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Abstract

A technique for numerically estimating the discretization error in upwind based �nite vol�
ume �uid �ow simulation was developed� The technique is based on residual estimation�
followed by solving the global error equation over the computational domain� One and two
dimensional analysis of the error estimation process was performed for a simple homogeneous
advection�di�usion equation� The technique was then extended to encompass the laminar
Navier�Stokes equations� The e�ectiveness of the technique was investigated for �ow over a
two dimensional backward�facing step� The results show promise for future implementations
of e�ective and practical error estimation�
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Nomenclature

a cell Peclet number
E exact error
E approximate error
f scalar source term
h mesh spacing
i discrete mesh index
i control volume index
L exact linear operator
L approximate linear operator
M ratio of error estimate to exact error
N exact nonlinear operator
N approximate nonlinear operator �Chapter ��
N number of control volumes in mesh
�n outward normal unit vector
P ratio of estimated to exact operator residual �Chapter ��
P �uid pressure of exact solution
p �uid pressure of approximate solution
R exact operator residual
Re Reynolds number
r approximate operator residual
S surface of arbitrary volume
S mapping function from discrete to continuous
t time
s� t local element coordinates
U X�component of exact �uid velocity
u X�component of approximate �uid velocity
V Y�component of exact �uid velocity
v Y�component of approximate �uid velocity
�V �uid velocity vector
V mesh over problem domain
x� y Cartesian coordinates

� weighting function for element residual methods
� Exact scalar solution
� approximate scalar solution
� scalar di�usion coe�cient
�D��N �nite element domain boundary
� �uid dynamic viscosity
� problem domain
� �uid density
� arbitrary scalar �eld

Superscripts

�



� outward �ux formulation of operator
full fully linearized operator
h associated with a discrete mesh
semi semi�linearized operator

Subscripts

E error equation operator
FVM associated with a �nite volume method discretization
j jump in value across element boundary
k associated with a particular control volume or element
l associated with the left boundary
D Dirichlet boundary condition
N Neumann boundary condition
p error in pressure �eld
r associated with the right boundary
spec speci�ed as part of the problem de�nition
u error in X�component of velocity
v error in Y�component of velocity
x� y in the x and y coordinate directions respectively
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Chapter �

Background

Analysts typically derive numerical solutions of partial di�erential equations in terms of a
solution vector corresponding to some �nite discretization of the problem domain�

From an engineering standpoint� the �rst question to ask oneself is �Is this solution

accurate enough ��� Typical attempts to answer this question in the Finite Volume Method
community have been of the form�

� Solve same problem on successively �ner grids until the solution values stabilize to
within an acceptable tolerance�

� Construct grids which utilize a priori information about the numerical scheme being
employed �e�g�� Richardson�s Extrapolation�

� Apply other heuristics based on a physical interpretation of the data �domain conser�
vation laws� etc��

Each of these methods has problems associated with their successful implementation�
excessive computing requirements� excessive user interaction �man hours�� di�culty distin�
guishing modeling error from numerical error� etc�

For the purpose of this thesis� a more desirable type of error analysis would be some form
of auxiliary calculation procedure which creates a discrete estimate of the discretization
error� Eh� corresponding to the current approximate solution �h�

��� Introduction

This thesis is an attempt to take simple linear operator notions and extend them to construct
an auxiliary linear equation set to estimate the error within an approximate solution� This
document does not start with a current literature review� as is typical� since the concepts
presented here do not require previous knowledge of error estimation to be clearly understood�
they are derived from �rst principles�

The derivation of the error estimator is given in chapter 	��� After this derivation� a
commentary on current related research is given to place this work in context�

A one�dimensional analysis of the error estimation procedure for linear advection�di�usion
equations is given in chapter �� Two�dimensional numerical experimentation is presented in






chapter  for the linear advection�di�usion equation� Chapter � outlines the extension to
two�dimensional Navier�Stokes equations and analyzes the error estimation procedure for
two �ows over a backward�facing step�

��� Error Estimation Principles

In this chapter� the technique of error estimation is introduced and formalized� The deriva�
tion draws on the advection�di�usion equation as a reference partial di�erential equation�
After the theory and computational methodology are explicated� a comparison of our tech�
nique to contemporary error estimation techniques from other researchers is given�

��� The Error Equation

Consider the steady advection�di�usion equation� given in its pointwise form as

�Vr��r��r�� � f� �	�	�

where � represents the concentration of the transported scalar� �V is the advection �eld
vector� � represents the di�usivity and f is a source of � per unit mass�

Equation 	�	 can be written in a simpli�ed operator notation as

L��� � f �	���

where L is the partial di�erential operator�
Let �approx be an approximate solution of �	���� and E � ���approx be the corresponding

error� From elementary linear operator theory� assuming �approx is in the operator domain
of L� we can de�ne the Exact Operator Residual as

R��approx� � L��approx�� f �	��

and note that E is the solution of the Error Equation�

L�E� � �R��approx�	 �	���

The error equation �	��� utilizes the exact operator residual as a source term� in the same
way that the original equation� �	���� utilizes f as a source term� Evidently� one can think
of the residual as an error �source� term� and the error is transported and modi�ed in the
solution domain by the advection and di�usion processes� This description has been given
by Ferziger �	� �

It is perhaps useful at this point to distinguish between the exact operator residual as
de�ned in �	�� and the Approximate Operator Residual� which also appears in the numerical
analysis literature� but which plays no role in this thesis� If L is an discrete approximation
of the exact operator� L� then the approximate operator residual� rL� is usually de�ned as
the residual of the exact solution � with respect to L� i�e��

rL � L���� f �	���

�



The residual shown in �	��� is commonly studied in numerical analysis� where it leads to
a discussion of order� since rL is typically expressed as a Taylor�series expansion �about the
�xed point of the exact solution�� From this point onward� the term residual will refer to
the exact operator residual�

To recapitulate� there are two components identi�ed for error estimation� the Exact
Operator Residual� and the Global Error Equation� The next section discusses how to move
from an operator formulation� through the �nite volume method� to something which one
can actually compute�

��� Error Estimation

The application of these ideas to �nite volume methods �FVMs� is facilitated by the intro�
duction of an integral form of �	�	� on the domain �� In this section we review the principles
of the FVM that relate to extending the basic ideas of x	�	� See Hirsch �	� for a more
comprehensive discussion of the FVM for �uid �ows� In Appendix D we provide a detailed
description of the FVM for the incompressible Navier�Stokes equations�

Let V be a mesh of the domain �� dividing it into �nite volumes� or cells vk for k � 	 to N �
Discrete functions based on V are vectors of length N � we will write them with superscript
�h� such as �h� with �hk being the value associated with the �nite volume vk in V�

If we apply the divergence theorem to each cell� vk� then equation �	��� impliesZ
�vk

L���� ds �
Z
vk

f dv� �	���

where
L���� � ���r� � �V � � �n� �	���

and ds is the cell di�erential surface area�
Derivations of FVMs are typically based on replacing the �ux expression� L����x��� of a

continuous distribution ��x� by an approximate expression based on the values of a discrete
distribution� �h� We will designate a typical FVM expression for the �ux through a face
of cell vk by L���h�� Then� by analogy with �	���� we can express the cell conservation
equations of the FVM as Z

�vk

L���hFVM �ds �
Z
vk

fdv	 �	�
�

Intuitively� we would like to apply the ideas of x	�� to a �approx that corresponds to �hFVM �
However� for general FVMs� there is no method speci�c way to extend �hFVM of �	�
� to a
continuous distribution on �� For the standard forms of � and �nite volume cells� we can
use piecewise linear interpolation to extend a discrete distribution� �h� on V to a continuous
one on �� which we will designate as S�h�x�� This extension has a special relationship with
centred di�erencing FVMs since the discrete �ux expressions for centred di�erencing� L�

CD�
satisfy

L�
CD��h� � L��S��h��x��	 �	���

The extension of �h to S�h�x� does not allow us to use the formalism of x	�� directly�
since piecewise linear functions are not smooth enough to belong to the operator domain of
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L� Therefore� we turn to identifying a discrete estimate of the residual in �	�� based on
an integral form of the error equation� ���� If �approx is a smooth approximate solution and
E � �� �approx then

Z
�vk

L��E�ds �
Z
vk

fdv �
Z
�vk

L���approx�ds

� �
Z
vk

R��approx�dv	 �	�	��

We now identify the average of R��approx� on vk as our estimate of the exact operator
residual for �approx at cell vk� i�e��

Rh
k��approx� �

	

jvkj

Z
vk

R��approx�dv �	�		�

where jvkj is the volume of cell vk�
Equations �	�	�� and �	�		� can now be used to de�ne Rh

k��approx� for any continuous
distribution� �approx� in the operator domain of L�� and this wider de�nition admits the
piecewise linear extensions of discrete distributions� S�h�x��

In particular� �	�	�� and �	�		� provide a de�nition for a discrete residual estimate for
�hFVM � i�e��

jvkjR
h
k�S�hFVM � �

Z
vk

fdv �
Z
�vk

L��S�hFVM �ds	 �	�	��

Computationally� this residual estimate is simply the centred di�erence FVM residual of
�hFVM � as we can recognize using �	����

This discrete residual estimate provides the �error source� term for our estimate of the
global error in �hFVM � which we designate by Eh� Eh is computed as the solution of the
original upwind FVM method with source terms that are the discrete residual estimates� i�e�Z

�vk

L��Eh�ds � �jvkjR
h
k�S�hFVM � � k � 	 to N	 �	�	�

��� Related Research

We will refer to the technique described in the preceding sections as theGlobal Error Equation
Method� It represents a novel approach to a posteriori error estimation compared to other
contemporary methods�

At the current time� there are three main approaches used to estimate errors in approx�
imate solutions� Element Residual Methods� Flux Projection Methods� and� Extrapolation
Methods� The points of contrast between these methods and our approach are outlined in
this section to provide a context for evaluation and illuminate the research motivations�

A more detailed description of these three methods is provided in appendix A� It is in
this appendix that comprehensive references to the literature are provided�

The Element Residual Methods most closely resemble the approach described in this
thesis� They are reported in a �nite element method context universally� Research on this
approach by Ainsworth and Oden �	 � Babu!ska and Rheinboldt �� � Bank �� � Bank and

		



Weiser �� � Kelly et al� ���� �	� ��� � � Oden� Weihan and Ainsworth ��� � Strouboulis and
Haque �� � Strouboulis and Oden �� and Verfurth ��� is reviewed in Appendix A� They
involve estimation of an exact operator residual� but instead of assembling a global system
of equations to solve� the error between adjacent elements is assumed to decouple� thus the
error estimate is obtained using an element�by�element algorithm� The di�erent published
approaches to the Element Residual Methods di�er primarily in how they pose the boundary
conditions for the element based error equation�

The Element Residual Methods may be interpreted as a form of local transformation of
the exact operator residual� As such� the resulting error estimate� Eh� bear little resemblance
to the global error� E � Unlike this thesis� the distributed error estimate� Eh� is never reported
in the literature� Instead� they invariably quote the energy of the error� also called the energy
norm�

Since the Element Residual Methods represents a local transformation of the residual�
it should come as no surprise that they can be used successfully to drive grid re�nement
algorithms� Recall that the residual acts as a �source� term in the error equation� If one
targets the regions of large magnitude residuals for grid re�nement� then one would be most
e�ciently reducing the sources of errors in the approximate solution�

The Flux Projection Methods stem from a simple observation� The exact solution to the
PDE problem probably does not have discontinuous derivatives� whereas the approximate
solution does� If one performs what is termed a projection calculation� then one can create
an approximate solution which does have continuous derivatives� Assuming that the smooth
solution should be more accurate than the non�smooth solution� the di�erence between them
should be an error estimate� Research by Ainsworth et al� � � Babu!ska and Rodriguez �� �
H"etu and Pelletier �	�� 	�� 	
 � Zienkiewicz and Zhu ��� �� is reviewed in Appendix A�

Like the Element Residual Methods� the Flux Projection Methods are invariably re�
ported using the energy norm� They are also most successfully used to drive grid re�nement
algorithms�

For both the Element Residual Methods and Flux Projection Methods reported in lit�
erature authors have assumed� explicitly or implicitly� that a local calculation is the only
computationally feasible approach to pursue� The rationale is that a local computation is
inexpensive and adequate for the purpose of grid re�nement� In this thesis� this assumption
is not made� for two main reasons� First� it is clear that the global nature of the error
equation is essential to the process of estimating the global distributed error� The local
error estimation techniques have not demonstrated any success in achieving our stated goal
of determining approximate solution quality� which we feel is a di�erent goal from error
estimation for the purpose of grid re�nement�

Second� computationally feasible implies that the computational cost of the error estimate
should be small compared to the cost of generating the approximate solution� Now� for the
majority of the literature� linear elliptic PDEs have been studied� For these problems� it is
true that global error estimation costs just as much as solving the original problem� which is
not acceptable� But� when solving coupled non�linear PDEs �like Navier�Stokes equations�
the situation changes� Approximate solutions are typically generated in a process of iterative
re�nement� involving solving on the order of ���� coupled linear system of equations� In this
context� a single linear equation set becomes a feasible computation� In addition� since the
error equation is of the same class as the original PDE� the optimized solver techniques�
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�preconditioners� multigrid methods� etc��� created for solving the approximate solution are
at your disposal for solving the error equation�

Extrapolation Methods involve exploiting a priori knowledge of the order of the numerical
method being employed to extrapolate from a set of approximate solutions to an estimate of
the exact solution� With this exact solution� error estimation can be performed� Research on
this method from Bradley� Missaghi and Chin �
 � Caruso� Ferziger and Oliger �	� � Ferziger
�	�� 	 � Kessler� Peric and Scheurer ��� � Roache �� is given in Appendix A�

A commonly used form of extrapolation is Richardson�s Extrapolation� which would
estimate the error with a formula such as

E� �
�� � ���
h�
h�

�p
� 	

� O�hp���� �	�	��

where �� and �� are p�order solutions on grids whose grid spacing are characterized by h�
and h� respectively� E� would the error estimate for the approximate solution ��� Like the
Global Error Equation Method� this method does produce a distributed error estimate� It is
also simple to understand and theoretically should apply to any PDE� and to any functional
of the solution�

However� the di�culties with Extrapolation Methods are many� They assume that one
can characterize an entire discretization method with a single parameter p� the order� In
practice� only very simplistic discretizations have a readily identi�able convergence order�
Implementation details such as boundary condition treatment� scheme blending� solution
discontinuity treatment� etc� make it di�cult to determine a unique single valued order for
a given discretization�

The Extrapolation error estimate will only be valid if the O�hp��� term is signi�cantly
smaller than the leading term in equation �	�	��� This is referred to as being in the asymptotic
range� With two successive solutions on two di�erent grids� there is no way of knowing if the
asymptotic range has been reached� If one assumes that one knows p� and assumes that a
single parameter grid set has been used� then it is possible to check if one is in the asymptotic
range if one uses three solutions on three di�erent grids�

Extrapolation also assumes that multiple computational grids can be de�ned with a
single parameter variation� h� Unfortunately� only very simplistic grids lend themselves to
such single parameter sets� Great e�ort must be expended attempting to create a single
parameter grid set for a complex geometry� There is also no way to know if one has made
the attempt successfully� On a more pragmatic note� the time and computational cost that
must be used to generate a complex geometry grid set� and solve multiple approximate
solutions� will usually be larger than the cost of the original approximate solution� i�e�� it
becomes computationally infeasible�

Su�ce to say� the Global Error Equation Method does not su�er from these drawbacks�

����� Current Contributions

The Global Error Equation Method as described in x	�	 and x	�� more closely resemble
the Element Residual Method family than the other two approaches to error estimation
outlined above� Both emphasize estimating the exact operator residual� however� since

	



the application of the element residual method has been primarily targeted towards grid
adaption� the emphasis has been on computationally inexpensive local transformations of
the residual to global error units� rather than accurate estimates of the distribution of the
global error�

��� Summary

The Global Error Equation Method has been derived from standard linear operator theory�
Beginning with a partial di�erential equation in operator notation �equation 	����

L��� � f�

an approximate solution �hFVM is generated using the Finite Volume Method �equation 	�
��

Z
�vk

L���hFVM �ds �
Z
vk

fdv	

The error estimation procedure begins with the calculation of the residual estimate �equation
	�	���

jvkjR
h
k�S�hFVM � �

Z
vk

fdv �
Z
�vk

L��S�hFVM �ds	

Then the global error equation is solved �equation 	�	��

Z
�vk

L��Eh�ds � �jvkjR
h
k�S�hFVM � � k � 	 to N�

to yield an error estimate Eh�
The technique was contrasted� in principle� to contemporary a posteriori error estimation

methods� in terms of the perceived strengths of this approach� In particular� The use of the
full global error equation instead of a local calculation� error given in distributed form� instead
of an energy norm� no need for the questionable assumptions imposed by extrapolation
methods�

In the next chapter� a one dimensional analytical example of this procedure is given� with
emphasis placed on evaluating the validity of the Global Error Equation Method� Chapter
 follows these steps again� for a battery of two dimensional numerical problems instead of
a �nite analytical analysis�

	�



Chapter �

One Dimensional Advection�Di�usion

Equation

To assess the validity of the Global Error Equation Method Consider the two steps of the
process in a model situation that is analytically tractable� Consider the one�dimensional
version of �	�	��

��

��


x�
� V


�


x
� � V�� � �� ���	�

� � �l at x � ��

� � �r at x � 		

We can carry out an analytical analysis of the various components of the preceding section
for discretizations of this problem using a uniform mesh of � � x � 	 of width h � 	�N
centered at xk � kh ��

The discrete form of the solution of ���	� using a simple upwind FVM is �

�hk � �l � ��r � �l�
�	 � a�k � 	

�	 � a�N � 	
� �����

� � k � N�

where a is the grid Peclet number� de�ned as a � V h�� �

��� Residual Estimation

In order to appraise the residual estimation process� it would be bene�cial to generate a
residual from the original partial di�erential operator and compare this function to the
residual estimate�

�These computations were done with the MAPLE symbolic computation package
�See appendix B for a derivation of a �nite di�erence analytical form
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A natural extension of ����� to a C� approximate solution of ���	�� �approx� can be
obtained by replacing k by x�h� and allowing x to vary continuously from � to 	� The
residual of �approx can now be computed as

Rk �
��r � �l��	 � a�k

�	 � a�N � 	�
V ln�	 � a�

h
�	� ln�	 � a��a�

�
	 ����

Calculation of a residual estimate for this solution using central di�erencing yields Rh�

Rh
k �

��r � �l��	 � a�k

�	 � a�N � 	

a�V

��	 � a�h
	 �����

An inspection of equations ���� and ����� reveals that they have the same dependence
on k and di�er by a constant factor that depends only on the grid Peclet number� The ratio
of Rh to R provides an indication of the quality of the residual estimate� and how it varies
with the problem parameters�

P �
Rh

R
�

a�

��	 � a� ln�	 � a��a� ln�	 � a��
	 �����

In the limit of a � �� P approaches unity� P can be approximated to ��# accuracy in
the range � � a � 	 by

P � 	 �
a

�

��� Error Estimation

Using the residual estimate Rh from x��	� we now calculate an error estimate using a simple
upwind di�erencing form of the error equation �as represented in equation �	�	��� The error
equation will have Dirichlet boundary conditions �as in the original PDE� El � Er � � �
Again� for brevity� the full derivation is given in appendix B �

The error estimate� Eh� then has the analytical form

Eh
k �

a���r � �l�

��	� �	 � a�N��
��	� �	 � a�N�k�	 � a�k�� � N�	 � a�N�k�� �N�	 � a�N�� 	 �����

Utilizing the approximate FVM solution ������ and the exact solution of equation ���	��
the exact error in the approximate solution can then be calculated� The ratio of the error
estimate to the exact error can then be calculated as

M �
Eh

E
�

a��	 � eNa�

��	 � �	 � a�N�

�
�	� �	 � a�N�k�	 � a�k � N�	 � a�N����	 � a�k � 	�

�	� �	 � a�N��eka � 	� � �eNa � 	���	 � a�k � 	�

�
	

�����
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M is commonly referred to in the literature as a nodal e�ectivity index� The di�erence
here being that the distributed variable representation is compared� instead of the energy
norm of the error �see Babu!ska and Rodriguez �� ��

Unlike the residual estimate e�ectivity� P � the error estimate e�ectivity varies spatially
over the domain �the dependence on k�� as well as the grid density� N � in addition to the
Peclet number dependence�

As a �rst pass at understanding what the quantity M is telling us� we can take the limit
of the function as a � V h

�
� ��

lim
a��

M � 		

So� in the limit of grid re�nement� or in a di�usion dominated case �large �� small V ��
the error estimate asymptotically approaches the exact error�

More generally� one wants to know how M behaves when a is not zero� To get an
impression of this behavior we can study M at a unique location spatially� An obvious
choice would be the point where


E


k
� ��

that is� the point of maximum error in the approximate solution�
At this point� The function M does seem to collapse to strictly a function of cell Peclet

number �except in the near zero region�� Figure ��	 shows the e�ectivity index M plotted
as a function of a for N � 	�� 	��� 	���� Note that all curves converge to a single curve in
the region beyond �  a  �	��

It can be seen that over a large range of Peclet numbers� and a large variance in grid
density� the e�ectivity index varies by only about 	�# from unity�

��� Summary

The Global Error Equation Method was applied to a �nite analytical solution of the 	D
advection�di�usion equation�

The residual estimate was compared to an exact form of the residual and shown to be
functionally identical� but vary by a multiplicative constant�

The analytical error estimate was compared to the exact error through the use of an e�ec�
tivity index� The e�ectivity index was shown to approach unity �error estimate approaches
exact error� in the limit of grid cell Peclet number going to zero� Hence the error estimate
should always improve from grid re�nement�
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Chapter �

Two Dimensional Advection�Di�usion

Equation

To extend the evaluation of this new FVM global error estimator� a set of ��dimensional test
cases were created�

The extension into two space dimensions makes generation of closed form analytical �nite
di�erence solutions �as used in x�� unwieldy at best� For that reason� we limit our work to
particular numerical problems� for which we know the analytic exact solution�

The �D homogeneous scalar advection�di�usion equation is

�Vr��r��r�� � �	 ��	�

Solutions for this equation can be generated through use of a coordinate transform and
using the applicable Green�s function �This process is shown in detail in appendix C and is
based on Stakgold �� ��

��� Test Suite

There are four di�erent cases considered in this study�

� Point source subjected to grid�aligned �ow�

� Point source subjected to grid skewed �ow�

� A boundary layer �eld generated by a discontinuous Dirichlet boundary condition�

� A boundary layer �eld generated by a discontinuous Neumann boundary condition�

The �rst two are referred to as the point source problems� while the latter two are called the
boundary layer problems�

For each of these cases� a solution is derived for the �ow velocities of ��	� and ����� and
the di�usion coe�cient set to ���	 � The far��eld conditions are assumed to be zero� The
form of the exact solutions for these problems is given in its integral form� The integrals are
evaluated numerically until the desired number of signi�cant digits are achieved �� digits for
the purpose of this study��
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For all problems� two di�erent approximate solutions are generated� The �rst is a stan�
dard upwind di�erencing� referred to henceforth as the UDS approximate solution� It is a
�rst�order numerical scheme and is the �D analogue of the approximation explored in x��

The second is a linear pro�le skew upwinding scheme with advection correction� similar
to that described by Schneider and Raw � � modi�ed by an advection correction term
described by Raithby ��� � henceforth referred to as the LPS�PAC approximate solution�
It is a second�order numerical scheme and represents a more realistic� commercially viable�
discretization�

Thus� for each problem� the following steps are performed�

	� A grid is de�ned�

�� An exact analytical solution to the problem is calculated at each grid point ��h��

� Approximate numerical solutions are generated using UDS and LPS�PAC ��h��

�� The Global Error Equation Method is employed to produce an error estimate �Eh� for
the approximate solution�

�� The error estimate is compared to the exact error ��h � �h��

�� A subjective assessment of the quality of the error estimate is made�

��� Point Source Problems

Consider the problem where there is a unit point source at the origin� For this problem the
exact solution can be expressed as

��x� y� � e
V x

�� K��
V

��
�x� � y��

�

� �� ����

where K� is a zero degree modi�ed Bessel function of the second kind�
Since the exact solution is not de�ned at the origin for this problem� the computational

domain is slightly o�set from the origin� For the numerical solutions� all boundary conditions
are implemented as Dirichlet conditions utilizing the exact solution

����� Grid Aligned Flow

For the grid aligned �ow condition� two problems are considered� a low speed �ow� V���	��
and a high speed �ow� V������ The exact solutions for these problems is shown in �gures
�	 and �� respectively�

For the �rst cases� the point source problems� a coarse grid is used� The grid is shown in
�gure �� The results of the numerical experimentation with the UDS approximate solutions
are shown in �gures �� through ���
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Figure �� Mesh for Grid Aligned Point Source Problem
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Figure ��� Exact error�V���	�� UDS approximate solution
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Figure �
� Exact error�V���	�� LPS�PAC approximate solution

Some observation for these plots can be made at this point�

� The level of error ranges between 	��	�# relative error� with the maximum occurring
one node in from the inlet boundary condition�

� The zero error contours are remarkably congruent between the estimate and exact error
�elds� This results in the error estimator consistently having the correct sign for the
error� The qualitative distribution of the error is quite well predicted for all cases�

� In the regions above and below the high error central core� where the overall level
of error is relatively small� the error estimate is within 	�# of the actual error �The
relative error in the error estimate is less than 	�#�

� On a line through the point source along the velocity vector� where the error is the high�
est� the error estimator under�predicts the magnitude of the error by a quite consistent
factor of �$�

The same two problems were also run using the LPS�PAC approximate solution� The
low speed �ow results are shown here� The observations made apply equally well to the high
speed �ow case� Results are shown in �gures �
 and ��
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Figure �	�� Point Source Exact Solution� V���	� inclined at � degrees

Observations of the numerical results for the LPS�PAC approximate solution indicate�

� The LPS�PAC solutions are� as expected� noticeably better than the UDS solutions�
for all problems�

� Qualitatively and quantitatively� the error estimation results have a comparable quality
to the UDS approximate solution results�

This last point is important� Until this point� we have only analyzed bilinear residual
estimates operating on �rst�order approximate solutions �UDS solutions�� LPS�PAC is the
same order of numerical approximation as a full bilinear approximation �second�order�� At
the start of this research project� there were doubts that a second�order residual estimator
would be of any use for these higher order approximations� These results would seem to indi�
cate that the order of the numerical scheme is not the only factor to consider when generating
a residual estimator� In this case� a bilinear residual estimate performed admirably�

����� Grid Skewed Flow

As was done in x���	� a low speed and a high speed �ow problem are considered �V���	�
and V������� The di�erence now being that the �ow vector is skewed by � degrees to the
X�coordinate direction� The exact solutions for these problems are shown in �gures �	� and
�		 respectively�

The same computational mesh is used to generate the approximate solutions� except it is
repositioned with respect to the origin to make more e�ective use of the mesh� The results
utilizing the UDS approximate solution are shown in �gures �	� through �	��
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Observations are the same as for the grid aligned �ow problem� The error estimate
performs well for both cases examined�

Similar to x���	� the LPS�PAC approximate solution results are similar between the
high and low speed problems� An indicative example is shown in �gures �	� and �	�

As with the UDS results� the observations from x���	 can be applied equally well to the
LPS�PAC results�

��� Boundary Layer Problems

����� Discontinuous Dirichlet Problem

Consider the following positive�Y plane and boundary conditions�

V

Y

X
x=0 x=0.5

Φ=0 Φ=1 Φ=0

Introducing a new scalar variable�

z �
V

��

q
�x� r�� � y�� ���

the exact solution for this problem can be evaluated by calculating

��x� y� � e
V x

��

V y

��

Z ��	

�

K��z�

z
e
�V r

�� dr	 ����

The integral in �� becomes di�cult to calculate as you approach the singular region
�y � �� � � x � �

��� In addition� the exact solution has singularities at �x� y� � ��� �� and
��� � ��� For these reasons the numerical problem posed has been o�set from the x�axis� This
results in sharp Dirichlet boundary gradients� but not singularities� while still preserving the
analytic boundary layer �eld� Figures �	
 and �	� show what the exact solutions for to
two cases �low speed �ow and high speed �ow�� Each contour represents a ��	 scalar step� A
�ner grid spacing was used for this problem compared to the point source problem� The grid
is shown in �gure ���� The implemented Dirichlet boundary condition is shown in �gure
��	�

The results of the numerical experimentation with the UDS approximate solutions are
shown in �gures ��� through ����
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Some observations that can be made�

� With the �ner grid� we see that the error now ranges from ������# error for large
regions away from the boundaries� up to 	����# error close to the x�axis boundary�
The dominant feature for these error �elds appears to be large error production in
regions of large streamwise solution gradients� UDS performs poorly for this type of
�ow phenomenon�

� As before� the qualitative distribution of the error is well estimated� Visual inspec�
tion of contour plots sometimes cannot distinguish between the exact error and error
estimate�

� In regions of low error levels� the relative error in the error estimate runs from ���#�
In those regions where the error level is higher� this can reach a maximum of roughly
�# error�

As with the point source problems� the numerical results for the LPS�PAC approximate
solutions are similar in their observable characteristics� An example is given in �gures ���
and ���� The same observations made for the point source problems can be granted to the
Dirichlet boundary problem�

����� Discontinuous Neumann Problem

Consider the following positive�Y half plane and boundary conditions�

V

δΦ
δ 0y

δΦ
δ 0y

x=0 x=0.5

Y

X

δΦ
δy 1

Again� introducing a new scalar variable�

z �
V

��

q
�x� r�� � y�� ����

the exact solution for this problem can be evaluated by calculating

��x� y� � e
V x

��

	

�

Z ��	

�
K��z�e

�V r

�� dr	 ����

as detailed in Appendix C�
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Figure ��
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The exact solutions are shown in �gures ��
 and ��� respectively�
The exact and estimated error for the UDS approximate solutions are shown in �gures

�� through �� As with the Dirichlet boundary condition problems� there is� in general�
good agreement between the exact and estimated error�

The LPS�PAC approximate solutions do not demonstrate any signi�cant di�erence from
the UDS approximate solution in terms of the correspondence between the exact and esti�
mated error� The low speed �ow results are shown in �gures �� and ���
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��� Summary

The Global Error Equation Method was tested on a spectrum of ��D scalar advection di�u�
sion problems� for two di�erent types of approximate solutions �UDS and LPS�PAC�� All
results showed good correspondence between the error estimate and the actual error�

The scalar advection�di�usion is a rather simple �uid transport model� Success with
this equation indicates that there is now a need to extend the work to a more realistic �uid
dynamic model� In the next chapter we report on work with the Navier�Stokes equations�
Although more physically realistic� they require dealing with a non�linear vector equation
set� These new elements require additional care�

��



Chapter �

Navier�Stokes Equations

In this chapter we move our study from the linear scalar advection�di�usion equation to the
Navier�Stokes equations�

Consider the basic Navier�Stokes equations� representing steady incompressible laminar
�ow in two dimensions with no body forces� The equations representing the conservation of
mass� and linear momentum in the x and y coordinate directions are respectively�
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U and V are the �uid velocities in the x and y coordinate directions respectively� P is the
�uid pressure� � is the �uid density and � is the �uid dynamic viscosity�

Equations ���	�to ����� along with appropriate boundary conditions can be written in
operator notation as

N �U� V� P � � ��� �� ��	 �����

The Navier�Stokes equations� as presented� have two major di�erences from the advection�
di�usion equation studied in earlier chapters�

	� Instead of a single equation for the scalar �eld �� the Navier�Stokes equations are a
coupled system of equations for the vector �eld �U� V� P  

�� The equations are non�linear

The error estimation principles of chapter 	�� are reformulated to re�ect these di�erences�

��� The Error Equation

The error will now be a three component vector �eld� Thus if �u� v� p represents an approx�
imate solution of ������ then the error in �u� v� p is given as

��



�E � �Eu� Ev� Ep � �U� V� P  � �u� v� p 	 �����

Now� the Exact Operator Residual can be expressed as

�Rmass� Rx mom� Ry mom � N �u� v� p�	 �����

By taking ����� and substituting into ����� and separating terms �keeping in mind how
the exact operator residual has been de�ned� ������ the non�linear Error Equation� can be
expressed as�

�Eu
�x

�
�Ev
�y

� �Rmass� �����

�

��
Eu

�Eu
�x

� Ev
�Eu
�y

�
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�
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where the subscripts a� b and c are included to aid in our discussion below�
Equations ����� to ����� can be expressed in operator form�

NE�Eu� Ev� Ep� � ��Rmass� Rx mom� Rymom 	 ���	��

The resulting equations are similar to the advection�di�usion error equation �	��� in that
the error equation utilizes the exact operator residual as an error �source� term� The error�
then� is transported through the solution domain to generate the error �eld� The notable
di�erence being that the Navier�Stokes error equations are non�linear�
Full Linearization

To e�ect a computationally practical error estimation� it is desirable to solve a linearized
form of ���	��� To allow for a posteriori evaluation the equations are linearized about the cur�
rent approximate solution �u� v� p � This is equivalent to discarding the terms highlighted in
equations ���
� and ����� with the ��a subscript� Let this new system of PDEs be represented

by the continuous linear operator NE

full
�

NE

full
�Eu� Ev� Ep� � ��Rmass� Rx mom� Ry mom 	 ���		�

The resulting operator� NE

full
� is equivalent to the Newton�Raphson linearization of the

Navier�Stokes equations� Spectral analysis of NE

full
is still an active area of research� We

will see later that the inversion of NE

full
can be problematic� Spectral analysis of NE

full
is

beyond the scope of this work� we proceed under the assumption that NE

full
possesses both

left and right inverses within the range of problems studied�
Semi�linearization

As an alternative to the full linearization of ���	��� a semi�linearization is also constructed�
The semi�linearization ignores terms ��a and ��c of equation ���	��� This remaining equation

set� NE

semi
� is essentially a system of weakly coupled linear advection�di�usion equations� All

��



solutions of the linear advection�di�usion equation are stable� Through proper discretization

�i�e�� upwinding etc��� the numerical problem can be guaranteed to be stable� NE

semi
is the

same partial di�erential operator that is at the root of a frozen coe�cient non�linear iteration
commonly used to solve the Navier�Stokes equations�

This leads to another �practical� advantage of the semi�linearized error equation� since
the error equation is now equivalent to frozen coe�cient non�linear iteration for the Navier�
Stokes equation� the mechanism used to assemble the algebraic equations can be used to
solve the original approximate solution�

��� Error Estimation

In the previous section two linearized partial di�erential equations were presented as a basis
for a posteriori error estimation of numerical solutions of Navier�Stokes equations� In this
section these equations are expressed in a FVM context� As was done in x	��� an integral for�
mulation is introduced� A detailed description of the integral formulation and discretization
is given in appendix D� an abridged description is given here�

Let V be a mesh of the domain �� divided into �nite volumes� or cells vk for k � 	 to N �
Equation ����� implies Z

�vk

N ��U� V� P � ds � ��� �� � � ���	��

where N ��U� V� P � represents the �ux of mass� and momentum through a di�erential surface
ds �

To generate an approximate solution of ���	�� the FVM replaces the continuous dis�
tribution �u� v� p � by values of a discrete distribution �uh� vh� ph � The discretized form of
N ��u� v� p� will be written as N��uh� vh� ph�FVM �Z

�vk

N��uh� vh� ph�FVM ds � ��� �� � � ���	�

where FVM would refer to the particular discretization employed
Equation ���	�� although �nite dimensional� is still non�linear� To compute a solution to

���	� it is necessary to solve a sequence of linear problems� For this work� a frozen coe�cient
linearization about the current approximate solution is performed� Denote this linearized
operator as N� for future reference�

The residual estimate for �uh� vh� ph can be written as

jvkj�R
h
mass� R

h
x mom� R

h
y mom �

Z
�vk

N�
CD�uh� vh� ph�ds ���	��

where� recall� the CD subscript indicates a central di�erencing discretization�
The full linearization of ���	�� is now discretized� in the same way as was done for the

original PDE� via an integral formulation� The only di�erence being the treatment of the
��c terms� For the purpose of this thesis� the ��c terms are discretized using a lumped mass
approximation� The discrete error estimate� �Eh

u � E
h
v � E

h
p  � can then be obtained by solving

��
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h
p �ds � �jvkj�R

h
mass� R

h
x mom� R

h
y mom � k � 	 to N	 ���	��

The semi�linearization of ���	�� is treated in the same manner� From a pragmatic standpoint�
it is important to note that the discretized semi�linearized error operator is the same as the
linearized form of the Navier�Stokes equation used for the original solution which� in our
notation would be expressed as

Z
�vk

NE
��semi

�Eh
u � E

h
v � E

h
p �ds �

Z
�vk

N
�
�Eh

u � E
h
v � E

h
p �ds � �jvkj
R

h
mass� R

h
x mom� R

h
y mom� � k � � to N�

�����

��� Computational Experiments

As was done with the �D advection�di�usion equation� the error estimation technique� as
described� was implemented in a computer code and tested on numerical problems for which
the exact error in the approximate solution was available� The error estimates were compared
to the exact error�

The details of the numerical method are given in appendix D� The Backward Facing
Step problem was chosen for the computational experiments� It represents a �ow which
embodies the essential di�erences between Navier�Stokes class equations and other simpler
�ow equations �Stokes equations� Euler equations etc��� It is also a standard benchmark
problem for which there are well established numerical solutions�

The setup was the same as given by Gartling �	� � A schematic of the problem de�nition
is given in �gure ��	� The inlet boundary condition speci�ed the velocity pro�le � The inlet
velocity� as in �	� � was the parabola U � ����	�� y�y� This gave the �ow �eld downstream
of the step a maximum velocity of 		�� The channel expands from a width of ��� to 	�� at
x � �� At the outlet� the pressure was set to a constant value and the normal and tangential
�uid shear stress was set to zero�

�




Two Reynolds number �ows were solved for� a low Reynolds number �ow� Re�	��� and
a high Reynolds number �ow� Re�
�� �Reynolds number de�ned as Re��Umaxh���� where
h is the channel height�� For both cases� �ve successively �ner grids were generated and
solved using the higher accuracy LPS�PAC scheme in order to estimate the exact solution
�U� V� P  � The grid dimensions were respectively� 
� X ��� 	�� X �� �� X �
� ��� X ��� and
�� X ��� The last four grids represent re�nements of the �rst grid by re�nement factors of
	��� �� � and �� Utilizing an extrapolation analysis recommended by Roache �� � the �ne
grid results were estimated to contain no more than ���# relative error for the low Reynolds
number �ow� and under 	��# relative error for the high Reynolds number �ow� Furthermore�
the high Reynolds number �ow was compared at the x � � and x � 	� cross�sections to
those reported by Gartling �	� � The �ne grid results� for the x�velocity and pressure �elds�
deviated from the reported results by no more than ���#� With this computed �exact
solution� it was possible to determine the exact error �E with which to compare to the error
estimates�

As was done with the advection�di�usion equation� approximate solutions were created
using two di�erent types of upwinding procedure� Standard upwind di�erencing �UDS�� and
Linear Pro�le Skew Upwind Di�erencing with Physical Advection Correction �LPS�PAC��
Error estimation was performed on the second grid in the set �	�� X ���

The error �eld from a Navier�Stokes equation solution� as mentioned previously� is a
three component vector� For this work� the x�component of velocity was chosen for plotting
purposes� This does not seem to be a limiting choice� since it was witnessed that the level of
correspondence between the exact and estimated error was the same for all three components
of the error vector�

����� Low Reynolds Number Flow

The streamlines of the exact solution for this problem are shown in �gure ���� It is obviously
a low Reynolds number �ow� containing but one small recirculation zone behind the step�

Using the procedure outlined in x���� a full linearization error estimate is computed for
the approximate solutions from the UDS and the LPS�PAC numerical schemes� Figure
�� shows the comparison between the exact error in the x�component of velocity and the
estimated error� Figure ��� is the same plot for the LPS�PAC approximate solution�

The degree of correspondence between the exact and estimated error is less than it was
for the advection�di�usion equation� For the UDS approximate solution� the main error
�eld features are clearly duplicated� but the error magnitude is an over�estimate by about
a factor of two �a similar quality of error estimate is demonstrated for the y�velocity and
pressure �elds�� Nevertheless� the error estimation yields a quantitatively useful measure of
the solution quality�

A dramatic degradation of estimator performance is witnessed for the LPS�PAC ap�
proximate solution� For the �rst time it is witnessed that the fundamental characteristics of
the error �eld �locations of maximum and minimum error� zero error contours� etc�� are not
properly predicted� The magnitude of the error estimate is similar to the actual error� but
it is easy to dismiss this as coincidence� So� what happened %

There are only two steps to the error estimation process� residual estimation and solving
the linearized error equation� Lacking a unique continuous representation of �u� v� p for an

��
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approximate LPS�PAC solution� it is not possible to determine the exact operator residual
for comparison� Nevertheless� it is suspected that the residual estimation is the problematic
step� The same linearization has been used for both the UDS and LPS�PAC error estima�
tion� If the fully linearized error equation poorly characterised the non�linear error equation
at Re�	��� then we would expect the UDS error estimation to also perform poorly� but this
is not the case� Furthermore� the di�erence between a UDS discretization of the error equa�
tion� and an LPS�PAC error equation should not be large enough to cause such a dramatic
di�erence in the error estimation� which leaves us to suspect the residual estimation step�

To explore this hypothesis� further numerical experiments were performed� One can take
the residual vector �eld generated from the LPS�PAC solution� and instead of passing them
into an error equation linearized about the LPS�PAC approximate solution� one passes
them into the error equation used for the UDS error estimation �UDS discretized error
equation linearized about the UDS approximate solution�� If the error estimation process is
sensitive to the linearization� or the method of solving the error equation �UDS or LPS�PAC
discretization�� then a signi�cantly di�erent error �eld should be predicted� If instead the
error equation is insensitive to such changes� then a similar error �eld to the LPS�PAC error
equation should result�

The results of such a computation are shown in �gure ���� The striking similarity between
the two contour plots supports the hypothesis that the residual estimation process is the
underlying di�culty�

The case of the semi�linearized error equation was also examined for the low Reynolds
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number �ow� Similar poor results were witnessed for the LPS�PAC error estimation� casting
further doubt on the quality of the residual estimation� The UDS error estimation� however�
had interesting results as shown in �gure ���

Although the semi�linearization could be considered a cruder linearization of the non�
linear error equation� it seems to produce as good� if not better� error estimation than that
produced by the the full linearization� given the same residual �eld� Why this should be
so is not clear at present� What is obvious is the large di�erence between the full and
semi�linearization error estimates ��gures �� and �����

����� High Reynolds Number Flow

The High Reynolds �ow de�nition is identical to the Low Reynolds number �ow except that
� is decreased by a factor of 
� This has the e�ect of raising the Reynolds number to 
���
The streamlines of the steady�state solution are shown in �gure ���

The computational experiments did not go as smoothly for the high Reynolds number
�ow� compared to the low Reynolds number �ow� The full linearization error equation proved
di�cult to solve using a variety of solver techniques �high level factorization preconditioning�
over and under relaxation� etc�� It is not clear at this time whether this di�culty is the
result of the degree of instability in the governing equations or induced by poor choice
of discretization� It has been conjectured that the steady incompressible �D �ow over a
backward facing step is unstable at Re�
�� �Gresho� Gartling� Cli�� Garret� Spence� Winters
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and Goodrich �	� �� Indeed� the Re�
�� �ow required an order of magnitude more iterations
to solve properly compared to the Re�	�� �ow� another indicator of a near critical �ow �eld�
The increase in iterations required by preconditioned conjugate gradient type methods when
solving dynamically unstable linearized equations has been described by Simpson �� � This
has important implications for the process of error estimation� since one would expect the
global error to be poorly determined by the residual �eld for unstable �ows�

In contrast to the full linearization� solutions to the semi�linearized error equation could
be obtained without di�culty� Results for the semi�linearized error equation are shown in
�gures ��
 and ����

As in the low Reynolds number �ow� the LPS�PAC error estimation bears little resem�
blance to the actual error� This is consistent with our earlier hypothesis of an inadequate
residual estimate�

The UDS error estimation again captures the signi�cant features of the error �eld� A
further degradation of the estimate quality is experienced� now underestimating the mag�
nitude of the error by a factor of roughly three� It is not known at this time what factors
cause a decline in performance with rising Reynolds number� This same e�ect was witnessed
to a lesser degree with the �D advection�di�usion equation results �in moving from low to
high advection velocities�� The 	D analytical results showed that the residual estimate ef�
fectivity does degrade with increasing cell Peclet number� These are possibly all analogous
phenomenon�

��� Summary

The Global Error Equation Method was extended to encompass the Navier�Stokes equations�
This involved addressing the vector nature of the dependent variables� and drawing the
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distinction between the full non�linear error equation� and its linearizations�
For this thesis� two types of linearizations were presented and subjected to numerical

experimentation� Full and Semi�linearization� We experienced di�culty solving the full
linearization form of the error equation for the Re�
�� �ow�

For the UDS approximate solutions� a successful error estimation was demonstrated for
both the low and high Reynolds number �ows� The e�ectivity of the error estimation is not
as good as was witnessed for the linear advection�di�usion equation problems� This might
be as a result of the extra approximation introduced in linearizing the error equation �a step
not required for a linear PDE�� In contrast to the scalar advection�di�usion equation� the
central di�erence residual estimate does not seem to reliably produce an e�ective residual
estimate for LPS�PAC approximate solutions of Navier�Stokes equations�
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Chapter �

Closure

��� Summary

This thesis presents what we refer to as the Global Error Equation Method of a posteriori

error estimation for �nite volume simulations of �uid transport� The process involves two
main steps�

� Estimating the Exact Operator Residual

� Solving the Global Error Equation

The �rst step has ties to the Element Residual Method although� for this work� residual
estimation has been expressed in terms of the familiar centred di�erence operator� The
Global Error Equation is unique to this thesis�

The investigation was made on several fronts� An analytical analysis of the procedure
was performed for the 	D linear advection�di�usion equation using an upwind di�erencing
approximate solution� For the �D linear advection�di�usion equation a suite of numerical
problems were posed� under the general headings of point source problems and boundary

layer problems� Each� in turn� were solved with two di�erent �nite volume approximations�
upwind di�erencing� and� linear pro�le skew upwinding with advection correction� For each
approximate solution an error estimation was performed and compared against the exact
error generated from an analytical solution�

Finally� the �D Navier�Stokes equations were considered� The error estimation process
was re�derived to account for the vector nature of the solutions� and to linearize the nonlinear
error equations� The process was experimentally studied by analyzing the error estimator
performance for a low and high Reynolds number backward facing step problem�

��� Conclusions

For the linear advection�di�usion equation� the error estimation process outlined demon�
strated excellent performance� It was also demonstrated that the residual estimation process
need not utilize a higher truncation order discretization for the residual estimation process
in the linear equation case�
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The work with the �D Navier�Stokes equations demonstrated three important elements
involved with the extension of this work�

	� Under certain circumstances� the error estimation process can be successfully extended
to a coupled nonlinear PDE system� In this case� the approximate solution is an upwind
di�erence approximation of the Navier�Stokes equations�

�� The ability of a central di�erence approximation to generate a useful residual estimate
for LPS�PAC approximate solutions seems to be compromised for the Navier�Stokes
equations�

� There is a large variation in error estimator performance depending on the approach
to the linearization of the nonlinear error equations� At the high Reynolds number
�ow �Re�
���� it was not possible to achieve an error estimate using the full lineariza�
tion error equation� The semi�linearization did not experience solver di�culties� For
Re�	��� there is a signi�cant di�erence in the estimated error depending on whether
one utilizes full or semi�linearization�

��� Recommendations

The work presented establishes a framework with which future research can proceed� The
linear equation studies seem to be conclusive and further work in this direction is not deemed
necessary� To bring this technology into the purview of serious engineering CFD� two issues
need to be addressed �rst�

E�ective residual estimation for more advanced discretizations must be created and val�
idated� There does not exist any foreseeable barriers to achieving this goal� The residual
estimation step is always an O�N� calculation� so it is believed that only marginal additional
computational e�ort needs to be expended to guarantee an e�ective residual estimate� What
is lacking currently is a coherent framework in the �nite volume method for consistently gen�
erating higher accuracy discretizations�

The behavior of the linearized Navier�Stokes error equation requires additional study�
Speci�cally� it needs to be determined conclusively if the solver di�culty for the fully lin�
earized error equation stems from the governing equations� or the particular discretization
implemented in this thesis �ie� a lumped mass discretization was utilized for the zero�order
terms in the fully linearized error equation�� Furthermore� it would be desirable to under�
stand the limits of a linearized error equation�

If these issues two issues can be resolved� then the error estimation methodology is
not inherently limited to the equations studied� The conceptual extension to D Navier�
Stokes equations with auxiliary coupled equations �compressibility� conjugate heat transfer�
turbulence models� etc�� is quite straightforward� Furthermore� the use of orthogonal grids
in this study was strictly for convenience� there is no obstacle that the researchers are aware
of to prevent one from using non�orthogonal grids�
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Appendix A

Related Research

In this appendix� a more thorough description is given for other contemporary error estima�
tion techniques than could be given in x	��� This is to provide a fully referenced resource for
the interested reader�

A�� Element Residual Methods

The Element Residual Methods are given in a Finite Element context� For the explanation
given here� the mathematical rigor will be suppressed for the bene�t of understanding �The
referenced articles have more than enough formalism for the interested reader�� A familiarity
with the Finite Element Method is required in this section ��

First some preliminaries need to be presented� Consider a standard elliptic PDE with a
Dirichlet and a Neumann boundary condition�

L��� � �r � �ar�� � f on �

� � � on �D


�


n
� g on �N

The �rst step for a �nite element calculation would be to partition the domain � into a set
of �nite elements� On these �nite elements are de�ned shape functions� The set of all these
shape functions will be called V ����
Now� �nding the approximate solution �� which uses the shape functions as a basis� V ����
can be expressed as�

Find � � V ��� such that�

Z


�ar� � rv�dx �

Z


�fv�dx �

Z
�N

gv ds �A�	�

for all v � V ���
For the �nite element method� the space V ��� is composed of shape functions restricted
to the elements �for example� piecewise linear shape functions�� Hence� we can de�ne an

�Zienkiewicz has written a thorough and widely published reference ����

�



element�wise integral and represent the integrals as summations over all the individual ele�
ments k �we can also introduce the inner product form ��� �� � �

a��� v�k �
Z
k
�ar� � rv�dx �A���

l�v�k �
Z
k
�fv�dx �

Z
�N�k

gv ds �A��

a��� v� �
X
k

a��� v�k �A���

l�v� �
X
k

l�v�k �A���

Hence� the FEM may be stated more succinctly as�
Find � � V ��� such that�

�a� v� � l�v� �A���

for all v � V ���
The �rst step in an Element Residual Method is the estimation of the residual function

over the element� The residual of the approximate solution � � V ��� is the function r such
that on each element

a���w�k � l�w�k � �r� w�k �A���

for all admissible w functions�

Error estimation now involves selecting an error representation space VE �ensuring that
VE is not a subspace of V ����� and �nding the function e � VE such that

a�e�w� � �r� w� � boundary conditions �A�
�

for all w � VE
Before equation A�
 is broken down and analyzed� let�s examine it as a whole� What we

have is an error equation� where the error is expressed as the satisfying the original partial
di�erential formula� with the residual acting in the role of the source term from the original
equation�

To e�ect a local computation for �A�
� one can select VE to be the set of bubble functions�
Bubble functions are like the familiar shape functions� in that they are de�ned over an
element� however� they are de�ned to be zero at the element nodes� Thus� a bubble function
is completely localized to a particular element� Higher order bubble functions were originally
proposed for hierarchical �nite element methods ��� �

The bubble functions are chosen to be order higher than was used to solve the original
problem �V �� So if V was �rst order� p � 	 �piecewise linear interpolation�� then the bubble
functions would typically be second order� p � � �piecewise quadratic��

The use of bubble functions� howver� results in a singular system on each element� When
the element shares an edge with the boundary of the domain �� then the closure on � 	 k
is straight forward� Where the boundary condition of the original equation was a Dirichlet
condition� a Dirichlet condition can be imposed� using the known value of error� Where

��



the boundary condition was a Neumann condition� a Neumann error equation boundary
condition can be imposed�

For interelment boundaries� a number of approaches have been proposed and used� The
earliest proposals used a homogeneous Dirichlet boundary condition �Babu(ska and Rhein�
boldt �� �� These techniques were superseded by later work from Bank and Weiser �� and
Bank �� which proposed setting a Neumann boundary conditions� in which� at the element
boundary�


e


n
� �
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�
n
					
�
j

where the right�hand side represents the jump in the �rst derivative across the element
boundary� The weighting parameters � must be solved in an auxiliary calculation called
residual �ux equilibration �The reader is referenced to �� for a description of this process�

The local Neumann problem formulation of the Element Residual Method has further
been re�ned by incorporating a splitting approach� �rst proposed by Kelly ���� �	 � and
extended by Ainsworth and Oden �� � where� for a given element edge bordered by elements
l and r �left and right��
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The derivation of this form is quite involved� but essentially the Neumann condition is created
from a weighted average of the jumps in solution derivative� and the solution derivatives�
The residual �ux equilibration has to be modi�ed to take this into account�

In moving to Navier�Stokes equations �Oden� Weihan and Ainsworth ��� �� the only
change is the inclusion of the additional advection term in the residual calculation� The
local error equation remains a purely elliptic computation�

A�� Flux Projection Methods

This class of error estimators has its origin in a very humble observation from elasticity
problems� For the displacement approximation for linear elastic problems we generally as�
sume a continuous displacement �eld� resulting in discontinuous interelement stresses )�� An
obviously more accurate solution would have a continuous stress distribution ���

Out of this observation comes the idea of Flux Projection Methods� The name derives
from the process by which the smoother stress �eld is created by proposing a continu�
ous distribution of strain energy �ux �hence these estimators are also said to be based on
smoothening techniques�� Some commercial post�processors codes will smooth the stress �eld
by taking the average value of stress across the interface but this can be misleading� A better
approach would be to perform what is called variational recovery or projection ��� which
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involves solving another variational problem for the stress �eld where we use the same basis
functions for the stress �eld as for the the underlying displacement �eld� The problem which
now must be solved turns out to equivalent to solving the least squares �t for stress� or the
minimization of the functional Z



��� � )���	

Now an error estimate for this solution would be ��� � �� 

e� � �� � )�	

This is commonly referred to as the Zienkiewicz�Zhu error estimator� after their classic
paper �rst detailing the approach �� �

Consider a simple one�dimensional example� namely� a simple elliptic PDE as done by
Babu!ska and Rodriguez �� �

�
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For this problem � would represent a displacement �eld for a linear elastic problem� while
��
�x

would represent stress�
Imagine the forcing function f was speci�ed such that the FEM solution for � is as

shown in �gure A�	� Also plotted is ��

�x
of the approximate solution� and the appearance of

a projected stress distribution would look like� ��

�x

�
�

The error estimator is invariably reported in the energy norm� For the simple linear
problem presented� the energy norm of the error on a given �nite element is simply

�
Z xi��

xi




��� ��


x

��

dx

�
�
�
�

�

which can now be approximated as

�
Z xi��

xi
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x

�

�

�


x

��

dx

�
�
�
�

	

It can be seen that this concept applies to any purely elliptic phenomenon� For the heat
equation� one would perform a smoothening of the heat conduction �eld� for scalar di�usion�
the di�usive �ux would be smoothed� Hence the terminology �ux projection�

The nice thing about this estimator is its simplicity of implementation� This error esti�
mator has been used successfully by various researchers to drive adaptive schemes for linear
and nonlinear elasticity problems�

��
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Figure A�	� One Dimensional Flux Projection

The extension of this approach to �uid �ow problems is based on the parallel found
between plane strain equations and creeping� or Stokes �ow equations �ref� ��� �� The �uid
analogy for � for �uid transport would be �uid normal and shear stress� This fact can be
used to derive a valid error estimator for creeping �ows based on a projection of the �ow
stress components� This approach has been applied to the Navier�Stokes equations by H"etu
and Pelletier �	�� 	� for error estimation to guide their own grid adaption scheme� The
estimator is only theoretically valid for creeping �ow� therefore� the convergence behavior
and mathematical rigor are not translatable� Nonetheless� the estimator has the required
sensitivity to high stress$strain regions of �ow� and hence serves quite well for detecting
insu�cient re�nement in boundary layers and at stagnation points�

The projection estimator� as described� is unfortunately insensitive to pressure gradient
dominated �ows and turbulence e�ects� Hence �ow features like re�attachment points are
ignored� Recent attempts have been made by H"etu and Pelletier �	
 to correct this defect
by incorporating projection corrections of other discontinuous �elds� pressure� turbulent
kinetic energy �ux� heat �ux� etc� into a hybrid local error norm� Despite the fact that
there is no theoretical justi�cation for such an approach� this seems to yield an estimator
which is sensitive to most �ow phenomenon found in incompressible �ows� The lack of
theoretical underpinning is not entirely surprising� it was two years after Zienkiewicz and
Zhu proposed their projection error estimator based on physical intuition that it was proven
convergent and consistent with the underlying variational principle by Ainsworth� Zhu� Craig
and Zienkiewicz � �

At the current time� the extension from Stokes �ow to Navier�Stokes �ow is� strictly
speaking� unjusti�ed� Although the estimator sensitivity has been experimentally shown to
be qualitatively valid for driving grid adaption schemes� The error in the �ux estimate does

��



not have a simple local correlation to the distributed error in the dependent variables� It is
also unlikely that a least�square projection� despite being easy to calculate and numerically
well behaved� is the correct variational recovery that should be employed� The least�square
equivalence applies only to strictly elliptic partial di�erential problems� A more rigorous
derivation of the correct variational recovery for the discontinuous quantities in the discrete
Navier�Stokes equations would be worthwhile� but beyond the scope of this thesis�

A�� Extrapolation Methods

Extrapolation was �rst used by Richardson in 	�	�� The basic premise� as described by
Roache �� � assumes that the discrete solution �� on a grid with characteristic dimension h�
relates to the exact solution �� as

� � � � F�h � F�h
� � F�h

� � 	 	 	

for a �rst order discretization scheme� and

� � � � G�h
� � G�h

� � 	 	 	

for a second�order scheme�
The idea now is to derive values for these higher order error terms based on successive

solutions for � computed with di�erent values of h�
For instance� suppose we have two successive computations from a �rst�order accurate

scheme �� and ��� with corresponding discrete spacing h� and h�� These values relate as
follows

� � �� � F�h� � O�h�� � 	 	 	

� � �� � F�h� � O�h�� � 	 	 	

We can then solve for F� from these two equations

F� �
�� � ��
h� � h�

� O�h��

An estimate of the error on the �� solution� E�� would be

E� � �� ��

� F�h� � O�h��

�
�� � ��
h�
h�
� 	

� O�h�� �A���

Applying this correction to the original solution �� should result in the classic second
order accurate scheme from extrapolation� This is referred to as h� extrapolation�

The methodology of solving for progressively higher order error terms with multiple
levels of re�nement has been used successfully in many areas of numerical analysis� Ferziger

�
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Figure A��� Grid�Inside�Grid Arrangement

�	� 	� � deVahl �� �and Kessler� Peric and Scheurer ��� Caruso� Ferziger and Oliger �	� 
Bradley� Missaghi and Chin �
 apply this principal to �nite di�erence and �nite volume
computations of complex �uid �ow�

The method can become quite general in its applicability� Functionals of the solution
vector will also display this behavior� Therefore quantities such as lift coe�cient� total head
rise� and heat �ux� can undergo the same type of error estimate� The principle laid out here
is independent of the equations being solved for or the dimensionality of the the problem�

For a successful application of an extrapolation method� there is the requirement that
every solution can be fully characterised by the same single parameter� h� the grid spacing�
This single parameter family of approximate solutions is not a trivial matter to achieve in
practice� Nor are there any means currently published to determine if one has been successful
in creating such set of solutions� Furthermore� the discrete solutions need to be compared at
the same location in the domain� If one wants to avoid the added uncertainty of interpolating
from one grid to the next� the one needs to ensure that at least some of the grid points in
grid set are coincident� A common method to ensure grid point coincidence� and enhance
the chances of a single parameter solution set� is the grid�inside�grid arrangement� As shown
in �gure A���

In addition to grid nesting� there are other requirements for the successful application
of Richardson extrapolation� The solution� for all levels of re�nement the analyst intends
to employ� must be in the asymptotic range �meaning that any degree of re�nement�on any
of the grids utilized� brings the approximate solution proportionately closer to the exact
solution�� Simply put� this is the requirement that the higher order terms of equation A��
are negligible compared to the error�

An additional requirement is that the order of the numerical scheme needs to be known
a priori� This can be di�cult for modern CFD codes which utilize di�erent numerical
schemes depending on the local �ow properties and types of boundary conditions employed�

��



The researcher may resort to cruder numerical approximations to guarantee a successful
determination of the numerical order� as done by Kessler� Peric and Scheuerer ��� �

The re�nement process must be homogeneous and isotropic throughout the entire solution
domain� in all dimensions �including time for transient problems�� This is necessary because
an inherent assumption in using extrapolation for a local value of the solution is that the
error in the solution is distributed in a consistent manner from one grid to the next�

��



Appendix B

Analytic Solutions of �D Finite

Di�erence Equations

Consider the 	D steady homogeneous advection�di�usion equation�

��

��


x�
� V


�


x
� � V�� � �� �B�	�

� � �l at x � ��

� � �r at x � 		

Divide the domain � � x � 	 into N partitions� each having size h � 	��N � 	�� The
grid Peclet number will be de�ned as a � V h���

If this problem is discretized using a standard upwind based �nite volume method� then
we will generate a system of algebraic equations for the approximate solution ��

�� � a��i�� � �i�� � �	 � a��l� i � �� �B���

��	 � a��i�� � �� � a��i � �i�� � �� i � 				N � 	� �B��

��	 � a��i�� � �� � a��i � �r� i � N� �B���

where �i represents the solution in cell i �
We will try to �nd solutions of the form

�i � Api	 �B���

From equation �B�� we see that

�p� � �� � a�p� �	 � a� � ��

thus� p � 	 or p � �	 � a�	 �B���

Hence� solutions of �B�� are of the form

�i � A � B�	 � a�i	 �B���

�	



From equation �B��� we can determine�

�� � a��A� B�	 � a���A�B�	 � a�� � �	 � a��l�
A � B � �l�

�B�
�

and from equation �B��� we can determine

��	 � a��A � B�	 � a�N��� � �� � a��A� B�	 � a�N��� � �r�
A � B�	 � a�N � �r	

�B���

Combining �B�����B�
�� and �B����

�i � �l � ��r � �l�
�	 � a�i � 	

�	 � a�N � 	
	 �B�	��

Consider the 	D inhomogenous error equation

��

�E


x�
� V


E


x
� �R V�� � �� �B�		�

E � � at x � ��

E � � at x � 		

As with the original problem �B��� an upwind di�erence discretization will result in a
system of algebraic equations�

E� � � i � � �B�	��

��	 � a�Ei�� � �� � a�Ei � Ei�� � a� ��l��r����a�
i��

����a�N�� i � 				N � 	 �B�	�

EN � � i � N �B�	��

Assume Ei has solutions of the form�

Ei �
h
A � B�	 � a�i � C�i�

i
a�

��l � �r�

��	 � a�N � 	
	 �B�	��

��



Substitute �B�	�� into �B�	� and one is left with�

��	 � a�C�i� 	� � �� � a�C�i��C�i � 	� � �	 � a�i��

which can be written in a recursive form as

C�i� 	� � �� � a�C�i�� �	 � a�C�i� 	�� �	 � a�i��	 �B�	��

One valid solution of �B�	�� is

C�i� � �
i

a
�	 � a�i��	 �B�	��

From equation �B�	�� we conclude

A � B � �	 �B�	
�

From equation �B�	�� it is seen that

A�A�	 � a�N �
N

a
�	 � a�N�� � ��

A �
N�	 � a�N��

a�	� �	 � a�N �
	 �B�	��

From �B�	
� we know that B � �A� thus�

Ei �
a���r � �l�

��	 � �	 � a�N ��

h
�	 � �	 � a�N�i�	 � a�i�� � N�	 � a�N�i�� �N�	 � a�N��

i
	

�B����

�



Appendix C

Analytic Solutions of �D

Homogeneous Advection Di�usion

Equations

C�� Transformation to Helmholtz Equation

Start with the steady homogeneous constant coe�cient advection di�usion equation� given
as

��
� � �V � �r� � f	 �C�	�

First� since �V is a constant vector� we can select a new orthogonal coordinate system
with the x�direction parallel to �V � Thus

�V � �r� �� j�V j

�


x
	

Now� let V � j�V j and �C�	� can be rewritten as

��
� � V

�


x
� f	 �C���

We make the following substitution�

��x� y� � e
V x

�� w�x� y�	 �C��

This yields

e
V x

�� ���
w � �
V

��
��w� � f�

��
w � �
V

��
��w � f� �C���

which is the Helmholtz Equation� We de�ne the Helmholtz operator L as

��



L�w� � ��
w � �
V

��
��w	

The associated Green�s Function for the Helmholtz operator� i�e�� the solution of L�G��x� y�� �r� s��� �
���x� y�� �r� s�� �� being a unit delta function centred at the point �x�y���r�s��� is given as

G��x� y�� �r� s�� �
	

��
K��

V

��
jj�x� y�� �r� s�jj�� �C���

�see Stakgold �� for analysis of Helmholtz operators�� jja� bjj represent the Euclidean metric�
K� is the zero order modi�ed Bessel function of the second kind�

The point source solutions are generated using a delta function at the origin� In this
case� the Green�s function is the desired solution of the Helmholtz equation� Equation �C��
can then be used to calculate ��

C���� Half Plane Problems

From the properties of the delta function� we know that

w�x� y� �
Z


w�r� s����x� y�� �r� s��d��

where � is expressed in source coordinates �r� s�� We will de�ne w to be the solution of the
homogeneous Helmholtz equation� L�w� � �� Letting H represent the appropriate Green�s
function for this problem we can state

w �
Z


wL�H� �HL�w�d�	

Applying Green�s Theorem to this integral gives

w �
Z
�

H

w


n
� w


H


n
	dr �C���

For the half plane problems� the boundary� 
�� will be the r�axis� s � ��
For Dirichlet problems we can choose a Green�s Function such that

H�
 � Hs�� � �	

Then we can represent the solution for w as a known line integral� That is� given the dirichlet
boundary condition�

�y���x� � m�x��

m�x� � e
V x

�K p�x��

wy���x� � p�x�	

we can write

��



w�x� �
Z
s��

�p�r�

H


n
	dr �C���

For this problem� a good choice for H would be

H � G��x� y�� �r� s���G��x��y�� �r� s���

which has the property of Hy�� � ��
For the upper half plane we can see that


H


n
� �


H


s
	

If we let z � V���k� �
q

�x� r�� � �y � s�� then along the line integral where s � � we
have

�

H


s
�

	

��
�




s
K��

V

�K
jj�x� y�� �r� ��jj �





s
K��

V

�K
jj�x��y�� �r� ��jj��

�
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s
�K��z��

�
	

�





z
�K��z��


z


s

�
	

�
��K��z��

�V y

�kz
�

where K� is a �rst order modi�ed Bessel function of the second kind�
Thus� putting �C��� �C���� and �C�
� together the form for the solution can be seen to

be

��x� y� � e
V x

�k
V y

�k

Z
�

��

K��z�m�r�e
V r

�k

z
dr	 �C�
�

For calculation purposes� each point of the grid requires a values of � associated with
it� In this case� the integral above in numerically approximated using an auto�re�ning
quadrature integration routine until the desired accuracy is achieved� Keeping in mind that
for a compact boundary condition �ie� m�x� �� � on only a �nite interval� the integration
need only be performed in the region where m�x� is non�zero�

The modi�cation to the procedure above for a Neumann problem is not very di�cult�
Begin again at �C���� but this time we require a Green�s function such that at s � �


H


n
� �	

A valid candidate would be

H � G��x� y�� �r� s�� � G��x��y�� �r� s��	

which leaves

��



w�x� y� �
Z
s��

H

w


n
dr	 �C���

If we specify a Neumann boundary condition along the x�axis as


�


y
� m�x��


w


n
� �m�x��

we can derive the solution to the Neumann half plane problem�

��x� y� � e
V x

�k
	

�

Z
�

��

�m�r�K��z�dr	 �C�	��
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Appendix D

Numerical Solutions of Navier�Stokes

Equations

In this appendix� the methodology for solving the Navier�Stokes for this thesis is presented�
This work only deals with our particular approach and is not intended to characterise this
vast topic� A similar description of this method can be found in Broberg �� � with only a few
exceptions�

A reduced nomenclature table is given next in xD���� for more convenient reference�

D���� Nomenclature

A coe�cient matrix
i control volume index
k number of neighboring nodes
L distance along streamline from integration point to element boundary
N number of control volumes in mesh
�n � �nx� ny� outward normal unit vector
P �uid pressure of exact solution
p �uid pressure of approximate solution
prev associated with the solution from the previous iteration
S surface of arbitrary volume
t time
s� t local element coordinates
U X�component of �uid velocity at nodal point
V Y�component of �uid velocity at nodal point
�V � �u� v� �uid velocity vector
V arbitrary control volume
x� y Cartesian coordinates

� relaxation parameter
� �uid dynamic viscosity
� �uid density
�� � shear and normal �uid stress

�




Superscripts

p associated with the conservation of mass equation
P contribution from pressure to algebraic equations
u associated with the x�momentum equation
U contribution from x�velocity to algebraic equations
v associated with the y�momentum equation
V contribution from y�velocity to algebraic equations
t contribution from transient terms to algebraic equations
s contribution from additional sources to algebraic equations

Subscripts

	� �� � � associated with local nodes numbered 	 through � respectively
interp linearly interpolated integration point velocity
ip integration point
n normal to the surface
SCV subcontrol volume
spec speci�ed as part of the boundary condition de�nition
t tangential to the surface
upstream advected velocity from upwinding scheme
x� y in the x and y coordinate directions respectively

D�� Mathematical Model

The starting point for a numerical simulation of �uid �ow is the governing equations em�
ployed� Our work utilizes the laminar form of the two�dimensional Navier�Stokes equations�
The �ow is considered to be incompressible� Body forces were neglected� This leaves three
unknowns to solve for in two space dimensions � the two orthogonal components of velocity�
and pressure�

D���� Equations of Motion

The laminar two�dimensional incompressible Navier�Stokes equations are a coupled partial
di�erential equation system representing the conservation of mass and linear momentum�
These equations are presented here in their control volume formulation� V represents an
arbitrary control volume which is contained by the surface S�

Conservation of Mass Z
S
��V � �ndS � �	 �D�	�

The term ��V represents the mass �ux vector� and ��V ��ndS then is the mass �ux crossing
a particular di�erential volume surface dS � Thus� the Conservation of Mass equation� �D�	��
states that the net mass leaving a volume bounded by S equals zero�

��



Conservation of Linear Momentum

The conservation of linear momentum in the x and y coordinate directions can be stated as

Z
V





t
��u�dx �

Z
S
�u�V � �ndS �

Z
S
�ru � �ndS �

Z
S
pnxdS �D���

and Z
V





t
��v�dx�

Z
S
�v�V � �ndS �

Z
S
�rv � �ndS �

Z
S
pnydS	 �D��

For both equations� the �rst term describes the accumulation of momentum while the
second term represent the advection of momentum across the volume boundaries� The �rst
term on the right describes the viscous force acting on the volume boundaries �both normal
and shear forces�� The last term is the contribution from the pressure �eld�

D���� Boundary Conditions

There were three types of boundary conditions used in this study�

	� Solid walls

�� In�ow regions

� Out�ow regions

Each is described in its own section below�

Solid Walls

At a solid wall� the no slip condition is imposed� The velocity of the �uid relative to the
boundary is zero� In addition� the normal viscous stress at the wall is assumed to be zero�
This latter constraint is valid for most bounded �ows� but may introduce inaccuracies near
stagnation points� It is invoked to simplify the numerical implementation�

	� �V � �

�� � � �

In�ow Regions

In�ow boundary conditions were of the velocity speci�ed type� As with the solid wall condi�
tion� the normal viscous stress is assumed to be zero� Thus�

	� �V � �Vspec

�� � � �


�



Out�ow Regions

A pressure speci�ed outlet condition is used� Although� for incompressible �ows� the pressure
level is arbitrary� it still requires a �xed reference within the computational domain� this is
done at the outlet�

Also� the viscous terms at the outlet were ignored� Again� this is for numerical expediency�
but it is also true that if there were strong viscous contributions to the momentum equation
at the out�ow region� then almost all numerical implementations out�ow conditions fail� This
being stated� setting the viscous terms to zero has only a minor and acceptable accuracy
penalty�

The out�ow boundary condition can then be stated as�

	� p � pspec

�� � � �

� � � �

Here pspec is the speci�ed pressure pro�le at the out�ow boundary condition

D�� Discretization

For this research� the equations of motion were solved with a element�based �nite volume
method� This entails dividing the domain into a �nite number of elements� out of which
control volumes were generated� The conservation equations are applied to the control
volumes� The integral relations presented in D�	�	� and the boundary conditions of D�	��
were approximated to produce an algebraic equation set�

The solutions were generated from their primitive variable representations� �u� v� p�� and
solved using a co�located strategy �all variables stored at the nodal locations�� in contrast
to the commonly used staggered grid structure� The co�located formulation requires special
consideration �as discussed in xD���� to prevent oscillatory solutions�

As might have been noticed� the time dependent form of the Navier�Stokes equations has
been presented� despite the stated interest in steady solutions� This is because the steady�
state solution can be arrived at by advancing an initial solution pro�le through time until
it converges on the steady�state solution� The method here is referred to as pseudo�time�

stepping� not a full transient calculation� since each timestep is not iterated to achieve a
solution of the non�linear equation set� but only the current linear approximation�

D���� The Finite Element Grid

The meshes used are made up of regular brick elements with control volumes generated as
shown in Schneider and Raw � � Extensions to other types of meshes are possible� but not
utilized in this thesis�

The quadrilateral elements have a node at each of the four corners� To generate control
volumes� straight lines were created bisecting the opposite sides of the quadrilateral �see
�gure D�	��
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Figure D��� One Element From a Mesh
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Figure D�� The Quadrilateral Finite Element

Within each element� a local coordinate system is employed and denoted If we turn our
attention from a mesh of elements� to just one element �see �gure D���� we can see that each
element participates in four control volumes�

The element is spanned by s and t coordinates� which range from �	 to 	 �see �gure D���
The boundaries between control volumes are on the lines s � � and t � �� The bilinear
shape functions for the element� expressed in local coordinates� is given by�

N��s� t� �
	

�
�	� s��	� t� �D���

N��s� t� �
	

�
�	 � s��	 � t� �D���

N��s� t� �
	

�
�	 � s��	 � t� �D���

N�s� t� �
	

�
�	� s��	 � t� �D���

The shape functions are used to describe the variation of the �ow properties within the
element based on the values at the nodes�

During the assembly process� each element is visited in turn� The contributions to each
sub�control volumes �SCV� conservation equation is calculated based on the �ow properties
at the integration points �ip*� �except where noted in the sections to follow�� These con�
tributions are then assembled into the global system of algebraic equations to generate a
complete conservative control volume� For example� For the sub�control volume highlighted
in �gure D�� the �ux through the faces ip� and ip	 need to be considered� These coe�cients
then contribute to the complete algebraic equation set for the control volume highlighted in
�gure D�	






D���� Discrete Momentum Equations

This section details the discrete form of the u�momentum equation �the v�momentum equa�
tion is similar��

Consider one sub�control volume of an element� SCV	 from �gure D�� which is bounded
by the subsurfaces 	 and �� First consider the transient term� prev refers to the use of the
previous iteration value for this term� The time derivative will be approximated as a lumped
mass� given by

Z
SCV �





t
��u�dx �

�VSCV �
+t

�U� � U��prev��� �D�
�

where we denote the nodal value of the u component of the velocity with the uppercase U �
+t is the user de�ned time�step� The subscript 	 indicates which node we are referring to
locally�

Next� consider the viscous term� The net force due to viscous stress acting on subsurfaces
	 and � can be approximated by

Z
SS�

�ru � �ndS �
�+y

�


u


x�
�D���

andZ
SS

�ru � �ndS �
�+x

�


u


y 
� �D�	��

where the subscripts indicate that the derivatives are evaluated at the integration points�
The pressure term is simply approximated by

Z
SS�

pnxdS � p�+y�� �D�		�

andZ
SS

pnxdS � �	 �D�	��

The second term is zero since nx � � on SS� �
This leaves the convective term�

R
S �u

�V � �ndS � If we simply linearly interpolate a value
for velocity at the integration points based the nodal values� then the coupling between
the momentum equations of adjacent control volumes becomes very weak �or non�existent
for one�dimensional �ows� as discussed by Patankar ��
 � This can result in arbitrary non�
physical solution oscillations�

To combat this problem� we introduce two additional concepts� First� there is a need to
distinguish between the advecting velocity at the integration point� �V � �n� and the advected

velocity� u� The advecting velocity is used to determine the mass �ux passing through the
subsurface and is discussed in detail in xD����

The advecting velocity is calculated based on a pressure�velocity coupling scheme outlined
in xD���� The advected velocity is determined by an upwind based approach� In this study
two forms of upwinding schemes are implemented� simple Upwind Di�erencing �UDS�� and
Linear Pro�le Skew Upwind Di�erencing with Physical Advection Correction �LPS�PAC��
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Figure D��� Linear Pro�le Skew Upwinding with Advection Correction

Upwind Di�erencing

Referring to �gure D��� a value for the velocity vector at ip� is interpolated from the
adjacent nodes� referred to as Vinterp� Depending on the sign of the normal vector� either U�

or U� is used for the advected velocity� In the example �gure� U� would be used�
Linear Prole Skew Scheme with Physical Advection Correction

As with the upwind di�erencing scheme� an initial interpolation of the integration point
velocity is made� This time however� we now track a straight line �a streamline� back to the
element boundary �see �gure D�� � A value for uupstream is calculated using the element shape
function �The Linear Pro�le�� We now express the integration point convected velocity as

)uip� � uupstream � L

u


s
� �D�	�

where L is the distance from the integration point and the element boundary along the


�



�ctitious streamline� and �u

�s
represents how u changes across this distance� This term is the

Physical Advection Correction �PAC� term and is what makes the scheme higher accuracy�
Di�erent forms of the advection correction term can result in di�erent numerical techniques�
In this thesis� the representation employed by Raithby ��� is employed� but modi�ed by the
inclusion of the pressure gradient as in Schneider and Raw � and the e�ects of viscosity�
We now have


u


s
�

	

�V



�

�u


x�
�

p


x
� ,Su

�
� �D�	��

where ,Su would be any additional source terms in the x�momentum equation� �D�	�� is
what is referred to as a PAC term� It needs to be evaluated at the integration point �where
we need �u

�s
�� In the numerical code� this is accomplished by calculating the PAC term at

every node using the previous iteration values of U� V� P � then interpolating the nodal values
of the PAC term to the integration point� using the harmonic mean� The PAC terms� since
they are lagged �calculated based on the previous iteration solution instead of the current
solution�� do not end up in the active implicit matrix� but show up in the right hand side
vector Bus� as shown later�

In addition� This lagging e�ect can result in solution oscillations from one iteration to the
next� hence� the value used for the nodal PAC term evaluation is relaxed using the previous
nodal PAC terms as such�

PACused � �PACcurrent � �	 � ��PACprevious �D�	��

Thus� all components of equation �A��� have an algebraic representation� The algebraic
equations for the subcontrol volumes can then be summed over the entire control volume i
to form a complete algebraic conservation equation� �D�	��� The �rst superscript refers to
what momentum equation is being assembled� The t superscript indicate a term from the
transient portion of the equation� as the s indicates source terms� The U� V� P superscripts
indicate what variable these assembled coe�cients modify� The j index cycle from 	 to k�
where k is the number of neighboring nodes that participate in the ith control volume�

Aut
i Ui �

kX
j��

AuU
ij Uj �

kX
j��

AuV
ij Vj �

kX
j��

AuP
ij Pj � But

i � Bus
i �D�	��

Avt
i Vi �

kX
j��

AvU
ij Uj �

kX
j��

AvV
ij Vj �

kX
j��

AvP
ij Pj � Bvt

i � Bvs
i �D�	��

D���� Discrete Mass Equation

The mass �ow through SS	 and SS� can be approximated by

Z
SS�

��V � �ndS � ,m� �D�	
�

andZ
SS

��V � �ndS � ,m� �D�	��


�



where the mass �ows� ,mi� are determined from the integration point advecting velocity� )u�

,m� � ��)u+y����	 �D����

As mentioned earlier� directly interpolating a value for )u can lead to unwanted equation
decoupling for a co�located variable method � It is desired to couple the mass conservation
equation to pressure �eld� The technique of Rhie and Chow �� is a pressure$velocity
coupling method that is stable for a wide variety of �uid �ow problems� It is summarized
here�

An o superscript means that the term is calculated from the previous iteration� The
overbar indicates a harmonic average of the adjacent nodal values for that variable� As
before� uppercase U indicates the nodal value� For SS	� the u�component of advecting
velocity is expressed as

)uip� �
	

�
�U� � U�� � fuip�

�


p


x

�
ip�

�



-
p


x

�o

ip�

�
�� �fu�

+t
�)uoip� � -)u

o

ip��� �D��	�

where

fuip� � duip���	 � �duip��+t� �D����

and
-)u
o

� �
	

�
�Uo

� � Uo
� �	 �D���

The coe�cient du� is created by an arithmetic average of the adjacent nodal values Du
i � where

Du
i � +x+y�

�
��

X
j��

�AuU
ij � AuV

ij �o

�
A �D����

and
P

j���A
uU
ij �AuV

ij � represents the sum of the di�usive and convective terms in the algebraic
equation for the x�momentum conservation equation� This generates a scaling term which
ensures a stable matrix solution�

Equation D��	 does indeed look elaborate� In simpler terms� it represents an interpolated
value for )u� modi�ed by a second�order pressure and temporal correction� The pressure terms
ensure that the pressure solution does not decouple between adjacent control volumes� The
temporal terms ensure that the �nal solution converged to is independent of the timestep
+t used for the solution�

Once the advecting velocity is calculated� then all the required contributions to the
discrete mass equation can be assembled� Equation �A�	� now becomes the algebraic form

kX
j��

ApU
ij Uj �

kX
j��

ApV
ij Vj �

kX
j��

ApP
ij Pj � Bps

i 	 �D����
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Figure D��� Element on Boundary

D���� Boundary Conditions

Boundary conditions represent the �uid equations integrated along the boundary subsurfaces�
A representative boundary element is shown in �gure D��� The boundary conditions are
formulated in a conservative equation form�

Solid Walls

For a solid wall� the conservation of mass equation requires that no mass travel through the
wall� For the boundary element shown in �gure D�� this means

,mbp� � ,mbp� � �	 �D����

Hence� no contribution to the mass conversation equation need be added�
Due to the zero mass �ow condition� there is also no need to add a convective transport

term for the momentum equations�
As was stated in xD�	��� the normal viscous stress terms are ignored� This leaves an

approximation for the tangential shear stress on boundary surface BS	 as

Z
BS�

�ru � �ndS �
�+x

�


u


y

					
bp�

� �D����

where the derivative is approximated using the element shape functions�







The pressure force along the boundary surface is approximated asZ
BS�

p�j � �ndS � �pbp�+x��� �D��
�

where pbp� is arrived at via the element shape functions�

In�ow Boundary

For a velocity speci�ed inlet condition the values of u and v will be speci�ed at the integration
points� Thus� with reference to �gure D��� we have

,mbp� � �vbp��spec+x�� �D����

and

,mbp� � �vbp��spec+x��	 �D���

These terms do not implicitly depend on the nodal values during a given linear iteration�
and hence can be considered as mass source terms for these boundary control volumes�

For the convection of momentum we have�

Z
BS�

�u�V � �ndS � ,mbp�ubp��spec �D�	�

andZ
BS�

�v�V � �ndS � ,mbp�vbp��spec	 �D���

The tangential viscous and pressure forces would be calculated as in equations D��� and
D��
� respectively�

Out�ow Boundary

Since specifying the velocity at the out�ow boundary can sometimes be numerically unstable
�from discrepancies in the approximate mass into and out of the computational domain��
the �uid velocity at the boundary points is expressed implicitly in terms of the nodal values�
Hence the �ow out of surfaces BS	 and BS� is expressed as

,mbp� � �vbp�+x�� �D��

and

,mbp� � �vbp�+x��� �D���

where vbp� is interpolated via the element shape functions�
The convected component for the momentum equations is similar� For BS	 we have

Z
BS�

�u�V � �ndS � ,mbp�ubp� �D���

andZ
BS�

�v�V � �ndS � ,mbp�vbp�	 �D���
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As explained in xD�	��� the normal and tangential viscous stress at the outlet is ignored�
The pressure force is based on the speci�ed pressure level� ThusZ

BS�
p�j � �ndS � �pbp��spec+x��	 �D���

D�� Solution of Coupled Equation Set

Generating a steady�state solution of the equations of motion is a process of advancing the
solution through time� making linear approximations of non�linear terms at each timestep�
until a steady solution is achieved�

At each timestep� the previous timestep solution will not satisfy the algebraic equation
set �until the steady solution is achieve�� This results in an equation imbalance� the outer

loop iterative residual� given as �recalling equations D�	�� D�	�� and� D�����

Ru
i � Aut

i Ui �
kX

j��

AuU
ij Uj �

kX
j��

AuV
ij Vj �

kX
j��

AuP
ij Pj �But

i �Bus
i �D�
�

Rv
i � Avt

i Vi �
kX

j��

AvU
ij Uj �

kX
j��

AvV
ij Vj �

kX
j��

AvP
ij Pj �Bvt

i �Bvs
i �D���

Rp
i �

kX
j��

ApU
ij Uj �

kX
j��

ApV
ij Vj �

kX
j��

ApP
ij Pj �Bps

i �D����

It is this residual that is used to drive the non�linear equation set to convergence�
To advance a solution from timestep t to t � +t the following algorithm is used�

	� Calculate subsurface advecting velocities using previous timestep solution� Calculate
subsurface mass �ux�

�� If required� calculate PAC terms using previous timestep solution�

� Assemble the coe�cients �AuU � AuV 				� ApP� using the mass �ows from step 	 for the
convective terms�

�� Substitute previous solution into D�
�D��� D���� Calculate outer loop iterative resid�
ual�

�� Assemble coe�cient matrix into sparse YSMP format and pass to WATSIT� with
residual�

�� The newly solved U� V� P �eld become the previous timestep values for the next outer
loop�

�A proprietary Conjugate Gradient iterative solver package licensed by the Scienti�c Computation Group
at the University of Waterloo� See ref ����

��


