
Algorithms from Blossoms

Stephen Mann
Computer Science Department

University of Waterloo
Research Report CS������

Abstract� Blossoming is a theoretical technique that been used to de�
velop new CAGD theory� However� once we have developed this theory�
we need to devise algorithms to implement it� In this paper� I will dis�
cuss converting blossoming equations into code� noting techniques that
can be used to develop e�cient algorithms� These techniques are illus�
trated by considering the operations of basis conversion and polynomial
composition�

x�� Introduction

Blossoming has been used successfully to analyze and develop new CAGD the�
ory� Once we have developed a new theory� we must to convert our blossom
equations into algorithms� Although there is usually an obvious transforma�
tion� the resulting code will be extremely ine�cient� In this paper� I will show
methods for creating e�cient code from blossom equations�

Blossoming analysis is based on the blossom� which is de�ned as a sym�
metric and multi�a�ne 	a�ne in each argument
 map of n arguments� The
following theorem ��
 states that polynomials and blossoms are essentially the
same�

The Blossoming Principle� There is a one�to�one correspondence between
degree n polynomials� F � X � Y � and n�a�ne blossoms� f � Xn � Y � such
that

F 	u
 � f	u � � � u� �z �
n

�

where X and Y are spaces of arbitrary dimension�

Here� �multiplication� is tensor multiplication� When taking the tensor
of scalars� I will separate them with commas� Note also that some of the
�gures use comma separated argument lists 	eg�� f	a� b
 instead of f	ab

�

Ramshaw and others have successfully used blossoming to analyze exist�
ing CAGD algorithms and to develop new theory� These theoretical results

University of Waterloo� Computer Graphics Lab�

� S� Mann

f(u,u,u)

f(u,u,1)

(b)

f(u,1,1)f(u,0,1)

f(u3,u4,u5)f(u2,u3,u4)f(u1,u2,u3)

f(t1,t2, u3)

f(t1, u3,u4)

f(u0,u1,u2)

f(t1, u2,u3)

f(0,0,1) f(1,1,1)f(0,0,0) f(0,1,1)

f(u,0,0)

f(u,u,0)

f(t1, u1,u2)

f(t1,t2, u2)

f(t1,t2,t3)

(a)

Fig� �� de Casteljau evaluation of �a� a B�ezier curve and �b� a blossom�

are expressed in equations involving sums of the blossom at various sets of ar�
guments� The heart of blossom equations are evaluations of the the blossom�
To convert these equations into code� we must perform two tasks� First� we
must iterate over the required argument sets� and second� we must evaluate
the blossom at these argument sets�

Normally� we evaluate the blossom using a variation of de Casteljau�s
algorithm� The de Casteljau�s algorithm uses repeated linear interpolation
to evaluate B�ezier simplices� In addition to evaluating a B�ezier simplex for
position� the intermediate results can be used to compute derivatives� Fig�
ure � 	a
 shows the data �ow diagram for a de Casteljau evaluation of a cubic
B�ezier curve parameterized over ��� �
� In this diagram� the blossom values
f	�� �� �
� f	�� �� �
� f 	�� �� �
� f 	�� �� �
 correspond the the control points of the
B�ezier curve�

We can extend the de Casteljau algorithm to blossoms by starting with
the blossom values f	u�u�u�
� f	u�u�u�
� f	u�u�u�
� and f	u�u�u�
� and by
computing f	t�t�t�
 as shown in Figure � 	b
� where u� � u� � u� � u� �
u� � u�� Note that these knots and control points are the knots and control
points for a single segment B�spline� 	Although the examples given in this
�gure are for cubic curves� these ideas generalize to polynomials of any degree
with domain simplices of any dimension�

Although we often want to perform a complete evaluation of the blossom�
sometimes we only want a partial evaluation� For example� in Figure � 	b
�
we might want to stop the de Casteljau evaluation after having evaluated
f at t�� yielding the light gray control points� Note the close relationship
between partial evaluation and knot insertion� In Figure � 	b
� the light gray
points together with f	u�u�u�
 and f	u�u�u�
 are the B�spline control points
resulting from inserting the knot t� into the B�spline speci�ed by the ui and
corresponding blossom values�

The way to make e�cient algorithms fromblossom equations is by making
e�ective use of these intermediate blossom values� In particular� the most
expensive step of the de Casteljau algorithm is the �rst one� It is these values
that we need to best reuse in order to devise e�cient algorithms�

In this paper� I will illustrate the following three techniques for devising
e�cient algorithms from blossom equations�

Algorithms from Blossoms� U Waterloo� CS������ �

	�
 Evaluate the blossom only once for each permutation of its arguments�
	�
 Reuse of partial evaluations�
	�
 Converting to a better basis�

The �rst technique is well known� the other two have been used in an
ad hoc fashion for a variety of algorithms� I will present these techniques by
illustrating their use for basis conversion and for polynomial composition� The
point of this paper is to illustrate the techniques� Thus� I will not give many
details about these algorithms� and I will restrict my discussion to curves of
degrees � and � 	although I will note when the algorithms generalize to higher
degrees and higher dimensional domains
� However� in Appendix A� I discuss
one of the basis conversion algorithms� since while Barry and Goldman discuss
a restricted form of the algorithm� the generalization discussed in Appendix
A has not been presented elsewhere�

x�� Basis Conversion

The basis conversion problem is the following� Given a polynomial rep�
resented in one basis� �nd its representation relative to another basis� When
expressed in blossom terms� a basis is represented as a set of knots� and a poly�
nomial�s representation relative to this basis is the evaluation of the blossom
at consecutive knots�

For a degree n polynomial with a one dimensional domain� its knot vec�
tor is fan� � � � � a�� b�� � � � � bng� and the polynomial is speci�ed by the blossom
values

f	an � � � a�
� f	an�� � � � a�b�
� � � � � f	b� � � � bn
� 	�

If we want to convert from a basis fan� � � � � a�� b�� � � � � bng to a basis
fa�n� � � � � a

�
�� b

�
�� � � � � b

�
ng� we need to compute the blossom values

f	a�n � � � a
�
�
� f	a

�
n�� � � � a

�
�b
�
�
� � � � � f	b

�
� � � � b

�
n
�

from the values given in Equation 	�
� The obvious algorithm is to explicitly
perform these evaluations� If we use the de Casteljau algorithm� this would
require 	n��
n	n� �
�� a�ne combinations� as illustrated for cubic polyno�
mials in Figure �� In the next three sections� I will examine 	from blossoming
and algorithmic viewpoints
 the improvements to this algorithm described
by Barry and Goldman ��
� Note for basis conversion� there is little or no
concern about evaluating at a blossom value at multiple permutations of its
arguments�

x�� Sablonni�ere�s Algorithm

Sablonni�ere devised a more e�cient basis conversion algorithm ��
� From a
blossoming viewpoint� the way to understand this algorithm is to reorder the
de Casteljau evaluations for the control points for our new basis so that these
evaluations have common intermediate values�

� S� Mann

f(a3,a2,a1)

f(a1’,b1’,b2’)

f(a2,a1,b1) f(a1,b1,b2) f(b1,b2,b3)

f(a1’,a2,a1) f(a1’,a1,b1) f(a1’,b1,b2)

f(a3,a2,a1) f(a2,a1,b1) f(a1,b1,b2) f(b1,b2,b3) f(a3,a2,a1) f(a2,a1,b1) f(a1,b1,b2) f(b1,b2,b3)

f(a3,a2,a1) f(a2,a1,b1) f(a1,b1,b2) f(b1,b2,b3)

f(a2’,a2,a1) f(a2’,a1,b1) f(a2’,b1,b2)

f(a2’,a1’,a1) f(a2’,a1’,b1)

f(a2’,a1’,b1’)

f(a3’,a2,a1) f(a3’,a1,b1) f(a3’,b1,b2)

f(a3’,a2’,a1) f(a3’,a2’,b1)

f(a3’,a2’.a1’)

f(a1’,b1’,a1) f(a1’,b1’,b1)

f(b1’,a2,a1) f(b1’,a1,b1) f(b1’,b1,b2)

f(b1’,b2’,a1) f(b1’,b2’,b1)

f(b1’,b2’.b3’)

Fig� �� Basis Conversion by full evaluation�

f(b1’,b2’,b3’)

f(a3,a2,a1)
f(a2,a1,b1)

f(a1,b1,b2)
f(b1,b2,b3)

f(a1’,a1,a2)
f(a1’,a1,b1)

f(a1’,b1,b2)

f(a2’,a1’,a1)

f(a2’,a1’,b1)

f(a1’,b1’,a1)

f(a1’,b1’,b1)

f(a1’,b1’,b2’)

f(b1’,a1,b1)

f(b1’,b2’,b1)
f(b1’,b2’,a1)

f(b1’,a2,a1)

f(b1’,b1,b2)

f(a2’,a1’,b1’)

f(a3’,a2’,a1’)

Fig� �� Sablonni�ere	s Basis Conversion Algorithm�

For example� consider what happens when we compute f	a�n � � � a
�
�
 and

f	a�n�� � � � a
�
�� b

�
�
� If we compute the latter point �rst� then at the next to

last step of de Casteljau�s algorithm we will have computed f	a�n�� � � � a
�
�a�

and f	a�n�� � � � a
�
�b�
� From these two points we can compute f	a�n�� � � � a

�
�b
�
�

with a single a�ne combination and f	a�n � � � a
�
�
 with one additional a�ne

combination� Thus� we have reduced the cost of computing these two points
by almost a factor of �� The computation of the remaining blossom values
can also be reduced� although by a smaller factor�

The complete Sablonni�ere computation for cubics is illustrated in Fig�
ure �� From this �gure� we see that the algorithm chooses knots from starting
with the �rst knot in a group rather than the last knot� This allows for a high
amount of reuse of the intermediate blossom values�

For a degree n curve� Sablonni�ere�s algorithm requires
�
n��
n

�
� 	n� �
 �

	n � �
n	n � �
�� � 	n � �
 a�ne combinations� or roughly a factor of �
fewer a�ne combinations than required by fully evaluating each blossom value�

Algorithms from Blossoms� U Waterloo� CS������ �

f(b1’,b2’,b3’)

f(a3,a2,a1)
f(a2,a1,b1)

f(a1,b1,b2)
f(b1,b2,b3)

f(a1’,b1,b2)

f(a2’,a1’,b1)

f(b1’,a1,b1)

f(b1’,b2’,a1)

f(b1’,a2,a1)

f(b1’,b1,b2)

f(a2’,a1’,b1’)

f(a3’,a2’,a1’)

f(b1’,b2’,b1)

f(a1’,b1’,b2’)

f(a1’,a1,b1)
f(a1’,a2,a1)

Fig� �� Recursive Sablonni�ere	s Algorithm�

This algorithm generalizes to domains of arbitrary dimension in the obvious
manner�

x�� Recursive Sablonni�ere�s Algorithm

In the example in Figure �� we see that the blossom value f	a��b
�
�b
�
�
 can be

computed with a single a�ne combination instead of three 	Figure �
� Barry
and Goldman developed this idea for all curves of degree one less than a power
of �� For these degrees� their algorithm makes optimal reuse of intermediate
values�

The number of a�ne combinations required by Recursive Sablonni�ere�s
Algorithm can be expressed as a recurrence whose closed form solution is
unknown� but its runtime clearly falls between that of Sablonni�ere�s Algorithm
and Goldman�s algorithm�

We can generalize this algorithm to work for one�dimensional domains of
arbitrary degrees without many di�culties� The generalization to functions
with domains of arbitrary dimensions is more complex� A discussion of these
generalizations can be found in Appendix A�

x�� Goldman�s Algorithm

The preceding basis conversion algorithms are using the �nal points computed
by de Casteljau�s algorithm� Goldman�s observation is that sometimes we can
use the intermediate points computed by de Casteljau�s algorithm� Goldman
proceeded by performing a complete de Casteljau evaluation to compute one
of the desired blossom values� Then� to compute the remaining points� he
starts a second de Casteljau evaluation starting from the edge of the previous
de Casteljau triangle� The desired control points then lie along one of the
edges of this second de Casteljau triangle� Figure � illustrates this algorithm
for cubics� The �rst evaluation and use of control points along its edge is
e�ectively a change of basis�

� S� Mann

f(a2’,a1’,b1’)

f(a3,a2,a1)
f(a2,a1,b1)

f(a1,b1,b2)
f(b1,b2,b3)

f(a1’,a1,b1)

f(a1’,b1,b2)

f(a2’,a1’,b1)

f(a3’,a2’,a1’)
f(a1’,a1,a2)

f(a2’,a1’,a1)

f(a1’,b1’,a1)

f(a1’,b1’,b2’)

f(b1’,b2’,b3’)

f(b1’,a1,a2)

f(b1’,b2’,a1)

Fig� �� Goldman	s Algorithm�

Goldman�s algorithm requires n	n� �
 a�ne combinations to basis con�
vert a degree n curve� or roughly a factor of 	n��
�� savings over Sablonni�ere�s
algorithm� Note that this algorithm generalizes to domains of arbitrary di�
mensions� where for a domain of dimension k� we will need to perform k � �
complete de Casteljau evaluations�

x	� Polynomial Composition

The univariate polynomial composition problem is the following�

Given� A�ne spaces X � Y� and Z �of dimensions �� �� and KZ respectively��
control points fGig� i � � � � � �� de�ning a B	ezier curve G � X � Y of degree
� relative to a domain simplex �X � X � and control points fFjg� j � � � � � m
de�ning a degree m B	ezier curve F � Y � Z relative to a domain simplex
�Y � Y�

Find� The control points fHkg� k � � � � �m� of the degree m� B	ezier curve
H � F �G relative to �X �

Solution� If f denotes the blossom of F � then

Hk �
X

I�Zm
�
�

jIj�k

C	I
f	GI
� 	�

where GI with I � 	i�� ���� im
 is an abbreviation for 	Gi� � � � Gim
� and C	I

is a combinatorial function� Here� the I are known as hyper�indices�

Note that when computing all the Hk� we will need to evaluate f at all
combinations of G�s control points�

A proof of this result can be found in the paper by DeRose et al� ��
�
along with a reasonably e�cient algorithm� and a discussion applications of

Algorithms from Blossoms� U Waterloo� CS������ �

f(G G G)00

2

f(G G G) f(G G G)

f(G G G)

f(G G G)

f(G G G)2 f(G G G)f(G G G)f(G G G)

f(G G G)0 0 0 1 0 0 2 0 1 1 0 1 2

2 2 21 2 21 1 21 1 10

Fig� �� Polynomial Composition Algorithm�

polynomial composition� Mann and Liu later developed two improved algo�
rithms ��
� In this section� I will discuss all three algorithms� and analyze the
blossoming techniques used�

As a �rst comment� note that for each blossom value f	a� � � � an
� Equa�
tion 	�
 sums the blossom evaluated at all permutations of these arguments�
Since all permutations of any particular hyper�index appear in the equation
for a single Hk� we can evaluate f at just one permutation of a hyper�index�
and weight it by the number of permutations of its arguments� Figure �
shows the �� a�ne combinations used when composing a cubic curve with
a quadratic curve when we evaluate at only one permutation of each set of
blossom arguments�

Note that all the polynomial composition algorithms discussed in this
paper generalize to arbitrary degrees and dimensions�

x
� ���� Algorithm

DeRose et al� made the same observation about polynomial composition that
was made for Sablonni�ere�s algorithm� When computing the required blossom
values using de Casteljau�s algorithm� many of the intermediate values are
the same� To reuse these partial evaluations� they imposed an ordering on
hyper�indices� They then evaluated the blossom in the order imposed on the
hyper�indices by evaluating one argument at a time as follows�

	�
 For each i�

	a
 Partially evaluate f at Gi� giving f ��
	b
 Recursively evaluate f � in the same fashion� but only at Gj where

j � i
	�
 For each complete evaluation of f � add the appropriate weighted contri�

bution to the corresponding control point of H�

Note that this algorithm automatically evaluates f at only one permuta�
tion of each required argument set� Figure � shows the �� a�ne combinations
used when composing a cubic curve with a quadratic curve� Details on this
algorithm can be found in several papers ������
�

� S� Mann

f(y ,y ,y)

0

0

0

1

2

1

2

1

2

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 1

0
f(G ,G ,G)

1

f(G ,G ,G)
0 2

f(G ,G ,G)
11

f(G ,G ,G)
11

f(G ,G ,G)
21

0

1

2

1

2

2

1

2

2

2
f(G ,G ,G)

22

0F = 0

F = f(y ,y ,y)12

F = f(y ,y ,y)11

F = f(y ,y ,y)

0

0

0

1

0

1

1 13

0

Fig� ��
��� Polynomial Composition Algorithm�

x�� Recursive Algorithm

Just as we can improve Sablonni�ere�s algorithm� we can improve the ����
algorithm� The ���� algorithm orders the indices within a hyper�index in
increasing order� and uses a lexicographical ordering of the hyper�indices� We
can make optimal reuse of our evaluations by using a di�erent ordering on
both the indices within a hyper�index and of the hyper�indices�

The observation to exploit is the following� In the steps of the de Castel�
jau algorithm� the early levels of evaluation are more expensive than later
ones� Thus� to make the best reuse of partial evaluations� we want to mini�
mize the number of early level evaluations� We can achieve this minimization
by ordering the indices within a hyper�index from most to least repetitions�
I�e�� our hyper�indices will be

I � 	ir�� � � � � � i
rk
k

where rj � rj��� To make our hyper�indices unique up to permutations� we
add the additional condition that ij � ij�� when rj � rj���

This ordering of the indices within the hyper�indices� and the subsequent
ordering of the hyper�indices allows for more e�ective reuse of the partial
evaluations of the blossom� Figure � shows the �� a�ne combinations used
when composing a cubic curve with a quadratic curve� the dotted lines show
the evaluations that would have been used by the ���� Algorithm� Details on
this recursive algorithm can be found in the Mann�Liu technical report ��
�

Algorithms from Blossoms� U Waterloo� CS������ �

f(G ,G ,G)

f(y ,y ,y)

0

0

0

1

2

1

2

1

2

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
1

0
f(G ,G ,G)

1

f(G ,G ,G)
2

f(G ,G ,G)
11

f(G ,G ,G)
11

2

0

1

2

2

1

2

2
f(G ,G ,G)

22

0F = 000

F = f(y ,y ,y)0 112

F = f(y ,y ,y)1101

F = f(y ,y ,y)1 1 13

2 1

1 0

2 0

Fig� 	� Recursive Algorithm�

x�� Optimal Algorithm

Just as we can improve Sablonni�ere�s algorithm by performing a change of
basis� we can improve the ���� algorithm by �rst performing a change of ba�
sis� However� for polynomial composition� we get a more remarkable result�
If we change to a basis consisting of G�s control points� and then apply the
���� algorithm� then every intermediate value computed 	after the basis con�
version
 is a blossom value used in Equation 	�
� Further� each of these values
is computed exactly once�

Figure � shows the a�ne combinations used when composing a cubic
curve with a quadratic curve� Details on this algorithm can be found in
several papers ��
��
�

x�
� Knot Insertion� Partial Evaluation� and Knot Swapping

In the previous sections� we have seen illustrations of some techniques to
make e�cient algorithms from blossom equations� These algorithms involve
evaluating the blossom and using reusing these partial evaluations� The oper�
ation of partial evaluation is similar to that of knot insertion� A third similar
technique is knot swapping� where essentially we take the light gray points
of Figure � 	b
 together with one of the f	u�u�u�
 and f	u�u�u�
� In this
section� I will discuss these three techniques�

All three operations have the same computational cost� For curves� knot
insertion is somewhat more natural� as it gives us exactly the set of knots
we commonly want� However� knot insertion does not cleanly generalize to
domains of higher dimension� while partial evaluation and knot swapping both

�� S� Mann

f(y ,y ,y)

0

1

2

f(G ,G ,G)
11

f(G ,G ,G)
11

f(G ,G ,G)
21

0

1

2

1

2

21

2

2

2
f(G ,G ,G)

22

0F = 000

F = f(y ,y ,y)0 112

F = f(y ,y ,y)1101

F = f(y ,y ,y)1 1 13

0

0 f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 1

0
f(G ,G ,G)

1

f(G ,G ,G)
0 2

Fig�
� Optimal Composition Algorithm� Solid lines show the basis conversion�

f(t,b0,b1)

f(t,b0,c0)

f(t,c0,c1)

f(t,a0,c0)

f(t,a0,a1)

f(a0,a1,b0)
f(a0,b0,b1)f(a0,a1,a2)

f(a0,b0,c0)
f(a0,a1,c0)

f(b0,b1,c0)

f(b0,c0,c1)

f(c0,c1,c2)

f(b0,b1,b2)

f(a0,c0,c1)

f(t,a0,b0)

Fig� ��� Evaluation of a B�patch�

do� When we generalize to dimension k� a degree n patch has k � � sets of
n knots ���
� Consider the diagram in Figure ��� On the left are the control
points of a B�patch with knots fa�� a�� a�� b�� b�� b�� c�� c�� c�g� If we perform
one level of the de Casteljau algorithm� we get the shaded panels on the right�
In this right�hand �gure� I have drawn the original control points underneath�
but have only labeled the new points�

Looking at this diagram� it is clear that the shaded panels represent
the partial evaluation of the original B�patch� If we take the shaded panels
together with any edge of the original control net� we get the knot�swapped
representation of the patch� where t has replaced one of a�� b�� or c� 	in the
�gure� the shaded points are the control points for the patch with knot net

Algorithms from Blossoms� U Waterloo� CS������ ��

ft� a�� a�� b�� b�� b�� c�� c�� c�g
� On the other hand� it is unclear what knot
insertion even means in this context� Thus� except when working with curves�
one should use either partial evaluation or knot swapping�

Additional tricks can be played when using knot swapping� and it may
prove to be slightly more useful than knot swapping� See Liu�s thesis ��
 for
a more complete discussion of all three techniques�

A C�� library implementing these ideas is discussed in ��
��

x��� Conclusions

Blossoming is a useful technique for developing CAGD theory� Once we
have developed the theory� however� we need to convert blossom formulas into
program code� This primarily involves evaluating the blossom at argument
sets speci�ed by our blossom equations� In this paper� we have seen three
techniques to write e�cient code� evaluating the blossom only once for each
permutation of its arguments� reuse of partial evaluations� and conversion to
a basis where the computation requires fewer blossom evaluations�

A few notes are in order� Based on e�ciency considerations� there is no
point in using Sablonni�ere�s algorithm for basis conversion or for using the
���� algorithm for polynomial composition since more e�cient algorithms
are available� However� Sablonni�ere�s algorithm and the ���� algorithm algo�
rithms have a couple of advantages over the more e�cient algorithms� they are
easier to code and 	in comparison to Goldman�s algorithm and the Optimal
composition algorithm
 they are numerically more stable�

Thus� when converting from blossom formulas to code� it is almost always
advantageous to consider a straight�forward reuse of intermediate blossom
values� This is readily found by looking for a natural ordering on the blossom
indices we are evaluating at� Once this �rst improvement is made� we should
check to see if we can get a further improvement by either using a better
ordering of the blossom arguments� or by �rst converting to a better basis�

Finally� note that these ideas are just starting points for optimizing blos�
som equations� Sometimes further manipulation will be necessary�

xAppendix A� Generalized Recursive Composition Algorithm

Barry and Goldman developed an algorithm for basis conversion that
works when the degree is one less than a power of �� In this section� I will
present a generalization of their algorithm to arbitrary degrees� and discuss
the di�culties of generalizing to domains of arbitrary dimension�

I will give Perl code that iterates through the evaluation indices for both
the Barry�Goldman algorithm and for my generalizations� These routines
both make calls to the routine PrintI 	Figure ��
� which records and prints
the indices� In actual basis conversion code� the calls to PrintI would be
replaced with partial evaluations at the domain point with the corresponding
index�

A Perl script that iterates through the multi�indices used by the Barry�
Goldman algorithm is given in Figure ��� When working with a domain

�� S� Mann

� � A fancy �print� routine�

� �prevs � ��	

 sub PrintI �

� local
�i��j��s� � ��	

�

� if
 �s �� �prevs�� � �

� local
�i�	

� for
�i��	 �i��s	 �i��� �

� print � � �	

�� �

�� �

�� �prevs � �s	

�
 printf �a�i����d ���j	

�� �li��s� � �a�i��j�	

�� if
 �s �� �gn �� � �

�� �li��s� � �a�i��j�	

�� print � �� �li �	

�� print � n�	

�� �

�� �

Fig� ��� A print routine�

of dimension �� our knot net is fa���� � � � � a��n��� a���� � � � � a��n��g� All of
our blossom evaluations will be of the form f	a���� � � � � a��k� a���� � � � � a��n�k

	although we will perform the evaluation in a di�erent ordering of these knots
�

The key to understanding why their algorithm works 	and to understand�
ing the generalization to arbitrary degree
 is that in a complete evaluation of
a blossom of a degree �N � � polynomial� there will be more evaluations with
indices from one set or the other 	eg�� either more a��j or more a��j
� Thus�
we can evaluate at �N�� of one type of index� and then recusively compute
the remaining indices at which to evaluate� This recursion can be performed
by only knowing how many of each index we have already evaluated at 	this
is needed to determine the remaining subscripts
�

The point is� in our recursion� we do not have to scan through the indices
at which we have already evaluated� The remaining indices depend only on
the value of N and how many of each type of index we have evaluated at� The
reason Barry and Goldman restricted the algorithm to degrees of �N � � is to
ensure that the number of remaining indices is odd at each level of recursion�
The problem is if the degree is even� then we have to avoid evaluating at both
f	a���� � � � � a��n��� a���� � � � � a��n��
 and f	a���� � � � � a��n��� a���� � � � � a��n��
�

This problem 	of avoiding evaluating twice
 is easily avoided� If the degree
is even at any level of the recursion� then we evaluate at one of our indices
n�� times before making the recursive call� and evaluate at the other indexs
n�� � � times before making the recursive call� Perl code for this generalized

Algorithms from Blossoms� U Waterloo� CS������ ��

� !Improved
�gn���	 � �gn � �""�N��

�

 �M �
�	 � Keep track of how many so far

� sub Improved �

� � n � �#N�� � the number of unevaluated arguments

� � m � number of indices selected so far

� local
�n��m����	

� local
�i��j��s�	

�

�� if
 �n �� � � � return	 �

��

�� �s � int

�n���$��	

�
 � Iterate over all dimensions

�� for
 �i��	 �i���	 �i�� � �

�� local
�oldM�	

�� �oldM � �M��i�	

�� for
 �j��	 �j��s	 �j�� � �

�� !PrintI
�i��oldM��j��m��j�	

�� �

�� �M��i� �� �s	

�� !Improved
�n��s��m��s�	

�� �M��i� � �oldM	

�
 �

�� �

Fig� ��� Barry�Goldman recursive basis conversion algorithm�

algorithm is given in Figure ��� Note that the only change between the two
algorithms is the additional if statement at lines �� ���

Generalizing to domains of arbitrary dimension proves to be more trou�
blesome� The generalized basis conversion problem converts a degree n poly�
nomial with domain of dimension k represented in a basis de�ned by a knot
net

A � fa���� � � � � a��n� a���� � � � � a��n� � � � � ak��� � � � � ak�ng

to a representation in a basis de�ned by a knot net

B � fb���� � � � � b��n� b���� � � � � b��n� � � � � bk��� � � � � bk�ng�

De�ne

a�i �
dY

�	�

i���Y
m	�

a��m � a��� � � � a��i�a���� � � � ad�� � � � ad�id �

where �i � 	i�� � � � � in
� Then a representation of a polynomial relative to
a knot net A 	i�e�� the set of control points
 is given by evaluations of the
blossom at a�i for all

�i with j�ij � n�

�� S� Mann

� !Improved
�gn�����	

�

 �M �
�	 � Keep track of how many so far

� sub Improved �

� � n � the number of unevaluated arguments

� � m � number of indices selected so far

� local
�n��m����	

� local
�i��j��s�	

�

�� if
 �n �� � � � return	 �

��

�
 �s � int

�n���$��	

�� � Iterate over all dimensions

�� for
 �i��	 �i���	 �i�� � �

�� local
�oldM�	

�� �oldM � �M��i�	

�� if
 �"�s �� �n !! �i �� � � �

�� �s��	

�� �

�� for
 �j��	 �j��s	 �j�� � �

�� !PrintI
�i��oldM��j��m��j�	

�
 �

�� �M��i� �� �s	

�� !Improved
�n��s��m��s�	

�� �M��i� � �oldM	

�� �

�� �

Fig� ��� Generalized recursive basis conversion algorithm �dimension

��

So our goal is to convert from the set of control points

f	a��� � � � a��n��a��n
� f	a��� � � � a��n��a���
� � � � f	a��� � � � a��n��ak��

f	a��� � � � a��n��a��n��a��n
� f	a��� � � � a��n��a��n��a���
� � � �

f	a��� � � � a��n��a��n��ak��

���

to the control points

f	b��� � � � b��n��b��n
� f	b��� � � � b��n��b���
� � � � f	b��� � � � b��n��bk��

f	b��� � � � b��n��b��n��b��n
� f	b��� � � � b��n��b��n��b���
� � � �

f	b��� � � � b��n��b��n��bk��

���

Algorithms from Blossoms� U Waterloo� CS������ ��

Since we will have to evaluate

f	b��� � � � b��n��b��n
� � � � f	bk�� � � � bk�n��bk�n

we will want to makemaximal reuse of the intermediate values computedwhen
we calculate these values� Although certain aspects of the �best� algorithm for
computing these values are clear� such as Barry and Goldman�s observation
that we should work from the partial evaluations

f	b��� � � � b��n��
� f	b��� � � � b��n��
� � � � � f	bk�� � � � bk�n��
�

other aspects are less clear 	eg�� what�s the optimal way to compute

f	b��� � � � b��i� � � � bk�� � � � bk�ik

when all ij are less than n��
� In particular� we want to avoid computing any
value twice� and we want the runtime cost to be dominated by the blossom
evaluations rather than multi�index sorting� etc�

A �rst attempt at creating code to allow for arbitrary dimensions would
be to directly generalize the code of Figure �� by changing the bounds on
the for loop of line �� from � to k and by changing line �� from �s �

int

�n��k�$�� to �s � int

�n���$
�k����� Unfortunately� while the re�
sulting code would iterate through all the desired hyper�indices� most hyper�
indices would be generated multiple times�

Wayne Liu suggested using an idea similar to that of the Recursive Com�
position Algorithm� To use this idea� we must reorder the �i so that the ij �s
are in non�decreasing order� eg��

a�i � aj��� � � � aj��ij� � � � ajd �� � � � ad�ijd �

where ijp � ijp�� � with ijp � ijp�� only if jp � jp��� We then partially
evaluate the blossom at pre�xes of these tensors�

A variation of the code in Figure �� of ��
 e�ciently iterates through
and evaluates the blossom at the appropriate knots� This code is given in
Figure ��� The code has been compressed somewhat so that it �ts on one
page�

Although better than Sablonni�ere�s algorithm� this code is not optimal in
any sense of the word� In particular� it does not generalize the Barry�Goldman
recursive basis conversion algorithm� In Figure ��� we see the sequences pro�
duced by both algorithms for polynomials of degree �� dimension �� In both
of these sequences� I have just given the subscript 	eg�� I wrote ��� instead of
a���
� On the left of the �� I have used � to indicate when an evaluation is
used from the computation of the previous set of indices� To the right of the
� the full index is given�

The problem with using the idea in the Recursive Composition Algorithm
for basis conversion is that the Recursive Composition Algorithm evaluates at
an index ai some number of times� and recursively evaluates at the remaining

�� S� Mann

� !Improved
���n�����	 � �k is the dimension

�

 �M �
�	 � Mark the dimensions we use

� sub Improved �

� local
�m��prevm��previ��ni����	

� � m � number of indices selected so far

� � prevm � the number of previous indices selected

� � previ � the value of the previous index

� � ni � the number of indices selected

�� local
�i��j��nabove��nbelow��e�	

�� if
 �m %� �n � � return	 �

��

�
 �nbelow � �	

�� �nabove � �k��ni	 � Really� this is k�� �ni ��

��

�� � Iterate over all dimensions

�� for
 �i��	 �i���k	 �i�� � �

�� � Skip over an already used dimension

�� if
 �M��i� � � next	 �

�� �M��i� � �	

�� � If the dimension less than the previous one

�
 � we can use at most one fewer of it&s knots

�� if
 �i � �previ � � �e � �	

�� � else � �e � �	 �

�� if
�m �
�prevm��e�� �nbelow"
�prevm��e����

�� �nabove"
�prevm��e� � �n � �

�� �M��i� � �	 �nbelow��	 �nabove��	

�� next	

� �

� for
 �j��	 �j��prevm��e	 �j��� �

� if
 �m��j %� �n � � last	 �

 !PrintI
�i��j��m��j�	

� � We need a minimum number of

� � evaluations at this index�

� if
 �nbelow"�j � �nabove"
�j��� �

� �j�� � �m � �n � � next	 �

� !Improved
�m��j��� �j��� �i� �ni���	

� �

�� �M��i� � �	 �nbelow��	 �nabove��	

�� �

�� �

Fig� ��� Recursive basis conversion algorithm generalized to arbitrary degree and dimension�

indices� However� the Barry�Goldman algorithm showed that we need to

Algorithms from Blossoms� U Waterloo� CS������ ��

Sequence of hyper�indices produced by the code of Figure ���
��� ��� ��� ��
 ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

��� ��� ��� ��
 ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

Sequence of hyper�indices produced by the Barry�Goldman algorithm
	Figure ��
�
��� ��� ��� ��
 ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

��� ��� ��� ��
 ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � ��� ��� ��� � ��� ��� ��� ��
 ��� ��� ���

� � � � � � ��� � ��� ��� ��� ��
 ��� ��� ���

Fig� ��� Sequences of hyper�indices of dimension
� degree ��

repeat indices to get an optimal evaluation� The hard part is to control this
repetition� The remainder of this appendix will discuss some issues and ideas
related to this problem� giving a general algorithm that generalizes the Barry�
Goldman algorithm� and is more e�cient than the one in Figure ��� However�
although it is unknown whether or not this generalization is optimal�

The Barry�Goldman algorithm evaluates the blossom at just over half the
indices with one set of knots� and then recursively evaluates at the remaining
arguments� The di�culty in generalizing this idea is that when our domain
is of dimension greater than �� we will need to evaluate the blossom at sets of
arguments where each knot set comprises fewer than half the arguments� For
example� with a domain of dimension �� and degree �� we need to compute
f	a���� a���� a���
�

We can determine� however� the minimum number of times that some
knot set will be evaluated at 	eg�� for dimension �� degree �� one of our knots set
must be used as at least � of the arguments
� Unfortunately� we cannot simply
use this minimum to directly extend the Barry�Goldman algorithm� I�e�� if
we evaluate from one knot set the minimum number� and then recursively
compute the rest of the evaluations� then we run the risk of computing the
same blossom value twice� For example� with a domain of dimension �� and
degree �� we need to evaluate at one knot set at least twice� If we evaluate f at
a��� and a���� and then recursively compute the remaining arguments without
remembering these initial evaluations� we�ll evaluate at f	a���� a���� a���� a���

�� S� Mann

and f	a���� a���� a���� a���
 	among a variety of repeated evaluations
� If we try
to avoid this duplication by only evaluating at each knot set once� then we
produce the algorithm of Figure ���

The approach I took was a brute force combination of the algorithms of
Figures �� and ��� When evaluating at a knot set� we consider two cases
separately� If we evaluate over half the remaining arguments at one knot set�
then we make a recursive call similar to the Barry�Goldman algorithm� If
we evaluate at no more than half the remaining arguments� then we make a
recursive call similar to that of the algorithm in Figure ��� I�e�� in this second
case� in the recursive call� we will make no more evaluations at the knot set
with which we just evaluated at� and we limit the number of times at which
we can use any other knot set to perform the remaining evaluations� The
former case allows us to exploit the savings of Barry and Goldman� while the
latter case avoids multiple evaluations� Some care must be taken in the latter
case when determining the limit on the number of evaluations�

Code for this algorithm appears in Figure ��� Note that the code for
ComputeMin is missing� This min is tricky to compute� as it changes based
on the current knot set we are working with� Instead� I computed a simple
min 	Figure ��
� and used the test on lines �� and �� to adjust this mini�
mum� However� potentially this min will be calculated too low� and cause the
algorithm to perform unnecessary partial evaluations�

A few notes on the algorithm of Figure ��� While it performs fewer eval�
uations than the one in Figure ��� this improvement �rst appears for domains
of dimension �� For such domains� the lowest degree at which this algorithm
is better occurs at degree �� The savings acrued is small� Further� it is un�
clear if the algorithm of Figure �� is optimal� Potentially� another ordering
of the hyper�indices will require even fewer evaluations 	assuming that we re�
quire an algorithm that has only n layers of evaluations between the initial
blossom values and the computed blossom values� otherwise� Goldman�s algo�
rithm� which has 	k��
n layers but requires only k�� complete de Casteljau
computations� is more e�cient
�

Acknowledgments� This work was supported by the Natural Sciences and
Engineering Research Council of Canada�

References

�� Barry� P� J� and R� N� Goldman� Knot insertion algorithms� in Knot
Insertion and Deletion Algorithms for B�spline Modeling� R� N� Goldman
and T� Lyche 	eds
� SIAM� Philadelphia� �� ����

�� DeRose� T� R� Goldman� H� Hagen� and S� Mann� Functional composition
algorithms via blossoming� ACMTrans� on Graphics �� 	����
� ��� ����

�� Farin� G�� Curves and Surfaces for Computer Aided Geometric Design�
Third Edition� Academic Press� NY� �����

�� Liu� W� Programming support for blossoming� The Blossom Classes� dis�
sertation� Univ� Waterloo� Waterloo� �����

Algorithms from Blossoms� U Waterloo� CS������ ��

� !Improved
���n������	

� �M �
�	 � Mark the dimensions we use

 �NM �
�	 � Count how many of each dimension we use

� sub Improved �

� local
�m��max��previ��ni����	

� � m � number of indices selected so far

� � max � the max number of indices we can select

� � previ � the value of the previous index

� � ni � the number of indices eliminated

�� local
�i��j��min��nabove��nbelow�	

�� if
 �m %� �n � � return	 �

�� �min � !ComputeMin
�k��ni��n��m��previ��max�	

�
 �nbelow � �	

�� �nabove � �k��ni	 � Really� this is k�� �ni ��

�� for
 �i��	 �i���k	 �i�� � �

�� local
�e�	

�� if
 �M��i� � � next	 �

�� if
 �i � �previ � � �e � �	

�� � else � �e � �	 �

�� if
�m �
�max��e� �

�� �nbelow"
�max��e��� � �nabove"
�max��e� � �n � �

�� �M��i� � �	 �nbelow��	 �nabove��	 next	 �

�
 for
 �j��	 �j��min��	 �j�� � �

�� !PrintI
�i��NM��i���j��m��j�	 �

�� for
 �j��min��	 �j��max��e	 �j��� �

�� if
 �m��j %� �n � � last	 �

�� !PrintI
�i��NM��i���j��m��j�	

�� � The following test is needed if min too small�

�� if
 �nbelow"�j � �nabove"
�j��� � �j�� � �m � �n��

� next	 �

� if
 �j�� % int

�n��m�$�� !! �j�� �� �max� �

� �NM��i� �� �j��	

 !Improved
�m��j��� �j��� �i� �ni�	

� �NM��i� �� �j��	

� last	

� � else �

� �M��i� � �	 �NM��i� �� �j��	

� !Improved
�m��j��� �j��� �i� �ni���	

� �NM��i� �� �j��	 �M��i� � �	

�� �

�� �

�� �nbelow��	 �nabove��	

�
 �

�� �

Fig� ��� Generalized recursive basis conversion algorithm�

�� S� Mann

� sub ComputeMin �

� local
�nind� �deg� �previ� �max����	

 local
�min�	

� � Compute an approximation to the min for now���

� �min � !Ceil
�deg$
�nind����	

� if
 �min � � � � �min � �	�

� return �min	

� �

Fig� ��� Generalized recursive basis conversion algorithm�

�� Liu� W�� Mann� S�� An optimal algorithm for expanding the composition
of polynomials� submitted for publication� ����� 	�� pages
�

�� Liu� W�� Mann� S�� Programming support for blossoming� in Proceedings
of Graphics Interface ���� 	Toronto
� ����� �� ����

�� Mann� S� and W� Liu� An analysis of polynomial composition algorithms�
University of Waterloo� Computer Science Dept� Report CS������� �����

�� Ramshaw� L�� Blossoming� a connect�the�dots approach to splines� Techn�
Rep�� Digital Systems Research Center� Palo Alto� �����

�� Sablonni�ere� P�� Spline and B�ezier polygons associated with a polynomial
spline curve� Computer�Aided Design �
��� 	����
� ��� ����

��� Seidel� H��P�� Symmetric recursive algorithms for surfaces� B�patches and
the de Boor algorithm for polynomials� Constructive Approximation

	����
� ��� ����

Computer Science Department
University of Waterloo
��� University Ave W
Waterloo� Ontario N�L �G�
Canada
smann�cgl�uwaterloo�ca

