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Abstract

We explore the pricing of Asian options by numerically solving the the associated partial
differential equations. We demonstrate that numerical PDE techniques commonly used in
finance for standard options are inaccurate in the case of Asian options and illustrate mod-
ifications which alleviate this problem. In particular, the usual methods generally produce
solutions containing spurious oscillations. We adapt flux limiting techniques originally de-
veloped in the field of computational fluid dynamics in order to rapidly obtain accurate
solutions. We show that flux limiting methods are total variation diminishing (and hence
free of spurious oscillations) for non-conservative PDEs such as those typically encountered
in finance, for fully explicit, and fully and partially implicit schemes. We also modify the van
Leer flux limiter so that the second-order total variation diminishing property is preserved
for non-uniform grid spacing.



1 Introduction

Asian options are securities with payoffs which depend on the average value of an underlying
stock price over some time interval. Such options have proven to be much more difficult to
value than regular stock options. Standard techniques tend to be impractical, inaccurate, or
slow. For example, traditional binomial lattice methods require such enormous amounts of
computer memory (owing to the necessity of keeping track of every possible path throughout
the tree) that they are effectively unusable. Partial differential equation (PDE) methods,
as traditionally implemented in the finance literature, are inaccurate (see Barraquand and
Pudet (1996) for a discussion). Monte Carlo simulation works well for European-style op-
tions (see Kemna and Vorst (1990)), but is relatively slow. A number of approximations have
appeared in the literature (e.g. Turnbull and Wakeman (1991), Vorst (1992), Levy (1992),
Levy and Turnbull (1992)), which are again suitable only for European-style options. See
also Geman and Yor (1993), who derive the Laplace transform of the European option price.
Unfortunately, this transform is very difficult to invert.

With regard to American-style Asian options, there are even fewer alternatives. Hull and
White (1993) propose a modification of the binomial method, but do not provide any proof
of convergence. Neave (1994) uses a frequency distribution approach on a binomial lattice to
derive approximate values for arithmetic average option values, but his method still requires
calculations of order N*, where N is the number of time-steps in the lattice. Barraquand and
Pudet (1996) describe a forward shooting grid algorithm and prove that it is unconditionally
convergent. We explore another possibility: a modified finite difference method. In general,
the price of an Asian option can be found by solving a PDE in two space-like dimensions (see
Ingersoll (1987) or Wilmott, Dewynne, and Howison (1993)). This PDE has the character
of a two dimensional convection-diffusion problem with no diffusion in one of the spatial
dimensions. As is well-known in computational fluid dynamics, standard centrally weighted
methods for the convective term are prone to oscillatory solutions. Furthermore, as argued
by Barraquand and Pudet (1996), standard finite difference methods (though generally faster
than their proposed algorithm) are inaccurate because they introduce “spurious numerical

diffusion” (p. 43).

In some cases the price of an Asian option can be modeled using a one-dimensional
PDE. The two-dimensional PDE for a floating strike Asian option can be reduced to a
one-dimensional PDE (see Ingersoll (1987) or Wilmott, Dewynne, and Howison (1993)). Re-
cently, Rogers and Shi (1995) have formulated a one-dimensional PDE that can model the
price of both floating and fixed strike Asian options. However, this PDE applies only to
the case of European-style options and is particularly difficult to solve numerically since the
diffusion term is very small for values of interest on the finite difference grid.

We demonstrate modifications to the common discretization methods which are designed



to handle these problems. In particular, in both the two-dimensional and one-dimensional
cases it is necessary to solve a problem with little or no diffusion (i.e. second-order deriva-
tive term) in a space dimension. The traditional approach in computational fluid dynamics
would be to use first-order upstream weighting for the convective term to eliminate the oscil-
lations caused by centrally weighted schemes (Roache, 1972). However, first-order upstream
weighting results in solutions with excessive false diffusion. As an alternative, we employ a
high order non-linear flux limiter for the convective terms. The resulting discrete non-linear
algebraic equations are solved using full Newton iteration. In addition, we can also apply
the American early exercise constraint to the algebraic system, and this can be handled in
an implicit fully coupled manner. In cases where the model cannot be reduced to a problem
in a single space dimension, the full two-dimensional problem must be solved. For exam-
ple, the price of a fixed strike American-style Asian option must be found by solving the
two-dimensional PDE. We apply the above methods (i.e. the flux limiter and full Newton
iteration) to a full two-dimensional problem. In this case an iterative method, ILU-CGSTAB
(D’Azevedo et al., 1992; van der Vorst, 1992), is used to solve the resulting Jacobian matrix.

The outline of the paper is as follows. Section 2 describes the option pricing models
to be considered. Section 3 presents a discretization analysis for finite difference methods
as applied to standard options. We concentrate on situations with extremely low volatility
which, as noted above, are analogous to the case of Asian options. We illustrate the types
of problems which can arise with commonly applied methods in finance and also how our
modifications mitigate these difficulties, both in terms of option prices and hedging parame-
ters. Section 4 presents applications to Asian options, and the paper concludes with a brief
summary which i1s contained in Section 5.

2 The Models

We adopt the usual geometric Brownian motion model for the evolution of a stock price S:
dS =rSdt+ oSdB (1)

where r denotes the risk free interest rate, o is the volatility, and dB is a standard Brownian
motion. Under the conventional assumptions of frictionless markets, the value at time ¢ of a
claim contingent on the stock price at subsequent time T may be represented as:

V(S(t),) = eI E, [9(S(T),T)] (2)

where ¢(S(T),T) denotes the payoff function for the claim and E; denotes expectation
conditional on information available at time ¢. Familiar examples include European calls
(9(S(T),T) = max(S(T) — K,0)) and puts (g(5,T) = max(K — S(T),0)) where K is the
strike price of the option. It is well known that V solves the following PDE:

ov 1, ,0°V v B
E-I-?TS&S,,Z—I—?&S'%—M/—O (3)




subject to the appropriate boundary conditions for the call or put. Analytic solutions for
these cases were derived by Black and Scholes (1973). The early exercise feature for American
put options can be incorporated by imposing the constraint

V(S(7),7) > max(K — S(7),0) (4)

at each point in time 7 over the life of the option. The hedging arguments underlying (3)
are standard and may also be applied in the context of Asian options (see Ingersoll (1987)
pp. 376-377 for a discussion). Such options depend on the arithmetic average of the stock
price over some time interval. If we let

then the average is given by A(T') = I(T')/T. As noted by Ingersoll, the value of an Asian
option is given by the following PDE with two space dimensions:

2
66—‘;+%02S26V—|—r56—v—|—56—v—r1/:0. (5)

052 S oI
An equivalent formulation in terms of the average (A) rather than the running sum (I) is
given in equation (3.4) of Barraquand and Pudet (1996):

ov 1 ,.,0°V OV 1 ov B

Again, different terminal boundary conditions may be used to price various different types

of securities. Examples include:

The only known analytic solution is for the fixed strike case when K = 0. An early
exercise constraint similar to (4) may be applied to value American-style Asian options. It
is important to note that (5) has no diffusion term in the I direction and, similarly, (6) has
no diffusion term in the A direction. This fact is the source of many numerical difficulties
with standard finite difference methods.

As shown by Ingersoll, for floating strike options (5) may be reduced to a one-dimensional

PDE by making the change of variables R = S/I. This is because the PDE and all of the
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relevant boundary conditions are linearly homogeneous in S and I. For fixed strike options,
this homogeneity does not hold for the terminal value and so the reduction cannot be applied.

Analogous to (2), solutions to (5) and (6) may be represented as:
V(S(t),1(t),t) = " T By [g(S(T), [(T), T)]
and
V(S(t), At),t) = e T E, [¢(S(T), A(T), T)] (7)

respectively. Rogers and Shi (1995) have recently formulated an alternative PDE based on
the representation (7) and a scaling property of geometric Brownian motion. They define a
new state variable

K~ [ S(r)p(dr)
St

T

where p is a probability measure with density p(t) in (0,7). For a fixed strike option,
p(t) = 1/T. For a floating strike option, K = 0 and p(t) = 1/T — 6(T — t), where J is a
delta function. Rogers and Shi show that the value of an Asian option is governed by the

following PDE:
ow 1, ,0°W

ow
Tt T2 g W Hre)H s =0 (8)

The terminal conditions for a fixed strike call and floating strike put are
W(x,T) = max(0, —z)
and
W(x,T) = max(0, —z — 1),

respectively. The price of a fixed strike call with exercise price K and initial stock price
So is SOW(S%,O). For a floating strike put, the price is SoWW(0,0). In this setting, we have
a one-dimensional PDE for both fixed and floating strike options. However, it cannot be
applied in the case of American-style options (both the original representation (7) and the
density p(t) are defined according to exercise occurring only at maturity 7').

Summing up, European-style Asian options may be valued using one-dimensional PDEs,
either in the Rogers and Shi framework (for both fixed and floating strike options) or after a
change of variables in (5) or (6) (only for floating strike options). This change also permits
the pricing of American-style floating strike options in one-dimension. To value fixed strike
options with early exercise opportunities, we must solve a two-dimensional PDE given by

(5) or (6).



3 Discretization Analysis

Before addressing the issue of discretizing Asian option models, we will examine several
discretization techniques for the Black-Scholes (1973) equation. As noted earlier, our main
motivation is to show the types of problems which can arise when standard methods are
used for problems with very low volatility as well as how our modifications may be used
to control for these adverse effects. Although we demonstrate the problems for out-of-the-
money European call options, the problems are pervasive for Asian option models (in-, at-
and out-of-the-money).

3.1 European Options

The price of a European option can be determined by solving equation (3) subject to the
appropriate terminal and boundary conditions. Equation (3) is a backward linear parabolic
equation and may also be referred to as a convection-diffusion equation (Roache, 1972). The
value of a European call option can be determined by solving (3) subject to the terminal
condition

V(S(T),T) =max(S(T) — K,0)
and boundary conditions
V(0,t) =0 and V(S(t),t) ~ S(t) — Ke T as §(t) — oo.

To value a European put option, equation (3) must be solved subject to the terminal condi-
tion

V(S(T),T) = max(K — S(T),0)
and boundary conditions

V(0,t) = Ke7" T and V(S(t),t) ~ 0 as S(t) — .

The Black-Scholes equation can be converted to a forward equation in time by substi-
tuting ¢ with £* = T — ¢ which evolves from expiration to the present. After performing the
change of variables, equation (3) becomes

ov.o 1., ,0*V v
which is in a form that is common in fluid dynamics. The term
1 ,.,,0%V
27 % o5
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Figure 1: Schematic representation of the finite volume method.

1s a parabolic diffusion term. The magnitude of the diffusion is given by %(725'2. In equation
(9)

(—rS )a—v
a8
1s a first-order hyperbolic convective term. The convective term propagates information with
a velocity of —rS. Since rS > 0, the information flows from the S — oo boundary into the
computational domain. If the velocity term is large compared to the diffusion term, then
equation (9) is said to be convection dominated. Although equation (9) is formally parabolic,
when it is convection dominated the numerical approximation behaves as if it was hyperbolic
and is therefore much harder to solve accurately. For certain path-dependent options, such
as Asian options, the problem of convection dominated PDEs can be especially severe.

Equation (9) can be discretized using the finite volume approach (see Figure 1 for a
schematic representation and Roache (1972) for a derivation of the method). The resulting
discretization with temporal weighting for the value at cell ¢ at time-step » + 1 written in
general form is

yrtl _yn
=+ — gprtl _pgprtl gt

At* =3 ity +6;

b BE, (1= B)FL, + (1 8 (10)
where
§ = temporal weighting (0 < 8 <1),
Fl_% = flux entering cell ¢ at interface ¢ — %,
F, = flux leaving cell ¢ at interface ¢ + %,

= o
Il

source/sink term.

For a fully-implicit method we let 8 = 1, for § = % we have the Crank-Nicolson method and
for a fully-explicit method we let # = 0. The R.H.S. of equation (9) collects terms involving



spatial derivatives into what are referred to in computational fluid dynamics as flux terms
(denoted by F') and source/sink terms (which do not include spatial derivatives and are
indicated by f). In particular

1 1 Vot oyt
it = e | (aesn) YR sy 1)
1 1 | AR VA
::—%1 _ NG (_50253)( z-I—lAS % ) T (—TSi)Vn-Iil (12)
% 41
and
fh = (=) (13)

If we use a point-distributed finite volume scheme (i.e. cell interfaces are midway between
adjacent nodes), then

Sit1 — Sim1

AS; =
2

and
ASiy = i1 — S
in equation (12).

Note that the flux functions (11) and (12) allow for non-uniform grid spacing. Thus, we
can construct grids which will make the numerical computations more efficient by having a
fine grid spacing near and at the exercise price and a coarse grid away from the exercise price.

We will first examine handling the convective term V@Til in equation (12) using the
2

following central weighting scheme

n+1 n+1
VgtV
ity 2

which has second-order accuracy for uniform grids. To ensure that solutions produced using
central weighting are free of spurious oscillations, we must satisfy the Peclet condition (Shyy,

1994)
1 7
AS. 1 028, (14)

and the additional condition

1 o8 Lo, . (15)
(1-6)Ar ~ 2 \AS_1AS; A5 AS )"
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for all cells ¢. For a precise definition of “spurious oscillations”, and a derivation of (14) and
(15), refer to Appendix A.

When equation (3) is convection dominated (i.e. when r is large relative to o) the grid
spacing necessary to satisfy conditions (14) and (15) becomes prohibitively fine. Note that
if So =0, then ASi_;_' = S; at ¢ = 1 in equation (14). Thus, equation (14) at ¢ = 1 becomes

1 S r
Sl 0'251'

(16)

Condition (16) implies that ? > 1, which may not be satisfied, independent of how fine a
grid spacing is used. However, this does not present a problem in practice since the convec-
tive flux leaving cell 1 is very small because the velocity is only —r95;.

Figure 2 contains plots of the price, delta, and gamma of a European call with one year
to maturity when K = 15, r = 0.15 and ¢ = 0.01. The value was calculated using the
Crank-Nicolson method with a uniform grid spacing of AS = 0.1 and A¢* = 0.01, and cen-
tral weighting for the convection term. The solution is oscillatory because the grid spacing
violated the Peclet condition. Although the oscillations are small for the option value, they
increase significantly for the sensitivities. Such an interest rate/volatility structure is clearly
unrealistic. However, this example was chosen because, in general, the price of a continu-
ously averaged Asian option can be modeled by a two-dimensional PDE with no diffusion in
one of the dimensions. Hence, this choice of parameters serves to illustrate the difficulties
involved in solving Asian option problems.

It is sometimes suggested in the finance literature that a log transform be performed on
the Black-Scholes equation (Brennan and Schwartz, 1978; Hull and White, 1990). Brennan

and Schwartz obtained

oV 1,0V

L1, L ov
gt 2 0y?

1,
— —_— p— ].
20 )ay rV =0, (17)

after performing the following substitution of variables y = In(.S) in equation (3). Using the
finite volume discretization (10) after converting equation (17) to a forward PDE, the flux
function becomes

L[, v — vy o?
Fn—l—ll — T2 241 7 o - Vn—l;l
i+ Ay ( 27 ) Ayi% T IV

The log transformed PDE has the convenient property that the convection and diffusion
coefficients are constant, which simplifies the numerical solution somewhat. Brennan and
Schwartz state that explicit methods are generally unstable when applied to equation (3)
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Plotted against the Black-Scholes analytical solution.



directly, and that the log transformation allows for the direct application of explicit methods
to equation (17). These statements are, in fact, somewhat misleading. If one ensures that the
conditions (14) and (15) are met, a fully explicit method will be stable and free of oscillations
when solving (3). Conditions must also be met to prevent spurious oscillations when the
transformed PDE is being solved. For equation (17) we must meet the Peclet condition

o2

1 ‘7“—7
18
sy (19
and the additional condition
1 - o2 1 N 1 N (19)
(1-0)Ar ~ 2 \ Ay 1Ay Ay aAy)

Notice that for the log transformation conditions (18) and (19) are constant for uniform grid
spacings, unlike conditions (14) and (15) which vary over the grid for equation (3). The
log transformation appears to eliminate the problem of not being able to satisfy the Peclet
condition (14) as S — 0if ? <1, when the PDE is posed in the (5,t) domain. However, the
log transformation effectively does not solve the problem as S — 0 since this would imply
that y — —oo. Of course, in practice this problem is avoided because a finite computational
domain is used. It is also interesting to note that the effective AS spacing is very small
for small values of y. Figure 3 demonstrates that oscillations can also occur when the log

transformed equation is solved using a centrally weighted convection scheme, and conditions
(18) and (19) are not met.

The Peclet condition (14) can be re-written as

—1202 <&
50’251'2
where the L.H.S. is the cell Peclet number (Shyy, 1994). If the grid spacing is not sufficiently
fine when the convection term dominates the diffusion term (i.e. when r is large relative to
o), the cell Peclet number will exceed condition (20). To eliminate the need for excessively
fine grid spacing the true diffusion can be augmented by additional numerical diffusion. One
approach to supplement the true diffusion with numerical diffusion which has been used in
computational fluid dynamics is first-order upstream weighting (Roache, 1972).

The first-order upstream weighting scheme for equation (9) is

n+l
Vn—l—l _ Vn—l—l _ ‘/; - if —rS§ > 07
itz up Vit otherwise
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in equation (12). In this case, since S > 0, %’;"’1 = Vle_l Conversely, V;"t! is termed the
downstream value. Upstream weighting corresponds to a fluid flow problem, where informa-
tion should only flow from upstream to downstream cells.

The artificial diffusion is introduced through the truncation error of the one-sided differ-
encing (Roache, 1972). The scheme is first-order accurate for uniform grids. The accuracy
deteriorates for non-uniform grids because the discretization does not produce true one-sided
differences. This was not an issue for our examples, which used uniform grids. To prevent
oscillations from forming when upstream weighting is used we must meet only the following
condition

1 . 02512 1 n 1 n rS; n (21)
7.
(1 —0)At 2 ASi_%ASi ASH_%AS} AS;

The derivation of (21) is analogous to the derivation of (14) and (15) in Appendix A. Figure
4 demonstrates how the solutions are no longer oscillatory. Unfortunately, it is also apparent
that first-order upstream weighting produces solution profiles that are too diffuse.

To produce oscillation free solutions without the excessive diffusion of first order upstream
weighting we examined the non-linear van Leer flux limiter (Sweby, 1984; Blunt and Rubin,
1992). For the van Leer flux limiter

P(qH)
Vit = Vit (Vi — Vi) (22)
in equation (12), where
n n+1 n+1 n
nt+l ‘/;tp-l—l - 2u-I1; ‘/:iozn - ‘/;tp—l—l

= 23
ql+5 S2up - Sup Sup - Sdown ( )

(this formulation allows for non-uniform grids; refer to Appendix C for a derivation) and

n+1 n+1
q1:_|_l —I_ q7:_|_l
gb(q:‘_:'%l) — 2 ” 2
1+ qi+§
In equation (23) 1/'2’;;1 i1s the second upstream point. That is, if qu‘_‘ll'l is the upstream

point to node i, then V/_Sl i1s the second upstream point. Conceptually, the scheme only

adds numerical diffusion at points where the gradient is steep. The scheme is second-order

accurate away from regions which are augmented by numerical diffusion, and has the property
that it is total variation diminishing (TVD). A scheme is TVD when

TV (V™Y < TV(V"™),

12
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where TV(V"‘H) is the total variation of the solution and is defined as

TV(V*h) =3

%

n+1 n+1

2

Thus, if a scheme is TVD the solution cannot contain oscillations, otherwise the total varia-
tion would increase. Stability and convergence proofs of TVD methods for conservation laws
can be found in LeVeque (1990). An important component in convergence proofs is a bound
on the variation of the solution (Sweby, 1984). In Appendix B we show that these methods
are also TVD for non-conservative PDEs, such as equation (3). For a detailed analysis of the
TVD conditions for equation (22), refer to Appendix C. Note that if a limiter is not used,
as in Dewynne and Wilmott (1995), then the solution cannot be guaranteed to be oscillation
free unless the grid is very fine.

Figure 5 demonstrates that the van Leer flux limiter produced oscillation free solutions
without the excessive smearing of first-order upstream weighting. Since the flux limiter is
non-linear the solutions were obtained using full Newton iteration. The van Leer flux limiter
should be used with the Crank-Nicolson method when equation (3) is convection dominated.
In this situation, a fully-implicit method generates a smeared solution, as Figure 6 illustrates.
This is due to the fact that the Crank-Nicolson method is second-order accurate in time,
while the fully-implicit method is only first-order accurate in time.

3.2 American Options

The value of an American put option must meet the condition
V(S(r),7) > max(K — S(7),0) (24)

at all points in time 7 over the life of the contract. Wilmott, Dewynne and Howison (1993)
have shown that an American option can be valued by solving

@V 1, o*v v
o*5? rS— <rV 25
ot T 95z " "as =7 (25)
subject to constraint (24). If we consider solving the discrete system with two unknowns at
each node, ®7*! and V;"t! where V"™ is the value of the American option, then equations

(24) and (25) can be posed in discrete form as

oW SRR
— BRIV VT VER) + 65 (V)
(L R (VP V)
(L O (VL Vi Vi) + (L B (20
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K | Months | Binomial | Van Leer

1 0.08 0.08
35 4 0.70 0.69

7 1.22 1.21

1 1.31 1.30
40 4 2.48 2.47

7 3.17 3.16

1 5.06 5.06
45 4 5.71 5.70

7 6.24 6.23

Table 1: American put values when r = 0.05 and ¢ = 0.3. The van Leer limiter was used
with § = %, At* = 0.0019 and a non-uniform spatial grid with AS = 0.5 near and at the
exercise price. The binomial results were obtained from Geske and Shastri (1985).
where for a put option

Vit = max (@0, K — S5, 0) (27)
Note that the L.H.S. of equation (26) can be written as

‘/;n—l—l _ ‘/;n —I_ Q);.H_l _ ‘/;n—l—l
At* At*

and since by (27)

q)@—l—l _ Vn—l—l
A =0

Thus, equation (26) is a discrete form of the inequality (25).

If the system is non-linear, the constraint is applied at each Newton iteration. Table
1 contains results obtained using the constraint in an implicit fully coupled manner with
the van Leer limiter to price American put options. As the table demonstrates, the prices
generated are virtually identical to those produced by the binomial method.

The traditional approach seen in the finance literature when using PDEs to value Amer-
ican options is to apply the American constraint explicitly (Brennan and Schwartz, 1977;
Geske and Shastri, 1985; Hull, 1993). That is, equation (3) is solved and after each time-step
the constraint is applied to the solution. This differs from the implicit fully coupled method
which solves equation (25) directly. However, we only noticed differences in the rate of con-
vergence for large time-steps. That is, the implicit application of the constraint required
fewer non-linear iterations when the time-step was large. These time-steps were too large to
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achieve convergence to an accurate solution. For suitable time-steps, we found no difference
in the rate of convergence. Thus, in a practical sense, there is no difference between applying
the constraint implicitly or explicitly. Although we have never experienced stability prob-
lems using practical time-step sizes, there is always a possibility that the explicit application
of the constraint will lead to instability. Consequently, we will apply the American con-
straint implicitly. The additional computational cost of applying the constraint implicitly is
negligible.

4 Continuous Arithmetic Asian Options

Based on the results from section 3, we will now examine treating convection using the van
Leer flux limiter in discretizations of one- and two-dimensional PDE models of Asian options.

4.1 One-Dimensional Models

One-dimensional models for pricing continuously averaged arithmetic Asian options have
been derived by Ingersoll (1987) and Rogers and Shi (1995). The Ingersoll model cannot be
used to price fixed strike options. However, it can be used to price American-style floating
strike options (Wilmott et al., 1993).

Although the Rogers and Shi (1995) model cannot handle the early exercise feature, it can
be used to price both floating and fixed strike options. Consequently, we chose to examine
this model. After converting (8) to a forward equation, we have the following flux function

Fn-l—l _ 1 10_2:132 ( :I:Iil - I/I/in—l—l)

z-I-% - A—ZBl (_2 z) AZBH_%

+ (" ) W

and source term fi*' = 0. It should be noted that = will take on negative values and thus,

(p"*! +rx;) may take on both negative and non-negative values. The discretization of I/VZ:I‘_"]_l
2

must take this into account.

Tables 2 and 3 contain the results obtained by using the van Leer flux limiter to value
fixed and floating strike Asian options, respectively. Rogers and Shi (1995) examined a num-
ber of different volatility /interest rate structures. Tables 2 and 3 contain only the results
for r = 0.15, their most difficult case. Note that the time-step size for these examples was
selected on the basis of several trial runs, which indicated that decreasing the time step size
further had no discernible effect on the results to four significant figures.

The results demonstrate that sufficiently accurate values can be obtained for most volatil-

ities in under an average of 10 seconds for both fixed and floating strike Asian options. Suf-
ficiently accurate results were obtained for all volatilities in under an average of 16 seconds.
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o K Azx Bounds
0.025 ‘ 0.010 ‘ 0.005 || Lower ‘ Upper
95 11.002 | 11.093 | 11.094 || 11.094 | 11.114
0.05 100 6.609 | 6.779 | 6.793 || 6.794 | 6.810
105 2,778 | 2.758 | 2.748 || 2.744 | 2.761
90 15.381 | 15.399 | 15.399 || 15.399 | 15.445
0.10 100 6.991 | 7.035 | 7.030 || 7.028 | 7.066
110 1.427 | 1.405 | 1.410 | 1413 | 1.451
90 15.637 | 15.646 | 15.643 || 15.641 | 15.748
0.20 100 8.405 | 8.411 | 8.409 || 8.408 | 8.515
110 3.536 | 3.551 | 3.554 || 3.554 | 3.661
90 16.524 | 16.517 | 16.514 || 16.512 | 16.732
0.30 100 10.203 | 10.210 | 10.210 || 10.208 | 10.429
110 5.713 | 5.727 | 5.729 || 5.728 | 5.948

‘ Mean Exec. Time (sec.) ‘ 6.90 ‘ 13.23 ‘ 23.02 H

Table 2: Fixed strike Asian call values when r = 0.15, So = 100 and T'— ¢ = 1. The van
Leer limiter was used with § = % and At* = 0.0025. A non-uniform spatial grid was used,
where Az denotes the spacing in the region [—0.25,1.25]. Mean execution times are for runs

performed on a DEC Alpha. The bounds were obtained from Rogers and Shi (1995).

By sufficiently accurate, we mean that the values are no more than 0.05% of Sy outside of
the bounds derived by Rogers and Shi. It should be noted that equation (8) will become con-
vection dominated as & — 0, and for short maturities since p(t) = % or p(t) = 7 —6(T —t).
Although Tables 2 and 3 do not contain results for short maturity options, we will see in
section 4.2 (see Table 4) that accurate results can be obtained for short maturities using the

van Leer limiter.

Figure 7 compares results that we obtained using the van Leer limiter and a centrally
weighted scheme with Rogers and Shi’s (1995) results which were obtained using the method
of lines. The same coarse spatial grid was used for all the PDE runs. Note that the discretiza-
tion which uses the van Leer limiter converges more rapidly than either central weighting
or the method of lines. For this low volatility case the bounds that Roger and Shi derived
are very tight. In fact, the bounds were plotted as cross hairs because the upper and lower
bounds appear at the same point when plotted. It is interesting to note that sophisticated
PDE methods must be used if the problem is convection dominated, while the PDE problem
1s easily solved when the volatility is large.
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o Az Bounds
0.025 ‘ 0.010 ‘ 0.005 || Lower ‘ Upper
0.10 0.123 | 0.217 | 0.244 || 0.252 | 0.415
0.20 1.659 | 1.700 | 1.708 || 1.710 | 2.187
0.30 3.587 | 3.606 | 3.609 || 3.609 | 4.604
Mean Exec.
Time (sec.) | 9.25 | 15.98 | 27.26

Table 3: Floating strike Asian put values when r = 0.15, Sp = 100 and T'— ¢ = 1. The van
Leer limiter was used with § = % and At* = 0.0025. A non-uniform spatial grid was used,
where Az denotes the spacing in the region [—1.25,0.25]. Mean execution times are for runs

performed on a DEC Alpha. The bounds were obtained from Rogers and Shi (1995).

+ — Central Weighting
O Rogers & Shi
+ Bounds

Call Value
N
.

Call Value
N

— Van Leer
O Rogers & Shi
+ Bounds

I I I I I I I I
0.94 0.96 0.98 1 1.02 1.04 1.06 0.94
X

I I I
0.96 0.98 1
X

I I I
1.02 1.04 1.06

Figure 7: Fixed strike Asian option values when r = 0.05, ¢ = 0.05 and 7' — ¢ = 1.0. Note
that at the point in time plotted on the graphs, z = SKO The solutions were computed using
central weighting and the van Leer flux limiter with Az = 0.025, A¢t* = 0.0025 and § = %
The Rogers and Shi (1995) results were calculated using the method of lines. The bounds

were obtained from Rogers and Shi.
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4.2 Two-Dimensional Models

When American-style fixed strike Asian options are to be priced, we cannot use the one-
dimensional models outlined in section 4.1 (Wilmott et al., 1993; Barraquand and Pudet,
1996). In these cases a full two-dimensional PDE must be solved. We chose to examine
equation (6) because numerical experiments using equations (5) and (6) indicated that fewer
nodes were needed to achieve equivalent accuracy for equation (6) when compared to (5).
This was due to the fact that the significant part of the computational domain appears to
be smaller for formulations using the average as opposed to the running sum. One may note
that at ¢ = 0 a singularity exists in equation (6) because of the (S — A)% term. However,
this can be avoided if we assume that S = A at ¢ = 0. Thus, equation (6) simply becomes

the Black-Scholes equation at ¢ = 0.

After converting equation (6) to a forward PDE, the finite volume discretization is

# = OF f;j —0F, iT;,j
+ eF;j;j% — GFi’:”;:% + 4 f
F L= OF — (1= )F,
+ (=0 — (1= ).+ (1-0)f,
where
Fri LT, = sy

N
l7.7+5

1= "
nity AA@]' t

As was the case in section 4.1, in order to ensure that the upstream points are defined ap-

propriately the discretization of Vi?:_ll_ using the van Leer limiter must take into account the
! 2

fact that %(Ai,j — S;;) will take on negative and non-negative values. Also, if at j,q, there
exist A; ... which are less than S; then an appropriate boundary condition must be
imposed at those points. Fi’:l‘_"'llj and ff;’l are similar to (12) and (13), respectively.

27 ’
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Since the PDE is two-dimensional, we used incomplete LU decomposition and the stabi-
lized conjugate gradient method (ILU-CGSTAB) to solve the resulting system of equations
(D’Azevedo et al., 1992; van der Vorst, 1992). We also incorporated a time-step selector
(Forsyth and Sammon, 1986) into our solver.

We found that the quality of the solution for certain terminal conditions is highly depen-
dent upon the grid spacing. We conjecture that the problem arises because equation (6) is
similar to the turning point problem, which has known difficulties (Ascher et al., 1988; Tang,
1992). This is only an issue in the case of European floating strike calls and puts. One must
ensure that the S : A aspect ratio for grid spacings used in these cases is always k : 1, where
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Figure 8: American fixed strike call value when K = 100, » = 0.10, 0 = 0.10, and T — ¢ =

0.25. Calculated using the van Leer flux limiter with 6 = %

k 1s an arbitrary integer greater than or equal to 1. If one is interested in the values and
sensitivities over a large region of the grid, it would be best to use a uniform grid spacing
in the A dimension that achieves sufficient accuracy. We emphasize, however, that this is-
sue 1s easily avoided entirely since these cases can be handled using a one-dimensional model.

Tables 4, 5 and 6 contain the results of using the van Leer flux limiter to solve equation
(6). Table 4 contains the results for European and American fixed strike call options. The
results for zero strike Asian call options, which have an analytical solution, are contained in
Table 5. Table 6 contains the results for European and American floating strike puts. The
parameters were chosen to allow a comparison with Barraquand and Pudet’s (1996) results.
The grid spacing was chosen to achieve an accuracy of at least 0.10% of Sy;. To determine
the accuracy, the computed lower bound and the solution (using a fine grid) to the one-
dimensional Roger and Shi (1995) model were taken to be the true solutions. Figures 8 and
9 are plots of an American fixed strike call and American floating strike put, respectively.

Barraquand and Pudet (1996) correctly observe that an explicit centrally weighted scheme
for equation (6) is unstable. Note that equation (6) is convection dominated in the A di-
rection because there is no diffusion effect in this dimension. In particular, the convective
term in the A dimension becomes very large as ¢ — (. Barraquand and Pudet also note that
implicit centrally weighted schemes will generally produce unsatisfactory results because of
the numerical diffusion introduced by this first-order accurate in time scheme. More im-
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o T-t | K European American

Lower‘ 1-D ‘ 2-D ‘B&P 2-D ‘B&P
95 6.118 | 6.114 | 6.133 | 6.132 | 6.646 | 6.546
0.25 | 100 || 1.851 | 1.841 | 1.793 | 1.869 | 1.903 | 1.967
105 || 0.148 | 0.162 | 0.162 | 0.151 || 0.161 | 0.152
95 7.220 | 7.216 | 7.244 | 7.248 | 7.687 | 7.632
0.10 | 0.50 | 100 || 3.104 | 3.064 | 3.052 | 3.100 || 3.180 | 3.212
105 || 0.714 | 0.718 | 0.726 | 0.727 || 0.733 | 0.735
95 9.285 | 9.286 | 9.316 | 9.313 || 9.662 | 9.616
1.00 | 100 || 5.255 | 5.254 | 5.261 | 5.279 | 5.398 | 5.394
105 || 2.294 | 2.295 | 2.314 | 2.313 || 2.340 | 2.336

95 6.476 | 6.461 | 6.501 | 6.500 || 7.521 | 7.371
0.25 | 100 | 2.932 | 2.923 | 2.928 | 2.960 || 3.224 | 3.219
105 || 0.947 | 0.958 | 0.971 | 0.966 | 1.009 | 1.001
95 7.891 | 7.890 | 7.921 | 7.793 | 8908 | 8.805
0.20 | 0.50 | 100 || 4.505 | 4.502 | 4.511 | 4.548 || 4.901 | 4.893
105 || 2.211 | 2.206 | 2.229 | 2.241 || 2.337 | 2.337
95 | 10.295 | 10.294 | 10.309 | 10.336 || 11.295 | 11.218
1.00 | 100 || 7.042 | 7.041 | 7.042 | 7.079 || 7.548 | 7.521
105 || 4.509 | 4.508 | 4.519 | 4.539 || 4.742 | 4.729

95 8.102 | 8.097 | 8.123 | 8.151 | 9.548 | 9.447
0.25 | 100 | 5.168 | 5.164 | 5.175 | 5.218 || 5.846 | 5.826
105 || 3.063 | 3.061 | 3.082 | 3.106 || 3.349 | 3.347
95 || 10.346 | 10.344 | 10.357 | 10.425 || 11.997 | 10.927
0.40 | 0.50 | 100 || 7.572 | 7.570 | 7.574 | 7.650 | 8.527 | 8.519
105 || 5.371 | 5.371 | 5.384 | 5.444 || 5.899 | 5.913
95 || 13.721 | 13.716 | 13.721 | 13.825 || 15.749 | 15.649
1.00 | 100 || 11.121 | 11.120 | 11.115 | 11.213 || 12.497 | 12.439
105 || 8.910 | 8911 | 8.912 | 8.989 || 9.825 | 9.790

‘ Mean Execution Time (sec.) ‘ 45.64 ‘ 52.05

Table 4: American and European fixed strike call values when » = 0.10 and S, = 100.
Lower and 1-D refer to the Rogers and Shi (1995) lower bound and one-dimensional PDE,
respectively. B & P refers to the results obtained by Barraquand and Pudet (1996). 2-D
refers to the value obtained by solving the two-dimensional PDE using the van Leer limiter
with 6 = % and a non-uniform spatial A x S grid of 41 x 45. At* was set to one day, two days
and three days for maturities of three, six and twelve months, respectively. Mean execution
times are for runs performed on a DEC Alpha.
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Table 5: Analytic and numerical solution of the two-dimensional PDE model for the zero
strike Asian call when » = 0.10 and Sy = 100. The van Leer limiter was used with § = %
and a non-uniform spatial A x S grid of 41 x 45. At* was set to one day, two days and three
days for maturities of three, six and twelve months, respectively. The Analytical results were

o T-t | Analytic | 2-D
0.25 | 98.763 | 98.770
0.10 | 0.50 | 97.547 | 97.558
1.00 | 95.175 | 95.186
0.25 | 98.763 | 98.769
0.20 | 0.50 | 97.547 | 97.552
1.00 | 95.175 | 95.166
0.25 | 98.763 | 98.760
0.40 | 0.50 | 97.547 | 97.541
1.00 | 95.175 | 95.186

obtained from Barraquand and Pudet (1996).

o T-t European American

Lower‘ 1-D ‘ 2-D ‘B&P 2-D ‘B&P

0.25 || 0.628 0.636 | 0.582 | 0.632 1.359 | 1.194

0.10 | 0.50 | 0.666 0.668 | 0.640 | 0.671 1.601 | 1.494
1.00 || 0.598 0.598 | 0.589 | 0.614 || 1.952 | 1.799

0.25 1.714 1.719 | 1.679 1.724 2.867 2.773

0.20 | 0.50 | 2.147 2.123 | 2.093 | 2.135 || 3.806 | 3.684
1.00 2.457 2.449 | 2.423 2.498 4.932 4.812

0.25 | 3.971 3.971 | 3.926 | 3.981 || 6.111 | 5.996

0.40 | 0.50 5.242 5.244 | 5.185 5.260 8.361 8.223
1.00 || 6.674 6.678 | 6.603 | 6.785 || 11.352 | 11.229

‘ Mean Execution Time (sec.) ‘ 38.35 ‘ 43.14

Table 6: American and European floating strike put values when r» = 0.10 and Sy, = 100.
Lower and 1-D refer to the Rogers and Shi (1995) lower bound and one-dimensional PDE,
respectively. B & P refers to the results obtained by Barraquand and Pudet (1996). 2-D
refers to the value obtained by solving the two-dimensional PDE using the van Leer limiter
with 6 = % and a non-uniform spatial A x S grid of 41 x 45. At* was set to one day, two days
and three days for maturities of three, six and twelve months, respectively. Mean execution

times are for runs performed on a DEC Alpha.
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Figure 9: American floating strike put value when r = 0.10, ¢ = 0.10, and T — ¢t = 0.25.
Calculated using the van Leer flux limiter with 6 = %

portantly, Barraquand and Pudet fail to mention that solutions generated using a centrally
weighted scheme for equation (6) cannot be ensured to be free of oscillations. For example,
Figure 10 demonstrates the severe oscillations that resulted from pricing a European-style
fixed strike call option using central weighting. The grid spacing used was identical to that
used to obtain our results with the van Leer limiter. Using the van Leer flux limiter in
conjunction with the Crank-Nicolson scheme gives us a method that is oscillation free and
second-order accurate in time. The careful reader will note that as ¢ — 0 the CFL condi-
tions established in Appendix C cannot be satisfied. However, this does not appear to have
affected the quality of our results. If one wanted to ensure that the method was TVD even
as t — 0, the flux in the A direction can be switched from a Crank-Nicolson scheme to a
fully implicit scheme for specific cells when the CFL condition is violated. Although this will
result in additional numerical diffusion, we found that the values differed by no more than
$0.05 from the results reported here.

Barraquand and Pudet (1996) state that because the correlated variables A and S are
taken to be independent in equation (6), numerical schemes for solving equation (6) will not
necessarily converge to a solution. However, as the results in Tables 4, 5 and 6 demonstrate,
we did not experience any failures to converge to an appropriate solution during our study.
A stronger demonstration of convergence using successive grid refinements is contained in

Table 7.

25



30

NS

E \\\\\\\\‘-'s’&qy "I/'I[ v
0 OSSN AT

-10
160

140

Figure 10: European fixed strike call option when K = 100, r =
T —t =0.25. Calculated using central weighting with 6 = %

K Spatial Grid (A x S)
41 x 45 | 81 x 89 | 161 x 177

95 | 6.501 6.482 6.480
European | 100 | 2.928 2.937 2.936

105 | 0.971 0.952 0.951

95 | 7.521 7.474 7.465
American | 100 | 3.224 3.228 3.222

105 | 1.009 0.993 0.992

Table 7: Successive grid refinements demonstrating the convergence of the two-dimensional

PDE for a fixed strike Asian option when Sy = 100, » = 0.10, ¢ = 0.20 and T' — ¢ = 0.25.
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T-t | Mean Exec. Time (sec.)
BLP|[1D]| 2D
0.5 6 4 34
1.0 54 7 67
2.0 485 15 118

Table 8: Mean execution times for obtaining European fixed strike call values. B & P refers to
the forward shooting grid algorithm. 1-D and 2-D refer to results of similar accuracy obtained
using one-dimensional and two-dimensional PDEs, respectively. Runs were performed on a

DEC Alpha.

The results in Tables 4, 5 and 6 demonstrate that the desired level of accuracy of 0.10%
of Sy can be obtained in all cases in under an average (for all maturities considered) of 53
seconds. We implemented Barraquand and Pudet’s (1996) forward shooting grid algorithm
and found that the desired level of accuracy could be obtained in under an average (for all
maturities considered) of 32 seconds. More specifically, 90 time-steps were required for the
three and six month maturities using time-step sizes of one and two days, respectively. The
average time required for 90 time-steps was under 21 seconds. Although the parameters were
the same as those used by Barraquand and Pudet, our time of 21 seconds is slightly higher
than the Barraquand and Pudet result of 15 seconds. By performing the runs on a different
DEC Alpha from the one used for our analysis, we were able to obtain an average time of 15
seconds. For the one year maturity with a time-step size of three days, 120 time-steps were
required. In this case the average time required was under 54 seconds.

The substantial increase in time required is due to the fact that the forward shooting
grid algorithm has a time complexity of O(N?), where N is the number of time-steps. For a
given grid size, the time complexity for a PDE method is linear, that is O(T'). Thus, as the
number of required time-steps increases, the time required for the Barraquand and Pudet
algorithm will grow dramatically. Table 8 demonstrates the cubic time complexity of the
forward shooting grid algorithm and the linear time complexity (for a given grid size) of
PDE methods. For example, to value a two year fixed strike call option with a time-step size
of three days required an average of 485 seconds using the Barraquand and Pudet algorithm.
This compares to an average of 118 seconds for the two-dimensional PDE and 15 seconds for
the one-dimensional PDE. Both methods have polynomial spatial complexities with degrees
(of two for the one asset case) that grow with the number of assets, and thus can only be
used to solve problems with a low number of spatial dimensions.
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5 Conclusions

The naive application of central differences to the numerical treatment of certain partial dif-
ferential equations can result in a number of difficulties. We have demonstrated that treating
convection using central differences in the discretization of PDEs with low diffusion relative
to convection, such as Asian option models, can produce solutions containing spurious os-
cillations. As noted by Barraquand and Pudet (1996), explicit centrally weighted schemes
are unstable when applied to equations (5) and (6). Furthermore, one cannot ensure that
implicit centrally weighted schemes will be free of oscillations when applied to equations (5)

and (6).

To remedy the problem of spurious oscillations produced by centrally weighted schemes
while still maintaining high order accuracy, we employed the use of a high order flux limiter.
We treated convection using the second-order accurate van Leer flux limiter. The limiter is
second-order accurate away from regions with steep gradients where it augments the true
diffusion with numerical diffusion. The van Leer limiter has the property that it is total
variation diminishing and thus produces oscillation free solutions. Using the van Leer lim-
iter in conjunction with the Crank-Nicolson scheme gives us a method that is second-order
accurate in time and oscillation free.

We have demonstrated that the application of the van Leer limiter to one-dimensional
Asian option models (European and American floating strike, and European fixed strike)
leads to the rapid computation of accurate solutions (i.e. within an average of 10 seconds
for most volatility /interest rate structures for maturities of up to one year). For the most
extreme volatility /interest rate structures an accurate solution can be obtained within an
average of 16 seconds. When the full two-dimensional model must be used, as is the case
for American fixed strike options, the computation time naturally increases. However, ac-
curate solutions can be computed in under an average of 53 seconds (DEC Alpha) for the
maturities that we considered. Accurate solutions were obtained for both European- and
American-style Asian options using the two-dimensional model.

PDE methods have O(n¢) spatial complexities, where n is the number of cells in a di-
mension and d is the number of dimensions. Thus, PDE methods can only be used to solve
problems with a low number of spatial dimensions. This is also the case for Barraquand and
Pudet’s (1996) forward shooting grid algorithm. However, the forward shooting grid algo-
rithm has a cubic time complexity compared to the linear time complexity of PDE methods.
Thus, the forward shooting grid algorithm is less desirable for large numbers of time-steps.
For example, the pricing and hedging of long-term (e.g. 5 year) Asian options is a problem of
practical interest to insurance companies selling guarantees on investment annuity products.

The application of the van Leer limiter is not limited only to PDE pricing models for
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Asian options. It can be applied to other financial PDE models that have the problem of
convection dominance. Furthermore, since the method is non-linear it can be easily extended
to solve non-linear option models such as that of Peszek (1995).

Appendices

A Prevention of Spurious Oscillations

In this appendix we will derive the conditions under which centrally weighted schemes for
equation (9) will not produce spurious oscillations. The same arguments can be used to
derive conditions for other schemes, such as, first-order upstream weighting.

Using the point-distributed finite volume discretization

n+1 n
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At~ iy ity

with central weighting in space and fully implicit time-stepping for equation (9) gives us
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After incorporating a temporal weighting factor, § (where # = 1 is a fully implicit scheme,
§ = ; is the Crank-Nicolson method and § = 0 is a fully explicit scheme), equation (28)
becomes
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Regrouping terms in equation (29) gives
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In order to isolate the behavior of the solution from the spatially independent exponential

decay (which is due to the —rV term in equation (9)), we will eliminate the exponential
decay term by substituting

(31)

pt _ gott (1 -(1- (9)7°At*)n7

1+ 8rAt*

1-(1-8)rAt*
146rAt*

which result in non-oscillatory behavior for 8/"** in the following.

where the superscript n for ( ) i1s an exponent. We will determine the conditions

Substituting (31) into equation (30) gives
4 k; At eaiAt* ot 1—(1—8)rAt\"
ASAS; s 248 )T 1+ fr At
1—(1—8)rAt\"
1+ 8rAt*

k; At k; At 1—(1—6)rAt\"
) ) n—l—l
* (GASiASi_% * GASiASH%) & ( 11 6rAt- )

4 k; At +9alAt* i1 (1= (1= O)rAt” "
ASiASH% 2A8; | T 1+ 6rAt~

+ (1 + 6rAte) gt (

ki At aAt\  (1—(1—8)rA\"""
((1 - Q)ASiASi_% —(1-6) 2ASi) i ( 1+ 6rAt )
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1—(1-— G)rAt*)n_l

+ (1—(1—9)rAt*)ﬁ?( L+ AL

ki At ki At 1—(1—8)rAt\"""
(=) — (1= )| B
* ( 0= O%sas, )ASiASH%) & ( 11 6rAt- )

ki At a; At* 1—(1—8)rAt=\"""
1 g B (1 g% g .
* (( "asas,, t )2ASi) i+ ( 11 6rAt )
1-(1-8)r At*

By letting @ = (=535, ) and dividing by 1 + #rAt* in equation (32) we obtain

9 klAt . eaiAt /3~_+11 < & >
ASiASi_% 2A8; )" 14 6rAt~

J AL kAt e
n-l—l n (9 K (9 K ?1-|—1< >
AT +( ASAS_, ASiASH%) A T erar

kiAt* aiAt* o
: o e ()
ASiASH% 2AS; | TN 4 fr At

k; At* a; At* a1
1-4)-—220 (g nof %
(( )ASiASi_% ( )2A5i) i1 (1 —|—<9rAt*)
k;At* k;At* am1
ngt 4 [ —(1—g) i g2 g Y
T ple +( 0= O%5as, )ASiASH%)’B’ (1+9mt*)
kAt a; At* a1
14— L q—gd2t g (X )
+ (( )ASiASH% * )2A5i) i+ (1+9mt*)

Dividing by a™ gives

0 klAt* 0 aiAt* /3 +1
OrAt<) AS;AS, 1 orAt*) 2AS; |
1+ 6rAt* i80;_1 1+ 0rAt*) 2
=g 9 k; At . 9 k; At s
(1+8rA8) AS;AS; 1~ (14 6rAt) AS;AS,L |
0 klAt* n 0 aiAt* n+1
(1+8rAt) AS;AS, 1 (14 6rAE) 2A8; |7
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(1 — (9) klAt* (1 — (9) aiAt* n
(1—(1—0)rAt) ASAS, 1 (1—(1—0)rAt) 248 |7
(i (1-8) kAT (1-8) N ) p
(1—(1—6rAt)ASAS, 1 (1—(1—0)rAt) ASAS, 1 |
i (1 — (9) klAt* i (1 — (9) aiAt* n
(1 - (1= 0)rAt) AS;AS, 1 (1 —(1—@)rAt) 2A8; | 7

Regrouping terms

- 0 kAt 0 ki At s
(1+8rAt) AS;AS; 1 (14 6rA8) ASAS,L )

(1 — (9) klAt* . (1 — (9) aiAt* n
(1— (1 —0)rAt) ASAS, L (1—(1—6)rAts) 248 | 7
(e (1—9) kAt (1—9) ki At g
(1—(1—rAr) ASAS, 1 (1—(1—0)rAt) ASAS;4 |
i (1 — (9) klAt* (1 — (9) aiAt* n
(1—(1—0)rAt) AS;AS, (1= (1—6)rAt) 2A8; | 7
n 0 klAt* . 0 aiAt* /3 +1
(1+6rAt) AS;AS; 1 (1+6rAt) 2A8; | 77
9 ki At 9 a; At
i ' AR 33
+ (1+6rAt) ASAS,, + (1+ rAt) 2ASi) o (33)

If we require all the coefficients of 8 in (33) to be positive, then we must ensure that

(1-9) kAt (1—8) N
((1 — (1 —=0)rAt¥) ASiASi_% (1= (1—6)rAt) 2AS¢) > 0 (34)

and

0 klAt* 0 aiAt* >0 (35)
(1+6rAt) AS,AS, 1 (14 6rAte) 2A8;

in (33). After recalling that k; = $02S? and a; = r.5;, and simplifying, condition (34)
becomes

1 T
Ag . (36)

1 025
2
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Condition (36) is also known as the Peclet condition. Note that if condition (36) is met,
then both (34) and (35) will be satisfied. We also must meet the additional condition

. (1-6) kAt (1-6) BAE O\ (37)
(1= (1= 0)rAr)ASAS, +  (1— (1—0)rAt) AS,AS, ‘

After substituting k; = %025'3 and a; = rS;, and simplifying, condition (37) becomes

L oS Lo, . 38)
(1-6)At ~ 2 \AS_1AS; " AS1AS)

If conditions (36) and (38) are met, then all the coefficients of 3 in (33) are positive and we
can employ the maximum principle. By defining 8/*** such that

/Bl}nax — maX(ﬁ?_l,ﬁfb, ZL_|_]_7 Zl_-l—llv ?+—|_11)7

then equation (33) can be written as

9 Je At 9 Je At X
1+ + Bt
(1+6rAt) ASAS, 1 (1+6rAt) ASAS,,,

<
— (9) klAt* (1 — (9) aiAt* /Bmax
(1= (L= 0)rAt) ASiAS, 1 (1—(1—6)rAt) 2A8; )
- (1—8) ki At (1—8) ki At s
(1—(1—8)rAt) ASAS, 1 (1—(1—O0)rAt) ASAS,, |
n (1 — (9) klAt* n (1 — (9) aiAt* /Bmax
(1 - (1= 60)rAt) AS;AS; 1 (1 —(1—@)rAt) 2A8; | 7
i 0 klAt* . 0 aiAt* /Bmax
(1+0rAt) AS;AS; 1 (1+8rAt<) 2A8; | 7
0 klAt* 0 aiAt* max
T\ ar) ASAS,, T (L+orhr) 2ASi) A (39)
Simplifying

- 0 BAt 0 ki At s
(1+8rA8) AS;AS; 1~ (14 6rAt) ASAS,L |
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IA

- 0 ki At . 0 ki At e
(1+6rAt) AS;AS; 1 ' (14 6rA8) ASAS, L |70
Thus,
pitt < g, (40)

Similarly, if we employ the minimum principle by defining

B = min(BLy, B, A, BT B,

then
Bt > g, (41)

Hence, (40) and (41) imply that no new local maxima or minima can occur in the numerical
solution for B7"*!, which is a precise definition of a non-oscillatory solution. Since V"' =

Bt (%)n and 1 > (1 — #)rAt* by condition (38), the solution for V,**! is grt!
multiplied by a spatially independent positive decay term. Thus, the solution for V;"**! will

not contain spurious oscillations if conditions (36) and (38) are met.

B TVD Schemes for PDEs in Non-Conservative Form

Flux limiting schemes are often expressed as fully explicit schemes in the literature (van

Leer, 1974; Sweby, 1984) for PDEs that are in the following form

oV 0(aV)

-

(42)

where a is the convective velocity. Equation (42) is said to be in conservative form. Blunt
and Rubin (1992) have shown that partially implicit and fully implicit schemes are TVD for
conservative equations. In this appendix we will show that fully explicit, partially implicit
and fully implicit flux limiting schemes are TVD for PDEs in non-conservative form, and
derive the criteria under which these schemes are TVD. The arguments are similar to those

found in Blunt and Rubin (1992).

Consider the scalar convection equation

v v
S = —alS) g (43)
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which is in non-conservative form. We make the simplifying assumption that we are solving
(43) on an infinite region, so that the effect of boundary conditions may be ignored. This
assumption is usually made in TVD analysis (Sweby, 1984; Blunt and Rubin, 1992). For flux
limiting schemes, V:-El is often expressed as (Blunt and Rubin, 1992; Yang and Przekwas,

1992)

P(qH)

P=VRT (Viown = Vi) (44)

where gb(qf_l:" 1) is the limiter function and
2

n+1 n+1
qn—l—l _ ‘/; B ‘/;—1
i+L n+1 n+1-
T2 Vi+1 -V

2

(45)

Using a flux limiting scheme, the fully implicit finite volume discretization of (43) for a > 0
18

/AR e | $(g;™) ]
vl L (G
-l Plar ]
a; n t+3 n n
o R SR
Simplifying
n+1 n+1
" n Cl,lAt n n Qb(qi_l ) n n gb(qH__) " "
VeV = R [V SV (T ) - (Vi - v

which is equivalent to

n+1 n+1
Qb(ql_%) n gb(qH_%) (V;:L_—Il_l — Vn+1)

n+1 n . n+1 7
‘/; - ‘/; - _)\lA‘/;—l 1-— 2 9 Vn—l—l Vn—l—l ”
p — Vi-1
h = a; At d Avn-l—l _ Vn-l—l Vn-l—l Noti h n+1 __ V,'n+1—ViT|il
where A; = {5 an o1 —( f —V;_1 ) oting that (ZH_% = W

‘/;n-l-l o ‘/;n — _)\zA‘/:z—Il—l 1 —

P(q 1) ¢(QZif)]
: —I_ n—|—21 °
2 2qi+%

Incorporating a temporal weighting factor, § (where § = 1 is a fully implicit scheme and
6 =0 is a fully explicit scheme),

g Pl
VISV = XAV [1‘ =+
2 2Q?_|_;
€75(Q?_1) Qb(QZFL)
— NAV? (1-6)|1— 2 2|, 4
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Similarly,

Part) )
VP VL = -AnATT [1 R
Aip1 AV (1 - 6) [1 - . + » ‘
2 297 s
Letting
H(q 1) Qb(qzl-l)
a,=X(1-10) [1_ T
2 2qi+%
and

(gh) g
= A8 [1 —— 3 2ol

2 + 2q?_|:"%1
then equations (46) and (47) can be written as

VSV = AV o AV,
and

VI = Vi = =AYV — G AVY,
respectively. Subtracting (48) from (49)

AV = AVP = —gHAVIH — AVY o+ AV 4 L AVE,

(L+ AV = (L= ) AV + AV + o AV

If we impose that

and
At >0
for all ¢, then
(14 i) AV < (1= o) JAVE| it [AVE 4 iy AV,
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Summing over all ¢ and noting that Y, ¢ |AV"*| = 3, ¢ | ‘AVi’il‘ gives us
Z‘A%n-l-l‘ S Z|A‘/;n| ]

Thus, the scheme will be TVD if conditions (50) and (51) are met. Hence, we require that

€75(Q?_1) ¢((J?+;)
1> M(1-6)[1-— 2 2 2
> Ni(1-9) [ T (52)
and
ol $lay)  HaT) - s

for all ¢ and n, for the scheme to be TVD. Fully implicit (i.e. § = 1) flux limiting schemes
will be TVD if we ensure that condition (53) is met. If in addition to condition (53) we
ensure that condition (52) is met, then fully explicit (i.e. § = 0) and Crank-Nicolson (i.e.
f = ) flux limiting schemes will be TVD. Thus, if conditions (52) and (53) are satisfied,
the scheme will be TVD for non-conservative PDEs. In fact, these conditions are similar to
those required to ensure that flux limiting schemes are TVD for PDEs in conservative form
(Blunt and Rubin, 1992). Note that equation (42) does not contain a diffusion term, thus
the conditions will be overly stringent for equations such as (9).

C The Flux Limiter Function

In this appendix we will first examine the properties that flux limiter functions, ¢, possess
for uniform grids. We will then modify the van Leer flux limiter function to account for
non-uniform grids. The analysis for uniform grid spacing is similar to that in Blunt and
Rubin (1992). We include the analysis for uniform grids in order to provide the reader with
sufficient background to understand the analysis for non-uniform grid spacing. The exami-
nation of flux limiter functions for non-uniform grids has not, to the best of our knowledge,
appeared in the literature. As in Appendix B, the results in this appendix will pertain to
scalar convection PDEs, such as, equations (42) and (43). However, the results can be ex-
tended to other PDEs, such as, equation (9).

For simplicity and clarity we may at times omit superscripts and/or subscripts when
referring to the flux limiter argument (i.e. ¢) defined in equation (45) and node values.
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C.1 Uniform Grid Spacing

In appendix B we derived conditions (52) and (53) which flux limiting schemes must meet
in order to be TVD. If we impose the conditions ¢(g) > 0 and @ > 0, then condition (53)

can be restated as
(o) o

Thus, if
0 < ¢(q) <2 (55)

then condition (54) will be satisfied and fully implicit (i.e. # = 1) flux limiting schemes will
be TVD. Noting that ¢(q) > 0 and #4) > (), then condition (52) can be restated as

q

%2(1-&(1+¢@n, (56)

2q
where A, defined in Appendix B, is the CFL number (Roache, 1972; Shyy, 1994). If

o< o (57)

q
then condition (56) will be satisfied for fully explicit schemes (i.e. # = 0) when A < 1. For
Crank-Nicolson schemes (i.e. § = %) condition (56) will be satisfied when A < 1.

Equations (55) and (57) define a region in which the flux limiter function must lie in
order for the scheme to be TVD. The shaded region in figure 11 denotes the TVD region
(Sweby, 1984). Note that the conditions ¢(q) > 0 and ﬂqﬂ > 0 imply that ¢(q) vanishes
when ¢ < 0. Referring to figure 11, along the line ¢(¢) = 1 the flux limiting scheme (44)
reverts to a second-order accurate centrally weighted scheme. That is,

VitV

Vi = =

W=

when ¢(q) = 1. Along the line ¢(q) = g the flux limiting scheme reverts to

V= Vi
_W+< 2 >’

which is a second-order accurate two-point upstream weighted scheme.

Vig

W=

We do not only require that the scheme be TVD, but that it be second-order spatially
accurate whenever possible. This can be achieved by making the flux limiting scheme a
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q

Figure 11: TVD region for uniform grid spacing.

weighted convex average of a centrally weighted scheme and a two-point upstream weighted
scheme (Sweby, 1984). Thus, if the limiter function is in the region shown in figure 12, then
the scheme will be second-order accurate. One such function is the van Leer flux limiter

) =124 (59

(van Leer, 1974; Sweby, 1984). Note that when ¢ < 0 the scheme reverts to a first-order
accurate upstream weighted scheme.

C.2 Non-Uniform Grid Spacing

For non-uniform grids, a point-distributed flux limiting scheme will not revert to a two-point
upstream scheme when ¢(q) = ¢, but rather when ¢(q) = ¢, where

S — S
7T s -5,

for Gig 1t given by equation (45). We will later see that this implies that we must modify
the flux limiter function in order to ensure that the scheme will be second-order accurate
whenever possible. Furthermore, we must first expand the region that we require to be
TVD. Figure 13 demonstrates that the line representing the two-point upstream scheme will
fall outside the TVD region for certain magnitudes of grid size changes. Specifically, if the
magnitude of the grid size change, ~, is greater than or equal to 2, the two-point upstream
scheme will fall outside the TVD region.
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Figure 12: Second-order TVD region for uniform grid spacing.

@=ay, two-point upstream

3 weighting
®=2q
27
®()
1+ 0=1,
central
weighting
0 | |
0 1 2 3
q

Figure 13: TVD region for uniform grid spacing with lines representing centrally weighted
and two-point upstream schemes for non-uniform grid spacing. Where v = g’fis_i’ for ¢;, L

given by equation (45). The case where v > 2 is illustrated.
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Figure 14: Second-order TVD region for non-uniform grid spacing. Where v = g—is_l

g;1 1 given by equation (45).

To enlarge the TVD region we need not modify (55), but we must alter (57). One possible

alteration is

0< @ < 27. (59)

Assuming that condition (59) holds, Figure 14 is a graphical representation of the second-
order region that we require to be TVD. If we were to use the van Leer limiter (58) the flux
limiting scheme (44) will still be TVD, but the limiter will not pass through the second-order
region shown in figure 14. Thus, we must construct a limiter function for non-uniform grids.

A possible candidate for a new limiter function is

_ldl+4

which was obtained by modifying the van Leer limiter. To establish (60) as a limiter function
for non-uniform grids, we must show that it passes through the region denoted in figure 14
that we require to be second-order TVD. That i1s, we must ensure that

i) g7 < T <2y, for0<gq<]

‘7q_

. 2 1 2
W) 1stl<qr foi<q<y
i) 1< ﬁﬁq <2, for % <gq.

~
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Condition (7) simplifies to % > g > 0, which is satisfied for 0 < g < % Condition (%) is
equivalent to 2qg > %—I— q > %, which is satisfied since ¢ > % for % <qg< % Condition
(#31) simplifies to ¢ > % > 0, which is true for % < q. Thus, the limiter function (60) passes
through the second-order region that we require to be TVD.

Note that, we can force the original van Leer limiter (58) through the second-order region
that we require to be TVD for non-uniform grids by modifying the function argument (45).
That is, instead of modifying (58) we can modify it 1s such that,

ViV
by =y, v

However, this cannot be generalized to schemes that are not point-distributed or for other
limiter functions.

Finally, we must establish the CFL conditions (Roache, 1972; Shyy, 1994) under which
the flux limiting scheme (44), using the modified limiter (60), will be TVD. In other words,
we must satisfy condition (56) assuming (59) holds. Since we did not alter (55) when we
modified the limiter function, a fully implicit scheme using (60) will always be TVD. However,
because we altered (57) when we modified the limiter, fully explicit and partially implicit
schemes will be TVD under different CFL conditions from those required for uniform grids.

Condition (56) will now be satisfied if

L2 -0+,

because of property (59). Thus, the CFL conditions required to ensure that fully explicit
and partially implicit flux limiting schemes will be TVD are dependent upon the magnitude
of the grid size changes. For example, if we limit the magnitude of grid size changes to 2,
that i1s v < 2, then a fully explicit scheme will be TVD for A < %, and a Crank-Nicolson
scheme will be TVD for A < % Conversely, fully explicit and partially implicit schemes will
be TVD for a given A by restricting the magnitude of grid size changes.

References

Ascher, U., Mattheij, R., and Russel, R. (1988). Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations. Prentice-Hall, Inc., New Jersey.

Barraquand, J. and Pudet, T. (1996). Pricing of American Path-Dependent Contingent
Claims. Mathematical Finance, 6(1):17-51.

Black, F. and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal
of Political Economy, 81:637-654.

43



Blunt, M. and Rubin, B. (1992). Implicit Flux Limiting Schemes for Petroleum Reservoir
Simulation. Journal of Computational Physics, 102:194-210.

Brennan, M. and Schwartz, E. (1977). The Valuation of American Put Options. The Journal
of Finance, 32(2):449-62.

Brennan, M. and Schwartz, E. (1978). Finite Difference Methods and Jump Processes Arising
in the Pricing of Contingent Claims: A Synthesis. Journal of Financial and Quantitative

Analysis, 13:461-474.

D’Azevedo, E., Forsyth, P., and Tang, W. (1992). Ordering Methods for Preconditioned
Conjugate Gradient Methods Applied to Unstructured Grid Problems. SIAM J. Matriz
Anal. Applic., 13:944-961.

Dewynne, J. and Wilmott, P. (1995). Asian Options as Linear Complementary Problems:
Analysis and Finite-Difference Solutions. Advances in Futures and Operations Research,

8:145-173.

Forsyth, P. and Sammon, P. (1986). Practical Considerations for Adaptive Implicit Methods
in Reservoir Simulation. J. Comp. Phys., 62:265-281.

Geman, H. and Yor, M. (1993). Bessel Processes, Asian Options, and Perpetuities. Mathe-
matical Finance, 3:349-375.

Geske, R. and Shastri, K. (1985). Valuation by Approximation: A Comparison of Alter-
native Option Valuation Techniques. Journal of Financial and Quantitative Analysis,

20(1):45-71.

Hull, J. (1993). Options, Futures, and Other Derivative Securities. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Hull, J. and White, A. (1990). Valuing Derivative Securities Using the Explicit Finite
Difference Method. Journal of Financial and Quantitative Analysis, 25:87-100.

Hull, J. and White, A. (1993). Efficient Procedures for Valuing European and American
Path-Dependent Options. The Journal of Derivatives, 1:21-31.

Ingersoll, Jr., J. (1987). Theory of Financial Decision Making. Roman & Littlefield, Totowa,
New Jersey.

Kemna, A. and Vorst, A. (1990). A Pricing Method for Options Based on Average Asset
Values. Journal of Banking and Finance, 14:113-129.

LeVeque, R. (1990). Numerical Methods for Conservation Laws. Birkhauser Verlag, Basel.

44



Levy, E. (1992). Pricing European Average Rate Currency Options. Journal of International
Money and Finance, 11:474-491.

Levy, E. and Turnbull, S. (1992). Average Intelligence. RISK, 5(2):53-59.

Neave, E. (1994). A Frequency Distribution Method for Valuing Average Options. Working
paper, School of Business, Queen’s University.

Peszek, R. (1995). PDE Models for Pricing Stocks and Options with Memory Feedback.
Applied Mathematical Finance, 2:211-223.

Roache, P. (1972). Computational Fluid Dynamics. Hermosa, Albuquerque, New Mexico.

Rogers, L. and Shi, Z. (1995). The Value of an Asian Option. Journal of Applied Probability,
32(4):1077-1088.

Shyy, W. (1994). Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier,
New York.

Sweby, P. (1984). High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation
Laws. SIAM Journal of Numerical Analysis, 21(5):995-1011.

Tang, W.-P. (1992). Numerical Solution of a Turning Point Problem. In Keyes, D., Chan,
T., Meurant, G., Scroggs, J., and Voigt, R., editors, Fifth International Symposium

on Domain Decomposition Methods for Partial Differential Equations, pages 330-338.
STAM.

Turnbull, S. and Wakeman, L. (1991). A Quick Algorithm for Pricing European Average
Options. Journal of Financial and Quantitative Analysis, 26:377-389.

van der Vorst, H. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp, 13:631-645.

van Leer, B. (1974). Towards the Ultimate Conservative Difference Scheme. II. Monotonicity
and Conservation Combined in a Second-Order Scheme. Journal of Computational

Physics, 14:361-370.

Vorst, T. (1992). Prices and Hedge Ratios of Average Exchange Rate Options. International
Review of Financial Analysis, 1:179-193.

Wilmott, P., Dewynne, J., and Howison, J. (1993). Option Pricing: Mathematical Models
and Computation. Oxford Financial Press, Oxford.

Yang, H. and Przekwas, A. (1992). A Comparative Study of Advanced Shock-Capturing
Schemes Applied to Burgers’” Equation. Journal of Computational Physics, 102:139—
159.

45



