
Finding the Loneliest Point

by

Ka Yee Yeung

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo� Ontario� Canada� ����

c�Ka Yee Yeung ����

Abstract

We study the following problem which �nds application in solving equations�

Given a Euclidean domain� there are two operations� insert and isolate� Insert adds

points to the domain� Isolate returns a point in the domain which is satisfactorily

far from the points already inserted in the domain�

The objective is to perform insert and isolate in constant amortized time per

operation� linear space and a constant worst case ratio� Worst case ratio mea�

sures how far the answer from isolate di�ers from the best possible answer� We

concentrate on the case with a two dimensional domain�

The basic approach is to divide the domain into geometric shapes and build

a hierarchy of that shape� We have studied the three regular polygons that tile

a given two dimensional domain	 squares� hexagons and triangles� It turns out

that the worst case ratio is smaller when the domain is divided into hexagons than

when the domain is divided into squares� the worst case ratio for squares is in turn

smaller than that of the triangles�

We have also explored other techniques to improve the worst case ratio while

keeping constant amortized running time per operation and linear space� We have

explored overlapping� embedding
or diamonds�� and multiple grids� The worst

case ratio can be improved further when these techniques are combined�

We have also shown that the square technique can be extended to cubes in a

three dimensional domain�

ii

Contents

� Introduction �

��� Background and Motivation �

��� The Problem In More Detail �

��
 An Exact Solution to the Problem � � � � � � � � � � � � � � � � � � �

��� Our Approach �

��� Model of Computation �

� Dividing the Domain into Squares �

��� The Naive Approach �

����� Data Structures �

����� Naive Insert ��

����
 Naive Isolate ��

����� Analysis of the Naive Algorithms � � � � � � � � � � � � � � � ��

��� A Re�ned Approach ��

����� Details of Insert ��

����� Details of Isolate ��

����
 Determining the Square in Which a Given Point Lies � � � � ��

iii

����� Analysis of the Runtime �

����� The Quality of Isolate ��

����� A Correction for the Boundaries � � � � � � � � � � � � � � � � ��

��
 Improving the Worst Case Ratio ��

��
�� Overlapping ��

��
�� Diamonds �

��
�
 Overlapping With Diamonds � � � � � � � � � � � � � � � � � �
�

��� Summary of the Square Techniques � � � � � � � � � � � � � � � � � � ��

��� Multiple Grids ��

����� Double Grids ��

����� Quadruple Grids ��

����
 m Grids ��

� Dividing the Domain into Hexagons ��

�� The Naive Approach ��

�� A Re�ned Approach �

���� Putting Things Together ��

���� A Correction for the Boundaries � � � � � � � � � � � � � � � � ��

�
 Improving the Worst Case Ratio ��

�
�� Overlapping ��

�
�� Embedding ��

�
�
 Quintuple Embedding With Quadruple Overlapping � � � � � ��

�� Summary of the Hexagon Techniques � � � � � � � � � � � � � � � � � ��

�� Multiple Grids ��

iv

���� Double Grids ��

���� m Grids ��

� Dividing the Domain into Triangles ��

��� Equilateral Triangles ��

����� Basic Approach ��

����� With Overlapping ���

��� Right�Angled Triangles ��

����� Basic Approach ��

����� With Overlapping ���

��
 Summary of the Triangle Techniques � � � � � � � � � � � � � � � � � ���

��� Multiple Grids ���

����� Double Grids ���

����� m Grids ���

� Extending to Three Dimensions ���

��� Dividing the Domain into Cubes ���

����� The General Approach ���

����� The Overlapping Technique � � � � � � � � � � � � � � � � � � ���

����
 The Diamond Technique ���

��� Dividing the Domain into Other Geometric Shapes � � � � � � � � � ���

� Conclusion ���

��� Dividing the Domain into Di�erent Shapes � � � � � � � � � � � � � � ���

��� Other Techniques ���

v

��
 With Multiple Grids ���

��� Implementation Issues ��

��� Future Work ���

Bibliography ���

vi

List of Tables

��� Summary of the square techniques � � � � � � � � � � � � � � ��

��� Space requirement and the worst case ratio with � grids ��

�� The edge�lengths and heights of the quintuple embed�

ding technique ��

�� Summary of the hexagon techniques � � � � � � � � � � � � � ��

��� Summary of the triangle techniques � � � � � � � � � � � � � ���

��� Summary of the square� hexagons and triangles tech�

niques ���

��� Summary of the square� hexagons and triangles lower

bounds ���

vii

List of Figures

��� Illustration of the most isolated point � � � � � � � � � � �

��� Four unit�sized squares make up a double�sized square � �

��� Scenario where log� n� � levels are needed �with n � ��� ��

��
 Example with n � �	 and k � 	 � � � � � � � � � � � � � � � � � ��

��� The bit vector hierarchy ��

��� The concatenating numbering convention � � � � � � � � � � ��

��� The interleaving numbering convention � � � � � � � � � � � ��

��� Illustration of the �
p
� worst case ratio � � � � � � � � � � ��

��� A size � square with the closest point being �
� units away ��

��� Illustration of the boundary cases � � � � � � � � � � � � � � ��

���� Improving the worst case ratio with overlapping � � � � ��

���� Overlapping squares do not form hierarchies � � � � � � �
�

���� Improving the worst case ratio with diamonds � � � � � � �
�

���
 Diamonds do not form a hierarchy � � � � � � � � � � � � � �
�

���� Diamonds are made up of
 triangles � � � � � � � � � � � � �
�

viii

���� Improving the worst case ratio with both overlapping

and diamonds �
�

���� Multiple grids with the squares only approach � � � � � � ��

���� Multiple grids with overlapping � � � � � � � � � � � � � � � � ��

���� Multiple grids with diamonds � � � � � � � � � � � � � � � � � � ��

���� Multiple grids with overlapping and diamonds � � � � � � ��

�� Grouping of hexagons to form a double edge�lengthed

hexagon ��

�� Illustration of the inductive step with k � 	 � � � � � � � ��

�
 Columns and rows in the honeycomb tiling � � � � � � � � � ��

�� The three directions of cuts � � � � � � � � � � � � � � � � � � ��

�� Illustration of the inductive step in the proof of Lemma ��	 ��

�� Illustration of Lemma ��� ��

�� Illustration of Lemma ��
 ��

�� Illustration of how hexagons are divided into halves � � �

�� Illustration of the hexagons only approach � � � � � � � � ��

��� A hexagon with edge�length � with the closest point
p
�
�

units away ��

��� Improving the worst case ratio with quadruple overlap�

ping ��

��� Overlapping hexagons do not form hierarchies � � � � � � ��

��
 Improving the worst case ratio with triple overlapping �

ix

��� Illustration of the worst case ratio with combined over�

lapping ��

��� Tiling of the domain with the circumscribing hexagons � ��

��� Hexagon A circumscribing the base hexagon B � � � � � � � ��

��� Five levels of embedding ��

��� Four smaller equilateral triangles make up a bigger one ��

��� To determine the triangle a given point lies in � � � � � � ��

��
 Illustration of Case � and Case 	 � � � � � � � � � � � � � � � ��

��� Illustration of the worst case ratio of the equilateral

triangle technique ���

��� Illustration of the closest point to an equilateral tri�

angle ���

��� Improving the worst case ratio with the overlapping

technique ��

��� Two size � right�angled triangles make up one of size
p
� ���

��� Illustration of the worst case ratio of the right�angled

triangle technique ���

��� Illustration of the closest point to a right�angled tri�

angle ���

���� Improving the worst case ratio for right�angled trian�

gles with overlapping ���

��� Eight unit�size cubes make up a double�size cube � � � � � ��

��� Illustration of the worst case ratio � � � � � � � � � � � � � ���

x

��
 Illustration of the overlapping approach � � � � � � � � � � ���

��� Worst case ratio of the overlapping approach � � � � � � ���

��� Illustration of how hexagons are closer to circles than

are squares and triangles ���

xi

Chapter �

Introduction

��� Background and Motivation

The problem of �nding roots of equations in several variables arises in many scien�

ti�c computations� If nothing is known about the equations� except perhaps that

the functions involved are continuous almost everywhere� then one is forced into

some sort of iterative method of re�ning solutions and then looking for other solu�

tions in other regions� presumably far from those explored earlier� Motivated by the

goal of including such techniques in the Maple Symbolic Algebra System ���� Gas�

ton Gonnet ��� abstracted the problem of �nding new starting points by proposing

the operations insert and isolate� Insert adds points which represent evaluations

already made into the domain and isolate returns a point which is satisfactorily

far
details later� from the points already evaluated� He asked how e�ciently this

data type could be supported� In this thesis� we provide constant time solutions

for several forms of the problem� though we concentrate on the two�variable case

�

� CHAPTER �� INTRODUCTION

for the sake of simplicity�

��� The Problem In More Detail

More precisely� we de�ne the problem as follows	 given a bounded domain
Eu�

clidean space�� there are two operations� insert and isolate� Insert adds a point to

the domain� Isolate returns a point which is satisfactorily far
as de�ned below�

from the points already inserted in the domain� and inserts the returned point�

The insertion of the returned point guarantees that multiple isolates return dif�

ferent points� We focus primarily on the two�dimensional case and� without loss

of generality� assume the domain is a square� By distance� we mean Euclidean

distance�

While the point in the domain maximally distant from any of the inserted

points should ideally be found� we will see that this is substantially more di�cult

than obtaining an approximate solution� In the context of our application� it is

satisfactory to return a point guaranteed to be at least a constant factor times the

distance from the most isolated point to its nearest neighbour�

If only one point is inserted and it is in the lower right corner of the square

domain� then there are two obvious candidates for the most isolated point	 the

upper left corner of the domain and the middle of the domain� In this thesis� we

choose to return the latter as the most isolated point� E�ectively� the boundary of

the domain is assumed to be occupied� As a consequence� if there are no points in

the domain� isolate returns the midpoint of the domain� See Figure ���� However�

our techniques are easily modi�ed to adopt the convention that the boundary is

���� AN EXACT SOLUTION TO THE PROBLEM

not occupied�

Figure ���	 Illustration of the most isolated point

the most isolated point

points inserted into the domain

��� An Exact Solution to the Problem

Finding the most isolated point in a given domain is known as the largest empty

circle problem in the Computational Geometry literature� Given n points in the

plane� the largest empty circle problem is to �nd the largest circle the centre of

which lies in the convex hull of the n given points such that none of the n given

points lies in the interior of the circle� Thus� the centre of the largest empty circle

is the most isolated point in the given domain�

Shamos ��� outlined an O
n log n� algorithm for solving this problem using the

� CHAPTER �� INTRODUCTION

Voronoi Diagram� Details of the Voronoi Diagram can be found in any standard

Computational Geometry text� such as ���� Toussaint ���� generalized the problem

such that the centre of the largest empty circle does not have to lie in the convex

hull of the n given points� but in an arbitrary convex n�gon� He gave an O
n log n�

algorithm for the generalized version of the problem� Toussaint�s algorithm also

makes use of the Voronoi Diagram of the n given points�

It is known that �
n log n� is a lower bound
under the usual comparison model�

on the time required to solve the largest empty circle problem ���� In one dimension�

the problem reduces to �nding the two adjacent points on a line that are farthest

apart� This is related to the element uniqueness question for which �
n log n� is

a lower bound ���� Therefore� the algorithms given by Shamos and Toussaint are

optimal for the static
n insertions and one isolate� version of our problem�

We can �nd the exact solution of our iterative problem as stated in Section ���

using Toussaint�s algorithm ����� In the insert operation� points are placed in a

queue and the Voronoi Diagram is not updated or constructed� thus an insert

operation takes constant time� When an isolate operation is encountered� points on

the queue are used to construct the Voronoi Diagram or are inserted into the existing

Voronoi Diagram to �nd the centre of the largest empty circle� Constructing the

Voronoi Diagram takes �
n log n� time� So� there exists a sequence of n operations

n � � inserts and then an isolate� such that the total running time is �
n log n��

Hence� the worst case running time of any sequence of n inserts and isolates is

�
n log n�� giving an amortized running time of �
log n� per operation for the exact

solution�

���� OUR APPROACH �

��� Our Approach

A rough approximate solution was discovered by Norbert Blum� Martin Dietzfel�

binger and Ian Munro shortly after the problem was posed by Gonnet� The idea is

to divide the domain into squares� A hierarchy of squares is built by grouping four

smaller squares into a bigger square� To perform an insert� the point is interpo�

lated into the smallest square containing it� and then up to parent squares in the

hierarchy� Isolate returns the midpoint of one of the largest unoccupied squares in

the hierarchy and inserts the returned point� Chapter � covers the details�

It is also reasonable to consider dividing the domain into other geometric shapes�

and using other tricks like overlapping and multiple hierarchies in the hope of

achieving a more e�cient method or a better solution� A hierarchy of a particular

geometric shape is a classi�cation of that shape based on size� A hierarchy consists

of levels in which the geometric shapes of the same size are grouped into the same

level� Levels are indexed� starting with the smallest geometric shape from level ��

Sizes of geometric shapes in consecutive levels di�er by a constant factor� Chapter

discusses the division of the plane into hexagons� while Chapter � considers division

of the plane into triangles�

��� Model of Computation

In the following discussions� we assume a Random Access Machine with the follow�

ing constant time operations 	

� CHAPTER �� INTRODUCTION

� Arithmetic operations
addition� subtraction� multiplication and division of
both integer and reals�

� Bitwise Boolean operations
AND� OR�

� Shift operations by arbitrary numbers of bits

� Comparisons of both integers and real numbers

� Finding the number of zero bits before the �rst one bit in an integer

One major advantage of assuming a Random Access Machine is that we can do

table lookups in constant time�

It will be assumed that the integers stored are of length at most log� n� c bits�

where n is the number of points inserted into the domain and c is a constant� The

precision of real numbers will not be an important issue�

In the following discussion� the �size� of a geometric shape refers to the length

of a side of that shape� For instance� the size of a square is the length of a side of

the square�

Chapter �

Dividing the Domain into Squares

The basic idea is to divide the domain into squares and then to build a hierarchy

of squares of decreasing sizes� The square hierarchy is formed by decomposing a

square into four equal�sized smaller squares in the next lower level in the hierarchy

as shown in Figure ���� De�ne the grid to be the set of squares making up the

bottommost level in the square hierarchy� We keep track of the occupied squares�

i�e�� those containing at least one inserted point� The isolate operation returns the

centre of one of the largest unoccupied squares in the hierarchy and the returned

point is then inserted� The absence of any unoccupied squares forces decomposition

into smaller squares in the hierarchy� An insertion into a square occupies it� thus

removing it from consideration for subsequent isolate operations�

In Section ���� we consider a naive approach to the problem which uses linear

space but takes �
log n� amortized running time per operation� In Section ���� a

more sophisticated method due to Norbert Blum� Martin Dietzfelbinger and Ian

Munro is described� It solves the problem in linear space and constant amortized

�

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Figure ���	 Four unit�sized squares make up a double�sized square

2

1

running time per operation� and achieves a constant worst case ratio� Although

the naive approach does not guarantee a constant amortized running time per

operation� the quality of the solution is the same as that of the re�ned approach�

��� The Naive Approach

����� Data Structures

Using our strategy� isolate returns the midpoint of one of the largest empty squares

in the domain� Hence� we have to keep track of whether a particular square is

occupied or not� A bit map is the obvious choice	 each square in the hierarchy is

represented by a bit� The bit is turned on if the corresponding square is occupied�

otherwise it is turned o�� The bits are organized into a hierarchy representing

squares of decreasing sizes� Bits representing squares of the same size are grouped

���� THE NAIVE APPROACH �

into the same level in the hierarchy� The levels are indexed� with the smallest

squares at level �� A linear scan of the bit vector� starting at the top level in

the hierarchy� is performed in isolate� and the midpoint of the �rst unoccupied

square encountered� which is represented by a zero bit� is returned� However� if all

the squares are occupied� decomposition into smaller squares is required in order

to generate empty squares� Therefore� the isolate algorithm consists of a loop in

which the bit vector is scanned and the square hierarchy is decomposed one level

below the current level until an empty square
a zero bit� is found� Since the �rst

zero bit must be at the lowest level of the current square hierarchy� we need a bit

vector representing the squares in the bottommost level of the hierarchy�

Decomposition of the inserted points into a �ner grid of squares requires the

coordinates of the inserted points be known� Therefore� the coordinates of the

inserted points are stored in a linked list or an array� Order is not important in the

linked list or the array� Alternatively� we can use an array of linked lists to store

the inserted points� The array is indexed by the squares in the bottommost level

in the square hierarchy� The list for each array position stores points inserted in

the corresponding square� Using an array of linked lists has the advantage of easier

interpolation into a �ner grid by looking at the trailing bits only
details later��

Moreover� we need a counter to keep track of the number of points already

inserted into the domain�

With the above data structures� the insert operation consists of determining the

smallest square in which the new point lies
interpolation�� inserting the point into

the linked list and updating the bit vector if necessary� The case that the inserted

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

point lies on the boundary of the squares will be discussed in Section ������

There is an alternative lazy approach to the naive insert and isolate algorithms�

In the lazy approach� points are put on a queue in the insert operation� The real

work of �xing the bit vector in the insert algorithm is postponed until an isolate

operation is encountered� In the isolate algorithm of the lazy approach� all the

points on the queue have to be inserted using the insert algorithm before the isolate

algorithm is applied� The lazy approach has the advantage that the bit hierarchy

is �xed only when an isolate operation is encountered� Any insertions after the

last isolate need not be performed� The analysis of the running time for the lazy

approach is the same�

����� Naive Insert

� Insert the point into the linked list or the array�

� Interpolate the point into the proper square at the bottom level and change
the bit representing that square in the bit vector to ��

� Increment n�

����� Naive Isolate

� Repeat f

� Pick up the scan of the bit vector from where it was terminated on the last

isolate operation and continue until the �rst zero bit
unoccupied square�

is encountered�

���� THE NAIVE APPROACH ��

� If an unoccupied square is found then

return the midpoint of the square corresponding to the zero bit�

� If all squares are occupied then

� expand the hierarchy � level below
� interpolate the points into the �ner grid
� update the bit vector to represent the current bottommost level

g until an empty square is found�

� Insert the point returned using the algorithm in Section ������

����� Analysis of the Naive Algorithms

The naive insert� naive isolate� and the naive lazy insert and the naive lazy isolate

do not guarantee constant amortized time per operation� Suppose n points have

been inserted before the �rst isolate� Without loss of generality� assume n is an

exact power of four� In the worst case� log� n � � levels are needed to guarantee

a free square� In Figure ���� only three levels are shown� the squares need to be

decomposed into an additional level in order to have free squares in the domain�

In order to �nd an empty square in the domain� the repeat loop has to be

executed �
log n� times since there are �
log n� levels in the hierarchy� There are

n points to be interpolated each time through the loop and n � � operations
n

inserts and � isolate�� thus giving a �
log n� amortized running time� Note that

postponing the work of �xing the bit hierarchy in the lazy approach has no e�ect

on the running time� Also observe that even if the inserted points are uniformly

distributed� �
log n� average case cost per operation is to be expected for a sequence

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Figure ���	 Scenario where log� n� � levels are needed �with n � ���

points inserted into the domain

of insertions followed by one isolate operation� On the other hand� if isolates occur

reasonably frequently� constant amortized running time seems a reasonable hope�

��� A Re�ned Approach

In order to guarantee constant amortized running time� we decompose the domain

into squares in one global re�nement so that at least one empty square is guaranteed

to exist� We also need to keep track of the entire square hierarchy� instead of only

the bottommost level� The inserted points are interpolated only once on each

isolate� The smallest squares in which the inserted points lie are found� The bit

hierarchy can then be built by checking whether any of the four smaller squares

making up the current square is occupied or not� without interpolating the inserted

���� A REFINED APPROACH �

points� Therefore� we start from the lowest level in the square hierarchy and build

the hierarchy upwards�

As before� assume there are n points in the domain when an isolate operation is

encountered� When there are no empty squares� the domain is decomposed into �k

equal�sized squares� where k is equal to dlog�
n� ��e� With this k� an unoccupied
square is guaranteed to exist� The n points already in the domain are interpolated

into this �ner square grid� containing �
n� squares� The bit hierarchy is then

built by repeatedly doing an OR operation on the four bits corresponding to the

four smaller squares in the level below the current level� until the level before the

decomposition is reached� A linked list
or a simple array� is required to store all

the points inserted� The hierarchy is built by looking at the bits corresponding to

the squares in the level below� not at the points inserted� Finally� the bits in the

hierarchy are scanned until the �rst zero bit which represents one of the largest free

squares is encountered� The midpoint of the square which corresponds to this zero

bit is inserted into the domain�

As in the naive algorithm� a lazy approach in which points are put on a queue

during inserts and the bit hierarchy is �xed only when an isolate operation is

encountered can also be used� The lazy approach has no e�ect on the analysis of

the running time�

As an example� consider the scenario in Chapter � again after the domain is

divided in squares� In Figure ��
� the largest unoccupied square is shaded�

The number of squares or bits in the deepest level is linear in n� With k equal

to dlog�
n � ��e� �k lies between n� � and �n
inclusive��

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

The total number of bits in the hierarchy is also linear in n� Since four smaller

squares are grouped into a bigger one in the next level up in the hierarchy� the

number of bits in each level in the hierarchy is reduced by a factor of four� Assume

the bottommost level in the hierarchy is level � with �k squares� At level i� there are

�k�i squares� The total number of squares in the hierarchy� and hence bits required

in the representation vector� is
Pk

i�� �
k�i � �k��

�
� ��

�
n�

Figure ��
	 Example with n � �	 and k � 	

1

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

1

3

the square number =

the most isolated point

points inserted into the domain

point returned by
isolate

interleave 011 and 001=

0 0 10 1

����� Details of Insert

� Interpolate the point into the proper square at the bottom level� This square
is the current square�

� Fix the bit hierarchy 	

���� A REFINED APPROACH ��

Figure ���	 The bit vector hierarchy

The bit vector :

1 1 1 0

1

1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0

1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0

While the current square is not marked
current bit is �� do f
� mark the current square as occupied
change the current bit to ��

� current square 	� parent of current square

g

� Increment n

����� Details of Isolate

� Pick up the scan of the bit hierarchy from where it was terminated on the
last isolate operation and continue until the �rst zero bit is encountered�

� If an unoccupied square is found� return the midpoint of the square corre�
sponding to the zero bit�

� If all squares are occupied then

	 Compute k 	� dlog�
n� ��e

	 Decompose the domain into �k squares

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

	 Interpolate all n points into the grid of �k squares

	 Extend the bit hierarchy to levels below the original hierarchy

	 Scan the bit hierarchy� starting at the �rst square of the level below that

in which all squares were occupied� until the �rst zero bit is found which

corresponds to one of the largest empty squares and return the midpoint

of the square found�

� Insert the point returned as in Section ������

����� Determining the Square in Which a Given Point Lies

In both the insert and isolate algorithms� the square in which a given point lies

has to be determined in order to interpolate the point into the square grid� In this

section� we are going to discuss two di�erent conventions of numbering the squares

and show that we can interpolate a point in constant time and o
n� space using

either approach�

The Concatenating Approach

The �rst approach is to number the squares across the rows and then down the

columns� starting from zero� The index of the square at row r and column c is

X � r � c for a grid of X� squares assuming the columns and rows start from

zero� In Figure ���� square �� has row � and column
� and has index equal to

� � ��
� Since the row number and column number can be determined in constant
time� the square index can be determined in constant time� Hence� a point can

be interpolated into the square grid in constant time using this approach� This

���� A REFINED APPROACH ��

is called the concatenating approach because the square index is determined by

concatenating two bit patterns	 the row number and the column number�

It can be veri�ed that the index of the parent of a square indexed j is bbj�Xc��c�

X��� � b
j mod X���c� Since the number of squares in the parent grid is reduced
by a factor of four� i�e�� X�

�
� the number of rows and columns in the parent grid isq

X�

�
� X

�
� bj�Xc gives the row number in the current grid� and j mod X gives

the column number� For example� the parent of square �� is bb����c��c �
���� �
b
�� mod ����c �
 in Figure ���� Therefore� we can �nd the index of the parent
square in constant time�

Figure ���	 The concatenating numbering convention

0 1

2

parent index = 3

3

0 1
decompose

14 15

(0,0)
x

y 2 3

4 5 6 7

8 9 10 11

12 13

The Interleaving Approach

The second approach of numbering the squares is conceptually more complicated

and more interesting� but the implementation is simpler� Assume the following

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

convention of numbering the squares
and hence the bits� in the hierarchy	 the

numbering starts from zero at each level and starts from the top level in the square

hierarchy� Thus� the � bit representing the square domain in the topmost level has

index �� A parent square is decomposed into � children squares when going down

one level in the square hierarchy� The children of a square indexed j have indices

� � j
upper left�� � � j � �
upper right�� � � j � �
lower left� and � � j �

lower
right� as illustrated in Figure ��
� Hence� the parent of the square indexed j has

index b j�c� See Figure ����

Figure ���	 The interleaving numbering convention

0 1

y

2 3

0 1

2 3

4 5

6 7

8 9

10 11

decompose

parent of 13 = 13/4 = 3

12 13

14 15

(0,0)
x

The square�s index can be determined in constant time by interleaving two bit

patterns� as will be proved in Theorem ���� and hence this is called the interleaving

approach� The two bit patterns are the binary representations of the numbers of

base squares vertically above and horizontally to the left of the current square� For

example� the square numbered � in Figure ��
 has one base square above it and

���� A REFINED APPROACH ��

three base squares to its left� Interleaving ���
� �� and ���
�
� gives �
 � � � ��

which is the binary representation of the index ��

Lemma ��� The index of the square in which a point lies can be determined by

interleaving two bit patterns which represent the number of base squares vertically

above and horizontally to the left of the given point�

Proof of Lemma ����

The proof is by induction on the number of levels in the square hierarchy� The

induction hypothesis is as follows	 the index of the square in which a point lies

can be determined by interleaving two bit patterns when there are k levels in the

square hierarchy�

Basis� The induction hypothesis is trivially true when there is only one level

in the hierarchy� i�e�� when there is only one square and that square represents the

entire domain in the hierarchy�

When there are two levels in the hierarchy� square � has zero squares above and

zero squares to the left� Interleaving � � and � � gives �
 �
 which is equal to the

index �� Square � has zero squares above and one square to the left� Interleaving

� � and � � gives �
 � � which is �� Square � has one square above and zero squares

to the left� Interleaving � � and � � gives �
 �
 which is �� Similarly� square
 has

one square above and one square to the left� Interleaving � � and � � gives �
 � �

which is
�

The induction step� Assume the induction hypothesis is true with k levels

in the hierarchy� i�e�� the square index can be determined by interleaving two bit

patterns when there are k levels in the hierarchy� Consider a particular square at

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

level k with index j which has y squares above and x squares to the left� By the

induction hypothesis� j is equal to interleaving y and x� Suppose there are now

k � � levels in the hierarchy� When there is an additional level in the hierarchy�

each of the original base squares is decomposed into � equal sized squares� Suppose

the square indexed j is decomposed into j�
upper left�� j�
upper right�� j�
lower

left� and j�
lower right�� Square j� has �y base squares at level k � � above and

�x base squares to its left� The binary representation of �y is that of y shifted

one bit left� and �x is that of x shifted one bit left� both shifts with a zero bit

appended to the right� Hence� interleaving �y and �x is the same as interleaving

y and x with two zero bits appended to the right� Interleaving y and x gives j

by the induction hypothesis� Thus� j� � � � j� Similarly� j� has �y squares above
and �x � � squares to its left� The binary representation of �x � � is the same as

shifting x left by one bit and appending a � bit to the right� So� interleaving �y and

�x� � gives j� � � � j � �� Similarly� j� has �y� � squares above and �x to its left
and interleaving �y � � and �x gives j� � � � j � �� Finally� j� has �y � � squares
above and �x� � to its left and interleaving �y � � and �x� � gives j� � � � j �
�
Therefore� the induction hypothesis is also true when there are k � � levels in the

hierarchy�
�

Having established that the index of the square in which a point lies can be

determined by interleaving two bit patterns in Lemma ���� we have to be able

to perform the interleaving step in constant time and o
n� space such that the

interleaving step would not add to the space and time requirement of the insert and

isolate algorithms� It is obvious that creating a table of all possible bit patterns

���� A REFINED APPROACH ��

interleaved and performing a table lookup takes constant time� However� the space

required for the table is �
n�� thus adding to the space requirement of inserts and

isolates� The following lemma gives a constant time and o
n� space interleaving

algorithm� The basic idea is to split the bit patterns into halves� create a table of

all the half bit patterns� perform table lookups for the half bit patterns and combine

the bit patterns� The table size required for the half bit patterns is o
n�� so we do

not have to split again�

Lemma ��� Interleaving two given bit patterns which represent the number of base

squares vertically above �y� and horizontally to the left �x� of a base square takes

constant time and o
n� space with the following algorithm�

Interleave �y�x��

�� Let x� � the �rst half of the bits in x� and x� � the second half of the bits in

x� Similarly� let y� � the �rst half of the bits in y� and y� � the second half

of the bits in y�

�� yx� � result of table lookup of interleaving y� and x��

	� yx� � result of table lookup of interleaving y� and x��

� Let yx be the result of interleaving y and x� yx � concatenate yx� and yx��

Proof of Lemma ����

It is obvious that splitting two bit patterns into halves� interleaving each pair

and then concatenating the two pairs is equivalent to interleaving the original two

bit patterns� Thus� the above algorithm interleaves two given bit patterns�

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

There are �dlog��n	�
e � �n base squares� So there can be at most p�n � �pn
base squares vertically above and horizontally to the left of any base square� Hence�

the number of bits required to represent the number of squares above
y� and to the

left of
x� any base square is at most dlog�
�
p
n�e � d� � �

�
log� ne� The resulting

number
yx� of interleaving the two bit patterns has at most �d� � �
�
log� ne bits�

We will represent x and y with d�
�
log� n � �e bits and x�� x�� y� and y� with

d�
�
log� ne � � bits� Thus� yx� and yx� have �d�� log� ne � � bits� Hence� the table

has size ��d
�
�
log� ne	� � � �� log� n	� � �pn � o
n� bits�

Splitting x and y into two halves can be done by a mask� Speci�cally� x� � x

AND
�d
�

�
log� ne	� � �� and x� �
x � x�� SHIFT RIGHT
d�� log� ne � �� bits�

Table lookups are constant time operations using our RAM model of computation�

Concatenating two bit patterns can be done by a SHIFT and an OR operation� i�e��

yx �
yx� SHIFT LEFT �d�� log� ne� � bits� OR yx�� Hence� the above algorithm

takes constant time�
�

Theorem ��� Determining the square index in which a given point with coordi�

nates
X�Y � lies takes constant time and o
n� space of overhead�

Proof of Theorem ����

The number of base squares above
y� and to the left of
x� a given point with

coordinates
X�Y � can be determined in constant time� Assume the origin of the

square domain is at the top left corner� the x�coordinates increase towards the right

and the y�coordinates increase towards the bottom of the domain� See Figure ����

Suppose the size of a base square is s� Then� the number of base squares to the left

���� A REFINED APPROACH �

x� of a given point with coordinates
X�Y � is bX
s
c� Similarly� the number of base

squares vertically above
y� the point
X�Y � is bY
s
c�

We have proven in Lemma ��� that the index of the square in which a point lies

can be determined by interleaving two bit patterns that represent the number of

base squares vertically above and horizontally to the left of a base square respec�

tively� We have also given an algorithm in Lemma ��� that interleaves the two bit

patterns in constant time and o
n� space of overhead� Therefore� the index of the

square in which a given point with coordinates
X�Y � lies can be determined in

constant time and o
n� space� �

����� Analysis of the Runtime

In this section� we shall show that the insert and isolate operations� taken together

have constant amortized time per operation� Let n be the total number of points

inserted so far�

Most inserts only involve interpolating a point into the square grid and would

not go very far up in the hierarchy because the number of bits in the hierarchy

decreases by a factor of four with each level upward� However� there are at most

dlog�
n� ��e levels in the hierarchy� The running time of an insert is constant per

level and so can be �
log n� in the worst case� On the other hand� a single isolate

can take �
n� time because it takes �
n� work to decompose the domain into at

most �n squares� build the bit hierarchy� scan the bits in the hierarchy and insert

the point�

However� the running time is constant amortized per operation when insert and

isolate are taken together� Divide any sequence of insert and isolate operations into

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

chunks of operations in which the number of points inserted is quadrupled� Note

that a point is inserted in both the insert and isolate operations�

Suppose there are �m points at the beginning of the current block of operations�

wherem � �� At the end of the current block� there are �m	��� points� The number
of levels is at most m�� in the current block and there are

�m� operations in the

current block� In an insert operation� a point has to be interpolated into the current

grid and the current square hierarchy has to be �xed� Interpolating

�m� points

takes �
�m� operations� There are at most m � � levels in the current hierarchy�

and so the number of bits in the bit hierarchy is at most
Pm	�

i�� �
i � �m����

� � Hence�

the number of operations to �x the hierarchy in the current block of operations is at

most the number of bits in the hierarchy� �
�m	��� There can be multiple isolates

in the current block� but there is at most one decomposition into a �ner grid in

each block of operations where the number of operations is quadrupled� There are

at most �m	�� � points in the current block� thus decomposition and interpolating
the points into a �ner grid takes �
�m	�� operations� In the bit scan� we pick up

from where we left o� from the last isolate� So� the total number of bits scanned in

the current block is at most the number of bits in the current bit hierarchy which

is �
�m	��� Thus� the worst case running time of the current block of operations

is at most the total cost of one decomposition and interpolation into a �ner grid�

scanning the bits in the hierarchy� interpolating the new points and �xing the bit

hierarchy which is �
�m	��� There are a total of �
�m� operations� Therefore� the

amortized running time of insert and isolate operations taken together is equal to

the worst case running time of the current block of operations divided by the total

���� A REFINED APPROACH ��

number of operations in the current block� and so is �
�m	����
�m� � �
���

����� The Quality of Isolate

The worst case ratio measures the quality of the isolate operation� It is the ratio of

the maximum distance between any point in the domain and the closest inserted

point to it among those actually present to the distance between the returned isolate

point and its closest possible inserted point in the domain�

It is desirable to have the worst case ratio as small as possible� We will show

that the strategy as described in the preceding sections
both the naive algorithms

and the re�ned algorithms� gives a worst case ratio of �
p
��

Figure ���	 Illustration of the �
p
� worst case ratio

S

points inserted into the domain

C

BA

E

1

2
2 2

the most
isolated
point

D

P

Q

R

In order to compute the worst case ratio� we have to determine	
a� the maxi�

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

mum distance between any point in the domain and its closest inserted point� and

b� the minimum distance between the returned isolate point and its closest possible

inserted neighbour in the domain� The worst case ratio is de�ned to be
a��
b��

To get the maximum distance between any point in the domain and its closest

inserted point� we have the following scenario in which the inserted points are as far

away from each other as possible	 all the squares of size � or greater are occupied�

somewhere in the domain� there are four points occupying the corners of four size �

squares� as shown in Figure ���� and there are no other points in the circle through

the four points� The circle passing through points A� B� C and D is the circle with

maximum radius containing the entire size � squares and any four inserted points

in the domain� The most isolated point in the domain should be point E which is

equidistant from A� B� C and D� Therefore� the distance between the most isolated

point E and an inserted point in the domain is �
p
� units� However� using our

strategy� the midpoint of a unit size square is returned in isolate� In the worst case�

the midpoint of a unit size square is returned which has a point ��� unit away� See

Figure ����

Figure ���	 A size � square with the closest point being �
�
units away

1

point returned in isolate

The distance between A and E is �
p
� units� and the minimum possible distance

between the returned point and an inserted point is ��� units� Therefore� the worst

���� A REFINED APPROACH ��

case ratio is �
p
�

��� � �
p
� � �����

Theorem ��� Using the square approach as described in the preceding sections�

insert and isolate can be performed in constant amortized time per operation� linear

space and �
p
�
� ����� worst case ratio�

����� A Correction for the Boundaries

Points lying on the boundaries of the squares may be inserted� Consider the case

in which the �rst two operations are consecutive isolates� The point inserted by

the �rst isolate lies on the boundary of the four squares after decomposition in the

second isolate� See Figure ���� To solve this problem� we assume that a square

includes both the upper and left boundary edges and the top upper corner point�

but excludes the lower and right boundary edges� Furthermore� if the square has

boundary edges on the domain boundary� the boundary edges do not belong to the

square� Therefore� the square is assumed to be unoccupied if there are no other

points inserted in the square even though the domain boundary is occupied� In our

example in Figure ���� square EBFP consists of edges EB and EP and corner point

E� point P belongs to square PFCG� and the bottom level of the square hierarchy

in Figure ��� consists of bits � � � ��

Note that with our boundary corrections� we cannot have points B� C and D

lying on the boundary in Figure ���� In order for all the squares of size � to be

occupied to compute the worst case ratio� we need a point in each of squares PBQE�

EQCR and SERD� We can get points as close to the boundary as possible� hence�

the worst case ratio is very close to and is slightly less than �
p
��

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Figure ���	 Illustration of the boundary cases

A B

C

H

D

P

E

F

G

The boundary correction convention discussed in this section is not unique�

Other correction conventions may be used�

��� Improving the Worst Case Ratio

The technique described in Section ��� can be modi�ed to improve the worst case

ratio� We propose two di�erent approaches� both of which introduce another set

of squares to reduce the maximum distance between any point in the domain and

its closest inserted point� The �rst idea achieves the improvement by having an

additional set of squares overlapping the �rst� The second technique uses a rotation

so that the second set is at a forty��ve degree angle to the �rst� Note that the actual

worst case ratios are slightly smaller than those stated below with the boundary

correction convention discussed in Section ������

���� IMPROVING THE WORST CASE RATIO ��

����� Overlapping

The maximum distance between any point in the domain and its closest inserted

point can be reduced by an overlapping technique� There are four possible double�

sized squares containing a unit sized square� In Figure ����� four distinct squares

of size �
in solid and dashed lines� cover the size one square which is shaded in the

middle�

Figure ����	 Improving the worst case ratio with overlapping

S S S

S
S

S

2

S S S

2 3

4

0

5

6

1

7 8

D

A B

C

E3

Note that the three extra levels of overlapping are just lying around and they do

not form additional hierarchies� See Figure ����� The intersection of the quadruple

sized squares in dashed lines and the quadruple sized squares in solid lines is not a

double sized square�

There are two possible ways to represent the square hierarchy in this case�

exhibiting space and time tradeo�s� respectively� The �rst representation uses a

bit to represent each of the three additional overlapping squares in each level� The

second representation determines whether an overlapping square is occupied on the

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Figure ����	 Overlapping squares do not form hierarchies

4

B

E

D
C

A

4

�y by doing an OR operation on the four bits representing the squares in the level

below that form the overlapping square�

With the �rst representation� the number of bits needed to represent the hier�

archy of squares is four times the number without overlapping� starting from level

one� Since the overlapping squares cannot improve the worst case ratio even if they

are present in the bottommost level of the square hierarchy� we do not have the

three extra overlapping levels at the bottommost level of the bit vector hierarchy�

At most �n bits are needed for level �� Hence� the total number of bits is at most

the number of bits in level � plus four times the maximum possible number of

bits needed starting from level � in the hierarchy� which is at most �n � �
�
�
n��

Therefore� at most ��
� n bits are needed for the bit vector hierarchy using the �rst

representation�

���� IMPROVING THE WORST CASE RATIO
�

The number of bits used to represent the square hierarchy is not increased with

the second representation with care in coding� With the implicit bit representa�

tion� the insert algorithm is exactly the same as that in Section ������ The isolate

algorithm is the same as that in Section ������ except that the simple bit scan is

replaced by the following modified bit scan� which makes use of the Inter�

leave algorithm in Lemma ���� to �nd an empty square
including the overlapped

squares� at level i � � in the square hierarchy	
Modified Bit Scan
i�k�	

�� If an unoccupied square
not the overlapping ones� is found by doing a linear

scan on the bit vector representing the current level i in the hierarchy� return

the unoccupied square found�

�� If the bit vector representing the current level i in the hierarchy consists of

only � bits�

a� Number of squares in the level below
level i� ��� Ni�� � �k�i	�

b� For r � � to
p
Ni��� � and c � � to

p
Ni��� �
for each square in level

i� �� do

i� S� � Interleave
c� r�

ii� S� � Interleave
c��� r���

iii� S� � Interleave
c� r���

iv� S� � Interleave
c��� r���

v� S� � Interleave
c��� r�

vi� S� � Interleave
c��� r�

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

vii� S� � Interleave
c��� r���

viii� S
 � Interleave
c� r���

ix� S� � Interleave
c��� r���

x� Square� � S� OR S� OR S� OR S�

xi� Square� � S� OR S� OR S� OR S�

xii� Square� � S� OR S� OR S� OR S

xiii� Square� � S� OR S� OR S
 OR S�

xiv� If any of Square�� Square�� Square� or Square� is empty� return

the empty square�

Step � in algorithm Modified Bit Scan is the same as the simple bit scan

which tries to �nd an empty non�overlapping square in the current level i� Step �

tries to �nd an empty square
both overlapping and non�overlapping� by looking at

the appropriate bits in the level below
i�e�� level i� ��� Step �
b� looks at all the
squares at level i� � that are at least one square away from the domain boundary�
The current square is S� and the relative positions of Sj where j � �� � � � � � are

illustrated in Figure ����� Recall that Interleave
y� x� is the constant�time

algorithm given in Lemma ��� which gives the square index of a particular square�

with y squares above and x squares to the left� Squarej where j � �� � � � �
 are the

four overlapping squares at level i that overlap the current square S��

Modified Bit Scan runs in time proportional to the number of squares in

level i � �� Modified Bit Scan is called at each level starting from the top

level k until an empty square is found or until level � is reached� So� the total

running time of scanning for overlapping and non�overlapping squares by calling

���� IMPROVING THE WORST CASE RATIO

Modified Bit Scan is proportional to the total number of squares in the square

hierarchy which is �
n�� and hence is of the same order as the simple bit scan in

Section ������ Therefore� the amortized running time per operation is not changed

by using Modified Bit Scan instead of the simple bit scan�

The worst case ratio is

p
� in this case� Consider the situation given in Fig�

ure ����� The four points� A� B� C� and D occupy the corners of four size � squares

which overlap the middle shaded unit sized square� and there are no other points

lying in the circle passing through points A� B� C and D� All squares with size at

least � are occupied� Point E is the centre of this circle� equidistant from points A�

B� C and D� The distance from A to E is �
�

p
� units� It is easily seen that this is

the maximum distance that a point may be from its nearest neighbour if all four

overlapping size � squares are occupied� On the other hand� the midpoint of a size

� square with a point ��� unit away could be returned by isolate� Therefore� the

worst case ratio with overlapping is �
�

p
���

�
which is

p
� � �����

Theorem ��� The worst case ratio of the square approach with overlapping is

p
�

� ������

����� Diamonds

The maximum distance between a point in the domain and the closest inserted point

to it can also be reduced by having another smaller square rotated and embedded

in each square in the hierarchy� We call the additional rotated squares diamonds�

A diamond is a ���degree�rotated square of reduced size� In Figure ����� the dotted

square ABCD is a diamond of the size � square� PQRS� The diamond has sides of

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

length �
p
��

Figure ����	 Improving the worst case ratio with diamonds

2 2

4

P

D

S
1 C

I

F

A Q

B

H

R

G
E

As in the overlapping approach in Section ��
��� the diamonds do not form

another hierarchy� Observe� for instance� the four diamonds of size
p
�� each corre�

sponding to a square of size �� shown in solid lines in Figure ���
� The diamonds

cannot be grouped together to form a diamond of size �
p
� as shown in dashed

lines� Nevertheless� diamonds do provide useful information� If a square contains a

point� but the diamond with the same centre is empty� it may give a good solution

to an isolate query�

In order to preserve the constant amortized running time per operation� we do

not want to look at all the points already inserted to determine whether a diamond

is occupied or not� For this reason� we seek a more complex solution� A natural

���� IMPROVING THE WORST CASE RATIO
�

Figure ���
	 Diamonds do not form a hierarchy

1

2

2 2

approach is to have a separate bit for each diamond� The diamond can be occupied

only if its enclosing square is occupied� Moreover� given a point in a hierarchy of

squares� its containment or non�containment in the corresponding diamonds may be

complex� The obvious approach of checking each possible diamond in the associated

square hierarchy will lead to a �
log n� solution even on an amortized basis�

Observe that each diamond is made up of eight triangles which are quarters of

the squares in the level below in the hierarchy� In Figure ����� diamond ABCD

is made up of triangles AFE� FED� DEI� CIE� CHE� HBE� BEG and AGE� A

diamond is occupied if any of the eight triangles making up the diamond is occupied�

Similarly� a square is made up of four triangles� For example� in Figure ����� square

AEDP is made up of triangles AFE� FED� PFD and APF� So� a square is occupied

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

if any of the four triangles making up the square is occupied� By breaking up a

square into four triangles� we have a clean hierarchy� The triangle in the current

level is made up of four smaller triangles in the level below� For instance� triangle

AFE is made up of triangles AVK� VKF� KXF and KXE in Figure ����� The smaller

triangles are needed to determine whether the diamond for the square in the next

level up is occupied or not� In Figure ����� diamond JKLM is made up of triangles

JVF� VKF� KXF� FXL� FLY� FYM� FMU and JUF� Hence� whether a square is

occupied or not can be determined by an OR operation on the � bits representing the

four triangles making up the square and whether a diamond is occupied or not can

be determined by an OR operation on the � bits representing the eight triangles

making up the diamond� Both of these are constant time operations� therefore�

constant amortized running time can be preserved� However� a more complex

numbering convention similar to that in Section ����
 is needed to determine the

triangle index�

As in the overlapping technique in Section ��
��� we can represent the square

hierarchy with diamonds using either of two approaches� The �rst approach is

to use a bit to represent each diamond explicitly� Each square in the hierarchy

is represented by � bits� each of which represents a quarter of the square� There

are at most ��
� n squares in the hierarchy� and so we need at most �

��
� n� �

��
� n

bits to represent the triangles� There is one diamond for each square� We also

use one bit to represent each diamond in the hierarchy� Hence� a total of at most

��
� n �

��
� n �

��
� n bits are required to represent the diamonds explicitly� In the

second approach� we can determine whether a diamond is occupied or not on the

���� IMPROVING THE WORST CASE RATIO
�

Figure ����	 Diamonds are made up of
 triangles

P

1 C

Y

A Q

B

RS

D E

F

4

G

HI

J

K

L

M

U V

X

�y by doing an OR operation on the � bits representing the eight triangles making

up the diamond� No bits are used to represent the diamonds explicitly� Thus� the

space requirement is at most ��
� n bits for the implicit representation�

The algorithm for the insert operation is the same as in Section ����� except

that points are inserted into triangles instead of into squares� and one bit is used

to represent each triangle� When determining whether all squares at a particular

level are occupied in the isolate operation� if all the squares are occupied� we have

to check whether all the diamonds corresponding to the squares at that level are

occupied� If there are empty diamonds� the centre of an empty diamond is returned

for isolate� Therefore� we only go down one level in the hierarchy when there are

neither free squares nor diamonds�

� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

To obtain the worst case ratio� imagine that all the size � squares and
p
� and

�
p
� diamonds are occupied� Somewhere in the domain� we have four points A� B�

C� D occupying the corners of a size �
p
� diamond such that the four size � squares

covered by the diamonds are also occupied and there are no other points in the

circle passing through points A� B� C and D� See Figure ����� The most isolated

point should be E which is � units away from point A� It is obvious that the circle

passing through points A� B� C and D is the circle with maximum radius containing

the size �
p
� diamond such that all the size � squares and size

p
� and size �

p
�

diamonds are occupied� On the other hand� the midpoint of a size � square which

has a point ��� unit away is returned in isolate� Hence the worst case ratio is �
���

which is ��

Theorem ��� The worst case ratio of the square approach with diamonds is ��

����� Overlapping With Diamonds

The worst case ratio can be further reduced by combining the techniques of over�

lapping and diamonds�

In Figure ����� the solid lines represent the base square and diamond and the

dashed lines represent the overlapping squares and diamonds�

In order to preserve constant amortized running time� we have to cut a square

into four triangles as in the diamond technique in Section ��
��� Each diamond is

made up of eight such triangles� Thus� � bits are needed to represent each square

in the square hierarchy�

As in the overlapping and diamond techniques� we can either represent the

���� IMPROVING THE WORST CASE RATIO
�

Figure ����	 Improving the worst case ratio with both overlapping
and diamonds

2

A

BD

E

1

3

C

2

3 2

overlapping squares and diamonds explicitly with bits or implicitly by doing addi�

tional OR operations on the �y� With the explicit representation� � bits are needed

to represent the triangles making up a square in the hierarchy� Thus� at most

��
�

�n� � ��

�
n bits are needed� Another
 bits are needed for each of the additional

overlapping squares starting from level �� which is at most

��n� � �n bits� One

bit is needed for each square in the hierarchy� which is ��
� n bits� As well� � bit is

needed for each of the four diamonds in each square at each level of the hierarchy�

thus adding �
��
� �n bits� Therefore� the total number of bits needed in the explicit

representation is at most ��
�
n � �n � ��

�
n � ��

�
n � ��n� Alternatively� the number

of bits required in the implicit approach is at most ��
�
�n� � ��

�
�n� because � bits

are needed to represent each triangle making up a square in the hierarchy and no

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

additional bits are required to represent the diamonds or overlapping squares�

Consider the following scenario	 all the size � squares and size �
p
� and size

p
�

diamonds are occupied
including the overlapping ones�� The worst case scenario

is captured by Figure ����� where four points occupy the corners of the overlapped

size �
�

p
� diamond and there are no other points in the circle containing points A�

B� C and D� The distance between point A and the centre point E is �
�
units which

is easily seen to be the maximum possible radius of a circle passing through points

A� B� C and D� So� the maximum possible distance between the most isolated point

and an inserted point is �
�
units in the scenario� On the other hand� the minimum

possible distance between the returned isolate point and an inserted point is ���

unit� Therefore� the worst case ratio is �
�
��
�
�
�

Theorem ��� Using the square approach together with overlapping and diamonds�

insert and isolate can be performed in constant amortized time per operation� linear

space and worst case ratio of 	�

��� Summary of the Square Techniques

In the following table� the implicit approach which does not use any bits to represent

the overlapping squares and diamonds is assumed�

��� Multiple Grids

The worst case ratio can be reduced by having squares of di�erent sizes� For

instance� when all the squares of size at least � are occupied� the midpoint of a

���� MULTIPLE GRIDS ��

Table ���	 Summary of the square techniques

technique max � of bits needed worst case ratio

squares only ��
�
n �

p
� � ����

squares with overlapping ��
�
n

p
� � ����

squares with diamonds ��
�
n �

squares with overlapping and diamonds ��
�
n

square of size less than � but greater than � is returned� which results in a smaller

worst case ratio� The above idea is captured in the multiple grids technique� Instead

of having a single grid� we have several grids which do not necessarily align� The

idea is to have multiple independent hierarchies� thus having squares of multiple

precisions� When there are no free squares at a particular level in the square

hierarchy� instead of going down one level� we go to the next smaller hierarchy at

the same level to check whether there are free squares� So� we only go down one

level when all the hierarchies at the current level do not have free squares�

The insert algorithm is similar to that in Section ������ except a point has to

be inserted into all of the base squares in all the grids and all the hierarchies have

to be �xed when a new point is inserted� The isolate algorithm is the same as that

in Section ����� except the simple bit scan is replaced by the following Multiple

Hierarchy Bit Scan algorithm
assume there are m grids and the base square

of grid u is greater than that of grid v if and only if u � v�	

Multiple Hierarchy Bit Scan
k�	

� For i � k down to �
for each level in the hierarchies� do

	 For j � m down to �
for each hierarchy� do

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

�� Simple bit scan on the bit vector at level i in the hierarchy repre�

senting Grid j�

�� If an empty square is found� return the midpoint of the empty square

and terminate the bit scan�

The running time of the Multiple Hierarchy Bit Scan algorithm is obvi�

ously m times the total number of bits in a square hierarchy which is �
n� when

m is a constant� Therefore� the amortized running time per operation remains

constant with multiple grids�

In this section� we are going to study the special case of having two grids and

four grids� then the general case of having m grids will be discussed�

����� Double Grids

In the double grids technique� there are two independent grids� Let Grid � be a

grid with the size of the smallest square being �� and Grid � be another grid with

size of the smallest square being �� where � � ��

There are two independent square hierarchies in this case� The goal is to de�

termine � such that the worst case ratio is minimized� Two cases arise	
a� when

all the squares at a particular level in Grid � are occupied� and the midpoint of

a square at the same level in Grid � is returned�
b� when all the squares at a

particular level in Grid � are occupied� and the midpoint of a square at the next

lower level in Grid � is returned� The worst case ratio is minimized when the worst

case ratios in case
a� and
b� are equal�

���� MULTIPLE GRIDS �

Squares Only Approach

Without loss of generality� assume all the squares with size greater than or equal to

� are occupied� However� there exists an empty square of size �� so the midpoint of

a size � square is returned by isolate� Using the same technique as in Section ������

the worst case ratio is equal to �
p
���

�
� �

p
�

�
� On the other hand� if all the squares

with size greater than or equal to � are occupied� the midpoint of a square of size

� would be returned� So� the worst case ratio is �
p
���� � ��

p
� instead� With

� �
p
�� the two worst case ratios are equal to �� which is an improvement over the

corresponding single grid approach�

However� the number of bits required to represent the square hierarchies is

increased� If there are n squares of size � in Grid �� we will have n
�
squares of size

p
� in Grid �� Therefore� the total number of bits needed is at most ��

� n�
��
� �n� � �n�

Squares With Overlapping

Using the square approach with overlapping� when all the squares with size greater

than or equal to � are occupied and the midpoint of a size � square is being returned�

the worst case ratio is equal to �
�

p
���� �

�
p
�

�
� See Figure ����� The worst case

ratio� when all the squares with size greater than or equal to � are occupied and

the midpoint of a size � square being returned� is �
�
�
p
���

�
� ��

p
�

�
� With � �

p
��

the two worst case ratios are both equal to
�

With the implicit bit representation� the number of bits required to represent

the square hierarchies is the same as in the case without overlapping which is �n�

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Squares With Diamonds

Using the square approach with diamonds� the worst case ratio when all the squares

with size greater than or equal to � and the associated diamonds are occupied� and

the midpoint of a size � square is returned� is equal to ���
�
� �

�
� See Figure �����

The worst case ratio� when all the squares with size greater than or equal to �

and their associated diamonds are occupied and the midpoint of a size � square is

returned� is ���� � ��� With � �
p
�� the two worst case ratios are equal to �

p
��

which improves over the corresponding single grid approach�

The number of bits required to represent the square hierarchies with diamonds

is four times that of the squares only approach and is at most �
�n� �
�n with

the implicit representation�

Diamonds With Overlapping

Using the square approach with diamonds� the worst case ratio when all the squares

including the overlapping ones� with size greater than or equal to � and their

associated diamonds are occupied� and the midpoint of a size � square is returned�

is equal to �
��

�
� �

�
�
� See Figure ����� The worst case ratio� when all the squares

with size greater than or equal to � and their diamonds are occupied� and the

midpoint of a size � square is returned� is equal to �
���

�
� �

�
��� With � �

p
�� the

two worst case ratios are both equal to �
�

p
��

With the implicit bit representation� the number of bits required to represent

the square hierarchies is the same as that for the diamond approach and is at most

�n�

���� MULTIPLE GRIDS ��

����� Quadruple Grids

Let Grid � be a grid with the size of the smallest square being �� Grid � with size

of the smallest square being ��� Grid
 with size of the smallest square being ���

and Grid � being ��� where � � �� � �� � �� � ��

There are � independent square hierarchies in this case� The goal is to determine

��� ��� �� such that the worst case ratios do not change when we move between the

grids�

Using the same technique as in Section ������ it can be shown that �� � �
�

� �

�� � �
�
� � and �� � �

�
� for the four approaches considered� There are n squares of

size �� np
�
squares of size ���

n
�
squares of size �� and

n
�
p
�
squares of size ���

The worst case ratios and the maximum number of bits needed to represent the

hierarchies with the implicit approach for each of the four approaches are listed in

the following table�

Table ���	 Space requirement and the worst case ratio with � grids

technique maximum � of bits worst case ratio

squares only � �
���n �
�
� �
�
�

squares with overlapping � �
���n �
� � �

�
� � ����

squares with diamonds � ����
n � � � �� � ��
�
squares with overlapping and diamonds � ����
n �

� � �
�
� � ����

����� m Grids

Let Grid � be a grid with the size of the smallest square being �� and Grid i be a

grid with size of the smallest square being �i��� where i � ��
� � � � �m� � � �m���

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

�i � �i��� and �� � ��

Squares Only Approach

Without loss of generality� assume all the squares with size greater than or equal

to � are occupied� The midpoint in a square of size �m�� is returned by isolate

with the squares only approach� Using the same technique as in Section ������

the worst case ratio is equal to �
p
���m��

�
� �

p
�

�m��
� For i � ��
� � � � �m � �� if all

the squares with size greater than or equal to �i are occupied� the midpoint of a

square of size �i�� will be returned� So� the worst case ratio is �i
p
���i��

�
� �

p
��i

�i��
�

See Figure ����� Finally� if all the size �� squares are occupied� the midpoint of a

size � square will be returned and the worst case ratio becomes ��

p
���� � �

p
����

Equating the above worst case ratios� it can be veri�ed that �i � �i�m� Hence the

worst case ratio is �
p
� � ���m�

Figure ����	 Multiple grids with the squares only approach

k

B

C

an optimal

A

D

isolate point

i

As the number of grids tends to in�nity� the lower bound of the worst case ratio

���� MULTIPLE GRIDS ��

for this approach is �
p
�� However� the number of bits needed to represent the

hierarchies would also increase to in�nity in order to achieve the �
p
� lower bound�

Theorem ��� The lower bound of the worst case ratio of the squares only approach

with multiple grids is �
p
��

Squares Approach With Overlapping

Similar to the approach in the preceding section� the worst case ratio� when all

the overlapping and non�overlapping squares with size greater than or equal to

� are occupied and the midpoint in a size �m�� square is returned� is equal to

�
�

p
���m��� � �

p
�

�m��
� For i � ��
� � � � �m � �� the worst case ratio� when all the

squares with size greater than or equal to �i are occupied and the midpoint of a

square of size �i�� is returned� is �
��i

p
���i��� � �

p
��i

��i��
� See Figure ����� Finally�

if all the size �� squares are occupied� the midpoint of a size � square will be

returned and the worst case ratio becomes �
�
��

p
���

�
� �

�

p
���� Equating the above

worst case ratios� it can be veri�ed that �i � �i�m� Hence the worst case ratio is

�
�

p
� � ���m�

Therefore� the worst case ratio approaches �
�

p
� as m tends to in�nity and the

space required would also tend to in�nity�

Theorem ��� The lower bound of the worst case ratio of the square approach with

overlapping and multiple grids is �
�

p
��

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

Figure ����	 Multiple grids with overlapping

k

D

A

E

B

C

i

Squares With Diamonds

Similar to the preceding sections� the worst case ratio� when all the squares with

size greater than or equal to � and their associated diamonds are occupied and

the midpoint of a size �m�� square is returned� is equal to ��
�m��

� � �
�m��

� For

i � ��
� � � � �m��� the worst case ratio� when all the squares with size greater than
or equal to �i and their associated diamonds are occupied and the midpoint of a

square of size �i�� is returned� is �i�
�i��
� � ��i

�i��
� See Figure ����� Finally� if all the

size �� squares and the associated diamonds are occupied� the midpoint of a size

x square will be returned and the worst case ratio becomes ���
x
�
� ���� Equating

the above worst case ratios� it can be veri�ed that �i � �i�m� Hence the worst case

ratio is � � ���m�

Therefore� the worst case ratio approaches � as m tends to in�nity and the

number of bits required to represent an in�nite number of hierarchies would also

���� MULTIPLE GRIDS ��

Figure ����	 Multiple grids with diamonds

�

k

C

D

A

E

B

i

tend to in�nity�

Theorem ��
 The lower bound of the worst case ratio of the square approach with

diamonds and multiple grids is ��

Squares With Overlapping and Diamonds

Similarly� the worst case ratio� when all the squares
including the overlapping ones�

with size greater than or equal to � and their associated diamonds are occupied and

the midpoint of a size �m�� square is returned� is equal to �
��

�m��
� � �

�m��
� For

i � ��
� � � � �m��� the worst case ratio� when all the squares with size greater than
or equal to �i are occupied and the midpoint of a square of size �i�� is returned�

is �
�
�i�

�i��
�
� ��i

��i��
� See Figure ����� Finally� if all the size �� squares and the

associated diamonds are occupied� the midpoint of a size � square will be returned

and the worst case ratio becomes �
����

�
� �

�
���� Equating the above worst case

�� CHAPTER �� DIVIDING THE DOMAIN INTO SQUARES

ratios� it can be veri�ed that �i � �i�m� Hence the worst case ratio is
�
�
���m�

Figure ����	 Multiple grids with overlapping and diamonds

k

D

A
E

B

C

i

Hence� the worst case ratio approaches �
�
as m tends towards in�nity and the

number of bits required to represent an in�nite number of grids would also tend to

in�nity�

Theorem ��� The lower bound of the worst case ratio of the square approach with

overlapping� diamonds and multiple grids is �
�
�

Chapter �

Dividing the Domain into

Hexagons

The approach of dividing the domain into a hierarchy of squares and returning the

midpoint of one of the largest unoccupied squares using isolate can be modi�ed to

improve the worst case ratio while attaining our goal of constant amortized running

time per operation and linear space�

An alternative to dividing the domain into squares is to tile the plane with

regular hexagons� similar to a honeycomb� Regular hexagons are promising because

they are closer to circles than are squares� but they still tile the plane� In Section
���

we look at a naive approach which gives a worst case and amortized running time

of �
log n� per operation� In Section
��� the algorithm giving constant amortized

running time per operation will be discussed�

��

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

��� The Naive Approach

The problem of tiling the plane with regular hexagons lies in grouping several

hexagons to form a larger hexagon in the hierarchy� A hexagon in the middle

with its six neighbours do not form a larger hexagon� Instead� a double edge�

lengthed regular hexagon can be formed by �cutting� the neighbouring six unit

sized hexagons into halves as illustrated in Figure
��� These half hexagons are

isosceles trapezoids�

Figure
��	 Grouping of hexagons to form a double edge�lengthed
hexagon

2

A

P

B

1

Each side of the dotted�line regular hexagons in Figure
�� has length double

���� A REFINED APPROACH �

that of the small solid�line hexagons� The area of a dotted�line hexagon is four

times that of a solid�line small hexagon� Therefore the number of hexagons� and so

bits in the hierarchy is reduced by a factor of four each level up the hierarchy�

For simplicity we assume that the smallest hexagons at the bottommost level of

the hexagon hierarchy have unit size� and we call them base hexagons� The lowest

level in the hierarchy is called level ��

The major di�erence between the grouping of hexagons and that of squares to

form a hierarchy is that squares are �cleaner� in the sense that the boundary of four

unit�sized squares forms a double�sized square� But we have to �cut� the neigh�

bouring unit�sized hexagons into halves to form a double edge�lengthed hexagon�

Therefore� when we go up one level in the hexagon hierarchy� a naive approach re�

quires inspecting all of the inserted points to decide in which double edge�lengthed

hexagon the point lies� For example� in Figure
��� we have to consider point P

at level � again to decide whether it lies in the double edge�lengthed hexagons A

or B� If we have to look at each of the n points already inserted in each of the

dlog�
n���e levels to build the hexagon hierarchy� the worst case running time for
n insert and isolate operations is ndlog�
n���e� Thus the amortized running time
per operation is �
log n� using this naive approach�

��� A Re�ned Approach

In order to guarantee constant amortized running time� we need the following lem�

mas�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Lemma ��� In constructing a hierarchy of hexagons� as outlined in Figure 	���

each hexagon of the base size is bisected at most once by sides of larger hexagons�

Indeed if the entire plane is tiled� rather than only a �nite region� each base hexagon

would be bisected precisely once�

Proof of Lemma ���� The proof is by induction on the number of levels that have

already been built in the hierarchy� The inductive hypothesis is as follows	 at level

k� all base hexagons except the centres of level k hexagons have been bisected once

and the centres of level k hexagons have not been bisected� Furthermore� all three

pairs of opposite vertices of the hexagons up to level k are connected by a
straight�

sequence of base�hexagon bisectors� broken only by the lack of any bisector in the

middle base hexagon� We call these sequences of base�hexagon bisectors incomplete

diagonals�

The Basis Case� At level �� we have only the base hexagons� so the inductive

hypothesis is vacuously true� The situation at level � is illustrated in Figure
��� so

the inductive hypothesis is seen to be true at level � as well�

The Induction Step� Assume that the inductive hypothesis is true up to and

including level k� In the case of a �nite plane� take the top left base hexagon as

the origin of the plane and start building hexagons from the top left corner of the

plane� so that the top leftmost hexagon at the current level is at the upper left

position of the hexagon in the next level� as in Figure
��� When level k � � is

being built� six level k hexagons together with a middle one at the same level will

form a hexagon at level k�� by bisecting the middle base hexagons of the six level

k hexagons� These bisectors complete the sides of the level k � � hexagon� The

���� A REFINED APPROACH ��

portions of edges of the outer level k hexagons which adjoin each other and are

now inside the level k � � hexagon� together with the three incomplete diagonals

of the inner level k hexagon� produce the three incomplete diagonals of the level

k � � hexagon� See Figure
��� The base hexagon in the centre of the middle level

k hexagon will become the centre of the level k � � hexagon and is not bisected�

If the plane is in�nite� there will be an in�nite number of levels of hexagons�

and so all base hexagons will be bisected exactly once� �

Figure
��	 Illustration of the inductive step with k � 	

at level 2

not bisected

level 2

at level 3

level 1

level 3

level 0

origin
of the
finite
plane

top left
hexagon

Before stating further lemmas� some numbering conventions and terminology

will be de�ned�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Without loss of generality� assume the given �nite domain is a square� The

given domain is tiled with regular hexagons as in honeycombs� We are going to

look at the base hexagons in the hexagon hierarchy in terms of columns and rows�

Two adjacent columns in the honeycomb tiling do not lie side by side� they are

shifted vertically by half a hexagon� See Figure
�
� Without loss of generality� we

are going to assume the following boundary conditions	 the �rst column starts with

the �rst column of intact base hexagons and the �rst row starts with a complete

base hexagon and alternates with half hexagons as in Figure
�
� Since we are

dealing with a �nite domain� we shall assume the base hexagon at position column

� and row � to be the origin of the domain� As in the proof of Lemma
��� we start

building hexagons from the origin of the domain� and the top left hexagon at the

current level is at the upper left position of the hexagon in the next level up� See

Figure
�
�

De�ne the orientation of hexagons such that there are two horizontal sides�

Thus� there are three distinct directions in which a hexagon can be bisected� We

refer to these three bisectors as horizontal cut� right slash and left slash as shown

in Figure
��� Two consecutive slashes form a pair of matching slashes in a column

of base hexagons if one of them is left and the other one is right�

The vertical gap of a hexagon at a particular level is de�ned to be the di�er�

ence in row numbers of base hexagons in the same column between corresponding

positions in consecutive hexagons at that level� For example� the vertical gap of a

level � hexagon is � as shown in Figure
�
�

���� A REFINED APPROACH ��

Figure
�
	 Columns and rows in the honeycomb tiling

1 hexagon

column
1 2 3 4 5 6 7 8 9 10 11 12number

origin row 1

column 10
row 7

column 3
row 2

level 1
hexagon

vertical
gap of
a level
1 hexagon

horizontal
gap of a level

Figure
��	 The three directions of cuts

left slash

 matching slashes

horizontal cut right slash

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Similarly� the horizontal gap of a hexagon at a particular level is de�ned to

be the di�erence in column numbers of base hexagons in the same row between

corresponding positions in consecutive hexagons at that level� For example� the

horizontal gap of a level � hexagon is � as shown in Figure
�
�

Lemma ��� The vertical gap for level k hexagons is �k and the horizontal gap for

level k hexagons is �k	�� for k � �� �� � � � � dlog�
n � ��e� where n is the number of

points already inserted in the domain�

Proof of Lemma ���� The proof is by induction on the number of levels in the

hexagon hierarchy�

The Basis Case� The vertical gap and horizontal gap for a level � hexagon

are � and � respectively� See Figure
�
� Hence� the lemma is true at level ��

The Induction Step� Assume the vertical gap is �k and the horizontal gap

is �k	� for level k hexagons� Now let us consider hexagons at level k � �� By

de�nition� X is the vertical gap of level k hexagons and X is equal to �k by the

induction hypothesis� See Figure
��� Similarly� Z is the horizontal gap of level

k hexagons by de�nition and is equal to �k	�� By construction� vertical gaps X

and Y are equal and horizontal gaps Z and W are equal� The vertical gap of level

k � � hexagons is equal to twice Y by de�nition� and so is �
�k� � �k	�� Similarly�

the horizontal gap of level k � � hexagons is equal to twice W� and so is equal to

�
�k	�� � �k	�� Therefore� the induction hypothesis is also true at level k � �� �

Lemma
�� proved that each base hexagon is to be cut into two halves� and

Lemma
�� showed that there is a regular pattern for how the base hexagons are

���� A REFINED APPROACH ��

Figure
��	 Illustration of the inductive step in the proof of
Lemma ��	

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

X
Y

level k

level k+1

Z

W

A

D

F

is a base hexagon in the centre of a level k-1 hexagon

is a base hexagon in the centre of a level k hexagon

H I
C

E

G

B

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

bisected� The following lemmas are going to show there exists a linear time algo�

rithm that determines how the base hexagons are bisected� The algorithm is needed

to interpolate points into the proper half of the base hexagon so that the hexagon

hierarchy can be built without looking at the inserted points�

Lemma ��� The following algorithm gives the directions of bisectors of base hexagons

in the centres of level k�� hexagons when level k hexagons are being built� Suppose

the current base hexagon has column number column and row number row�

For each level k� where k � �� �� � � � � dlog�
n� ��e �

�� o
set � �k�� if k � �� Otherwise� o
set � ��

�� If column mod �k	� � �k��

�a� if �row � o
set � � � mod �k � � then assign a right slash to the base

hexagon

�b� else if �row � o
set � � � mod �k � �k�� then assign a left slash to the

base hexagon

	� else if column mod �k	� �
 � �k��

�a� if �row � o
set � � � mod �k � � then assign a left slash to the base

hexagon

�b� else if �row � o
set � � � mod �k � �k�� then assign a right slash to the

base hexagon

� else if column mod �k	� � �k

���� A REFINED APPROACH ��

� if �row � �� mod �k � � then assign a horizontal slash to the base

hexagon

�� else if column mod �k	� � �

�a� if k � � then

� if �row � �� mod �k � �k�� then assign a horizontal slash to the

base hexagon

�b� else �k � ��

� if row mod �k � � then assign a horizontal slash to the base hexagon

Proof of Lemma ���� In Lemma
��� we have shown that the horizontal gap

for level k hexagons is �k	�� Hence� the pattern of bisectors repeats every �k	�

columns� This explains why the column number is taken modulo �k	� in the above

algorithm� The proof is by induction on the number of levels that have been built�

The induction hypothesis is as follows	 when level k hexagons are being built� the

above algorithm gives the directions of bisectors of the base hexagons in the centres

of the level k � � hexagons� except for those which are also in the centres of the
level k hexagons�

The Basis Case� At level �� we have the situation as shown in Figure
�
�

The o�set is �� The dotted lines in Figure
�
 gives the directions of bisectors of

the base hexagons in columns �� ��
 and �� Hence� the above algorithm works for

level ��

The Induction Step� Assume hexagons up to level k have been built� Let

us consider the scenario when level k � � hexagons are being built� Seven level k

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

hexagons with one of them at the centre form a level k�� hexagon� See Figure
���

Let base hexagons A� B� C� D� E and F be the centres of the six outer level k

hexagons and let G be that of the middle level k hexagon� By construction� base

hexagon G is also the centre of the level k�� hexagon� The stripped base hexagons

are in the centres of level k�� hexagons� By the induction hypothesis� the algorithm
gives the directions of bisectors of the stripped base hexagons when level k hexagons

are built� By the algorithm� stripped base hexagon H has column number �k�� and

row number �k�� and stripped base hexagon I has column number

�k��� and row

number �k��� Hence� one of the centre base hexagons of level k hexagons should

be in column �k� By construction� the o�set of base hexagon A should be double

that of the stripped base hexagons H and I� Hence� base hexagon A in Figure
�� is

covered by case �
a� in the above algorithm� By Lemma
��� the vertical gap of a

level k hexagon is �k� By construction� the number of rows between base hexagon

B and base hexagon A is equal to the vertical gap of a level k hexagon which is

covered in case �
b� in the algorithm� By Lemma
��� the horizontal gap of a level

k � � hexagon is �k	�� The number of columns between base hexagons A and E

is half of the horizontal gap which is �k	�� Similarly� base hexagons E and F are

covered by case

a� and

b� respectively� By Lemma
��� the vertical gap of a

level k�� hexagon is �k	�� Hence� base hexagons C and D are assigned a horizontal

slash in case � in the algorithm� Therefore� the induction hypothesis is also true at

level k � ��
�

Lemma ��� The following algorithm is equivalent to Lemma 	�	 and gives the

direction of bisector of a base hexagon with column number column and row number

row� Assume the least signi�cant bit of any integer is at position zero�

���� A REFINED APPROACH �

�� k � �number of � bits before the �rst � bit in the binary representation of

column� ��

�� Extract bits in positions k and k � � in column and denote the two bits by c�

	� If k � �� o
set � �k��� Otherwise� o
set � ��

� If row � o
set then

� assign a horizontal slash to the base hexagon

�� else

�a� Extract bits in positions k � � and k � � in �row � o
set ��� and denote

the two bits by r� If k � � and row is odd� set r � �� Otherwise� if k � �

and row is even� set r � ��

�b� If k �
 and bits in positions �� �� � � � � k�
 in the binary representation

of �row � o
set ��� are not all zeros then

� assign a horizontal slash to the base hexagon

�c� else if �c� r� mod � � � then

� assign a right slash to the base hexagon

�d� else if �c� r� mod � �
 then

� assign a left slash to the base hexagon

�e� else

� assign a horizontal slash to the base hexagon

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Proof of Lemma ���� In the algorithm of Lemma
�
� a base hexagon is assigned

a left or right slash or a horizontal cut if it is the centre of a hexagon at a particular

level below�

The conditions in Lemma
�
 can be rewritten as the following 	

��
column mod �k	����k�� � �

�
column mod �k	����k�� �

��
column mod �k	����k�� � �

��
column mod �k	����k�� � �

The operation
column mod �k	�� � �k�� is essentially extracting bits in posi�

tions k and k � � in column� So� c in the current algorithm corresponds to the

quantity
column mod �k	�� � �k�� in Lemma
�
� Left and right slashes are only

assigned in Steps � and
 of the algorithm in Lemma
�
 such that the quantity c

in the current algorithm is odd� hence the bit at position k � � is a ��bit� In the
algorithm in Lemma
�
� k increases from � to dlog�
n � ��e� and so k is equal to
the number of � bits before the �rst � bit in column plus one� Therefore� k can be

uniquely determined from a given column number�

Similarly� extracting bits in positions k � � and k � � from
row � o�set � ��
is the same as
row � o�set � �� mod �k � �k��� So� r in the current algorithm

corresponds to the quantity
row �o�set � �� mod �k � �k�� in Lemma
�
� In Step

� of Lemma
�
� a right slash is assigned if
row � o�set � �� mod �k � �k�� � ��

Observe that a right slash is assigned in both Steps �
a� and

b�� In Step �
a��

c � � and r � � and in Step

b�� c �
 and r � � in terms of the current algorithm�

���� A REFINED APPROACH ��

Hence� c � r mod � � � in both cases� Similarly� a left slash is assigned in both

Steps �
b� and

a�� In Step �
b�� c � � and r � �� and in Step

a�� c �
 and

r � �� Hence� c� r mod � �
 in both cases� Therefore� in the current algorithm�

a right slash is assigned in Step �
c� and a left slash is assigned in Step �
d��

The idea is then to assign horizontal slashes to all other base hexagons between

the right and left slashes in a column� Step �
e� covers the case when c � � or

c �
� but r is neither � nor ��

Step �
b� covers the case when c � � or c � � which is covered in Steps � and

� in Lemma
�
� A horizontal slash is assigned when the integer
row � o�set � ��

is a multiple of twice the vertical gap of level k�
�

Lemma ��� The running time of the algorithm in Lemma 	�
 is O
�� per base

hexagon�

Proof of Lemma ���� Bit extractions can be done in constant time by using a

mask� Constants in the form �m can be obtained by shifting the constant � by m

bits to the left� Since we have assumed arbitrary bit shifts to be constant time

operations in our model of computation� constants in the form �m can be obtained

in constant time� To extract bits in positions k and k � � in column
Step � of the

algorithm in Lemma
���� a maskM � �k��k��� can be used� Shifting the number

column AND M� right by
k � �� positions extracts the required bits� Similarly�
extracting bits in positions k � � and k � � in �row � o
set ��� in Step �
a� can be

done by shifting the number

row � o�set ��� AND
�k�� � �k���� right by
k � ��
bits� Checking whether the bits in positions �� �� � � � � k �
 in �row � o
set ��� are

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

not all zeros in Step �
b� is equivalent to checking

row � o�set ��� AND
�k������
�� ��
Since we have assumed that �nding the number of � bits before the �rst � bit

in an integer is a constant time operation� all the operations in the algorithm in

Lemma
�� are constant time operations� Therefore� the algorithm has a constant

running time� �

Lemma ��� Tiling a square domain with m regular hexagons requires approxi�

mately p
p
m columns and q

p
m rows of base hexagons� where p � ����� � � �� q �

��
� � � ��

Proof of Lemma ���� Let D be the dimension of the square domain and b be the

length of a side of a base hexagon� Suppose we require R rows and C columns of

base hexagons to tile the square domain� For example� in Figure
��� R � ��� and

C � �� The height of a size b hexagon is
p

b� Solving

p

bR � D and �

�
bC � D

with RC � m gives C �
p
�

����

p
m � �����pm and R � ����p

�

p
m � ���
�pm� The

size of the base hexagons is D�

p

�

���p
�

p
m� �

p
�D�

���

p
m� � ����� Dp

m
� �

Lemma ��� Given a point with coordinates �x�y�� the base hexagon in which the

point lies can be determined in constant time� Assume the upper left corner of the

square domain has coordinates ������ and the x�coordinates increase from left to

right and the y�coordinates increase from top to bottom� In the following algorithm�

assume b is the size of the base hexagon� b can be determined by the method in

the proof of Lemma 	��� The base hexagon in which �x�y� lies has column number

column and row number row�

���� A REFINED APPROACH ��

Figure
��	 Illustration of Lemma ���

b

3 b

(x,y)

(0,0)

D

x

y

3 b

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

�� c � dx��
�
be

�� extra x � x�
c� �� � �
�
b

	� half row � dy�
p
�
�
be

� If extra x � b
�
then

� column � c

�� else

�a� extra y � y �
half row � �� �
p
�
�
b

�b� If c is odd and half row is odd then

i� if

p
�
�
b� extra y��extra x �

p

 then

� column � c � �

ii� else

� column � c

�c� else if c is odd and half row is even then

i� if extra y�extra x � �p
 then

� column � c

ii� else

� column � c � �

�d� else if c is even and half row is odd then

i� if

p
�
� b� extra y��
 b� � extra x� � �p
 then

���� A REFINED APPROACH ��

� column � c � �

ii� else

� column � c

�e� else if c is even and half row is even then

i� if extra y�
 b
�
� extra x� �

p

 then

� column � c

ii� else

� column � c � �

�� If c is odd then

� row � dy�p
be

�� else if c is even then

� row � bhalf row��c � �

Proof of Lemma ���� The idea of the algorithm is to divide the domain into

columns separated by the vertical dashed lines and into half�rows separated by the

horizontal dashed lines in Figure
��� Extra y denotes the vertical distance of the

point from the closest horizontal dashed line above and extra x is the horizontal

distance from the vertical dashed line to the left of the point� See Figure
���

The distance between two vertical dashed lines is �
�b and Step � computes the

column number c of the point� Note that the column number and the row number

start with the �rst intact column and �rst intact row of base hexagons being column

� and row �� respectively� The vertical distance in a half�row is half of the height

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

of the base hexagon which is
p
�
� b� and Step
 computes the number of half�rows up

to the current point�

Step � covers the case when the point is inside the rectangular region of the

base hexagon� In Figure
��� the rectangular region of the base hexagon in column

� and row � is ECEF�

Without loss of generality� the following discussion assumes a point lying in

region IJKL in Figure
��� Note that c � � if the point lies in region ICEL� while

c � � if it lies in region CJKE� Step �
b� covers the case when the point P lies in

region IBGA with c � �� The idea is to compute the slope of the line PA which

is equal to

p
�
� b� extra y��extra x� If the slope of line PA is greater than that of

line AB which is
p

� the point P must lie in the triangular region IBA and hence

the column number of the base hexagon in which P lies should be c � �� On the
other hand� if the slope line PA is less than that of line BA� the point P must lie in

the triangular region BAG� Similarly� Step �
c� covers the case when the point lies

in region AGFL with c � �� Step �
d� covers the case when it lies in region CJDH

with c � �� and Step �
e� when the point Q lies in region HDKE with c � ��

All the operations in the algorithm are constant time operations� and so the

base hexagon in which a given point lies can be determined in constant time� �

����� Putting Things Together

Lemma
�� proves that each base hexagon is cut into halves as the hexagon hier�

archy is built� Given the number of base hexagons in the bottommost level of the

hierarchy� the number of columns and rows of base hexagons in the square domain

���� A REFINED APPROACH ��

Figure
��	 Illustration of Lemma ��

P

b / 2

3
b extra_y

extra_x
2

A

B

slope is 3 with respect to point P

C

D

EF

I J

HG

L K

extra_y
extra_x

R

Q

3/2 b

b

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

and the size of the base hexagon can be determined by Lemma
�� in constant

time� The algorithm in Lemma
�� can be used as a preprocessing step after de�

composition into a �ner grid of base hexagons to give the direction of the bisector

in each base hexagon� After running the algorithm� each base hexagon is assigned

a horizontal slash� right or left slash which represents the way that each hexagon

should be divided into isosceles trapezoids� There are �
n� base hexagons and the

algorithm in Lemma
�� runs in constant time per base hexagon� therefore� the

total running time of preprocessing the base hexagons after decomposition is �
n��

Recall the insert algorithm using the square approach in Section ������ When

points are inserted� the unit�size square in which the point lies is determined and

then the square hierarchy has to be �xed�

The insert operation for hexagons is similar to that of squares except that

squares are replaced by isosceles trapezoids
half�hexagons�� Using the algorithm in

Lemma
��� the base hexagon in which a particular point lies can be determined in

constant time� However� in the hexagon approach� we have to keep track of isosceles

trapezoids so that we only have to do an OR on the four bits representing the four

isosceles trapezoids in the level below and not on the points already inserted when

building the hexagon hierarchy� For example� in Figure
��� to �nd out whether

isosceles trapezoid A is occupied� we only have to check the four bits representing

the shaded isosceles trapezoids in the level below� Therefore� before points can be

inserted into the proper unit�size isosceles trapezoid� the algorithm in Lemma
��

must be run as a preprocessing step to determine how each base hexagon is to be

bisected into base isosceles trapezoids�

���� A REFINED APPROACH �

Figure
��	 Illustration of how hexagons are divided into halves

����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

half hexagon B

������
������
������

������
������
������

����
����
����
����
����

����
����
����
����
����

half hexagon A

Using a similar approach to that of Lemma
��� the base isosceles trapezoid

in which a point lies can also be determined in constant time� First of all� the

algorithm in Lemma
�� is used to determine in which base hexagon the point

lies� Without loss of generality� assume the point falls in base hexagon ABCDEF

in Figure
��� If the point lies in the �narrow� regions IBGA� AGFL� CJDH or

HDKE� it is trivial to determine in which base isosceles trapezoid it lies� Now�

let us consider the case when the point R lies in the rectangular region BCEF in

Figure
��� If the base hexagon ABCDEF has a horizontal slash� the point R lies

in the upper half of the base hexagon
i�e�� the upper isosceles trapezoid ABCD� if

the half row number is odd� Otherwise� it lies in the lower half of the base hexagon

i�e�� the lower isosceles trapezoid ADEF�� If the base hexagon has a right slash�

we can compute the slope of line RF� If the slope of line RF is greater than that of

line CF� then the point R must lie in the isosceles trapezoid ABCF� Otherwise� it

lies in isosceles trapezoid CDEF� Similarly� we can also determine in which isosceles

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

trapezoid the point R lies if the base hexagon has a left slash�

For the isolate operation in the case of hexagons� an additional preprocessing

step has to be run after decomposing the domain into �k hexagons in the algorithm

in Section ������ The running time of the preprocessing step is �
n� as discussed

earlier and interpolating inserted points into a �ner grid of hexagons takes �
n�

time� Hence� the additional preprocessing does not change the order of the running

time of the decomposition and interpolation step� By similar reasoning as in Sec�

tion ������ the amortized running time per operation when inserts and isolates are

taken together is constant�

However� the maximum number of bits needed to maintain the bit hierarchy is

increased to ��
�
n� The area of a hexagon in the next higher level in the hexagon hier�

archy is four times that of the level below� which is the same as that for squares� But

we have to keep track of isosceles trapezoids
half�hexagons� rather than hexagons

in order to guarantee constant amortized running time� and so each hexagon is

represented by two bits� Hence� the number of bits required is double that of the

squares only approach�

The worst case ratio using this approach is ��
p

 which is approximately �����

hence is an improvement over the squares only approach� In Figure
��� the edge�

length of a dashed�line hexagon is twice that of a solid�line hexagon� Let the length

of an edge of a solid�line hexagon be �� Consider the following scenario in which the

points are put as far away from each other as possible to determine the maximum

distance between any point in the domain and the closest inserted point	 all the

hexagons with edge�lengths at least � are occupied and somewhere in the domain

���� A REFINED APPROACH ��

there are three points A� B and C at the corners of
 dashed�line hexagons with edge�

lengths �� The three points are at a distance of � units from point D� Besides� there

are no other points inside the circle centred at point D passing through points A�

B and C� It can be seen that the circle centred at D with radius � is the circle with

maximum radius passing through three inserted points and containing hexagons

with edge�lengths �� The maximum possible distance between the most isolated

point and an inserted point is � units� On the other hand� the midpoint of a size �

hexagon is returned by isolate� The closest possible point to the midpoint of a size

� hexagon is at a distance
p
�
�
units away� See Figure
���� Hence� the worst case

ratio is equal to ��
p
�
�
which is ��

p

 � �����

Figure
��	 Illustration of the hexagons only approach

B

A

C

D

optimal
isolate
point

1

2

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Figure
���	 A hexagon with edge�length � with the closest point
p
�
�

units away

point returned
in isolate

U

3
2

1

P Q

R

ST

Theorem ��� Using the half�hexagon approach as described in the preceding sec�

tions� insert and isolate can be performed in constant amortized time per operation�

linear space and a worst case ratio of ��
p

� ������

����� A Correction for the Boundaries

As in the case of squares� a boundary correction convention has to be adopted to

decide in which hexagon a point on the boundary of more than one hexagon lies�

Assume the upper edges and the two top corner points belong to the hexagon� for

example� in Figure
���� hexagon PQRSTU consists of edges UP� PQ� and QR� and

corner points P and Q� If the side of a hexagon lies on boundary of the domain�

the side do not belong to the hexagon so that the hexagon is not occupied unless

there are other inserted points in the hexagon� If a hexagon is not complete and is

cut by a boundary edge� the hexagon is assumed to be occupied such that it would

not be returned by isolate�

With the above correction convention� points B and C in Figure
�� do not lie

���� IMPROVING THE WORST CASE RATIO ��

on the boundary� but is inside the double edge�lengthed hexagon� Therefore� the

actual worst case ratio is slightly less than �p
�
� but it can be made arbitrarily close

to �p
�
�

��� Improving the Worst Case Ratio

As in the case of squares in Section ��
� the technique described in Section
�� can

be modi�ed to improve the quality of isolates� There are two general techniques

for improving the worst case ratio	 overlapping and embedding� The overlapping

technique for hexagons is similar to that for squares� additional sets of hexagons

are added to the hexagon hierarchy� The embedding technique is similar to the

diamond technique for squares� hexagons rotated and of slightly larger size which

circumscribes hexagons in the hierarchy are added� With the boundary correction

convention in Section
����� the actual worst case ratios are slightly smaller than

those stated in the following lemmas� but they can be made arbitrarily close to the

upper bound stated�

����� Overlapping

Two possible sets of additional overlapping hexagons which do not form hierar�

chies will be considered� In the quadruple overlapping technique� three additional

hexagons overlap with each hexagon in each level of the hierarchy� while in the

triple overlapping approach� there are only two additional overlapping hexagons for

each hexagon� It will be shown that quadruple overlapping achieves a better worst

case ratio but its space requirement is higher than that of triple overlapping�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

In both overlapping techniques� we have to divide each hexagon into six equi�

lateral triangles in the obvious way and to represent each triangle with one bit in

order to have constant amortized running time per operation� See Figure
��� and

Figure
��
� The reason for keeping track of whether each of the six triangles in a

hexagon is occupied or not is the same as in Section
����� A triangle in a hexagon

in the level above is occupied if any of the four smaller triangles making it up are

occupied� This can be achieved in constant time by an OR operation on four bits�

A hexagon is occupied if any of the six triangles making up the hexagon is occupied�

The triangles are only used to determine whether the hexagons are occupied or not�

Chapter � discusses the case when the triangles are the actual search structures�

All the overlapping hexagons in both overlapping techniques can be represented

by triangles making up the hexagons one level below in the hierarchy� Therefore�

whether an overlapping hexagon is occupied can be determined in constant time

with the triangle representation of the hexagons�

The algorithm for inserts is the same as that described in Section
���� except

that we keep track of triangles instead of isosceles trapezoids� Using a similar

approach in Lemma
��� the triangle in which a point lies can be determined in

constant time�

For the isolate operation� the algorithm is the same as that in Section
����

except in determining whether free hexagons exist and in the decomposition step�

A free hexagon exists if any of the hexagons
including the overlapping ones� are

unoccupied� When there are no free hexagons� the domain is decomposed to �k

hexagons� that is ���k triangles� The preprocessing step which determines the way

���� IMPROVING THE WORST CASE RATIO ��

each base hexagon is bisected is not needed in the overlapping techniques because

all base hexagons are divided in the same way�

The amortized running time per operation� with which inserts and isolates are

taken together� is constant for the ��triangle representation of the overlapping ap�

proach since in determining whether an overlapping hexagon is occupied� points

inserted do not have to be checked�

Quadruple Overlapping

The idea of the quadruple overlapping is that each of the six neighbouring hexagons

cut by the next higher level one can become the middle hexagon�

In Figure
���� only three of the possible overlappings of next level hexagons are

shown because the other three overlappings would not help to improve the worst

case ratio� The three additional overlapping hexagons do not form hierarchies� See

Figure
���� The large dashed hexagon at the next level does not intersect the large

solid hexagon in the same way as the small dashed hexagons intersect the small

solid hexagons�

As in the square approach with overlapping� there are two alternatives in rep�

resenting the bit hierarchy� One approach is to use a bit to represent each hexagon

including the overlapping ones� and we determine whether an overlapping hexagon

is occupied when we build the hierarchy� The second approach is to determine if

an overlapping hexagon is occupied on the �y� no extra bits are used to represent

the overlapping hexagons�

With the �rst approach� the number of bits required to represent the hexagon

hierarchy is three times that without overlapping since six bits are needed to rep�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Figure
���	 Improving the worst case ratio with quadruple overlap�
ping

E

1

2

A

B

C

D

���� IMPROVING THE WORST CASE RATIO ��

Figure
���	 Overlapping hexagons do not form hierarchies

resent each hexagon instead of the two bits in Theorem
��� So� ��
� n �
 �
�n

bits are needed to represent each of the six triangles of a hexagon with one bit� In

addition� four bits are required to represent each hexagon in the hierarchy start�

ing at level � because of the three extra overlapping hexagons� This adds another

�� �
�n �

��
� n bits to the explicit representation� One bit is needed to represent each

of the hexagons at level �� Hence� at most
�n � ��
� n� �n � ��

�
�n bits are needed

for the bit vector hierarchy with the �rst approach� With the second approach� the

maximum number of bits needed is just that required to represent each of the six

triangles for a hexagon which is ��
�
n �
 �
�n�

The worst case ratio is �
p

 with quadruple overlapping� All the double sized

hexagons are represented by non�solid lines in Figure
���� Suppose all hexagons

including the overlapping ones� with edge�lengths at least � are occupied� Some�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

where in the domain� inserted points A� B� C and D occupy the corners of four

size � hexagons� The circle passing through points A� B and C is centred at point

E and the radius of the circle is
� There are no other points inside the circle� It

can be seen that the circle passing through points A� B and C is the circle with

maximum radius passing through four hexagons with edge�length �� So� the most

isolated point is point E� and is
 units away from inserted point A� However� isolate

returns a size � square which has a point
p
�
�
units away from the midpoint� Hence�

the worst case ratio is
�
p
�
� � ��

p

 � �

p

 and is approximately
����

Theorem ��� The worst case ratio of the hexagon approach with quadruple over�

lapping is �
p

�
�����

Triple Overlapping

The following overlapping technique saves space but gives a slightly higher worst

case ratio than quadruple overlapping� Again� the two additional overlapping

hexagons do not form hierarchies�

As in Section
�
��� there are two approaches to represent the bit vector hierar�

chy� One approach is to use a bit to represent each of the two overlapping hexagons�

The alternative approach is to �nd out if an overlapping hexagon is occupied on the

�y� As in the quadruple overlapping approach� we need six bits to represent each

of the six triangles making up a hexagon in order to preserve constant amortized

running time per operation�

With the explicit representation� the number of bits required to represent the

hexagon hierarchy is three times that without overlapping� in addition to three

���� IMPROVING THE WORST CASE RATIO �

Figure
��
	 Improving the worst case ratio with triple overlapping

2

C
B

D

A
most isolated
point

2

2

extra bits per overlapping hexagon starting from level � and one bit per hexagon

at level �� Hence� at most ��
�
n �
 � �

�
n �
 � �n � ��n bits are needed for the bit

vector hierarchy� On the other hand� only at most ��
�
n �
 �
�n bits are needed

with the implicit representation of hexagons�

To compute the worst case ratio� imagine all the size � non�solid�line hexagons

are occupied and there are no points lying in the circle centred at point D with

radius DA� The circle centred at point D passing through points A� B and C is the

circle with maximum radius containing three size � hexagons� Point D is in the

middle of the shaded equilateral triangle such that it is equidistant from all three

vertices of the triangle� It can be veri�ed that the distance between A and D isq
��
� �
���� units� So� the worst case ratio is

q
��
� �

p
�
� �
��
�

Theorem ��� The worst case ratio of the hexagon approach with triple overlapping

is �
p
��
�

��
��
��

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Combined Overlapping

The obvious approach of combining the quadruple and triple overlapping does not

improve the worst case ratio further than that of quadruple overlapping� Since the

combined overlapping would require more space than quadruple overlapping� the

combined approach is not worthwhile�

Figure
���	 Illustration of the worst case ratio with combined over�
lapping

2

G

A

B

C

D

E
F the most isolated

point

2

2

In Figure
���� the distance between A and G� B and G� D and G� and F and

G is
 units� The distance between C and G is � units and the distance between

E and G is
p
�
 units which is greater than
� The circle centred at G passing

through points A� B� D and F is the circle with maximum radius passing through

seven size � hexagons� Hence� the worst case ratio is
�
p
�
� � �

p

� which is the

same as that for quadruple overlapping�

���� IMPROVING THE WORST CASE RATIO ��

����� Embedding

Two embedding techniques� in which a rotated hexagon circumscribes another

hexagon� will be discussed� One additional level of embedding is used in double

embedding while four additional levels of embedding are employed in quintuple em�

bedding� It will be shown that quintuple embedding achieves a better solution at

the expense of a higher space requirement�

Double Embedding

In the double embedding technique� a rotated hexagon of slightly larger size circum�

scribes each hexagon in the hierarchy� There is a regular pattern for this technique

in which hexagons are embedded in other hexagons� See Figure
����

The rotated hexagons form a hierarchy which is independent of the base hexagon

hierarchy� Thus� two bit vectors are maintained� one representing the base hexagon

hierarchy and the other representing the rotated hexagon hierarchy� To guarantee

constant amortized running time per operation� one bit is used to represent each half

of the rotated hexagon
rotated isosceles trapezoid� as described in Section
�����

The insert operation is slightly di�erent from the case without embeddings�

Points are inserted into both the base hexagons and the rotated base hexagons�

Only four isosceles trapezoids of the level below in the respective hierarchy have

to be checked to determine whether an isosceles trapezoid at a particular level is

occupied or not� In addition� there are two independent hierarchies� both of which

have to be updated when a point is inserted�

In the isolate operation� the scan of the bit vectors starts at the topmost level of

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Figure
���	 Tiling of the domain with the circumscribing hexagons

A

point

B

C

D

the most
isolated

���� IMPROVING THE WORST CASE RATIO ��

the rotated hexagon hierarchy� If the larger rotated hexagon is occupied� the scan

continues with the topmost level of the base hexagon hierarchy� If it is occupied� the

scan goes down one level to the rotated hexagon hierarchy� Thus� the bit scan goes

from the rotated hexagon hierarchy to the base hexagon hierarchy at the same level�

and goes down one level from the base hexagon hierarchy to the rotated hexagon

hierarchy if there are neither free rotated hexagons nor unrotated hexagons at the

current level� The midpoint of the �rst free hexagon encountered� either rotated

or not� is returned and inserted� Furthermore� in the decomposition step� both

hierarchies have to be decomposed and interpolated�

Suppose the edge�length of a base hexagon is � unit
a unit�size hexagon�� The

edge�length of the circumscribing hexagon is ��
p

 units and the distance between

parallel sides
height� of the circumscribing hexagon is � units� See Figure
����

Figure
���	 Hexagon A circumscribing the base hexagon B

3
2 units

1 unit

hexagon A

hexagon B

2

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

The worst case ratio can be improved with the additional hexagon hierarchy�

having rotated base hexagons of edge�length ��
p

� If all the hexagons with edge�

length at least � are occupied and there exists an empty circumscribing hexagon

with edge�length ��
p

� Instead of returning the midpoint of a unit edge�lengthed

hexagon� the midpoint of a hexagon of edge�length ��
p

 is returned� The closest

possible point to the hexagon of edge�length ��
p

 is one unit away� Hence the

worst case ratio is � using the argument in Section
�����

On the other hand� if the largest unoccupied hexagon has edge�length �� the

maximum possible distance between the most isolated point and an inserted point

is �p
�
� For example� the distance between A and D in Figure
��� is such a case�

Using the argument in Section
����� the worst case ratio is �p
�
�
p
�
� � �

� � Hence�

there is a large jump in the worst case ratio depending on the scenario�

The number of bits required to represent the two hexagon hierarchies will be

double that of the hexagons only approach since there is a rotated hexagon for

each unrotated hexagon at all levels� Therefore� the space requirement is at most

��
�
n � � � ��

�
n bits�

Theorem ��� The worst case ratio of the hexagon approach with double embedding

without overlapping is ��

Quintuple Embedding

The worst case ratio with the double embedding technique can be further improved

if �ve levels of embeddings are used instead of two� The reason for using �ve levels

of embedding is that the edge�length of the sixth level is larger than twice the

���� IMPROVING THE WORST CASE RATIO ��

edge�length of the base hexagon� Hexagons at the level above in the base hexagon

hierarchy have edge�lengths doubled�

Figure
���	 Five levels of embedding

height

 1

4 / 3

16 / 9

2

3

8

33

With quintuple embedding� � independent hexagon hierarchies are built� For

each hexagon at all levels of the base hierarchy� there are four additional rotated

hexagons with di�erent edge�lengths� See Figure
���� Therefore� the number of

levels in each of the �ve hexagon hierarchies is the same� The edges lengths of

the hexagons in the bottommost level of the hierarchies are �� �p
�
� �� �

�
�
p
�
� and��

� �

respectively� The edge�lengths and heights of each of the �ve levels are shown in

Table
���

The algorithms for insert and isolate are similar to those of the double embed�

ding technique� except that there are four additional levels of embedding instead

of one� Five bit vectors are required to represent the hexagon hierarchies� When

a new point is inserted� the point has to be inserted in the appropriate isosceles

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Table
��	 The edge�lengths and heights of the quintuple embedding
technique

edge�length �
�
height worst case ratio

�
p
�
�

�p
�

� � � �p
�
�
p
�
�
� �

�
�
�

�p
�

� � �
�
�� � �

�
�

�
p
�

�
� � � �

�
p
�
� �p

�
� �

�
��
�

�
�
p
�

� � ��
�
��
�
� �

�

�
p

 � � �� �

�
p
�
� �

p
�

�
� ����

trapezoids at the bottommost level in each of the �ve hexagon hierarchies� and

the bit vector for each of the �ve hexagon hierarchies is updated� Since the �ve

hexagon hierarchies are independent� they can be built by looking at the four bits

representing the appropriate isosceles trapezoids in the level below in each of the

hierarchies� However� when looking for the largest unoccupied hexagon� we start

with the topmost level of the hexagon hierarchy with base hexagon size ��
�
� If it is

occupied� we go to the same level of the hexagon hierarchy with base hexagon size

�
�
p
�
and so on� So� we only go down one level in the bit scan after looking at all

the bits representing the �ve hierarchies at the same level in the order of decreasing

edge�lengths� Constant amortized running time per operation is guaranteed as in

the double embedding technique�

The number of bits needed to represent the �ve hexagon hierarchies is �ve times

that in Section
����� which is �
��� n� �
���
� n bits�

The worst case ratios in Table
�� are computed using the argument in Sec�

tion
����� Note that the worst case ratio when we jump from one level to the next

in the hexagon hierarchies is approximately ����� which is less than �
�� Therefore�

���� IMPROVING THE WORST CASE RATIO ��

the worst case ratio with the quintuple embedding technique is �
�
�

Theorem ��� The worst case ratio of the hexagon approach with quintuple embed�

ding without overlapping is �
�
�

����� Quintuple Embedding With Quadruple Overlapping

In this section� it will be shown that combining the quadruple overlapping technique

with the quintuple embedding approach gives a worst case ratio of ��� at the expense

of at most ���n bits of space�

In the combined technique� quadruple overlapping is used for each of the �ve

hexagon hierarchies� Thus� the number of bits required to represent the hexagon

hierarchies is �ve times that of the pure quadruple overlapping technique� which

is at most �

�n� � ���n bits� Here� we are using the implicit representation in

which whether a hexagon is occupied or not is determined on the �y by doing an

OR operation on the bits representing the six triangles making up the hexagon�

When the worst case ratio was computed in Section
����� the maximum possible

distance between the most isolated point and an inserted point is � units� With

quadruple space overlapping in Section
�
��� the maximum distance is
 units�

So� the quadruple overlapping technique reduces the maximum possible distance

between the most isolated point and an inserted point by a factor of �
� � Since

the closest possible point to the midpoint of the hexagon returned by isolate with

quintuple embedding is not changed by the additional overlapping hexagons� the

worst case ratio is reduced by a factor of �
� � Hence the worst case ratio of the

quintuple embedding technique with quadruple overlapping is �
� � �

� � ��

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Theorem ��� The worst case ratio of the hexagon approach with quintuple embed�

ding and quadruple overlapping is ��

��� Summary of the Hexagon Techniques

In the following table� the implicit approach of determining whether an overlapping

hexagon is occupied by doing OR operations on the �y is assumed�

Table
��	 Summary of the hexagon techniques

technique max � of bits worst case ratio
hexagons only ��

�
n �p

�
� ����

quadruple overlapping
�n �p
�
�
���

triple overlapping
�n �
�

p
�� �
��

quintuple embedding ���
� n �

� � ����
quintuple embedding � quadruple overlapping ���n ���

��� Multiple Grids

As in the case of squares in Section ���� we can improve the quality of the solution

by having multiple independent grids�

����� Double Grids

Let Grid � be the base grid with the edge�length of the smallest hexagon being

�� and Grid � be another grid with edge�length of the smallest hexagon being ��

where � � ��

���� MULTIPLE GRIDS �

Hexagons Only Approach

Without loss of generality� assume all the hexagons with edge�lengths greater than

or equal to � are occupied� So� the midpoint in a hexagon of edge�length � is

returned by isolate� Using the same argument as in Section
����� the worst case

ratio is equal to �
���
p
��
� � �p

��
� On the other hand� if all the hexagons with

edge�lengths greater than or equal to � are occupied� the midpoint of a unit edge�

length hexagon is returned� And the worst case ratio is ���
p
�
� � ��p

�
instead�

With � �
p
�� the two worst case ratios are equal to �

q
�
� �
���� which is an

improvement over the corresponding single grid approach�

However� the number of bits required to represent the hexagon hierarchies is

increased� If there are n hexagons of size � in Grid �� we will have approximately

n
� hexagons of size

p
� in Grid �� Therefore� the total number of bits needed is at

most ��
�
n� ��

�
� n

�
� ��n�

Hexagons With Quadruple Overlapping

The quadruple overlapping technique discussed in Section
�
�� reduces the worst

case ratio of the hexagons only approach by a factor of ��� It can be veri�ed that with

� �
p
�� the worst case ratio of the quadruple overlapping technique is �

q
�
�

�
�� �

q

�
� � �����

With the implicit bit representation� the number of bits required to represent

the hexagon hierarchies would be
�
n � n
� � � ��n�

�� CHAPTER �� DIVIDING THE DOMAIN INTO HEXAGONS

Hexagons With Quintuple Embedding

In the quintuple embedding technique with multiple grids� when all the hexagons

with edge�lengths greater than or equal to � are occupied� the midpoint of a hexagon

with edge�length ��
�
� is returned in isolate� The worst case ratio is �
��� ��

�
p
�
� �

p
�

��
�

If all the hexagons of edge�lengths ��
�
� are occupied� the midpoint of a hexagon of

edge�length ��
�
is returned and the worst case ratio is �
��

�
��� �

�
p
�
� ��p

�
� Similarly�

when all hexagons with edge�lengths ��
� are occupied� the midpoint of a hexagon

with edge�length �
�
p
�
� is returned and the worst case ratio is �
��

�
����

�
� �

��
� The

same reasoning applies to all the other levels of embedding� It can be veri�ed that

with � �
q

�p
�
� the worst case ratios are equal to �p

�

 �p

�
�����

The number of bits required to represent the hexagon hierarchies with quintuple

embedding is at most ���
�

n� n

�
� � ��n�

����� m Grids

Let Grid � be the base grid with the edge�length of the smallest hexagons being

�� and Grid i be a grid with the edge�length of the smallest hexagons being �i���

where i � ��
� � � � �m� � � �m��� �i � �i��� and �� � ��

Hexagons Only Approach

It can be shown that with �i � �i�m� the worst case ratio is
�p
�
� ���m� As the

number of grids tends to in�nity� the lower bound of the worst case ratio for the

hexagons only approach is �p
�
� However� the number of bits needed to represent

the hierarchies would also increase to in�nity in order to achieve the lower bound�

���� MULTIPLE GRIDS ��

Theorem ��� The lower bound of the worst case ratio of the hexagons only ap�

proach with multiple grids is �p
�
� ��
��

Hexagons With Quadruple Overlapping

Since the worst case ratio is reduced by a factor of �
� from the hexagons only

approach� the worst case ratio with m grids is �p
�
� ���m � �

� �
p

 � ���m� Hence�

the lower bound of the worst case ratio is
p

 when the number of grids tends to

in�nity�

Theorem ��
 The lower bound of the worst case ratio of the hexagons approach

with quadruple overlapping and multiple grids is
p

 � ���
�

Hexagons With Quintuple Embedding

It can be shown that with �i �

�p
�
�i�m� the worst case ratio is �p

�
�
 �p

�
���m� As

the number of grids tends to in�nity� the lower bound of the worst case ratio is �p
�
�

Theorem ��� The lower bound of the worst case ratio of the hexagons approach

with quintuple embedding and multiple grids is �p
�
� ��
��

Chapter �

Dividing the Domain into

Triangles

Besides squares and hexagons� triangles can also tile a plane� In this chapter� equi�

lateral triangles and right�angled triangles are considered in the hope of achieving

a simple and high quality solution with low space requirements�

In the square approach with diamonds in Chapter � and the hexagon approach

with overlapping in Chapter
� we have to keep track of triangles making up a

square or a hexagon instead of the actual squares or hexagons so as to achieve

constant amortized running time per operation� Recall that in the square approach

with diamonds a square is made up of four isosceles triangles� while in the hexagon

approach with overlapping a hexagon is made up of six equilateral triangles� In fact�

the grouping of four equilateral triangles to form a larger equilateral triangle in the

hexagon approach with overlapping is the same as that in the equilateral triangle

approach to be discussed in Section ���� However� the basic shape by which the

���� EQUILATERAL TRIANGLES ��

containment relationship is divided di�ers in each case	 the basic shape is the

triangle� the square and the hexagon in the triangle approach� square approach

and the hexagon approach respectively� The basic shape is the shape with which

the worst case ratio is computed� For example� in the hexagon approach� all the

hexagons of a certain size have to be occupied such that the midpoint of a hexagon

one level down in the hierarchy is returned by isolate and a hexagon is occupied

if any of the six equilateral triangles making up the hexagon is occupied� On the

other hand� all the equilateral triangles of a certain size have to be occupied in

order for the midpoint of a triangle one level down in the hierarchy is returned by

isolate in the equilateral triangle approach which will be discussed in this chapter�

Moreover� there are at most �n base equilateral triangles in order to guarantee

at least one empty triangle in the equilateral triangle approach while there are at

most �n base hexagons which is equivalent to ��n triangles to guarantee at least one

empty hexagon in the hexagon approach� Furthermore� the overlapping techniques

are di�erent in the equilateral triangle approach and in the hexagon approach� as

will be discussed in Section ������

��� Equilateral Triangles

����� Basic Approach

Four smaller equilateral triangles make up a double sized equilateral triangle� See

Figure ���� Equilateral triangles are simpler than hexagons because the boundaries

of four equilateral triangles form the boundary of a larger equilateral triangle�

�� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

Figure ���	 Four smaller equilateral triangles make up a bigger one

(0,0)
origin

triangles

0 1 2 3 4 5

0

1

2

3

row
co

lu
m

n

0
1

2
3

4
5

6

7
8

9
10

11
12

13

numberings of

The equilateral triangle in which a given point with cooridinates
X�Y� lies

can be determined in constant time using algorithm WhichTriangle� Assume

the triangle numbering starts from zero and across the rows and then down the

columns� and the origin is in the top left hand corner of the domain� as illustrated

in Figure ����

Figure ���	 To determine the triangle a given point lies in

2

1 2

3

3

���� EQUILATERAL TRIANGLES ��

The idea of the algorithmWhichTriangle is very similar to that for hexagons

in Lemma
�� in Chapter
� First� �nd the rectangle in which the point lies� and then

determine whether it lies in the upper or lower half of the rectangle by comparing

the slope� Case � is the case in which the point lies in a rectangle cut by a line

with negative slope� and case � is that with a positive slope� See Figure ��
� Let b

be the edge length of the base equilateral triangle�

Figure ��
	 Illustration of Case � and Case 	

case 2:

b/2 b/2

3 3

2 2
b b

ex
tr

a_
y

ex
tr

a_
y

extra_x

extra_x

case 1:

WhichTriangle
X�Y�	

�� col � b X
b��
c

�� row � b Yp
�b��

c

� extra x � x� col � b
�

�� extra y � y � row �
p
�b
�

�� if row � col mod � � � then

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

� if extra y
extra x

� �p
 then

	 col � col � �

�� else
i�e�� row � col mod � � ��

� if
p
�b
�
�extra y

extra x
�
p

 then

	 col � col � �

�� RETURN
row� col�

As in the square approach� we need a linked list
or an array�� a bit vector

representing the triangle hierarchy and a counter of the number of points inserted�

The linked list
or array� stores the points inserted in the domain� The number

of bits in the bit hierarchy is reduced by a factor of � each level up the hierarchy�

The bit vector hierarchy can be built by doing an OR of the four bits representing

the four smaller triangles making up the larger one� Therefore� as in the squares

only approach� the number of bits required is at most ��
� n where n is the number

of points already inserted into the domain� and the triangle hierarchy can be built

in linear time�

The worst case ratio is approximately ���
 which is worse than the squares

only approach� Suppose all equilateral triangles of size at least � are occupied�

Somewhere in the domain� there are three points A� B and C at the corners of

three size � triangles and they are at a distance of � units from the centre point D�

as illustrated in Figure ���� There are no other points inside the circle centred at

point D and passing through points A� B and C� It can be veri�ed that the circle

centred at D with radius � units passing through points A� B and C is the circle

���� EQUILATERAL TRIANGLES ���

with maximum radius passing through any six size � equilateral triangles� The

distance between the most isolated point and an inserted point is �� On the other

hand� the closest point possible to a size � equilateral triangle is �
�
p
�
units away

from the midpoint of the triangle as shown in Figure ���� Hence� the worst case

ratio is �� �
�
p
�
which is �

p

 � ���
�

Figure ���	 Illustration of the worst case ratio of the equilateral
triangle technique

D

2

2

1

A

B

C

Note that a boundary correction convention has to be adopted to solve the prob�

lem of having a point lying on the boundaries of more than one triangle� Therefore�

the actual worst case ratio is slightly less than �
p

�

Theorem ��� Using the equilateral triangle approach as described in the preced�

ing sections� inserts and isolates can be performed in constant amortized time per

operation� linear space and constant worst case ratio of �
p

� ���
��

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

Figure ���	 Illustration of the closest point to an equilateral trian�
gle

1

30

1/2

1
2 3

����� With Overlapping

The worst case ratio can be improved to � by using overlapping triangles� See

Figure ���� Suppose all equilateral triangles
including the overlapping ones� with

size at least � are occupied� There are three points A� B and C somewhere in

the domain� occupying four equilateral triangles and there are no other points in

the circle passing through these three points� The distance between D and A is
p

� The circle centred at D passing through points A� B and C is the circle with

maximum radius passing through four overlapping triangles� As in Figure ���� an

inserted point �
�
p
�
units away from the midpoint of a size � triangle is returned by

isolate� Hence� the worst case ratio is
p

� �

�
p
�
� ��

Due to the boundary correction convention� the actual worst case ratio is slightly

less than ��

The maximum number of bits needed to represent the overlapping triangles

���� RIGHT�ANGLED TRIANGLES ��

Figure ���	 Improving the worst case ratio with the overlapping tech�
nique

3

1

A

B

C

D

3

3

explicitly is increased to ��
�
n as in the square approach with overlapping� With the

implicit representation of the overlapping triangles� the number of bits remains the

same as in the case without overlapping�

Theorem ��� The worst case ratio of the equilateral triangle approach with over�

lapping is ��

��� Right�Angled Triangles

����� Basic Approach

Two unit size right�angled triangles combine to form a right�angled triangle of size
p
� as in Figure ���� As in the case of equilateral triangles� the boundary of the

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

unit�size triangles form the boundary of the larger triangle�

Figure ���	 Two size � right�angled triangles make up one of size
p
�

2

1

1 2

Since two unit�size right�angled triangles make up a size
p
� right�angled trian�

gle� the number of bits in each level up the bit hierarchy is reduced by a factor of ��

To guarantee at least one unoccupied right�angled triangle� we need dlog�
n � ��e
levels in the triangle hierarchy� Hence� the number of triangles at the bottommost

level is �dlog��n	�
e� which is at most �n� With a square domain� the top level consists

of two right�angled triangles� Therefore� the number of bits required to represent

the bit hierarchy is at most
Plog� n	�

i�� �i � �n� � � �n� assuming a square domain�
The right�angled triangle in which a point lies can be determined in constant

time by �rst determining the square in which the point lies and then comparing

the slope as in algorithm WhichTriangle
Section �������

Consider Figure ���	 all the triangles with size at least
p
� are occupied� and

somewhere in the domain there are four points A� B� C and D occupying four size
p
� triangles� There are no other points inside the circle passing through points A�

B� C and D� The distance between A and E is � units� It can be seen that this

���� RIGHT�ANGLED TRIANGLES ���

circle� centred at point E� is the circle with maximum radius containing exactly

eight size
p
� right�angled triangles� On the other hand� the closest point possible

to a right�angled triangle of size � is ��p�
� � ����
 units away as illustrated in

Figure ���� Therefore� the worst case ratio is ����
p
�

�
� �

��p�
� ���
�

Figure ���	 Illustration of the worst case ratio of the right�angled
triangle technique

2

A
B

C

D

E

1

2

The actual worst case ratio is slight less than �
��p�

with the adoption of a

boundary correction convention�

Theorem ��� Using the right�angled triangle approach as described in the preced�

ing sections� inserts and isolates can be performed in constant amortized time per

operation� linear space and constant worst case ratio of �
��p�

� ���
��

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

Figure ���	 Illustration of the closest point to a right�angled trian�
gle

2 - 2

45

1

2

����� With Overlapping

With overlapping� the worst case ratio can be reduced to approximately ���
� See

Figure ����� All the triangles
including the overlapping ones� with size at least
p
� are occupied� The distance between A and E is

p
� units� The circle centred

at point E passing through points A� B� C and D is the circle with maximum

radius passing through the overlapping and non�overlapping size
p
� triangles� As

in Figure ���� a point ��p�
�

� ����
 units from the midpoint of a size � triangle is
returned by isolate� Therefore� the worst case ratio is

p
����

p
�

� � �
p
�

��p�
� ���
�

Again� the actual worst case ratio is slightly less than �
p
�

��p�
with a boundary

correction convention�

With the explicit representation of overlapping triangles� the number of bits

needed to represent the triangle hierarchy is doubled with overlapping� and at most

�n bits are needed� Alternatively� at most �n bits are needed with the implicit

���� SUMMARY OF THE TRIANGLE TECHNIQUES ���

Figure ����	 Improving the worst case ratio for right�angled trian�
gles with overlapping

D
E

2

A B

C

representation�

Theorem ��� The worst case ratio of the right�angled triangle approach with over�

lapping is �
p
�

��p�

� ���
��

��� Summary of the Triangle Techniques

In the following table� the implicit representations of overlapping triangles are as�

sumed�

��� Multiple Grids

As in the cases of squares and hexagons� we can improve the worst case ratio at

the expense of space by having multiple independent grids�

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

Table ���	 Summary of the triangle techniques

technique maximum � of bits worst case ratio

equilateral triangles only ��
�
n �

p

 � ���

equilateral triangles with overlapping ��
�
n �

right�angled triangles only �n �
��p�

� ���

right�angled triangles with overlapping �n �

p
�

��p�
� ���

����� Double Grids

Let Grid � be the base grid with the size of the smallest equilateral triangles being

�� and Grid � be another grid with size of the smallest equilateral triangles being

�� where � � ��

Equilateral Triangles Only Approach

Without loss of generality� assume all the triangles with size greater than or equal to

� are occupied� So� the midpoint in a triangle of size � is returned by isolate� Using

the same argument as in Section ������ the worst case ratio is equal to �� �
�
p
�
� �

p
�

�
�

On the other hand� if all the triangles with size greater than or equal to � are

occupied� the midpoint of a triangle of size � is returned� and the worst case ratio

is �� �
�
p
�
� �

p

� instead� With � �

p
�� the two worst case ratios are equal to

�
p
� � �����

However� the number of bits required to represent the triangle hierarchies is

increased� If there are n triangles of size � in Grid �� we will have approximately

n
� triangles of size

p
� in Grid �� Therefore� the total number of bits needed is at

most ��
� n�

��
� � n

� � �n�

���� MULTIPLE GRIDS ���

Equilateral Triangles With Overlapping

Using the argument in Section ������ when all the triangles with size greater than

or equal to � are occupied� and the midpoint in a triangle of size � is returned by

isolate� It can be veri�ed that the worst case ratio is equal to
p

� �

�
p
�
� �

�
with

overlapping� On the other hand� if all the triangles with size greater than or equal

to � are occupied� the midpoint of a triangle of size � is returned� and the worst

case ratio is
p
��
� � �

�
p
�
�
� instead� With � �

p
�� the two worst case ratios are

equal to

p
� � �����

The number of bits required to represent the triangle hierarchies with overlap�

ping remains �n with the implicit representation of overlapping triangles�

����� m Grids

Let Grid � be the base grid with the size of the smallest triangles being �� and Grid

i be a grid with size of the smallest triangles being �i��� where i � ��
� � � � �m�

� � �m��� �i � �i��� and �� � ��

Equilateral Triangles Only Approach

It can be shown that with �i � �i�m� the worst case ratio is �
p

 � ���m� As the

number of grids tends to in�nity� the lower bound of the worst case ratio for the

equilateral triangles only approach is �
p

� However� the number of bits needed

to represent the hierarchies would also increase to in�nity in order to achieve the

lower bound�

��� CHAPTER �� DIVIDING THE DOMAIN INTO TRIANGLES

Theorem ��� The lower bound of the worst case ratio of the equilateral triangles

only approach with multiple grids is �
p

�
�����

Equilateral Triangles With Overlapping

Similarly� it can be shown that with �i � �i�m� the worst case ratio is
 � ���m�
Therefore� as the number of grids tends to in�nity� the lower bound of the worst

case ratio is
�

Theorem ��� The lower bound of the worst case ratio of the equilateral triangles

approach with overlapping and multiple grids is
�

Chapter �

Extending to Three Dimensions

Chapters ��
 and � handle the case when the given domain is two dimensional� In

this chapter� we brie�y discuss the case when the given domain is three dimensional�

In terms of the application of the root��nding problem in Maple ���� the three

dimensional domain corresponds to solving an equation with three variables�

The techniques of dividing the given domain into regular shapes in Chapters

��
 and � will be extended to three dimensions� Section ��� considers the case of

extending the square approach to cubes and Section ��� discusses the possibility of

dividing the domain into other geometric shapes�

��� Dividing the Domain into Cubes

The idea of dividing the given two dimensional domain into squares and building a

hierarchy of squares can be extended to the three dimensional domain using cubes�

In this section� the possibility of improving the quality of the solution using other

���

��� CHAPTER �� EXTENDING TO THREE DIMENSIONS

techniques in the two dimensional case� such as overlapping and diamonds� are

discussed�

����� The General Approach

Without loss of generality� assume the given three dimensional domain is a cube�

The idea is to divide this domain into smaller cubes and to build a hierarchy of

these cubes� represented by a bit vector� The bit corresponding to a particular cube

in the hierarchy is turned on if that cube is occupied and is turned o� if that cube

is empty� As in the case of squares� a linked list
or a simple array� is used to store

points inserted in the domain�

In the case of squares� four unit�size squares combine to form a double�size

square� However� in the case of cubes� eight unit�size cubes combine to form a

double sized cube as shown in Figure ���� Therefore� the number of bits in each

level is reduced by a factor of eight instead of four in going up a level�

The algorithm for the insert operation is the same as in Section ����� except that

squares are replaced by cubes� The cube in which a point lies can be determined

in constant time using a similar technique to that described in Section ����
� The

isolate operation is also similar to that described in Section ����� except in the

decomposition step� We need �dlog��n	�
e cubes in the bottommost level in the

hierarchy in order to guarantee at least one free cube in the domain� Hence� k is

set to be dlog�
n � ��e in the isolate algorithm� Then� the domain is decomposed
into �k cubes which is at most �n� All the n points inserted are interpolated into

the grid of �k cubes� Then� the bit hierarchy is built and the bit scan continues�

���� DIVIDING THE DOMAIN INTO CUBES ��

Figure ���	 Eight unit�size cubes make up a double�size cube

The amortized running time per operation is constant when inserts and isolates

are taken together� The total number of bits in the cube hierarchy is at most

Plog� n	�
i�� �i � ��

n� which is �
n�� With reasoning similar to that in Section ������

the worst case running time of any sequence of n operations is linear�

The worst case ratio is �
p

 with the cubes only approach� Consider the follow�

ing scenario	 all cubes with size at least � are occupied in the domain� Somewhere

in the domain� there are eight points at the corners of eight size � cubes which form

a size � cube and there are no other points in the sphere containing the eight corner

points� See Figure ���� The sphere passing through the eight points is the sphere

with maximum radius containing eight unit�size cubes� Hence� the maximum dis�

tance between any point in the domain and an inserted point is between the centre

of the size � cube and one of the eight points at the corners of a size � cube� or

a distance of �
p

� The midpoint of a unit�size cube is returned in isolate� The

��� CHAPTER �� EXTENDING TO THREE DIMENSIONS

closest possible point to the returned isolate point is �
�
units away� Therefore� the

worst case ratio is �
p

��� � �

p

 � ���
�

Figure ���	 Illustration of the worst case ratio

A boundary correction convention similar to that described in Section ����� can

be adopted� Hence� the actual worst case ratio is slightly less than but can made

arbitrarily close to �
p

�

Theorem ��� Using the cubes only approach as described in the preceding sections�

inserts and isolates can be performed in constant amortized time per operation�

linear space and constant worst case ratio of �
p

� ���
��

���� DIVIDING THE DOMAIN INTO CUBES ���

����� The Overlapping Technique

The overlapping technique in Section ��
�� can be extended to cubes to improve

the worst case ratio� Observe that a size � cube is made up of eight unit�size

cubes� and so a unit�size cube has eight possible overlapping size � cubes� The

eight overlapping size � cubes form a size
 cube with a common middle unit�size

cube� as in Figure ��
�

Figure ��
	 Illustration of the overlapping approach

In determining the worst case ratio� imagine all the size � cubes are occupied

and there are eight points in the domain occupying the corners of the size
 cube

described above with no other points in the sphere containing the eight points� The

distance between the middle point in the size
 cube� which is the most isolated

point� and one of the eight corner points is �
�

p

� See Figure ���� Hence� the worst

��� CHAPTER �� EXTENDING TO THREE DIMENSIONS

case ratio is �
�

p

��

�
�

p

 � �����

Figure ���	 Worst case ratio of the overlapping approach

As in the case without overlapping� the actual worst case ratio is slightly less

than

p

 with boundary correction�

As in the case of squares� we do not require overlapping in the bottommost level�

In the explicit approach� one bit is used to represent each of the eight overlapping

cubes� So� the total number of bits required to represent the cube hierarchy is

�
Plog� n

i�� �i � �log� n	� � ���

 n� In the implicit approach� we determine whether a

cube is occupied or not on the �y by doing additional OR operations on the bits

representing smaller cubes making up the current cube� So� the number of bits

required for the implicit approach is the same as in the cubes only approach which

is at most ��

 n�

���� DIVIDING THE DOMAIN INTO OTHER GEOMETRIC SHAPES ���

Theorem ��� The worst case ratio of the cubes approach with overlapping is

p

�

�����

����� The Diamond Technique

The obvious approach of rotating a reduced size cube and embedding the rotated

cube in a unit�size cube does not work� A cube has eight corners but only six faces�

It is impossible to have all the corners of the reduced size cube touching all the

faces of a cube�

��� Dividing the Domain into Other Geometric

Shapes

In the two dimensional case� we considered dividing the given domain into squares�

hexagons and triangles� In fact� triangles� squares and hexagons are the only regular

polygons that can tile a plane ���� On the other hand� in the three dimensional case�

there are only �ve regular polyhedra� the Platonic solids� The �ve Platonic solids

are	 tetrahedron� cube� octahedron� dodecahedron and icosahedron ���� Tetrahe�

drons� octahedrons and icosahedrons are made up of triangular faces� Cubes are

made up of square faces and dodecahedrons are made up of regular pentagonal

faces� So� there is no natural correspondence between any of the �ve platonic solids

in three dimensions and the regular hexagons in two dimensions� However� there

is a �semi�regular� polyhedra� called the truncated cuboctahedron� which has two

regular hexagons and one square joined at each vertex� that tiles a three dimensional

��� CHAPTER �� EXTENDING TO THREE DIMENSIONS

space �
�� The possibility of extending our results in Chapter
 using hexagons in a

two dimensional domain to using truncated cuboctahedron in a three dimensional

domain would be an interesting problem for future work�

Chapter �

Conclusion

We have solved the problem such that the amortized running time when inserts and

isolates are taken together is constant with a constant worst case ratio� The quality

of the solution is measured by the worst case ratio� The smaller the worst case ratio�

the better the solution� We have considered three di�erent approaches in order to

improve the quality of the solution� namely	 dividing the domain into di�erent

geometric shapes� using techniques such as overlapping� diamonds or embedding�

and� having multiple grids of the same geometric shape�

	�� Dividing the Domain into Di
erent Shapes

The general idea of our solution is to divide the domain into a particular geometric

shape and build a hierarchy of the geometric shape� We have to keep track of

whether a particular geometric shape is occupied or not� and so we would like to be

able to �nd in which geometric shape a particular point lies easily and e�ciently�

���

��� CHAPTER �� CONCLUSION

We have considered dividing the two dimensional domain into the three regular

polygons which tile a plane� namely squares� hexagons and triangles ���� Only

regular polygons are discussed because of the relative ease of determining in which

polygon in the given domain a particular point lies� It turns out that the worst

case ratio is smaller with the hexagons only approach than with the squares only

approach� which is in turn smaller than that with equilateral triangles only� The

result is not surprising since hexagons are closer to circles than are squares and

triangles� Being closer to circles is desirable because the ratio of the distance

between the centre of the polygon and the farthest point on the polygon to the

distance between the centre and the closest point on the polygon is smaller� The

ratio is � for circles� The ratio is ��
p
�
�
� �p

�
� ���� for hexagons�

p
�
�
��
�
�
p
� � ����

for squares and �p
�
� �
�
p
�
� � for triangles as illustrated in Figure ���� There are

many other geometric shapes which are very close to being circular which can also

tile a plane ���� For instance� regular octagons together with squares tile a plane

and octagons are closer to circles than are hexagons� However� building a hierarchy

with two regular polygons is not trivial and would be an interesting problem for

future work�

In the case of a three dimensional domain� only cubes have been considered�

There are only �ve platonic solids in three dimensions� namely tetrahedron� cube�

octahedron� dodecahedron and icosahedron ���� but not all of them can tile a three

dimensional space� There is no natural correspondence of any of the �ve platonic

solids to regular hexagons in two dimensions� but there is a �semi�regular� polyhe�

dron� the truncated cuboctahedron� which has regular hexagonal faces� It would be

���� OTHER TECHNIQUES ���

Figure ���	 Illustration of how hexagons are closer to circles than
are squares and triangles

3

1 1

1

1

3 1/2
2

1
2 3

2
2

1

an interesting problem to try to solve our problem with �semi�regular� polyhedra

and build a hierarchy using �semi�regular� polyhedra�

	�� Other Techniques

It has been shown that the quality of the solution can be improved using tech�

niques such as overlapping� embedding or diamonds at the expense of either more

operations or more bits required� The following table shows the worst case ratios�

with the number of bits required for the implicit representation in brackets� using

various techniques� Note that quadruple overlapping and quintuple embedding are

assumed for hexagons�

	�� With Multiple Grids

Furthermore� the worst case ratio can be improved by having multiple grids of

di�erent sizes of the same geometric shape which form independent hierarchies�

��� CHAPTER �� CONCLUSION

Table ���	 Summary of the square� hexagons and triangles techniques

technique squares hexagons equilateral triangles

no special technique �
p
�
��

�
n� �p

�

��
�
n� �

p

��

�
n�

with overlapping

p
�
��

�
n� �

p

�n� �
��

�
n�

with diamonds or embedding �
��
�
n� �

�

���

�
n�

with overlapping and embedding

��� n� �
���n�

When the number of grids tends to in�nity� the worst case ratio will tend to a lower

bound� The following table shows the lower bounds of the worst case ratio with

various techniques�

Table ���	 Summary of the square� hexagons and triangles lower
bounds

technique squares hexagons equilateral triangles

no special technique �
p
� � ���
 �p

�
� ��
� �

p

 �
���

with overlapping �
�

p
� � ���� p

 � ���

with diamonds or embedding � �p

�
� ��
�

with overlapping and embedding �
�
� ����

As shown by the �rst row in Table ���� the lower bound for the hexagons only

approach is smaller than that for the squares only approach� which is in turn smaller

than that for the equilateral triangles only approach� reinforcing what we have

discussed in Section ���� However� the trend may not be true when combined

with other techniques such as overlapping and embedding
diamonds� because the

other techniques that can be applied depends on the speci�c geometric shape� For

instance� the lower bound for the hexagon approach with quintuple embedding is

larger than that for the square approach with diamonds� In fact� the lower bound

for the hexagon approach with quintuple embedding is the same as that for the

���� IMPLEMENTATION ISSUES ��

hexagons only approach� The worst case ratio for the hexagons only approach with

m grids is �p
�
� ���m and that for the hexagon approach with quintuple embedding

is �p
�
�
 �p

�
���m� Since �p

�
� ���� � ���� the rate of convergence to the lower bound

is much faster with the quintuple embedding�

	�� Implementation Issues

We have concluded that dividing the given two dimensional domain into regular

hexagons gives a more favourable worst case ratio since hexagons are closer to cir�

cles than squares and triangles in Section ���� However� in practice� determining

in which square a point lies requires fewer operations than determining in which

hexagon it lies� Furthermore� in Section ������ we have shown that with the square

approach with overlapping and diamonds and � grids� the worst case ratio is approx�

imately ���� and the number of bits required is at most ��n� On the other hand�

the hexagon approach with overlapping and quintuple embedding gives a worst case

ratio of ��� with at most ���n bits of space� Therefore� the square approach with

overlapping� diamonds and � grids is highly favorable compared to the hexagons

approach both in terms of the worst case ratio and the space requirement� We rec�

ommend this technique for the actual implementation of the root��nding problem

in Maple ����

��� CHAPTER �� CONCLUSION

	�� Future Work

There are many possible interesting problems for future work related to this prob�

lem�

We have only considered dividing the given domain into regular polygons and

regular polyhedra� It would be interesting to divide the domain into �semi�regular�

polygons and polyhedra that can tile the given domain� In two dimensions� regular

octagons and squares tile a plane and octagons are promising since they are closer

to circles than are hexagons� In three dimensions� the truncated cuboctahedron

corresponds naturally to the regular hexagon approach in two dimensions� How�

ever� building a hierarchy and computing the worst case ratio with �semi�regular�

geometric shapes may not be trivial�

Moreover� there are many other non�regular shapes that can tile a plane or

space� Although it requires a lot of computational e�ort to determine in which

shape a given point lies� exploring the possibility of getting a better solution with

non�regular shapes would be of theoretic interest�

We have also attempted to divide the domain into circles in order to improve the

solution� Since circles do not tile a plane� we did not have any success in attaining

a lower worst case ratio with constant amortized running time per operation� This

is certainly another possibility for improving the quality of the solution�

Gaston Gonnet has conjectured a lower bound of
p
� for the two dimensional

case with the square approach� We have proved a lower bound of ���� for the square

approach with overlapping and diamonds� It is possible that overloading the square

approach with additional techniques may give a smaller lower bound�

���� FUTURE WORK ���

We concentrated on the Euclidean
i�e�� L�� metric in this thesis� Other metrics

could have been used instead� for example� the L� and L� metrics� In the Euclidean

metric� the closer the geometric shape is to a circle� the better is the quality of the

solution� In L� and L� metrics� squares should give very good solutions�

Finally� extending our current approach to k dimensions would be another inter�

esting problem with practical applications of solving an equation with k variables

in Maple ����

��� CHAPTER �� CONCLUSION

Bibliography

��� B� W� Char� K� O� Geddes� G� H� Gonnet� B� L� Leong� M� B�

Monagan and S� M� Watt� Maple V Library Reference Manual� Springer�

Verlag� �����

��� H� S� M� Coxeter� Introduction to Geometry� John Wiley � Sons� Inc�

Chapter ��� �����

�
� H� S� M� Coxeter� Regular Complex Polytopes� Cambridge University Press�

Chapter �� �����

��� D� Dobkin and R� Lipton�On the Complexity of Computations under Vary�

ing Sets of Primitives� Yale University� Department of Computer Science Tech�

nical Report� ��� �����

��� G� H� Gonnet� Open Problem Session� Schloss Dagstuhl Colloquium on Data

Structures� Feb �����

��� B� Gr�unbaum and G� C� Shephard� Tilings and Patterns� An Introduc�

tion� Freeman� pp� ��� ��� �����

���

��� BIBLIOGRAPHY

��� F� P� Preparata and M� I� Shamos� Computational Geometry� New York	

Springer�Verlag� �����

��� M� I� Shamos� Computational Geometry� Ph�D� Thesis� Yale University� �����

��� M� I� Shamos and D� Hoey� Closest�point Problems� Sixteenth Annual

IEEE Symposium on Foundations of Computer Science� pp� �������� Oct ����

���� G� T� Toussaint� Computing Largest Empty Circles with Location Con�

straints� International Journal of Computer and Information Sciences� pp�
���

���� Volume ��� Number �� ���
�

