthquaking”

HURICANE0 = “hurricane” + “hurricanes”

TORNADO0 = “tornado” + “tornadoed” + “tornadoes”

DISASTER = DISASTER0 + FLOOD0 + EARTHQUAKE0 + HURRICANE0 +
TORNADO0

QUERY = FEMA^DISASTER

@rank QUERY

Figure 33: Results of batch processing applied to Figure 32.

Chapter 4. Query Expansion Using The Equivalence Classes

70

4.2.3. Interactive

Thirdly, and ideally, query based stemming should be integrated into a query interface for

interactive query formulation. Such a facility would provide the user with even greater

control over the expansion process. The interactive method allows for expansion of terms

to be handled individually, unlike the batch process where all terms and queries are handled

uniformly.

In addition to customizing the degree of expansion on a term by term basis, the user

can choose to have the class presented as either a total order, cluster of terms, or as a

hierarchy. The interactive method allows the presentation or suppression of additional

information such as frequency of occurrence and term importance. Too much information

can be overwhelming, but the option to display extra information or re-order the equivalence

classes presents flexibility not available with other methods.

A feature that could be very useful is the ability to view and temporarily merge

equivalence classes that have lexically similar stems. This would provide the user with a

mechanism to add terms that do not appear in the same class due to inadequacies of the

underlying stemming algorithm. For example, it would be useful to be able to merge and

then order the deter and deterr classes. Term selection would then be performed on the

merged class.

deter deter deters deterring

deterr deterrence deterrent deterrents

Features that would be helpful in an interactive stemming system are facilities for the

iterative refinement of the query involving the perusal of preliminary results, manual editing,

refinement and re-submission. One of the aims of an interactive stemming interface is to

make the query formulation process more iterative. Different types of information and

feedback could be used at different stages of the formulation process. In the early stages

users may not fully understand how to express their information need or be familiar with the

terminology used in the document collection. Interactive query expansion requires a term

Chapter 4. Query Expansion Using The Equivalence Classes

71

selection stage where the system presents the query expansion terms to the user in some

reasonable order, preferably with the terms that are most likely to be useful appearing first.

Figure 34 is a preliminary design for a very basic interactive stemming interface. The

query terms box is automatically populated based on the text of the query. When a user

selects a query term (in the example village is selected), a list of morphological variants

appears in the term variants list box. A slider is provided for increasing and decreasing the

expansion level. Various push buttons are provided for term selection. When the submit

button is pressed the query is run, and the total number of hits and the titles of the top ten

documents are displayed in a scrollable window. The scroll bar allows the user to scroll

Figure 34: Basic interface for query based stemming.

Chapter 4. Query Expansion Using The Equivalence Classes

72

through all the documents returned. The full text of a document can be viewed by double

clicking on a document title.

Query based stemming could be combined with relevance feedback. Relevance

feedback is an interactive retrieval tool that is often used to retrieve more documents by

expanding the number of terms in a query. Systems that implement relevance feedback bring

back an initial set of documents that are presented to the user for relevance judgments. The

original query is then expanded with terms from the relevant documents. These terms could

act as a filter on the morphological variants of the original query terms (i.e., only variants

that occur in the relevant documents are used for expansion). In experiments by Harman,

filtering of variants based on feedback documents was shown to produce performance

improvements comparable to relevance feedback [Har88].

73

Chapter 5

5. Evaluation of Query Based Stemming
In order to evaluate the effectiveness of user mediated, query based stemming a suitable test

environment is needed. The test environment should include queries, a collection of

documents and relevance judgments.

Since its introduction, the Text REtrieval Conference (TREC) has provided a large

heterogeneous test collection, which has often been used to test various query expansion

methods. Early TREC results showed some support for the use of query expansion

techniques. Whether these results are applicable to on-line retrieval systems is questionable

due to the detailed and lengthy user need statements that were used for query formulation.

In Trec-4 the user need statements have been shortened, making it an ideal test environment

for query expansion techniques. For this reason the TREC-4 collection was chosen for our

query based stemming experiments.

Chapter 5. Evaluation of Query Based Stemming

74

5.1. Trec

TREC is an annual conference with the goal of bringing research groups together to discuss

information retrieval research involving large document collections. TREC is co-sponsored

by the Advanced Research Project Agency (ARPA) and the National Institute of Standards

and Technology (NIST). The motivation for introduction of TREC is to provide a very

large test collection to stimulate interest in information retrieval research and encourage

interaction between academia, industry and government. The annual TREC conference

provides a forum where research groups can compare results from experiments against a

common document and topic collection using standard evaluation methodology.

5.1.1. Overview

Information retrieval has a long history of experimentation. Unfortunately, individual

research groups often perform experiments using their own sets of data and without

common evaluation methods. This makes it difficult to compare the effectiveness of

different techniques. The Cranfield experiments in the mid sixties introduced the importance

of creating common test collections [CMK66] (cited in [Har95]). The popularity of the

Cranfield collection led to the introduction of other similar collections, such as the CACM

and NPL collections. However, many of the experiments performed against these

collections do not use the same evaluation techniques, and there is very little comparison of

results across systems or collections. In addition, the size of these test collections are not

realistic representations of current real-world information retrieval environments.

Techniques that have been shown to perform well on small test collections do not

necessarily scale up to larger corpora. Other techniques such as automatic thesauri are

impractical and produce poor results when tested against small collections, but perform

quite well when used with larger collections.

Chapter 5. Evaluation of Query Based Stemming

75

5.1.2. The Task

There are two kinds of tasks in TREC, adhoc and routing. For each task a series of

information needs are defined in natural language. These are the basis for query

construction. The two main tasks are subdivided into three categories based on query

construction technique.

Automatic

The system automatically analyzes the information need and formulates a query based on

this analysis. No manual modifications are allowed.

Manual

Queries are manually constructed (software tools are allowed for assistance) based on the

defined information need. Once the query is constructed no modifications are allowed.

Interactive

An initial query is constructed by either manual or automatic means. The query is run

against the document collection (or subset), and based on the content of the documents

retrieved the query may be modified. This iterative process many be repeated as many times

as needed.

In the adhoc query task, the collection to be queried is both known and static. The

information need statements are translated by each team into queries to be entered into their

system and run against the collection. The retrieval results are submitted for evaluation.

Chapter 5. Evaluation of Query Based Stemming

76

In the routing task, the information need is static, but the collection to be queried is

dynamic. Participants are given a set of query topics and a set of training documents with

relevance judgments. As in the adhoc task, the topics are used to formulate queries. These

queries are run against the training documents and modified/tuned for optimal results. The

final tuned version of the queries are then run against a new set of documents, and the

results are submitted for evaluation. The routing task is meant to simulate information

filtering such as would be done by a personal news filtering agent/service.

The results for each task are submitted and run through a common evaluation

package. The use of a common evaluation routine allows participants to compare the

effectiveness of different retrieval and query formulation techniques.

5.1.3. The TREC Test Collection

The TREC test collection consists of documents, definitions of information needs and

relevance judgments (lists of document that satisfy the defined information needs). The

document collection for TREC is distributed on a set of CD-ROMS, each of which contain

about 1 Gigabyte of data that has been compressed. The contents of the collection is

changed for each conference. For TREC-4, the test document collection included:

Training Data for the Routing Task

Disk 1

Federal Register (1994)

Information from Computer Select Disks

IR-Digest (archives)

Virtual Worlds

Selections from Usenet Newsgroups

Chapter 5. Evaluation of Query Based Stemming

77

Disk 3

San Jose Mercury News 1991

AP Newswire 1990

U.S. Patents 1993

Information from Computer Select disks

The source of documents are chosen with the aim of producing a heterogeneous

retrieval environment. The collection contains documents of varying lengths, writing style,

and editing (spelling and typographical errors are left in the source) as well as various

vocabularies/domains.

Figure 35 illustrates the diversity of the TREC document collection. The U.S. patents

and IR digest contain predominately long documents, while the Computer Select collection

consists of mostly short articles. The lengths of documents in the Federal Register vary

widely (1,398 average vs. 403 median). For contrast, entries have been appended to the

table for some of the older collections. Notice that most of the older test collections are

considerably smaller than even one of the components of the TREC collection.

Data for the Adhoc task

Disk 2

Wall Street Journal (WSJ) 1990 - 1992

Associated Press (AP) Newswire 1988

Federal Register 1988

Information from Computer Select disks

Chapter 5. Evaluation of Query Based Stemming

78

Each TREC document is organized in a standard format using SGML style tags. Each

data file may contain multiple documents. The following is a sample document from the San

Jose Mercury News portion of the collection.

6 Terms were computed using no stopwords, stemming or tokens beginning with a number.

Collection Size in
Megabytes

Average
Terms Per
Document

Median
Terms Per
Document

Total
Records

Federal Register (1994) 283 456 390 55,554

IR Digest 7 2,383 2,225 455

News Groups 237 340 235 102,598

Virtual Worlds 28 416 225 10,152

AP Newswire (1988, 1990) 482 472 443 158,240

Federal Register (1988) 211 1,398 403 19,860

Computer Select

(Disks 2 & 3 combined)

552 315 150 75,180

San Jose Mercury News

(1991)

290 285 227 90,257

U.S. Patents (1993) 245 4,777 3,922 6,711

Wall Street Journal

(1990 - 1992)

247 �377 �218 �74,520

TREC Total 2582 593,527

Cranfield 1.5 88 79 14,000

CACM 24.26 3,204

MED 54.69 1,033

NPL 19.96 11,429

Figure 35: 6Comparison of Test Collections[Har93][Har96].

Chapter 5. Evaluation of Query Based Stemming

79

5.1.4. Query Topics

Instead of providing a query set (e.g., in the form of boolean expressions), the TREC

collection contains a set of query topics that are presented as user need statements. This

allows for a variety of query construction methods to be used.

The topics are designed to imitate a real user’s information requirement. In earlier

TRECs the information need statements were long, detailed and highly structured. In

TREC-4 a change was made to short concise topics that better reflect how real users would

state their need for information. Keeping the topics concise encourages the development of

techniques for expanding statements of information requirements that are too short.

<DOC>

<DOCNO>SJMN91-06002002</DOCNO>

<ACCESS>06002002</ACCESS>

<CAPTION>Drawing; DRAWING: Dan Hubig</CAPTION>

<DESCRIPT>OPINION; NEWSPAPER; WRITING</DESCRIPT>

<SECTION>Editorial</SECTION>

<HEADLINE>THE NEW YEAR IN TABLOID HEADLINES</HEADLINE>

<MEMO>Commentary

Tony Kornheiser writes for the Washington Post. </MEMO>

<TEXT> (Let me digress. I had the buona fortuna of driving home
in Thursday's snow behind a procession of drivers suffering snow
paralysis. There's less than 1 inch on the roads, and they're
going so slowly, I think I'm in an Ingmar Bergman movie. What,
none of these bozos has ever seen snow before? Just my luck to
get on the road as the new "Only Drivers From the Tropics Allowed
6-8 p.m." rule goes into effect. Six miles, 65 minutes. I'd have
gladly turned into Rock Creek Park and risked skidding headfirst
into a tree for the sheer thrill of actually moving. It's snow,
people, not nuclear winter. If you're behind the wheel of a car,
it's an indication that you intend to go somewhere.)

…

</TEXT>

</DOC>

Figure 36: Sample TREC document.

Chapter 5. Evaluation of Query Based Stemming

80

The query topics are developed by the same group of people who are responsible for

determining document relevancy. Each assessor develops 10 query topics. These topics are

then tested against a subset of the document collection. The final selection of topics is made

based on the projected number of relevant documents, clarity, and contribution to a mix of

broad and narrow topics. Each topic is formatted using a standard method, as illustrated

below.

Samples of Adhoc Query Topics

5.1.5. Relevance

Relevance judgments are a very important part of a test collection. For each query a

comprehensive list of relevant documents in the collection must be provided.

There are several possible methods for compiling such a list. One method is to

compile full relevance judgments for each topic across all documents. In the case of the

<top>

<num> Number: 218

<desc> Description:

How have mini steel mills changed the steel industry?

</top>

<top>

<num> Number: 223

<desc> Description:

What was responsible for the great emergence of

"MICROSOFT" in the computer industry?

</top>

<top>

<num> Number: 231

<desc> Description:

Should the U.S. Government provide increased support

to the National Endowment for the Arts?

</top>

Chapter 5. Evaluation of Query Based Stemming

81

TREC-4 adhoc task, providing judgments on 50 topics across approximately 593,527

documents would require in excess of 29 million relevance judgments. Clearly this would be

a very time consuming and expensive process. Another option is to take a random sample

of documents, and perform relevance judgments only on the sample. The size of the sample

needed to find a suitable number of documents per topic would be very large. A third

option is the pooling method, which is based on providing relevance judgments for a set of

the documents retrieved using the various participating systems. This has been used

successfully for TREC and for other collections (NPL and INSPEC).

Results From System X
For All Queries

For Each Topic, Sort by
Document Number

For Each Topic Merge
Results with the Results
from the Other Systems

Remove Dupl icates

For Each Topic Take the
Top 100 Ranked

Documents

Group Results By Topic

results submitted to assessors
for relevance judgments

Figure 37: TREC Pooling Methodology

Chapter 5. Evaluation of Query Based Stemming

82

Figure 37 illustrates the pooling methodology used by TREC. The results produced

by the each participating system are submitted for evaluation. These results are then divided

into query topics. For each topic the top 100 ranked documents (out of the possible 1000

submitted) are selected. The results by query from all the other systems are merged. The

merged results are sorted by document number within topic and duplicates are removed.

The resulting list of documents by topic are submitted to the assessors for relevance

judgments. Results are judged by the assessor who created the topic, as well as two

additional assessors.

In TREC-4 there were 74 adhoc runs. Each query can potentially return 1,000

documents, resulting in a potential of 7,400 documents for each query. Once duplicates are

removed, on average there are approximately 1,770 documents produced by the pooling

method. Of these, approximately 7.5% were judged relevant.

5.1.6. Evaluation

One of the goals of TREC is to provide a common evaluation forum. Recall/precision

figures are calculated for each system and a standard set of results for each system is

published in the proceedings. The standard results for Waterloo MultiText’s submission to

Trec-4 is provided as a sample in Appendix E.

5.2. MultiText Retrieval Engine

The current version of the Inter-Stem system is designed to work with the retrieval engine of

the MultiText Project at the University of Waterloo. A summary of the basic syntax of

GCL, the query language used by this system, can be found in Appendix F.

GCL determines matches based on the shortest substring model. The text in the

database is viewed as a continuous sequence of terms and tokens. A boolean subset of the

language is used for the TREC queries. In a traditional boolean system, the query

Chapter 5. Evaluation of Query Based Stemming

83

would retrieve all documents that contain both terms. In GCL, the result is the smallest

interval of text that contains both query terms.

The concept of shortest substring satisfying the query Q, can be more formally

defined as an interval represented by the pair (α,Ω) of integral positions in the text, such that

the substring beginning at α and ending at Ω satisfies the query and no containing interval

does so [CCB95c]. For the basic boolean operations:

1. An interval (α,Ω) is a solution to the query Q1 AND Q2, if the interval satisfies

Q1 and the interval satisfies Q2.

2. An interval (α,Ω) is a solution to the query Q1 OR Q2, if the interval satisfies

Q1 or the interval satisfies Q2.

3. An interval (α,Ω) is a solution for Term T if the interval contains the term T.

Based on these definitions, a large number of intervals may satisfy a query. For

example, the query “to” AND “be” performed against the text in Figure 38 can be

satisfied by the intervals (1,2) (2,5) (5,6) (1,6) (1,5) (1,4) (1,3) (2,6) (3,6) (4,6). Although,

many intervals satisfy the query, only intervals that do not contain within them a satisfying

interval are viewed as solutions.

“information” AND “retrieval”

To be or not to be

1 2 3 4 5 6

Figure 38: Example text database

Chapter 5. Evaluation of Query Based Stemming

84

The ranking method used by the MultiText retrieval system takes advantages of the

shortest substring model of GCL. The ranking algorithm is based on two key assumptions:

1. The smaller the solution interval of text, the greater the probability that the text

is relevant.

2. The more solution intervals contained in a document, the greater the

probability that the document is relevant.

Based on these two assumptions, the rank of a document that contains intervals

(α1,Ω1),(α2,Ω2), …,(αn,Ωn) is [CCB95c]:

 DOCUMENT SCORE S i i
i

N

 =
=
∑ (,)α Ω

0

where

S

A

i i i i
i

(,) (,)
|(

α α
α

α
Ω Ω

Ω

Ω
=

≥

≤







 if ,)| A

1 if |(,)| A

i

i i

The constant A represents the threshold, below which, assumption one no longer

holds. Based on earlier TREC experience, A is assigned a value of 16 [CCB95c].

The document score is the sum of the interval scores, where the shorter the interval

the higher the score. A higher score represents greater probability that the document is

relevant. Documents are returned ranked by decreasing score.

Chapter 5. Evaluation of Query Based Stemming

85

5.3. Equivalence Class Construction for the TREC
Collection

The TREC ad hoc collection was used to build the equivalence classes for our query based

stemming experiments. The ad hoc collection consisted of approximately 2 Gb of data

across 2,255 text files. Figure 39 lists some of the statistics compiled during class

construction. Additional statistics are included in Appendix G. This data indicates that

many of the equivalence classes are large in size.

Collection Stats

Unique words 808,273

Unique words containing apostrophes 66,743

Unique words containing hyphens 267,254

Words that occur only once in the collection 367,038

Equivalence Class Stats

Equivalence classes 630,267

Size of largest class 5,699

Size of smallest class 1

Classes of size 1 517,847

Classes of size between 1 and 100 terms 111,207

Classes of size greater than 100 terms 1,213

Figure 39: Class construction statistics.

Chapter 5. Evaluation of Query Based Stemming

86

The largest class is represented by the stem non and includes 5,699 distinct terms. To

illustrate how this class became so large, a sample of terms from the class is included in

Figure 40. The use of non as a prefix in hyphenated words and the inclusion of these

hyphenated words in the equivalence classes accounts for the extremely large class size.

Frequent use of hyphenation and the resulting effect on class size had not been anticipated.

A selection of other large equivalence classes were examined to see if the inclusion of

hyphenated words inflated class sizes (see Figure 41 for some examples). Examination of

large classes showed that over 90% of the terms were hyphenated.

non non nons non' alumina-non anti-non-a aromatic-non-aromatic
chag-non co-non-polynomial context-non-local ethylene-propylene-
non-conjugated i-non-competitive low-to-non-irritating metal-non-
metal microorganism-non-decomposable my-non-deterministic-call
no-non-sense non-a non-abandonment non-abbreviated non-ablating
non-ablative non-aborigines non-abortion non-abraded non-abrading
non-abrasive non-abrupt non-absolute non-absorbable non-absorbent
non-absorbing non-absorptive non-abstract non-abused non-abusers
non-abusive non-academic non-academicians non-academics non-
academy non-accelerated non-accented non-acceptability non-
acceptable non-acceptance non-access non-accessible non-accident
non-accidental non-accommodating non-accomplishment non-account
non-accountability non-accountable non-accountant non-accountants
non-accounting non-accounts non-accredited non-accruing non-
accumulating non-accusatory non-achromatic non-acid non-acidic
non-acoustic non-acquiescence non-acquisition non-acquisitiveness
non-acrylic non-act non-acting non-action non-actionable non-
actions non-activated non-active non-active-matrix non-active-
multiplex-matrix non-activity non-activity-induced non-actor non-
actor-proof non-actors non-actors' non-actress non-actuated non-
acute non-acutely non-adaptive non-addicting non-addictive non-
address non-addressable non-addressed non-adhered non-adherence
non-adherent non-adherents non-adhering non-adhesive non-adidas
non-adjacent non-adjoining non-adjustable non-adjusted non-
adjustment non-administrative non-admission non-admissions non-
admittance non-adobe non-adobe-licensed non-adsorbed

Figure 40: Selections from the non equivalence class.

Chapter 5. Evaluation of Query Based Stemming

87

Sample of terms from the driven equivalence class

driven driven driven' acquisition-driven action-driven activity-
driven advertiser-driven advertising-driven agenda-driven air-
driven alcohol-driven anxiety-driven application-driven
applications-driven applicaton-driven attribute-driven auger-
driven automatic-driven axially-driven backseat-driven' banjo-
driven batch-driven batch-file-driven battery-driven belt-driven
bicycle-driven bottom-line-driven brand-name-driven budget-driven
bureaucrat-driven business-driven button-driven cache-driven
capital-driven career-driven case-driven cash-driven cast-driven
casual-yet-driven celebrity-driven channel-driven character-and-
plot-driven character-driven chauffeur-driven

Sample of terms from the book equivalence class

book book booked booking bookings books book' book's booking'
books' books's ad-booking address-book address-book-size advance-
booking advanced-booking already-booked alternative-book
appointment-book asset-to-book-value back-of-the-book band-
booking bank-to-book bankruptcy-book baseball-book big-book
black-book blank-book blue-book book-assembly book-author book-
autographing book-balancing book-banning book-based book-binding
book-bindings book-borrowing book-building book-building' book-
burning book-burnings book-burying book-buyers book-buying book-
centered book-closure book-complaint book-compliant book-contract
book-crammed book-disk book-distribution book-edition book-end
book-entry book-entry-only book-excerpts book-expo book-expo's
book-filled book-first book-form book-formatting book-in book-in-
progress book-industry book-inspired

Sample of terms from the mail equivalence class

mail mail mailed mailing mailings mails mail's mailings'
advertising-mail air-mail already-mailed audits-by-mail
brochure-mailings bulk-mail bulk-mailed bulk-mailing bulk-
mails business-mailing by-mail by-mail-order-only cargo-mail
chain-mail check-mailing complete-mail corporate-e-mail
courier-mail customer-mail data-mailing dedicated-mail-
management-software direct-mail direct-mailing discount-mail
distribution-by-mail divorce-by-mail drugs-by-mail e-mail's
e-mail-based e-mail-enabled e-mail-fetching e-mail-handling
e-mail-is e-mail-only e-mail-oriented e-mail-related e-mail-
style e-mail-to-fax e-mail-to-print e-mail-to-telex e-mail-
to-voice e-mail-to-voice-mail e-mail-to-voice-mail e-mailed
e-mailing

Figure 41: Selections from large equivalence classes.

Chapter 5. Evaluation of Query Based Stemming

88

The size of the classes clearly necessitates that some sort of structure and order be

introduced to the classes. Without this structuring the task of selecting terms for query

expansion is impractical. An initial naïve and inexpensive approach is to present only those

terms that do not include hyphens and apostrophes. For example, if the term to be expanded

was book, the user would be presented with the terms book, booked, booking, books, rather

than the large list of terms shown in Figure 41. Although not optimal, this approach is

adequate, pending the implementation of class structuring, since the existing MultiText index

for TREC treats hyphens and apostrophes as whitespace.

Despite inflating the class size, hyphenated terms have the advantage of providing

some additional context that can be helpful for query expansion. An example where

hyphenated terms may be useful is in performing an expansion using the mail equivalence

class (see Figure 41). If the user is interested in e-mail rather than conventional mail it

would be useful to display or automatically expand the query to include all compound words

that include e-mail as a sub-component by specifying *e-mail* or electronic-mail*.

Another example where the context provided by hyphenated words is helpful is when

searching for documents about people with “driven” personalities. Documents that contain

the word driven as part of a hyphenated term may be relevant and a good indicator of

relevance. Documents containing terms such as career-driven, casual-but-driven,

competency-driven, greed-driven, panic-driven etc. are likely to be relevant. However,

documents containing terms such as command-line-driven, application-driven, battery-

driven, chauffeur-driven are clearly not appropriate. What is needed is a facility that allows

the user to easily zoom in on the desired compound terms without being overwhelmed by

the volume of data.

Chapter 5. Evaluation of Query Based Stemming

89

5.4. Query Based Stemming Experiments

The purpose of the query based stemming experiments is to examine the effects of allowing

a user to determine candidate terms for expansion and control the expansion process. Of

particular interest is the performance of query based stemming compared to no stemming

and fully automatic stemming.

Previous research has suggested that in some cases the impact of stemming algorithms

on retrieval performance is small, and thus difficult to detect. Therefore, it is important to

use a large number of queries in order to make it easier to detect significant differences

between methods. A large and diverse document collection is also desirable so that the

results are not influenced by domain or document characteristics. As outlined earlier, the

TREC collection meets these requirements.

The adhoc queries developed by the University of Waterloo MultiText project for

TREC-4 were used as the basis for the query based stemming queries. These queries are

actually compound queries consisting of an ordered list of sub-queries. The documents

retrieved for each sub-query are ranked separately. The results are then combined into a

final solution where the results of the each sub-query are ranked before the results of

subsequent queries. The first query in the list is intended to be a precise expression of query

topic, while later queries are successively weaker, designed to increase recall and satisfy the

artificial requirement to retrieve 1,000 documents. The original queries contain limited

manual expansion of query terms with morphological variants. The manual expansion of

terms was removed and the resulting queries became the baseline for this study.

For the expansion experiments a copy of the baseline query was marked up, using

dollar signs to delimit candidate terms for expansion. Query terms were delimited if the user

thought the inclusion of morphological variants of the term would improve the query.

Chapter 5. Evaluation of Query Based Stemming

90

<top>

<num> Number: 250

<desc> Description:

Does available data show a positive correlation between the sales
of firearms and ammunition in the U.S. and the commission of
crimes involving firearms?

</top>

Figure 42: User need statement for TREC query 250

@output "250.output"

sales = "sale" + "sales" + "purchase" + "purchases" + "buying" +
"buy"

aguns0 = "handgun" + "handguns" + (("hand" <> ("gun" + "guns")) <
[2])

aguns1 = (("automatic" + "assault") <> ("weapons" + "weapon")) <
[2]

aguns = aguns0 + aguns1

guns0 = "firearm" + "firearms" + "weapon" + "weapons"

guns1 = "gun" + "guns" + "rifle" + "rifles" + "shotgun" +
"shotguns"

guns2 = "pistol" + "pistols" + "revolver" + "revolvers"

guns = guns0 + guns1 + guns2

crime0 = "drugs" + "crack" + "gang" + "gangs"

crime1 = "violence" + "crime" + "crimes"

crime = crime0 + crime1

q1 = aguns + (crime^guns)

q0 = sales^q1

@rank 250 q0 q1

Figure 43: Original query used by MultiText project in TREC-4.

Chapter 5. Evaluation of Query Based Stemming

91

@output "250.output"

sales = "sale" + "purchase" + "buy"

aguns0 = "handgun" + (("hand" <> ("gun")) < [2])

aguns1 = (("automatic" + "assault") <> ("weapon")) < [2]

aguns = aguns0 + aguns1

guns0 = "firearm" + "weapon"

guns1 = "gun" + "rifle" + "shotgun"

guns2 = "pistol" + "revolver"

guns = guns0 + guns1 + guns2

crime0 = "drugs" + "crack" + "gang"

crime1 = "violence" + "crime"

crime = crime0 + crime1

q1 = aguns + (crime^guns)

q0 = sales^q1

@rank 250 q0 q1

Figure 44: Query 250 with morphological variants removed.

@output "250.output"

sales = $sale$ + $purchase$ + buy

aguns0 = $handgun$ + (("hand" <> (gun)) < [2])

aguns1 = (("automatic" + "assault") <> ($weapon$)) < [2]

aguns = aguns0 + aguns1

guns0 = $firearm$ + $weapon$

guns1 = gun + $rifle$ + $shotgun$

guns2 = $pistol$ + $revolver$

guns = guns0 + guns1 + guns2

crime0 = $drugs$ + "crack" + $gang$ ^M

crime1 = $violence$ + $crime$

crime = crime0 + crime1

q1 = aguns + (crime^guns)

q0 = sales^q1

@rank 250 q0 q1

Figure 45: Query 250 marked for expansion.

Chapter 5. Evaluation of Query Based Stemming

92

The query based stemming experiments involved running six batches of queries against

the TREC adhoc collection and comparing their results. Two filtered runs were developed

for comparison of different term selection strategies. The six test runs are as follows :

Baseline

MultiText TREC-4 queries with morphological variants removed

Filter 2

The fully expanded queries filtered to include only terms that the user considered close to

the original query term and context.

Manual Expand

The original MultiText TREC-4 queries which include manually expanded morphological

variants.

Approximate to Manual Expand

Fully expanded queries filtered to be as close as possible to the manually expanded queries.

Fully Expanded

Queries with all the marked terms fully expanded using equivalence classes based on the

Porter Stemmer.

Filter 1

The fully expanded queries filtered to remove expanded terms that the user viewed as clearly

distant from the original query term and context.

Chapter 5. Evaluation of Query Based Stemming

93

5.5. Results

Figure 46 presents a summary of the experimental results from the six query runs. This data

shows that the set of fully expanded queries retrieved the greatest number of documents.

Although, the Filter 1 run retrieved fewer documents overall, it retrieved more relevant

documents than any other method. Similarly, while the Filter 2 run retrieved 675 fewer

documents than the Fully Expanded version, it includes only 3 fewer relevant documents.

These results demonstrate that the filtering process was successful in decreasing the number

of non-relevant documents retrieved, while maintaining or even increasing the number of

relevant documents retrieved.

The last two columns of Figure 46 summarize the total number of queries that were

positively and negatively effected by each method. The query based stemming runs

compared to full stemming consistently increased the number of queries performing above

baseline, and consistently decreased the number of queries performing below baseline.

These values confirm that the user has the ability to filter out some of the terms that

adversely effect queries. Comparing the filtering strategies, the conservative selection (Filter

2) of terms shows both the greatest increase in positively performing queries and the

greatest decrease in negatively performing queries.

The results of the experimental runs are encouraging. But, they also indicate that a

significant number of queries still perform below baseline, even after filtering. What is not

clear from Figure 46 is if these queries perform significantly below the baseline, whether it is

the same queries that consistently perform poorly across methods, or how the queries are

effected by the filtering process. Figure 47 indicates that query based stemming performs

worse than full stemming for a few queries. The standard IR measures are not able to

identify whether filtering significantly changes the set of documents retrieved or if it the

differences are because relevant documents are ranked higher. In order to really understand

the effects of query based stemming, examples of queries where the filtering made a

significant difference need to be examined.

Chapter 5. Evaluation of Query Based Stemming

94

Number

Retrieved

Relevant
Retrieved

(of 6501)

Precision Recall Average

Precision

Baseline 40139 3935 .0980 .6053 .2503

Fully Expanded 44371 4338 .0978 .6673 .2741

Filter 1 44102 4401 .0998 .6770 .2793

Filter 2 43695 4335 .0992 .6668 .2679

Manual Expand 42937 4361 .1016 .6708 .2995

Approx. Manual

Expand

42886 4323 .1008 .6650 .2901

Number of Queries
Better than Baseline

Number of Queries
Worse than Baseline

Baseline - -

Fully Expanded 27 19

Filter 1 30 15

Filter 2 34 13

Manual Expand 32 11

Approx. Manual

Expand

32 11

 Figure 46: Summary of query based stemming experimental results.

Chapter 5. Evaluation of Query Based Stemming

95

Filter 1 vs Fully Expanded

-0.4000

-0.2000

0.0000

0.2000

0.4000

20
2

20
5

20
8

21
1

21
4

21
7

22
0

22
3

22
6

22
9

23
2

23
5

23
8

24
1

24
4

24
7

25
0

Query Number

D
if

fe
re

n
ce

 in

A
ve

ra
g

e
P

re
ci

si
o

n

Filter 2 vs Fully Expanded

-0.4000

-0.3000

-0.2000

-0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

20
2

20
5

20
8

21
1

21
4

21
7

22
0

22
3

22
6

22
9

23
2

23
5

23
8

24
1

24
4

24
7

25
0

Query Number

D
if

fe
re

n
ce

 in
 A

ve
ra

g
e

P
re

ci
si

o
n

Figure 47 : Comparison of query based stemming and full stemming results.

Chapter 5. Evaluation of Query Based Stemming

96

Fully Expanded vs Baseline

-0.4500

-0.2500

-0.0500

0.1500

0.3500

20
2

20
4

20
6

20
8

21
0

21
2

21
4

21
6

21
8

22
0

22
2

22
4

22
6

22
8

23
0

23
2

23
4

23
6

23
8

24
0

24
2

24
4

24
6

24
8

25
0

Query Number

D
if

fe
re

n
ce

 in
 A

ve
ra

g
e

P
re

ci
si

o
n

Query Based Stemming Filter 1 vs. Baseline

-0.4500

-0.2500

-0.0500

0.1500

0.3500

20
2

20
4

20
6

20
8

21
0

21
2

21
4

21
6

21
8

22
0

22
2

22
4

22
6

22
8

23
0

23
2

23
4

23
6

23
8

24
0

24
2

24
4

24
6

24
8

25
0

Query Number

D
if

fe
re

n
ce

 in
 A

ve
ra

g
e

P
re

ci
si

o
n

Query Based Stemming Filter 2 vs. Baseline

-0.4500

-0.2500

-0.0500

0.1500

0.3500

20
2

20
4

20
6

20
8

21
0

21
2

21
4

21
6

21
8

22
0

22
2

22
4

22
6

22
8

23
0

23
2

23
4

23
6

23
8

24
0

24
2

24
4

24
6

24
8

25
0

Query Number

D
if

fe
re

n
ce

 in
 A

ve
ra

g
e

P
re

ci
si

o
n

Figure 48: Comparison of stemming performance to baseline on a query by query basis

Chapter 5. Evaluation of Query Based Stemming

97

The data presented in Figure 48 compares the performance of the three stemming

methods with the baseline for each query. These charts suggest that queries that performed

worse than the baseline when full stemming was applied (e.g. queries 202, 210, 220, 233,

240, 242) tend to improve slightly or stay the same with the Filter 1 strategy. The Filter 2

strategy provided slight to dramatic (202, 210) improvements over the Filter 1 results for

these same queries.

Unfortunately, Figure 48 also shows that some queries perform worse than the

baseline when query based stemming is applied. For example, the Filter 1 strategy applied

to query 202 performs significantly worse than the baseline. However, the Filter 2 strategy

for the same query performs comparable to the baseline. To determine why the performance

of the filtering strategies are significantly different for this query the documents retrieved by

the three methods were examined.

Of the 1,000 documents retrieved by Filter 1 and baseline, 520 documents were

common to both methods. Of these 520 common documents, 164 were relevant. The two

pools of 480 documents unique to each method contain 19 relevant documents for the

baseline, and 17 unique documents for Filter 1. This makes for a total of 183 relevant

documents for the baseline and 181 relevant documents for the Filter 1 run. Although the

actual documents returned by each method are significantly different, the number and

composition of relevant documents are very similar. These results show that the number of

relevant documents retrieved across methods is comparable, but that the ranking of these

documents distinguishes one method from the other. Confirming this observation, the Filter

2 run which performs almost on par with the baseline contains the exact same set of relevant

Most queries that performed well with full stemming continued to perform well when

filtering was applied. A few queries did slightly worse and a few queries did significantly

(222, 240) better. The graph for Filter 2 clearly shows that the beneficial effects of query

based stemming on queries is significantly greater than the negative effects. These results

support the hypothesis that the user has the ability to identify morphological variants that

negatively effect retrieval.

Chapter 5. Evaluation of Query Based Stemming

98

documents as the poorly performing Filter 1. Clearly the difference in performance between

the two filtering methods is strongly influenced by ranking.

To understand how the query expansion and ranking interact it is helpful to look at

examples of documents that were ranked significantly differently for the various versions of

query 202. The topic for query 202 is “status of nuclear proliferation treaties – violations

and monitoring”. The actual text of the three versions of the query appears in Appendix H.

The document in Figure 49 is an example of a document that was judged non-relevant

by the assessors. The Filter 1 version of the query ranked this document first, while the

baseline query ranked the document 774 out of 1,000. Terms that appear in the baseline

version of the query are marked in boldface, terms that were added in the Filter 1 version of

the query are underlined in the document. The occurrence of variants of inspect (7) and

missile (2) in the Filter 1 version contribute to the high rank of this document. The query is

designed to rank documents that satisfy the macros treaty (e.g. treaty, agreement, SALT),

nukes (e.g. nuclear, missile, weapon etc.) and monitor (e.g. inspect, monitor, observe etc.).

If this does not result in the required pool of 1,000 documents, documents that contain

terms that satisfy nukes and one of treaty or monitor are considered relevant. The additional

variants of inspect in the Filter 1 version of the query results in three text intervals

(highlighted) that satisfy the high priority sub-query treaty^nukes^monitor causing the

document to be ranked highly. Since the monitor macro in the baseline query does not

contain any variants of inspect, this document only satisfies the lower priority query of

treaty^nukes (the four satisfying text intervals are denoted in capital letters).

Chapter 5. Evaluation of Query Based Stemming

99

The document in Figure 50 was also judged non-relevant for query 202 by the

assessors. The Filter 1 version of the query resulted in this document being ranked 278,

while the baseline version of the query ranked the document 916, and the Filter 2 version

did not retrieve the document in the pool of the top 1,000 documents. Terms that appear in

the baseline version of the query appear in bold, terms added by the Filter 1 version are

underlined, and terms that are removed by the Filter 2 version appear in strikeout. The

<DOC>

<DOCNO> AP880719-0188 </DOCNO>

<FILEID>AP-NR-07-19-88 1939EDT</FILEID>

<FIRST>r i AM-EGermany-US 07-19 0234</FIRST>

<SECOND>AM-EGermany-US,0240</SECOND>

<HEAD>U.S. Nuclear Missile Inspection Teams in East
Germany</HEAD>

<HEAD>With AM-Britain-US-Soviets</HEAD>

<DATELINE>BERLIN (AP) </DATELINE>

<TEXT>

U.S officials are in East Germany inspecting nuclear missile
sites in compliance with the superpowers'Intermediate NUCLEAR
FORCES TREATY, the state-run news agency AND said Tuesday. ADN,
in a brief report, said that two U.S. inspection teams arrived in
East Germany on Monday. One team began checking a missile site
near the town of Waren, about 70 miles north of Berlin the same
day. The East German news agency also said the other U.S.
inspection team started checking a second site Tuesday at
Koenigsbrueck, about 15 miles north of Dresden. According to
ADN, the Soviets maintained missiles at the sites until February,
when they decided to remove them early to set a positive example
in nuclear disarmament. The inspections in East Germany come as
two teams of Soviet inspectors checked nuclear MISSILE SITES IN
BRITAIN, WHICH ALSO FALL UNDER THE INF AGREEMENT. Soviet teams
have already conducted inspections at MISSILE SITES IN WEST
GERMANY AND THE UNITED STATES THIS MONTH, AT THE SAME TIME U.S.
INSPECTION TEAMS BEGAN DEPLOYING TO WARSAW PACT LOCATIONS. THE
INSPECTIONS FALL UNDER THE TERMS OF THE INF TREATY signed in
Washington last Dec. 8 by Soviet leader Mikhail Gorbachev and
President Reagan. The TREATY PROVIDES FOR THE ELIMINATION WITHIN
THREE YEARS OF ALL NUCLEAR missiles with ranges from 340 miles to
3,000 miles.

</TEXT>

</DOC>

Figure 49: Non-relevant document ranked highly by filter 1.

Chapter 5. Evaluation of Query Based Stemming

100

major difference between the ranking of the Filter1 version and the other versions of the

query is the inclusion of the words monitored(1) and inspectors(2). Since this document

was judged non-relevant, the removal of monitored and inspectors by the Filter 2 version of

the query was beneficial.

<DOC>

<DOCNO> AP880216-0158 </DOCNO>

<FILEID>AP-NR-02-16-88 2056EST</FILEID>

<FIRST>r w AM-DismantlingWarheads 02-16 0573</FIRST>

<HEAD>Scientists Say US, Soviet Nuclear Warheads Should Be
Dismantled</HEAD>

<BYLINE>By BRYAN BRUMLEY</BYLINE>

<BYLINE>Associated Press Writer</BYLINE>

<DATELINE>WASHINGTON (AP) </DATELINE>

<TEXT>

 A group of American scientists on Tuesday disputed Reagan
administration statements that it was not practical to verify the
dismantlement of nuclear warheads under an arms control
agreement.

 Members of the Federation of American Scientists outlined at a
news conference a dismantlement plan worked out earlier this
month in conjunction with the Committee of Soviet Scientists
Against the Nuclear Threat, headed by Roald Sagdayev, head of the
Soviet civilian space agency.

 Jeremy J. Stone, president of the U.S. group, and members
Frank von Hippel and Theodore B. Taylor, said they were concerned
that Defense Secretary Frank Carlucci may have raised
``misconceptions'' in defending the Intermediate-range Nuclear
Forces pact. The pact calls for the elimination of all medium-
range U.S. and Soviet missiles.

 Carlucci and other administration officials, defending the
treaty against conservative Sen. Jesse Helms, R-N.C., said it did
not require the destruction of warheads from the banned missiles
because verifying that step could expose secrets on how the
devices are built.

 The administration further argued that destroying the warheads
would free up weapons-grade plutonium which could be used by
terrorists. And officials said the Soviets could simply produce
more weapon material to replace any destroyed. Although Stone,
Taylor and Von Hippel support the INF pact, they took issue with
Carlucci, and proposed a system under which warheads could be
dismantled and the material either used in reactors or buried
underground.

Chapter 5. Evaluation of Query Based Stemming

101

 Under the plan, the Soviet Union and United States would each
designate a dismantlement site, which would be closely monitored
to prevent the clandestine entry or exit of nuclear material,
said Taylor, who worked in the national laboratory at Los Alamos
in 1949-56 designing nuclear weapons.

 Nuclear warheads entering the site would be ``tagged'' for
identification and ``fingerprinted'' by neutron probes, x-rays or
gamma rays which the scientists said would verify that the
devices contained nuclear materials but would not disclose their
inner workings. The warheads would then be dismantled behind
closed doors at the nation which owned them, and inspectors from
the other nation would verify that nuclear material had left the
site. In the case of American warheads, Soviet ``inspectors''
would only have to verify that a batch of nuclear warheads had
entered a U.S. dismantlement facility and that, after all the
warheads had been dismantled and their components destroyed
beyond recognition, no intact nuclear warheads remained inside,
the scientists said in a statement.

 Taylor and Von Hippel recommended that weapons-grade plutonium
from the warheads be mixed with radioactive wastes and buried.
They recommended that highly enriched uranium also used in
nuclear weapons be used to fuel reactors for electric power
plants. The estimated cost of dismantling the warheads, about $6
billion, would be dwarfed by the value of the fuel, about $50
billion, they said. Taylor said in a paper that ``the
approximately 1,000 tons of U-235 (enriched uranium) and 200 tons
of plutonium in the world's more than 50,000 nuclear warheads
could be consumed as fuel in all U.S. and Soviet nuclear power
plants in seven years, or in all the world's nuclear power plants
in about three years.''

 Von Hippel acknowledged that the scientists had not devised a
fool-proof plan to enable each side to be assured that the
correct type and number of warheads were being dismantled under
an arms control agreement involving multiple
systems.</TEXT></DOC>

Figure 50: Non-relevant document ranked highly by filter 1 and not retrieved by filter 2.

This example shows that the correct choice of expansion terms is difficult to predict

and dependent on the document collection. Expansion terms may be consistent with the

intent of the query and still cause non-relevant documents to be ranked highly, resulting in

loss of precision.

The table in Appendix I compares the average precision values for each query and

method. When the overall average precision is calculated for each method, the manually

expanded queries have the best precision, followed by the three query based stemming

Chapter 5. Evaluation of Query Based Stemming

102

methods. The slightly superior performance of the manually expanded queries is

disappointing. This performance difference is because some deficiencies in the stemming

algorithm cause variants of terms that were included in the manually expanded queries to be

omitted from the automatically expanded queries. For example, the manually expanded

version of query 222 contains the following macro:

The fully expanded version of the same macro is:

Notice that the term deterent (misspelling) occurs in the fully expanded version, but

deterrent (correct spelling) does not. This is because the Porter stemming algorithm stems

deterrence to deterr, which is another class. Interestingly, the Porter Stemmer handles

deterred and deterring correctly. The class construction method should be modified to

merge classes with similar stems to compensate for this weakness in the stemming algorithm.

Similar stems could be identified by applying recoding rules to stem endings or by partial

matching algorithms such as the one described in section 2.2.

The table in Appendix L ranks the performance of each method on a query by query

basis. This is an analysis technique suggested by Hull (see section 2.4) for comparing the

performance of stemming strategies across queries. All methods show variation in ranking

from 1 down to 5. When judged by average rank, manual expand and filter 1 have the best

average, followed by the other filtering methods. Significantly more analysis with this and

other collections is needed before we can arrive at definitive conclusions about the best

approach to pursue.

DETERRENT = “deter” + “deters” + “deterrent” + “deterrence”

DETERRENT = “deter” + “deters” + “deterent” + “detering” +
“deterred” + “deterring” + “deterence”

103

Chapter 6

6. Conclusions

6.1. Summary

The difficulty of matching a user’s need for information with the content of documents is a

central problem in IR. Queries are constructed by using combinations of terms to form a

representation that approximates the user’s information need. Decisions on document

relevance are made based on the number and frequency of terms the query and document

have in common. One method to address the IR problem is to build tools to help the user

select better search terms. The addition of well selected query terms aids in defining the

information need and provides the opportunity for more document matches.

One approach to expanding queries is through the addition of morphological variants

of the query terms by performing stemming at index time. Morphological variants are good

candidates for query expansion because term variants often represent similar concepts. Past

studies have shown that the addition of variants is an effective re-call enhancing device.

Unfortunately, not all morphological variants share similar semantic meanings (i.e.

Chapter 6. Conclusions

104

orientation, oriental). While the stemming process is effective through adding useful terms

to a query, it also has the potential to add irrelevant terms which degrade query

performance.

A weakness of the conventional implementation of stemming at index time is that the

query expansion is pre-determined. All variants of a term are automatically included with no

regard for consistency with the query. The addition of non-relevant terms by stemming has

been identified as one of the main causes of bad mistakes in IR [Croft95].

A variety of attempts have been made to define what constitutes an inappropriately

expanded term and to develop methods for excluding such terms from query expansion.

Ideally, stemming should only be applied in situations where it adds terms consistent with

the query and results in improved retrieval performance. To date, attempts to automatically

predict these situations and selectively apply stemming have been unsuccessful.

The work in this thesis has explored the idea of moving stemming from index time to

query time. The advantage to this approach is that it allows decisions about word conflation

to be made dynamically when the query is formulated.

An architecture for query based stemming has been presented and implemented. The

resulting system, Inter-Stem, was used to study and evaluate whether a user’s knowledge

can be incorporated effectively during the query formulation process to determine when and

how query terms should be expanded. The results indicate that user-mediated stemming is

successful in decreasing the number of non-relevant documents retrieved by stemming, and

at increasing the number of relevant documents retrieved compared to the baseline (no

stemming).

The query based stemming experiments involved the application of two distinct

expansion strategies. The first strategy (Filter 1) was to accept all variant terms proposed by

the system, except for those that were clearly semantically distant from the original query

term and context. The second strategy (Filter 2) was to expand the query only to include

those terms that were semantically close to the original query term and context. When the

Chapter 6. Conclusions

105

number of queries that benefit is measured against the number of queries that suffer under

each method, the conservative approach (Filter 2) outperformed the more liberal approach

(Filter 1).

The conclusion of this study is that a user’s knowledge can be successfully leveraged

to perform selective stemming. An interactive stemmer such as Inter-Stem should be

considered a worthwhile tool for query formulation and modification.

6.2. Future Work

Detailed evaluation of individual query performance indicates that the difference in

performance between methods was often a result of the interaction of stemming and ranking.

It was not unusual for the various approaches to expansion to retrieve a similar set of

relevant documents, but for the ranks to vary widely. The ranking system used in our

experiments is based on the shortest substring model. The results may differ when using a

ranking method based on frequency and distribution of terms. Further study into the

interaction between stemming and ranking methods is needed.

The queries for our experiments were compound queries written in a boolean subset of

the GCL query language. The effect of stemming on at least one of the queries was strongly

influenced by the boolean nature of the queries. Further study is needed to determine if the

interaction between stemming and queries is consistent across query methods (i.e., are

similar for boolean and natural language style queries).

Chapter 4 proposes a variety of methods for ordering and presenting the word classes

produced by stemming. The ideas of computing lexical distance and partitioning classes into

concept clusters were proposed. Further work is needed to develop these ideas before they

can be included in an interactive stemming system.

Chapter 6. Conclusions

106

As part of such research, an evaluation of the various ordering techniques is needed.

The classes that were used in our experiments could be ordered using the various methods

and the results compared with the actual terms included in the expanded queries.

The interactive filtering and term ordering processes suggested for stemming could be

extended to apply to terms produced by relevance feedback. A study by Koenemann and

Belkin concluded that user control over the addition of query terms by relevance feedback is

helpful [KB96]. Users who were provided interactive control required less iterations to

achieve comparable results than did users in less interactive feedback conditions. Ideas for

term ordering and the use of classes of terms explored in this thesis could be applied to

further improve interactive relevance feedback.

Finally, usability and extensions to the interactive version of Inter-Stem should be

explored. First a system should be implemented based on the preliminary design that was

presented. This can be used as the basis for a usability study to determine which features

improve retrieval performance. Thereafter, modifications can be incorporated and tested to

determine appropriate features for a more effective interface.

107

Bibliography

[Avis89] Avis, W.S. Funk and Wagnalls Canadian College Dictionary, Fitzhenry and
Whiteside, Toronto, 1989.

[AB74] Adamson, G., Boreham, J. The Use of an Association Measure Based on
Character Structure to Identify Semantically Related Pairs of Words and
Document Titles. In Information Storage and Retrieval, 10:253-260, 1974.

[BC92] Belking, N.J., Croft, W.B. Information Filtering and Information Retrieval:
Two Sides of The Same Coin? In Communications of the ACM, 35(12):29-
38, December 1992.

[BCK95] Belkin, N.J., Cool, C., Koenemann, J. et al. Using Relevance Feedback and
Ranking in Interactive Searching. In The Fourth Text REtrieval Conference
(TREC-4). National Institute of Standards and Technology, U.S Department
of Commerce, 1996.
http://potomac.ncsl.gov/TREC/t4_proceedings.html

[BSAS95] Buckley, C., Salton, G., Allan, J., Singhal, A. Automatic Query Expansion
Using SMART : TREC 3. In The Third Text REtrieval Conference (TREC-
3). National Institute of Standards and Technology, U.S. Department of
Commerce, NIST Special Publication 500-225, 1995.

[BRP95] Byrd, R., Ravin, Y., Prager, J.. Lexical Assistance at the Information
Retrieval User Interface. In 4th Annual Symposium on Document Analysis
and Information Retrieval (SDAIR). Las Vegas, NV: University of Nevada,
1995.

[Bur96] Burkowski, F.J. Course Notes for CS748G, Department of Computer
Science, University of Waterloo, Winter 1996.

[CC93] Callan, J.P., & Croft, W.B. An Evaluation of Query Processing Strategies
Using The Tipster Collection. In Proceedings of ACM SIGIR International
Conference on Research and Development in Information Retrieval, pp.
347-356, 1993.

[CCG95] Charoenkitkarn, N., Chignell, M.H., Golovchinsky, G. Is Recall Relevant?
An Analysis of How User Interface Conditions affect Strategies and
Performance in Large Scale Text Retrieval. In The Fourth Text REtrieval
Conference (TREC-4). National Institute of Standards and Technology, U.S
Department of Commerce, 1996.
http://potomac.ncsl.gov/TREC/t4_proceedings.html

Bibliography

108

[Cla1894] Clarke, V.M. The Complete Concordance to Shakespeare, Bickers & Son,
London, 1894.

[CCB95a] Clarke, C.L.A., Cormack, G.V., Burkowski, F.J. An Algebra for Structured
Text Search and a Framework for its’ Implementation. In The Computer
Journal 38(1),43-56, 1993.

[CCB95b] Clarke, C.L.A., Cormack, G.V., Burkowski, F.J. Schema-Independent
Retrieval from Hetrogeneous Structured Text. In Proceedings of The Fourth
Annual Symposium on Document Analysis and Information Retrieval Las
Vegas, Nevada pp.279-289, April, 1995.

[CCB95c] Clarke, C.L.A., Cormack, G.V., Burkowski, F.J. Shortest Substring Ranking
(MultiText Experiments for TREC-4). In The Fourth Text REtrieval
Conference (TREC-4). National Institute of Standards and Technology, U.S
Department of Commerce, 1996.
http://potomac.ncsl.gov/TREC/t4_proceedings.html

[CMK66] Cleverdon, C.W., Mills, J. and Keen, E.M. In Factors Determining the
Performance of Indexing Systems, Vol 1 Design, Vol 2 Test Results. Aslib
Cranfield Reasearch Project, Cranfield England, 1966.

[Crouch88] Crouch, C.J. A Cluster Based Approach to Thesaurus Construction. In
Proceedings of ACM SIGIR International Conference on Research and
Development in Information Retrieval, 1988.

[CX95] Croft, W.B., Xu, J. Corpus-Specific Stemming Using Word Form Co-
occurence. In 4th Annual Symposium on Document Analysis and Information
Retrieval (SDAIR). Las Vegas, NV: University of Nevada, pp 485- 502,
1988.

[Croft95] Croft, W.B. What Do People Want from Information Retrieval? In D-Lib
Magazine. pp 485- 502, December 1995.

[Dai90] Dairymple, P. Retrieval by Reformulation in Two Library Catalogues:
Toward a Cognitive Model of Searching Behaviour. In Journal of the
American Association for Information Science, 41(4):272-281, 1990.

[EB94] Efthimidadis, E., Biron, P.V. UCLA-Okapi at Trec-2: Query Expansion
Experiments, In The Second Text REtrieval Conference (TREC-2). National
Institute of Standards and Technology, U.S. Department of Commerce,
March 1994. NIST Special Publication 500-215.

[Eft93] Efthimiadis, E. A User-Centered Evaluation of Ranking Algorithms for
Interactive Query Expansion. In Proceedings of the 16th ACM/SIGIR
Conference pp. 36-47, 1993.

[ELK91] Egan, D., Lesk, M., Ketchum, R.D. et al. Hypertext for the Electronic
Library? CORE Sample Results, In Third ACM Conference on Hypertext
Proceedings. San Antonio, Texas, pp. 299-312,1991.

Bibliography

109

[Field75] Field, B.J., Semi-automatic development of thesaurii using free-language
vocabulary analysis, British Library Research. Development.
Department,1975. Report 5260.

[Fox92] Fox, C. Lexical Analysis and Stoplists. In Frakes, W.B. & Baeza-Yates, R.
(Eds.), Information Retrieval, Data Structures and Algorithms. New Jersey:
Prentice-Hall, pp. 102-130, 1992.

[Frakes92a] Frakes, W.B. Stemming Algorithms. In Frakes, W.B. & Baeza-Yates, R.
(Eds.), Information Retrieval, Data Structures and Algorithms. New Jersey:
Prentice-Hall, pp. 131-160, 1992.

[Frakes92b] Frakes, W.B. Introduction to Information Storage and Retrieval Systems. In
Frakes, W.B. & Baeza-Yates, R. (Eds.), Information Retrieval, Data
Structures and Algorithms. New Jersey: Prentice-Hall., pp. 131-160,1992.

[FB92] Frakes, W.B. & Baeza-Yates, R. (Eds.). Information Retrieval, Data
Structures and Algorithms. New Jersey: Prentice-Hall, 1992.

[Gre92] Grefenstette, G. Use of Syntactic Context to Produce Term Association Lists
for Text Retrieval. In Proceedings of ACM SIGIR International Conference
on Research and Development in Information Retrieval, 1992.

[HD80] Hall, P.A.V., Dowling, G.R., Approximate String Matching. In Computing
Surveys, 12(4):381-402, 1980.

[Har88] Harman, D. Towards Interactive Query Expansion. In Proceedings of ACM
SIGIR International Conference on Research and Development in
Information Retrieval, 1988.

[Har91] Harman, D. How Effective is Suffixing? In Journal of the American Society
for Information Science 42(1):7-15, 1991.

[Har93] Harman, D. Overview of the First Text REtrieval Conference. In
Proceedings of the 16th ACM/SIGIR Conference. New York: Association for
Computing Machinery. pp. 36-47,1993.

[Har95] Harman, D. (Ed.). Overview of the Third Text REtrieval Conference (TREC-
3). In Proceedings of The Third Text REtrieval Conference (TREC-3).
National Institute of Standards and Technology, U.S. Department of
Commerce, 1995. NIST Special Publication 500-225.
http://potomac.ncsl.gov/TREC/t3_proceedings.html

[Har96] Harman, D. Overview of The Fourth Text REtreival Conference (TREC-4),
Overhead slides. In Proceedings of The Fourth Text REtrieval Conference
(TREC-4). National Institute of Standards and Technology, U.S Department
of Commerce, 1996.
http://potomac.ncsl.gov/TREC/t4_proceedings.html

Bibliography

110

[HWW86] Hendry, I.G., Willet, P., Wood, F.E. INSTRUCT: A Teaching Package for
Experimental Methods in Information Retrieval. Part I The User’s View. In
Program 20(3):245-263, 1986.

[Hull96] Hull, D. Stemming Algorithms: A Case Study for Detailed Evaluation. In
Journal of the American Society for Information Science. 47(1):70-84, 1996.

[JC94] Jing, Y., Croft, B.W., An Association Thesaurus for Information Retrieval.
In Proceedings of RIAO, 1994.

[KB96] Koenemann, J., Belkin, N., A Case for Interaction : A Study of Interactive
Information Retrieval Behaviour and Effectiveness. In Proceedings of
Computer Human Interaction. ACM Press, New York pp.205-212, 1996.

[KC92] Krovetz, R., Croft, W.B., Lexical Ambiguity in Information Retrieval. In
ACM Transactions on Information Systems, 10(2):115-141, April 1992.

[Krov93] Krovetz, R. (1993). Viewing Morphology as an Inference Process. In
Proceedings of the 16th ACM/SIGIR Conference (pp. 191-202). New York:
Association for Computing Machinery.

[Kuh91] Kuhithau, C. Inside the Search Process: Information Seeking from the User’s
Perspective. In Journal of the American Society for Information Science,
42(5):361-371, 1991.

[LPTW81] Lennon, J., Pierce, D., Tarry, B., Willet, P. An Evaluation of Some
Conflation Algorithms for Information Retrieval. In Journal of Information
Science. 3: 177-183, 1981.

[Lov68] Lovins, J. Development of a Stemming Algorithm. In Mechanical
Translation and Computational Linguistics, 11: 22-31,1968.

[LRK73] Lowe, T.C., Roberts, D.C., Kurtz, P. Additional Text Processing For On-line
Retrieval (The RADCOL System), Technical Report TADC-TR-73-337,
1973.

[LK95] Lu, A.X., Keefer, R.B. Query Expansion/Reduction and its Impact on
Retrieval Effectiveness. In Proceedings of The Third Text REtrieval
Conference (TREC-3). National Institute of Standards and Technology, U.S.
Department of Commerce, 1995. NIST Special Publication 500-225.

[Mal91] Malmkjaer, K. The Linguistics Encyclopedia. New York: Rouledge, 1991.

[MH91] Morris, J., Hirst, G. Lexical Cohesion computed by thesaural relations as ain
indicator of the structure of text. In Computational Linguistics 17(1):21-49,
1991.

[Pai94] Paice, C.D., An Evaluation Method for Stemming Algorithms. In
Proceedings of the 17th ACM/SIGIR conference, pp.42-49, 1994.

Bibliography

111

[PP78] Pacak, M.B., Pratt, A.W., Identification and Transformations of Terminal
Morphemes in Medical English. Part II, In Methods of Information In
Medicine, 17:95-100,1978.

[Port80] Porter, M.F. An Algorithm for Suffix Stripping. Program, 14(3):130-137,
(1980).

[PW91] Peat, H.J., Willet, P. The Limitations of Term Co-Occurrence Data for Query
Expansion in Document Retrieval Systems. In Journal of the American
Society for Information Science, 42(5):378-383.

[QF93] Qiu, Y., Frei, H.P. Concept Based Query Expansion, In Proceedings of the
16th ACM/SIGIR Conference, pp. 160-169. New York: Association for
Computing Machinery.

[Ras92] Rassmeussen, E. Clustering Algorithms In Frakes, W.B. & Baeza-Yates, R.
(Eds.), Information Retrieval, Data Structures and Algorithms. New Jersey:
Prentice-Hall, pp. 419-442, 1992.

[Sal68] Salton, G.. Automatic Information Organization and Retrieval. New York:
McGraw-Hill, 1968.

[Sal83] Salton, G.. Introduction to Modern Information Retrieval. New York:
McGraw-Hill, 1983.

[Sal86] Salton, G. Another Look at Automatic Text-Retrieval Systems. In
Communications of the ACM, 29(7):648-658,1986.

[San94] Sanderson, M. Word Sense Disambiguation and Information Retrieval. In
Proceedings of the 17th ACM/SIGIR conference, pp.61-69, 1994.

[Sav93] Savoy, J. Stemming of French Words Based on Grammatical Categories. In
Journal of the American Society for Information Science. 44(1):1-9, 1993.

[Seu60] Seuss, Dr., Green Eggs and Ham. Beginner Books Inc. New York.

[Shaks] Shakespeare, Wm. The Tragedy of Romeo and Julliet, Signet Classic, New
York, 1964.

[Ste96] Steinberg, S.G., Seek and Ye Shall Find (Maybe). In Wired Magazine 4.05,
pp108, 1996.

[Sto95] St. Onge, D. Detecting and Correcting Malapropisms with Lexical Chains.
Technical Report CSRI-319, University of Toronto, 1995.

[UD83] Ulmschneider, J., Doszkocs, T., A Practical Stemming Algorithm For Online
Search Assistance. In Online Review, 7:301-315, 1983.

[Van79] vanRijsbergen, C.J. Information Retrieval, Butterworths. London, 1979.
http://dcs.glasgow.ac.uk/keith

[Van84] vanRijsbergen, C.J. Research and Development in Information Retrieval. In
Prodeedings of the Third Joint BCS and ACM Symposium. July, 1984.

Bibliography

112

[Voo93] Voorhees, E.M.. Using WordNet to Disambiguate Word Senses for Text
Retrieval. In Proceedings of the 17th ACM/SIGIR conference. pp.61-69,
1993.

[Voo94] Voorhees, E.M. Query Expansion Using Lexical-Semantic Relations. In
Proceedings of the 17th ACM/SIGIR Conference. pp.61-69, 1994.

[Wal88] Walker, S.. Improving Subject Access Painlessly: Recent Work on the Okapi
Online Catalogue Projects. In Program, 22(1):21-31, 1988.

[WMB94] Witten, I.H., Moffat, A., Bell, T.C., Managing Gigabytes : Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, New York, 1994.

[Xiao94] Xiao, H. Using a Thesaurus for Query Refinement in Full-Text Retrieval.
UW Center for the New Oxford English Dictionary and Text Research.
University of Waterloo Technical Report OED-94-01, 1994.

[Zipf45] Zipf, G.K. The meaning-frequency relationship of words. In Journal of
General Psychology, 3:251-256, 1945.

113

Appendix A
The Porter Stemming Algorithm[Port80]

In order to explain the Porter stemming algorithm in detail, some terms and notation need to

be defined.

1. Consonant is a letter other than A,E,I,O or U, and other than Y preceded by a consonant.

2. Vowel is any letter that is not a consonant.

3. C represents a sequence of consonants of length greater than 0.

4. V represents a sequence of vowels of length greater than 0.

5. All words can be written in the form [C](VC)m [V]. Where the contents of the square

brackets are optional. m is called the measure of the word or word part that it is attached

to (see Figure 51 for examples).

6. *<X> indicates that the stem ends with a the letter X.

7. *v* indicates the stem contains a vowel.

8. *d indicates the stem ends in a double consonant.

9. *o indicates the stem ends with a consonant-vowel-consonant sequence. The final

consonant must not be w,x,or y.

10. Rules are given in the form (condition)S1→S2. Meaning that if a word terminates with

the suffix S1, and the stem preceding S1 satisfies the given condition, S1 is replaced with

S2.

Appendix A

114

For each set of rules, only the one with the longest matching S1 for the given word is

applied.

Step 1 deals with plurals and past participles.

Step 1b1 (to be performed if the second or third rules of Step 1b is successful)

Conditions Suffix Replacement Examples

NULL at ate conflat(ed)→conflate

NULL bl ble troubl(ing)→trouble

Measure Examples

m=0 TR, EE, TREE, Y, BY

m=1 TROUBLE, OATS, TREES,
IVY

m=2 TROUBLES,PRIVATE,
ORRERY

Figure 51: Examples of the measure of a word

Step 1a

Conditions Suffix Replacement Examples

NULL sses ss caresses→caress

NULL ies i ponies→poni

ties→ti

NULL ss ss caress→caress

NULL s NULL cats→cat

Step 1b

Conditions Suffix Replacement Examples

(m>0) eed ee agreed→agree

feed→feed

(*v*) ed NULL plastered→plaster

bled→bled

(*v*) ing NULL motoring→motor

sing→sing

Appendix A

115

Conditions Suffix Replacement Examples

NULL iz ize siz(ed)→size

(*d and
not(*<L>or *<S>
or *<Z>))

NULL single letter hopp(ing)→hop

tann(ed)→tan

fall(ing)→fall

hiss(ing) →hiss

fizz(ed)→fizz

(m=1 and *o) NULL e fail(ing)→fail

fil(ing)→file

Step 1c

Conditions Suffix Replacement Examples

(*v*) y i happy→happi

sky→sky

Step 2

Conditions Suffix Replacement Examples

(m>0) ational ate relational→relate

(m>0) tional tion conditional→condition

rational→rational

(m>0) enci ence valenci→valence

(m>0) anci ance hesitanci→hesitance

(m>0) izer ize digitizer→digitize

(m>0) abli able conformabli→
conformable

(m>0) alli al radicallie→radical

(m>0) entli ent differentli→different

(m>0) eli e vileli→vile

(m>0) ousli ous analogousli→analagous

(m>0) ization ize vietnamization→
vietnamize

(m>0) ation ate predication→predicate

(m>0) ator ate operator→operate

Appendix A

116

Conditions Suffix Replacement Examples

(m>0) alism al feudalism→feudal

(m>0) iveness ive decisiveness→decisive

(m>0) fulness ful hopefulness→hopeful

(m>0) ousness ous callousness→callous

(m>0) aliti al formaliti→formal

(m>0) iviti ive sensitiviti→sensitive

(m>0) biliti ble sensibilit→sensible

Step 3

Conditions Suffix Replacement Examples

(m>0) icate ic triplicate→triplic

(m>0) ative NULL formative→form

(m>0) alize al formalize→formal

(m>0) iciti ic electriciti→electric

(m>0) ical ic electrical→electrc

(m>0) ful NULL hopeful→hope

(m>0) ness NULL goodness→good

Appendix A

117

Step 4

Conditions Suffix Replacement Examples

(m>1) al NULL revival→reviv

(m>1) ance NULL allowance→allow

(m>1) ence NULL inference→infer

(m>1) er NULL airliner→airlin

(m>1) ic NULL gyroscopic→gyroscop

(m>1) able NULL adjustable→adjust

(m>1) ible NULL defensible→defens

(m>1) ant NULL irritant→irrit

(m>1) ement NULL replacement→replac

(m>1) ment NULL adjustment→adjust

(m>1) ent NULL dependent→depend

(m>1) (*S) ION NULL expansion→expans (

(m>1) (*T)) ION NULL adoption→adopt

(m>1) ou NULL homologou→homolog

(m>1) ism NULL communism→commun

(m>1) ate NULL activate→activ

(m>1) iti NULL angularity→angular

(m>1) ous NULL homologous→homolog

(m>1) ive NULL effective→effect

(m>1) ize NULL bowdlerize→bowdler

Step 5a

Conditions Suffix Replacement Examples

(m>1) e NULL probate→probat

rate→rate

(m=1) not *oE NULL cease→ceas

Step 5b

Conditions Suffix Replacement Examples

(m>1) *d and
*<L>

single letter controll→control

roll→roll

118

Appendix B

Description Number of
occurrences

Contains Multiple Apostrophes 175

multiple as a result of erroneous trailing apostrophe 104

multiple due to occurrence of 'n' (i.e. mix’n’match, rock’n’roll) 20

Suffixes

's 1,721,065

n't 371,990

' includes s' 202,756

've 31,047

're 30,228

'll 24,253

'd 20,501

in' 2,926

'n 230

'a most commonly a typographical error for 's 77

'em 43

'ing

Prefixes

o' 973

d' 795

l' 136

j' 86

n' 67

e' 39

a' 35

pendix B

119

Description Number of
occurrences

Other 51,735

two words concatenated where the first contains a suffix which
includes an apostrophe

2,730

Grand Total 2,459,173

Figure 52: Ananalysis of apostrophe data.

