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Abstract

Computer algebra systems often have to deal with piecewise de-
fined functions, for example, the absolute value function. We present
a new approach to this kind of problem. This paper provides a nor-
mal form for function rings containing piecewise functions. We give a
compiled rule system to compute the normal form of a function. With
a normal form, we can decide equality in our function ring. In this
ring, we can define supremum and infimum of two functions. In fact
we show that the function ring is a compiled lattice. We present a
method to solve equalities and inequalities in this function ring.

1 Introduction

In this paper, we consider function rings with one real variable extended with
a “plecewise” comnstruct, meaning that according to a decision depending on
the variable, a certain piece of a function is chosen. Such functions are, for
example, the absolute value function |z| or the signum function, and also
include functions such as the supremum or infimum of two functions like
sup(z? — 2, z).



The main property of our approach is the possibility of defining a normal
form.

folz) + z_: filz) step(x — a;) + hi(z) step(—z + b;)

Here, fi(z) and h;(z) are from the ground function ring, a;, b; are numbers
and it holds that if a; = b; then ¢ = j same for h; (collected) and h;(b;) # 0.
For this normal from we give a compiled rule system. This means rules
transform any term into its normal form after a finite number if steps. Our
approach can be extended to define closed form solutions of differential equa-
tions with piecewise coefficients [Moh94]. An approach for normal forms of
composition in function fields can be found in [Aber90].

The theory takes place in a function ring extended with the function step.
0 =<0

step(z) = { )
() 1 otherwise
piecewise notation to a step expression and one to convert a step-expression in

normal form back into the piecewise notation e.g. piecewise(z > 0, f(z), g(z))

g(z) + step(z)(g(x) — g(x)). abs(z) = —z + 2z step(z).

We can express supremum and infimum in terms of step functions. It

. We give an algorithm to convert a function in

turns out that the function ring is a lattice.

Using the above properties it is possible to solve equalities and inequalities
in the function ring. To solve inequalities, we profit from the lattice structure
in the sense that the solution of f(z) > 0 is translated into step(f(z)) = 1.
We only have to compute the normal form to get the solution.

2 The Normal Form

The ground ring of our function ring is a ring over a ordered real algebraically
closed field of constants. We use the polynomials over the real-part of the
algebraic closure of the rational numbers, meaning that the polynomials can
be split into linear factors with real roots contained in the ground field. This
ring is then extended with the function symbol step. An expression of this
type is called an step-expression. For example, step(x)—step(2—z)(z—5) is a
step-expression and so are step(step(x)z —z(x —3)) and step(z —2) step(x) —
step(z — 3)® + z.

Note that the function field extended with step is not a field but a ring
since we have zero-divisors like in every conditional function ring. With this



construction, it is possible to express piecewise functions in one real variable.
This is not possible with the recursive real numbers [Riceb4], but for example
in the set of the algebraic real numbers.

To discuss normal forms, let us give the definition of a normal form:

Definition 2.1 A normal form is given by a operator mapping functions
into functions with the properties:

normal(normal(f)) = normal(f)

f =g iff normal(f) = normal(g)

The functions in our function ring are sometime given by a piecewise-
constructor. We give an algorithm to convert a conditional expression into
its step representation, section 5. For example,

piecewise(x < a, fi(z),z < b, fa(x),z > ¢, f3(x))
converts to step(z — a) fi(z) + step(z — b) fo(x) + step(x — ¢) f3(x).
The rule system
Let f(z),g(z) denote (step-free) functions of the ground ring and a,b be
numbers. Our rule system is:

step(ax — b) —  step (aﬁi b) (1)
ifa#—1,1,0

f(e)step(—z +a) 5 F()(1 — steple — a))itf(a) =0 (2)

step(z — a) step(x —b) — step(x —a)if a > b (3)

step(—x + a) step(x — b) —  step(x —a) — 1 + step(—x +b) (4)
if a > belse 0

— step(—z+b)ifb<a (5)

step(—x + a) step(—x + b)
step(step(+z F a)f(z) + g(z))

1

step(£z F a) step(f(z) + g(x)) (6)
+(1 — step(£z F a)) step(g(z))
step(p(e)) — 3 ai step(di(z — bi)) (7)

d; = &1 by algorithm !
step(a) — a not depending on x is
lifa>0else 0



Definition 2.2 For piecewise expressions we define the normal form:

folz) + z_: filz) step(x — a;) + hi(z) step(—z + b;)

where fi(z) and h;(x) are from the ground function ring, a;,b; are numbers

and it holds that if a; = b; then i = j same for h; (collected) and h;(b;) # 0

We give some examples of normal forms using the absolute? value func-
tion:

Example 2.3
normal(abs(z)) = —x + 2z step(x)

normal(abs(2 — abs(z)) = —2 — . + (4 4 2z) step(2 + =) —
2a step(x) + (—4 + 2z) step(x — 2)
normal(abs(w)2) =(—z+ 2% step(:n))2 =

= 2° — 42’ step(z) + 42’ step(z) = z°
Theorem 2.4 The above rule system is a complete rule system and provides
the defined normal form.

Proof We prove this theorem in two steps.

1) We will define a measure @) of the distance of an expression to its normal
form and show that applying a rule reduces this measure. We will show that
if the term is in normal form, then no more rules can be applied and if any
rule can be applied, the term is not in normal form. For expressions of the
ground ring, polynomials, we use some canonical normal form.

2) We will show that it does not matter in which order we apply the rules.
(Confluence.) Any application order of the rules will yield the same end-
result.

!The algorithm is given at the end of the next proof
2We show later how to convert the abs function into a step expression



Proof of (1). Let us define Q(7) =< n,m + k + 1 > as a measure of the
distance of an expression 7 to its normal form. If the expression does not
contain a step, then Q(7) =< 0,1 >.

Otherwise, n,m, k, [ are defined as follows.

Integer n denotes the product of the number of step’s appearing as inner
argument of step’s times the depth, defined as follows:

depth(t) := 0, for 7 =z or 7 =number
depth(tp) :=  max(depth(7), depth(u))
similarly, for + and —

depth(step(T)) := depth(1) + 1

For example, the depth of step(z) is 1 and that of step(1 + step(z)) + x is 2.
Then n for step(step(x)) + step(step(x) 4 step(x — 2)) is 2% 2% 2 = 12.

Integer m denotes the product of the number of multiplications of step’s
with step’s in every product of the expression. For example for step(z —
2) step(x) step(xz — 8) + step(z) step(x — 2), the m is 3% 2 = 6.

Integer k 1s the product of all the numbers of # appearing inside a step, times
the absolute values of it’s coefficient. (For step(—2z? + z) 4 step(z?) this is
(3%2) %2 =12. We write z° for zzz. ) If the expression contains no step,

then k£ = 1.

Integer [ is the number of subexpressions of the form f(z) step(—z+a) where
f(a) = 0.

We show that for an expression in normal form, n is 0, m is 0, [ 1s 0, and & 1s
1. We define an ordering of () using the lexicographical ordering of the pairs
< a,b>.

a<a or

<ab><<a'b’><—>{
’ ’ a=a b<d.



Let g(z) be an expression with step in normal form.

g(z) = fo(z) + Z filz) step(z — a;) + hi(z) step(—z + b;)

n=1

We show that Q(g(z)) is < 0,1 >.

Rule 1 can not be applied since no z inside a step has a coefficient other than
1 or —1. Hence, k is 1. Rule 2 can not be applied since in the normal form
we have h;(b;) # 0. Hence, I = 0. Rules 3-5 can not be applied since in the
normal form an expression has no product of a step with a step. Hence, m is
0. Rule 6 can not be applied since an expression in normal form has no step
inside the arguments of a step. Hence, n is 0. Finally, rule 7 can not be used
since all arguments of step are linear in x. It follows that ) =< 0,1 >. We
also showed that if g(z) is in normal form, none of the rules can be applied.

Now we have to show that for every rule in the system:

Q(left-hand side) > Q(right-hand side)

Applying rule 6 reduces n and therefore ):

step(f(x) step(te F a) + g(x)) —
step(g(x))(1 — step(+z T a)) + step(f(z) + g(x)) step(£z F a).

The left-hand side has one step(.) as an argument of a step and some z’s.
Hence n > 1. Looking at the right-hand side we see that all step’s contain
fewer arguments than before and the depth is also reduced. Hence

n(left-hand side) > n(right-hand side)

for all inner rules. Even if m or k get bigger, @) gets smaller (lexicographical
ordering).

The application of the multiplicative rules 3,4.5 reduce n.
We show this in an example using rule 3:

step(xz — a) step(x — b) —

if a < b then step(xz — b) else step(z — a).
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The left-hand side m 1s 1. Looking at the right-hand side, we see that m 1s
reduced to 0. This holds for all multiplicative rules. Hence,

m(left-hand side) > m(right-hand side)

for all multiplicative rules. Since n is not changed, @) is getting smaller.

Rule 7 reduces the number of z’s occurring inside a step, which reduces k
and therefore (). Rule 1 normalizes the coefficient of z to 1 or —1, so also
reduces k.

Finally, rule 2 reduces [ and leaves n,m, k alone. Hence, () gets smaller.

We showed that if () of an expression 71s < 0,1 >, then 7 1s in normal form.
Applying the rules reduces () and, therefore, ends after a finite number of
steps.

