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Abstract

A technique for numerically estimating the discretization error in upwind based finite vol-
ume fluid flow simulation was developed. The technique is based on residual estimation,
followed by solving the global error equation over the computational domain. One and two
dimensional analysis of the error estimation process was performed for a simple homogeneous
advection-diffusion equation. The technique was then extended to encompass the laminar
Navier-Stokes equations. The effectiveness of the technique was investigated for flow over a
two dimensional backward-facing step. The results show promise for future implementations
of effective and practical error estimation.
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Chapter 1

Background

Analysts typically derive numerical solutions of partial differential equations in terms of a
solution vector corresponding to some finite discretization of the problem domain.

From an engineering standpoint, the first question to ask oneself is “Is this solution
accurate enough ?°. Typical attempts to answer this question in the Finite Volume Method
community have been of the form:

e Solve same problem on successively finer grids until the solution values stabilize to
within an acceptable tolerance.

o Construct grids which utilize a prior: information about the numerical scheme being
employed (e.g., Richardson’s Extrapolation)

e Apply other heuristics based on a physical interpretation of the data (domain conser-
vation laws, etc.)

Each of these methods has problems associated with their successful implementation;
excessive computing requirements, excessive user interaction (man hours), difficulty distin-
guishing modeling error from numerical error, etc.

For the purpose of this thesis, a more desirable type of error analysis would be some form
of auxiliary calculation procedure which creates a discrete estimate of the discretization
error, E", corresponding to the current approximate solution ¢*.

1.1 Introduction

This thesis is an attempt to take simple linear operator notions and extend them to construct
an auxiliary linear equation set to estimate the error within an approximate solution. This
document does not start with a current literature review, as is typical, since the concepts
presented here do not require previous knowledge of error estimation to be clearly understood;
they are derived from first principles.

The derivation of the error estimator is given in chapter 1.2. After this derivation, a
commentary on current related research is given to place this work in context.

A one-dimensional analysis of the error estimation procedure for linear advection-diffusion
equations is given in chapter 2. Two-dimensional numerical experimentation is presented in



chapter 3 for the linear advection-diffusion equation. Chapter 4 outlines the extension to
two-dimensional Navier-Stokes equations and analyzes the error estimation procedure for
two flows over a backward-facing step.

1.2 Error Estimation Principles

In this chapter, the technique of error estimation is introduced and formalized. The deriva-
tion draws on the advection-diffusion equation as a reference partial differential equation.
After the theory and computational methodology are explicated, a comparison of our tech-
nique to contemporary error estimation techniques from other researchers is given.

1.3 The Error Equation

Consider the steady advection-diffusion equation, given in its pointwise form as

VV® - V(IV®) = f, (1.1)

where ® represents the concentration of the transported scalar, V is the advection field
vector, I' represents the diffusivity and f is a source of ® per unit mass.
Equation 1.1 can be written in a simplified operator notation as

£(3) = f (1.2)

where L is the partial differential operator.

Let dupproz be an approximate solution of (1.2), and € = ® — papprox be the corresponding
error. From elementary linear operator theory, assuming ¢g,pror 18 in the operator domain
of L, we can define the Ezact Operator Residual as

R(¢appron) = L(Papproz) — f (1.3)
and note that & is the solution of the Error Equation,

L(E) = —B(Papproz)- (1.4)

The error equation (1.4) utilizes the exact operator residual as a source term, in the same
way that the original equation, (1.2), utilizes f as a source term. Evidently, one can think
of the residual as an error ‘source’ term, and the error is transported and modified in the
solution domain by the advection and diffusion processes. This description has been given
by Ferziger [12].

It is perhaps useful at this point to distinguish between the exact operator residual as
defined in (1.3) and the Approzimate Operator Residual, which also appears in the numerical
analysis literature, but which plays no role in this thesis. If L is an discrete approximation
of the exact operator, L, then the approximate operator residual, 7, 1s usually defined as
the residual of the exact solution ® with respect to L, i.e.:

rp = L(®)— f (1.5)
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The residual shown in (1.5) is commonly studied in numerical analysis, where it leads to
a discussion of order, since r, is typically expressed as a Taylor-series expansion (about the
fixed point of the exact solution). From this point onward, the term residual will refer to
the exact operator residual.

To recapitulate, there are two components identified for error estimation: the Exact
Operator Residual, and the Global Error Equation. The next section discusses how to move
from an operator formulation, through the finite volume method, to something which one
can actually compute.

1.4 Error Estimation

The application of these ideas to finite volume methods (FVMs) is facilitated by the intro-
duction of an integral form of (1.1) on the domain 2. In this section we review the principles
of the FVM that relate to extending the basic ideas of §1.1. See Hirsch [19] for a more
comprehensive discussion of the FVM for fluid flows. In Appendix D we provide a detailed
description of the FVM for the incompressible Navier-Stokes equations.

Let V be a mesh of the domain €2, dividing it into finite volumes, or cells v, for K = 1 to N.
Discrete functions based on V are vectors of length N; we will write them with superscript
‘h’ such as ¢", with ¢} being the value associated with the finite volume vy in V.

If we apply the divergence theorem to each cell, v, then equation (1.2) implies

/avk LA(B) ds = / fdv, (1.6)

where
L) = (-I'Vy + V) - a1, (L.7)

and ds 1s the cell differential surface area.

Derivations of FVMs are typically based on replacing the flux expression, L*(¢(z)), of a
continuous distribution (z) by an approximate expression based on the values of a discrete
distribution, 9". We will designate a typical FVM expression for the flux through a face
of cell v, by L*(¢"). Then, by analogy with (1.6), we can express the cell conservation
equations of the FVM as

[ (s = [ fo. (1.8)

Intuitively, we would like to apply the ideas of §1.2 t0 a gappror that corresponds to ¢, ;.
However, for general FVMs, there is no method specific way to extend ¢y, of (1.8) to a
continuous distribution on . For the standard forms of €2 and finite volume cells, we can
use piecewise linear interpolation to extend a discrete distribution, 9", on V to a continuous
one on ), which we will designate as S9"(z). This extension has a special relationship with
centred differencing FVMs since the discrete flux expressions for centred differencing, L7,
satisfy

op(¥") = L7(59p"(2)). (1.9)
The extension of 9" to Sy"(z) does not allow us to use the formalism of §1.2 directly,
since piecewise linear functions are not smooth enough to belong to the operator domain of
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L. Therefore, we turn to identifying a discrete estimate of the residual in (1.3) based on
an integral form of the error equation, (4). If Pgpprox 18 a smooth approximate solution and

E =P — Pupprox then

[, c@ds = [ fdo— [ L Gupgre)s
= - /vk R(approz)dv. (1.10)

We now identify the average of R(¢approz) O vp as our estimate of the exact operator
residual for ¢gp,roq at cell vy, 1.e.,

1
R ugproe) = o | R (111)

where |vg| is the volume of cell vy.

Equations (1.10) and (1.11) can now be used to define R (dapproz) for any continuous
distribution, ¢gpprex, i the operator domain of £, and this wider definition admits the
piecewise linear extensions of discrete distributions, Sv"(z).

In particular, (1.10) and (1.11) provide a definition for a discrete residual estimate for

Prva, ie.,

ol RS Hrvan) = [ fo— [ £ (Sbyar)ds (1.12)

Vi
Computationally, this residual estimate is simply the centred difference FVM residual of
Prrar, as we can recognize using (1.9).
This discrete residual estimate provides the ‘error source’ term for our estimate of the
global error in ¢%,,,, which we designate by E". E" is computed as the solution of the
original upwind FVM method with source terms that are the discrete residual estimates, i.e.

/a L*(EMds = —|og| R (S¢yns) . k=1to N. (1.13)

1.5 Related Research

We will refer to the technique described in the preceding sections as the Global Error Equation
Method. It represents a novel approach to a posteriori error estimation compared to other
contemporary methods.

At the current time, there are three main approaches used to estimate errors in approx-
imate solutions: FElement Residual Methods, Fluz Projection Methods, and, Ezxtrapolation
Methods. The points of contrast between these methods and our approach are outlined in
this section to provide a context for evaluation and illuminate the research motivations.

A more detailed description of these three methods is provided in appendix A. It is in
this appendix that comprehensive references to the literature are provided.

The Element Residual Methods most closely resemble the approach described in this
thesis. They are reported in a finite element method context universally. Research on this

approach by Ainsworth and Oden [1], Babuska and Rheinboldt [4], Bank [7], Bank and
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Weiser [6], Kelly et al. [20, 21, 22, 23], Oden, Weihan and Ainsworth [26], Strouboulis and
Haque [36], Strouboulis and Oden [37] and Verfurth [40] is reviewed in Appendix A. They
involve estimation of an exact operator residual, but instead of assembling a global system
of equations to solve, the error between adjacent elements is assumed to decouple, thus the
error estimate is obtained using an element-by-element algorithm. The different published
approaches to the Element Residual Methods differ primarily in how they pose the boundary
conditions for the element based error equation.

The Element Residual Methods may be interpreted as a form of local transformation of
the exact operator residual. As such, the resulting error estimate, E*, bear little resemblance
to the global error, £ . Unlike this thesis, the distributed error estimate, E*, is never reported
in the literature. Instead, they invariably quote the energy of the error, also called the energy
norm.

Since the Element Residual Methods represents a local transformation of the residual,
it should come as no surprise that they can be used successfully to drive grid refinement
algorithms. Recall that the residual acts as a ‘source’ term in the error equation. If one
targets the regions of large magnitude residuals for grid refinement, then one would be most
efficiently reducing the sources of errors in the approximate solution.

The Flux Projection Methods stem from a simple observation: The exact solution to the
PDE problem probably does not have discontinuous derivatives, whereas the approximate
solution does. If one performs what is termed a projection calculation, then one can create
an approximate solution which does have continuous derivatives. Assuming that the smooth
solution should be more accurate than the non-smooth solution, the difference between them
should be an error estimate. Research by Ainsworth et al. [3], Babuska and Rodriguez [5],
Hétu and Pelletier [16, 17, 18], Zienkiewicz and Zhu [43, 44] is reviewed in Appendix A.

Like the Element Residual Methods, the Flux Projection Methods are invariably re-
ported using the energy norm. They are also most successfully used to drive grid refinement
algorithms.

For both the Element Residual Methods and Flux Projection Methods reported in lit-
erature authors have assumed, explicitly or implicitly, that a local calculation is the only
computationally feasible approach to pursue. The rationale is that a local computation is
inexpensive and adequate for the purpose of grid refinement. In this thesis, this assumption
i1s not made, for two main reasons. First, it is clear that the global nature of the error
equation is essential to the process of estimating the global distributed error. The local
error estimation techniques have not demonstrated any success in achieving our stated goal
of determining approximate solution quality, which we feel is a different goal from error
estimation for the purpose of grid refinement.

Second, computationally feasible implies that the computational cost of the error estimate
should be small compared to the cost of generating the approximate solution. Now, for the
majority of the literature, linear elliptic PDEs have been studied. For these problems, it is
true that global error estimation costs just as much as solving the original problem, which is
not acceptable. But, when solving coupled non-linear PDEs (like Navier-Stokes equations)
the situation changes. Approximate solutions are typically generated in a process of iterative
refinement, involving solving on the order of 5-20 coupled linear system of equations. In this
context, a single linear equation set becomes a feasible computation. In addition, since the
error equation is of the same class as the original PDE, the optimized solver techniques,

12



(preconditioners, multigrid methods, etc.), created for solving the approximate solution are
at your disposal for solving the error equation.

Extrapolation Methods involve exploiting a priori knowledge of the order of the numerical
method being employed to extrapolate from a set of approximate solutions to an estimate of
the exact solution. With this exact solution, error estimation can be performed. Research on
this method from Bradley, Missaghi and Chin [8], Caruso, Ferziger and Oliger [10], Ferziger
[12, 13], Kessler, Peric and Scheurer [24], Roache [32] is given in Appendix A.

A commonly used form of extrapolation is Richardson’s Extrapolation, which would
estimate the error with a formula such as

By= 291 O(h?+Y), (1.14)

Z
()" -1

where ¢; and ¢, are p-order solutions on grids whose grid spacing are characterized by h;

and hs respectively. Fs would the error estimate for the approximate solution ¢,. Like the

Global Error Equation Method, this method does produce a distributed error estimate. It is

also simple to understand and theoretically should apply to any PDE, and to any functional

of the solution.

However, the difficulties with Extrapolation Methods are many. They assume that one
can characterize an entire discretization method with a single parameter p, the order. In
practice, only very simplistic discretizations have a readily identifiable convergence order.
Implementation details such as boundary condition treatment, scheme blending, solution
discontinuity treatment, etc. make it difficult to determine a unique single valued order for
a given discretization.

The Extrapolation error estimate will only be valid if the O(h**!) term is significantly
smaller than the leading term in equation (1.14). This is referred to as being in the asymptotic
range. With two successive solutions on two different grids, there is no way of knowing if the
asymptotic range has been reached. If one assumes that one knows p, and assumes that a
single parameter grid set has been used, then it is possible to check if one is in the asymptotic
range if one uses three solutions on three different grids.

Extrapolation also assumes that multiple computational grids can be defined with a
single parameter variation, h. Unfortunately, only very simplistic grids lend themselves to
such single parameter sets. Great effort must be expended attempting to create a single
parameter grid set for a complex geometry. There is also no way to know if one has made
the attempt successfully. On a more pragmatic note, the time and computational cost that
must be used to generate a complex geometry grid set, and solve multiple approximate
solutions, will usually be larger than the cost of the original approximate solution, i.e., it
becomes computationally infeasible.

Suffice to say, the Global Error Equation Method does not suffer from these drawbacks.

1.5.1 Current Contributions

The Global Error Equation Method as described in §1.1 and §1.2 more closely resemble
the Element Residual Method family than the other two approaches to error estimation
outlined above. Both emphasize estimating the exact operator residual, however, since

13



the application of the element residual method has been primarily targeted towards grid
adaption, the emphasis has been on computationally inexpensive local transformations of
the residual to global error units, rather than accurate estimates of the distribution of the
global error.

1.6 Summary

The Global Error Equation Method has been derived from standard linear operator theory.
Beginning with a partial differential equation in operator notation (equation 1.2),

L(®) = f,

an approximate solution ¢, is generated using the Finite Volume Method (equation 1.8):

/f)vk L*(Qb}ﬁVM)ds = /vk fdv.

The error estimation procedure begins with the calculation of the residual estimate (equation

1.12),
0l RLStpvar) = [ fdv— [ £(Sbhvar)ds.
Then the global error equation is solved (equation 1.13),
/a L*(Eh)ds = _|vk|RZ(S§b}}L7‘VM) , k=1toN,
"

to yield an error estimate E".

The technique was contrasted, in principle, to contemporary a posteriori error estimation
methods, in terms of the perceived strengths of this approach. In particular: The use of the
full global error equation instead of a local calculation, error given in distributed form, instead
of an energy norm, no need for the questionable assumptions imposed by extrapolation
methods.

In the next chapter, a one dimensional analytical example of this procedure is given, with
emphasis placed on evaluating the validity of the Global Error Equation Method. Chapter
3 follows these steps again, for a battery of two dimensional numerical problems instead of
a finite analytical analysis.

14



Chapter 2

One Dimensional Advection-Diffusion
Equation

To assess the validity of the Global Error Equation Method Consider the two steps of the
process in a model situation that is analytically tractable. Consider the one-dimensional
version of (1.1):

5*® 0P
—I'— — = r 2.1
Oz +V@w 0 WI>0, (2.1)
¢ =, at x =0,

d=0, at z =1.

We can carry out an analytical analysis of the various components of the preceding section
for discretizations of this problem using a uniform mesh of 0 < # < 1 of width » = 1/N
centered at x;, = kh L.

The discrete form of the solution of (2.1) using a simple upwind FVM is ?

(2.2)

where a is the grid Peclet number, defined as a = VA/T .

2.1 Residual Estimation

In order to appraise the residual estimation process, it would be beneficial to generate a
residual from the original partial differential operator and compare this function to the
residual estimate.

!These computations were done with the MAPLE symbolic computation package
2See appendix B for a derivation of a finite difference analytical form
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A natural extension of (2.2) to a C* approximate solution of (2.1), ¢upproz, can be
obtained by replacing k& by z/h, and allowing @ to vary continuously from 0 to 1. The
residual of @gppror can now be computed as

(&, — B)(1L+a)*
1+a)¥ -1

Ry =

Vin(l + a)

- (1—-In(l4a)/a)|. (2.3)

Calculation of a residual estimate for this solution using central differencing yields R",

(¢, — ®)(1+a)* &V
(14+a)¥ -1 2(1+a)h
An inspection of equations (2.3) and (2.4) reveals that they have the same dependence

on k and differ by a constant factor that depends only on the grid Peclet number. The ratio
of R" to R provides an indication of the quality of the residual estimate, and how it varies

Rl = (2.4)

with the problem parameters:

Rh a3
P=—= . (2.5)
R 214 a)In(l + a)(a — In(1 + a))
In the limit of @ = 0, P approaches unity. P can be approximated to 90% accuracy in
the range 0 < a < 13 by

2.2 Error Estimation

Using the residual estimate R from §2.1, we now calculate an error estimate using a simple
upwind differencing form of the error equation (as represented in equation (1.13)). The error
equation will have Dirichlet boundary conditions (as in the original PDE) E; = E, =0 .
Again, for brevity, the full derivation is given in appendix B .

The error estimate, E”, then has the analytical form

a2((1)7. — (I)l)
21 = (1 4 a)?)?

Utilizing the approximate FVM solution (2.2), and the exact solution of equation (2.1),

E} = (11— (1 +a)EQ+a) T+ NA+a)¥ ™ - NA+a)¥ Y. (2.6)

the exact error in the approximate solution can then be calculated. The ratio of the error
estimate to the exact error can then be calculated as

M E" _ a’(1- Ny (11— 1+ a)ME(l+a)*+ N1+ a)V (1 +a)k—1)
€ 20-01+a)) [ (1—=Q1+a))(ek —1)+ (N = 1)((1+a)* —1)

(2.7)
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M is commonly referred to in the literature as a nodal effectivity index. The difference
here being that the distributed variable representation is compared, instead of the energy
norm of the error (see Babuska and Rodriguez [5]).

Unlike the residual estimate effectivity, P, the error estimate effectivity varies spatially
over the domain (the dependence on k), as well as the grid density, N, in addition to the
Peclet number dependence.

As a first pass at understanding what the quantity M is telling us, we can take the limit

=Yr _,.

of the function as a = T

lim M = 1.
a—0
So, in the limit of grid refinement, or in a diffusion dominated case (large I, small V'),
the error estimate asymptotically approaches the exact error.
More generally, one wants to know how M behaves when a is not zero. To get an
impression of this behavior we can study M at a unique location spatially. An obvious
choice would be the point where

o€

=9
Ok ’

that is, the point of maximum error in the approximate solution.

At this point, The function M does seem to collapse to strictly a function of cell Peclet
number (except in the near zero region). Figure 2.1 shows the effectivity index M plotted
as a function of a for N = 10,100,1000. Note that all curves converge to a single curve in
the region beyond 0 < a < 0.5.

It can be seen that over a large range of Peclet numbers, and a large variance in grid
density, the effectivity index varies by only about 12% from unity.

2.3 Summary

The Global Error Equation Method was applied to a finite analytical solution of the 1D
advection-diffusion equation.

The residual estimate was compared to an exact form of the residual and shown to be
functionally identical, but vary by a multiplicative constant.

The analytical error estimate was compared to the exact error through the use of an effec-
tivity index. The effectivity index was shown to approach unity (error estimate approaches
exact error) in the limit of grid cell Peclet number going to zero. Hence the error estimate
should always improve from grid refinement.
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Figure 2.1: Maximum of Effectivity Index vs. Cell Peclet Number: N=10,100,1000
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Chapter 3

Two Dimensional Advection-Diffusion
Equation

To extend the evaluation of this new FVM global error estimator, a set of 2-dimensional test
cases were created.

The extension into two space dimensions makes generation of closed form analytical finite
difference solutions (as used in §2) unwieldy at best. For that reason, we limit our work to
particular numerical problems, for which we know the analytic exact solution.

The 2D homogeneous scalar advection-diffusion equation is

VV® - V(I'V®) = 0. (3.1)

Solutions for this equation can be generated through use of a coordinate transform and
using the applicable Green’s function (This process is shown in detail in appendix C and is

based on Stakgold [35]).

3.1 Test Suite

There are four different cases considered in this study:
e Point source subjected to grid-aligned flow.
e Point source subjected to grid skewed flow.
o A boundary layer field generated by a discontinuous Dirichlet boundary condition.
o A boundary layer field generated by a discontinuous Neumann boundary condition.

The first two are referred to as the point source problems, while the latter two are called the
boundary layer problems.

For each of these cases, a solution is derived for the flow velocities of 0.15 and 0.45, and
the diffusion coefficient set to 0.01 . The far-field conditions are assumed to be zero. The
form of the exact solutions for these problems is given in its integral form. The integrals are
evaluated numerically until the desired number of significant digits are achieved (7 digits for
the purpose of this study).
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For all problems, two different approximate solutions are generated. The first is a stan-
dard upwind differencing, referred to henceforth as the UDS approximate solution. It is a
first-order numerical scheme and is the 2D analogue of the approximation explored in §2.

The second is a linear profile skew upwinding scheme with advection correction, similar
to that described by Schneider and Raw [33], modified by an advection correction term
described by Raithby [29], henceforth referred to as the LPS+PAC approximate solution.
It is a second-order numerical scheme and represents a more realistic, commercially viable,
discretization.

Thus, for each problem, the following steps are performed:

1. A grid is defined.

2. An exact analytical solution to the problem is calculated at each grid point (®").
3. Approximate numerical solutions are generated using UDS and LPS+PAC (4").

4. The Global Error Equation Method is employed to produce an error estimate (E") for
the approximate solution.

5. The error estimate is compared to the exact error (®" — ¢").

6. A subjective assessment of the quality of the error estimate is made.

3.2 Point Source Problems

Consider the problem where there is a unit point source at the origin. For this problem the
exact solution can be expressed as

Ve V L
P(z,y) = e Ko(55(e* +9°)?), (3:2)
where K is a zero degree modified Bessel function of the second kind.
Since the exact solution is not defined at the origin for this problem, the computational
domain is slightly offset from the origin. For the numerical solutions, all boundary conditions
are implemented as Dirichlet conditions utilizing the exact solution

3.2.1 Grid Aligned Flow

For the grid aligned flow condition, two problems are considered: a low speed flow, V=0.15,
and a high speed flow, V=0.45. The exact solutions for these problems is shown in figures
3.1 and 3.2 respectively.

For the first cases, the point source problems, a coarse grid is used. The grid is shown in
figure 3.3. The results of the numerical experimentation with the UDS approximate solutions
are shown in figures 3.4 through 3.7.
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Figure 3.1: Point Source Exact Solution: V=0.15
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Figure 3.2: Point Source Exact Solution: V=0.45
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Figure 3.3: Mesh for Grid Aligned Point Source Problem

Figure 3.4: Exact error:V=0.15: UDS approximate
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Figure 3.5: Error estimate:V=0.15: UDS approximate solution
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Figure 3.6: Exact error:V=0.45: UDS approximate solution

23



_05 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3.7: Error estimate:V=0.45: UDS approximate solution
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Figure 3.8: Exact error:V=0.15: LPS+PAC approximate solution

Some observation for these plots can be made at this point:

o The level of error ranges between 10-15% relative error, with the maximum occurring
one node in from the inlet boundary condition.

o The zero error contours are remarkably congruent between the estimate and exact error
fields. This results in the error estimator consistently having the correct sign for the
error. The qualitative distribution of the error is quite well predicted for all cases.

o In the regions above and below the high error central core, where the overall level
of error is relatively small, the error estimate is within 10% of the actual error (The
relative error in the error estimate is less than 10%)

e On aline through the point source along the velocity vector, where the error is the high-
est, the error estimator under-predicts the magnitude of the error by a quite consistent

factor of 2/3.

The same two problems were also run using the LPS+PAC approximate solution. The
low speed flow results are shown here. The observations made apply equally well to the high
speed flow case. Results are shown in figures 3.8 and 3.9
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Figure 3.9: Error estimate:V=0.15: LPS+PAC approximate solution
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Figure 3.10: Point Source Exact Solution: V=0.15 inclined at 30 degrees

Observations of the numerical results for the LPS+PAC approximate solution indicate:

e The LPS+PAC solutions are, as expected, noticeably better than the UDS solutions,
for all problems.

e Qualitatively and quantitatively, the error estimation results have a comparable quality
to the UDS approximate solution results.

This last point is important. Until this point, we have only analyzed bilinear residual
estimates operating on first-order approximate solutions (UDS solutions). LPS4+PAC is the
same order of numerical approximation as a full bilinear approximation (second-order). At
the start of this research project, there were doubts that a second-order residual estimator
would be of any use for these higher order approximations. These results would seem to indi-
cate that the order of the numerical scheme is not the only factor to consider when generating
a residual estimator. In this case, a bilinear residual estimate performed admirably.

3.2.2 Grid Skewed Flow

As was done in §3.2.1, a low speed and a high speed flow problem are considered (V=0.15
and V=0.45). The difference now being that the flow vector is skewed by 30 degrees to the
X-coordinate direction. The exact solutions for these problems are shown in figures 3.10 and
3.11 respectively.

The same computational mesh is used to generate the approximate solutions, except it is
repositioned with respect to the origin to make more effective use of the mesh. The results
utilizing the UDS approximate solution are shown in figures 3.12 through 3.15.
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Figure 3.11: Point Source Exact Solution: V=0.45 inclined at 30 degrees
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Figure 3.12: Exact error: V=0.15 inclined at 30 degrees: UDS approximate solution
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Figure 3.13: Error estimate:V=0.15 inclined at 30 degrees: UDS approximate solution
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Figure 3.14: Exact error: V=0.45 inclined at 30 degrees: UDS approximate solution
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Figure 3.15: Error estimate:V=0.45 inclined at 30 degrees: UDS approximate solution

Figure 3.16: Exact error: V=0.45 inclined at 30 degrees: LPS+PAC approximate solution
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Figure 3.17: Error estimate: V=0.45 inclined at 30 degrees: LPS+PAC approximate solution
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Observations are the same as for the grid aligned flow problem. The error estimate
performs well for both cases examined.

Similar to §3.2.1, the LPS4+PAC approximate solution results are similar between the
high and low speed problems. An indicative example is shown in figures 3.16 and 3.17

As with the UDS results, the observations from §3.2.1 can be applied equally well to the
LPS+PAC results.

3.3 Boundary Layer Problems

3.3.1 Discontinuous Dirichlet Problem

Consider the following positive-Y plane and boundary conditions:

Y
vV ———=
®=0 ®=1 ®=0
| x
x=0 x=0.5
Introducing a new scalar variable,
2= on (x —7)2 + 92, (3.3)
the exact solution for this problem can be evaluated by calculating
x V 0.5 K =Vr
q)(il?,y) = 6‘2/_1“_’!/ 1(Z)6 2¥ dr_ (34)

2I' Jo z

The integral in 3.4 becomes difficult to calculate as you approach the singular region
(y = 0,0 <=z < 1). In addition, the exact solution has singularities at (z,y) = (0,0) and
(%, 0). For these reasons the numerical problem posed has been offset from the x-axis. This
results in sharp Dirichlet boundary gradients, but not singularities, while still preserving the
analytic boundary layer field. Figures 3.18 and 3.19 show what the exact solutions for to
two cases (low speed flow and high speed flow). Each contour represents a 0.1 scalar step. A
finer grid spacing was used for this problem compared to the point source problem. The grid
1s shown in figure 3.20. The implemented Dirichlet boundary condition is shown in figure
3.21.

The results of the numerical experimentation with the UDS approximate solutions are
shown in figures 3.22 through 3.25.
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Figure 3.18: Discontinuous Dirichlet Exact Solution: V=0.15
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Figure 3.19: Discontinuous Dirichlet Exact Solution: V=0.45
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Figure 3.20: Mesh for discontinuous Dirichlet boundary condition problem
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Figure 3.22: Exact error:V=0.15: UDS approximate solution
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Figure 3.23: Error estimate:V=0.15: UDS approximate solution
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Figure 3.24: Exact error:V=0.45: UDS approximate solution
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Figure 3.25: Error estimate:V=0.45: UDS approximate solution
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Figure 3.26: Exact error:V=0.15: LPS+PAC approximate solution

0.6

0.51

0.3

0.2

-0.2

Figure 3.27: Error estimate:V=0.15: LPS+PAC approximate solution
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Some observations that can be made:

e With the finer grid, we see that the error now ranges from .05-.2% error for large
regions away from the boundaries, up to 1.5-2% error close to the x-axis boundary.
The dominant feature for these error fields appears to be large error production in
regions of large streamwise solution gradients. UDS performs poorly for this type of
flow phenomenon.

o As before, the qualitative distribution of the error is well estimated. Visual inspec-
tion of contour plots sometimes cannot distinguish between the exact error and error
estimate.

o In regions of low error levels, the relative error in the error estimate runs from 0-2%.
In those regions where the error level is higher, this can reach a maximum of roughly
5% error.

As with the point source problems, the numerical results for the LPS4+PAC approximate
solutions are similar in their observable characteristics. An example is given in figures 3.26
and 3.27. The same observations made for the point source problems can be granted to the
Dirichlet boundary problem.

3.3.2 Discontinuous Neumann Problem

Consider the following positive-Y half plane and boundary conditions:

Y
vV ———=
|
db_ 0 _ 3P_
&= 0 &y -1 Y
Again, introducing a new scalar variable,
z (:B - T)2 + y27 (35)

Tor

the exact solution for this problem can be evaluated by calculating

.1 05 v
O(z,y) = eI Ko(z)e% dr. (3.6)

™ J0

as detailed in Appendix C.
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Figure 3.28: Discontinuous Neumann Problem Exact Solution: V=0.15

The exact solutions are shown in figures 3.28 and 3.29 respectively.

The exact and estimated error for the UDS approximate solutions are shown in figures
3.30 through 3.33. As with the Dirichlet boundary condition problems, there is, in general,
good agreement between the exact and estimated error.

The LPS+PAC approximate solutions do not demonstrate any significant difference from
the UDS approximate solution in terms of the correspondence between the exact and esti-
mated error. The low speed flow results are shown in figures 3.34 and 3.35.
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Figure 3.29: Discontinuous Neumann Problem Exact Solution: V=0.45
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Figure 3.30: Exact error: V=0.15: UDS approximate solution
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Figure 3.31: Error estimate: V=0.15: UDS approximate solution
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Figure 3.32: Exact error: V=0.45: UDS approximate solution
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Figure 3.33: Error estimate: V=0.45: UDS approximate solution
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Figure 3.34: Exact error: V=0.15: LPS4+PAC approximate solution
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Figure 3.35: Error estimate: V=0.15: LPS+PAC approximate solution
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3.4 Summary

The Global Error Equation Method was tested on a spectrum of 2-D scalar advection diffu-
sion problems, for two different types of approximate solutions (UDS and LPS+PAC). All
results showed good correspondence between the error estimate and the actual error.

The scalar advection-diffusion is a rather simple fluid transport model. Success with
this equation indicates that there is now a need to extend the work to a more realistic fluid
dynamic model. In the next chapter we report on work with the Navier-Stokes equations.
Although more physically realistic, they require dealing with a non-linear vector equation
set. These new elements require additional care.
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Chapter 4

Navier-Stokes Equations

In this chapter we move our study from the linear scalar advection-diffusion equation to the
Navier-Stokes equations.

Consider the basic Navier-Stokes equations, representing steady incompressible laminar
flow in two dimensions with no body forces. The equations representing the conservation of
mass, and linear momentum in the z and y coordinate directions are respectively:

ou oV
ou ou| oP o*U  0*U
- - | —t+—| = 4.2
[an—l_vay] Oz l6w2+6y2] 0 (4.2)
ov ovy| oOP *vV.  0*V
p[U%—FVa—y]—Fa—y—H[a:ﬁ—Fagﬂ]—o. (4.3)

U and V are the fluid velocities in the # and y coordinate directions respectively, P is the
fluid pressure, p is the fluid density and g is the fluid dynamic viscosity.

Equations (4.1)to (4.3), along with appropriate boundary conditions can be written in
operator notation as

N(U,V, P) = (0,0,0). (4.4)

The Navier-Stokes equations, as presented, have two major differences from the advection-
diffusion equation studied in earlier chapters:

1. Instead of a single equation for the scalar field ®, the Navier-Stokes equations are a
coupled system of equations for the vector field [U,V, P|

2. The equations are non-linear

The error estimation principles of chapter 1.2 are reformulated to reflect these differences.

4.1 The Error Equation

The error will now be a three component vector field. Thus if [u, v, p] represents an approx-
imate solution of (4.4), then the error in [u, v, p] is given as
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—

€ =1[8u,8,8) =[U,V,P]— [u,v,p]. (4.5)

Now, the Ezact Operator Residual can be expressed as

[Rma337 Rm_mom7 Ry_mom] = N(“v ’U,p)- (46)

By taking (4.5) and substituting into (4.4) and separating terms (keeping in mind how
the exact operator residual has been defined, (4.6), the non-linear Error Equation, can be
expressed as:

0&, 0§,

8—Jl+ 8:’/ = _Rmassa (47)
O, O, O, O, ou ou &, 9%&, 0%, _
P [(Eu(?—a: + gv%>a + <u3—a} + vw)() + <3_a:gu + 8_yg”>c]+8—m_# [W + 3—3/2] = —Ry_mom
(4.8)
o0&, o0&, o0&, o0&, Ov Ov &, 9%¢, 0%, B
| (8 + &wl G By )ﬁ (56t a—y“fv>c]+ 7 l T ] ~ e
(4.9)

where the subscripts a,b and ¢ are included to aid in our discussion below.
Equations (4.7) to (4.9) can be expressed in operator form,

Ng(gu, E:v, gp) - _[Rma337 Rm_mom7 Rymom]- (4]‘0)

The resulting equations are similar to the advection-diffusion error equation (1.4) in that
the error equation utilizes the exact operator residual as an error ‘source’ term. The error,
then, is transported through the solution domain to generate the error field. The notable
difference being that the Navier-Stokes error equations are non-linear.

Full Linearization

To effect a computationally practical error estimation, it is desirable to solve a linearized
form of (4.10). To allow for a posteriorievaluation the equations are linearized about the cur-
rent approximate solution [u, v, p]. This is equivalent to discarding the terms highlighted in

equations (4.8) and (4.9) with the (), subscript. Let this new system of PDEs be represented

ull

by the continuous linear operator Ng_f ,

NP (80,60, 65) = —[Runasss Bo_moms Ry_mom]. (4.11)

The resulting operator, Ng_fu”, 1s equivalent to the Newton-Raphson linearization of the
Navier-Stokes equations. Spectral analysis of Ng_fu” 1s still an active area of research. We
will see later that the inversion of Ng_fu” can be problematic. Spectral analysis of Ng_fu” 18
beyond the scope of this work; we proceed under the assumption that Ng_fu” possesses both
left and right inverses within the range of problems studied.

Semi-linearization

As an alternative to the full linearization of (4.10), a semi-linearization is also constructed.

The semi-linearization ignores terms (), and (). of equation (4.10). This remaining equation

set, Nz~ ", is essentially a system of weakly coupled linear advection-diffusion equations. All
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solutions of the linear advection-diffusion equation are stable. Through proper discretization
(i.e., upwinding etc.), the numerical problem can be guaranteed to be stable. Mg is the
same partial differential operator that is at the root of a frozen coefficient non-linear iteration
commonly used to solve the Navier-Stokes equations.

This leads to another (practical) advantage of the semi-linearized error equation: since
the error equation is now equivalent to frozen coefficient non-linear iteration for the Navier-
Stokes equation, the mechanism used to assemble the algebraic equations can be used to
solve the original approximate solution.

4.2 Error Estimation

In the previous section two linearized partial differential equations were presented as a basis
for a posteriori error estimation of numerical solutions of Navier-Stokes equations. In this
section these equations are expressed in a FVM context. As was done in §1.4, an integral for-
mulation is introduced. A detailed description of the integral formulation and discretization
1s given in appendix D, an abridged description is given here.

Let V be a mesh of the domain 2, divided into finite volumes, or cells v;, for k =1 to N.
Equation (4.4) implies

/a N*(U,V, P)ds = [0,0,0], (4.12)

where N*(U, V, P) represents the flux of mass, and momentum through a differential surface
ds .

To generate an approximate solution of (4.12) the FVM replaces the continuous dis-
tribution [u, v, p|, by values of a dlscrete distribution [u" v" p"] . The discretized form of
N*(u,v,p) will be written as N*(u", v" p")pyar,

/ N*(uhv vhvph)FVM ds = [07 0, 0]7 (413)
8vk

where FVM would refer to the particular discretization employed

Equation (4.13), although finite dimensional, is still non-linear. To compute a solution to
(4.13) it is necessary to solve a sequence of linear problems. For this work, a frozen coefficient
linearization about the current approximate solution is performed. Denote this linearized
operator as N* for future reference

The residual estimate for [u”,v", p"] can be written as

|’Uk|[ mass7R}mL_mom7 ymom / NCD ’lL ’U P )d (4]‘4)

where, recall, the C'D subscript indicates a central differencing discretization.

The full linearization of (4.10) is now discretized, in the same way as was done for the
original PDE, via an integral formulation. The only difference being the treatment of the
(). terms. For the purpose of this thesis, the (). terms are discretized using a lumped mass
approximation. The discrete error estimate, [E", E", E;‘], can then be obtained by solving
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Figure 4.1: Backward Facing Step Problem Definition

/ N (BR B EMYds = —[ug|[RE e RY o B ] 5 k=1t N (4.15)
8vk

_mom’ Yy_mom

The semi-linearization of (4.10) is treated in the same manner. From a pragmatic standpoint,
it 1s important to note that the discretized semi-linearized error operator is the same as the
linearized form of the Navier-Stokes equation used for the original solution which, in our
notation would be expressed as

/ N (B, Bl BY)ds = / N(El, B}, B})ds = —|vk|[R}sss RY noms Riynom) » k=1to N.
8vk

o, x_mom *Yy_mom
(4.16)

4.3 Computational Experiments

As was done with the 2D advection-diffusion equation, the error estimation technique, as
described, was implemented in a computer code and tested on numerical problems for which
the exact error in the approximate solution was available. The error estimates were compared
to the exact error.

The details of the numerical method are given in appendix D. The Backward Facing
Step problem was chosen for the computational experiments. It represents a flow which
embodies the essential differences between Navier-Stokes class equations and other simpler
flow equations (Stokes equations, Euler equations etc.). It is also a standard benchmark
problem for which there are well established numerical solutions.

The setup was the same as given by Gartling [14]. A schematic of the problem definition
1s given in figure 4.1. The inlet boundary condition specified the velocity profile . The inlet
velocity, as in [14], was the parabola U = 24(0.5 — y)y. This gave the flow field downstream
of the step a maximum velocity of 1.0. The channel expands from a width of 0.5 to 1.0 at
z = 0. At the outlet, the pressure was set to a constant value and the normal and tangential
fluid shear stress was set to zero.
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Two Reynolds number flows were solved for, a low Reynolds number flow: Re=100, and
a high Reynolds number flow, Re=800 (Reynolds number defined as Re=(Upazhp)/p where
h is the channel height). For both cases, five successively finer grids were generated and
solved using the higher accuracy LPS+PAC scheme in order to estimate the ezact solution
[U, V., P]. The grid dimensions were respectively: 80 X 24, 120 X 36, 344 X 48, 240 X 72, and
320 X 96. The last four grids represent refinements of the first grid by refinement factors of
1.5, 2, 3, and 4. Utilizing an extrapolation analysis recommended by Roache [32], the fine
grid results were estimated to contain no more than 0.4% relative error for the low Reynolds
number flow, and under 1.5% relative error for the high Reynolds number flow. Furthermore,
the high Reynolds number flow was compared at the © = 7 and = 15 cross-sections to
those reported by Gartling [14]. The fine grid results, for the x-velocity and pressure fields,
deviated from the reported results by no more than 2.0%. With this computed “exact
solution” it was possible to determine the exact error € with which to compare to the error
estimates.

As was done with the advection-diffusion equation, approximate solutions were created
using two different types of upwinding procedure: Standard upwind differencing (UDS), and
Linear Profile Skew Upwind Differencing with Physical Advection Correction (LPS+PAC).
Error estimation was performed on the second grid in the set (120 X 36).

The error field from a Navier-Stokes equation solution, as mentioned previously, is a
three component vector. For this work, the x-component of velocity was chosen for plotting
purposes. This does not seem to be a limiting choice, since it was witnessed that the level of
correspondence between the exact and estimated error was the same for all three components
of the error vector.

4.3.1 Low Reynolds Number Flow

The streamlines of the exact solution for this problem are shown in figure 4.2. It is obviously
a low Reynolds number flow, containing but one small recirculation zone behind the step.

Using the procedure outlined in §4.2, a full linearization error estimate is computed for
the approximate solutions from the UDS and the LPS+PAC numerical schemes. Figure
4.3 shows the comparison between the exact error in the x-component of velocity and the
estimated error. Figure 4.4 is the same plot for the LPS+PAC approximate solution.

The degree of correspondence between the exact and estimated error is less than it was
for the advection-diffusion equation. For the UDS approximate solution, the main error
field features are clearly duplicated, but the error magnitude is an over-estimate by about
a factor of two (a similar quality of error estimate is demonstrated for the y-velocity and
pressure fields). Nevertheless, the error estimation yields a quantitatively useful measure of
the solution quality.

A dramatic degradation of estimator performance is witnessed for the LPS+PAC ap-
proximate solution. For the first time it is witnessed that the fundamental characteristics of
the error field (locations of maximum and minimum error, zero error contours, etc.) are not
properly predicted. The magnitude of the error estimate is similar to the actual error, but
it 1s easy to dismiss this as coincidence. So, what happened 7

There are only two steps to the error estimation process: residual estimation and solving
the linearized error equation. Lacking a unique continuous representation of [u, v, p| for an
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approximate LPS+PAC solution, it is not possible to determine the exact operator residual
for comparison. Nevertheless, it is suspected that the residual estimation is the problematic
step. The same linearization has been used for both the UDS and LPS+PAC error estima-
tion. If the fully linearized error equation poorly characterised the non-linear error equation
at Re=100, then we would expect the UDS error estimation to also perform poorly, but this
1s not the case. Furthermore, the difference between a UDS discretization of the error equa-
tion, and an LPS+PAC error equation should not be large enough to cause such a dramatic
difference in the error estimation, which leaves us to suspect the residual estimation step.

To explore this hypothesis, further numerical experiments were performed. One can take
the residual vector field generated from the LPS+PAC solution, and instead of passing them
into an error equation linearized about the LPS+PAC approximate solution, one passes
them into the error equation used for the UDS error estimation (UDS discretized error
equation linearized about the UDS approximate solution). If the error estimation process is
sensitive to the linearization, or the method of solving the error equation (UDS or LPS+PAC
discretization), then a significantly different error field should be predicted. If instead the
error equation is insensitive to such changes, then a similar error field to the LPS+PAC error
equation should result.

The results of such a computation are shown in figure 4.5. The striking similarity between
the two contour plots supports the hypothesis that the residual estimation process is the
underlying difficulty.

The case of the semi-linearized error equation was also examined for the low Reynolds
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number flow. Similar poor results were witnessed for the LPS+PAC error estimation, casting
further doubt on the quality of the residual estimation. The UDS error estimation, however,
had interesting results as shown in figure 4.6

Although the semi-linearization could be considered a cruder linearization of the non-
linear error equation, it seems to produce as good, if not better, error estimation than that
produced by the the full linearization, given the same residual field. Why this should be
so 1s not clear at present. What is obvious i1s the large difference between the full and
semi-linearization error estimates (figures 4.3 and 4.6).

4.3.2 High Reynolds Number Flow

The High Reynolds flow definition is identical to the Low Reynolds number flow except that
w18 decreased by a factor of 8. This has the effect of raising the Reynolds number to 800.
The streamlines of the steady-state solution are shown in figure 4.7

The computational experiments did not go as smoothly for the high Reynolds number
flow, compared to the low Reynolds number flow. The full linearization error equation proved
difficult to solve using a variety of solver techniques (high level factorization preconditioning,
over and under relaxation, etc.) It is not clear at this time whether this difficulty is the
result of the degree of instability in the governing equations or induced by poor choice
of discretization. It has been conjectured that the steady incompressible 2D flow over a
backward facing step is unstable at Re=800 (Gresho, Gartling, Cliff, Garret, Spence, Winters
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Figure 4.7: Streamlines: High Reynolds Number Flow

and Goodrich [15]). Indeed, the Re=800 flow required an order of magnitude more iterations
to solve properly compared to the Re=100 flow; another indicator of a near critical flow field.
The increase in iterations required by preconditioned conjugate gradient type methods when
solving dynamically unstable linearized equations has been described by Simpson [34]. This
has important implications for the process of error estimation, since one would expect the
global error to be poorly determined by the residual field for unstable flows.

In contrast to the full linearization, solutions to the semi-linearized error equation could
be obtained without difficulty. Results for the semi-linearized error equation are shown in
figures 4.8 and 4.9.

As in the low Reynolds number flow, the LPS+PAC error estimation bears little resem-
blance to the actual error. This is consistent with our earlier hypothesis of an inadequate
residual estimate.

The UDS error estimation again captures the significant features of the error field. A
further degradation of the estimate quality is experienced; now underestimating the mag-
nitude of the error by a factor of roughly three. It is not known at this time what factors
cause a decline in performance with rising Reynolds number. This same effect was witnessed
to a lesser degree with the 2D advection-diffusion equation results (in moving from low to
high advection velocities). The 1D analytical results showed that the residual estimate ef-
fectivity does degrade with increasing cell Peclet number. These are possibly all analogous
phenomenon.

4.4 Summary

The Global Error Equation Method was extended to encompass the Navier-Stokes equations.
This involved addressing the vector nature of the dependent variables, and drawing the
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distinction between the full non-linear error equation, and its linearizations.

For this thesis, two types of linearizations were presented and subjected to numerical
experimentation: Full and Semi-linearization. We experienced difficulty solving the full
linearization form of the error equation for the Re=800 flow.

For the UDS approximate solutions, a successful error estimation was demonstrated for
both the low and high Reynolds number flows. The effectivity of the error estimation is not
as good as was witnessed for the linear advection-diffusion equation problems. This might
be as a result of the extra approximation introduced in linearizing the error equation (a step
not required for a linear PDE). In contrast to the scalar advection-diffusion equation, the
central difference residual estimate does not seem to reliably produce an effective residual
estimate for LPS+PAC approximate solutions of Navier-Stokes equations.
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Chapter 5

Closure

5.1 Summary

This thesis presents what we refer to as the Global Error Equation Method of a posterior:
error estimation for finite volume simulations of fluid transport. The process involves two
main steps:

o Estimating the Exact Operator Residual

e Solving the Global Error Equation

The first step has ties to the Element Residual Method although, for this work, residual
estimation has been expressed in terms of the familiar centred difference operator. The
Global Error Equation is unique to this thesis.

The investigation was made on several fronts. An analytical analysis of the procedure
was performed for the 1D linear advection-diffusion equation using an upwind differencing
approximate solution. For the 2D linear advection-diffusion equation a suite of numerical
problems were posed, under the general headings of point source problems and boundary
layer problems. Each, in turn, were solved with two different finite volume approximations:
upwind differencing, and, linear profile skew upwinding with advection correction. For each
approximate solution an error estimation was performed and compared against the exact
error generated from an analytical solution.

Finally, the 2D Navier-Stokes equations were considered. The error estimation process
was re-derived to account for the vector nature of the solutions, and to linearize the nonlinear
error equations. The process was experimentally studied by analyzing the error estimator
performance for a low and high Reynolds number backward facing step problem.

5.2 Conclusions

For the linear advection-diffusion equation, the error estimation process outlined demon-
strated excellent performance. It was also demonstrated that the residual estimation process
need not utilize a higher truncation order discretization for the residual estimation process
in the linear equation case.
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The work with the 2D Navier-Stokes equations demonstrated three important elements
involved with the extension of this work:

1. Under certain circumstances, the error estimation process can be successfully extended
to a coupled nonlinear PDE system. In this case, the approximate solution is an upwind
difference approximation of the Navier-Stokes equations.

2. The ability of a central difference approximation to generate a useful residual estimate
for LPS+PAC approximate solutions seems to be compromised for the Navier-Stokes
equations.

3. There is a large variation in error estimator performance depending on the approach
to the linearization of the nonlinear error equations. At the high Reynolds number
flow (Re=800), it was not possible to achieve an error estimate using the full lineariza-
tion error equation. The semi-linearization did not experience solver difficulties. For
Re=100, there is a significant difference in the estimated error depending on whether
one utilizes full or semi-linearization.

5.3 Recommendations

The work presented establishes a framework with which future research can proceed. The
linear equation studies seem to be conclusive and further work in this direction is not deemed
necessary. To bring this technology into the purview of serious engineering CFD, two issues
need to be addressed first:

Effective residual estimation for more advanced discretizations must be created and val-
idated. There does not exist any foreseeable barriers to achieving this goal. The residual
estimation step is always an O(N) calculation, so it is believed that only marginal additional
computational effort needs to be expended to guarantee an effective residual estimate. What
1s lacking currently is a coherent framework in the finite volume method for consistently gen-
erating higher accuracy discretizations.

The behavior of the linearized Navier-Stokes error equation requires additional study.
Specifically, it needs to be determined conclusively if the solver difficulty for the fully lin-
earized error equation stems from the governing equations, or the particular discretization
implemented in this thesis (ie. a lumped mass discretization was utilized for the zero-order
terms in the fully linearized error equation). Furthermore, it would be desirable to under-
stand the limits of a linearized error equation.

If these issues two issues can be resolved, then the error estimation methodology is
not inherently limited to the equations studied. The conceptual extension to 3D Navier-
Stokes equations with auxiliary coupled equations (compressibility, conjugate heat transfer,
turbulence models, etc.) is quite straightforward. Furthermore, the use of orthogonal grids
in this study was strictly for convenience; there is no obstacle that the researchers are aware
of to prevent one from using non-orthogonal grids.
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Appendix A
Related Research

In this appendix, a more thorough description is given for other contemporary error estima-
tion techniques than could be given in §1.5. This is to provide a fully referenced resource for
the interested reader.

A.1 Element Residual Methods

The Element Residual Methods are given in a Finite Element context. For the explanation
given here, the mathematical rigor will be suppressed for the benefit of understanding (The
referenced articles have more than enough formalism for the interested reader). A familiarity
with the Finite Element Method is required in this section ®.

First some preliminaries need to be presented. Consider a standard elliptic PDE with a
Dirichlet and a Neumann boundary condition:

L(®)=—-V-(aV®) = fonQ

d®—=—0onlp
0P
a—n:gonl_‘N

The first step for a finite element calculation would be to partition the domain §2 into a set
of finite elements. On these finite elements are defined shape functions. The set of all these
shape functions will be called V().

Now, finding the approximate solution ¢, which uses the shape functions as a basis, V(Q),
can be expressed as:

Find ¢ € V(Q) such that:
/Q(anb - Vo)de = /Q(fv)dw + /FN gv ds (A.1)
for all v € V()

For the finite element method, the space V() is composed of shape functions restricted
to the elements (for example, piecewise linear shape functions). Hence, we can define an

1Zienkiewicz has written a thorough and widely published reference [45]
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element-wise integral and represent the integrals as summations over all the individual ele-
ments k (we can also introduce the inner product form (-,-) ) :

a($v) = /k (aVé- Vo)de (A.2)

l(v)r = /k(fv)dw + gv ds (A.3)

T'nnk

a(p,v) = Za(gb,v)k (A.4)

k

() = Yl(oh (A.5)

k

Hence, the FEM may be stated more succinctly as:
Find ¢ € V(Q) such that:
(a,0) = I(v) (A.6)

for all v € V()

The first step in an Element Residual Method is the estimation of the residual function
over the element. The residual of the approximate solution ¢ € V(Q) is the function r such
that on each element

a(g, )i — l(w)y = (7, w)x (A7)

for all admissible w functions.
Error estimation now involves selecting an error representation space Vg (ensuring that
Vg is not a subspace of V(£2)), and finding the function e € Vg such that

a(e,w) = (r,w) + boundary conditions (A.8)

for all w € Vg

Before equation A.8 is broken down and analyzed, let’s examine it as a whole. What we
have is an error equation, where the error is expressed as the satisfying the original partial
differential formula, with the residual acting in the role of the source term from the original
equation.

To effect a local computation for (A.8) one can select Vg to be the set of bubble functions.
Bubble functions are like the familiar shape functions, in that they are defined over an
element, however, they are defined to be zero at the element nodes. Thus, a bubble function
1s completely localized to a particular element. Higher order bubble functions were originally
proposed for hierarchical finite element methods [45].

The bubble functions are chosen to be order higher than was used to solve the original
problem (V). So if V' was first order, p = 1 (piecewise linear interpolation), then the bubble
functions would typically be second order, p = 2 (piecewise quadratic).

The use of bubble functions, howver, results in a singular system on each element. When
the element shares an edge with the boundary of the domain €2, then the closure on I' N &
1s straight forward. Where the boundary condition of the original equation was a Dirichlet
condition, a Dirichlet condition can be imposed, using the known value of error. Where
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the boundary condition was a Neumann condition, a Neumann error equation boundary
condition can be imposed.

For interelment boundaries, a number of approaches have been proposed and used. The
earliest proposals used a homogeneous Dirichlet boundary condition (Babuska and Rhein-
boldt [4]). These techniques were superseded by later work from Bank and Weiser [6] and
Bank [7] which proposed setting a Neumann boundary conditions, in which, at the element
boundary:

|

where the right-hand side represents the jump in the first derivative across the element

@_n:a on

Oe [%

boundary. The weighting parameters a must be solved in an auxiliary calculation called
residual fluz equilibration (The reader is referenced to [6] for a description of this process)
The local Neumann problem formulation of the Element Residual Method has further
been refined by incorporating a splitting approach, first proposed by Kelly [20, 21], and
extended by Ainsworth and Oden [2], where, for a given element edge bordered by elements

[ and r (left and right):

oe\  [log ¢
()=l oo G2)...,

de\ 104 ¢
(50) =2 lael r - ().

The derivation of this form is quite involved, but essentially the Neumann condition is created

from a weighted average of the jumps in solution derivative, and the solution derivatives.
The residual flux equilibration has to be modified to take this into account.

In moving to Navier-Stokes equations (Oden, Weihan and Ainsworth [26]), the only
change is the inclusion of the additional advection term in the residual calculation. The
local error equation remains a purely elliptic computation.

A.2 Flux Projection Methods

This class of error estimators has its origin in a very humble observation from elasticity
problems. For the displacement approximation for linear elastic problems we generally as-
sume a continuous displacement field, resulting in discontinuous interelement stresses . An
obviously more accurate solution would have a continuous stress distribution o*.

Out of this observation comes the idea of Flux Projection Methods. The name derives
from the process by which the smoother stress field is created by proposing a continu-
ous distribution of strain energy flux (hence these estimators are also said to be based on
smoothening techniques). Some commercial post-processors codes will smooth the stress field
by taking the average value of stress across the interface but this can be misleading. A better
approach would be to perform what is called variational recovery or projection [45] which
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involves solving another variational problem for the stress field where we use the same basis
functions for the stress field as for the the underlying displacement field. The problem which
now must be solved turns out to equivalent to solving the least squares fit for stress, or the

/Q(a* _§)°

Now an error estimate for this solution would be [43, 3, 45]

minimization of the functional

€y RO — 0.
This is commonly referred to as the Zienkiewicz-Zhu error estimator, after their classic
paper first detailing the approach [43].
Consider a simple one-dimensional example, namely, a simple elliptic PDE as done by

Babuska and Rodriguez [5]:

0*®
e fonl:=(0,1),
o®
2
L =0
@|:1::1 = @1'

For this problem ® would represent a displacement field for a linear elastic problem, while
% would represent stress.

Imagine the forcing function f was specified such that the FEM solution for ¢ is as
shown in figure A.1. Also plotted is % of the approximate solution, and the appearance of
a projected stress distribution would look like, %*.

The error estimator is invariably reported in the energy norm. For the simple linear

problem presented, the energy norm of the error on a given finite element is simply

()

which can now be approximated as

/ wa (09709
— — =] d=x
It can be seen that this concept applies to any purely elliptic phenomenon. For the heat

equation, one would perform a smoothening of the heat conduction field; for scalar diffusion,
the diffusive flux would be smoothed. Hence the terminology fluz projection.

B

The nice thing about this estimator is its simplicity of implementation. This error esti-
mator has been used successfully by various researchers to drive adaptive schemes for linear
and nonlinear elasticity problems.
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do

dx\

do

\ / dx

0 X Xi+1 ! X

element ‘i’

Figure A.1: One Dimensional Flux Projection

The extension of this approach to fluid flow problems is based on the parallel found
between plane strain equations and creeping, or Stokes flow equations (ref. [45]). The fluid
analogy for ¢ for fluid transport would be fluid normal and shear stress. This fact can be
used to derive a valid error estimator for creeping flows based on a projection of the flow
stress components. This approach has been applied to the Navier-Stokes equations by Hétu
and Pelletier [16, 17] for error estimation to guide their own grid adaption scheme. The
estimator is only theoretically valid for creeping flow:; therefore, the convergence behavior
and mathematical rigor are not translatable. Nonetheless, the estimator has the required
sensitivity to high stress/strain regions of flow, and hence serves quite well for detecting
insufficient refinement in boundary layers and at stagnation points.

The projection estimator, as described, is unfortunately insensitive to pressure gradient
dominated flows and turbulence effects. Hence flow features like re-attachment points are
ignored. Recent attempts have been made by Hétu and Pelletier [18] to correct this defect
by incorporating projection corrections of other discontinuous fields: pressure, turbulent
kinetic energy flux, heat flux, etc. into a hybrid local error norm. Despite the fact that
there is no theoretical justification for such an approach, this seems to yield an estimator
which is sensitive to most flow phenomenon found in incompressible flows. The lack of
theoretical underpinning is not entirely surprising; it was two years after Zienkiewicz and
Zhu proposed their projection error estimator based on physical intuition that it was proven
convergent and consistent with the underlying variational principle by Ainsworth, Zhu, Craig
and Zienkiewicz [3].

At the current time, the extension from Stokes flow to Navier-Stokes flow is, strictly
speaking, unjustified. Although the estimator sensitivity has been experimentally shown to
be qualitatively valid for driving grid adaption schemes. The error in the flux estimate does
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not have a simple local correlation to the distributed error in the dependent variables. It is
also unlikely that a least-square projection, despite being easy to calculate and numerically
well behaved, is the correct variational recovery that should be employed. The least-square
equivalence applies only to strictly elliptic partial differential problems. A more rigorous
derivation of the correct variational recovery for the discontinuous quantities in the discrete
Navier-Stokes equations would be worthwhile, but beyond the scope of this thesis.

A.3 Extrapolation Methods

Extrapolation was first used by Richardson in 1910. The basic premise, as described by
Roache [32], assumes that the discrete solution ¢, on a grid with characteristic dimension h,
relates to the exact solution ®, as

®=¢+ Fih+ Foh* + F5h® + ...

for a first order discretization scheme, and

d =+ Goh?> + Gsh® + ...

for a second-order scheme.

The idea now is to derive values for these higher order error terms based on successive
solutions for ¢ computed with different values of h.

For instance, suppose we have two successive computations from a first-order accurate
scheme ¢; and ¢,, with corresponding discrete spacing h; and h,. These values relate as
follows

q):§b1—|—F1h1—|—O(h2)—|—

@:¢2+F1h2+0(h2)—|—
We can then solve for F) from these two equations

_¢2_¢1 2
Fl_ihl_thrO(h)

An estimate of the error on the ¢, solution; E,, would be

By, = ®—¢y
- F1h2—|—0(h2)

_ "Z‘_"il + o) (A.9)
ha

Applying this correction to the original solution ¢, should result in the classic second
order accurate scheme from extrapolation. This is referred to as h? extrapolation.

The methodology of solving for progressively higher order error terms with multiple
levels of refinement has been used successfully in many areas of numerical analysis. Ferziger
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Figure A.2: Grid-Inside-Grid Arrangement

[13, 12], deVahl [39],and Kessler, Peric and Scheurer [24] Caruso, Ferziger and Oliger [10]
Bradley, Missaghi and Chin [8] apply this principal to finite difference and finite volume
computations of complex fluid flow.

The method can become quite general in its applicability. Functionals of the solution
vector will also display this behavior. Therefore quantities such as lift coefficient, total head
rise, and heat flux, can undergo the same type of error estimate. The principle laid out here
1s independent of the equations being solved for or the dimensionality of the the problem.

For a successtul application of an extrapolation method, there is the requirement that
every solution can be fully characterised by the same single parameter, h, the grid spacing.
This single parameter family of approximate solutions is not a trivial matter to achieve in
practice. Nor are there any means currently published to determine if one has been successful
in creating such set of solutions. Furthermore, the discrete solutions need to be compared at
the same location in the domain. If one wants to avoid the added uncertainty of interpolating
from one grid to the next, the one needs to ensure that at least some of the grid points in
grid set are coincident. A common method to ensure grid point coincidence, and enhance
the chances of a single parameter solution set, is the grid-inside-grid arrangement. As shown
in figure A.2.

In addition to grid nesting, there are other requirements for the successful application
of Richardson extrapolation. The solution, for all levels of refinement the analyst intends
to employ, must be in the asymptotic range (meaning that any degree of refinement,on any
of the grids utilized, brings the approximate solution proportionately closer to the exact
solution). Simply put, this is the requirement that the higher order terms of equation A.9
are negligible compared to the error.

An additional requirement is that the order of the numerical scheme needs to be known
a priori. This can be difficult for modern CFD codes which utilize different numerical
schemes depending on the local flow properties and types of boundary conditions employed.
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The researcher may resort to cruder numerical approximations to guarantee a successful
determination of the numerical order, as done by Kessler, Peric and Scheuerer [24].

The refinement process must be homogeneous and isotropic throughout the entire solution
domain, in all dimensions (including time for transient problems). This is necessary because
an inherent assumption in using extrapolation for a local value of the solution is that the
error in the solution is distributed in a consistent manner from one grid to the next.
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Appendix B

Analytic Solutions of 1D Finite
Difference Equations

Consider the 1D steady homogeneous advection-diffusion equation:

RK o
22 v _o vrso,
Ox2 x

¢ =, at x =0,
d=0, at z =1.

(B.1)

Divide the domain 0 < z < 1 into N partitions, each having size h = 1/(N + 1). The

grid Peclet number will be defined as a = Vh/T.

If this problem is discretized using a standard upwind based finite volume method, then

we will generate a system of algebraic equations for the approximate solution ¢:

(2+a)piy1 — dire = (1 +a)®, =0,

—(1+a)pi-1 + (2 + a)di — dita =0, i=1.N—-1,

—(+a)pi+2ta)d =8, i=N.

where ¢; represents the solution in cell ¢ .
We will try to find solutions of the form

¢ = Ap'.

From equation (B.3) we see that

2 ap— (140 =0,
thus: p=1 or p=(1+a).
Hence, solutions of (B.3) are of the form

$i = A+ B(1+a).
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From equation (B.2) we can determine:

(2+4+a)(A+B(l+a))—A—B(1+a)? =(1+a)d,

A+B =, (B.8)
and from equation (B.4) we can determine
—(14+a)(A+B(1+a) %)+ (2+a)(A+ B(1+a)V 1) =0, (B.9)
A+B(1+a)VN =9, ‘
Combining (B.7),(B.8), and (B.9);
$i = By + (T —<I>)(+“)i_1 (B.10)
) l r l ( CI,)N 1 .
Consider the 1D inhomogenous error equation
%€ o€
-I'— — =— r B.11
Ox? + V@w k- vI>0, ( )
E=0 at =0,

E=0 at z=1.

As with the original problem (B.2, an upwind difference discretization will result in a
system of algebraic equations:

Ey =0 i=0 (B.12)
~(14+a)Biy+ (24 a)B — By = oy i1 N-1  (B13)
Ey =0 i=N (B.14)

Assume FE; has solutions of the form:

(P — 2,)

E; = [A+ B(1+a) +C(i)] a3m.

(B.15)
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Substitute (B.15) into (B.13) and one is left with:

~(14+a)C(i—1)+(2+a)C(i) —CGE+1) = (1 +a)!

which can be written in a recursive form as

Ci+1)=(2+a)C(i)— (1 +a)C>i —1) — (14 a)". (B.16)
One valid solution of (B.16) is
C(i) = —2(1 + a)i". (B.17)
a
From equation (B.12) we conclude
A+B=0. (B.18)
From equation (B.14) it is seen that
B v N N-1
A—A(l+a) (1+a) = 0,
a
N-1
4 = Nita) (B.19)
a(l— (14 a)¥)
From (B.18) we know that B = —A, thus,
a’(®, — &) A i-1 N+4i-1 N-1
E; = T (1= (1 +a)M)i(l+a) "+ N(1+a) ~ N(1+a)¥].
(B.20)
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Appendix C

Analytic Solutions of 2D

Homogeneous Advection Diffusion

Equations

C.1 Transformation to Helmholtz Equation

Start with the steady homogeneous constant coefficient advection diffusion equation, given

as

~TA®+V-V& = f.

(C.1)

-
First, since V is a constant vector, we can select a new orthogonal coordinate system

with the x-direction parallel to V. Thus

— — — @
V-Ve — |V|Z—.
x

Now, let V = |V| and (C.1) can be rewritten as

rre4v?® g
Oz

We make the following substitution:

Va

b(z,y) = e w(z,y).
This yields

Va V
e (—'Aw+ (f)2w) =

—T'Aw + (%)210 =

(C.2)
(C.3)
f?
f. (C.4)

which is the Helmholtz Equation. We define the Helmholtz operator L as
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L(w) = -TAw+ (%)210.

The associated Green’s Function for the Helmholtz operator, i.e., the solution of L(G((z,y), (7, s)))

d((z,y), (r,8)) (0 being a unit delta function centred at the point (x,y)=(r,s)), is given as

Gl (r.3) = 5= Kol 51|29, (r )], (C5)

(see Stakgold [35] for analysis of Helmholtz operators). ||a, b|| represent the Euclidean metric.
K, i1s the zero order modified Bessel function of the second kind.

The point source solutions are generated using a delta function at the origin. In this
case, the Green’s function is the desired solution of the Helmholtz equation. Equation (C.3)
can then be used to calculate ®.

C.1.1 Half Plane Problems

From the properties of the delta function, we know that

w(z.y) = [ w(r.a)d(z.). (r.))d2

where €} is expressed in source coordinates (r,s). We will define w to be the solution of the
homogeneous Helmholtz equation, L(w) = 0. Letting H represent the appropriate Green'’s
function for this problem we can state

w = / wL(H) — HL(w)dS.
Q
Applying Green’s Theorem to this integral gives

w = H— —w—2uJdr (C.6)

For the half plane problems, the boundary, 92, will be the r-axis, s = 0.
For Dirichlet problems we can choose a Green’s Function such that

HE)Q — Hs:O — 0

Then we can represent the solution for w as a known line integral. That is, given the dirichlet
boundary condition:

Byo(@) = m(z),

m(z) = e p(z).

Wy=o(z) = p(z).

we can write
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w(z) = /3:0 —p(r)aa—lz.dr (C.7)

For this problem, a good choice for H would be

H = G((:B,y), (7“, 3)) - G((:B? _y)7 (7“, S))’

which has the property of H,—o = 0.
For the upper half plane we can see that
OH  0H
on — Os’

If we let z = V/(2k) - \/(:13 —7)2 + (y — )2 then along the line integral where s = 0 we
have

S = Kol ). (0l = ool ) (r0) )
10
= e
1 z
= 5, (Kol2)) 5
- KL

where K; 1s a first order modified Bessel function of the second kind.
Thus, putting (C.3), (C.7), and (C.8) together the form for the solution can be seen to
be

ve Vy [ Kl(z)m(r)e%
@ = 2k ——
(2,y) = e 2k J-co z

For calculation purposes, each point of the grid requires a values of ® associated with
it. In this case, the integral above in numerically approximated using an auto-refining
quadrature integration routine until the desired accuracy is achieved. Keeping in mind that
for a compact boundary condition (ie. m(z) # 0 on only a finite interval) the integration
need only be performed in the region where m(z) is non-zero.

The modification to the procedure above for a Neumann problem is not very difficult.
Begin again at (C.6), but this time we require a Green’s function such that at s =0

dr. (C.8)

OH

% —_— 0.

A valid candidate would be
H=G((z,y),(r,s)) + G((z, —y), (r, ).

which leaves
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w(z,y) = Ha—wdr. (C.9)

s=0 On
If we specify a Neumann boundary condition along the x-axis as

0%
oy m(z),
Ow
o - )

O(z,y) = ez — —m(r)Ko(z)dr. (C.10)
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Appendix D

Numerical Solutions of Navier-Stokes
Equations

In this appendix, the methodology for solving the Navier-Stokes for this thesis is presented.
This work only deals with our particular approach and is not intended to characterise this
vast topic. A similar description of this method can be found in Broberg [9], with only a few
exceptions.

A reduced nomenclature table is given next in §D.0.2 for more convenient reference.

D.0.2 Nomenclature

coefficient matrix

control volume index

number of neighboring nodes

distance along streamline from integration point to element boundary
number of control volumes in mesh

(ng,n,) outward normal unit vector
fluid pressure of exact solution
fluid pressure of approximate solution
associated with the solution from the previous iteration

]
<

surface of arbitrary volume
time
local element coordinates

S

X-component of fluid velocity at nodal point
Y-component of fluid velocity at nodal point

U QE T LY Oy Bz

fluid velocity vector
arbitrary control volume

5 <

=
=
2

Cartesian coordinates

relaxation parameter

R

fluid dynamic viscosity
fluid density
shear and normal fluid stress

N =

Q
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Superscripts

P associated with the conservation of mass equation

P contribution from pressure to algebraic equations

u associated with the x-momentum equation

U contribution from x-velocity to algebraic equations

v associated with the y-momentum equation

|4 contribution from y-velocity to algebraic equations

t contribution from transient terms to algebraic equations

s contribution from additional sources to algebraic equations
Subscripts

1,2,3,4 associated with local nodes numbered 1 through 4 respectively
interp linearly interpolated integration point velocity

p integration point

n normal to the surface

SCV subcontrol volume

spec specified as part of the boundary condition definition

t tangential to the surface

upstream advected velocity from upwinding scheme

x,Yy in the z and y coordinate directions respectively

D.1 Mathematical Model

The starting point for a numerical simulation of fluid flow is the governing equations em-
ployed. Our work utilizes the laminar form of the two-dimensional Navier-Stokes equations.
The flow is considered to be incompressible. Body forces were neglected. This leaves three
unknowns to solve for in two space dimensions : the two orthogonal components of velocity,
and pressure.

D.1.1 Equations of Motion

The laminar two-dimensional incompressible Navier-Stokes equations are a coupled partial
differential equation system representing the conservation of mass and linear momentum.
These equations are presented here in their control volume formulation. V represents an
arbitrary control volume which is contained by the surface S.

Conservation of Mass
/ PV - iidS = 0. (D.1)
s
The term pV represents the mass flux vector, and pV -ndS then is the mass flux crossing

a particular differential volume surface dS . Thus, the Conservation of Mass equation, (D.1),
states that the net mass leaving a volume bounded by S equals zero.
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Conservation of Linear Momentum

The conservation of linear momentum in the  and y coordinate directions can be stated as

a » — —
/Va(pu)dw—l—/spuv-nd,g—/S,uVu-ndS—/SpnmdS (D.2)
and

A%(pv)dx+/spv{7.ﬁd5’:/S,qu-ﬁdS—/Spnde. (D.3)

For both equations, the first term describes the accumulation of momentum while the
second term represent the advection of momentum across the volume boundaries. The first
term on the right describes the viscous force acting on the volume boundaries (both normal
and shear forces). The last term is the contribution from the pressure field.

D.1.2 Boundary Conditions

There were three types of boundary conditions used in this study:
1. Solid walls
2. Inflow regions

3. Outflow regions

Each is described in its own section below.

Solid Walls

At a solid wall, the no slip condition is imposed. The velocity of the fluid relative to the
boundary is zero. In addition, the normal viscous stress at the wall is assumed to be zero.
This latter constraint is valid for most bounded flows, but may introduce inaccuracies near
stagnation points. It is invoked to simplify the numerical implementation.

1.V=0

2.0=0

Inflow Regions

Inflow boundary conditions were of the velocity specified type. As with the solid wall condi-
tion, the normal viscous stress is assumed to be zero. Thus:

1.V = Vipee

2.0=0
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Outflow Regions

A pressure specified outlet condition is used. Although, for incompressible flows, the pressure
level is arbitrary, it still requires a fixed reference within the computational domain; this is
done at the outlet.

Also, the viscous terms at the outlet were ignored. Again, this is for numerical expediency,
but it is also true that if there were strong viscous contributions to the momentum equation
at the outflow region, then almost all numerical implementations outflow conditions fail. This
being stated, setting the viscous terms to zero has only a minor and acceptable accuracy
penalty.

The outflow boundary condition can then be stated as:

]--p:pspec
2.1=10
3.0=0

Here pype. 1s the specified pressure profile at the outflow boundary condition

D.2 Discretization

For this research, the equations of motion were solved with a element-based finite volume
method. This entails dividing the domain into a finite number of elements, out of which
control volumes were generated. The conservation equations are applied to the control
volumes. The integral relations presented in D.1.1, and the boundary conditions of D.1.2
were approximated to produce an algebraic equation set.

The solutions were generated from their primitive variable representations, (u,v,p), and
solved using a co-located strategy (all variables stored at the nodal locations), in contrast
to the commonly used staggered grid structure. The co-located formulation requires special
consideration (as discussed in §D.2.3) to prevent oscillatory solutions.

As might have been noticed, the time dependent form of the Navier-Stokes equations has
been presented, despite the stated interest in steady solutions. This is because the steady-
state solution can be arrived at by advancing an initial solution profile through time until
it converges on the steady-state solution. The method here is referred to as pseudo-time-
stepping, not a full transient calculation, since each timestep is not iterated to achieve a
solution of the non-linear equation set, but only the current linear approximation.

D.2.1 The Finite Element Grid

The meshes used are made up of regular brick elements with control volumes generated as
shown in Schneider and Raw [33]. Extensions to other types of meshes are possible, but not
utilized in this thesis.

The quadrilateral elements have a node at each of the four corners. To generate control
volumes, straight lines were created bisecting the opposite sides of the quadrilateral (see

figure D.1).
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Figure D.1: Finite Element Mesh and Control Volume
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Figure D.2: One Element From a Mesh
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Figure D.3: The Quadrilateral Finite Element

Within each element, a local coordinate system is employed and denoted If we turn our
attention from a mesh of elements, to just one element (see figure D.2), we can see that each
element participates in four control volumes.

The element is spanned by s and ¢ coordinates, which range from -1 to 1 (see figure D.3).
The boundaries between control volumes are on the lines s = 0 and ¢ = 0. The bilinear
shape functions for the element, expressed in local coordinates, is given by:

Nifst) = (- 8)(1L-1) (D.4)
Na(s,t) = i(l—l—s)(l—t) (D.5)
Nofs.t) = (14 8)(1+1) (D.6)
Nifs.t) = (1= 8)(1+1) (D.7)

The shape functions are used to describe the variation of the flow properties within the
element based on the values at the nodes.

During the assembly process, each element is visited in turn. The contributions to each
sub-control volumes (SCV) conservation equation is calculated based on the flow properties
at the integration points (ip#) (except where noted in the sections to follow). These con-
tributions are then assembled into the global system of algebraic equations to generate a
complete conservative control volume. For example: For the sub-control volume highlighted
in figure D.3, the flux through the faces ip1 and ip4 need to be considered. These coeflicients
then contribute to the complete algebraic equation set for the control volume highlighted in

figure D.1
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D.2.2 Discrete Momentum Equations

This section details the discrete form of the u-momentum equation (the v-momentum equa-
tion is similar).

Consider one sub-control volume of an element, SCV1 from figure D.3, which is bounded
by the subsurfaces 1 and 4. First consider the transient term. prev refers to the use of the
previous iteration value for this term. The time derivative will be approximated as a lumped
mass, given by

o v
/ml - pu)ds PYSCVL (17, Uy (prew)), (D.8)

where we denote the nodal value of the w component of the velocity with the uppercase U .
At is the user defined time-step. The subscript 1 indicates which node we are referring to
locally.

Next, consider the viscous term. The net force due to viscous stress acting on subsurfaces
1 and 4 can be approximated by

. pAy Ou
cndS ~ ——— D.
/SSl,uVu nds 2 Oz (D-9)
and
. pAx Ou
Vu-ndS =~ — D.10
sl VT 2 Oy, ( )

where the subscripts indicate that the derivatives are evaluated at the integration points.
The pressure term is simply approximated by

pn.dS =~ pAy/2 (D.11)
551
and
pnedS = 0. (D.12)
S54

The second term is zero since n, = 0 on SS4

This leaves the convective term, [q puV ndS . If we simply linearly interpolate a value
for velocity at the integration points based the nodal values, then the coupling between
the momentum equations of adjacent control volumes becomes very weak (or non-existent
for one-dimensional flows) as discussed by Patankar [28]. This can result in arbitrary non-
physical solution oscillations.

To combat this problem, we introduce two additional concepts. First, there is a need to
distinguish between the advecting velocity at the integration point, V- 7, and the advected
velocity, w. The advecting velocity is used to determine the mass flux passing through the
subsurface and is discussed in detail in §D.2.3.

The advecting velocity is calculated based on a pressure-velocity coupling scheme outlined
in §D.2.3. The advected velocity is determined by an upwind based approach. In this study
two forms of upwinding schemes are implemented: simple Upwind Differencing (UDS), and

Linear Profile Skew Upwind Differencing with Physical Advection Correction (LPS+PAC).
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Figure D.5: Linear Profile Skew Upwinding with Advection Correction

Upwind Differencing

Referring to figure D.4, a value for the velocity vector at ipl is interpolated from the
adjacent nodes, referred to as Vj,terp. Depending on the sign of the normal vector, either Uy
or U, is used for the advected velocity. In the example figure, U; would be used.

Linear Profile Skew Scheme with Physical Advection Correction

As with the upwind differencing scheme, an initial interpolation of the integration point
velocity is made. This time however, we now track a straight line (a streamline) back to the
element boundary (see figure D.5 ) A value for t,pstreqm 18 calculated using the element shape
function (The Linear Profile). We now express the integration point convected velocity as

. ou
Uip1 = Uypstream + L%; (D13)

where L is the distance from the integration point and the element boundary along the
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fictitious streamline, and ~ represents how « changes across this distance. This term is the
Physical Advection Correctlon (PAC) term and is what makes the scheme higher accuracy.
Different forms of the advection correction term can result in different numerical techniques.
In this thesis, the representation employed by Raithby [29] is employed, but modified by the
inclusion of the pressure gradient as in Schneider and Raw [33] and the effects of viscosity.
We now have

Ou 1 v Op
_ g u D.14
0s pV ( 2 T x +5 ) ’ ( )

where $* would be any additional source terms in the x-momentum equation. (D.14) is
what is referred to as a PAC term. It needs to be evaluated at the integration point (where
we need %). In the numerical code, this is accomplished by calculating the PAC term at
every node using the previous iteration values of U, V. P, then interpolating the nodal values
of the PAC term to the integration point, using the harmonic mean. The PAC terms, since
they are lagged (calculated based on the previous iteration solution instead of the current
solution), do not end up in the active implicit matrix, but show up in the right hand side

vector B*®, as shown later.

b
In addition, This lagging effect can result in solution oscillations from one iteration to the
next, hence, the value used for the nodal PAC term evaluation is relaxed using the previous

nodal PAC terms as such:

PACused — aPACcurrent + (]- - a)PACprevious (D15)

Thus, all components of equation (A.2) have an algebraic representation. The algebraic
equations for the subcontrol volumes can then be summed over the entire control volume 3
to form a complete algebraic conservation equation, (D.16). The first superscript refers to
what momentum equation is being assembled. The ¢t superscript indicate a term from the
transient portion of the equation, as the s indicates source terms. The U, V, P superscripts
indicate what variable these assembled coefficients modify. The j index cycle from 1 to k,
where k 1s the number of neighboring nodes that participate in the ith control volume.

APU; +ZA U; +ZA V—|—ZA“PP = B + B (D.16)
7=1 7=1 7=1

A”tV+2A U+ZA V+ZA”PP B+ B}” (D.17)
7=1 7=1 7=1

D.2.3 Discrete Mass Equation
The mass flow through SS1 and SS4 can be approximated by

pV - #dS ~ 1y (D.18)
SS1
and
pV -itdS =~ g, (D.19)
5S4
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where the mass flows, m;, are determined from the integration point advecting velocity, ,

my = p(@lAy/2);. (D.20)

As mentioned earlier, directly interpolating a value for @ can lead to unwanted equation
decoupling for a co-located variable method . It is desired to couple the mass conservation
equation to pressure field. The technique of Rhie and Chow [30] is a pressure/velocity
coupling method that is stable for a wide variety of fluid flow problems. It is summarized
here.

An o superscript means that the term is calculated from the previous iteration. The
overbar indicates a harmonic average of the adjacent nodal values for that variable. As
before, uppercase U indicates the nodal value. For SS1, the u-component of advecting
velocity is expressed as

X dp o\ | pf . o
uipl - (Ul —I_ U2) —I_ zpl (6_217) - (6_213) Ai ( zpl uipl)? (D2]‘)
1pl 1pl
where
1'1;01 = ipl/(]‘ - zpl/At) (D22)
and )
Q) = (U7 +U3). (D.23)
The coefficient dY is created by an arithmetic average of the adjacent nodal values D}, where
DY = AzAy/ (42 AW+ A;;.V)O) (D.24)
7=1

and )5, (A%U—I—A?jv) represents the sum of the diffusive and convective terms in the algebraic
equation for the x-momentum conservation equation. This generates a scaling term which
ensures a stable matrix solution.

Equation D.21 does indeed look elaborate. In simpler terms, it represents an interpolated
value for %, modified by a second-order pressure and temporal correction. The pressure terms
ensure that the pressure solution does not decouple between adjacent control volumes. The
temporal terms ensure that the final solution converged to is independent of the timestep
At used for the solution.

Once the advecting velocity is calculated, then all the required contributions to the
discrete mass equation can be assembled. Equation (A.1) now becomes the algebraic form

ZA U—|—ZA V+ZAPPP By (D.25)

Jj=1 Jj=1

87



BS1

bpl bp2 2

Figure D.6: Element on Boundary

D.2.4 Boundary Conditions

Boundary conditions represent the fluid equations integrated along the boundary subsurfaces.
A representative boundary element is shown in figure D.6. The boundary conditions are
formulated in a conservative equation form.

Solid Walls

For a solid wall, the conservation of mass equation requires that no mass travel through the
wall. For the boundary element shown in figure D.6 this means

mbpl - mbp2 - 0 (D26)

Hence, no contribution to the mass conversation equation need be added.

Due to the zero mass flow condition, there is also no need to add a convective transport
term for the momentum equations.

As was stated in §D.1.2, the normal viscous stress terms are ignored. This leaves an
approximation for the tangential shear stress on boundary surface BS1 as

(V- ids ~ HA 0 (D.27)
2 0
BS1 Y lyp1

where the derivative is approximated using the element shape functions.
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The pressure force along the boundary surface is approximated as

pj - idS ~ —py Az /2, (D.28)
BS1

where pyy; 1s arrived at via the element shape functions.
Inflow Boundary

For a velocity specified inlet condition the values of v and v will be specified at the integration
points. Thus, with reference to figure D.6, we have

mbpl ~ p’lpr173pecAZB/2 (D29)
and
mbp2 ~ pvbp2,spech/2- (D30)

These terms do not implicitly depend on the nodal values during a given linear iteration,
and hence can be considered as mass source terms for these boundary control volumes.
For the convection of momentum we have:

puV-ﬁdS RS M1 Ubpl spec (D.31)
BS1
and
/ pvv-ﬁdS RS M1 Vbplspec- (D.32)
BS1

The tangential viscous and pressure forces would be calculated as in equations D.27 and
D.28, respectively.

Outflow Boundary

Since specifying the velocity at the outflow boundary can sometimes be numerically unstable
(from discrepancies in the approximate mass into and out of the computational domain),
the fluid velocity at the boundary points is expressed implicitly in terms of the nodal values.
Hence the flow out of surfaces BS1 and BS2 is expressed as

mbpl ~ p’pr]_AZB/2 (D33)
and
mbp2 ~ pvbp2A$/2, (D34)

where vy 1s interpolated via the element shape functions.
The convected component for the momentum equations is similar. For BS1 we have

BSlpuV-ﬁdS R i iy (D.35)
and
- poV - idS R T Ve (D.36)
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As explained in §D.1.2, the normal and tangential viscous stress at the outlet is ignored.

The pressure force is based on the specified pressure level. Thus

pJ - BdS A — Py spec A /2. (D.37)
BS1

D.3 Solution of Coupled Equation Set

Generating a steady-state solution of the equations of motion is a process of advancing the

solution through time, making linear approximations of non-linear terms at each timestep,

until a steady solution is achieved.

At each timestep, the previous timestep solution will not satisfy the algebraic equation

set (until the steady solution is achieve). This results in an equation imbalance, the outer
loop iterative residual, given as (recalling equations D.16, D.17, and, D.25):

k k k
RY = APUi+ 3 AU+ Y AT Vi+ Y AP - B - B (D.39)
7=1 7=1 7=1
k k k
B = AVt DAGU + YAV + Y AP - B — B (D-39)
7=1 7=1 7=1
k k k
Rf = Z A?J'UUJ' + Z AZVV; + Z AZPPj B st (D'40)
j=1 i=1 J=1

It 1s this residual that is used to drive the non-linear equation set to convergence.
To advance a solution from timestep ¢ to t + At the following algorithm is used:

1.

Calculate subsurface advecting velocities using previous timestep solution. Calculate
subsurface mass flux.

. If required, calculate PAC terms using previous timestep solution.

Assemble the coefficients (AW, A%V ..., APF) using the mass flows from step 1 for the
convective terms.

Substitute previous solution into D.38,D.39, D.40. Calculate outer loop iterative resid-
ual.

Assemble coefficient matrix into sparse YSMP format and pass to WATSIT! with
residual.

The newly solved U, V, P field become the previous timestep values for the next outer
loop.

LA proprietary Conjugate Gradient iterative solver package licensed by the Scientific Computation Group
at the University of Waterloo. See ref [41]
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