
Robust Numerical Methods

for PDE Models of Asian Options

by

R� Zvan
Department of Computer Science
Tel� ����� ���	
��� ext� �

Fax� ����� ���	����
rzvan�yoho�uwaterloo�ca

P�A� Forsyth
Department of Computer Science
Tel� ����� ���	
��� ext� 

��

Fax� ����� ���	����
paforsyth�yoho�uwaterloo�ca

K� Vetzal
Centre for Advanced Studies in Finance

Tel� ����� ���	
��� ext� ����
Fax� ����� ���	����

kvetzal�watarts�uwaterloo�ca

University of Waterloo
Waterloo� ON

Canada N�L G�



Abstract

We explore the pricing of Asian options by numerically solving the the associated partial
di�erential equations� We demonstrate that numerical PDE techniques commonly used in
�nance for standard options are inaccurate in the case of Asian options and illustrate mod	
i�cations which alleviate this problem� In particular� the usual methods generally produce
solutions containing spurious oscillations� We adapt �ux limiting techniques originally de	
veloped in the �eld of computational �uid dynamics in order to rapidly obtain accurate
solutions� We show that �ux limiting methods are total variation diminishing �and hence
free of spurious oscillations� for non	conservative PDEs such as those typically encountered
in �nance� for fully explicit� and fully and partially implicit schemes� We also modify the van
Leer �ux limiter so that the second	order total variation diminishing property is preserved
for non	uniform grid spacing�



� Introduction

Asian options are securities with payo�s which depend on the average value of an underlying
stock price over some time interval� Such options have proven to be much more di�cult to
value than regular stock options� Standard techniques tend to be impractical� inaccurate� or
slow� For example� traditional binomial lattice methods require such enormous amounts of
computer memory �owing to the necessity of keeping track of every possible path throughout
the tree� that they are e�ectively unusable� Partial di�erential equation �PDE� methods�
as traditionally implemented in the �nance literature� are inaccurate �see Barraquand and
Pudet ������ for a discussion�� Monte Carlo simulation works well for European	style op	
tions �see Kemna and Vorst �������� but is relatively slow� A number of approximations have
appeared in the literature �e�g� Turnbull and Wakeman ������� Vorst ������� Levy �������
Levy and Turnbull �������� which are again suitable only for European	style options� See
also Geman and Yor ������ who derive the Laplace transform of the European option price�
Unfortunately� this transform is very di�cult to invert�

With regard to American	style Asian options� there are even fewer alternatives� Hull and
White ����� propose a modi�cation of the binomial method� but do not provide any proof
of convergence� Neave ����
� uses a frequency distribution approach on a binomial lattice to
derive approximate values for arithmetic average option values� but his method still requires
calculations of order N�� where N is the number of time	steps in the lattice� Barraquand and
Pudet ������ describe a forward shooting grid algorithm and prove that it is unconditionally
convergent� We explore another possibility� a modi�ed �nite di�erence method� In general�
the price of an Asian option can be found by solving a PDE in two space	like dimensions �see
Ingersoll ������ or Wilmott� Dewynne� and Howison ������� This PDE has the character
of a two dimensional convection	di�usion problem with no di�usion in one of the spatial
dimensions� As is well	known in computational �uid dynamics� standard centrally weighted
methods for the convective term are prone to oscillatory solutions� Furthermore� as argued
by Barraquand and Pudet ������� standard �nite di�erence methods �though generally faster
than their proposed algorithm� are inaccurate because they introduce �spurious numerical
di�usion� �p� 
��

In some cases the price of an Asian option can be modeled using a one	dimensional
PDE� The two	dimensional PDE for a �oating strike Asian option can be reduced to a
one	dimensional PDE �see Ingersoll ������ or Wilmott� Dewynne� and Howison ������� Re	
cently� Rogers and Shi ������ have formulated a one	dimensional PDE that can model the
price of both �oating and �xed strike Asian options� However� this PDE applies only to
the case of European	style options and is particularly di�cult to solve numerically since the
di�usion term is very small for values of interest on the �nite di�erence grid�

We demonstrate modi�cations to the common discretization methods which are designed
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to handle these problems� In particular� in both the two	dimensional and one	dimensional
cases it is necessary to solve a problem with little or no di�usion �i�e� second	order deriva	
tive term� in a space dimension� The traditional approach in computational �uid dynamics
would be to use �rst	order upstream weighting for the convective term to eliminate the oscil	
lations caused by centrally weighted schemes �Roache� ������ However� �rst	order upstream
weighting results in solutions with excessive false di�usion� As an alternative� we employ a
high order non	linear �ux limiter for the convective terms� The resulting discrete non	linear
algebraic equations are solved using full Newton iteration� In addition� we can also apply
the American early exercise constraint to the algebraic system� and this can be handled in
an implicit fully coupled manner� In cases where the model cannot be reduced to a problem
in a single space dimension� the full two	dimensional problem must be solved� For exam	
ple� the price of a �xed strike American	style Asian option must be found by solving the
two	dimensional PDE� We apply the above methods �i�e� the �ux limiter and full Newton
iteration� to a full two	dimensional problem� In this case an iterative method� ILU	CGSTAB
�D�Azevedo et al�� ����� van der Vorst� ������ is used to solve the resulting Jacobian matrix�

The outline of the paper is as follows� Section � describes the option pricing models
to be considered� Section  presents a discretization analysis for �nite di�erence methods
as applied to standard options� We concentrate on situations with extremely low volatility
which� as noted above� are analogous to the case of Asian options� We illustrate the types
of problems which can arise with commonly applied methods in �nance and also how our
modi�cations mitigate these di�culties� both in terms of option prices and hedging parame	
ters� Section 
 presents applications to Asian options� and the paper concludes with a brief
summary which is contained in Section ��

� The Models

We adopt the usual geometric Brownian motion model for the evolution of a stock price S�

dS � rSdt� �SdB ���

where r denotes the risk free interest rate� � is the volatility� and dB is a standard Brownian
motion� Under the conventional assumptions of frictionless markets� the value at time t of a
claim contingent on the stock price at subsequent time T may be represented as�

V �S�t�� t� � e�r�T�t� Et �g�S�T �� T �� ���

where g�S�T �� T � denotes the payo� function for the claim and Et denotes expectation
conditional on information available at time t� Familiar examples include European calls
�g�S�T �� T � � max�S�T � � K� ��� and puts �g�S� T � � max�K � S�T �� ��� where K is the
strike price of the option� It is well known that V solves the following PDE�

�V

�t
�
�

�
��S��

�V

�S�
� rS

�V

�S
� rV � � ��
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subject to the appropriate boundary conditions for the call or put� Analytic solutions for
these cases were derived by Black and Scholes ������ The early exercise feature for American
put options can be incorporated by imposing the constraint

V �S�� �� � � � max�K � S�� �� �� �
�

at each point in time � over the life of the option� The hedging arguments underlying ��
are standard and may also be applied in the context of Asian options �see Ingersoll ������
pp� ��	�� for a discussion�� Such options depend on the arithmetic average of the stock
price over some time interval� If we let

I�T � �
Z T

�
S�� �d�

then the average is given by A�T � � I�T ��T � As noted by Ingersoll� the value of an Asian
option is given by the following PDE with two space dimensions�

�V

�t
�
�

�
��S��

�V

�S�
� rS

�V

�S
� S

�V

�I
� rV � �� ���

An equivalent formulation in terms of the average �A� rather than the running sum �I� is
given in equation ��
� of Barraquand and Pudet �������

�V

�t
�
�

�
��S��

�V

�S�
� rS

�V

�S
�
�

t
�S �A�

�V

�A
� rV � �� ���

Again� di�erent terminal boundary conditions may be used to price various di�erent types
of securities� Examples include�

� �oating strike call� g�S�T �� A�T �� T � � max�S�T ��A�T �� ��

� �oating strike put� g�S�T �� A�T �� T � � max�A�T �� S�T �� ��

� �xed strike call� g�S�T �� A�T �� T � � max�A�T ��K� ��

� �xed strike put� g�S�T �� A�T �� T � � max�K �A�T �� ��

The only known analytic solution is for the �xed strike case when K � �� An early
exercise constraint similar to �
� may be applied to value American	style Asian options� It
is important to note that ��� has no di�usion term in the I direction and� similarly� ��� has
no di�usion term in the A direction� This fact is the source of many numerical di�culties
with standard �nite di�erence methods�

As shown by Ingersoll� for �oating strike options ��� may be reduced to a one	dimensional
PDE by making the change of variables R � S�I� This is because the PDE and all of the





relevant boundary conditions are linearly homogeneous in S and I� For �xed strike options�
this homogeneity does not hold for the terminal value and so the reduction cannot be applied�

Analogous to ���� solutions to ��� and ��� may be represented as�

V �S�t�� I�t�� t� � e�r�T�t� Et �g�S�T �� I�T �� T ��

and
V �S�t�� A�t�� t� � e�r�T�t� Et �g�S�T �� A�T �� T �� ���

respectively� Rogers and Shi ������ have recently formulated an alternative PDE based on
the representation ��� and a scaling property of geometric Brownian motion� They de�ne a
new state variable

x �
K �

R t
� S�� ���d� �

St

where � is a probability measure with density ��t� in ��� T �� For a �xed strike option�
��t� � ��T � For a �oating strike option� K � � and ��t� � ��T � 	�T � t�� where 	 is a
delta function� Rogers and Shi show that the value of an Asian option is governed by the
following PDE�

�W

�t
�
�

�
��x�

��W

�x�
� ���t� � rx�

�W

�x
� � ���

The terminal conditions for a �xed strike call and �oating strike put are

W �x� T � � max����x�

and

W �x� T � � max����x� ���

respectively� The price of a �xed strike call with exercise price K and initial stock price
S� is S�W �K

S�
� ��� For a �oating strike put� the price is S�W ��� ��� In this setting� we have

a one	dimensional PDE for both �xed and �oating strike options� However� it cannot be
applied in the case of American	style options �both the original representation ��� and the
density ��t� are de�ned according to exercise occurring only at maturity T ��

Summing up� European	style Asian options may be valued using one	dimensional PDEs�
either in the Rogers and Shi framework �for both �xed and �oating strike options� or after a
change of variables in ��� or ��� �only for �oating strike options�� This change also permits
the pricing of American	style �oating strike options in one	dimension� To value �xed strike
options with early exercise opportunities� we must solve a two	dimensional PDE given by
��� or ����






� Discretization Analysis

Before addressing the issue of discretizing Asian option models� we will examine several
discretization techniques for the Black	Scholes ����� equation� As noted earlier� our main
motivation is to show the types of problems which can arise when standard methods are
used for problems with very low volatility as well as how our modi�cations may be used
to control for these adverse e�ects� Although we demonstrate the problems for out	of	the	
money European call options� the problems are pervasive for Asian option models �in	� at	
and out	of	the	money��

��� European Options

The price of a European option can be determined by solving equation �� subject to the
appropriate terminal and boundary conditions� Equation �� is a backward linear parabolic
equation and may also be referred to as a convection	di�usion equation �Roache� ������ The
value of a European call option can be determined by solving �� subject to the terminal
condition

V �S�T �� T � � max�S�T ��K� ��

and boundary conditions

V ��� t� � � and V �S�t�� t� � S�t��Ke�r�T�t� as S�t����

To value a European put option� equation �� must be solved subject to the terminal condi	
tion

V �S�T �� T � � max�K � S�T �� ��

and boundary conditions

V ��� t� � Ke�r�T�t� and V �S�t�� t� � � as S�t����

The Black	Scholes equation can be converted to a forward equation in time by substi	
tuting t with t� � T � t which evolves from expiration to the present� After performing the
change of variables� equation �� becomes

�V

�t�
�
�

�
��S��

�V

�S�
� ��rS�

�V

�S
� rV� ���

which is in a form that is common in �uid dynamics� The term

�

�
��S��

�V

�S�

�
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Figure �� Schematic representation of the �nite volume method�

is a parabolic di�usion term� The magnitude of the di�usion is given by �
�
��S�� In equation

���

��rS�
�V

�S

is a �rst	order hyperbolic convective term� The convective term propagates information with
a velocity of �rS� Since rS � �� the information �ows from the S �� boundary into the
computational domain� If the velocity term is large compared to the di�usion term� then
equation ��� is said to be convection dominated� Although equation ��� is formally parabolic�
when it is convection dominated the numerical approximation behaves as if it was hyperbolic
and is therefore much harder to solve accurately� For certain path	dependent options� such
as Asian options� the problem of convection dominated PDEs can be especially severe�

Equation ��� can be discretized using the �nite volume approach �see Figure � for a
schematic representation and Roache ������ for a derivation of the method�� The resulting
discretization with temporal weighting for the value at cell i at time	step n � � written in
general form is

V n��
i � V n

i

�t�
� 
F n��

i� �

�

� 
F n��
i� �

�

� 
fn��i

� ��� 
�F n

i� �

�

� �� � 
�F n

i� �

�

� ��� 
�fni � ����

where


 � temporal weighting �� � 
 � ���

Fi� �

�
� �ux entering cell i at interface i� �

� �

Fi� �

�

� �ux leaving cell i at interface i� �
� �

fi � source�sink term�

For a fully	implicit method we let 
 � �� for 
 � �
� we have the Crank	Nicolson method and

for a fully	explicit method we let 
 � �� The R�H�S� of equation ��� collects terms involving
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spatial derivatives into what are referred to in computational �uid dynamics as �ux terms
�denoted by F � and source�sink terms �which do not include spatial derivatives and are
indicated by f�� In particular