Proof of (2) We have to show confluence, since some rules can have over-
lapping usage. The first rule can only be applied once to every step(az — b)
with @ # 1, a # —1. The second rule can only be applied once to every
step(—x + a) f(z). Hence, there is no overlap here. For the rules 3,4,5, we
observe that an expression step(xz — a) step(z — b) step(—z + ¢) step(—z +
d) is reduced to its unique normal form and that expressions of the form
step(step(z — a)f(x) + g(x)) g(«) possible continuing a step can only be re-
duced to a single normal form. (The actual cases analysis for these two last
rules are not detailed here).

We have to examine expressions of the form step(f(z) step(x—a)+g(x) step(x
b) + h(z)). There are two rules that overlap on this expression. Calculating
its normal form in the two different ways always gives (assuming a < b):
step(h(z)) — (2 — a) step(h(a)) + step(z —a) step(f(z) + b)) — step(f(x) +
h(w)) step(w — b) — step(x — b) step(f(z) + g(z) + h(z)).

Last we have to show that step(p(x)), where p(z) is a polynomial, can be
reduced to a sum of step’s.

We give an algorithm to do this:

Let aj,as,---,a, be the list of the real roots of p(z) in ascending order
a; < ay < +++ < ay such that if a; has even multiplicity then a; appears
twice in the list, otherwise a; appears once in the list. Complex roots are



ignored. If the sign of the highest coefficient of the polynomial p is positive
and the degree is odd or the highest coefficient is negative and the degree
is even, then the polynomial approaches the x-axis from below, otherwise if
approaches the x-axis from above. Initially, we set out := 0;¢ := 1.

Now, if we are above the x-axis, then out := out+step(—x+a;) and ¢ := i+1,
otherwise we start with the main loop below.

Loop:
While there are still two roots do
If a; = a;41 (root with even multiplicity), do nothing, otherwise out :=

out + step(x — a;) — step(—x + a;41) and ¢ := ¢ + 2. End of the loop.
If there is still one more a;, it is a,, and out := out + step(x — a,,).
This out is the desired sum of step’s. I

3 Lattice structure

With step, we can express the supremum and the infimum of two functions.
We show that our function ring is a lattice, which means supremum and
infimum of two functions of the ring belong to the ring. Hence, supremum and
infimum represent maximum and minimum. For example, we can compute
sup(z, —x) which is the piecewise function —z for z < 0 and = for > 0, in
other words, the absolute value function.

Definition 3.1 We define the sup and the inf of two functions f,g:

sup(f,g) = fstep(f —g)+g step(g—f) (1—step(f—g)—step(g—f))

f+g
2
f+g

inf(f,g) = bstep(f —g)+ f step(g— )+ 5

(1—step(f —g) —step(g—f))

Theorem 3.2 With the sup and inf defined above, the function field becomes
a lattice.

sup(g(z). £(z)), and sup(f(z), sup(g(a), h(2))) = sup(sup(£(z). g(a)), h(x))
for any f(z),g(z), h(z).



sup(f(z), f(z)) =

step(f(x) — f(x)) — step(f(x) —f(fv) ) = f(=).

sup(f(«), g(x)) = f(w) step(f(2)—g(2))+g(x) step(g(x)— f(x))+ L2 (1
step(f(z) — g(x)) — step(g(z) — f(2))) = sup(g(z), f(z)).

To show transitivity, we have to work harder. We need to use identities
like step(f) step(—f) = 0 for any f. Because of the technical nature of this
computation, it is not presented here. sup(f(z),sup(g(z),h(z))) = --- =
sup(sup( (2, g(x)), ()

The supremum and infimum are compatible with the ordering relation of the
ground ring. That is, if @ < b then sup(a,b) = a. sup(a,b) = a step(a — b) +
bstep(b— a) + “T""b(l — step(a — b) — step(b—a)) = a I

Example 3.3
sup(—x, ) = 2z step(z) —

sup(w2—2, r) = (w — 2?4 2) step(w—l—l)—l—(w — 2?2+ 2) step(z—2)—a+2 z?—4

4 Computing Zeros and Solving Inequalities

If the zeros of the underlying function ring are computable, then the zeros in
the ring extended by step are computable. Since we use polynomials over the
real algebraic closed numbers in this paper, the zeros of these polynomials
are computable.

Let us give two examples. First, 2> — 4 step(z) = 0. This equation has
the solution ¢ = 2,2 = 0. = —2 is not a solution since step(—2) = 0.
Second, step(2 4 x) + step(xz — 2) = 0 represents, already, it’s own solution.
Converting this function to it’s piecewise representation, the range where
this function is 0 i1s the range for = for which the function is 0.

Theorem 4.1 Let D be a function ring, the constants of D are real algebraic
closed, and the solutions of the equations f € D = 0 be computable. Then
the zeros in the with function ring extended by step are computable.

Theorem 4.2 Let D be a function ring, the constants of D are real algebraic
closed, and the solutions of the equations f € D = 0 be computable. Then the
solutions of inequalities in the function ring extended by step are computable.



First, we prove theorem 4.2.

Proof Let us examine the the equation 7 > (. This equation can be written
as step(7) = 1 and we use theorem 4.1. The inequality 7 >= 0 can be written
as step(—7) = 0. Now we use theorem 4.1 to solve these equations. I

Next, we prove theorem 4.1.
Proof Let 7 be the equation to be solved. We examine the normal form of

7= fo(x) + 3 file) step(e — a)) + hi() step(—e + b;)

n=1

We distinguish two cases:

If in the normal form f; and h; are constant, then we are done. The solutions
1s the union of ranges where this piecewise constant function is 0. This can
be done by our step to piecewise conversion algorithm 5.

Otherwise, let L be the list of all zeros of 7 which can be found by substituting
every step of 7 by 0 or 1. This means that we have to solve (in the worst
case) 2V equations which are step free. Having all these zeros we check if
they are zeros of 7 by substituting them into 7. We find all the zeros this

way. ]

Example 4.3 Let us solve 2* — 4 step(z) = 0. We have one step hence we
first have to solve the equations £ —4 = 0 and 2* = 0. These give us 2, —2,0.
Now we check these solutions and find that 2 and 0 are the solutions.

Now we solve x* — step(x)4 > 0. According to 4.2 we have to solve
step(z? — step(z)4) = 1. Compute the normal form: step(—z) + step(xz — 2).
This represents the solution, step(—x) + step(z —2) is 1 for x <0 orz > 2.
Hence the solution is x € (—o00,0) U (2, 00)

5 Converting piecewise expressions

In this section, we describe the process of converting a piecewise-expression
into an step-expression and vice versa.

Let us start with a definition for piecewise(ey, f1, ca, f2,...). This piecewise
should be read like an if .. elif .. else .. fi statement. If the first condition
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is true, then the piecewise expression evaluates to the first function f;, oth-
erwise, if the second condition is true, then f5, and so on. It is possible to
give a last argument without a condition for the else case. Note that if no
condition is true and there is no else case, then the result is 0 by definition.

To convert a piecewise expression into it’s step representation is straight
forward. For every condition in the piecewise-expression we construct a step
expression which is 1 if and only if the condition is satisfied. We can describe
the algorithm by a conversion function S.

The conversion function S is given by:

S(z>a) — step(z —2)
S(x<a) — 1-— step(x—2)
S(x>a) — step(—z + a)
Sz <a) — 1— step(—z+ a)
S(notE) — 1— step(S(E))
S(E and B) — step(S(E)) step(S(b))
S(E or B) — step(S(E)+ S(B))
S(piecewise(E, f1, B, fa,--+) — S(E)(1—S(B))f1+

+S(B)(1 = S(ENf + -+

Let us apply S to the absolute value function, for example. piecewise(x >
0,z,2 <0,—z)=S5(x>0)(1-S(x <0))z+(1-S(z > 0))S(z <0)(—=z) ==
step(z)(1—step(—z))x—(1—step(x)) step(—z))x = step(—z)x = 2z step(x)—
x.

To convert a step expression into a piecewise expression, we compute the
normal form of the step expression. Sort the a; and b; in increasing order.
For every a; or b;, create a new condition. If a; = b;, we get a condition of
the form @ = a; in the piecewise-expression. Looking at the normal form, we
have three different possibilities for a discontinuity at a point a contained in
the normal form:

1. f(z)step(x — a) corresponds to z < a, fi(z)z > a, fo(x)

2. f(z)step(z — a) + g(z)step(—x + a) corresponds to x < a fi(z),z =
a fa(z),z > a fs(x)

3. f(z)step(—z + a) corresponds to z < a, fi(z)x > a, fa(z)

11



Having all these conditions we have to determine the functions f; for those
pieces.

Example 5.1 Let us convert step(—x + 2) + x step(z) — step(z — 3) to
a piecewise erpression: the “critical points” are —2,0,3. Hence, we get
piecewise(x < =2, fi(z),z < 0, fa(z),xz < 3, fs(z),z > 4fs(z)) Then we
have to find fi(z). We get piecewise(x < —2,1,2 < 0,0,z < 3,z,z >
2,z —1).

Let us convert step(x) + 2step(—x) + step(xz — 2) to a piecewise. Since
the normal from has step(xz) and step(—z) we are in the second case for the
0 and in the first case for the step(x — 2). Hence, we get the conditions
z < 0,z = 0,z < 2,z > 2. This corresponds to the piecewise function
piecewise(x < 0,2,z =0,0,2 < 2,1,z > 2,2).

6 Conclusion

The idea of converting piecewise functions into step-expressions has some ad-
vantages. We were able to define a normal form and with this we could decide
equality. Also, we could define a lattice structure for piecewise conditional
expressions.
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