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Abstract

We give some improvements of a lemma of Rosenfeld which
permit us to optimize some algorithms in differential alge-
bra: we prove the lemma with weaker hypotheses and we
demonstrate an analogue of Buchberger’s second criterion,
which avoids non necessary reductions for detecting coher-
ent sets of differential polynomials. We try also to clarify
the relations between the theorems in differential algebra
and some more widely known results in the Grébner bases
theory.

Keywords. Differential algebra. Rewrite systems. Buch-
berger’s criteria. Polynomial differential equations. Rosen-
feld’s lemma.

1 Introduction

Stated in 1959 by Rosenfeld [Ro59, lemma, page 397], the
lemma we improve in this paper can be viewed as a manifes-
tation in differential algebra' of the famous Knuth-Bendix
theorem [Ev51] [KB67] in term algebras®:

Theorem 1 A natherian rewrite system s locally confluent
if and only if it is confluent over its critical pairs.

Proof. See [KB67]. O

Manifestations of theorem 1 arise in many different areas
of computer algebra, providing canonical simplifiers which
allow to compute in factor structures. See [BL82] for a sur-
vey. A well-known example in commutative algebra is the
Grobner basis algorithm [Bu70] which allows to compute in
multivariate polynomial rings factored by their ideals. How-
ever, one should notice that the proofs of the Knuth-Bendix
like theorems can not always be obtained by specializing the
one of theorem 1 [BL82, page 37]: special proofs are often
necessary.

'The reference books are [Ko73] and [Ri50]. We make precise in
section 3 the notations and definitions used in this introduction.

?We do not recall in this paper the definitions used in the rewrite
systems theory. See [BL82] for example.

Rosenfeld’s lemma provides algorithmic tools for study-
ing systems of differential polynomial equations. It is ap-
plied in the recent algorithm Rosenfeld-Grobner [Bo94] and
[BLOP95] which gathers as entry any ranking and any finite
system of differential equations and computes a representa-
tion of the radical of the differential ideal generated by the
system which can be used afterwards to decide membership
in that ideal, through simple reductions.

Before Rosenfeld, Seidenberg demonstrated [Se56, theo-
rem 6, page 51] a slightly weaker version of the lemma to
design an elimination algorithm for polynomial PDE. Ritt
proved in [Ri50, I, 12, page 30] its most basic case to study
the differential algebraic variety associated with a mere al-
gebraically irreducible ODE. Kolchin gave another version
in [Ko73, III, 8, lemma 5, page 137] which applies for dif-
ferential polynomial rings of characteristic non zero or with
coeflicients in a ring which is not necessarily a field.

In this paper

e we prove Rosenfeld’s lemma (lemma 5) under weaker
hypotheses than in the original version (lemma 3);

e we prove an analogue of Buchberger’s second criterion
[Bu79] [BW91, proposition 5.70] which avoids some
computations while checking whether a system verifies
the conditions of Rosenfeld’s lemma.

To show the usefulness of our results, we are going to
study the radical of the differential ideal generated by the
following system A of (Q{u,v} endowed with derivations
w.r.t. to z and y. To compute this representation, we ap-
ply the idea of the Rosenfeld-Grobner algorithm [BLOP95]
and we explain which computations are avoided when our
optimizations are applied.

= Uu?a):x + uix + Ux
P2 = Ugy
A P33 = Uyy + uz
Ps = Uy
Ps = Uggx + Uix

We fix any ranking such that tge, Uey, Uyy, vy and veee
are the leaders of p1, p2, ps, ps and ps respectively.

The system A does not satisfy the conditions of the
original Rosenfeld’s lemma for it is not autoreduced. The
Rosenfeld—Groébner algorithm must then reduce ps by p1 ap-
plying the rule
3 _ uix + uy

Uy
v



under the assumption that v # 0 and consider separately
the solutions of A which also annihilate v.

Though not autoreduced, the system is differentially tri-
angular (definition 2) and lemma 5 proves that Rosenfeld’s
lemma holds for such situations. Hence, the Rosenfeld—
Grobner algorithm does not need to split the system any-
more.

The algorithm must check that the four A—polynomials
below generated by A are reduced to zero by A. They are
actually reduced to zero by p> and ps. Rosenfeld—Grobner
does not need to split the system if it use them for reducing,
since these polynomials have trivial initials and separants.

Ay = vyu‘:’w + Ugy
A23 = Uy Uy
Az = (6vupe + 2)usy,+

2 2

(6vyuz, — BvUz, Uy — dUga Uy ) Ugay+
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Vyylge — Gquxuxy - 4umﬂuxy + Usyy

2
A45 = UgplUzay

The most painful computation is the reduction of A;s. How-
ever, lemma 8 proves that this reduction is useless for Aj2
and Ass are both reduced to zero and the least common
derivative of the leaders of p; and ps is a derivative of the
leader of po.

Lemma 8 is an analogue of Buchberger’s second criterion
for differential algebra. As for Grobner bases, given n dif-
ferential polynomials, this criterion allows in the best case
to perform only n — 1 reductions instead of n(n —1)/2. It is
also quite obvious that the avoided reductions are the most
painful ones, as illustrated by the example.

Last, the original version of Rosenfeld’s lemma imposes
to the Rosenfeld-Groébner algorithm to put as inequations
(£ 0) all the initials and separants of the equations of A.
With technical words: the original lemma is stated for the
ideal [A]: H4" . Since system A has one non trivial separant
s1 = 3vuix + 2u., and one non trivial initial ¢ = v (the
ones of pl) the Rosenfeld—Grobner algorithm must consider
separately three cases: A = 0, s1 # 0,721 # 0 on which
Rosenfeld’s lemma applies, A = 0, s1 # 0,21 = 0 and A =
07 s1 =0.

Our version of Rosenfeld’s lemma only imposes to put
as inequations the separants of the equations of A. With
technical words: our version is stated for the ideal [A]:54% .
Thus we only need to consider two cases instead of three:
A =0, s1 # 0 on which our version of Rosenfeld’s lemma
applies and A =0, s; =0.

Plan. Rosenfeld’s lemma is a quite technical theorem of
a mathematical theory, differential algebra, which is much
less known than the Grobner bases theory by the researchers
in computer algebra. To give to this paper an audience as
wide as possible, we thus recall, in section 2, some of the def-
initions and theorems of the Grébner bases theory. In the
following sections, we present our definitions and our results
in relation with the ones of section 2. In section 3 Ritt’s re-
duction algorithms are specified and the critical pairs which
can arise, the A—polynomials, are defined. The new version
of Rosenfeld’s lemma is proven in section 4 where we state
also the original one. In the last section, we consider the
problem of testing the coherence. In particular, we prove
the analogue of Buchberger’s second criterion.

2 Grobner bases

Most of the material of this section is borrowed from [BW91,
5, pages 218-225]. In this section R denotes a polynomial

ring over a commutative field of characteristic zero.

The Grobner bases algorithms in R are based on mono-
meal reduction algorithms: they interpret polynomials p € R
as rewrite rules of the form “a distinguished monomial of p
is rewritten into the sum of the other monomials of p”. The
distinguished monomial is called the leading monomial of p.
It is defined by fixing a so—called admissible ordering over
the set of all the terms® of the polynomial ring. For instance
the following system of Q[z,y]

1 :m?’—my—l—m,
Gq p=z’y,
ps = zy’ —zy

may be viewed as a set of three rewrite rules:

p1: z = Ty — T,
P2t m2y — 0,
ps: zy: — zy.

Some critical pairs may occur in such rewrite systems. On
the example above, we have in particular:

zy® — oy (using p1)

zy (using ps)

Now, if we denote S13 = (—zy® + zy®) + 2y, the system G
is confluent over the critical pair if the S—polynomial ;3 is
reduced to zero by G.

A formalism was adopted [BW91, 5.4, page 218] which
can be viewed as a specification of the reduction algorithms
and can be applied to state the theorems in the Grébner
bases theory. The use of this formalism makes the state-
ments a little bit complicated but allows to write down the
proofs much easilier. We give it in the definition below and
use it to state the next lemmas, since we perform such a
formalization in differential algebra.

Definition 1 Let t be a term in the polynomial ring R. A
polynomaal ¢ € R s said to have a t—-representation w.r.t. a
finite subset G of R if q¢ can be written as a finite (possibly
empty) sum of terms mp, where m is a monomial, p € G and
the leading term of mp s less than or equal to t (according
to the fized admissible ordering). An empty sum is defined
to be zero.

Hence if a polynomial p is reducible to zero by G then p
has a t-representation w.r.t. G, where ¢ is the leading term
of p.

Let p; and p; be two polynomials of R, with leading terms
m; and m;. If we denote m;; the least common multiple
between m; and m; and S;; the S—polynomial between p;
and p; (we assume their leading coeflicients equal to 1):

Sij = Di — Pjs
m; mj

then we can state the following characterization of Grobner
bases [BW91, theorem 5.64]:

3Terms are power products of indeterminates of R while monomials
are terms multiplied by a coefficient of the base field.



