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Abstract

We present the Distributed Batch Controller (DBC), a system built to support batch processing of large
scientific datasets. The DBC implements a federation of autonomous workstation pools, which may be
widely-distributed. Individual batch jobs are executed using idle workstations in these pools. Input data are
staged to the pool before processing begins. We describe the architecture and implementation of the DBC,

and present the results of experiments in which it is used to perform image compression.

1 Introduction

In this paper we present the DBC (Distributed Batch Controller), a system that processes data using
widely-distributed computational resources. The DBC was built as a tool for enriching scientific data
stored in two mass storage systems at NASA’s Goddard Space Flight Center (GSFC). Enriching data means
processing it to make 1t more useful. For example, satellite images may be classified according to some
domain-specific criteria. These classifications can then be stored as meta-data to support content-based
retrieval of the original images. Another possibility is to produce compressed, approximate versions of the
images. These images could be retrieved very quickly because of their small size, and would be suitable for
applications such as preliminary visual inspection of the data. In general, data enrichment tasks such as these
are computationally intensive. Enrichment of large volumes of data may require enormous computational
resources.

The DBC can be viewed as a global scientific data processing system that can utilizes any resource that
is willing to participate in a data enrichment effort. It draws its computing cycles from a collection of
workstation clusters which may be distributed across the Internet. Each of these clusters uses the Condor
Resource Management system to harness available cycles from workstations within the cluster. The DBC
moves data from a mass storage system to local disk caches at each Condor pool, controls the local execution

of data enrichment tasks, and moves the resulting data products to another storage system. Because a data
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Figure 1: Architecture of the DBC

enrichment effort may be very time consuming, the DBC is designed to operate continuously for extended
periods of time with minimal manual interference.

We believe that large-scale data processing efforts like the one described above will become more common
in the near future. As any World Wide Web surfer knows, very large repositories of valuable scientific data are
scattered throughout the Internet and are gradually coming on-line. These repositories were established and
are maintained by national agencies and universities in order to disseminate experimental data throughout
the scientific community. Many repositories store their data in the form of files and provide data access
through file-oriented retrieval protocols like FTP.

The users of these repositories will require mechanisms for pooling their computational resources to
process the wealth of available data. Although the DBC was designed with a specific data-processing goal
in mind, it can serve the needs of some of these users. The DBC has no built-in knowledge of the archived
data, the enrichment tasks, or the resulting data products. Special attention has been devoted in the design
of DBC to modularity and to well-defined interfaces and protocols. It is our intention to package the generic

parts of DBC as toolkit for constructing global data processing systems suited to specific applications.

2 Data Processing System Architecture

Figure 1 illustrates an architecture for a global batch data processing system. The purpose of the system is
to execute a batch of data processing jobs, e.g., to compress a set of images. The architecture defines the
components of the system and the environment in which the system is expected to run, and it specifies how
the system and the environment interact.

The system is organized as a federation of resource pools. Each pool is an autonomous, entity with which
the data processing system interacts. The pools provide the computational resources needed to execute data
processing jobs. In our implementation of the architecture, discussed in Section 3.5, each pool is managed
using the Condor Resource Manager. However, in general, a pool may be almost any collection of resources
that is capable of processing jobs.

The data processing system itself consists of a set of agents, one per resource pool, and a coordinator.



The agents interact with their pools to request resources for batch job execution. Each agent has access to
a disk buffer for staging data. The centralized coordinator assigns work to the agents, and tracks the status
of the entire batch computation. The coordinator also serves as a centralized site for user administration of
a batch computation. Through the coordinator, the user can query the status of the computation and can
modify it, e.g., by adding new jobs to the batch.

Data is stored in archives. Input files for the batch jobs reside initially in a source archive. Qutput files
are collected at the result archive. Agents interact with these archives to arrange for data to be staged from
the input archive to the agent’s local buffer, and from the buffer to the result archive.

Since the pools are autonomous, the agents have no direct control of the computational resources at any
pool. The system must presume that the number of resources allocated to its batch jobs by the pool will
vary with time. In fact, it is possible for a pool to terminate its interaction with the system at any time, or
for new pools to join the system at any time. Within this environment, the system must harness as many
resources as possible for use in completing the batch.

Although the lack of dedicated computational resources complicates the job of the data processing system,
the federated architecture has several important advantages. First, there is no need to modify a pool’s
resource manager in order to include that pool in a global system. In fact, to each pool’s resource manager,
an agent looks like any other client. There is also no need for a pool to surrender control of any of its resources
in order to participate in the system. This makes the architecture particularly attractive for coordinating

pools that reside in different administrative domains.

2.1 System Responsibilities

Within the system architecture, the pools provide the computational resources needed to perform data
processing. However, reliable and efficient processing of large batch processing jobs requires that a number

of other issues be addressed by the global data processing system itself. They include the following.

Data Staging: The resource pools used to process data may be spread over a wide area. The data to be
processed is located in a repository which may not be directly accessible to programs running in the
pools. Similarly, output data must be collected in a repository and not left scattered at the pools. The
data processing system addresses this problem by staging data between the repositories and buffers

located at each of the pools.

High-Level Scheduling: Each pool allocates and schedules its own resources. However, the data process-
ing system must determine which pool will be used to process each of the jobs in a batch, a procedure
we call high-level scheduling. The goal of the high-level scheduler is to maximize the throughput of
batch jobs. To accomplish this, it must keep the resources available from each of the pools as busy as

possible.

Reliability: A batch may consist of many jobs, and may require hours, days, or even weeks to complete.
Failures of various kinds are likely to occur with in this time frame. The data processing system must
detect and recover from these failures so that each job in the batch will eventually be executed to

completion by some pool.

3 The Distributed Batch Controller

The DBC is an implementation of the global data processing architecture described in Section 2. The
DBC supports a simple batch model that is well-suited to tasks like data enrichment. The resource pools
with which the DBC interacts are collections of workstations managed by the Condor resource management

system, which is described at the end of this section.



coor dinator o .

Master Process |Je1o/!P Lt Worker Process R
FTP | - o

- Job Monitor |3+ condor Pool | ! | |

' | | Process L

4 b

sour ce ar chive FTP ! i
j/ | agent | | i

result archive

Figure 2: DBC Prototype Process Architecture

A DBC batch consists of one or more jobs, where a job is the execution of a single program. Each job may
require one or more input files and may produce one or more input files. All jobs in a batch are executions
of the same program, although each job may use different input files and produce different outputs. All of
jobs in a batch are assumed to be independent of one another. For example, a job’s input file may not be
produced by another job in the same batch. Although this model is somewhat restrictive, it is well-suited to
many data enrichment problems. For example, consider a large set of images that is to be classified before
being stored in a database. Commonly, classification is performed by executing a classification program
independently on each of the images.

Figure 2 shows the process architecture of the DBC prototype. The DBC consists of three types of
processes: a master, workers, and job monitors. The master process implements the coordinator shown in

Figure 1, and the the worker and job monitor processes together implement the agents.

3.1 The Master Process

The master performs high-level scheduling and keeps track of the execution status of each job in the batch.
In part because of the batch model, high-level scheduling is very simple in the DBC. Each worker determines
its willingness to execute additional batch jobs based on the availability of resources at its local pool. When
resources are avallable, the worker requests work from the master. Since all jobs are independent, the master
is free to assign any jobs that can be accommodated at the worker’s site.

The master accepts three common types of messages from the workers:

Job requests: Each job request is accompanied by a parameter indicating the level of resource availability
at the worker’s pool. (In the current implementation, the only resource indicated is space in the
worker’s disk buffer.) In response to the request, the master selects one or more unassigned jobs whose
requirements can be accommodated by the worker’s available resources and assigns them to the worker.

The names of the input and output files for the selected jobs are returned to the worker.

Job completions: This request includes a parameter indicating whether the job was completed normally
or abnormally. Abnormal completion means that despite repeated attempts the worker has been was
unable to process the job. In our prototype implementation, the master takes no action when a worker
is unable to process a job. (A message indicating the problem is printed in a log file.) However, other
reactions would be possible in a more aggressive implementation, including retrying the job at another

pool.



Heartbeats: Heartbeat messages are sent periodically by each worker. They are used to indicate that the
worker is up and actively working on jobs. Absence of heartbeats from a worker will cause the master

to reassign the worker’s jobs to others.

3.2 Worker Processes

Workers monitor the level of resource availability at their sites and request work from the master. In the
prototype, the only resource monitored by a worker is the amount of local buffer space available for input
and output files. For each job that is assigned to it, the worker spawns a job monitor process to control the
job’s execution.

Near the end of a batch job, workers at some pools may complete their assigned tasks before the workers
at others. Workers have a standby mode which allows them to remain available in case other workers have
trouble completing their assigned jobs. When a worker determines there are no unassigned jobs remaining, it
enters its standby mode. There it continues to generate a heartbeat, but does not request new jobs. Should

an assigned job fail to complete at some other pool, the master can reassign it to the idle worker.

3.3 Job Monitor Process

Processing a job involves a sequence of three steps:
1. transferring a data file from the data archive to the disk buffer at the worker’s site,
2. submitting a job to Condor for processing,
3. transferring an output file to the result archive.

The job monitor initiates these steps and monitors their progress.

Transfer of input and output files is performed using the File Transfer Protocol (FTP) [7]. Both the
source and result archives are assumed to be FTP servers. Interaction between the job monitors and the
archives is complicated by the fact that there is no standard programming interface for FTP. The monitor
transfers files by spawning executions of the UNIX FTP client program. For similar reasons, the job monitor
submits is job request to Condor by spawning an instance of the condor_submit program.

An API for Condor, called CARMI [8], has recently become available. We intend to incorporate it into
subsequent versions of the DBC. Unfortunately, we not aware of an existing API for FTP. To implement
direct control of FTP file transfers, we can provide an implementation of the FTP protocol within the job
monitor itself. Alternatively, we could make use of a wide-area file system such as Jade[9] or Prospero[6].
These systems would allow the monitor to transfer files to and from remote FTP servers using the UNIX

file system program interface. We are studying these alternatives for the next version of the DBC.

3.4 Failure Detection and Recovery

The DBC is capable of detecting and recovering from several types of failures. Failures of the DBC master
and worker processes are detected through the heartbeat mechanism. The DBC master maintains the status
of the batch execution in a file so that it can restored after a failure. A failure of a job monitor is detected by
the worker that created it. Condor itself provides a guarantee of reliable execution of jobs submitted to it.
In addition, the DBC job monitor implements an optional timeout mechanism to detect hung jobs. Finally,
file transfer failures are detected by monitoring the output of the FTP client program.

These mechanisms are intended to ensure that each job in a batch will appear to have executed exactly
once, despite failures. If an worker fails while jobs are running it its pool, or if a pool refuses or is unable to
process jobs that have been assigned to it, high-level scheduler in the coordinator will assign them to another

pool. The DBC ensures that multiple executions of the same job appear to be serialized, and that if a job is



executed more than once, later executions overwrite the results of earlier executions. Thus, although a job
may actually execute more than once, it will appear to have run once only.

The DBC is designed to allow workstation pools to join or leave the system at any time. Pools may leave
the system because of failures, or simply because their resources are no longer available for DBC jobs. Since
the DBC cannot assume that a lost pool will ever rejoin the system, it will simply reassign that pool’s jobs
to another pool. For the same reason, all critical state information is maintained by the DBC master, and

not the workers.

3.5 Condor

The DBC assumes that each pool’s resources are managed by Condor [5, 1]. Condor is a resource management
system that runs on pools of UNIX workstations. Condor harnesses the computational power of unused
workstations in the pool. Jobs submitted by Condor users are sent automatically to idle workstations in the
pool for processing. Should an idle workstation become busy, Condor jobs are moved from it to other idle
machines. Condor users are notified asynchronously when jobs are completed.

None of the workstations in a Condor pool are dedicated to the execution of Condor jobs. Instead,
Condor executes jobs wherever idle resources are available in the pool. Clearly, the computational power
available for Condor jobs will depend on the utilization of the machines in the pool. This can be expected
to vary substantially over time.

Since the DBC uses Condor, it effectively draws its computational power from idle workstations in many
pools, possibly distributed over a wide area. Jobs submitted to Condor by a DBC agent must compete with
other Condor jobs for the available resources in a pool. A pool’s resources are allocated to jobs (including
DBC jobs) according to policies implemented by Condor. These policies may very from pool to pool,

according to the needs of the pools’ owners.

4 Image Compression Experiments

We have used the DBC prototype as an engine for compressing a database of Landsat Thematic Mapper
(TM) images. Compression was accomplished by a technique known as vector quantization (VQ). Vec-
tor quantization produces a very compact representation of an image which can be decompressed quickly.
Compression 1s lossy. The decompressed images are useful for applications, such as database browsing or
preliminary data analysis, which can tolerate approximate versions of the original images.

A program implementing VQ was provided to us by M. Manohar, from NASA’s Goddard Space Flight
Center (GSFC). This was the batch program used by the DBC. The program requires two input files, one
holding the uncompressed TM image, and the other a small codebook used during compression. The same
codebook file is used to compress all of the images. The program produces a single output file, which
holds the compressed version of the input image. In our tests, we used a codebook with 128 entries and a
four-by-four pixel vector size, which results in a 16-to-1 compression of the images.

For the purposes of our experiment, we selected from the database approximately one hundred images
to be compressed. Each image 1s a 2984 by 4320 array of pixels, with one byte used to represent each pixel.
Thus, each image occupies slightly less than 13 megabytes. The single codebook file is only about 8 kilobytes
in size.

Although we selected only a fraction of the available images, compressing even those requires a non-trivial
amount of computation. Compression of a single 13 megabyte input image using the V(@ program requires
approximately 30 minutes on a Sparcl0 workstation. Sequential processing of the one hundred selected TM
images would occupy such a workstation for more than two days, assuming (optimistically) that there are

no delays for data input and output.
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Figure 3: DBC Experimental Environment

The DBC system we used for this experiment is illustrated in Figure 3. It consists of two workstation
pools, one large and one small. The small pool is located at the Center of Excellence in Space Data
and Information Systems (CESDIS), located at GSFC, near Washington, DC. The CESDIS pool includes
nine Sparcl0 workstations and a 140 megabyte disk buffer for the DBC. The other pool is located at the
University of Wisconsin, in Madison, Wisconsin. The Wisconsin pool includes approximately one hundred
Sun workstations of various types and a DBC disk buffer of 140 MB.

The DBC source archive, which holds the image database, is a mass storage system located at GSFC.2
Although both the mass storage system and the CESDIS workstation pool are located at GSFC, applications
running at CESDIS do not have direct access to the mass storage system’s files. The DBC result archive is
located at CESDIS.

We initiated the image compression experiment at 7:00 pm EDT on a weeknight. It was complete
approximately six hours later. Figure 4 shows the number of batch jobs completed by each of the pools
as a function of time. The CESDIS pool was idle during much of the final hour of the experiment, while
the last few jobs were being executed in the Wisconsin pool. Since jobs tended to complete more quickly a
CESDIS, a more sophisticated high-level scheduler might have been able to minimize this boundary effect.
The figure also shows bursts of job completions, particularly at the Wisconsin pool. This is also an artifact
of the high-level scheduler.

It should be emphasized that the DBC’s power to compress images is harnessed from existing, geographically-
distributed, non-dedicated, computational resources. The amount of power that the DBC was able to deliver
can be quantified by comparing it against a benchmark. As our benchmark, we choose an idealized, dedi-
cated workstation that can execute the VQ program in time #4041, and that has direct, instantaneous access
to the input and output archives. We define the idealized processor equivalent (IPE) rating, I, of the DBC
system to be:

7= Mtideal
3:):2ef
where n is the number of jobs in the batch, and ¢pp¢ is the batch completion time of the DBC system.
For example, if our idealized workstation is about as fast as a Sparcl0 then #;4.q; = 30 minutes. Using this
benchmark, the DBC achieved an IPE rating of approximately 8.5 during our experiment. Thus, the DBC
system provided power equivalent to more than eight workstations having instantaneous access to the stored
data.

2The DBC prototype was originally limited to staging one input file per job. For this reason, the small codebook file was
not staged from the archive for each job. A copy of the file resided permanently in the DBC disk buffer at each pool. This

restriction has since been eliminated.
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Figure 4: Progress of the VQ Experiment

5 Additional Experiments

By changing its batch program, the DBC may be used to support other data processing applications. We
expect that the power that the DBC can deliver will depend on the application it is supporting. One
important feature of an application is its computational density: the amount of computing required per
megabyte of input and output data. We expect that the DBC will be most effective for applications with
high computational densities. High densities allow the DBC to amortize the cost of staging data to be
amortized over longer computing times.

To evaluate the impact of this application parameter, we wrote a artificial application, ART, whose
density can be controlled. The ART program is modeled after VQ. It first opens and reads a single input
file sequentially. It then enters an empty loop, in which it spins for a number of iterations determined
by a nominal computation time, t,4m, specified as a command line argument. The loop iteration count is
calibrated so that ¢, 1s accurate for one of the Sparcl0 workstations in the CESDIS pool. The actual time
spent in the loop will vary from machine to machine. After looping, ART writes an output file sequentially.
By varying either the sizes of the input and output files, or the number of loop iterations, the computational

density of ART can be controlled. We define the nominal computational density of the ART program, d, by

tnom

d= ——m1+—
Sin + Sout

where S;, and S,y are the sizes of the program’s input and output files.

We ran a set of experiments with the DBC in which the nominal density of the ART program was varied.
Each experiment consisted of the execution of a batch of ART jobs, with each jobs having the same nominal
density. Figure b summarizes the ART program parameters we used. The input and output file sizes are
identical to those used for the VQ experiments.

The experiments were run using the two-pool DBC system shown in Figure 3. This system was identical
to the one used for the VQ experiments, except that the CESDIS pool had an additional workstation (for a
total of ten) and an additional 20Mbytes of disk buffer space (for a total of 160 Mbytes.) Each experiment
was started during off-peak hours because the processing power available from the Condor pool was the most
stable then. This made it easier to compare the results of experiments run on different days.

Figure 6 summarizes the results of these experiments. The curve shows the IPE rating attained by the



Parameter Symbol Units Values

Nominal Computation Time tnom minutes 0.167,2.5,15,30,60,120
Input File Size Si megabytes 12.29
Output File Size Sout megabytes 0.77
Nominal Computational Density d minutes/Mbyte | tnom/(Sin + Sout)
ART Jobs Per Batch n jobs 100

Figure 5: ART Experiment Parameters
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Figure 6: Effect of Computational Density on the IPE Rating

DBC system as a function of the computational density of the batch program. In all cases, the IPE rating
is computed assuming an ideal processor than can process a single batch job in time ¢,0m, 1.€., the ideal
processor is about the speed of a SPARC10 workstation.

Our measurements show that the DBC can harness substantial power from geographically-distributed
resources, provided that the batch jobs are computationally intensive. With d near two minutes per megabyte,
the system was measured at approximately 8 IPEs. This is about the same as was measured for the VQ
program, which has a comparable computational density. As d was increased to about nine minutes per
megabyte, the IPE rating of the system increased by almost 60%. When d was reduced below one minute
per megabyte, power dropped off quickly.

5.1 Resource-Imposed Limitations

The amount of processing power that a DBC system can harness for a data processing application will depend
on the resources available to it. These resources include processors in the pools and network bandwidth (both
of which must be shared with jobs unrelated to the DBC) and the local buffer space at each pool. Given
the resources available to it, how much power should the DBC be able to generate? Are the IPE ratings we
have measured reasonable, given the resources in our system? Short of adding additional resources, what
can be done to increase the capacity of the system?

To address these questions, we next derive an upper bound on the performance of a pool in a DBC
system, and compare it to the performance we measured during the ART experiments. This bound is based
on the amount of local disk buffer space available at the pool. Similar bounds can be derived based on the
number of available processors, or on the available bandwidth between the pool and the archives.

We assume that the local disk buffer at a processor pool consists of B slots, where each slot is of sufficient



size to hold the input and output files for a single batch job. A job occupies its entire buffer slot throughout
its execution time, which includes the time to transfer its input data from the source archive, the time to
process the job in the processor pool, and the time to transfer its results to the result archive.

Let tproc represent the expected time to process a job once its input data has been transferred to a pool.
Let tiransser represent the expected sum of the times to transfer a job’s input and output data between the

buffer and the archives. We can write:

tproc = teondor + tproc_wait

and

ttransfer = tftp + ttransfer_wait

The terms tproc_wait a0d tiransfer_wait i these expressions represent delays caused by contention between
batch jobs for the available resources. The terms t.ondor and tys), represent the expected times required to
process a job and to transfer data in the absence of resource contention.

The total time spent by job at a pool is tyr0c + ttransfer- Using Little’s law, we can then write the
expected DBC job throughput for the pool, y, as:

B B

tproc + ttransfer ~ teondor + tftp

/j:

The power of the pool, in terms of IPEs, is the ratio of the expected throughput of the pool, u, to the
expected throughput of an idealized processor, which is simply 1/t,0m. Thus, f, an upper bound on the IPE

rating of the pool, is given by:
T H Btnom
I = 1 =

trom

teondor + tftp

The expected pool processing time, t.ondor 18 related to t,0m, the nominal job processing time. We will
assume that t.ondor = C1tnom + €2, Where the constants ¢; and ¢z can be viewed as characteristics of a
workstation pool. The data transfer time depends on the available network bandwidth and the total volume
of each job’s input and output data. If we let A represent the available bandwidth, we can rewrite the bound

on a pool’s IPE rating as
Btnom

I=
SintSou
citpom + 2 + -I;l t

Finally, we can rewrite this expression in terms of the nominal computational density d of the batch program,

since d = tpom/(Sin + Sout):
Bd

c 1
cld+ Sin+2Sout + A

I= (1)
This bound will be tightest when contention for the pool processors and for network bandwidth is low,

since in these situations t,r0c & tcondor a0d tiransger A tfip. If either the pool or the network is heavily

utilized, the bound will be loose. We also observe that as d — 0, I 0, and as d — oo, I B/c;.

To compare our bound to the measured performance of the DBC system during the ART experiments, we
require values for the Condor constants ¢; and ¢z, and for the network bandwidth A. To estimate the values
of ¢; and ¢s at each of the pools, we performed a least-square fit of t.ondor = C1tnom + ¢2 to the measured
values of tcongdor Tor all of the Condor jobs executed at the two pools during our the ART experiments. We
determined ¢; = 1.12 and ¢y = 5.28 for the CESDIS pool, and ¢; = 1.04 and ¢3 = 10.80 for the Wisconsin
pool. (The units of ¢z are minutes.) To estimate A, we ran separate experiments in which sets of files
were transferred from the source archive to the disk buffer at each of the pools. For the Wisconsin pool,
we obtained throughput measurements ranging from 28 kilobytes per second to 68 kilobytes per second,
depending the time of day at which the experiment was run. For CESDIS, the range was 65 kilobytes per

second to 155 kilobytes per second. These rates cover the complete data transfer path, including retrieval

10
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Figure 7: Measured and Limiting Performance at the Wisconsin Pool
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Figure 8: Measured vs. Limiting Performance at the CESDIS Pool

from the mass storage system at the archive and storage in the disk buffer at the receiving pool. In the
discussion below, we have used A = 65Kb/s for the CESDIS pool, and A = 28Kb/s for Wisconsin.

Figure 7 shows the measured IPE rating of the Wisconsin pool during the ART experiments, along with
the bound provided by Equation 1. The bound is reasonably tight. This indicates that the DBC system
utilized the Wisconsin pool efficiently. Given the buffer space available to it, the properties of the Wisconsin
pool, and the available bandwidth between Wisconsin and the archives, the DBC is harnessing about as much
computational as possible. Additional resources (in this case, local disk buffer space) would be required to
extract more power from the pool.

Figure 8 compares the measured performance of the CESDIS pool to its calculated upper bound (Equa-
tion 1). The upper bound for the CESDIS pool is slightly higher than Wisconsin’s because of its slightly
larger buffer pool and because of the greater bandwidth available to the archives. However, the measured
performance at CESDIS was below the measured performance of the Wisconsin pool, and well below the
CESDIS bound.

The difference between CESDIS’ measured performance and its bound could be caused by inefficiencies in
the DBC. The other possibility is that the bound is simply loose because of heavy utilization of the CESDIS

11



pool or the archives. Qur measurements indicated that heavy utilization of the pool was the primary factor.
For example, for d ~ 9, we found that after staging, jobs waited for more than 20 minutes on average before

being assigned to an idle workstation in the pool.

5.2 Improving the Performance of the DBC

Our measurements and analysis suggest that the DBC was able to utilize resources efficiently. Short of
increasing the number resources available, can anything be done to increase the capacity of the DBC system?
For pools like the one at CESDIS, this is unlikely since the available processors are being heavily utilized.
At the much larger Wisconsin pool, the local disk buffer placed a limit on the number of workstations that
could be utilized by the DBC, despite the fact that many were available.

One possible approach is to compress the input and output data, since the number of buffer “slots” is
directly related to S;n 4+ Sout. Compression could also be used to reduce 5, which would be beneficial to a
pool limited by the bandwidth of its connection to the archives. Ideally, the DBC should be able to exploit
compression only for those pools for which it is likely to provide a substantial performance increment.

Another observation is that the DBC is implemented so that a job’s input and output files occupy a
buffer slot during its entire execution time. For many applications, this is unnecessary. For example, the VQ
program reads its entire input file before beginning its computation, and is then finished with it. Its output
file is not opened until computation is complete. A batch processing system could attempt to exploit this to
reduce its per-job buffer requirements, and hence to increase the power it can supply. This requires either
that the DBC guess when data will or will not be needed (and suffer delays when it is wrong), or that the
applications provide the necessary information. We intend to explore both of these approaches further as we
improve the DBC.

6 Related Work

There are several systems that support load sharing across pools of workstations. Besides Condor, which we
discussed in Section 3.5, these include DQS [12], LoadLeveler, LoadBalancer, LSF (formerly Utopia [14, 13]),
and Codine. A discussion and comparison of many of these systems can be found in [3]. Each of these systems
accepts and queues job requests, and arranges to execute the requested jobs on machines from an available
pool. Features of some of these systems include automatic load balancing, prioritized and access-controlled
request queues, enforcement of resource consumption limitations, and deferred execution.

All of these systems differ from the DBC in several important ways.

e These systems control computational resources and allocate those resources to jobs submitted by
many users. In contrast, the DBC does not control computational resources. Instead, it uses resources

allocated to it at various sites to perform data processing.

e In practice, the pools managed by these load sharing systems consist of machines controlled by a single
organization. There are several reasons for this. First, some systems do not support resource allocation
policies that are flexible enough to accommodate the demands of more than one small organization.
Second, many of these systems require that users have the ability to log in to any pool machine on
which their batch jobs will be run. Finally, most (with the notable exception of Condor) insist that
pool machines share a common filename space. Such access is normally provided by distributed file
systems such as NFS [10] or AFS [11]. Although it is certainly technically feasible to create such a

name space, many systems are not set up that way.

In contrast, the DBC does not control resources. Instead, it uses resource allocated to it at various

sites. In addition, the DBC is specifically intended to utilize resources provided by multiple, independent
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organizations. Each of the federated pools remains completely autonomous and capable of administering
its own resources. Because files are staged to and from the pools by the DBC, the federated pools are not
required to share a common file system.

Another related system is UFMulti [4], intended for data processing in high-energy physics. Like the
DBC and the systems described above, UFMulti performs data processing using a pool of workstations.
UFMulti focuses on multi-stage computations, in which jobs in one stage provide input for jobs at the next.
The system’s emphasis is on load balancing, so the more computationally demanding stages can be allocated
additional workstations from the pool. In short, UFMulti is concerned with how to use available resources
to support multi-stage computations. The DBC, with its simpler job model, is concerned with how to obtain

and utilize as many resources as possible.

7 Conclusion

As the volume of on-line scientific data grows, so too will the need for resources to process and enrich that
data. The DBC provides a flexible mechanism for applying a large, distributed collection of resources to a
single data processing task. Because the DBC utilizes Condor-managed workstation pools, it can exploit the
processing power of idle workstations. No dedicated computational resources are required. Our experiments
show that the DBC can focus substantial computing power on a data processing effort, even when many of
the available computing resources are thousands of miles away from the data repository.

The DBC is still under development, and much remains to be done to improve the system’s performance
and functionality. A more general job model would increase the variety of applications that can be supported
by the system. For example, it would be useful to support jobs consisting of program executions pipelines, in
which the output of one job is the input to the next. Many scientific data processing activities are naturally
expressed in such a model. We also need to provide modules that will allow the DBC to interact with
resource managers other than Condor. We are currently developing a new, easier to administer, and more
robust implementation of the DBC system. The new implementation uses PVM [2] to provide distributed

process control and communication. We intend to make this implementation publicly available.
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