F n��
i� �

�

�
�

�Si

�
����

�
��S�

i �
�V n��

i � V n��
i�� �

�Si� �

�

� ��rSi�V
n��
i� �

�

�
� � ����

F n��
i� �

�

�
�

�Si

�
����

�
��S�

i �
�V n��

i�� � V n��
i �

�Si� �

�

� ��rSi�V
n��
i� �

�

�
� ����

and

fn��i � ��r�V n��
i � ���

If we use a point	distributed �nite volume scheme �i�e� cell interfaces are midway between
adjacent nodes�� then

�Si �
Si�� � Si��

�

and

�Si� �

�
� Si�� � Si

in equation �����

Note that the �ux functions ���� and ���� allow for non	uniform grid spacing� Thus� we
can construct grids which will make the numerical computations more e�cient by having a
�ne grid spacing near and at the exercise price and a coarse grid away from the exercise price�

We will �rst examine handling the convective term V n��
i� �

�

in equation ���� using the

following central weighting scheme

V n��
i� �

�

�
V n��
i�� � V n��

i

�

which has second	order accuracy for uniform grids� To ensure that solutions produced using
central weighting are free of spurious oscillations� we must satisfy the Peclet condition �Shyy�
���
�

�

�Si� �

�

�
r

��Si
��
�

and the additional condition

�

��� 
��t�
�

��S�
i

�

�
� �

�Si� �

�

�Si
�

�

�Si� �

�

�Si

�
A � r ����
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for all cells i� For a precise de�nition of �spurious oscillations�� and a derivation of ��
� and
����� refer to Appendix A�

When equation �� is convection dominated �i�e� when r is large relative to �� the grid
spacing necessary to satisfy conditions ��
� and ���� becomes prohibitively �ne� Note that
if S� � �� then �Si� i

�

� Si at i � � in equation ��
�� Thus� equation ��
� at i � � becomes

�

S�
�

r

��S�
� ����

Condition ���� implies that ��

r
� �� which may not be satis�ed� independent of how �ne a

grid spacing is used� However� this does not present a problem in practice since the convec	
tive �ux leaving cell � is very small because the velocity is only �rS��

Figure � contains plots of the price� delta� and gamma of a European call with one year
to maturity when K � ��� r � ���� and � � ����� The value was calculated using the
Crank	Nicolson method with a uniform grid spacing of �S � ��� and �t� � ����� and cen	
tral weighting for the convection term� The solution is oscillatory because the grid spacing
violated the Peclet condition� Although the oscillations are small for the option value� they
increase signi�cantly for the sensitivities� Such an interest rate�volatility structure is clearly
unrealistic� However� this example was chosen because� in general� the price of a continu	
ously averaged Asian option can be modeled by a two	dimensional PDE with no di�usion in
one of the dimensions� Hence� this choice of parameters serves to illustrate the di�culties
involved in solving Asian option problems�

It is sometimes suggested in the �nance literature that a log transform be performed on
the Black	Scholes equation �Brennan and Schwartz� ����� Hull and White� ������ Brennan
and Schwartz obtained

�V

�t
�
�

�
��
��V

�y�
� �r �

�

�
���

�V

�y
� rV � �� ����

after performing the following substitution of variables y � ln�S� in equation ��� Using the
�nite volume discretization ���� after converting equation ���� to a forward PDE� the �ux
function becomes

F n��
i� �

�

�
�

�yi

�
����

�
���

�V n��
i�� � V n��

i �

�yi� �

�

� ��r �
��

�
�V n��

i� �

�

�
� �

The log transformed PDE has the convenient property that the convection and di�usion
coe�cients are constant� which simpli�es the numerical solution somewhat� Brennan and
Schwartz state that explicit methods are generally unstable when applied to equation ��
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Figure �� European call price� delta� and gamma when K � ��� r � ����� � � ���� and
T � t � ���� Calculated using central weighting with �S � ���� �t� � ���� and 
 � �

� �
Plotted against the Black	Scholes analytical solution�
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directly� and that the log transformation allows for the direct application of explicit methods
to equation ����� These statements are� in fact� somewhat misleading� If one ensures that the
conditions ��
� and ���� are met� a fully explicit method will be stable and free of oscillations
when solving ��� Conditions must also be met to prevent spurious oscillations when the
transformed PDE is being solved� For equation ���� we must meet the Peclet condition

�

�yi� �

�

�

���r � ��

�

���
��

����

and the additional condition

�

�� � 
��t�
�

��

�

�
� �

�yi� �

�

�yi
�

�

�yi� �

�

�yi

�
A � r� ����

Notice that for the log transformation conditions ���� and ���� are constant for uniform grid
spacings� unlike conditions ��
� and ���� which vary over the grid for equation ��� The
log transformation appears to eliminate the problem of not being able to satisfy the Peclet
condition ��
� as S � � if ��

r
� �� when the PDE is posed in the �S� t� domain� However� the

log transformation e�ectively does not solve the problem as S � � since this would imply
that y� ��� Of course� in practice this problem is avoided because a �nite computational
domain is used� It is also interesting to note that the e�ective �S spacing is very small
for small values of y� Figure  demonstrates that oscillations can also occur when the log
transformed equation is solved using a centrally weighted convection scheme� and conditions
���� and ���� are not met�

The Peclet condition ��
� can be re	written as

�rSi��Si� �

�

�
��

�S�
i

� �� ����

where the L�H�S� is the cell Peclet number �Shyy� ���
�� If the grid spacing is not su�ciently
�ne when the convection term dominates the di�usion term �i�e� when r is large relative to
��� the cell Peclet number will exceed condition ����� To eliminate the need for excessively
�ne grid spacing the true di�usion can be augmented by additional numerical di�usion� One
approach to supplement the true di�usion with numerical di�usion which has been used in
computational �uid dynamics is �rst	order upstream weighting �Roache� ������

The �rst	order upstream weighting scheme for equation ��� is

V n��
i� �

�

� V n��
up �

	
V n��
i if �rS � ��

V n��
i�� otherwise

��
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Figure � European call price� delta� and gamma when K � ��� r � ����� � � ���� and
T � t � ���� Log transformed PDE solved using central weighting with �y � ������
�t� � ���
 and 
 � �

�� Plotted against the Black	Scholes analytical solution�
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in equation ����� In this case� since rS � �� V n��
up � V n��

i�� � Conversely� V
n��
i is termed the

downstream value� Upstream weighting corresponds to a �uid �ow problem� where informa	
tion should only �ow from upstream to downstream cells�

The arti�cial di�usion is introduced through the truncation error of the one	sided di�er	
encing �Roache� ������ The scheme is �rst	order accurate for uniform grids� The accuracy
deteriorates for non	uniform grids because the discretization does not produce true one	sided
di�erences� This was not an issue for our examples� which used uniform grids� To prevent
oscillations from forming when upstream weighting is used we must meet only the following
condition

�

��� 
��t�
�

��S�
i

�

�
� �

�Si� �

�
�Si

�
�

�Si� �

�
�Si

�
A� rSi

�Si
� r� ����

The derivation of ���� is analogous to the derivation of ��
� and ���� in Appendix A� Figure

 demonstrates how the solutions are no longer oscillatory� Unfortunately� it is also apparent
that �rst	order upstream weighting produces solution pro�les that are too di�use�

To produce oscillation free solutions without the excessive di�usion of �rst order upstream
weighting we examined the non	linear van Leer �ux limiter �Sweby� ���
� Blunt and Rubin�
������ For the van Leer �ux limiter

V n��
i� �

�

� V n��
up �

�qn��
i� �

�

�

�
�V n��

down � V n��
up � ����

in equation ����� where

qn��
i� �

�

�
V n��
up � V n��

�up

S�up � Sup
�
V n��
down � V n��

up

Sup � Sdown
���

�this formulation allows for non	uniform grids� refer to Appendix C for a derivation� and
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����� qn��
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�

� �
����qn��i� �
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�

In equation ��� V n��
�up is the second upstream point� That is� if V n��

i�� is the upstream
point to node i� then V n��

i�� is the second upstream point� Conceptually� the scheme only
adds numerical di�usion at points where the gradient is steep� The scheme is second	order
accurate away from regions which are augmented by numerical di�usion� and has the property
that it is total variation diminishing �TVD�� A scheme is TVD when

TV �V n��� � TV �V n��
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Figure 
� European call price� delta� and gamma when K � ��� r � ����� � � ���� and
T � t � ���� Calculated using �rst	order upstream weighting with �S � ���� �t� � ����
and 
 � �

� � Plotted against the Black	Scholes analytical solution�
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where TV �V n��� is the total variation of the solution and is de�ned as

TV �V n��� �
X
i

���V n��
i�� � V n��

i

��� �
Thus� if a scheme is TVD the solution cannot contain oscillations� otherwise the total varia	
tion would increase� Stability and convergence proofs of TVD methods for conservation laws
can be found in LeVeque ������� An important component in convergence proofs is a bound
on the variation of the solution �Sweby� ���
�� In Appendix B we show that these methods
are also TVD for non	conservative PDEs� such as equation ��� For a detailed analysis of the
TVD conditions for equation ����� refer to Appendix C� Note that if a limiter is not used�
as in Dewynne and Wilmott ������� then the solution cannot be guaranteed to be oscillation
free unless the grid is very �ne�

Figure � demonstrates that the van Leer �ux limiter produced oscillation free solutions
without the excessive smearing of �rst	order upstream weighting� Since the �ux limiter is
non	linear the solutions were obtained using full Newton iteration� The van Leer �ux limiter
should be used with the Crank	Nicolson method when equation �� is convection dominated�
In this situation� a fully	implicit method generates a smeared solution� as Figure � illustrates�
This is due to the fact that the Crank	Nicolson method is second	order accurate in time�
while the fully	implicit method is only �rst	order accurate in time�

��� American Options

The value of an American put option must meet the condition

V �S�� �� � � � max�K � S�� �� �� ��
�

at all points in time � over the life of the contract� Wilmott� Dewynne and Howison �����
have shown that an American option can be valued by solving

�V

�t
�
�

�
��S��

�V

�S�
� rS

�V

�S
� rV ����

subject to constraint ��
�� If we consider solving the discrete system with two unknowns at
each node�  n��

i and V n��
i where V n��

i is the value of the American option� then equations
��
� and ���� can be posed in discrete form as

 n��
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Figure �� European call price� delta� and gamma when K � ��� r � ����� � � ���� and
T � t � ���� Calculated using the van Leer �ux limiter with �S � ���� �t� � ���� and

 � �

�
� Plotted against the Black	Scholes analytical solution�
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Figure �� European call price� delta� and gamma when K � ��� r � ����� � � ���� and
T � t � ���� Calculated using the van Leer �ux limiter with �S � ���� �t� � ���� and

 � �� Plotted against the Black	Scholes analytical solution�
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K Months Binomial Van Leer
� ���� ����

� 
 ���� ����
� ���� ����

� ��� ���

� 
 ��
� ��
�

� ��� ���

� ���� ����

� 
 ���� ����

� ���
 ���

Table �� American put values when r � ���� and � � ��� The van Leer limiter was used
with 
 � �

�� �t
� � ������ and a non	uniform spatial grid with �S � ��� near and at the

exercise price� The binomial results were obtained from Geske and Shastri �������

where for a put option

V n��
i � max� n��

i �K � Si� �� ����

Note that the L�H�S� of equation ���� can be written as

V n��
i � V n

i

�t�
�
 n��
i � V n��

i

�t�

and since by ����

 n��
i � V n��

i

�t�
� ��

Thus� equation ���� is a discrete form of the inequality �����

If the system is non	linear� the constraint is applied at each Newton iteration� Table
� contains results obtained using the constraint in an implicit fully coupled manner with
the van Leer limiter to price American put options� As the table demonstrates� the prices
generated are virtually identical to those produced by the binomial method�

The traditional approach seen in the �nance literature when using PDEs to value Amer	
ican options is to apply the American constraint explicitly �Brennan and Schwartz� �����
Geske and Shastri� ����� Hull� ����� That is� equation �� is solved and after each time	step
the constraint is applied to the solution� This di�ers from the implicit fully coupled method
which solves equation ���� directly� However� we only noticed di�erences in the rate of con	
vergence for large time	steps� That is� the implicit application of the constraint required
fewer non	linear iterations when the time	step was large� These time	steps were too large to

��



achieve convergence to an accurate solution� For suitable time	steps� we found no di�erence
in the rate of convergence� Thus� in a practical sense� there is no di�erence between applying
the constraint implicitly or explicitly� Although we have never experienced stability prob	
lems using practical time	step sizes� there is always a possibility that the explicit application
of the constraint will lead to instability� Consequently� we will apply the American con	
straint implicitly� The additional computational cost of applying the constraint implicitly is
negligible�

� Continuous Arithmetic Asian Options

Based on the results from section � we will now examine treating convection using the van
Leer �ux limiter in discretizations of one	 and two	dimensional PDE models of Asian options�

��� One�Dimensional Models

One	dimensional models for pricing continuously averaged arithmetic Asian options have
been derived by Ingersoll ������ and Rogers and Shi ������� The Ingersoll model cannot be
used to price �xed strike options� However� it can be used to price American	style �oating
strike options �Wilmott et al�� �����

Although the Rogers and Shi ������ model cannot handle the early exercise feature� it can
be used to price both �oating and �xed strike options� Consequently� we chose to examine
this model� After converting ��� to a forward equation� we have the following �ux function

F n��
i� �

�

�
�

�xi

�
����

�
��x�i �

�W n��
i�� �W n��

i �

�xi� �

�

� ��n�� � rxi�W
n��
i� �

�

�
�

and source term fn��i � �� It should be noted that x will take on negative values and thus�
��n��� rxi� may take on both negative and non	negative values� The discretization of W

n��
i� �

�

must take this into account�

Tables � and  contain the results obtained by using the van Leer �ux limiter to value
�xed and �oating strike Asian options� respectively� Rogers and Shi ������ examined a num	
ber of di�erent volatility�interest rate structures� Tables � and  contain only the results
for r � ����� their most di�cult case� Note that the time	step size for these examples was
selected on the basis of several trial runs� which indicated that decreasing the time step size
further had no discernible e�ect on the results to four signi�cant �gures�

The results demonstrate that su�ciently accurate values can be obtained for most volatil	
ities in under an average of �� seconds for both �xed and �oating strike Asian options� Suf	
�ciently accurate results were obtained for all volatilities in under an average of �� seconds�

��
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Table �� Fixed strike Asian call values when r � ����� S� � ��� and T � t � �� The van
Leer limiter was used with 
 � �

�
and �t� � ������� A non	uniform spatial grid was used�

where �x denotes the spacing in the region ������� ������ Mean execution times are for runs
performed on a DEC Alpha� The bounds were obtained from Rogers and Shi �������

By su�ciently accurate� we mean that the values are no more than ����! of S� outside of
the bounds derived by Rogers and Shi� It should be noted that equation ��� will become con	
vection dominated as x� �� and for short maturities since ��t� � �

T
or ��t� � �

T
� 	�T � t��

Although Tables � and  do not contain results for short maturity options� we will see in
section 
�� �see Table 
� that accurate results can be obtained for short maturities using the
van Leer limiter�

Figure � compares results that we obtained using the van Leer limiter and a centrally
weighted scheme with Rogers and Shi�s ������ results which were obtained using the method
of lines� The same coarse spatial grid was used for all the PDE runs� Note that the discretiza	
tion which uses the van Leer limiter converges more rapidly than either central weighting
or the method of lines� For this low volatility case the bounds that Roger and Shi derived
are very tight� In fact� the bounds were plotted as cross hairs because the upper and lower
bounds appear at the same point when plotted� It is interesting to note that sophisticated
PDE methods must be used if the problem is convection dominated� while the PDE problem
is easily solved when the volatility is large�
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Table � Floating strike Asian put values when r � ����� S� � ��� and T � t � �� The van
Leer limiter was used with 
 � �

� and �t
� � ������� A non	uniform spatial grid was used�

where �x denotes the spacing in the region ������� ������ Mean execution times are for runs
performed on a DEC Alpha� The bounds were obtained from Rogers and Shi �������

Central Weighting

Rogers & Shi     

Bounds           

0.94 0.96 0.98 1 1.02 1.04 1.06
0

1

2

3

4

5

6

7

8

x

C
al

l V
al

ue

Van Leer    

Rogers & Shi

Bounds      

0.94 0.96 0.98 1 1.02 1.04 1.06
0

1

2

3

4

5

6

7

8

x

C
al

l V
al

ue

Figure �� Fixed strike Asian option values when r � ����� � � ���� and T � t � ���� Note
that at the point in time plotted on the graphs� x � K

S�
� The solutions were computed using

central weighting and the van Leer �ux limiter with �x � ������ �t� � ������ and 
 � �
�
�

The Rogers and Shi ������ results were calculated using the method of lines� The bounds
were obtained from Rogers and Shi�

��



��� Two�Dimensional Models

When American	style �xed strike Asian options are to be priced� we cannot use the one	
dimensional models outlined in section 
�� �Wilmott et al�� ���� Barraquand and Pudet�
������ In these cases a full two	dimensional PDE must be solved� We chose to examine
equation ��� because numerical experiments using equations ��� and ��� indicated that fewer
nodes were needed to achieve equivalent accuracy for equation ��� when compared to ����
This was due to the fact that the signi�cant part of the computational domain appears to
be smaller for formulations using the average as opposed to the running sum� One may note
that at t � � a singularity exists in equation ��� because of the �

t
�S �A��V

�A
term� However�

this can be avoided if we assume that S � A at t � �� Thus� equation ��� simply becomes
the Black	Scholes equation at t � ��

After converting equation ��� to a forward PDE� the �nite volume discretization is

V n��
i � V n

i

�t�
� 
F n��

i� �

�
�j
� 
F n��

i� �

�
�j

� 
F n��
i�j� �

�

� 
F n��
i�j� �

�

� 
fn��i�j

� �� � 
�F n

i� �

�
�j
� ��� 
�F n

i� �

�
�j

� �� � 
�F n
i�j� �

�

� ��� 
�F n
i�j� �

�

� �� � 
�fni�j �

where

F n��
i�j� �

�

�
�

�Ai�j



�

t
�Ai�j � Si�j�V

n��
i�j� �

�

�
�

As was the case in section 
��� in order to ensure that the upstream points are de�ned ap	
propriately the discretization of V n��

i�j� �

�

using the van Leer limiter must take into account the

fact that �
t
�Ai�j � Si�j� will take on negative and non	negative values� Also� if at jmax there

exist Ai�jmax which are less than Si�jmax� then an appropriate boundary condition must be
imposed at those points� F n��

i� �

�
�j
and fn��i�j are similar to ���� and ���� respectively�

Since the PDE is two	dimensional� we used incomplete LU decomposition and the stabi	
lized conjugate gradient method �ILU	CGSTAB� to solve the resulting system of equations
�D�Azevedo et al�� ����� van der Vorst� ������ We also incorporated a time	step selector
�Forsyth and Sammon� ����� into our solver�

We found that the quality of the solution for certain terminal conditions is highly depen	
dent upon the grid spacing� We conjecture that the problem arises because equation ��� is
similar to the turning point problem� which has known di�culties �Ascher et al�� ����� Tang�
������ This is only an issue in the case of European �oating strike calls and puts� One must
ensure that the S � A aspect ratio for grid spacings used in these cases is always k � �� where

��
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Figure �� American �xed strike call value when K � ���� r � ����� � � ����� and T � t �
����� Calculated using the van Leer �ux limiter with 
 � �

�
�

k is an arbitrary integer greater than or equal to �� If one is interested in the values and
sensitivities over a large region of the grid� it would be best to use a uniform grid spacing
in the A dimension that achieves su�cient accuracy� We emphasize� however� that this is	
sue is easily avoided entirely since these cases can be handled using a one	dimensional model�

Tables 
� � and � contain the results of using the van Leer �ux limiter to solve equation
���� Table 
 contains the results for European and American �xed strike call options� The
results for zero strike Asian call options� which have an analytical solution� are contained in
Table �� Table � contains the results for European and American �oating strike puts� The
parameters were chosen to allow a comparison with Barraquand and Pudet�s ������ results�
The grid spacing was chosen to achieve an accuracy of at least ����! of S�� To determine
the accuracy� the computed lower bound and the solution �using a �ne grid� to the one	
dimensional Roger and Shi ������ model were taken to be the true solutions� Figures � and
� are plots of an American �xed strike call and American �oating strike put� respectively�

Barraquand and Pudet ������ correctly observe that an explicit centrally weighted scheme
for equation ��� is unstable� Note that equation ��� is convection dominated in the A di	
rection because there is no di�usion e�ect in this dimension� In particular� the convective
term in the A dimension becomes very large as t� �� Barraquand and Pudet also note that
implicit centrally weighted schemes will generally produce unsatisfactory results because of
the numerical di�usion introduced by this �rst	order accurate in time scheme� More im	

��
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Table 
� American and European �xed strike call values when r � ���� and S� � ����
Lower and �	D refer to the Rogers and Shi ������ lower bound and one	dimensional PDE�
respectively� B " P refers to the results obtained by Barraquand and Pudet ������� �	D
refers to the value obtained by solving the two	dimensional PDE using the van Leer limiter
with 
 � �

� and a non	uniform spatial A x S grid of 
� x 
�� �t� was set to one day� two days
and three days for maturities of three� six and twelve months� respectively� Mean execution
times are for runs performed on a DEC Alpha�
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Table �� Analytic and numerical solution of the two	dimensional PDE model for the zero
strike Asian call when r � ���� and S� � ���� The van Leer limiter was used with 
 � �

�

and a non	uniform spatial A x S grid of 
� x 
�� �t� was set to one day� two days and three
days for maturities of three� six and twelve months� respectively� The Analytical results were
obtained from Barraquand and Pudet �������
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Table �� American and European �oating strike put values when r � ���� and S� � ����
Lower and �	D refer to the Rogers and Shi ������ lower bound and one	dimensional PDE�
respectively� B " P refers to the results obtained by Barraquand and Pudet ������� �	D
refers to the value obtained by solving the two	dimensional PDE using the van Leer limiter
with 
 � �

� and a non	uniform spatial A x S grid of 
� x 
�� �t� was set to one day� two days
and three days for maturities of three� six and twelve months� respectively� Mean execution
times are for runs performed on a DEC Alpha�
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Figure �� American �oating strike put value when r � ����� � � ����� and T � t � �����
Calculated using the van Leer �ux limiter with 
 � �

�
�

portantly� Barraquand and Pudet fail to mention that solutions generated using a centrally
weighted scheme for equation ��� cannot be ensured to be free of oscillations� For example�
Figure �� demonstrates the severe oscillations that resulted from pricing a European	style
�xed strike call option using central weighting� The grid spacing used was identical to that
used to obtain our results with the van Leer limiter� Using the van Leer �ux limiter in
conjunction with the Crank	Nicolson scheme gives us a method that is oscillation free and
second	order accurate in time� The careful reader will note that as t � � the CFL condi	
tions established in Appendix C cannot be satis�ed� However� this does not appear to have
a�ected the quality of our results� If one wanted to ensure that the method was TVD even
as t � �� the �ux in the A direction can be switched from a Crank	Nicolson scheme to a
fully implicit scheme for speci�c cells when the CFL condition is violated� Although this will
result in additional numerical di�usion� we found that the values di�ered by no more than
#���� from the results reported here�

Barraquand and Pudet ������ state that because the correlated variables A and S are
taken to be independent in equation ���� numerical schemes for solving equation ��� will not
necessarily converge to a solution� However� as the results in Tables 
� � and � demonstrate�
we did not experience any failures to converge to an appropriate solution during our study�
A stronger demonstration of convergence using successive grid re�nements is contained in
Table ��

��
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Figure ��� European �xed strike call option when K � ���� r � ����� � � ����� and
T � t � ����� Calculated using central weighting with 
 � �

� �

K Spatial Grid �A x S�

� x 
� �� x �� ��� x ���

�� ����� ��
�� ��
��
European ��� ����� ���� ����

��� ����� ����� �����

�� ����� ��
�
 ��
��
American ��� ���
 ���� ����

��� ����� ���� �����

Table �� Successive grid re�nements demonstrating the convergence of the two	dimensional
PDE for a �xed strike Asian option when S� � ���� r � ����� � � ���� and T � t � �����
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T	t Mean Exec� Time �sec��
B " P �	D �	D

��� � 
 

��� �
 � ��
��� 
�� �� ���

Table �� Mean execution times for obtaining European �xed strike call values� B " P refers to
the forward shooting grid algorithm� �	D and �	D refer to results of similar accuracy obtained
using one	dimensional and two	dimensional PDEs� respectively� Runs were performed on a
DEC Alpha�

The results in Tables 
� � and � demonstrate that the desired level of accuracy of ����!
of S� can be obtained in all cases in under an average �for all maturities considered� of �
seconds� We implemented Barraquand and Pudet�s ������ forward shooting grid algorithm
and found that the desired level of accuracy could be obtained in under an average �for all
maturities considered� of � seconds� More speci�cally� �� time	steps were required for the
three and six month maturities using time	step sizes of one and two days� respectively� The
average time required for �� time	steps was under �� seconds� Although the parameters were
the same as those used by Barraquand and Pudet� our time of �� seconds is slightly higher
than the Barraquand and Pudet result of �� seconds� By performing the runs on a di�erent
DEC Alpha from the one used for our analysis� we were able to obtain an average time of ��
seconds� For the one year maturity with a time	step size of three days� ��� time	steps were
required� In this case the average time required was under �
 seconds�

The substantial increase in time required is due to the fact that the forward shooting
grid algorithm has a time complexity of O�N��� where N is the number of time	steps� For a
given grid size� the time complexity for a PDE method is linear� that is O�T �� Thus� as the
number of required time	steps increases� the time required for the Barraquand and Pudet
algorithm will grow dramatically� Table � demonstrates the cubic time complexity of the
forward shooting grid algorithm and the linear time complexity �for a given grid size� of
PDE methods� For example� to value a two year �xed strike call option with a time	step size
of three days required an average of 
�� seconds using the Barraquand and Pudet algorithm�
This compares to an average of ��� seconds for the two	dimensional PDE and �� seconds for
the one	dimensional PDE� Both methods have polynomial spatial complexities with degrees
�of two for the one asset case� that grow with the number of assets� and thus can only be
used to solve problems with a low number of spatial dimensions�

��



� Conclusions

The naive application of central di�erences to the numerical treatment of certain partial dif	
ferential equations can result in a number of di�culties� We have demonstrated that treating
convection using central di�erences in the discretization of PDEs with low di�usion relative
to convection� such as Asian option models� can produce solutions containing spurious os	
cillations� As noted by Barraquand and Pudet ������� explicit centrally weighted schemes
are unstable when applied to equations ��� and ���� Furthermore� one cannot ensure that
implicit centrally weighted schemes will be free of oscillations when applied to equations ���
and ����

To remedy the problem of spurious oscillations produced by centrally weighted schemes
while still maintaining high order accuracy� we employed the use of a high order �ux limiter�
We treated convection using the second	order accurate van Leer �ux limiter� The limiter is
second	order accurate away from regions with steep gradients where it augments the true
di�usion with numerical di�usion� The van Leer limiter has the property that it is total
variation diminishing and thus produces oscillation free solutions� Using the van Leer lim	
iter in conjunction with the Crank	Nicolson scheme gives us a method that is second	order
accurate in time and oscillation free�

We have demonstrated that the application of the van Leer limiter to one	dimensional
Asian option models �European and American �oating strike� and European �xed strike�
leads to the rapid computation of accurate solutions �i�e� within an average of �� seconds
for most volatility�interest rate structures for maturities of up to one year�� For the most
extreme volatility�interest rate structures an accurate solution can be obtained within an
average of �� seconds� When the full two	dimensional model must be used� as is the case
for American �xed strike options� the computation time naturally increases� However� ac	
curate solutions can be computed in under an average of � seconds �DEC Alpha� for the
maturities that we considered� Accurate solutions were obtained for both European	 and
American	style Asian options using the two	dimensional model�

PDE methods have O�nd� spatial complexities� where n is the number of cells in a di	
mension and d is the number of dimensions� Thus� PDE methods can only be used to solve
problems with a low number of spatial dimensions� This is also the case for Barraquand and
Pudet�s ������ forward shooting grid algorithm� However� the forward shooting grid algo	
rithm has a cubic time complexity compared to the linear time complexity of PDE methods�
Thus� the forward shooting grid algorithm is less desirable for large numbers of time	steps�
For example� the pricing and hedging of long	term �e�g� � year� Asian options is a problem of
practical interest to insurance companies selling guarantees on investment annuity products�

The application of the van Leer limiter is not limited only to PDE pricing models for

��



Asian options� It can be applied to other �nancial PDE models that have the problem of
convection dominance� Furthermore� since the method is non	linear it can be easily extended
to solve non	linear option models such as that of Peszek �������

Appendices

A Prevention of Spurious Oscillations

In this appendix we will derive the conditions under which centrally weighted schemes for
equation ��� will not produce spurious oscillations� The same arguments can be used to
derive conditions for other schemes� such as� �rst	order upstream weighting�

Using the point	distributed �nite volume discretization
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After incorporating a temporal weighting factor� 
 �where 
 � � is a fully implicit scheme�
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� is the Crank	Nicolson method and 
 � � is a fully explicit scheme�� equation ����
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Regrouping terms in equation ���� gives
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In order to isolate the behavior of the solution from the spatially independent exponential
decay �which is due to the �rV term in equation ����� we will eliminate the exponential
decay term by substituting
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Condition ��� is also known as the Peclet condition� Note that if condition ��� is met�
then both �
� and ��� will be satis�ed� We also must meet the additional condition
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If conditions ��� and ��� are met� then all the coe�cients of � in �� are positive and we
can employ the maximum principle� By de�ning �max
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Thus�

�n��
i � �max

i � �
��

Similarly� if we employ the minimum principle by de�ning

�min
i � min��n

i��� �
n
i � �

n
i��� �

n��
i�� � �

n��
i�� ��

then

�n��
i � �min

i � �
��

Hence� �
�� and �
�� imply that no new local maxima or minima can occur in the numerical
solution for �n��

i � which is a precise de�nition of a non	oscillatory solution� Since V n��
i �

�n��
i

�
�������r	t�

���r	t�

�n
and � � �� � 
�r�t� by condition ���� the solution for V n��

i is �n��
i

multiplied by a spatially independent positive decay term� Thus� the solution for V n��
i will

not contain spurious oscillations if conditions ��� and ��� are met�

B TVD Schemes for PDEs in Non�Conservative Form

Flux limiting schemes are often expressed as fully explicit schemes in the literature �van
Leer� ���
� Sweby� ���
� for PDEs that are in the following form

�V

�t
� �

��aV �

�S
� �
��

where a is the convective velocity� Equation �
�� is said to be in conservative form� Blunt
and Rubin ������ have shown that partially implicit and fully implicit schemes are TVD for
conservative equations� In this appendix we will show that fully explicit� partially implicit
and fully implicit �ux limiting schemes are TVD for PDEs in non	conservative form� and
derive the criteria under which these schemes are TVD� The arguments are similar to those
found in Blunt and Rubin �������

Consider the scalar convection equation

�V

�t
� �a�S�

�V

�S
� �
�

�



which is in non	conservative form� We make the simplifying assumption that we are solving
�
� on an in�nite region� so that the e�ect of boundary conditions may be ignored� This
assumption is usually made in TVD analysis �Sweby� ���
� Blunt and Rubin� ������ For �ux
limiting schemes� V n��

i� �

�

is often expressed as �Blunt and Rubin� ����� Yang and Przekwas�

�����

V n��
i� �

�

� V n��
up �

�qn��
i� �

�

�

�
�V n��

down � V n��
up �� �

�

where �qn��
i� �

�

� is the limiter function and

qn��
i� �

�

�
V n��
i � V n��

i��

V n��
i�� � V n��

i

� �
��

Using a �ux limiting scheme� the fully implicit �nite volume discretization of �
� for a � �
is

V n��
i � V n

i

�t
�

ai
�Si

�
�V n��
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�qn��
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�
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�
�

�
ai
�Si

�
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�

�

�
�V n��
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i �

�
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Simplifying

V n��
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i �
ai�t

�Si

�
��V n��
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�V n��
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�
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�
� �

which is equivalent to

V n��
i � V n

i � ��i�V
n��
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�
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�
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where �i �
ai	t

	Si
and �V n��

i�� � �V n��
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i�� �� Noting that q
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�
V
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i

�V
n��
i��
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Incorporating a temporal weighting factor� 
 �where 
 � � is a fully implicit scheme and

 � � is a fully explicit scheme��

V n��
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i � ��i�V
n��
i�� 
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Similarly�
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Letting
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�
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�
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�
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� �

then equations �
�� and �
�� can be written as

V n��
i � V n

i � �cn��i���V
n��
i�� � cni���V

n
i�� �
��

and

V n��
i�� � V n

i�� � �c
n��
i �V n��

i � cni�V
n
i � �
��

respectively� Subtracting �
�� from �
��

�V n��
i ��V n

i � �cn��i �V n��
i � cni�V

n
i � cn��i���V
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If we impose that

� � cni � � ����

and
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for all i� then
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Summing over all i and noting that
P

i c
n
i j�V

n
i j �

P
i c

n
i��

����V n
i��

��� gives us
X
i

����V n��
i

��� �X
i

j�V n
i j �

Thus� the scheme will be TVD if conditions ���� and ���� are met� Hence� we require that

� � �i��� 
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�
�� � �qn
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�
�
�qn

i� �

�

�

�qn
i� �
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and
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��� �qn��
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�

�

�
�
�qn��

i� �

�

�

�qn��
i� �

�

�
� � � ���

for all i and n� for the scheme to be TVD� Fully implicit �i�e� 
 � �� �ux limiting schemes
will be TVD if we ensure that condition ��� is met� If in addition to condition ��� we
ensure that condition ���� is met� then fully explicit �i�e� 
 � �� and Crank	Nicolson �i�e�

 � �

�
� �ux limiting schemes will be TVD� Thus� if conditions ���� and ��� are satis�ed�

the scheme will be TVD for non	conservative PDEs� In fact� these conditions are similar to
those required to ensure that �ux limiting schemes are TVD for PDEs in conservative form
�Blunt and Rubin� ������ Note that equation �
�� does not contain a di�usion term� thus
the conditions will be overly stringent for equations such as ����

C The Flux Limiter Function

In this appendix we will �rst examine the properties that �ux limiter functions� � possess
for uniform grids� We will then modify the van Leer �ux limiter function to account for
non	uniform grids� The analysis for uniform grid spacing is similar to that in Blunt and
Rubin ������� We include the analysis for uniform grids in order to provide the reader with
su�cient background to understand the analysis for non	uniform grid spacing� The exami	
nation of �ux limiter functions for non	uniform grids has not� to the best of our knowledge�
appeared in the literature� As in Appendix B� the results in this appendix will pertain to
scalar convection PDEs� such as� equations �
�� and �
�� However� the results can be ex	
tended to other PDEs� such as� equation ����

For simplicity and clarity we may at times omit superscripts and�or subscripts when
referring to the �ux limiter argument �i�e� q� de�ned in equation �
�� and node values�

�



C�� Uniform Grid Spacing

In appendix B we derived conditions ���� and ��� which �ux limiting schemes must meet

in order to be TVD� If we impose the conditions �q� � � and ��q�
q
� �� then condition ���

can be restated as �
� �

�q�

�


� �� ��
�

Thus� if

� � �q� � � ����

then condition ��
� will be satis�ed and fully implicit �i�e� 
 � �� �ux limiting schemes will

be TVD� Noting that �q� � � and ��q�
q
� �� then condition ���� can be restated as

�

�
� �� � 
�

�
� �

�q�

�q


� ����

where �� de�ned in Appendix B� is the CFL number �Roache� ����� Shyy� ���
�� If

� �
�q�

q
� �� ����

then condition ���� will be satis�ed for fully explicit schemes �i�e� 
 � �� when � � �
�� For

Crank	Nicolson schemes �i�e� 
 � �
�� condition ���� will be satis�ed when � � ��

Equations ���� and ���� de�ne a region in which the �ux limiter function must lie in
order for the scheme to be TVD� The shaded region in �gure �� denotes the TVD region
�Sweby� ���
�� Note that the conditions �q� � � and ��q�

q
� � imply that �q� vanishes

when q � �� Referring to �gure ��� along the line �q� � � the �ux limiting scheme �

�
reverts to a second	order accurate centrally weighted scheme� That is�

Vi� �

�

�
Vi�� � Vi

�

when �q� � �� Along the line �q� � q the �ux limiting scheme reverts to

Vi� �

�
� Vi �

�
Vi � Vi��

�

�
�

which is a second	order accurate two	point upstream weighted scheme�

We do not only require that the scheme be TVD� but that it be second	order spatially
accurate whenever possible� This can be achieved by making the �ux limiting scheme a

�
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Figure ��� TVD region for uniform grid spacing�

weighted convex average of a centrally weighted scheme and a two	point upstream weighted
scheme �Sweby� ���
�� Thus� if the limiter function is in the region shown in �gure ��� then
the scheme will be second	order accurate� One such function is the van Leer �ux limiter

�q� �
jqj� q

� � jqj
����

�van Leer� ���
� Sweby� ���
�� Note that when q � � the scheme reverts to a �rst	order
accurate upstream weighted scheme�

C�� Non�Uniform Grid Spacing

For non	uniform grids� a point	distributed �ux limiting scheme will not revert to a two	point
upstream scheme when �q� � q� but rather when �q� � q�� where

� �
Si�� � Si
Si � Si��

for qi� �

�
given by equation �
��� We will later see that this implies that we must modify

the �ux limiter function in order to ensure that the scheme will be second	order accurate
whenever possible� Furthermore� we must �rst expand the region that we require to be
TVD� Figure � demonstrates that the line representing the two	point upstream scheme will
fall outside the TVD region for certain magnitudes of grid size changes� Speci�cally� if the
magnitude of the grid size change� �� is greater than or equal to �� the two	point upstream
scheme will fall outside the TVD region�


�
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Figure �� TVD region for uniform grid spacing with lines representing centrally weighted
and two	point upstream schemes for non	uniform grid spacing� Where � � Si���Si

Si�Si��
for qi� �

�

given by equation �
��� The case where � � � is illustrated�
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Figure �
� Second	order TVD region for non	uniform grid spacing� Where � � Si���Si
Si�Si��

for

qi� �

�
given by equation �
���

To enlarge the TVD region we need not modify ����� but we must alter ����� One possible
alteration is

� �
�q�

q
� ��� ����

Assuming that condition ���� holds� Figure �
 is a graphical representation of the second	
order region that we require to be TVD� If we were to use the van Leer limiter ���� the �ux
limiting scheme �

� will still be TVD� but the limiter will not pass through the second	order
region shown in �gure �
� Thus� we must construct a limiter function for non	uniform grids�
A possible candidate for a new limiter function is

�q� �
jqj� q
�
�
� jqj

� ����

which was obtained by modifying the van Leer limiter� To establish ���� as a limiter function
for non	uniform grids� we must show that it passes through the region denoted in �gure �

that we require to be second	order TVD� That is� we must ensure that

i� q� � �q
�

�
�q
� �q�� for � � q � �

�

ii� � � �q
�

�
�q
� q�� for �

�
� q � �

�

iii� � � �q
�

�
�q
� �� for �

�
� q�


�



Condition �i� simpli�es to �
�
� q � �� which is satis�ed for � � q � �

�
� Condition �ii� is

equivalent to �q � �
�
� q � �

�
� which is satis�ed since q � �

�
for �

�
� q � �

�
� Condition

�iii� simpli�es to q � �
�
� �� which is true for �

�
� q� Thus� the limiter function ���� passes

through the second	order region that we require to be TVD�

Note that� we can force the original van Leer limiter ���� through the second	order region
that we require to be TVD for non	uniform grids by modifying the function argument �
���
That is� instead of modifying ���� we can modify qi� �

�
� such that�

qi� �

�
�

Vi � Vi��
Vi�� � Vi

����

However� this cannot be generalized to schemes that are not point	distributed or for other
limiter functions�

Finally� we must establish the CFL conditions �Roache� ����� Shyy� ���
� under which
the �ux limiting scheme �

�� using the modi�ed limiter ����� will be TVD� In other words�
we must satisfy condition ���� assuming ���� holds� Since we did not alter ���� when we
modi�ed the limiter function� a fully implicit scheme using ���� will always be TVD� However�
because we altered ���� when we modi�ed the limiter� fully explicit and partially implicit
schemes will be TVD under di�erent CFL conditions from those required for uniform grids�
Condition ���� will now be satis�ed if

�

�
� �� � 
� �� � �� �

because of property ����� Thus� the CFL conditions required to ensure that fully explicit
and partially implicit �ux limiting schemes will be TVD are dependent upon the magnitude
of the grid size changes� For example� if we limit the magnitude of grid size changes to ��
that is � � �� then a fully explicit scheme will be TVD for � � �

� � and a Crank	Nicolson
scheme will be TVD for � � �

�
� Conversely� fully explicit and partially implicit schemes will

be TVD for a given � by restricting the magnitude of grid size changes�
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