Theorem 2 Let G be a finite set of polynomials. If for
each S—polynomial S;; which can be formed between any two
elements of G, there exists some term t < m;j such that 5;;
has a t-representation w.r.t. G then G is a Grobner basis.

2.1 Buchberger’s criteria

For the sake of efficiency, it is a key problem to predict that
some S—polynomials vanish without having to reduce them.
For this purpose, Buchberger established two criteria [Bu79].

Lemma 1 (Buchberger’s first criterion)

Ifpi andpj; are two polynomials of R whose leading terms
m; and m; have no common factor (i.e. mij = m;m;) then
Si; has a t-representation w.r.t. the set {pi,p;} for some
term t < myj.

See also [BW91, lemma 5.66]. Remark that in term al-
gebras, the lemma is obvious since two rewrite rules whose
heads do not overlap cannot interfere. This is a preors not
obvious in commutative algebra: the proof in [BW91] first
establishes that the subtraction m;p; —m;p; does not cancel
any monomial of the two polynomials m;p; and m;p;.

Lemma 2 (Buchberger’s second criterion)

Let p;, p; and py be three polynomials of a subset G of R
such that the leading term m; of p; divides the least common
multiple m;i, of the leading terms m; and my of pi and p.

If Sij has a t-representation w.r.t. G for some term
t < m;; and Sji has a t' —representation w.r.t. G for some
t < mjr then Sii has a t" —representation w.r.t. G for some
t < mi.

See for instance [BW91, proposition 5.70]. It is not
enough to notice that S = %SU + mii . to show

m.

lemma 2 since, if p and ¢ are two polynomials reduced to
zero by a set G then p+ ¢ is not necessarily reduced to zero.
A more subtle analysis and the use of a concept similar to
the t-representations are necessary.

We illustrate Buchberger’s second criterion on the ex-
ample given in the beginning of the section. One verifies
easily that Si12 and Sa3 (hence S;3) are all reduced to zero
by G = {p1,p2,ps}.

x
81 M1 —» M2 mis
(=) (=% y?)
miz/ma
1= :D3 —zy + @,
p2 = 2%y, 2 M2 > Moy
ps = zy? — xy. (=)
mag/ms
Siz = —xy? + wy,
Sas = a?y, 14 ms (zy?)
Si3 = —zy® + =y + 27y . . ;
0 1 2 Yy

3 Differential algebra

3.1 Basic preliminaries

Starting from this section, K denotes a differential field
of characteristic zero endowed with a certain number of
derivations denoted d1,...,d,, which commute pairwise. We
denote derivation operators using greek letters e.g. 6 =
§71 -+ 65 where the a; are nonnegative integers and, if v is
any element of K, we denote v the element of K obtained
by differentiating it a; times by 4; for all 1 < ¢ < m. The

sum of the exponents a; is called the order of the operator 6.
The identity operator is of order 0. All other operators are
said to be proper. If § = 6/t .. .65 and ¢ = 5;’1 e glm
then 0¢ = 690 .. gamtbm  If q; > b; for i = 1,...,m
then (0/¢) = 5fl_b1 <. §4m—bm  The monoid of derivation
operators is denoted ©. If E is any subset of K, we denote
OF the smallest subset of K stable under differentiation.

Let S be a subset of a differential ring R which con-
tains K. We denote K{S5} the smallest differential subring
of R containing K and S. We have K[©5] = K{S}.

We work with differential polynomials in the differential
polynomial ring B = K{u1,...,un}. The u; are called dif-
ferential indeterminates and the Ou; are called u—derivatives.
The set of the u—derivatives is denoted OU.

An order R over OU is said to be a ranking [Ko73, I, 8,
page 75] if it is total and compatible with the differentiations
over the alphabet:

1. dv > v (for all derivation § and v € OU),
2. v > w = dv > dw (for all derivation § and v,w € OU).

Rankings such that ord (8) > ord (¢) = 6v > ¢w (for all
derivations operators 6, ¢ and all differential indeterminates
v,w) are called orderly. Rankings such that v > w = 6v >
¢w (for all derivations operators 6, ¢ and all differential
indeterminates v,w) are called elimination rankings. For
more terminology, see [Ko73, page 75].

Rankings are well-orderings over ©OU [Ko73, page 75].
They are the analogue of the admissible orderings in the
Grobner bases theory. An important difference: rankings
rank indeterminates while admissible orderings rank terms.

Let p be a polynomial* of R and R a ranking over OU.
The leader v of p is the greatest u—derivative w.r.t. the rank-
ing R which appears in p. The two conditions mentioned
above imply that for each derivation operator ¢, the leader
of ¢p is pv. Let d be the degree of v in p. The nitial 1,
of p is the coefficient of v? in p. The separant sp of p is the
initial of all the proper derivatives of p (s, = dp/8v). The
rank of a polynomial p = i, - v¢ 4 r is the polynomial v?.
The rank of a set of polynomials is the set of ranks of the
elements of the set.

Let p and g be two polynomials with ranks v? and w*.
The polynomial q is said to be less than p if w < v or w = v
and e < d; partially reduced w.r.t. p if no proper derivative
of v appears in ¢; and reduced w.r.t. p if ¢ is partially
reduced w.r.t. p and its degree in v is less than d.

A set of differential polynomials A is said to be autore-
duced if each element of A is reduced w.r.t. every other
element of the set. Every autoreduced set is finite [Ko73,
page 77].

An autoreduced subset A of a set E of polynomials is
called a characteristic set® of E if E does not contain any
non zero element reduced w.r.t. A. Every set admits a char-
acteristic set.

The proof of this, of the finiteness of autoreduced sets
and of the fact that rankings are well-orderings all rely on
the same argument summarized in [Ko73, 0, 17, lemma 15,
page 49]. A more compact proof can be found in [Bo94,
lemme 2, page 11].

4The definitions which we give are only valid for polynomials p ¢
K. In this paper, we do not need to bother with the exceptions p € K.

5This definition corresponds to Ritt’s one [Ri50, I, 5, page 5] and
coincides with Kolchin’s when E is a differential ideal. Kolchin only
defined characteristic sets for ideals [Ko73, I 10, page 81 and III, 2,
page 124].



We want to consider more general sets than autoreduced
ones. Definition 2 exists neither in [Ri50] nor in [Ko73].

Definition 2 A set of differential polynomsials is said to be
differentially triangular if its elements are pairwise partially
reduced and if the leaders of its elements are pasrwise differ-
ent.

Every differentially triangular set is finite and every au-
toreduced set is differentially triangular®. If the leaders v
and v’ of two elements of a differentially triangular set A
have a least common derivative w, then w is a proper deriva-
tive of both v and v'.

3.2 Ritt’s reduction algorithms

Ritt’s reduction algorithms are euclidian division algorithms,
extended to differential algebra. We illustrate them on an
example. Consider for instance, the elements of the fol-
lowing subset of Q{u,v} endowed with derivations w.r.t. =
and y:

2

A Yy = VUge — Uz,
P2 = Uy, — 1.

If we choose 4y, to be the leader of p; then the differential
polynomials of the set A stand for the rewrite rules:

VyUge —Ugy

u
P Uge — 5, Uzey — — - s
2u,u Foyytpe—u
yUrey TVyyUee —Ueyy
Ua:a:yy - — v
Coup, — 1 -0 o tew
D2 Uy, s Uayy s Uzeyy Uyy

In practice, has a differential polynomial ¢ to be reduced
by a set A, it is multiplied by appropriate powers of the
initials and the separants of the elements of A, to avoid
denominators.

Many such algorithms exist [Ko73, page 77] [Ri50, I, 6,
page 5] [Ma91] which may produce different results. Mor-
rison proved [Mo95] that all Ritt’s reduction algorithm ter-
minate.

We need to introduce a few definitions and notations
before to give some precise specifications of Ritt’s algorithms
of reduction which will play in differential algebra the role
of the t-representations in the Grobner bases theory.

Definition 3 If b is a (non necessariy differential) ideal
and S is a finite subset of a ring R then b: 5% denotes the
tdeal of all the elements p of R such that, for some h € S,
the element hp belongs to b.

Definition 4 If A is any finite subset of R we denote

Hy the set of all the initials and separants of the elements
of A and

Sa the set of all the separants of the elements of A.

Definition 5 If A is any finite subset of R and v 1s any
u—derivative, we denote A, the set of the derivatives of the
elements of A whose leaders are less than or equal to v:

A, ={0p|p € A andbp < v}.

8 Actually, autoreduced = differentially triangular + a constraint
on the degrees of the polynomials.

If v < w are any u—derivatives we have 4, C A, and for
any derivation operator 8, if p € (A,) then 8p € (Ag,).

Let ¢ be a differential polynomial and A be any finite
subset of R. Rutt’s full reduction consists first in a partial
reduction (i.e. purely differential) followed by a purely alge-
braic reduction:

q full-rem A = (q partial-rem A) alg-rem A.

Let ro = g partial-rem A. A specification of the partial
reduction is:

1. ro is partially reduced w.r.t. all the elements of A.

2. there exists a power product h of elements of S4 such
that hg =r¢ (mod (A.)), where v is the leader of g.

Let r1 = ro alg—rem A. Specification of the full reduction:
1. 71 is reduced w.r.t. all the elements of A.

2. there exists a power product h of elements of Ha such
that hg =r1 (mod (A.)), where v is the leader of g.

We have g € [A]: Hx™ iff (g full-rem A) € [A]: Hy™.

In general however, Ritt’s reduction algorithm does not
preserve the equivalence modulo [A]:H4™ . Therefore, Rosen-
feld’s lemma only deals with the equivalence to zero modulo
[A]: H4*™ and not with normal forms modulo this ideal —
while Grébner bases do. This remark concerns also partial
reductions and ideals [A]: 4.

Moreover, even if g € [A]: Hs™ then (q full-rem A)
is not necessarily syntactically zero. Consider for instance
the set A which only contains the differential polynomial
p = (u+41)*(u— 1). The separant of p contains (u-+1) as a
factor, so (u — 1) € [A]: H4~ but is irreducible by A.

This is related to the fact that every autoreduced and
coherent set A is not necessarily a characteristic set of the

differential ideal [A]: H4™ that it defines.

3.3 Delta—polynomials

Some critical pairs may occur between the differential poly-
nomials of a set A, when they are considered as rewrite rules
for Ritt’s reduction algorithm. They only arise in systems
of PDE when different rules rewrite different derivatives of
a same differential indeterminate. On the example given in
section 3.2 we have for instance:

_ 20y Uzzy + Vyylae — Uayy

p :

Uzzyy

(using p1)

2
_ Yayy (using ps)

Uyy

Now, if we denote A1z = tyy (20yUsey + Vyylize — Uayy) —
v(uiyy), the system A is confluent over the critical pair if
the A—polynomial A; is reduced to zero by A, using Ritt’s
reduction.

The A-polynomials correspond to the S—polynomials in
the Grobner bases theory. This terminology comes from
Rosenfeld who denoted them A;; as we do. They are called
differential S—polynomials in [Ma91] but we find this mis-
leading since there exists generalizations’ [Ca87] [0190] of
Grébner bases to the differential case, based on a monomial
reduction, where this denomination fits better.

“However, such Grobner bases are generally infinite.



Definition 6 Let p; and p; be two differential polynomials
of some differentially triangular subset A of R whose leaders
O;u and 0;u have some common derivatives. Denote 0;5u the
common derivative of O;u and 0ju of least order.

The A—polynomial between p; and p; is

Ajj = 5;(0i;/0:)pi — 5i(0:/0;5)p; -

The set of all the A—polynomials which can be formed
between any two elements of A is denoted A(A).
If Ou s any derivative of 0;;u we denote

A?j = 3;(0/0:)p: — 5i(6/6;)p;.

It follows from the definition of differentially triangular
sets (definition 2) that the leader of any cross derivative A?j
is less than fu.

4 Rosenfeld’s lemma

Rosenfeld’s lemma is an analogue in differential algebra, for
Ritt’s reduction algorithms of the theorem 2 for Grébner
bases in commutative algebra,

We bring two changes to the original version of Rosen-
feld: we state the result for differentially triangular sets in-
stead of autoreduced ones and we state it for the quotient
[A]: S by any set .S which contains S4 instead of Hs. We
compare our version with Kolchin’s one.

4.1 The original version

In [Ro59, page 397] an autoreduced set A is defined to be
coherent if, for all elements p; and p; of A whose leaders
have a least common derivative v, there exists a u—derivative
w < v such that A;; € (Aw): Ha™. Rosenfeld’s original
lemma can then be stated as:

Lemma 3 (Rosenfeld’s lemma, version of 1959)

If A 15 an autoreduced and coherent subset of R then ev-
ery differential polynomial g partially reduced w.r.t. A which
belongs to [A]: Hy™ belongs also to (A): Hx™.

4.2 The new version

We first generalize the definition of the coherence.

Definition 7 Let A be any differentially triangular subset
of R and S be any finite subset of R which contains Sa and
which is partially reduced w.r.t. A. The set A 1s said to be
coherent by inverting S ¢f, for all elements p; and p; of A
whose leaders have a least common derivative v, there exists
a u—dertvative w < v such that A;; € (Aw) 57

Assuming S to be partially reduced w.r.t. A is necessary
for Rosenfeld’s lemma. The sets S4 and Ha both satisfy this
constraint. An autoreduced set A is coherent in the sense
of Rosenfeld if it is coherent by inverting H4 in the sense of
the definition 7.

The following lemma is used for proving both Rosenfeld’s
lemma (lemma 5) and the analogue of Buchberger’s crite-
rion (lemma 8). Seidenberg and Rosenfeld proved it inside
the proofs of [Se56, theorem 6, page 51] and [Ro59, lemma,
page 397]. Kolchin did not need to prove it since one of his
hypotheses [Ko73, condition C3, page 136] implies it.

Lemma 4 Let p; and p; be two elements of a differentially
triangular set A C R with leaders O;u and 0;u. Let 0;ju be
the least common derivative of O;u and Oju. Let S be any
finite subset of R which contains Sa.

If there exists a u—derivative v < 0;;u such that A;j €
(Ay) 1 8% then for every derivative Ou of O;ju, there exists
a u—derivative w < Ou such that A?j € (Aw): 8™,

Proof. The proof is an induction on the order of (6/6;;).

If the order is zero then A?j is the A—polynomial A;;
and the lemma is verified by hypothesis.

If the order is nonzero, we decompose # = §¢ where § is a
mere derivation and (¢/6;;) exists and we assume (induction
hypothesis) that there exists a power product h of elements
of § and v < ¢u such that hA:f; € (Av).

Consider the polynomial 5(hA:f;). The second condition
satisfied by the rankings implies that it belongs to the ideal
(Asy) and that dv < dpu = fu. Multiply that polynomial
by h. One obtains (5h)hA:f; + K2 (5A:f;) whose first term is
in (A,) by induction hypothesis. Since (4.) C (As) we
conclude that h? (5A:f;) belongs to this latter ideal. Develop
this polynomial:

RN h25{81(¢'/9i)17i - 3i(¢/91)p1} (1)

B { (653)(6/80)pi — (55:)(8/60)ps | (2)
+ RBAY. (3)

The polynomials (¢/6;)p; and (¢/6;)p; have both pu <
fu for leaders. Denote w = max (¢u,dv). The term (2) is
thus in (A4,,) and A?j € (Aw):8%. Since w < Hu the lemma
is proven. O

If A;j full-rem A = 0 then there exists a v < 6;ju (see
lemma 7) such that A;; € (4,): 5% (assuming S contains
the initials involved in the reduction) but A?j full-rem A
can be different than zero. Take the following system A of
Q{u, v, w} endowed with derivations w.r.t z, y and z, which
is differentially triangular for any orderly ranking. The A-
polynomial A;; = vy is reduced to zero by A but the re-
mainder of Afy = §:0,pl —.8.p2 = vy by pa, equal to wy,
is irreducible.

P11 = Uxtw,
A D2 = Uy,

D3 = Uy,

ps = v+ w.

Definition 8 An ideal [A]: S of R is called a regular dif-
ferential ideal for a ranking R if A s differentially triangular
w.r.t. the ranking, S is any finite subset of R which contains
Sa and whaich s partially reduced w.r.t. A, and A is coherent
by inverting S.

Lemma 5 (Rosenfeld’s lemma, new version)

If[A]: 8% 4s a regular differential ideal of R then every
differential polynomial q partially reduced w.r.t. A which
belongs to [A]: S belongs also to (A):S™.

Proof. Let g € [A]:S™ be a polynomial partially reduced
w.r.t. A. There exists some power product h of elements of
S and a u—derivative fu such that

hg= > Bjsdp (4)

Pp; €AYy



Since rankings are well-orderings, we may assume that
the formula (4) is such that fu is minimal. Thus fu is nec-
essarily a derivative of the leaders 6y u,...,0;u of some (at
least one) elements pi,...,p; of A, renaming the p’s if nec-
essary. We assume that g ¢ (A4): 5%, hence that fu is a
proper derivative of 61u,...,0;u, and seek a contradiction.

Denote (6/6;)p; = s;6. + r, apply on the terms Bj 4 ¢p;
of the sum (4) the substitution fu — LLQ’;)M and multiply

i
then by some power s{* to erase denominators. For some
v < Bu we have

sihg = D (0/6:)p; (5)
+ ZEJ Al (6)

J
+ > Cis v (M

Pp; EAy

The terms in the sums (6) and (7) are free of fu. Since S
and ¢ are partially reduced w.r.t. A, the substitution does
not apply on hg which is also free of #u. Therefore D = 0.

If Ais asystem of ODE the sum (6) is empty and hg €
(A,). Since v < Bu we have a contradiction.

Assume A is a PDE system. Since it is coherent by in-
verting S, according to lemma 4, there exists a u—derivative
w < Bu such that the sum (6) belongs to (A.):.S™. Thus
the polynomial hg € (A,): 5% where r = max (v, w) < fu.
This contradiction proves the lemma. O

In [Ko73, III, 8, page 136] Kolchin modifies Rosenfeld’s
notion of coherence to the so—called £-coherence. The t-
coherence does not contain Rosenfeld’s coherence since [Ko73,
condition C3, page 136] imposes a test, not only on the A—
polynomials, but on all the cross derivatives generated by
the system. Take for instance A = {u,+v, uy} and € = (v,)
for any ranking such that u, > v; the A—polynomial v,
passes the test of condition C3 while the other cross deriva-
tives do not. Therefore [Ko73, lemma 5, page 137] does not
imply Rosenfeld’s lemma.

According to [Ko73, remark, page 136] the £-coherence is
useful for differential polynomial rings of characteristic non
zero or with coefficients in a ring which is not a field. We
do not know if it is algorithmic.

However, the proofs of Seidenberg [Se56, theorem 6, page
51], Rosenfeld [Ro59, lemma, page 397], Kolchin [Ko73,
lemma 5, page 137] and lemma 5 involve the same argu-
ments. Only the hypotheses change.

5 Testing the coherence

Lemma 6 If A is a differentially triangular subset of R and
S is a finite subset of R which contains Sa and which is
partially reduced w.r.t A then A is coherent by inverting S
if and only if, for all p;,p; € A whose leaders have a least
common derivative 0;;u, we have

A;; partial-rtem A € (Aij) HIC i

where A denotes the set of the elements of A whose leaders
are less than 0;;u.

Proof. Denote D;; = A;; partial-rem A. -

The implication from right to left. If D;; € (A7) : 8%
then, by the specifications of Ritt’s partial reduction algo-
rithms, there exists some u—derivative v < 6;5u (for instance

the leader of A;;) such that A;; € (A,):S8”. Thus A is co-
herent by inverting S.

The implication from left to right. Assume A coher-
ent by inverting S. According to the definition of A", the
specifications of Ritt’s partial reduction algorithms and the
fact that the leader of A;; is less than 6;;u, we see that
D;; € (AY): 8% for some v < 6;ju and is partially reduced
w.r.b. AY, -

Now, A" is not necessarily coherent by inverting S for
there may exist some pr,pr € A", whose leaders have a
least common derivative Opeu’ > 0;ju. However, the proof
of lemma 5 still applies: set ¢ = A;; and fu = 6;;u; since
Brev’ > Ou = 0;ju, no cross derivative between pp and py
can arise in the sum (6) of the proof of lemma 5. Following
this proof, we see that there exists some h € § such that
hD;; € (A”). Thus D;; € (A”) 8.0

Lemma 6 is algorithmic since one can compute a Grébner
basis of (A"):5%. Compute for instance a Grébner basis
of the set A; U{Xh — 1}, where & is the product of the ele-
ments of § and X is a new indeterminate, for any admissible
ordering which eliminates X. The set of the polynomials of
the basis which are free of X is a Grébner basis of (4'):5%.

Remark that we cannot simplify lemma 6 as “A s co-
herent by inverting S if and only if, for all A;j € A(A) we
have A;j partial-rem A € (A):5%” — though this is very
tempting ! The implication from left to right is true (by
Rosenfeld’s lemma) but its converse is wrong, the following
example shows.

The system A of Q{¢t,u,v,w} endowed with derivations
w.r.t. ¢ and y is differentially triangular for any elimination
ranking such that ¢ > u > v > w. It generates only one
A-polynomial Asz = v, — w, which belongs to (A4): 854~ .

p1 = 4wy +we,
Ad P2 = Ue + v,
pPs = uy+w,
ps = (vy — we)(vy +we).

However, the differential ideal [A]:54° contains polynomials
partially reduced w.r.t. A which do not belong to (4):54%.
Take for instance the cross derivative A%; = §,0,p2 —d3ps =
VUgy — Was. Reducing it by A we get D33 = Weaty — WolWaes
which does not belong to (4):S54%. Thus A is not coherent
by inverting Sa.

This example shows also that, even for the special case
£ = (A), Kolchin’s [Ko73, condition C3, page 136] does not
reduce to a test over the A—polynomials.

Lemma 7 If A is a differentially triangular subset of R
such that A;; full-rem A = 0 for all A;; € A(A) then A
18 coherent by inverting any finite subset S of R, partially
reduced w.r.t. A and which contains both Sa and the initials
of the elements of A involved in the algebraic part of the
reductions.

Proof. If A;j full-rem A =0 then A;j € (A,):.S™ where
v < 0;ju denotes the leader of A;;. O

Lemma 7 is useful for practical purposes but only gives
a sufficient condition. The set A below is coherent by in-
verting S4 for any ranking such that w, > wv: the second
condition verified by rankings implies u.y > vy and, since
the separant of ps contains vy + 1 as a factor, Ay = vy €
(Av,) 1 84~ . However, vy is irreducible by A.

o= uxtu
A D2 = Uy,
ps = Uy(”y + 1)2



5.1 The analogue of Buchberger’s criteria

Buchberger’s first criterion has no equivalence for Ritt’s re-
duction in differential algebra. Actually, the leaders of two
differential polynomials which have some common deriva-
tives are never disjoint: they share at least the same differ-
ential indeterminate.

The following lemma is an analogue in differential alge-
bra and for Ritt’s reduction algorithms of the lemma 2.

Lemma 8 Let p;, pj and pr be three differential polyno-
mials of some differentially triangular subset A of R whose
leaders O;u, 0ju and Oru have least common derivatives de-
noted O;;u, Ojru and O;ru. Let S be any finite subset of R
which contains Sa.

If there exists u—derivatives v < O;;u and w < Oy such
that Ajj € (Ay) 8™ and Aji € (Aw): S and if Oiru is a
derivative of Oju then there exists a u—derivative r < O;ru

such that Ay, € (A,): 57,

Proof. We have the relation s;A;; = SkA?;k + s,'Afli".
The proof follows from lemma 4 and the fact that s; € §. 0O

de
24 Upe —»O10u fi1su
(61u)

_ 3 2
D1 = VUgpe T Upe + Ua, 612/65
D2 = Uazy,

_ 2
s Uyy + Uy 1 Uey —» Oogt
P4 = vy, (62u)

_ 3
D5 = Ugzx t Ugys 623/93
Ay = S e T

12 = Uylgy T Uxy; 04 Uyy (8gu)
Az = UyUay. T T T
0 1 2 6y

The picture illustrates lemma 8 over the example given in
introduction. Both Aj2 and A,z are reduced to zero by A.
Therefore Az € (Ay) @ S4™ (where v denotes the leader
of Ais) and Ass € (Au,,) 84 and v < O12u = Ugay and
Upy < 023U = Uyyy, as summarized in lemma 7. The picture
shows also that 013u = Ugeyy is a derivative of fru = uyy.
Thus there exists a u—derivative w < 613u such that Az €
(Aw): 8™

Remark that lemma 8 does not prove that Ajs is re-
duced to zero by A, though it actually is — and has always
been for all the examples we have ever tried. We have only
proven (after reducing Ags to zero) that A is coherent by
inverting S4 whence Az partial-rem A € (A): Sa™, by
Rosenfeld’s lemma. See the remark following lemma 7.

Very recently, we have been aware that Morrison defined
[Mo095] a coherence for non triangular systems. For instance,
a system X which contains a coherent (in our sense) differ-
entially triangular subset A which reduces X \ A to zero is
coherent in her sense. However [Mo095] does not contain any
algorithm to decide if a system is coherent in this sense or
not.

Lemma 8 holds also for non differentially triangular sys-
tems in a special case: if the leader of p; (or ps) is a deriva-
tive of the leader of p; and if the initial of p; is equal to
its separant. Remark that such restrictions do not exist for
Grobner bases: in lemma 2, some leading terms of the p’s
may be multiple of some others.

6 Conclusion

We have demonstrated Rosenfeld’s lemma under stronger
hypotheses: our version does not impose any condition on
the degrees of the polynomials. We have also proven an
analogue of Buchberger’s second criterion. This permits to
redesign some algorithms in differential algebra for a better
efficiency and, in particular, to apply in this field a part of
the reflection put in the Grébner bases theory. Implemen-
tations of these results are being developed in MAPLE.
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