120

Appendix C

A sample equivalence class that was formed using the text collection from TREC-4.

object object objected objecter objecters objectic objecting
objection objectional objections objective objectively
objectiveness objectives objectivity objectize objectized
objectizing objects object' object's objective' objectives'
objectivity' objectivity's objectize' objects' objects's a-
match-the-objects-behind-the-doors action-object action-object-
actor alice-as-object almost-object application-as-object base-
object c-object-oriented categories-objectives class-and-object
class-and-objects class-object classand-object classes-as-objects
code-attached-to-objects collection-of-named-objects copy-object
corp-object cross-object data-object data-objects' document-
object elements-objects embedded-object essentials-tools-objects
euro-objections faint-object for-object foreign-object-ingestion
full-object gateway-between-object generic-object graphical-
object graphics-object has-object-orientation hate-object hope-
object hyper-object hyper-objects input-object inter-object
knowledge-objects large-object less-than-objective macro-object
management-by-objective match-the-objects meta-object meta-
objects mini-object mixed-object model-object molded-object
money-is-no-object money-no-object more-object-oriented more-
objective multi-object multi-objective multiple-object-type
multiple-objective near-object-oriented nexpert-object no-
objection non-object non-object-oriented non-objecting non-
objection non-objective not-so-object-oriented not-so-objective
noun-verb-object object-a object-access object-action object-
analysis object-approach object-attribute object-attribute-value
object-aware object-background object-base object-based object-
binding object-blend object-brothers object-browsing object-by
object-by-object object-capable object-center object-centered
object-centric object-changing object-checking object-class
object-classes object-code object-code-compatible object-code-
level object-coded object-communication object-compatible object-
coordinate object-creation object-cutting object-data object-
database object-definition object-description object-development
object-document object-drawing object-driven object-duplication
object-editable object-editing object-embedded object-embedding
object-engaging object-engine object-enhanced object-ese object-
extended object-file object-flow object-format object-friendly
object-graphic object-graphics object-handling object-identifier
object-identifiers object-in object-including object-independent
object-instance object-intelligent object-interchange object-
interface object-is object-kit object-laden object-leaning

Appendix C

121

object-level object-library object-light object-like object-
linkable object-linked object-linking object-linking-and-
embedding object-locating object-locking object-mad object-
magement object-making object-management object-manipulation
object-mapping object-masking object-message object-message-
object object-message-object object-messaging object-
metamorphosis object-method object-model object-modeling object-
module object-morphing object-motion object-naming object-
navigator object-ness object-neutral object-number object-
obsessed object-ofiented object-oiriented object-on-screen
object-only object-oreinted object-orented object-organized
object-oricnted object-orient object-orientable object-orientated
object-orientation object-oriente object-oriented object-
oriented' object-oriented-applications object-oriented-
development object-oriented-language object-oriented-like object-
oriented-ness object-oriented-programming object-oriented-
something object-orientede object-orientedness object-
orientedness' object-orientedoffspring object-orienteering
object-orienteers object-orineted object-orinted object-oti
object-pascal object-pixel object-placement object-polygon-laser
object-position object-pretty object-printed object-processing
object-programming object-property-role object-property-role-
relationship object-queue object-recognition object-refinement
object-reflected object-related object-relationship object-
rendering object-request-broker object-saving object-scaling
object-sciences object-script object-selection object-sensitive
object-sharing object-snap object-something-or-other object-space
object-speak object-specific object-star object-storage object-
store object-stores object-structured object-style object-such
object-supplied object-supporting object-swapping object-
technology object-the object-throwing object-to object-to-object
object-to-relational object-to-screen object-tracking object-
transferring object-transmission object-type object-value object-
valued object-verb-subject object-view object-views object-which
object-windows object-within-window object-works object-wringing
object-z objected-oriented objected-provides objective-c
objective-conflict objective-order objective-oriented objective-
setting objective-side objective-to objectivity-based objects-
all-the-way objects-by objects-documents objects-encapsulated
objects-for-users objects-images objects-including objects-it
objects-modular objects-oriented objects-radio objects-resources
objects-shell objects-to objects-tools objects-when part-object
per-object persistent-object price-is-no-object print-object pro-
object pseudo-object-oriented pseudo-objects quasi-object-
oriented ray-object rectangular-object-of-interest reference-
object reference-objects remote-object-accessing result-objective
revenue-objectives rule-and-object-based same-object says-object-
oriented scope-and-objectives semi-object-oriented shared-object
single-object soft-object solid-object standard-object sub-
objects subject-object-matrix subject-verb-object task-object
test-objective text-as-object text-object

122

Appendix D

List of suffixes used in the English language (from the Oxford English Dictionary).

-a
-ac
-acy
-ad
-adelphia
-ado
-aemia
-al
-amy
-an
-ance
-ancy
-and
-ane
-ant
-ard
-arious
-arium
-ary
-at
-ate
-atic
-atile
-ator
-by
-cade
-cide
-dione
-dom
-dyne
-ean
-ed
-ee
-een
-eer
-el
-els
-en
-ence
-ene
-enic
-enous

-ent
-eous
-er
-ern
-ery
-escence
-escent
-ese
-esque
-ess
-est
-et
-etin
-ette
-etum
-fic
-fication
-fold
-fue
-ful
-fy
-head
-hood
-i
-ia
-ial
-ian
-iana
-iasis
-ice
-id
-idene
-idin
-idine
-il
-ile
-in
-ina
-ine
-ion
-ismus
-ist

-ite
-ition
-itis
-itol
-ium
-ive
-kin
-kins
-le
-lecithal
-less
-let
-lin
-lock
-lon
-ly
-mo
-more
-most
-mycin
-ness
-o
-oan
-ode
-oid
-ol
-ola
-ole
-oloy
-on
-one
-onic
-onium
-orama
-oside
-ot
-ote
-ior
-ism
-our
-ous
-parous

-paus
-phaous
-plastic
-rihts
-ry
-s
-ship
-sis
-some
-speak
-sphere
-ster
-sterol
-style
-teria
-th
-thon
-trice
-tron
-trophic
-tropic
-tude
-ty
-type
-ual
-ular
-ule
-ulent
-ulose
-uncle
-up
-ville
-vorous
-wards
-wick
-y
-yer
-ylidene
-zoiteto

123

Appendix E

124

Appendix F

Brief introduction to GCL syntax

Each statement is terminated with a newline

A definition associates the query with the symbol. The symbol may be used in place of Q in

future queries.

Definition := symbol = Q

Q:= Q1 < Q2 Q1 contained in Q2
| Q1/< Q2 Q1 not contained in Q2
| Q1 > Q2 Q1 containing Q2
|Q1 /> Q2 Q2 not contained in Q2
| Q1 <> Q2 Q1 followed by Q2
|Q1 ^ Q2 both of Q1 and Q2
| Q1 + Q2 one of Q1 or Q2
| term

| fixed_size_interval

A term is a string of lowercase letters delimited by double quotes (e.g. “stargazer”).

A fixed size interval is an integer in square brackets (e.g. [3]).

For example, the query to find the phrase “boldly go” near “five year mission” is :

 ((“boldly” <> ”go”)<[2]) ^ ((“five” <> “year” <> “mission”)<[3])

or

P1 = (“boldly” <> ”go”)<[2])

P2 = (“five” <> ”year” <> “mission”)<[3])

P1 ^ P2

statement := definition | Q

125

Appendix G

20 Largest Equivalence Classes

Rank Stem Size

1. non 5699

2. to 4843

3. and 3913

4. base 3855

5. a 3235

6. on 2878

7. the 2744

8. like 2467

9. n 2452

10. in 2429

11. type 2239

12. anti 1952

13. of 1899

14. re 1843

15. pre 1779

16. relat 1625

17. style 1473

18. self 1419

19. size 1322

20. high 1319

Appendix G

126

Top 49 Words by Frequency of Occurrence

Rank Word Frequency Rank Word Frequency

1. the 16,762,164 26. o 825,017

2. of 8,051,232 27. have 811,152

3. to 6,885,009 28. not 764,468

4. a 6,587,970 29. but 744,537

5. and 6,562,235 30. its 669,230

6. in 5,138,292 31. i 577,317

7. for 2,914,554 32. new 570,721

8. is 2,811,991 33. one 552,985

9. that 2,308,968 34. can 532,109

10. m 2,302,719 35. they 530,685

11. p 2,023,210 36. s 518,055

12. said 1,808,111 37. his 506,748

13. on 1,795,191 38. more 502,757

14. by 1,598,246 39. about 484,860

15. as 1,558,829 40. other 477,403

16. be 1,493,659 41. no 472,415

17. at 1,339,175 42. also 456,265

18. at 1,339,175 43. their 449,157

19. from 1,257,247 44 system 435,975

20. are 1,240,892 45. data 435,603

21. an 1,192,092 46. been 434,242

22. or 1,148,526 47. than 424,732

23. this 896,522 48. u 414,168

24. he 860,764 49. if 413,042

25. has 854693

127

Appendix H

Information Need Statement for Query 202

Status of nuclear proliferation treaties -- violations and monitoring.

Baseline Query

nukes0 = (("atom" + "atomic" + "hydrogen") <> ("bomb" + "bombs"))
< [2]

nukes1 = "thermonuclear" + (("thermo" <> "nuclear") < [2])

nukes2a = "weapon" + "weaponry" + "missile" + "missiles"

nukes2b = "submarine" + "submarines" + "sub" + "subs"

nukes2c = "reactor" + "reactors"

nukes2 = (("nuclear" + "atomic") <> (nukes2a + nukes2b +
nukes2c)) < [2]

nukes3 = "plutonium" + "calutron"

nukes = nukes0 + nukes1 + nukes2 + nukes3

treaty0 = "SALT" + "START"

treaty1 = "treaty" + "treaties" + "agreement" + "agreements"

treaty2 = ("test" <> "ban") < [2]

treaty = treaty0 + treaty1 + treaty2

monitor0 = "enforcement" + "enforce" + "limitation" +
"proliferation"

monitor1 = "supervision" + "monitor" + "monitors" + "monitoring"

monitor2 = "violation" + "violated" + "violating" + "violates"

monitor3 = "inspect" + "inspects" + "inspecting" + "inspected"

monitor4 = "observation" + "observer" + "observers"

monitor = monitor0 + monitor1 + monitor2 + monitor3 + monitor4

q0 = treaty^nukes^monitor

q1 = treaty^("nuclear" + "atomic")^monitor

q2 = (treaty^nukes) + (nukes^monitor)

@rank 202 q0 q1 q2

Appendix H

128

Filter 1

nukes0 = (("atom" + "atome" + "atomic" + "atomically" + "atomics"
+ "atoms" + "hydrogen") <> ("bomb" + "bombe" + "bombed" +
"bombing" + "bombings" + "bombs")) < [2]

nukes1 = "thermonuclear" + (("thermo" <> "nuclear") < [2])

nukes2a = "weapon" + “weapons” + "weaponry" + "missil" +
"missile" + "missiles"

nukes2b = "submarine" + "submarines" + "sub" + "subs"

nukes2c = "reactor" + "reactors"

nukes2 = (("nuclear" + "atomic") <> (nukes2a + nukes2b +
nukes2c)) < [2]

nukes3 = "plutonium" + "calutron"

nukes = nukes0 + nukes1 + nukes2 + nukes3

treaty0 = "SALT" + "START"

treaty1 = "treaties" + "treaty" + "agreemeents" + "agreement" +
"agreements" + "agreemment"

treaty2 = (("test" + "tested" + "testing" + "testings" + "tests"
+ "testting")<> ("ban" + "banned" + "banning" + "bannings"
+ "bans")) < [2]

treaty = treaty0 + treaty1 + treaty2

monitor0 = "enforcable" + "enforce" + "enforceability" +
"enforceable" + "enforceably" + "enforced" + "enforceent" +
"enforcement" + "enforcements" + "enforces" + "enforcible"
+ "enforcing" + "enforcment" + "limit" + "limitation" +
"limitations" + "limite" + "limited" + "limiteds" +
"limites" + "limiting" + "limitive" + "limits" +
"proliferate" + "proliferated" + "proliferates" +
"proliferating" + "proliferation" + "proliferations"

monitor1 = "supervise" + "supervised" + "supervises" +
"supervising" + "supervision" + "supervisions" + "monitor"
+ "monitorable" + "monitored" + "monitoring" +
"monitorings" + "monitors"

monitor2 = "violatated" + "violate" + "violated" + "violater" +
"violaters" + "violates" + "violating" + "violatings" +
"violation" + "violations" + "violator"+ "violators"

monitor3 = "inspect" + "inspected" + "inspecting" + "inspection"
+ "inspectional" + "inspections" + "inspects"

monitor4 = "observance" + "observation" + "observations" +
"observe" + "observed" + "observer" + "observers" +
"observes" + "observing"

monitor = monitor0 + monitor1 + monitor2 + monitor3 + monitor4

q0 = treaty^nukes^monitor

q1 = treaty^("nuclear" + "nucleare" + "nuclearization" +
"nuclearized" + "atom"+ "atome" + "atomic" + "atomically" +
"atomics" + "atoms")^monitor

Appendix H

129

q2 = (treaty^nukes) + (nukes^monitor)

@rank 202 q0 q1 q2

Filter 2

nukes0 = (("atom" + "atomic" + "hydrogen") <> ("bomb" +
"bombing" + "bombings" + "bombs")) < [2]

nukes1 = "thermonuclear" + (("thermo" <> "nuclear") < [2])

nukes2a = "weapon" + “weapons” + "weaponry" + "missile" +
"missiles"

nukes2b = "submarine" + "submarines" + "sub" +"subs"

nukes2c = "reactor" + "reactors"

nukes2 = (("nuclear" + "atomic") <> (nukes2a + nukes2b +
nukes2c)) < [2]

nukes3 = "plutonium" + "calutron"

nukes = nukes0 + nukes1 + nukes2 + nukes3

treaty0 = "SALT" + "START"

treaty1 = "treaties" + "treaty" + "agreement" + "agreements"

treaty2 = (("test" + "testing" + "tests") <> ("ban" + "banned"
+ "banning" +"bannings" + "bans")) < [2]

treaty = treaty0 + treaty1 + treaty2

monitor0 = "enforce" + "enforced" + "enforcement" + "enforces"
+ "enforcing"+ "enforcment" + "limit" + "limitation" +
"limitations" + "limited" + "limiteds" + "limites" +
"limiting" + "limits" + "proliferate" + "proliferated" +
"proliferates" + "proliferation"

monitor1 = "supervise" + "supervises" + "supervising" +
"supervision" + "monitor" + "monitoring" " + "monitors"

monitor2 = "violatated" + "violate" + "violated" + "violater" +
"violaters" + "violates" + "violating" + "violatings" +
"violation" + "violations" + "violator"+ "violators"

monitor3 = "inspect" + "inspected" + "inspecting" + "inspection"
+ "inspections" + "inspects"

monitor4 = "observation" + "observations" + "observe" +
"observed" + "observer" + "observers" + "observes" +
"observing"

monitor = monitor0 + monitor1 + monitor2 + monitor3 + monitor4

q0 = treaty^nukes^monitor

q1 = treaty^("nuclear" + "atom" + "atomic")^monitor

q2 = (treaty^nukes) + (nukes^monitor)

@rank 202 q0 q1 q2

130

Appendix I

Average Precision By Query

Query # Baseline Manually Fully Filter 1 Filter 2 Approx. Max
Expanded Expanded Man.

Expand
202 0.3370 0.3212 0.1247 0.1249 0.3212 0.1925 0.3370
203 0.0403 0.1720 0.1219 0.1134 0.1720 0.1819 0.1819
204 0.1202 0.1132 0.1986 0.1509 0.1132 0.1102 0.1986
205 0.1619 0.2178 0.0782 0.2143 0.2178 0.2178 0.2178
206 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049 0.0049
207 0.3938 0.5130 0.4101 0.5444 0.5130 0.5161 0.5444
208 0.0060 0.0227 0.0221 0.0232 0.0221 0.0247 0.0247
209 0.3134 0.3134 0.3072 0.3076 0.3150 0.3134 0.3150
210 0.4914 0.5512 0.2504 0.2589 0.5512 0.5512 0.5512
211 0.2585 0.2593 0.2544 0.2544 0.2613 0.2693 0.2693
212 0.1143 0.1426 0.1472 0.1472 0.1416 0.1426 0.1472
213 0.2572 0.2052 0.2424 0.2460 0.2052 0.2001 0.2572
214 0.0423 0.2142 0.2103 0.2104 0.2142 0.2144 0.2144
215 0.5683 0.5799 0.5797 0.5797 0.5799 0.5799 0.5799
216 0.4713 0.4723 0.5455 0.5455 0.4723 0.4723 0.5455
217 0.2091 0.1943 0.1983 0.2033 0.1943 0.1943 0.2091
218 0.0259 0.0244 0.0421 0.0244 0.0244 0.0244 0.0421
219 0.0586 0.0627 0.0534 0.0565 0.0699 0.0697 0.0699
220 0.4328 0.4308 0.3333 0.4407 0.4308 0.2917 0.4407
221 0.2049 0.2265 0.1867 0.1875 0.2262 0.2265 0.2265
222 0.1687 0.4394 0.1662 0.1869 0.4377 0.1893 0.4394
223 0.0258 0.0258 0.0249 0.0258 0.0260 0.0258 0.0260
224 0.4535 0.4756 0.4979 0.4999 0.4752 0.4756 0.4999
225 0.6835 0.6833 0.6833 0.6833 0.6831 0.6834 0.6835
226 0.1639 0.2041 0.1595 0.1603 0.2042 0.2041 0.2042
227 0.4054 0.4775 0.4409 0.4409 0.4775 0.4567 0.4775
228 0.0083 0.0109 0.0127 0.0124 0.0109 0.0109 0.0127
229 0.5418 0.5766 0.5859 0.5859 0.5766 0.5766 0.5859
230 0.3952 0.6277 0.5554 0.5555 0.6280 0.6277 0.6280
231 0.1077 0.1025 0.1091 0.1091 0.1025 0.1025 0.1091
232 0.0151 0.0111 0.0133 0.0140 0.0111 0.0111 0.0151
233 0.6163 0.6163 0.5652 0.5652 0.6108 0.6163 0.6163
234 0.5590 0.7029 0.7029 0.7029 0.7029 0.7029 0.7029
235 0.3035 0.6865 0.4362 0.4393 0.6865 0.6558 0.6865
236 0.0050 0.0116 0.0114 0.0115 0.0116 0.0097 0.0116
237 0.3913 0.5610 0.5802 0.4780 0.5610 0.5598 0.5802
238 0.0413 0.1853 0.4430 0.4431 0.1853 0.1734 0.4431

Appendix I

131

Query # Baseline Manually Fully Filter 1 Filter 2 Approx. Max
Expanded Expanded Man.

Expand
239 0.2248 0.2094 0.2369 0.2410 0.2094 0.2230 0.2410
240 0.2748 0.2892 0.2039 0.2110 0.2892 0.2927 0.2927
241 0.0187 0.0221 0.0367 0.0336 0.0221 0.0221 0.0367
242 0.5585 0.5221 0.5221 0.5221 0.5232 0.5221 0.5585
243 0.0083 0.0076 0.0065 0.0085 0.0077 0.0078 0.0085
244 0.5063 0.5150 0.5064 0.5064 0.5150 0.5063 0.5150
245 0.0231 0.1835 0.1846 0.1848 0.1837 0.1845 0.1848
246 0.1443 0.3310 0.1534 0.2552 0.3110 0.2940 0.3310
247 0.3886 0.3896 0.3936 0.3935 0.3896 0.3894 0.3936
248 0.5371 0.5583 0.5222 0.5350 0.5581 0.5374 0.5583
249 0.0279 0.0295 0.0297 0.0297 0.0295 0.0295 0.0297
250 0.1550 0.1889 0.2105 0.2108 0.1889 0.1889 0.2108

overall 0.2503 0.2997 0.2715 0.2793 0.2994 0.2873 0.3155

132

Appendix J

Ranked Performance of Query Method on a query by query basis

 Query # Baseline Manually Fully Filter 1 Filter 2 Approx.
Expanded Expanded Manual

Expansion

202 1 2 6 5 3 4
203 5 2 3 4 2 1
204 3 4 1 2 4 5
205 3 1 4 2 1 1
206 1 1 1 1 1 1
207 5 3 4 1 3 2
208 5 3 4 2 4 1
209 2 2 4 3 1 2
210 2 1 4 3 1 1
211 4 3 5 5 2 1
212 4 2 1 1 3 2
213 1 4 3 2 4 5
214 5 2 4 3 2 1
215 3 1 2 2 1 1
216 3 2 1 1 2 2
217 1 4 3 2 4 4
218 2 3 1 3 3 3
219 4 3 6 5 1 2
220 2 3 4 1 3 5
221 3 1 4 4 2 1
222 5 1 4 3 2 3
223 2 2 3 2 1 2
224 5 3 2 1 4 3
225 1 3 3 3 4 2
226 3 2 5 4 1 2
227 4 1 3 3 1 2
228 4 3 1 2 3 3
229 3 2 1 1 2 2
230 5 2 4 3 1 2
231 2 3 1 1 3 3
232 1 4 3 2 4 4
233 1 1 3 3 2 1
234 2 1 1 1 1 1
235 5 1 4 3 1 2
236 5 1 3 2 1 4
237 5 2 1 4 2 3
238 3 4 2 1 4 5
239 2 5 1 3 5 4
240 3 2 5 4 2 1

Appendix J

133

 Query # Baseline Manually Fully Filter 1 Filter 2 Approx.
Expanded Expanded Manual

Expansion

241 4 3 1 2 3 3
242 1 3 3 3 2 3
243 2 5 6 1 4 3
244 3 1 2 2 1 3
245 6 5 2 1 4 3
246 6 1 5 4 2 3
247 5 3 1 2 3 4
248 4 1 6 5 2 3
249 3 2 1 1 2 2
250 4 3 2 1 3 3

Average 3.22 2.39 2.94 2.45 2.39 2.53

134

Appendix K

Performance Compared to baseline

Query # Full Filter 1 Filter 2 Approx. Manual
Expansion Man

Expansion.
Expansion

202 - - - - -
203 + + + + +
204 + + - - -
205 - + + + +
206 0 0 0 0 0
207 + + + + +
208 + + + + +
209 - - + 0 0
210 - - + + +
211 - - + + +
212 + + + + +
213 - - - - -
214 + + + + +
215 + + + + +
216 + + + + +
217 - - - - -
218 + - - - -
219 - - + + +
220 - + - - -
221 - - + + +
222 - + + + +
223 - 0 0 0 0
224 + + + + +
225 0 0 - 0 0
226 - - + + +
227 + + + + +
228 + + + + +
229 + + + + +
230 + + + + +
231 + + - - -
232 - - - - -
233 - - - 0 0
234 + + + + +
235 + + + + +
236 + + + + +
237 + + + + +
238 + + + + +
239 + + - - -
240 - - + + +

135

Query # Full Filter 1 Filter 2 Approx. Manual
Expansion Man

Expansion.
Expansion

241 + + + + +
242 - - - - -
243 - + - - -
244 0 0 + 0 0
245 + + + + +
246 + + + + +
247 + + + + +
248 - - + + +
249 + + + + +
250 + + + + +

+ 27 30 34 32 32

- 19 15 13 11 11

Legend

- more than .002 below the baseline

0 within ± .002 of baseline

+ more than .002 above baseline

136

Appendix L

Interpolated Precision-
Recall Information

0.00 0.10 0.20 0.30 0.40 0.50
Baseline 0.6518 0.5179 0.4296 0.3503 0.2943 0.2365

Full Expansion 0.7241 0.5339 0.4616 0.3676 0.3127 0.2706

Filter 1 0.7137 0.5445 0.4791 0.3799 0.3208 0.2737

Filter 2 0.7004 0.4955 0.4372 0.3666 0.3126 0.2635

Manual Expansion 0.7235 0.5725 0.5081 0.414 0.3497 0.2973

Approx. Manual Expansion 0.7139 0.5606 0.4928 0.3867 0.332 0.2862

0.60 0.70 0.80 0.90 1.00
Baseline 0.1797 0.1269 0.0818 0.0448 0.0105

Full Expansion 0.2228 0.1701 0.107 0.0752 0.0095

Filter 1 0.2255 0.1698 0.1082 0.0716 0.0111

Filter 2 0.225 0.1729 0.1005 0.0721 0.0111

Manual Expansion 0.2361 0.1813 0.1177 0.0705 0.0109

Approx. Manual Expansion 0.2345 0.1822 0.1109 0.0709 0.011

Interpolated Average Precision-Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Recall

P
re

ci
si

o
n

Baseline

Full Expansion

Filter 1

Filter 2

