
The DBC� Processing Scienti�c Data
Over the Internet�

Chungmin Chen Kenneth Salem Miron Livny
Dept� of Computer Science Dept� of Computer Science Computer Sciences Dept�

University of Maryland University of Waterloo University of Wisconsin�Madison

College Park� MD ����� Waterloo� Ontario N�L �G	 Madison� WI
����

USA Canada USA

Email� min
cs�umd�edu Email� kmsalem
uwaterloo�ca Email�miron
cs�wisc�edu

April� 	��

Abstract

We present the Distributed Batch Controller �DBC�� a system built to support batch processing of large

scienti�c datasets� The DBC implements a federation of autonomous workstation pools� which may be

widely�distributed� Individual batch jobs are executed using idle workstations in these pools� Input data are

staged to the pool before processing begins� We describe the architecture and implementation of the DBC�

and present the results of experiments in which it is used to perform image compression�

� Introduction

In this paper we present the DBC �Distributed Batch Controller�� a system that processes data using

widely�distributed computational resources� The DBC was built as a tool for enriching scienti�c data

stored in two mass storage systems at NASA�s Goddard Space Flight Center �GSFC�� Enriching data means

processing it to make it more useful� For example� satellite images may be classi�ed according to some

domain�speci�c criteria� These classi�cations can then be stored as meta�data to support content�based

retrieval of the original images� Another possibility is to produce compressed� approximate versions of the

images� These images could be retrieved very quickly because of their small size� and would be suitable for

applications such as preliminary visual inspection of the data� In general� data enrichment tasks such as these

are computationally intensive� Enrichment of large volumes of data may require enormous computational

resources�

The DBC can be viewed as a global scienti�c data processing system that can utilizes any resource that

is willing to participate in a data enrichment e�ort� It draws its computing cycles from a collection of

workstation clusters which may be distributed across the Internet� Each of these clusters uses the Condor

Resource Management system to harness available cycles from workstations within the cluster� The DBC

moves data from a mass storage system to local disk caches at each Condor pool� controls the local execution

of data enrichment tasks� and moves the resulting data products to another storage system� Because a data

�CS������� Dept� of Computer Science� University of Waterloo� Waterloo� Ontario� Canada

	

��
��
��
��

��
��
��
��

��
��
��
��

source archive

result archive

input files

output files

coordinator

agent
buffer

workstation
pool

agent
buffer

workstation
pool

site 1

site N

user

Figure 	� Architecture of the DBC

enrichment e�ort may be very time consuming� the DBC is designed to operate continuously for extended

periods of time with minimal manual interference�

We believe that large�scale data processing e�orts like the one described above will become more common

in the near future� As any WorldWideWeb surfer knows� very large repositories of valuable scienti�c data are

scattered throughout the Internet and are gradually coming on�line� These repositories were established and

are maintained by national agencies and universities in order to disseminate experimental data throughout

the scienti�c community� Many repositories store their data in the form of �les and provide data access

through �le�oriented retrieval protocols like FTP�

The users of these repositories will require mechanisms for pooling their computational resources to

process the wealth of available data� Although the DBC was designed with a speci�c data�processing goal

in mind� it can serve the needs of some of these users� The DBC has no built�in knowledge of the archived

data� the enrichment tasks� or the resulting data products� Special attention has been devoted in the design

of DBC to modularity and to well�de�ned interfaces and protocols� It is our intention to package the generic

parts of DBC as toolkit for constructing global data processing systems suited to speci�c applications�

� Data Processing System Architecture

Figure 	 illustrates an architecture for a global batch data processing system� The purpose of the system is

to execute a batch of data processing jobs� e�g�� to compress a set of images� The architecture de�nes the

components of the system and the environment in which the system is expected to run� and it speci�es how

the system and the environment interact�

The system is organized as a federation of resource pools� Each pool is an autonomous� entity with which

the data processing system interacts� The pools provide the computational resources needed to execute data

processing jobs� In our implementation of the architecture� discussed in Section ��
� each pool is managed

using the Condor Resource Manager� However� in general� a pool may be almost any collection of resources

that is capable of processing jobs�

The data processing system itself consists of a set of agents� one per resource pool� and a coordinator�

�

The agents interact with their pools to request resources for batch job execution� Each agent has access to

a disk bu�er for staging data� The centralized coordinator assigns work to the agents� and tracks the status

of the entire batch computation� The coordinator also serves as a centralized site for user administration of

a batch computation� Through the coordinator� the user can query the status of the computation and can

modify it� e�g�� by adding new jobs to the batch�

Data is stored in archives� Input �les for the batch jobs reside initially in a source archive� Output �les

are collected at the result archive� Agents interact with these archives to arrange for data to be staged from

the input archive to the agent�s local bu�er� and from the bu�er to the result archive�

Since the pools are autonomous� the agents have no direct control of the computational resources at any

pool� The system must presume that the number of resources allocated to its batch jobs by the pool will

vary with time� In fact� it is possible for a pool to terminate its interaction with the system at any time� or

for new pools to join the system at any time� Within this environment� the system must harness as many

resources as possible for use in completing the batch�

Although the lack of dedicated computational resources complicates the job of the data processing system�

the federated architecture has several important advantages� First� there is no need to modify a pool�s

resource manager in order to include that pool in a global system� In fact� to each pool�s resource manager�

an agent looks like any other client� There is also no need for a pool to surrender control of any of its resources

in order to participate in the system� This makes the architecture particularly attractive for coordinating

pools that reside in di�erent administrative domains�

��� System Responsibilities

Within the system architecture� the pools provide the computational resources needed to perform data

processing� However� reliable and e�cient processing of large batch processing jobs requires that a number

of other issues be addressed by the global data processing system itself� They include the following�

Data Staging� The resource pools used to process data may be spread over a wide area� The data to be

processed is located in a repository which may not be directly accessible to programs running in the

pools� Similarly� output data must be collected in a repository and not left scattered at the pools� The

data processing system addresses this problem by staging data between the repositories and bu�ers

located at each of the pools�

High�Level Scheduling� Each pool allocates and schedules its own resources� However� the data process�

ing system must determine which pool will be used to process each of the jobs in a batch� a procedure

we call high�level scheduling� The goal of the high�level scheduler is to maximize the throughput of

batch jobs� To accomplish this� it must keep the resources available from each of the pools as busy as

possible�

Reliability� A batch may consist of many jobs� and may require hours� days� or even weeks to complete�

Failures of various kinds are likely to occur with in this time frame� The data processing system must

detect and recover from these failures so that each job in the batch will eventually be executed to

completion by some pool�

� The Distributed Batch Controller

The DBC is an implementation of the global data processing architecture described in Section �� The

DBC supports a simple batch model that is well�suited to tasks like data enrichment� The resource pools

with which the DBC interacts are collections of workstations managed by the Condor resource management

system� which is described at the end of this section�

�

Worker Process

Job Monitor

Process

Job Monitor

Process

Job Monitor

Process

Master Process

��
��
��
��
��
��
��
��

�
�
�
�

TCP/IP

Condor Pool

FTP

FTP

agent

coordinator

source archive

result archive

Figure �� DBC Prototype Process Architecture

A DBC batch consists of one or more jobs� where a job is the execution of a single program� Each job may

require one or more input �les and may produce one or more input �les� All jobs in a batch are executions

of the same program� although each job may use di�erent input �les and produce di�erent outputs� All of

jobs in a batch are assumed to be independent of one another� For example� a job�s input �le may not be

produced by another job in the same batch� Although this model is somewhat restrictive� it is well�suited to

many data enrichment problems� For example� consider a large set of images that is to be classi�ed before

being stored in a database� Commonly� classi�cation is performed by executing a classi�cation program

independently on each of the images�

Figure � shows the process architecture of the DBC prototype� The DBC consists of three types of

processes� a master� workers� and job monitors� The master process implements the coordinator shown in

Figure 	� and the the worker and job monitor processes together implement the agents�

��� The Master Process

The master performs high�level scheduling and keeps track of the execution status of each job in the batch�

In part because of the batch model� high�level scheduling is very simple in the DBC� Each worker determines

its willingness to execute additional batch jobs based on the availability of resources at its local pool� When

resources are available� the worker requests work from the master� Since all jobs are independent� the master

is free to assign any jobs that can be accommodated at the worker�s site�

The master accepts three common types of messages from the workers�

Job requests� Each job request is accompanied by a parameter indicating the level of resource availability

at the worker�s pool� �In the current implementation� the only resource indicated is space in the

worker�s disk bu�er�� In response to the request� the master selects one or more unassigned jobs whose

requirements can be accommodated by the worker�s available resources and assigns them to the worker�

The names of the input and output �les for the selected jobs are returned to the worker�

Job completions� This request includes a parameter indicating whether the job was completed normally

or abnormally� Abnormal completion means that despite repeated attempts the worker has been was

unable to process the job� In our prototype implementation� the master takes no action when a worker

is unable to process a job� �A message indicating the problem is printed in a log �le�� However� other

reactions would be possible in a more aggressive implementation� including retrying the job at another

pool�

�

Heartbeats� Heartbeat messages are sent periodically by each worker� They are used to indicate that the

worker is up and actively working on jobs� Absence of heartbeats from a worker will cause the master

to reassign the worker�s jobs to others�

��� Worker Processes

Workers monitor the level of resource availability at their sites and request work from the master� In the

prototype� the only resource monitored by a worker is the amount of local bu�er space available for input

and output �les� For each job that is assigned to it� the worker spawns a job monitor process to control the

job�s execution�

Near the end of a batch job� workers at some pools may complete their assigned tasks before the workers

at others� Workers have a standby mode which allows them to remain available in case other workers have

trouble completing their assigned jobs� When a worker determines there are no unassigned jobs remaining� it

enters its standby mode� There it continues to generate a heartbeat� but does not request new jobs� Should

an assigned job fail to complete at some other pool� the master can reassign it to the idle worker�

��� Job Monitor Process

Processing a job involves a sequence of three steps�

	� transferring a data �le from the data archive to the disk bu�er at the worker�s site�

�� submitting a job to Condor for processing�

�� transferring an output �le to the result archive�

The job monitor initiates these steps and monitors their progress�

Transfer of input and output �les is performed using the File Transfer Protocol �FTP� ���� Both the

source and result archives are assumed to be FTP servers� Interaction between the job monitors and the

archives is complicated by the fact that there is no standard programming interface for FTP� The monitor

transfers �les by spawning executions of the UNIX FTP client program� For similar reasons� the job monitor

submits is job request to Condor by spawning an instance of the condor submit program�

An API for Condor� called CARMI ���� has recently become available� We intend to incorporate it into

subsequent versions of the DBC� Unfortunately� we not aware of an existing API for FTP� To implement

direct control of FTP �le transfers� we can provide an implementation of the FTP protocol within the job

monitor itself� Alternatively� we could make use of a wide�area �le system such as Jade��� or Prospero����

These systems would allow the monitor to transfer �les to and from remote FTP servers using the UNIX

�le system program interface� We are studying these alternatives for the next version of the DBC�

��� Failure Detection and Recovery

The DBC is capable of detecting and recovering from several types of failures� Failures of the DBC master

and worker processes are detected through the heartbeat mechanism� The DBC master maintains the status

of the batch execution in a �le so that it can restored after a failure� A failure of a job monitor is detected by

the worker that created it� Condor itself provides a guarantee of reliable execution of jobs submitted to it�

In addition� the DBC job monitor implements an optional timeout mechanism to detect hung jobs� Finally�

�le transfer failures are detected by monitoring the output of the FTP client program�

These mechanisms are intended to ensure that each job in a batch will appear to have executed exactly

once� despite failures� If an worker fails while jobs are running it its pool� or if a pool refuses or is unable to

process jobs that have been assigned to it� high�level scheduler in the coordinator will assign them to another

pool� The DBC ensures that multiple executions of the same job appear to be serialized� and that if a job is

executed more than once� later executions overwrite the results of earlier executions� Thus� although a job

may actually execute more than once� it will appear to have run once only�

The DBC is designed to allow workstation pools to join or leave the system at any time� Pools may leave

the system because of failures� or simply because their resources are no longer available for DBC jobs� Since

the DBC cannot assume that a lost pool will ever rejoin the system� it will simply reassign that pool�s jobs

to another pool� For the same reason� all critical state information is maintained by the DBC master� and

not the workers�

��� Condor

The DBC assumes that each pool�s resources are managed by Condor �
� 	�� Condor is a resource management

system that runs on pools of UNIX workstations� Condor harnesses the computational power of unused

workstations in the pool� Jobs submitted by Condor users are sent automatically to idle workstations in the

pool for processing� Should an idle workstation become busy� Condor jobs are moved from it to other idle

machines� Condor users are noti�ed asynchronously when jobs are completed�

None of the workstations in a Condor pool are dedicated to the execution of Condor jobs� Instead�

Condor executes jobs wherever idle resources are available in the pool� Clearly� the computational power

available for Condor jobs will depend on the utilization of the machines in the pool� This can be expected

to vary substantially over time�

Since the DBC uses Condor� it e�ectively draws its computational power from idle workstations in many

pools� possibly distributed over a wide area� Jobs submitted to Condor by a DBC agent must compete with

other Condor jobs for the available resources in a pool� A pool�s resources are allocated to jobs �including

DBC jobs� according to policies implemented by Condor� These policies may very from pool to pool�

according to the needs of the pools� owners�

� Image Compression Experiments

We have used the DBC prototype as an engine for compressing a database of Landsat Thematic Mapper

�TM� images� Compression was accomplished by a technique known as vector quantization �VQ�� Vec�

tor quantization produces a very compact representation of an image which can be decompressed quickly�

Compression is lossy� The decompressed images are useful for applications� such as database browsing or

preliminary data analysis� which can tolerate approximate versions of the original images�

A program implementing VQ was provided to us by M� Manohar� from NASA�s Goddard Space Flight

Center �GSFC�� This was the batch program used by the DBC� The program requires two input �les� one

holding the uncompressed TM image� and the other a small codebook used during compression� The same

codebook �le is used to compress all of the images� The program produces a single output �le� which

holds the compressed version of the input image� In our tests� we used a codebook with 	�� entries and a

four�by�four pixel vector size� which results in a 	��to�	 compression of the images�

For the purposes of our experiment� we selected from the database approximately one hundred images

to be compressed� Each image is a ���� by ���� array of pixels� with one byte used to represent each pixel�

Thus� each image occupies slightly less than 	� megabytes� The single codebook �le is only about � kilobytes

in size�

Although we selected only a fraction of the available images� compressing even those requires a non�trivial

amount of computation� Compression of a single 	� megabyte input image using the VQ program requires

approximately �� minutes on a Sparc	� workstation� Sequential processing of the one hundred selected TM

images would occupy such a workstation for more than two days� assuming �optimistically� that there are

no delays for data input and output�

�

worker

worker

master

CESDIS
workstation

pool

Wisconsin

workstation

pool

result
archive

CESDIS

NASA/GSFC

source
archive

Univ. of Wisconsin

data control

Figure �� DBC Experimental Environment

The DBC system we used for this experiment is illustrated in Figure �� It consists of two workstation

pools� one large and one small� The small pool is located at the Center of Excellence in Space Data

and Information Systems �CESDIS�� located at GSFC� near Washington� DC� The CESDIS pool includes

nine Sparc	� workstations and a 	�� megabyte disk bu�er for the DBC� The other pool is located at the

University of Wisconsin� in Madison� Wisconsin� The Wisconsin pool includes approximately one hundred

Sun workstations of various types and a DBC disk bu�er of 	�� MB�

The DBC source archive� which holds the image database� is a mass storage system located at GSFC��

Although both the mass storage system and the CESDIS workstation pool are located at GSFC� applications

running at CESDIS do not have direct access to the mass storage system�s �les� The DBC result archive is

located at CESDIS�

We initiated the image compression experiment at ���� pm EDT on a weeknight� It was complete

approximately six hours later� Figure � shows the number of batch jobs completed by each of the pools

as a function of time� The CESDIS pool was idle during much of the �nal hour of the experiment� while

the last few jobs were being executed in the Wisconsin pool� Since jobs tended to complete more quickly a

CESDIS� a more sophisticated high�level scheduler might have been able to minimize this boundary e�ect�

The �gure also shows bursts of job completions� particularly at the Wisconsin pool� This is also an artifact

of the high�level scheduler�

It should be emphasized that the DBC�s power to compress images is harnessed from existing� geographically�

distributed� non�dedicated� computational resources� The amount of power that the DBC was able to deliver

can be quanti�ed by comparing it against a benchmark� As our benchmark� we choose an idealized� dedi�

cated workstation that can execute the VQ program in time tideal� and that has direct� instantaneous access

to the input and output archives� We de�ne the idealized processor equivalent �IPE� rating� I� of the DBC

system to be�

I �
ntideal
tDBC

where n is the number of jobs in the batch� and tDBC is the batch completion time of the DBC system�

For example� if our idealized workstation is about as fast as a Sparc	� then tideal � �� minutes� Using this

benchmark� the DBC achieved an IPE rating of approximately ��
 during our experiment� Thus� the DBC

system provided power equivalent to more than eight workstations having instantaneous access to the stored

data�

�The DBC prototype was originally limited to staging one input �le per job� For this reason� the small codebook �le was

not staged from the archive for each job� A copy of the �le resided permanently in the DBC disk bu	er at each pool� This

restriction has since been eliminated�

�

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

elapsed time (minutes)

nu
m

be
r

of
 c

om
pl

et
ed

 jo
bs

CESDIS

Wisconsin

Total

Figure �� Progress of the VQ Experiment

� Additional Experiments

By changing its batch program� the DBC may be used to support other data processing applications� We

expect that the power that the DBC can deliver will depend on the application it is supporting� One

important feature of an application is its computational density� the amount of computing required per

megabyte of input and output data� We expect that the DBC will be most e�ective for applications with

high computational densities� High densities allow the DBC to amortize the cost of staging data to be

amortized over longer computing times�

To evaluate the impact of this application parameter� we wrote a arti�cial application� ART� whose

density can be controlled� The ART program is modeled after VQ� It �rst opens and reads a single input

�le sequentially� It then enters an empty loop� in which it spins for a number of iterations determined

by a nominal computation time� tnom� speci�ed as a command line argument� The loop iteration count is

calibrated so that tnom is accurate for one of the Sparc	� workstations in the CESDIS pool� The actual time

spent in the loop will vary from machine to machine� After looping� ART writes an output �le sequentially�

By varying either the sizes of the input and output �les� or the number of loop iterations� the computational

density of ART can be controlled� We de�ne the nominal computational density of the ART program� d� by

d �
tnom

Sin � Sout

where Sin and Sout are the sizes of the program�s input and output �les�

We ran a set of experiments with the DBC in which the nominal density of the ART program was varied�

Each experiment consisted of the execution of a batch of ART jobs� with each jobs having the same nominal

density� Figure
 summarizes the ART program parameters we used� The input and output �le sizes are

identical to those used for the VQ experiments�

The experiments were run using the two�pool DBC system shown in Figure �� This system was identical

to the one used for the VQ experiments� except that the CESDIS pool had an additional workstation �for a

total of ten� and an additional ��Mbytes of disk bu�er space �for a total of 	�� Mbytes�� Each experiment

was started during o��peak hours because the processing power available from the Condor pool was the most

stable then� This made it easier to compare the results of experiments run on di�erent days�

Figure � summarizes the results of these experiments� The curve shows the IPE rating attained by the

�

Parameter Symbol Units Values

Nominal Computation Time tnom minutes ��	�����
�	
�������	��

Input File Size Sin megabytes 	����

Output File Size Sout megabytes ����

Nominal Computational Density d minutes�Mbyte tnom��Sin � Sout�

ART Jobs Per Batch n jobs 	��

Figure
� ART Experiment Parameters

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

IP
E

computational density (minutes/Mbyte)

Figure �� E�ect of Computational Density on the IPE Rating

DBC system as a function of the computational density of the batch program� In all cases� the IPE rating

is computed assuming an ideal processor than can process a single batch job in time tnom� i�e�� the ideal

processor is about the speed of a SPARC	� workstation�

Our measurements show that the DBC can harness substantial power from geographically�distributed

resources� provided that the batch jobs are computationally intensive� With d near two minutes per megabyte�

the system was measured at approximately � IPEs� This is about the same as was measured for the VQ

program� which has a comparable computational density� As d was increased to about nine minutes per

megabyte� the IPE rating of the system increased by almost ���� When d was reduced below one minute

per megabyte� power dropped o� quickly�

��� Resource�Imposed Limitations

The amount of processing power that a DBC system can harness for a data processing application will depend

on the resources available to it� These resources include processors in the pools and network bandwidth �both

of which must be shared with jobs unrelated to the DBC� and the local bu�er space at each pool� Given

the resources available to it� how much power should the DBC be able to generate� Are the IPE ratings we

have measured reasonable� given the resources in our system� Short of adding additional resources� what

can be done to increase the capacity of the system�

To address these questions� we next derive an upper bound on the performance of a pool in a DBC

system� and compare it to the performance we measured during the ART experiments� This bound is based

on the amount of local disk bu�er space available at the pool� Similar bounds can be derived based on the

number of available processors� or on the available bandwidth between the pool and the archives�

We assume that the local disk bu�er at a processor pool consists of B slots� where each slot is of su�cient

�

size to hold the input and output �les for a single batch job� A job occupies its entire bu�er slot throughout

its execution time� which includes the time to transfer its input data from the source archive� the time to

process the job in the processor pool� and the time to transfer its results to the result archive�

Let tproc represent the expected time to process a job once its input data has been transferred to a pool�

Let ttransfer represent the expected sum of the times to transfer a job�s input and output data between the

bu�er and the archives� We can write�

tproc � tcondor � tproc wait

and

ttransfer � tftp � ttransfer wait

The terms tproc wait and ttransfer wait in these expressions represent delays caused by contention between

batch jobs for the available resources� The terms tcondor and tftp represent the expected times required to

process a job and to transfer data in the absence of resource contention�

The total time spent by job at a pool is tproc � ttransfer� Using Little�s law� we can then write the

expected DBC job throughput for the pool� �� as�

� �
B

tproc � ttransfer
�

B

tcondor � tftp

The power of the pool� in terms of IPEs� is the ratio of the expected throughput of the pool� �� to the

expected throughput of an idealized processor� which is simply 	�tnom� Thus� �I � an upper bound on the IPE

rating of the pool� is given by�

�I �
�
�

tnom

�
Btnom

tcondor � tftp

The expected pool processing time� tcondor is related to tnom� the nominal job processing time� We will

assume that tcondor � c�tnom � c�� where the constants c� and c� can be viewed as characteristics of a

workstation pool� The data transfer time depends on the available network bandwidth and the total volume

of each job�s input and output data� If we let A represent the available bandwidth� we can rewrite the bound

on a pool�s IPE rating as

�I �
Btnom

c�tnom � c� �
Sin�Sout

A

Finally� we can rewrite this expression in terms of the nominal computational density d of the batch program�

since d � tnom��Sin � Sout��

�I �
Bd

c�d�
c�

Sin�Sout
� �

A

�	�

This bound will be tightest when contention for the pool processors and for network bandwidth is low�

since in these situations tproc � tcondor and ttransfer � tftp� If either the pool or the network is heavily

utilized� the bound will be loose� We also observe that as d� �� �I � �� and as d��� �I � B�c��

To compare our bound to the measured performance of the DBC system during the ART experiments� we

require values for the Condor constants c� and c�� and for the network bandwidth A� To estimate the values

of c� and c� at each of the pools� we performed a least�square �t of tcondor � c�tnom � c� to the measured

values of tcondor for all of the Condor jobs executed at the two pools during our the ART experiments� We

determined c� � 	�	� and c� �
��� for the CESDIS pool� and c� � 	��� and c� � 	���� for the Wisconsin

pool� �The units of c� are minutes�� To estimate A� we ran separate experiments in which sets of �les

were transferred from the source archive to the disk bu�er at each of the pools� For the Wisconsin pool�

we obtained throughput measurements ranging from �� kilobytes per second to �� kilobytes per second�

depending the time of day at which the experiment was run� For CESDIS� the range was �
 kilobytes per

second to 	

 kilobytes per second� These rates cover the complete data transfer path� including retrieval

	�

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

IP
E

computational density (minutes/Mbyte)

computed bound

measured

Figure �� Measured and Limiting Performance at the Wisconsin Pool

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

IP
E

computational density (minutes/Mbyte)

computed bound

measured

Figure �� Measured vs� Limiting Performance at the CESDIS Pool

from the mass storage system at the archive and storage in the disk bu�er at the receiving pool� In the

discussion below� we have used A � �
Kb�s for the CESDIS pool� and A � ��Kb�s for Wisconsin�

Figure � shows the measured IPE rating of the Wisconsin pool during the ART experiments� along with

the bound provided by Equation 	� The bound is reasonably tight� This indicates that the DBC system

utilized the Wisconsin pool e�ciently� Given the bu�er space available to it� the properties of the Wisconsin

pool� and the available bandwidth between Wisconsin and the archives� the DBC is harnessing about as much

computational as possible� Additional resources �in this case� local disk bu�er space� would be required to

extract more power from the pool�

Figure � compares the measured performance of the CESDIS pool to its calculated upper bound �Equa�

tion 	�� The upper bound for the CESDIS pool is slightly higher than Wisconsin�s because of its slightly

larger bu�er pool and because of the greater bandwidth available to the archives� However� the measured

performance at CESDIS was below the measured performance of the Wisconsin pool� and well below the

CESDIS bound�

The di�erence between CESDIS� measured performance and its bound could be caused by ine�ciencies in

the DBC� The other possibility is that the bound is simply loose because of heavy utilization of the CESDIS

		

pool or the archives� Our measurements indicated that heavy utilization of the pool was the primary factor�

For example� for d � �� we found that after staging� jobs waited for more than �� minutes on average before

being assigned to an idle workstation in the pool�

��� Improving the Performance of the DBC

Our measurements and analysis suggest that the DBC was able to utilize resources e�ciently� Short of

increasing the number resources available� can anything be done to increase the capacity of the DBC system�

For pools like the one at CESDIS� this is unlikely since the available processors are being heavily utilized�

At the much larger Wisconsin pool� the local disk bu�er placed a limit on the number of workstations that

could be utilized by the DBC� despite the fact that many were available�

One possible approach is to compress the input and output data� since the number of bu�er �slots� is

directly related to Sin�Sout� Compression could also be used to reduce tftp� which would be bene�cial to a

pool limited by the bandwidth of its connection to the archives� Ideally� the DBC should be able to exploit

compression only for those pools for which it is likely to provide a substantial performance increment�

Another observation is that the DBC is implemented so that a job�s input and output �les occupy a

bu�er slot during its entire execution time� For many applications� this is unnecessary� For example� the VQ

program reads its entire input �le before beginning its computation� and is then �nished with it� Its output

�le is not opened until computation is complete� A batch processing system could attempt to exploit this to

reduce its per�job bu�er requirements� and hence to increase the power it can supply� This requires either

that the DBC guess when data will or will not be needed �and su�er delays when it is wrong�� or that the

applications provide the necessary information� We intend to explore both of these approaches further as we

improve the DBC�

� Related Work

There are several systems that support load sharing across pools of workstations� Besides Condor� which we

discussed in Section ��
� these include DQS �	��� LoadLeveler� LoadBalancer� LSF �formerly Utopia �	�� 	����

and Codine� A discussion and comparison of many of these systems can be found in ���� Each of these systems

accepts and queues job requests� and arranges to execute the requested jobs on machines from an available

pool� Features of some of these systems include automatic load balancing� prioritized and access�controlled

request queues� enforcement of resource consumption limitations� and deferred execution�

All of these systems di�er from the DBC in several important ways�

� These systems control computational resources and allocate those resources to jobs submitted by

many users� In contrast� the DBC does not control computational resources� Instead� it uses resources

allocated to it at various sites to perform data processing�

� In practice� the pools managed by these load sharing systems consist of machines controlled by a single

organization� There are several reasons for this� First� some systems do not support resource allocation

policies that are exible enough to accommodate the demands of more than one small organization�

Second� many of these systems require that users have the ability to log in to any pool machine on

which their batch jobs will be run� Finally� most �with the notable exception of Condor� insist that

pool machines share a common �lename space� Such access is normally provided by distributed �le

systems such as NFS �	�� or AFS �		�� Although it is certainly technically feasible to create such a

name space� many systems are not set up that way�

In contrast� the DBC does not control resources� Instead� it uses resource allocated to it at various

sites� In addition� the DBC is speci�cally intended to utilize resources provided by multiple� independent

	�

organizations� Each of the federated pools remains completely autonomous and capable of administering

its own resources� Because �les are staged to and from the pools by the DBC� the federated pools are not

required to share a common �le system�

Another related system is UFMulti ���� intended for data processing in high�energy physics� Like the

DBC and the systems described above� UFMulti performs data processing using a pool of workstations�

UFMulti focuses on multi�stage computations� in which jobs in one stage provide input for jobs at the next�

The system�s emphasis is on load balancing� so the more computationally demanding stages can be allocated

additional workstations from the pool� In short� UFMulti is concerned with how to use available resources

to support multi�stage computations� The DBC� with its simpler job model� is concerned with how to obtain

and utilize as many resources as possible�

� Conclusion

As the volume of on�line scienti�c data grows� so too will the need for resources to process and enrich that

data� The DBC provides a exible mechanism for applying a large� distributed collection of resources to a

single data processing task� Because the DBC utilizes Condor�managed workstation pools� it can exploit the

processing power of idle workstations� No dedicated computational resources are required� Our experiments

show that the DBC can focus substantial computing power on a data processing e�ort� even when many of

the available computing resources are thousands of miles away from the data repository�

The DBC is still under development� and much remains to be done to improve the system�s performance

and functionality� A more general job model would increase the variety of applications that can be supported

by the system� For example� it would be useful to support jobs consisting of program executions pipelines� in

which the output of one job is the input to the next� Many scienti�c data processing activities are naturally

expressed in such a model� We also need to provide modules that will allow the DBC to interact with

resource managers other than Condor� We are currently developing a new� easier to administer� and more

robust implementation of the DBC system� The new implementation uses PVM ��� to provide distributed

process control and communication� We intend to make this implementation publicly available�

Acknowledgements

Support for this work has been provided by NASA through its Applied Information Systems research pro�

gram� The authors are grateful to CESDIS for its cooperation and willingness to provide resources� We also

wish to thank Robert Cromp� Nathan Netanyahu� Mareboyana Manohar at NASA�GSFC for their assistance

and cooperation� and for providing access to software and data�

References

�	� Allan Bricker� Michael Litzkow� and Miron Livny� Condor technical summary� Technical Report TR

	���� Department of Computer Science� University of Wisconsin� October 	��	�

��� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and Vaidy Sunderam�

PVM� parallel virtual machine � a user�s guide and tutorial for networked parallel computing� The MIT

Press� Cambridge� MA� 	����

��� Joseph A� Kaplan and Michael L� Nielson� A comparison of queueing� cluster� and distributed computing

systems� Technical Report NASA Technical Memorandum 	����
� NASA Langley Research Center�

October 	����

	�

��� Jagadeesh Kasaraneni� Theodore Johnson� and Paul Avery� Load balancing in a distributed processing

system for high�energy physics �UFMulti�� Technical Report �
����� Department of Computer and

Information Science� University of Florida� 	��
�

�
� M� Litzkow and M� Livny� Experience with the Condor distributed batch system� In Proc� of the IEEE

Workshop on Experimental Distributed Systems� pages ��!	�	� October 	����

��� B� Cli�ord Neuman� Prospero� A tool for organizing internet resources� Electronic Networking� Re�

search� Applications� and Policy� ��	�� 	����

��� J� Postel and J� Reynolds� File transfer protocol �FTP�� Technical Report RFC��
�� USC Information

Sciences Institute� 	��
�

��� Jim Pruyne and Miron Livny� Parallel processing on dynamic resources with CARMI� In Workshop on

Job Scheduling Strategies for Parallel Processing� IPPS ���� April 	��
�

��� Herman C� Rao and Larry L� Peterson� Accessing �les in an internet� The Jade �le system� IEEE

Transactions on Software Engineering� 	������	�!���� June 	����

�	�� R� Sandberg� D� Goldberg� S� Kleiman� D� Walsh� and B� Lyon� Design and implementation of the Sun

Network File System� In USENIX Conference Proceedings� pages 		�!	��� Summer 	��
�

�		� Mahadev Satyanarayanan� Scalable� secure� and highly available distributed �le access� IEEE Computer�

���
���!�	� May 	����

�	�� Supercomputer Computations Research Institute� Florida State University� Talahassee� Florida� DQS

User Manual� DQS version ��	���� edition� June 	��
�

�	�� Jingwen Wang� Songnian Zhou� Khalid Ahmed� and Weihong Long� LSBATCH� A distributed load

sharing batch system� Technical Report CSRI����� Computer Systems Research Institute� University

of Toronto� April 	����

�	�� Songnian Zhou� Jingwen Wang� Xiahu Zheng� and Pierre Delisle� UTOPIA� A load sharing facility for

large� heterogeneous distributed computer systems� Technical Report CSRI��
�� Computer Systems

Research Institute� University of Toronto� April 	����

	�

