
The Use of
a Combined Text�Relational

Database System
to Support Document Management

CS������

January ����

Kar Yan Ng �

Department of Computer Science

University of Waterloo

Waterloo� Ontario� Canada

kyng�watsol�uwaterloo�ca

�This is the thesis which embodies the results of my research done in partial ful�lment
of the requirements for the degree of Master of Mathematics in Computer Science at the
Department of Computer Science� University of Waterloo

�

Abstract

In this thesis� we study the problem of representing and manipulat�
ing a document to facilitate browsing� editing� string�content searches
and document assembly�

Two major data models in which documents are represented and
stored are �

�� a relational data model� where all text contents in a document
are represented in relations� each with several attributes� or

�� a text data model� where documents are represented as contigu�
ous characters� typically interspersed with tags to capture their
various logical� semantic� and presentational features and rela�
tionships

Each approach has its own strengths and limitations� In our work�
we study how a hybrid system based on a combined text�relational
model can support document management� We describe database
design trade�o�s involving the appropriate placement of information
in the text and relational database components� With an appropriate
design� the advantages of both models can be exploited� while the
shortcomings of using them individually are diminished�

We propose a set of primitive operations and a methodology for us�
ing them to evaluate the various alternatives for data placement� The
methodology consists of simulating pre�de	ned� representative� docu�
ment management tasks using the primitive operations and studying
the numbers� types� and the time performance of the operations in�
volved� Using some representative document management tasks as
examples� we demonstrate the use of the methodology and the prim�
itive operations to study and compare the processing of the tasks in
the various data models mentioned above�

�

To the Glory of Our Lord� Jesus Christ

Without His providence and bountiful supply of wisdom
and physical strength during the last 	ve years� computing
studies would have never been a possibility to me� let alone
reaching the Master
s level�

On a human level� my greatest thanks and heartfelt grat�
itude are due to my supervisor� Professor Frank Tompa�
whose guiding hand has led me away from pitfalls and
dead�ends innumerable� In the past twenty months� his
sagacious and timely direction and comments� as well as
his encouragement� patience and support have made this
research work so much fun and fruitful�

In addition� I express my deep appreciation of the tremen�
dous and commendable e�ort that my readers� Professors
Donald Cowan and Mariano Consens have expended on
reading the drafts of this thesis and their numerous valu�
able comments and suggestions for improvement�

I also owe my gratitude to Dr� Ian Davis and Mrs� G�
Elizabeth Blake of the Centre for New Oxford English Dic�
tionary and Text Research at the University of Waterloo
for providing me their generous and enthusiastic assistance
in using the software and hardware necessary for the com�
pletion of my research work�

Last but not the least� 	nancial support from the Univer�
sity of Waterloo� the OpenText Corporation� and the Nat�
ural Sciences and Engineering Research Council of Canada
�under grants CRD����� and OGP�������� are gratefully
acknowledged�

�

Contents

� Introduction �

��� The Research Problem and its Context � � � � � � � � � �
��� Data Placement in Federated Databases � � � � � � � � ��
��� Contents Overview ��

� Document Management � Tasks and Requirements ��

��� What are Documents ��
��� Document Structures ��

����� Logical Structures � � � � � � � � � � � � � � � � ��
����� Presentational Structures � � � � � � � � � � � � �	
����� Semantic Structures � � � � � � � � � � � � � � � �	

��� What is Document Management � � � � � � � � � � � � ��
��
 Document Representation � � � � � � � � � � � � � � � � ��
��� Document Manipulation � � � � � � � � � � � � � � � � � ��

����� Document Retrieval � � � � � � � � � � � � � � � ��
����� Document Display � � � � � � � � � � � � � � � � �

����� Document Creation and Modi�cation � � � � � ��

��� Document Control ��
����� Document Sharing and Reuse � � � � � � � � � � ��
����� Document Security � � � � � � � � � � � � � � � � ��

� Basic Document Management Operations ��

��� Objective and Scope �
��� Retrieving Sets of Document Components � � � � � � � ��

����� Locating Components � � � � � � � � � � � � � � ��
����� Extracting Components � � � � � � � � � � � � � ��

��� Component Transformation � � � � � � � � � � � � � � � �	
��
 Component Modi�cation � � � � � � � � � � � � � � � � � ��
��� Communication ��
��� Operations on Tuple Sets � � � � � � � � � � � � � � � � ��

����� Joining ��
����� Sorting and Set operations � � � � � � � � � � � �

�� Usefulness of the Operation Set � � � � � � � � � � � � � ��
���� Consistency ��
���� Orthogonality ��
���� Completeness ��
���
 Measurability ��

�

� Data Models for Document Databases ��

�� Overview �

�� The Text Models �
�

�� The Grammar�speci�c Relational Models � � � � � � �
�

�
 Storing an Entire Document as a Relational Table Entry
�

�� Storing Document Components in Separate Tables � � �	

�� Storing Document Components as Nested Relations � ��

� The Grammar�independent Relational Model � � � � � ��

�� The Combined Text�Relational Models � � � � � � � � � ��

�� Representation of Cross�referential Relationships � � � ��

	 Modelling Anticipated Performance
�

��� Overview ��
��� A Data Placement Evaluation Example � � � � � � � � ��

����� What is SGML�� � � � � � � � � � � � � � � � � � ��
����� Representation of the SGML�� Database Using

Various Data Models � � � � � � � � � � � � � � � ��
��� Example Document Management Tasks � � � � � � � � �
��
 Document Representation � � � � � � � � � � � � � � � �

��� Document Manipulation � � � � � � � � � � � � � � � � �

����� Search E�ciency � � � � � � � � � � � � � � � � �
����� Ability to Support Document Display � � � � � �

����� Ability to Support Document Creation and Mod�

i�cation ��
��� Document Control ��

����� Ability to Support Document Sharing and Reuse ��
����� Ability to Support Security �Access� Control � ��

 Conclusions and Further Research ��

��� An Operation Set for Studying and Evaluating Data
Placement Alternatives � � � � � � � � � � � � � � � � � � ��

��� Further Research �

����� Performance Analysis and Measurement � � � � �

����� PerformanceMonitoring in Text Database Man�

agement System � � � � � � � � � � � � � � � � � ��

A The SGML�� Source Text ��

B Task � in the Relational and Combined Models ���

�

C Task � in the Relational and Combined Models ���

D Task � in the Relational and Combined Models ��

E Task � in the Grammar�Independent Relational Model���

F Task � in the Grammar�Independent Relational Model���

G Task � in the Grammar�Independent Relational Model���

List of Tables

� Storing Messages in a Relational Table � � � � � � � � � ��
� Message Headers ��
� Message Bodies ��

 section�title�intro ��
� section�topic ��
� Text nodes ��
 Text attribute ��
� Text structure ��
� report�chapter ��
�	 chapter�section �

�� section�topic ��
�� topic�content ��
�� unit�title ��
�
 part�intro ��
�� textnode � 	
�� textattribute � 	
� textstructure �
�� Summary of Operation Types and Numbers for Exam�

ple Tasks �
�� �		
�	 �		
�� �		
�� �	�
�� �	�
�
 �	�
�� �	�
�� �	

	

� �	

�� �	

�� �	�
�	 �	�
�� �	�

List of Figures

� Storing Messages in a Text Model � � � � � � � � � � � �	
� Storing Message Body in a Combined Text�Relational

Model ��
� An Example of The Three Document Structures of a

Document and their Interrelationships � � � � � � � � � ��

 The Execution Plan of Query Example z � � � � � � � �
�
� A Short Example Document Representation in the Text

Model �
�
� A Short Example Document Representation in the Text

Model without End Tags � � � � � � � � � � � � � � � � �

 The DTD of the Short Example Text with Optional

End Tags �
�
� A Tree Representation of the DTD of the Short Example
�
� An Entity�Relationship Diagram for the section Ele�

ment of a SGML�� Report � � � � � � � � � � � � � � � ��
�	 The Text�Relational DatabaseManagement SystemAr�

chitecture �
�� The DTD of a SGML�� Report in the Pure Text Model �

�� A Tree Representation of the SGML�� Report DTD � ��
�� An Entity�Relationship Diagram of the SGML�� DTD ��
�
 An Abstract of a SGML�� Report � � � � � � � � � � � �
�� A Portion of the Parse Tree of the SGML�� Report at

Appendix A ��
�� DTD for the Text Sub�Model of the Combined Text�

Relational Model �
� An Outline of Document Search Processing � � � � � �
�� Processing of Component Search in Task � in the Text

Models �
�� Processing of Task � in the Grammar�dependent Mod�

els and the Relational and Combined Models � � � � � �

�	 Processing of Task � in the Grammar�independent Models �
�� Processing of Task � in the Text Models � � � � � � � � �
�� Processing of Task � in the Grammar�dependent Rela�

tional Models and the Combined Text�Relational Models �
�� Processing of Task � in the Grammar�independent Re�

lational Models �
�
 The Main Steps of Document Creation and Modi�cation ��
�� Processing of Task � in the Four Data Models � � � � � �
�� Processing of Task
 in the Text Model � � � � � � � � �
� Processing of Task
 in the Grammar�dependent Rela�

tional Models and the Combined Models � � � � � � � � ��
�� Processing of Task
 in the Grammar�independent Re�

lational Models ��

�

� Introduction

��� The Research Problem and its Context

The research reported in this thesis operates within the context of an
ongoing project �BCD���� at the Centre for the New Oxford English
Dictionary and Text Research of the University of Waterloo �here�
inafter referred to as the Centre� to study various issues related to
the design and use of text databases� In that project� a prototype
database management system has been implemented to support data
manipulation and query processing in a combined text�relational data
model� In that model� a document may be broken into di�erent com�
ponents and stored separately in some underlying text and�or rela�
tional databases� We have used that prototype for our preliminary
research� to gain a better understanding of the functionality and op�
eration of the combined text�relational data model�
In our research� we study how a document may be broken into

components and how such components should be partitioned among
the underlying text and�or relational engines�
We illustrate our research problem with a short example�

A Collection of Messages Consider� for example� the problem of
representing and storing a collection of messages� such as the following
�

To � Prof� F� Tompa

From � Kar Yan Ng

Date � ��th September ����

I enclose for your attention a draft of my thesis�

The research reported in this thesis operates within the context
of an ongoing project�

I Look forward to receiving your comments on the draft at your
earliest convenience�

Regards�

To � Kar Yan Ng

From � Prof� F� Tompa

Date � ��th September ����

Thanks for the draft� I�ll give you my comments as soon as I�ve

�nished reading it�

�

�collection�

�memo�

�receiver�Prof� F� Tompa��receiver�

�sender�Kar Yan Ng��sender�

�date���th September ������date�

�body�

�paragraph�I enclose for your attention a draft of my thesis���paragraph�

�paragraph�The research reported in this thesis operates within the context of an ongoing project���paragraph�

�paragraph�I Look forward to receiving your comments on the draft at your earliest convenience���paragraph�

�paragraph�Regards	��paragraph�

��body�

��memo�

�memo�

�receiver�Kar Yan Ng��receiver�

�sender�Prof� F� Tompa��sender�

�date���th September ������date�

�body�

�paragraph�Thanks for the draft� I
ll give you my comments as soon as I
ve finished reading it���paragraph�

��body�

��memo�

��collection�

Figure � Storing Messages in a Text Model

Storing Messages in a Pure Text Model The above collec�
tion of messages can be viewed as a simple text in an ASCII form
as shown above� In this form� it is di�cult to provide e�cient ac�
cess without better management of its structure� Therefore� several
researchers have proposed the use of SGML �Int��� to represent the
logical structures contained in the texts� Structural tags are embed�
ded within the text to delimit individual document components� For
instance� the above messages could be represented using structural
tags as shown in Figure ��
It may be noted that the entire collection is enclosed within a

pair of �collection� tags and may be stored within a single contigu�
ous �le� To facilitate access to the structured text� indexing may be
performed in which the positions and extents of each document com�
ponent� the words� and even the characters are recorded in some data
structures ��ST��� and �CCB�����

The Pure Relational Model Alternatively� the document skele�
ton could be stored in a traditional database� for example� one based
on the relational model� In this case� one representation could be as

��

receiver sender date body

Prof� F� Tompa Kar Yan Ng ��th Sept ���� �paragraph�I enclose for your attention

a draft of my thesis���paragraph�

�paragraph�The research reported in this

thesis operates within the context

of an ongoing project��paragraph�

�paragraph�I Look forward to receiving your comments

on the draft at your earliest convenience���paragraph�

�paragraph�Regards	��paragraph�

Kar Yan Ng Prof� F� Tompa ��th Sept ���� �paragraph�Thanks for the draft� I
ll give

you my comments as soon as I
ve

finished reading it���paragraph�

Table � Storing Messages in a Relational Table

receiver sender date memo id

Prof� F� Tompa Kar Yan Ng ��th Sept ���� �

Kar Yan Ng Prof� F� Tompa ��th Sept ���� �

Table � Message Headers

shown in Table �� Notice that the body column is of type string or
varchar which may be composed of multiple paragraphs� but such
substructures are not represented in the database schema underlying
Table ��
To represent the paragraphs explicitly� it is better to encode the

document structures and contents in two tables as shown in Tables �
and �� For each message we have factored out the document compo�
nents which are common to the whole message and place them into a
Message Header Table �Table �� whereas the message bodies are put
in a separate Message Bodies Table �Table ��� The two tables are
connected by the identi�ers under attribute memo id�
To facilitate access to the tables� indices may be constructed� But

unlike those indices used in the text models� typically indices in the
relational models are built on entire column entries rather than being

��

memo id para � paragraph

� � I enclose for your attention

a draft of my thesis�

� � The research reported in this

thesis operates within the context

of an ongoing project

� � I Look forward to receiving your comments

on the draft at your earliest convenience�

�
 Regards�

� � Thanks for the draft� I
ll give

you my comments as soon as I
ve

finished reading it�

Table � Message Bodies

character� or word� based�

The Combined Text�Relational Model In this project� we
examine the use of a combined text�relational model to support doc�
ument management�
As in the pure relational model described above� we may factor out

all the document components containing no substructure into separate
relational table�s�� On the other hand� instead of putting the various
other text components in some other relational tables� in the combined
model we put these texts into a contiguous �le as in the pure text
model�
To continue with our message collection example� the header infor�

mation may� as in the relational model� be placed in a Message Header
Table �Table ��� However� the textual contents in the message bodies
are kept in a single �le as shown in Figure � �
Similar to the pure relational model� the relational header table

and the components paragraphs contained in the text �le are con�
nected by identi�ers� In the combined model however� the paragraph
ordering is implicit in the text representation and therefore it need not
be explicitly recorded� It may be noted that the memo ids have been
stored with the paragraph components so that the text management

��

�messagebody�

�memo��memo�id����memo�id�

�paragraph�I enclose for your attention a draft of my thesis���paragraph�

�paragraph�The research reported in this thesis operates within the context of an ongoing project���paragraph�

�paragraph�I Look forward to receiving your comments on the draft at your earliest convenience���paragraph�

�paragraph�Regards	��paragraph�

��memo�

�memo��memo�id����memo�id�

�paragraph�Thanks for the draft� I
ll give you my comments as soon as I
ve finished reading it���paragraph�

��memo�

��messagebody�

Figure � Storing Message Body in a Combined Text�Relational Model

system may use them to support linking to the rest of the data�
As in the pure text model� we may construct indices on the �le

containing the message bodies to facilitate access to its contents and
document components� Indices may also be built for the relational
columns as well� as in the pure relational models described above�
In this thesis work� we identify some important criteria by which

we may decide on the appropriate partitioning of data between the
text and relational components of such a combined data model with
the goal of achieving better e�ciency in data manipulation�

��� Data Placement in Federated Databases

A federated database management system is a type of distributed
database management system in which each constituent database man�
agement system is an independent and autonomous centralized system
that has its own local users� transactions and administration �EN����
Speci�cally� in this section we examine some major issues in determin�
ing the appropriate data placement in a federated database environ�
ment that contains both text and relational sub�systems� Following
the terminology used in �BCD����� in this thesis we call this particular
type of federated database managements the combined text�relational
database management systems�

Data Granularization Many document entities are related hi�
erarchically within some logical structures� For these hierarchically�
related entities� we need to decide on the smallest entities that could

��

independently constitute a granule of information� Information units
smaller than the granules selected may exist� but this would not be
represented in schema or grammar which describes the structure of the
relational or the text databases� Such small information units might
only possibly be understood and manipulable by either the document
management systems� the application programmes� or the users them�
selves �see also data partitioning below��
We have to decide on an appropriate level of granularity for both

the text and relational databases�
The level of granularity is subject to some lower bounds as de�

termined by the minimum logical and semantic components that are
meaningful� Such lower bounds are di�erent for di�erent document
types and the ultimate decisions are the database designers�� One
possible lower bound is the individual �elds �for tabular documents�
or the tagged regions �for structured texts�� For European languages
at least� the absolute lower bound is probably a character�

Data Partitioning In addition� in our use of the combined text�relational
data model to support a document management system� we need to
decide on the following aspects �

�� which granule�s� of information should be stored in the relational
database

�� which granule�s� of information should be in the text database�

�� whether and what type of information �e�g� the relational schema�
document grammar� should be stored in the database manage�
ment system managing the combined text�relational database�

� what information should be encoded in the document manage�
ment system sitting on top of the combined text�relational database

�� what information should be left to be encoded implicitly in the
application programmes using the document management sys�
tem�

�� �nally� what information should be left to be stored in the heads
of the human users� To wit� how much knowledge must the
human users to learn in order to manipulate the document man�
agement system properly and use it to its full capability�

��

For the purpose of this project� we are primarily interested in the
�rst two categories� even though we may touch on the others in pass�
ing�
Our literature survey ��CDY���� �CP�
�� �Chu���� �CMVN���� � �OV����

�YMW����� �MIMH���� �CP��� �NCWD�
�� �BG���� and �NM���� re�
veals the followingmain considerations for deciding on the appropriate
data partitioning for a given federated database� The overriding ob�
jective is to minimize the inter�site communication time and maximize
the proportion of local data accesses�

�� Maximizing Local Processing

To minimize the need to perform joins over data stored in dif�
ferent sites� data likely to be accessed together should be placed
closely together in the same relation in the same site as far as pos�
sible� Empirical �ndings of query types and frequency� plus the
semantic relationships among data entities are two complemen�
tary bases on which to assess the likelihood of the information
of di�erent entities being accessed together�

�� Maximizing Parallelism of Query Processing

A higher degree of self�su�ciency of each constituent database
allows query processing to be performed locally as much as pos�
sible and the databases can work with higher parallelism with
one another�

�� Minimizing Data Redundancy and Update Consistency

A certain amount of data redundancy due to replication may
be unavoidable in order to increase the amount of local query
processing and to maximize concurrency of query processing in
di�erent sites� However� high data redundancy leads to higher
total cost in storage space as well as a large amount of updating
work in order to maintain consistency of all copies of the same
data in the system� In this regard� it is desirable to make sure
that overlapping attributes are those that are seldom modi�ed�

However� while these issues are of signi�cant relevance to the data
partitioning issue in a distributed database environment in general�
they do not explicitly take care of the fact that query processing speeds
may be signi�cantly di�erent in the di�erent constituent databases�
In our particular context� owing to the signi�cantly di�erent schemata

��

and component matching capability in a relational database manage�
ment system and its text counterparts� there may be good reasons in
many situations to forgo maximizing local query processing and paral�
lelism in order to attain a better overall query processing performance�

Data Organization Last but not least� after we know how to
granularize and partition the document information� we still have to
determine how to organize the information in each of the respective
sub�systems in which they reside�

��� Contents Overview

In Chapter �� we examine some basic features of a document and
its structures� We examine the various major document management
functions and their functional requirements� with particular reference
to the retrieval and storage aspects�
In Chapter �� we de�ne a set of primitive document manipulation

operators� We intend that this set of operators form the basis of our
discussion in the subsequent chapters� We demonstrate the usefulness
of the operation set along the dimensions of orthogonality� complete�
ness and measurability�
In Chapter
� we review several major data models commonly used

for document databases� We show how to convert document represen�
tations from one model to another using our set of primitive document
operators de�ned in Chapter �� We also examine some approaches by
which the inter�relationships among entities residing in databases with
di�erent data models may be represented�
In Chapter �� we examine the various document management op�

erations that are performed in text and relational models� Insofar as
they are related to the retrieval aspects� we attempt to express them
in terms of the primitive operations we have de�ned in Chapter �� We
discuss how the types� number� and time performance of those prim�
itive operations could be determined by the data models used by the
underlying databases and the way data is represented and partitioned
amongst them�
In Chapter �� we conclude by giving a methodology for using the

primitive operations to evaluate data placement alternatives in a fed�
erated database environment supported by a combined text�relational

�	

model� In addition� we propose some possible directions for future re�
search�

�

� Document Management � Tasks and

Requirements

��� What are Documents �

The Oxford English Dictionary �SW��� de�nes a document as follows
�

Something written� inscribed� etc� which furnishes evidence
or information upon any subject� as a manuscript� title�
deed� tombstone� coin� picture� etc�

In the �eld of computing and data processing� we may take the
term document to mean a collection of recorded information� Such a
collection may exist in some permanent forms� e�g� being stored as a
�le or �les on a disk� or be generated at run�time from a collection of
components that exist in some permanent forms�
With the advent of hypertext �Nel�� and World Wide Web �Ber���

technologies� the boundary of what comprises a document becomes
open� In a sense� it can be said that all the information currently
represented in electronic format is contained in one �global document��
A document may no longer be a static and bounded entity� This un�
derscores the need for document representations that can support re�
trieval� sharing� and update e�ciently�

��� Document Structures

In this section� we overview the three main types of document struc�
tures commonly used to model documents and how they interact� Of
these� the logical structure is the main focus of our thesis� Using a
technical report document type as an example� in Figure � we give
an illustration of the three document structures to be discussed in the
following subsections and their inter�relationships�

����� Logical Structures

These capture the syntactical organization of a document� As such
these are tools for representing human knowledge in textual forms�
The logical structure is the device by which an author organizes thoughts
and presents them to readers in a logical manner�

��

Presentational Structure

Book

PagePagePagePage

Semantic Structure

Literature Survey

Alternative Viewpoints

Alternative Viewpoint 2
Alternative Viewpoint 1

Factual Description Discussion

Positive Arguments

Negative Arguments
SummaryMain Body

Introduction

paragraphparagraph

Logical Structure

section

paragraph
paragraph

paragraphparagraph

sectionsection

Chapter

paragraphparagraph

section

Chapter

Document

Figure � An Example of The Three Document Structures of a Document
and their Interrelationships

��

����� Presentational Structures

These describe how a document is to be formatted and presented�
Typical presentational components in a technical report document
type include �

�� page

�� line

�� column

����� Semantic Structures

The semantic structures convey the organization of the ideas presented
in a document� In principle� the semantic structure is supposed to
model the document at a higher and more abstract level than that of
the logical structure which tends to focus chie�y on the �hardware� of
a document like paragraphs and sections� See Figure ��
In practice� we �nd it hard to clearly distinguish the semantic

structure of a document from its logical counterpart� For example� in
a well�written article� each paragraph contains one point of argument�
and each section is typically used to convey ideas about a certain
main theme of the matters under discussion� In fact� by putting things
within a certain logical component� an author has already indicated
that those things are closely related to one another in some aspects
semantically�
Moreover� since they typically operate on a more abstract level�

the semantic structures and their components are much harder to be
clearly demarcated compared with the logical ones� A paragraph is
clearly marked by white space� but where a particular argument or
viewpoint starts or begins is much harder to ascertain�
In fact� we severely doubt whether a hierachical model is the right

tool to capture the semantic structures of a document �RTW���� Prob�
ably we need modelling apparatus which has been specially developed
for modelling at such a level of abstraction� One possibility could
be �rst and second order logics used in deductive databases �e�g� see
�RSB�����
Therefore� for the purpose of our thesis� we concentrate on the

logical structure� In fact� in many places we implicitly assume that it
coincides with the semantic structures of the document under inves�
tigation�

��

��� What is Document Management �

�WLL��� de�nes document management to be �

the document preparation� communication� and manage�
ment aspects of o�ce systems�

We have found no formal and exact delineation of such aspects�
Based on common usage and our literature review however� we con�
sider that these include the following �

�� document representation

�� document manipulation

�a� document retrieval

�b� document display

�c� document creation and editing

�� document control

�a� document sharing

�b� document security

In this thesis� we focus on the document representation and ma�
nipulation aspects of document management� In addition� we extend
the scope of document management to cover those document�related
activities outside an o�ce environment as well�
In the following sections� we brie�y outline and discuss the main

functional requirements pertaining to each of the above�mentioned
aspects of document management� with particular attention to their
impact on the ways in which documents are to be represented at the
logical level� This forms part of the groundwork on which to build our
subsequent discussion on using data models for document databases�

��� Document Representation

Documents need to be stored in media that are reliable and durable� In
addition� to economize on the cost of storage� we seek to minimize data
redundancy in storage� However� this needs to be balanced against
the need for e�cient retrieval� In particular� in a distributed database
environment� we need to strike a compromise between the amount of
communication time among the databases on the one hand� and the
availability of storage space� data redundancy for each local database�

��

and local query processing time on the other� Such a compromise
substantially determines how data placement and partitioning should
be performed in a distributed database system�
Furthermore� we need to choose a data model having regard to the

document types and the anticipated query types so that information
loss is minimized� Almost invariably each document type has its own
natural way of representation� For instance� tabular documents might
lend themselves to the relational table representation more naturally
than a document containing only plain text�

��� Document Manipulation

����� Document Retrieval

We want information contained in documents to be retrievable with a
reasonable response time�
In the following paragraphs� we discuss some common approaches

to document retrieval and their main functional requirements as far
as data representation and modelling are concerned� We discuss link
resolution� a specialized form of document retrieval� The e�ciency
of handling links could be signi�cantly in�uenced by the data models
chosen for supporting them�

Search for Document In document searches� we look for target
documents that match our requirements as expressed in some querying
languages�
Some popular examples of retrieval systems that support docu�

ment searches include Wais �Lin���� Open Text �Ope���� Lycos �ML�
��
and Harvest �BDM��
�� Users submit search queries to a document
database front end� typically in the form of �

�� keywords�

�� contexts within which matches should occur

�� other document attributes like the names of authors� dates of
writing� translation� and publication� publishers� etc�

� some optional boolean operators to specify the desired relation�
ships among the above items

The matched documents that satisfy the set of user�speci�ed re�
quirements �or some parts thereof� are returned� either

��

�� in their original forms� or

�� as represented by the addresses of the places where the tar�
get documents are stored� To promote portability of documents
across document management systems� such addresses should
follow some uniform or commonly used syntax� As a common
example� the addresses may be in the form of Uniform Resource
Locators �the URLs�� in an HTML document�

Alongside the document addresses� the document retrieval sys�
tem may display some short descriptions summarizing the con�
tents of the documents �BDM��
�� Based on such information�
the users can traverse the links and arrive at the source docu�
ments which may contain links for further traversals�

To facilitate this mode of retrieval� we need data models that allows
the various document description items that are likely to be speci�ed
as search conditions to be searched e�ciently having regard to their
syntactic and semantic characteristics�

Link Resolution as a means to support Document Re�
trieval With the availability of fast tele�communication links and
high�resolution monitors� the use of link resolution to support multi�
media document searches has quickly risen in popularity in recent
years� Typically users are presented with a start�up page� contain�
ing a number of links� Such links may be accompanied by strings
or images�icons that convey a brief outline of the contents of their
targets�
Links carry information on how to locate the target documents�

During link resolution� such information is interpreted by the docu�
ment management system to retrieve the document�
Various mechanisms of link resolution have been proposed� typi�

cally falling into two main categories � static and dynamic resolution�
In static resolution� the addresses of the link targets are hard�

coded in the page �typically in HTML �Ber��� format� facing the users�
Links are followed by the document management system executing the
appropriate document transfer protocols �e�g� http� gopher� ftp for
documents located at other machines� and database retrieval mecha�
nisms �at local machines� to obtain the required documents�

�see http���www�w��org�hypertext�WWW�Addressing�URL�URI Overview�html
�the start	up page could be either pre	set or generated by an initial query

��

In dynamic resolution� we add one additional level of indirection
to link addressing� Instead of hardcoding the actual target address in
a document page� we encode the mechanism to locate that address�
Such mechanisms could be some keywords or a prede�ned query which
the document management system could interpret and invoke the ap�
propriate document retrieval operations accordingly� Some examples
of such dynamic link resolution are found in the use of CGI �the Com�
mon Gateway Interface� scripts� �Hea���� �Car�
�� and �BTR����
In the case of CGI scripts used in HTML documents� the clicking of

a link triggers the execution of some pre�written scripts which� based
on some prede�ned keywords associated with the link anchors� then
execute the necessary information retrieval operations either locally
or in some remote sites�
In the project Microcosm �see �Hea��� and �Car�
�� at the Uni�

versity of Southampton� researchers place all link information �such
as the target addresses and the identi�er of the links� in a link base
separated from the document database� Only the link identi�ers are
kept in the documents� Modi�cation of the target addresses necessi�
tates only modifying the link bases� Link traversal involves looking
up the link information in the link base based on the link identi�ers�
Based on the target addresses returned from the link base� the target
documents may then be fetched�
On the other hand� a dynamic resolution prototype has been built

to operate on the OED �short for the Oxford English Dictionary �SW����
database at the University of Waterloo �BTR���� Link traversal in�
volves searching for some keywords in the OED database and returning
the appropriate targets as results to be displayed to the users� In addi�
tion� �BTR��� demonstrates another advantage of dynamic resolution�
It permits di�erent link resolution mechanisms to be invoked based
on

�� the context in which the link traversal is triggered and

�� the applications handling the link resolution�

����� Document Display

For the information contained in a document to be usable by its human
users� its contents must be rendered in a form in a medium perceptible
by one or more of the human senses� We focus on the visual sense for
the discussion in this thesis�

��

From a database designer�s perspective� we are primarily interested
in ensuring that the information retrieved from the database may be
e�ciently organized into a displayable format� More speci�cally� we
need to form a string out of the retrieved contents which is then writ�
ten to a speci�ed display device� Users may be allowed to control
the formation process of the display string by specifying their display
requirements using some language devices� The document manage�
ment system then sees to it that such display speci�cations are duly
re�ected and followed in forming the display string�

����� Document Creation and Modi�cation

One main purpose of document creation and its subsequent modi�ca�
tion is storing and communicating knowledge� In creating a document�
an author endeavours to encode his�her ideas in the structures and
contents of the document� in the hope that ideas can exist in a more
durable form and that the readers at the other end of the communica�
tion channel can get hold of the author�s ideas by following a reverse
process to decode the structures and contents of the document�
The task of the document management system is to package a piece

of text into a set of tuples or text fragments according to a speci�ed
schema to be inserted into the appropriate database with or without
replacing or deleting the existing document components there� In
order to do this� the system must �rst parse a piece of text input or
edited by users to identify and possibly isolate the structure in the
text�
In addition� at the underlying databases� document creation or

modi�cation action would cause the necessary modi�cation to the data
and indicies�

��� Document Control

��	�� Document Sharing and Reuse

Traditionally �and even with the prevalence of WWW and hypertext��
most documents are stored at their local sites as single �les in many
major document processing formats such as WordPerfect �Wor�	� and
MicrosoftWord �Mic�
a�� It has been the users� responsibility to break
their documents into components if they so wish� Some document
processing systems have facilities to allow their users to specify how a

��

document is to be composed at run�time� One example would be the
include� facility of LATEX�Lam����
One major shortcoming of this approach is that it severely restricts

the reusability and sharability of a document� It makes con�guration
management of the document very ine�cient� Versioning can only
take place at the level of entire documents� To permit some parts of
a document to be revised� reused or shared among a team of people�
the document owners either have to allow others access to the whole
documents �in which case simultaneous modi�cation of di�erent parts
of the same document by di�erent users could not be allowed� or do
substantial editing �e�g� cutting and pasting� to extract the necessary
components and put them into separate �les�
As far as the document management system is concerned� one ma�

jor requirement for document sharing and reuse is that the system has
to be able to handle sub�units of documents e�ciently� In addition� it
must allow the location of such sub�units in a document to be speci�
�able so that a complete document can be reassembled on demand�
With such functionality� document sharing and reuse among multiple
users may be well�supported�

��	�� Document Security

The objective here is to make sure that a piece of document is available
in an uncorrupted form� only to the users for whom the document is
intended but not to others� According to �IES�
��

Security in relation to electronic documents means main�
taining their availability� integrity and con	dentiality by
minimizing the risk of loss� corruption� and unauthorized
access�

As far as database design is concerned� we want to make sure
that each document component is associated with the right security
speci�cation for its intended users�

�even though only � level of nesting is allowed�

�	

� Basic Document Management Op�

erations

��� Objective and Scope

In this chapter� we de�ne a number of basic document management
operations to help characterize the operations used to support the re�
trieval and storage functionalities of a document management system�
Our objective of designing such an operation set is to use the occur�
rence and timings of their member operations to guide data placement
decisions in a federated database system involving both text and re�
lational data models� to achieve better time performance in retrieval
and storage activities�
In de�ning this list of basic operations� we intend them to be high�

level abstractions of the query processing activities going on in a docu�
ment database to retrieve and store documents� We have endeavoured
to make the operations as independent of implementation and data
model as possible�
In the following sections in this chapter� we start by outlining what

query processing activities each of these operations represents� For
each operation� we state some factors which would signi�cantly a�ect
the time performance of the respective operations� We will discuss
the relevance and signi�cance of such performance factors in Chapter
� where we discuss and illustrate �

�� how the main retrieval and storage functionality used in a docu�
ment management system in its various document management
tasks� as identi�ed in chapter �� may be implemented using these
basic operations�

�� how the time e�ciency with which these basic operations are
performed may be in�uenced by the data models chosen to rep�
resent the documents and by the ways data are allocated among
the constituent components of the data model chosen� and

�� how such basic operations may be used to guide the data place�
ment and query optimization decision�making of a combined
text�relational database designer�

Following the de�nition of the operation set� we informally eval�
uate it in the dimensions of consistency� orthogonality� completeness�

�

and measurability� We do not attempt to formalize our de�nition of
these operations and therefore we cannot give a formal proof that the
operations satisfy each of these criteria�
In all the discussion in this chapter� we use the term text component

to refer to a document component plus the structural tags in which
it is enclosed� In addition� we use the term collection unit to mean a
base relation in a relational model� analogously� in a text model� we
take a collection unit to be a text object that is not contained within
another text object� One example of this would be a collection in
Figure ��

��� Retrieving Sets of Document Components

����� Locating Components

locateComp �set of component contents or locations�

grammar or schema of the set�

names of components to be located in the set�

select condition �

return set of component locations

The set of component contents may be either a set of tuples or a
set of text fragments� Alternatively� the �rst argument could be a set
of component locations which could be the locations of either texts or
tuples�
The location set� both in input and output� consists of pairs in the

form of � ��component name�� �location��� where the locations could
be disk locations or other equivalent� indirect� forms of addressing�
In this operation� we �nd all the locations of the places in the

given set of input tuples or texts as constrained by any given schema
or grammar� where the speci�ed selection condition is satis�ed�
The tuple and text inputs to the operation may come from either

base or intermediate relations or texts�
To meet the relational completeness requirement for selection �see

subsection ���� below� for the basic operation set� we require that the
select condition may contain a formula which supports the use of �

�� constant expression operands

�� component identi�er operands

��

�� regular expression speci�cations of string operands

The component identi�ers may be the �eld names �or generic
identi�ers� in an SGML document or attribute names in a rela�
tion�

� arithmetic comparison operators �� �� �� �� ��� and �

In addition� to give the locateComp operation some text manipulation
functionality� we require that the select condition supports the text
position comparison operators proximity and containment� For exam�
ple� PAT�s operators fby� near� including� and within �ST��� could
be suitable operators for this purpose�
The execution time attributed to this operation includes time spent

in performing any index lookup and text searching� pattern match�
ing� and returning the locations of tuples� text components� or parts
thereof� for which the conditions of selection are satis�ed� In addition�
it also includes the time spent on format conversion� e�g� between a
text and string� and between a string and an integer�
An example of using the locateComp operation on Table � would

be �

locateComp �Table �� schema of Table �� f receiver�
sender g� f body including ��nished� g �

for which the output could be f ��Table ���receiver� pointer to
the receiver �eld in tuple ��� ��Table ���sender� pointer to the sender
�eld in tuple �� g
Based on the operation inputs� we anticipate the following to be

signi�cant performance factors �

�� total amount of data against which actual matches need to be
performed

�� cost of performing a single �complete� match

�� selectivity of the condition �if any�

�
number of components satisfying the condition

size of input set

����� Extracting Components

extractComp �set of component locations�

��

return set of extracted components

This operation takes as input a location set such as that returned
from the locateComp operation� Each component extracts the re�
lational or text components belonging to the same collection units
whose names and addresses of matches are contained in the input lo�
cation set� The output is a set of pairs in the form of ��component
location�� �content��� An example of performing extractComp on
Table � using the output of the result of the previous locateComp

operation would be

extractComp �f ��Table ���receiver� pointer to the re�
ceiver �eld in tuple ��� ��Table ���sender� pointer to
the sender �eld in tuple �� g�

for which the output would be f �pointer to the receiver �eld in
tuple �� �Prof� F� Tompa��� �pointer to the sender �eld in tuple ��
�Kar Yan Ng�� g
Based on the inputs� we anticipate the following to be signi�cant

performance factors �

�� size of the location set

�� cost of extracting one component

��� Component Transformation

Parsing

parse �string�

grammar of the text contained in the string�

schema of the tuples or a set of text fragments to be
formed�

return sets of tuples or text fragments

In this operation� a string is parsed into its various components
according to a grammar and the components are placed into some
sets of tuples as speci�ed by a schema� Alternatively� the tuples may
be packaged into database insertion commands which may then be
executed via a subsequent insert operation�

��

Assembly

assemble �sets of tuples�

schema of tuples�

grammar of the text to be formed�

return a string

This is the inverse of the parse operation� It takes some sets of
tuples and their schemata to produce a text according to a speci�ed
grammar by taking the components from each set of tuples in order
and matching the component identi�ers as appropriate�
One example of using the assemble operation would be �

assemble �fTable �� Table � g� schemata of Tables � and
�� grammar of the collection of message in Figure � �

for which the output would be a string such as shown in Figure ��
Based on the inputs� we anticipate the following to be signi�cant

performance factors for both parsing and assembly �

�� number of the tuple sets involved

�� total cardinality of tuple sets

�� cost of parsing or creating one assembled component

��� Component Modi	cation

Insertion

insert �contents�

collection unit�

return nil side e�ect of writing contents to the
collection unit

This operation inserts the input contents to the speci�ed collec�
tion units� We assume that insertion is performed either locally or
close to the machine running the database management system� �For
remote storage� any time spent in the communication links will be
accommodated by an additional operation comm to be discussed in
the next subsection�� Each component written is assumed to match
a base relation tuple or a text object� and thus no byte o�set needs
be speci�ed� In addition� this includes any necessary index creation

��

and�or modi�cation work� It also includes the time for any neces�
sary rewriting of parts or whole of the databases� The timing would
also include the time spent in waiting for locks� disk access� and any
queueing in the underlying operating systems�
To allow for the physical relocations of document components� we

do not propose to use physical disk locations as parameters� Instead�
we simply specify the logical location of the destination storage com�
ponent and let the underlying database management system decide
where to place it�
Moreover� specifying the destination storage component is not nec�

essary if that information has been embedded in the content to be
written� For instance� the contents to be written may be the insertion
commands to be executed at the underlying databases�
One example of using this operation would be �

insert �contents of tuple �� Table ��

Based on the inputs� the signi�cant performance factors are the
size of contents to be written� the size of the existing databases� and
any related access structures� and the number and type of indices to
be updated�

Deletion

delete �locations of components�

return nil the side e�ect of deleting the components
as identi�ed by the input locations

This takes in a set of component locations returned from the locate�
Comp operation and delete the existing contents there in the database�
All of the locations must be in the same collection unit�
One example of using this operation would be �

delete �pointer to the sender �eld in tuple � in Table ��

Based on the inputs� the signi�cant performance factors are the
size of component to be deleted� the size of the existing databases�
and any related access structures� and the number and type of indices
to be modi�ed�

��

��� Communication

comm �site ��

site ��

message contents�

return nil side e�ect of transmitting message from
site � to site �

This operation moves a piece of data from one site to another�
We take this to include the time spent in the communication link�
including any waiting and re�transmission times�
Based on the inputs� two signi�cant performance factors are �

�� size of the message

�� speed and length of the communication links between sites � and
�

��� Operations on Tuple Sets

��	�� Joining

join �location set ��

location set ��

join conditions�

schemata for the input and output sets�

return a set of component locations for which the
contents they point to satisfy the join condition

The join condition follows the same de�nition as the select con�
ditions for the locateComp operation as described in subsection �����
above� except that the join condition does not allow the use of text
position comparison operators� The input sets contain the locations
of the tuples or texts to be operated upon by the join operation�
In either case� the input set may correspond to a collection unit or

it may be generated from operations that return set�s� of component
locations e�g� locateComp�
Like locateComp� the time for join includes the time spent on such

format conversion work as those between text and string� and between
string and integer�
Based on the inputs� three signi�cant performance factors are �

��

�� sizes of the tuple sets

�� selectivity of the join conditions

�� cost of producing one joined tuple

��	�� Sorting and Set operations

sort �a set of text or tuple locations�

sorting key�s��

order�

schemata for the members of the input set�

return a set whose members have been sorted accord�
ing to the speci�ed sorting key�s� in the speci�ed
order

union �location set ��

location set ��

return the union of the two input sets

intersect �location set ��

location set ��

return the intersection of the two input sets

di�erence �location set ��

location set ��

return the di�erence of the � input sets

In all cases� the input set has to correspond to a collection unit or
it may be generated from operations that return set�s� of component
locations e�g� locateComp�
Based on the inputs� signi�cant performance factors for these op�

erations are �

�� the size of input set�

�� the selectivity of the operation �equal to � for sort�

�
number of input components

number of output components

�� cost of producing one output component

In addition� for the sort operation we need to consider the timing
for key comparison as well�

��

��
 Usefulness of the Operation Set

��
�� Consistency

We examine the consistency of our operation set by studying how the
input of each operation may be produced�

�� locateComp

The sets of tuples or texts could be base relations or texts stored
in the databases being operated upon� Alternatively� they may
be produced by other operations � extractComp� parse� join� sort�
and the various set operations�

The name of components and the select conditions need to be
input by the users or the application programming calling the
locateComp operations based on user inputs�

�� extractComp

The set of component locations is returned from the locateComp

operations�

�� parse

The string to be parsed may either be created and input by the
users through editing or be retrieved from a database through
the extractComp operation�

� assemble

The schemata and grammar are speci�ed by the users or the
application programmes� The set of tuples to be assembled is
either directly input by the users or produced from the extract�
Comp operation�

�� insert and comm

The destination components for insert� and the communicat�
ing sites for comm are speci�ed by the user or application pro�
grammes� The contents can be anything and as such outputs
from any one of the operators�

�� delete

The location sets could be generated by either the locateComp�
join� sort� or the set operations�

� join� sort and set operations

��

The list of sets could be formed from sets returned from any of
the operators that produce location sets as their outputs� These
include all the set� sort� locateComp� and join operations�

��
�� Orthogonality

By the construction of the operation set� we have made sure that one
operation cannot be simulated by another and their functionalities do
not overlap� with the exception of the join operation with the locate�
Comp and extractComp operations�
Violation of orthogonality occurs in the above�mentioned case to

the extent that join may involve component locating and extracting�
To avoid such violation� we would have had to break the join operation
into smaller operations� But this would severely reduce the measura�
bility of the resulting operations since for most database management
systems� their execution plans or sets of query commands do not sup�
port such a �ne granularity of operations� In other words� without
access to the source codes� it may not be feasible to take time mea�
surement for the operations�
Therefore� as a compromise between orthogonality and measura�

bility� we choose to keep the join operations alongside the locateComp

and extractComp operations� In studying the number of basic opera�
tions used to perform a document management task� we have to take
care to avoid double�counting�

��
�� Completeness

Starting with a discussion of the meaning of completeness in general�
in this subsection we demonstrate the extent of completeness of the
basic operation set we have proposed above�
We typically prove the completeness of a language by showing that

it has at least the same expressive power of another one� But we are
unable to do this here� because there is as yet no widely accepted
standard language in which all document manipulation functionalities
are supported�
Instead� we informally demonstrate the extent of completeness of

our operation set by demonstrating that it is relationally complete
and� by way of example tasks in Chapter �� that the typical document
management tasks as described in Chapter � may be simulated by our
basic operations in the various data models being studied�

�	

De�nition of Relational Completeness Ullman �Ull��� de�
�nes a language to be relational completeness if it �

can �at least� simulate tuple calculus� or equivalently� rela�
tional algebra� or domain calculus�

In addition� we extend the measure of completeness for our set of
basic operators to cover some of the text manipulation functionalites
provided by PAT �ST����

Demonstration of Relational Completeness Ullman �Ull���
lists �ve basic operations that de�ne relational algebra and we can
simulate each one as follows �

�� Set Union and Di�erence

We may achieve these by using our set operations union and
di�erence respectively�

�� Cartesian Product

This may be done by the join operation with no condition spec�
i�ed�

�� Projection

This may be done by performing the locateComp operation on
a tuple set to identify components and then issue extractComp

to retrieve the required attributes from the tuple set� The input
location set would be formed from pairs containing the required
attribute names and the identi�ers of the tuples�

� Selection

The selection operation in relational algebra is de�ned as follows
�Ull��� �

Let F be a formula involving

�a� operands that are constants or component numbers

�b� arithmetic comparison operators �� �� �� �� ���
and �

�c� logical operators �� �� and �

Then �F �R� is the set of tuples t in R such that when�
for all i� we substitute the ith component of t for any
occurrences of the number i in formula F � the formula

�

F becomes true� For example� �����R� denotes the
set of tuples in R whose second component exceeds its
third component�

Suppose f is a subformula in F � S is the set of source tuples or
texts upon which F is to be evaluated� Subformulas containing
components belonging to the same sets of tuples�texts may be
evaluated by one locateComp operation� Such subformulas may
contain any arithmetic and logcial operators�

Let �� and �� be sub�formulas containing components belonging
to di�erent sets of tuples�texts such that f � �� op �� � We may
evaluate t� and t� individually using the locateComp operation�

�a� For op being � or �� we may obtain the value for f by
performing a union or intersect operations respectively on
the intermediate result sets of �� and ���

�b� For op in f �� �� �� �� ��� �g� we may perform a join

operation between the intermediate sets of tuples�sets of ��
and ���

�c� For f being � �� we evaluate � using the locateComp oper�
ation and obtain the result for f by applying the di�erence
operation to S and the intermediate result set from ��

��
�� Measurability

We study the measurability of the basic operations by examining the
precision to which the time spent by each of these basic document
manipulation operations may be measured if we are given a black�
box database management system for which we are not permitted to
modify its source code explicitly in order to obtain the timing for each
of the operations to be measured�
As a general remark however� the precision and the reliability of all

time measurements are limited by the precision of the timing statistics
available from the database management system being studied� The
timing statistics provided by Oracle �Ora��a� for example are only
accurate up the nearest �

���
seconds� Moreover� process timing is also

signi�cantly in�uenced by the workloads of the operating systems�
hardware� and communication links at the time of measurement�
Moreover� in situations where we attempt to measure the time

spent by an operation by observing the di�erences between the pro�

��

cessing times of queries with and without the operation� special atten�
tion needs to be paid to the execution plans of the test queries� We
must make sure that the queries with and without the operation are
indeed executed in such a manner that the subject operation makes
the only di�erence�

The sort and set Operations Their timings may be measured
by the di�erence in query execution times between queries with and
without the respective operations�

The component transformation Operations This may be es�
timated by studing the cpu times of the parse and assemble operations
which are typically performed outside database management systems�

The comm Operations Apart from the sizes of the messages or
contents to be communicated� the time performance of these oper�
ations is substantially determined by the size of the operating sys�
tems the existing databases and the hardware on which it operates�
As such� timing for such operations may be performed outside the
database management systems�
Timing information for commmay be measured by making a small

application programme to send a message of known length from one
machine to another via sockets�

The insert Operations Apart from the sizes of the messages or
contents to be written� the time performance of this operation are
substantially determined by the operating systems� the sizes of the
existing database and its indices� and the hardware on which it oper�
ates�
Time spent by the operation may be measured by the time taken

to insert a text or a tuple of known size into the given database�s��
However� this might not re�ect the full time cost of a modi�cation
operation in a database management system where merging of indices
or database data are delayed�

The delete Operations Similar to the insert operation� the time
spent by the operation may be measured by the time taken to delete a
component of known size from the database� However� like the insert

��

operation� this might not re�ect the full time cost of the operation
since garbage collection and consolidation of indices or data may be
delayed�

The locateComp� extractComp� and join Operations In princi�
ple� the timings for such operations may also be measured by observing
the di�erences in timing of queries with and without the operations�
However� in practice� the applicability of this approach is constrained
by the following system�dependent limitations �

�� For the �rst two operations� even though most database man�
agement systems may support their functionalities� the granu�
larity of the corresponding query commands may not exactly
correspond to our proposed operations� For instance� the locate�
Comp and extractComp operations may be supported via a single
select command and so it may not be practicable to measure
their individual timings by submitting queries with and without
the operations�

�� Queries with and without the operations may follow substan�
tially di�erent execution plans so that the time di�erences do
not give a good or even meaningful indication of the timing for
the operation being observed�

For instance� for the join operation� queries with and without it
may use di�erent data structures and access paths�

In such situations� we propose the use of regression analysis tech�
niques �Jai��� to identify the impact of individual operations� With
this approach� we may use the total execution time for a query contain�
ing the operation as the dependent variable� The steps for executing
the query� accessing the data� and storing the intermediate results
are set out in an execution plan �EN���� We use the execution plans
supplied by the database management systems to identify the query
processing operations that have been performed and the sizes of in�
puts to each of them� Suppose for simplicity we use a linear regression
model� We may then use the sizes of inputs as independent variables
and for each operation the regression coe�cient would be its time cost
per unit input�

��

To illustrate the approach� consider the following query submitted
to Oracle �		 �

select � from emp� dept where emp�dept�no � dept�deptno
�z�

The corresponding Oracle execution plan is shown in
�

primary key of dept
Index (Unique Scan)

4

Table Access (By rowid)

32

Table Access (Full)

nested loop1

Figure � The Execution Plan of Query Example z

According to �Ora��b�� the execution plan is interpreted as follows
�

�� NESTED LOOPS is an operation that accepts two sets of rows� an
outer set and an inner set� Oracle compares each row of the
outer set with each row of the inner set and returns those rows
that satisfy a condition�

Accordingly� this corresponds to the join operation in our basic
operations set�

�� TABLE ACCESS �BY ROWID� is a retrieval of rows from a table
based on its ROWID

�This example has been adapted from an example in page �
	�� of �Ora�c��

��

This corresponds to an extractComp operation�

�� INDEX �UNIQUE SCAN� is a retrieval of a single ROWIDs from an
index� This corresponds to an locateComp operation�

According to ���� of �Ora��c�� Oracle performs the following steps
to execute the example query �

�� step � accesses the outer table �emp� with a full table scan�

�� for each row returned by step �� step
 uses the emp�deptno value
to perform a unique scan on the index of dept�deptno

�� step � uses the rowid from step
 to locate the matching row in
the inner table �dept�

� each row returned by step � is combined with the matching row
returned by step
 and returns the result�

Expressed in terms of our primitive operations� this query would
be processed as �

l� � locateComp �emp� schema of emp� !�

e� � extractComp �l��

l� � locateComp �dept� schema of dept� !�

e� � extractComp �l��

join �e�� e�� f �e��deptno � e��deptno� g� schemata of e� and e��

We are interested in knowing the times for the locateComp� ex�
tractComp� and join operations� Therefore� a linear regression model
for the query execution time for such a query could be �

exec time � join cost � �size of e� " size of e�� �
locateComp cost � �size of emp " size of dept� �
extractComp cost� �size of l� " size of l��

where

�� exec time is the query execution time as reported by Oracle

�� join cost is the unit time cost for performing a the join operation

�� locateComp cost is the unit time cost for performing an locate�

Comp operation

� extractComp cost is the unit time cost for performing an ex�

tractComp operation

��

It is noted that using such a time measurement approach does
require a good correspondence between our basic operations and the
operations reported in the execution plans of the database manage�
ment system being studied�

��

� Data Models for Document Databases

��� Overview

According to �EN���� a data model is

a set of concepts that can be used to describe the structure
of a database�

Furthermore� �EN��� classi�es data models as follows �

High�level orConceptual data models provide concepts
that are close to the way many users perceive data�
whereas

Low�level orPhysical data models provide concepts that
describe the details of how data is stored in the com�
puter� Concepts provided by low�level data models
are generally meant for computer specialists� not for
typical end users�

Between these two extremes is a class of Implementa�

tion data models� which provide concepts that may be
understood by end users but that are not too far re�
moved from the way data is organized within the com�
puter� Implementation data models hide some details
of data storage but can be implemented on a computer
system in a direct way�

In the remainder of this chapter� we give an overview of four im�
plementation data models for document databases� They have been
selected for discussion primarily for their direct relevance to our the�
sis focus of investigating the data placement issue in the combined
text�relational data model� At a generic level� we compare and con�
trast their functionality and performance� In the course of doing so�
we would also pinpoint the main features� advantages and limitations
of each data model�
There are relationships among documents and�or their compo�

nents which are not explicitly represented in the structure of a data
model as de�ned above� In a document� these relationships typically
appear in the form of cross�references among document components�
After the data model review� we discuss how such cross�referential re�
lationships may be encoded within each of the implementation data
models�

��

��� The Text Models

In the text model� a document is typically� though not necessarily�
stored in its entirety as a single piece of text� If its structure is to be
explicitly represented� we may do so by marking up the corresponding
document components by some structural tags�
In these regards� the Standard Generalized Markup Language �SGML�

�Int��� has been designed to provide a standard way of representing
text documents marked up by structural tags� An SGML document
typically contains a DTD �or the document type de�nition� which con�
tains the grammar to which the text must conform and the text which
is tagged according to the DTD� The tags are embedded within the
text to de�ne boundaries of logical blocks� Moreover� an SGML docu�
ments consists of elements whose structures and permissible contents
are de�ned in the DTD� Each element is marked up by a pair of tags
in the text� Each tag contains an identi�er �the generic id� that iden�
ti�es the element it represents and optionally some attributes with
which that element is associated�
For instance� Figure � gives an example of how a report� containing

a title and a chapter may be represented� where the newlines have been
introduced solely for display purposes� The set of tags is prede�ned
and their inter�relationship is represented in a grammar or a DTD as
in Figure � The textual contents lying between a pair of start and
end tags �e�g� �para� and ��para�� is called a region� Whereas we
have de�ned regions� by explicitly placing tags around the text which
they contain� in some text indexing implementations �e�g� �Ope��� and
�CCB����� we may instead de�ne regions based on some user�speci�ed
patterns without explicit tag insertion�
A text database schema could then consist of �

�� the set of tags

In the example in Figure �� the set of tags is

f �report�	 �title�	 �chapter�	 �intro�	 �para�

g

�� optionally� the grammar �e�g� in the form of a DTD in SGML�
describing the relationships among the tags�

Even without an explicit grammar� the document structure of a
piece of text is implicit in the relative positions of the tags� As pointed

�extracted and adapted from the SGML� report �AT�� and section �� below

��

�report�

�title�Getting started with SGML��title�

�chapter shorttitle
�challenge��

�title�The business challenge��title�

�intro�

�para�With the ever�changing and growing global market	 companies and

large organizations are searching for ways to become more viable and

competitive� Downsizing and other cost�cutting measures demand more

efficient use of corporate resources� One very important resource is

an organizations information���para�

�para�As part of the move toward integrated information management	

whole industries are developing and implementing standards for

exchanging technical information� This report describes how one such

standard	 the Standard Generalized Markup Language �SGML�	 works as

part of an overall information management strategy���para�

��intro�

��chapter�

��report�

Figure � A Short Example Document Representation in the Text Model

�	

�report�

�title�Getting started with SGML

�chapter shorttitle
�challenge��

�title�The business challenge

�intro�

�para�With the ever�changing and growing global market	 companies and

large organizations are searching for ways to become more viable and

competitive� Downsizing and other cost�cutting measures demand more

efficient use of corporate resources� One very important resource is

an organizations information���para�

�para�As part of the move toward integrated information management	

whole industries are developing and implementing standards for

exchanging technical information� This report describes how one such

standard	 the Standard Generalized Markup Language �SGML�	 works as

part of an overall information management strategy�

Figure 	 A Short Example Document Representation in the Text Model
without End Tags

out by �Tom���� in the absence of updates a grammar is super�uous
under the assumption that start and end tags appears in the text as
pairs conforming to a proper nesting as shown in the above example�
On the other hand� a grammarmay have a prescriptive �as opposed

to merely being descriptive of the existing structural state of a text�
role as well �Tom���� It tells its users what should be in addition
to what is in a text� Without a grammar explicitly speci�ed� no
data validation can be performed when deletion� addition and other
modi�cations actions are performed on a text�
Morevoer� the knowledge that the tags have to conform to a gram�

mar permits many end tags to be dispensed with� As an illustration�
consider the DTD in Figure � Figure � shows a modi�ed version of the
text shown in Figure � in which the structure can be fully determined�

Document Components may possess their own attributes as in the
relational model� These may be represented either as sub�components
inside the components they are describing �e�g� the �chapter� tags in
Figure �� or as attributes embedded with the corresponding structural
tags �e�g� shorttitle in Figure ���

�

��ENTITY � text �	
PCDATA � emph���

��ELEMENT report � o 	title� chapter���

��ELEMENT title � o 	�text�� �

��ELEMENT chapter � o 	title� intro���

��ATTLIST chapter

shorttitle CDATA
IMPLIED�

��ELEMENT intro � o 	para � graphic���

��ELEMENT para � o 	�text���

Figure
 The DTD of the Short Example Text with Optional End Tags

65

43

2
1

0
report

parapara

introtitle

chapter
title

Figure � A Tree Representation of the DTD of the Short Example

��

��� The Grammar�speci	c Relational Models

In the relational model� a document is either �

�� stored in its entirety as an entry in a column of a relational table�

�� broken down into its various constituent components to be stored
in nested relations� or

�� broken down into its various constituent components� each of
which is stored as a column entry in a relational table

The relational data models to be discussed in this section share the
common characteristic that the schemata they use are speci�c to the
structure of the documents to be stored� For columns whose entries
are represented by SGML or any other mark�up languages� we may
store the corresponding DTDs or grammars in another relational table
column� Other meta�data describing either the documents themselves
or their components may also be represented as relational table entries�
In the following paragraphs� we discuss and contrast the above

three approaches for using the grammar�speci�c relational data models
to support documents�

��� Storing an Entire Document as a Rela�

tional Table Entry

This is the simplest approach� The entire document is treated as a
long string of characters with any structure represented by embed�
ded character string tags� To search for any patterns or document
components in the text entry� string matching is the only alternative
available� typically without the assistance of any indexing done on the
texts in a preprocessing step�
A major and obvious shortcoming of this approach is that pattern

matching and retrieval of document contents based on any document
structures would be very ine�cient� Essentially� to get the text that
matches a pattern� would require matching and locating both the
user�speci�ed pattern�s� and the patterns that de�ne the document
components which are supposed to contain the input patterns�
The alternative approaches to be discussed below improve upon

this rudimentary text storage schema by preprocessing the data so
that the document structures are extracted once for all and recorded

��

either inside or outside the database� This saves the time and e�ort
of performing pattern matching work to locate the document com�
ponents every time a query is posed� and it allows the update of
subtexts in a straightforward manner� In fact� the same applies to
any pattern matching over the text as well� There is a trade�o� be�
tween the amount of pre�processing �typically indexing� work� and the
amount of extra storage space �chie�y due to indexing� pointers� and
other component marking devices� on the one hand� and the pattern
matching and hence query response time on the other�
Another� more practical� limitation of this approach is that many

database systems have placed restrictions on the maximum length of
texts that can be held within one table entry� For ORACLE Server
Release �	����
�	� there is a limit of � gigabytes �Ora��� for both
binary and ASCII data�
In addition� as pointed out by �SAZ�
��

One of the primary functions of a database schema is that
of validating the data in the database�

Without any knowledge of the structure of a document being stored�
it is impossible for the database management system to handle this
task�
On the other hand� an advantage of this approach is its storage

e�ciency� There is much less overhead for indexing� pointers� etc�
Moreover� it is much simpler to assemble documents� The text con�
tents in its original form� can be readily viewable and manipulatable
using any viewing tools and editors� Manipulation can be performed
by any application programme� As such� it is more portable as well�

��� Storing Document Components in Sepa�

rate Tables

In this approach� document structures are recognized
 and recorded
implicitly in the relational schema�
To demonstrate the capability of this model to represent an SGML

document� we show how the following DTDmay be represented by the
Entity�Relationships diagram in Figure � which may then be repre�
sented as Tables
 and ��

�either manually or through some automatic document recognition mechanisms as dis	
cussed in� for example� �FX�
� and �Mar���

��

sectid shorttitle title intro

Table � section�title�intro

sect id seq # topic

Table � section�topic

��ELEMENT section � o �title	 intro�	 topic���

��ATTLIST section

shorttitle CDATA �IMPLIED

sectid ID �IMPLIED�

Database managers have the discretion over how the document
components should be distributed among the tables� At one extreme�
we may have one table for each component� At the other extreme� all
the components of a document may reside in one table� The decision
is based on a compromise between the number of joins and the extra
storage requirements due to the necessity of tuple keys in each table
on the one hand and data redundancy and data consistency problem
due to the presence of data replication on the other� The more ta�
bles� the more joins are required to link them back together� either
at query time or during pre�processing in order to get at the required
tuples� On the other hand� owing to the typically nested structures of
many document types� the larger� outer� components� would typically
need to be duplicated if they are to be stored in the same table as
their deeply nested counterparts� Apart from their impact on storage
costs� such data redundancy leads to larger tuple sizes and hence nega�
tively a�ect the time performance of the locateComp and extractComp

operations�

�with their component ids and possibly some textual contents �to the extent that such
contents cannot be properly placed under some nested components� as well

��

(0, n)(0, 1)(1, 1)

(1, 1)(1, 1) (1, 1)

shorttitlesectid

intro topictitle

section

Figure � An Entity�Relationship Diagram for the section Element of a
SGML�� Report

��

��� Storing Document Components as Nested

Relations

To redress the above�mentioned shortcomings of storing documents in
separate tables only to join them back when queries arise� researchers
proposed a nested relational model �Tho���� This model has the addi�
tional advantage of giving a more natural and intuitive representation
of a document structure and as such make query formulation easier�
We illustrate below the nested relational schema using the example

of our simpli�ed bibliographic database �

report �

report�id INTEGER

title STRING	

chapters LIST of chapter	

� KEY
 �report�id�

chapter �

chapter�id INTEGER

title STRING

intros intro

is�chapter�in report

� KEY
 �chapter�id�

intro �

intro�id INTEGER

paragraphs LIST of paragraph

is�intro�in chapter

� KEY
 �intro�id�

paragraph �

para�id INTEGER

content STRING

is�paragraph�in intro

� KEY
 �para�id�

report�chapter INVERSE OF chapter�is�chapter�in

chapter�intros INVERSE OF intro�is�intro�in

intro�paragraphs INVERSE OF paragraph�is�paragraph�in

��

In this example� many entities contain list of some other entities
in the database� For instance� a report contains a list of chapter
each of which may contain an intro which in turns contains a list of
paragraphs� Morever� for each nested component there are inverse
pointers pointing back to their nesting components so that for each
entity we can �nd its immediate ancestors more e�ciently�
In the words of �Tho����

The idea of the nested relationalmodel was developed around
the need to extend the relational model to support com�

plex objects as well as atomic attributes� This arose
partly from semantic data modelling research which indi�
cated that such structures are frequently required to model
the real world� and partly from the need to e�ciently im�
plement relational databases at the physical level by sup�
porting repeating groups�

By nesting one inside another� we essentially have joined them
together permanently� thus saving the time for tuple joining �for rela�
tions which have nested relationships� during query processing�
On the other hand� to properly handle nested� relations� we need

additional operators in the data manipulation language �the DML� of
the database management systems� We need to be able to unnest any
nested relations that may be contained in tuples before other relational
operators can work on them� Moreover� at the time of creating new
table entries� we need to make sure that all their nested relations have
been properly initialised and�or entered as well�
It may be noted that there is a strong resemblance between the

nested relational models and the text models discussed above� The
main reason is that a piece of structured text is analogous to a nested
relation whose schema is de�ned by a grammar�
In this thesis however� we do not explore this model further� since

this approach has not been signi�cantly supported by commercial
database management systems� Moreover� no standard has yet been
accepted by either the industrial or academic community�

�or non First Normal Form� since multivalued and composite attributes are allowed

��

��
 The Grammar�independent Relational Model

In a previous version of �BCD���� published in the Proceedings of
the Advanced Database Conference �		
� a type of relational model
was described in which the schema is independent of the structure
of the documents to be represented� To represent a general SGML
document� the paper proposed three virtual tables as follows �

Text nodes �nodeid� genid� content�

Text attributes �nodeid� attr� value�

Text structure �a nodeid� d nodeid� order�

For each SGML document� the Text nodes relation contains one
tuple for each node in its parse tree� Text attributes relates the SGML
node to its attributes and values� Text structures encode the ancestor�
descendant relationship between nodes in the SGML parse tree� The
ascendant�descentant relationships may be represented in various ways�
In the representation shown in Figure �� we explicitly store a node
pair regardless of how remote their ascendant�descendant relation�
ships are� An alternative approach would be to store only those pairs
whose nodes have immediate parent�child relationships� in which case
we need to compute the transitive closure of the parent�child relation�
ship whenever we want to check if a certain node lies within another
node�
This approach could be used explicitly within a relational database

system� In such a grammar�independent relational model� the short
text example given in Figure � could be represented as in Tables �� �
and �� The parse tree of the short text example is shown in Figure ��
Note that e�ective manipulation of the �content� values might again
requires extensions to the SQL to accommodate full text�

��� The Combined Text�Relational Models

The combined text�relational model allows document components to
be stored in several data models� some on the relational side and some
on the text side� For each document type� a database designer may
choose to partition the data among the underlying databases based
on the various characteristics of the documents and their anticipated
usage� To enable such a hybrid system to work simply� a query process�
ing integrator should sit on top of the underlying databases� The role

��

nodeid genid content

	 report �title��chapter�

� title Getting Started with SGML

� chapter �title��intro�

� title The Business Challenge

 intro �para��para�

� para With the everchanging ���

� para As part of ���

Table 	 Text nodes

nodeid attr value

� shorttitle Challenge

Table
 Text attribute

a nodeid d nodeid

	 �
� �
� �
�

 �

 �

Table � Text structure

�	

�
�
�

�
��

Z
Z
Z
Z
ZZ

Application

interface

Catalog

SQL agent

DB system

Conventional

Text agent

Full�text

system

SGML layer

Regions layer

Parser � optimizer

Integrator

Figure �� The Text�Relational Database Management System Architecture

of the integrator is �rst to break the user queries into parts pertaining
to each underlying database� and to collect results from them �either
�nal or intermediate ones� for any necessary �nal processing work to
be done� An example of such a hybrid system has been proposed by
�BCD����� with the architecture shown in Figure �	�
To handle data e�ectively in the form of structured text requires

capability that is not provided by current relational database man�
agement systems� For example� a combined system requires facilities
for converting repeated text components into relations� and for han�
dling text matching involving path speci�cations whether in terms
of direct or indirect containment �Kil���� Therefore� not only is full
text capability required� but it is also necessary to extend the SQL
standards to include functions that handle the structured text data
type speci�cally� This will allow SQL to accommodate and exploit the

�

additional searching and information retrieval capabilities o�ered by
some text engines based on their enhanced understanding of document
structures�

�� Representation of Cross�referential Rela�

tionships

In considering the issue of data placement in the underlying databases�
we also need to consider how the relationship among the data frag�
ments should be represented to enhance search e�ciency�
We propose the following set of criteria for evaluating relationship

implementation approaches �

�� simplicity of use

�� �exibility of use

�� updatability

� search and storage e�ciency

Relationships may be represented in several ways �

�� implicitly in the DTD of a text database through the nesting�
proximity� or sequential order of the tags� or in the schema of a
relational database�

�� via attributes which may be either �

�a� a value
A numerical value k which can be used as a key by which
the system may �nd other entities that are involved in the
relationship� More generally� the value can be a formula to
be evaluated to �nd the related entities�
The users declare what attributes are to be used as keys and
how they should relate to one another� typically based on
the equality relationship� Then it is the job of the DBMS
to perform the necessary join operation using the keys and
locateComp operations followed by the extractComp opera�
tions to get the appropriate components�
This approach is the most economical in storage space re�
quirements� However� this is achieved at the expense of

��

longer retrieval time� since typically join is an expensive op�
eration� In addition� it becomes the responsibility of the Ap�
plication Programmes or the users to specify their queries
appropriately �perhaps iteratively� to ensure that the result
sets returned are properly assembled� In cases where the
relationships may be hard to express in a structured query
language and�or costly to resolve �e�g� a query that would
require joining all the relations in a relational database to
resolve�� hardcoded links would be the much simpler to use
alternative�

�b� an explicit link representing the address of the target of the
link
The address may be either

i� direct� the physical address of the target

ii� indirect� the address where the physical address of the
target is stored
There may be any number of indirection levels�

Relationships represented by associating with the sources
the target addresses are the simplest to follow� Simply follow
those addresses and we arrive at the targets�
The address approach has the advantage of better search
speeds� since in essence we may go straight to the targets�
On the other hand� this approach is not too �exible� Every
time a target is modi�ed� the DBMS has to make sure that
all sources of the links related to it get adjusted as well�
Moreover� essentially the relationships are �hardcoded� into
the databases themselves� Modifying these relationships
while ensuring that they are consistent among themselves
would become a complex task computationally�
Another downside of this approach is that it is hard to rep�
resent those relationship where one source may connect to
multiple targets �e�g� the occurrence of a certain word in a
piece of a text��

For each of the above representations of relationships using at�
tributes� we may place the attributes in either the text or rela�
tional models in various fashions �

�a� tagged components embedded in the same text databases as
the contents of the documents�

��

�b� the attributes contained in the tags themselves
In essence� it may be observed that by doing this we are
storing within a start tag a relational tuple that characterizes
that tagged component�

�c� in the attributes contained in a relational tuple

In each of these cases� we retrieve the attributes using the lo�

cateComp operations followed by the extractComp operations�

To the extent that no pattern matching need to be made within
a relational attribute� the comparison of search performance of
the three alternative placement approaches of attributes hinges
on the sizes of the source data input to the locateComp opera�
tion� The relational models have the advantage that it allows
us to group together frequently used search attributes in a small
number of relations and so the locateComp operation need not
always operate on the whole source data as in the case of text
model where the data is stored as a single of text�

�� linksmay be represented as a �eld in a special�purpose relational
database� or as tagged components located in a separate link
base implemented as a text database� To retrieve a document� we
apply the operations locateComp and extractComp on the link
base and then on the source text�

The link base approach is an intermediate between the last two
approaches� It is more �exible than the �hard link� approach as it
allows links to be added much more easily �than having to insert
them into either the relational or text databases� since the size of
the link base is typically much smaller than those of the source
set of tuples and texts� despite the fact that the link base need
to be explicitly modi�ed each time when some changes in the
databases occur that render the links in the link base outdated�

However� since all links are stored separately from the texts of
the document components� longer link identi�ers are required to
identify the links in the absence of contextual information�

Finally� after considering how relationships could be represented
in the relational and text models� we also need to study the following
questions �

�� what relationships should be represented in the relational database
alone �

	�

�� what relationships should be represented in the text database
alone�

�� what relationships do we represent among data granules stored
in the text and relational databases�

In many cases� information partitioning among these three catagories
may have been signi�cantly in�uenced by the places where the entities
related by the relationships get stored� For instance� for two entities
stored in a relational database� the relationship between them would
in many cases be best represented in the relational database as well�
either implicitly or explicitly� Other things aside� placing data in the
same data model reduces or even eliminates the cost of communication
�via the comm operation� and the cost of performing format conversion
operations when using the locateComp and assemble operations�
Similarly� unless there are special reasons for doing otherwise� for

e�ciency of navigation� information about how to �nd the targets �e�g�
in terms of a formula or an address� should be stored near the sources
of the links� In other words� for relationships connecting a relational
attribute to a text component� the information about how to �nd the
targets should be stored as a relational attribute as well� Similarly�
a relationship anchored at a document component stored in the text
database should have its information about how to �nd the targets
stored near the sources in the text database as well�

	�

� Modelling Anticipated Performance

��� Overview

In this chapter� we examine the impact of data placement decisions
on the performance of a document management system that uses re�
lational� text� and�or the combined data models in the underlying
databases�
To help us focus our study of the performance impact and to give

us insights into the practical implication of data placement decisions�
we introduce SGML�� as an example database� which we describe in
Section ��� below� This database has been selected since its structure
is manageably simple and yet it contains enough complexity to serve
as an illustration in our discussion�
We begin our discussion by comparing and contrasting� at a more

philosophical level� the capability of the text and relational models in
preserving information for text documents�
We then illustrate how the main documentmanagement tasks iden�

ti�ed in Chapter � may be translated into the basic operations we
have de�ned in Chapter �� to be executed on the SGML�� database
supported by each of the data models being studied� We comment
on how such translation� and hence the numbers and types of basic
operations needed� may be impacted upon by those database design
decisions� On these issues� our discussion in the subsequent parts of
this chapter is organized along three dimensions� The �rst dimension
is a categorization of three data placement issues� data granulariza�
tion� partitioning� and organization� which we discussed in Section ����
The second dimension is the categorization of document management
functionality and task requirements� which we identi�ed in Chapter
�� The third dimension is the categorization of data models which we
discussed in Sections
�� to
���
However� it must be noted that in evaluating the desirability of a

given data placement schema over another for a given database� we
also need to pay attention to the timings of these basic operations in
the underlying databases� Such timings vary for di�erent database
management systems and are also dependent on the sizes of their
inputs and outputs� as discussed in Chapter ��
Taken together� this process of de�ning representative tasks� trans�

lating them into the basic operations� and studying the number and

	�

report id seq #� chapter id

Table � report�chapter

timings of those operations demonstrates a methodology by which
data placement alternatives in a federated database management sys�
tem may be evaluated and compared against one another�
Moreover� in the course of doing so� we also demonstrate the extent

of completeness of the our operation set as indicated by its capability
to support the execution of the document management tasks in the
various data models�

��� A Data Placement Evaluation Example

����� What is SGML� �

SGML�� �AT��� is a simple report which is marked with SGML tags
�Int���� We select it for use as our demonstration example for its
relative simplicity while it contains many of the main document rep�
resentation features of SGML� The full text of SGML�� is shown in
Appendix A�

����� Representation of the SGML� Database Using
Various Data Models

The Text Model The document structure of an SGML�� report
is represented by its DTD in Figure ��� In Figure ��� we give a tree
representation of the DTD� and in Figure ��� we give a correspond�
ing Entity�Relationship diagram of it� The dotted boxes in Figure
�� indicate that the para�graphic components and its subparts are
encapsulated in a single entity content in the Entity�Relationship
diagram in Figure ���

Grammar�dependent Model We break an SGML�� report into
six relations as shown in Tables �� through �
�
In Table ��� the type attribute in the topic�content relation

could be one of para start text� para continue text� xref� and

	�

��NOTATION cgm SYSTEM �Computer Graphics Metafile��

��NOTATION ccitt SYSTEM �CCITT group � raster��

��ENTITY infoflow SYSTEM �infoflow�ccitt� NDATA ccitt�

��ENTITY tagexamp SYSTEM �tagexamp�cgm� NDATA cgm�

��ENTITY gcalogo SYSTEM �gcalogo�cgm� NDATA cgm�

��ENTITY � text �	
PCDATA � emph���

��ELEMENT report � o 	title� chapter���

��ELEMENT title � o 	�text�� �

��ELEMENT chapter � o 	title� intro�� section��

��ATTLIST chapter

shorttitle CDATA
IMPLIED�

��ELEMENT intro � o 	para � graphic���

��ELEMENT section � o 	title� intro�� topic��

��ATTLIST section

shorttitle CDATA
IMPLIED

sectid ID
IMPLIED�

��ELEMENT topic � o 	title� 	para � graphic����

��ATTLIST topic

shorttitle CDATA
IMPLIED

topicid ID
IMPLIED�

��ELEMENT para � o 	�text� � xref��

��ATTLIST para

security 	u � c � s � ts� �u��

��ELEMENT emph � � 	�text���

��ELEMENT graphic � o EMPTY�

��ATTLIST graphic

graphname ENTITY
REQUIRED�

��ELEMENT xref � o EMPTY�

��ATTLIST xref

xrefid IDREF
IMPLIED�

Figure �� The DTD of a SGML�� Report in the Pure Text Model

report id chapter id seq #� section id

Table �� chapter�section

	�

6b2d

5
3b2c

6a

3a

2b

2a

6a

xref|textxref|text

xref|text title

text

text

text

PCDATA|emphPCDATA|emphPCDATA|emph

PCDATA|emphPCDATA|emph

PCDATA|emph

PCDATA|emph

(para|graphic)+(para|graphic)+

(para|graphic)+

text

chapter+

topic*intro?title

intro? section*title

title

report

4

1

content

content content

Figure �� A Tree Representation of the SGML�� Report DTD

report id section id seq #� topic id

Table �� section�topic

report id topic id seq #
 type content security

Table �� topic�content

	�

6a

3a

3b

5

6b

2d

2c

2b

2a

security

content

type

short-title

short-title

short-title

4

1

sequence num

sequence num

sequence num

sequence num

intro title

topic

section

chapter

report

content

sequence num

Figure �� An Entity�Relationship Diagram of the SGML�� DTD

		

�report�

�title�Getting started with SGML

�chapter�

�title�Getting to know SGML

�intro�

�para�While SGML is a fairly recent technology� the use of

�emph�markup��emph� in computer�generated documents has existed for a

while�

�section shorttitle � �What is markup���

�title�What is markup� or everything you always wanted to know about

document preparation but were afraid to ask�

�intro�

�para�Markup is everything in a document that is not content� The

traditional meaning of markup is the manual �emph�marking��emph� up

of typewritten text to give instructions for a typesetter or

compositor about how to fit the text on a page and what typefaces to

use� This kind of markup is known as �emph�procedural markup��emph��

�topic topicid�top��

�title�Procedural markup

�para�Most electronic publishing systems today use some form of

procedural markup� Procedural markup codes are good for one

presentation of the information�

Figure �� An Abstract of a SGML�� Report

	

report id unit id title short title

Table �� unit�title

report id part id intro id

Table �� part�intro

graphic� xref and graphic have their text counterparts as shown in
the DTD in Figure ��� para start text is the part of a paragraph
extending from its beginning to the �rst occurrence of an xref� graphic�
or the end of the paragraph� para continue text is all those parts
of a paragraph other than those belonging to the other three types�
In Table ��� unit id is an identi�er unique across all chapters�

sections� and topics within a report� In Table �
� the identi�er
part id is unique across all chapters and sections�
The sequence numbers in Tables � to �� are for encoding the order�

ing information of the sub�units inside each of the relations� chapter
order in Table �� section order in Table �	� topic order in Table
��� and content order in Table ��� The necessity for such sequence
numbers in addition to the respective identi�ers of the sub�units is ne�
cessitated by the unordered set basis of the relational model� If each
component is separately sequenced� the processing time for insertion is
reduced by avoiding re�sequencing all the existing sub�unit identi�ers
every time an insertion is made�

Grammar�independent Model A representation of the SGML��
report in Appendix A within the grammar�independent model is shown
in Tables �� through �� The nodes are numbered according to their
pre�order traversal ordering as shown in Figure ���

Combined Text�Relational Model This contains all the ta�
bles in the grammar�dependent model� Tables � through �
� except
that Table �� is replaced by the corresponding information stored in
accordance with SGML in Figure ���

	�

"As part of the move toward ..."

...

sgml92db

title chapter

title
intro

para para graphic

"Getting started with SGML"

"The business challenge"

"With the ever-changing ..."

report

0

54

8

2 3

1

6 7

Figure �� A Portion of the Parse Tree of the SGML�� Report at Appendix
A

	�

node id genid content

	 sgml��db �report�

� report �title��chapter� ���
� title �Getting started with SGML�
� chapter �title��intro�

 title �The Business Challenge�
� intro �para��para��graphic�

� para �With the ever�changing ��� �
 para �As a part of ����
� graphic �
��� ��� ���

Table �� textnode

node id attr value

� graphname info�ow
�� shorttitle �What is markup��
��� ��� ���

Table �	 textattribute

�

a node id d nodeid

	 �
	 �
	 �
	

	 �
	 �
	
	 �
	 ���
� �
� �
�

� �
� �
�
� �
� �
� ���
�

� �
� �
�
� �
�
��� ���

Table �
 textstructure

�

��NOTATION cgm SYSTEM �Computer Graphics Metafile��

��NOTATION ccitt SYSTEM �CCITT group � raster��

��ENTITY infoflow SYSTEM �infoflow�ccitt� NDATA ccitt�

��ENTITY tagexamp SYSTEM �tagexamp�cgm� NDATA cgm�

��ENTITY gcalogo SYSTEM �gcalogo�cgm� NDATA cgm�

��ENTITY � text �	
PCDATA � emph���

��ELEMENT sgml��db � o 	report��

��ELEMENT report �o 	topic�content��

��ATTLIST report

reportid ID
IMPLIED�

��ELEMENT topic�content � o 	topic���

��ELEMENT topic � o 	para � graphic���

��ATTLIST topic

topicid ID
IMPLIED�

��ELEMENT para � o 	�text� � xref��

��ATTLIST para

security 	u � c � s � ts� �u��

��ELEMENT emph � � 	�text���

��ELEMENT graphic � o EMPTY�

��ATTLIST graphic

graphname ENTITY
REQUIRED�

��ELEMENT xref � o EMPTY�

��ATTLIST xref

xrefid IDREF
IMPLIED�

Figure �	 DTD for the Text Sub�Model of the Combined Text�Relational
Model

�

��� Example Document Management Tasks

We de�ne four sample document management tasks such that they
cover the essential aspects of the main categories of document man�
agement tasks identi�ed in Chapter �� and the performance of execut�
ing them serves to contrast the relative strengths and weaknesses of
the three data models being investigated�
There are aspects of the document management tasks �e�g� link

resolution� which we do not explore using the sample tasks� We con�
sider that adding these other aspects to the tasks would merely add
to the complexity of processing without revealing any additional fun�
damental di�erences among the data models�

Task � � Whole Document Retrieval We retrieve a full report
from the database�s�� The report has to contain a speci�ed keyword
occurring in a paragraph with a security code of c�
Processing of this query would involve extracting and assembling

all the main components of a report� As such� it serves to reveal the
impact of fragmenting data on query processing performance�

Task � � Document Component Retrieval We create a table
of contents containing the titles of all document components where at
least one title matches some speci�ed keywords�
This query studies the e�ect of pulling out components scattered

around the whole database�s� and assembling them� Unlike example
Task �� this one does not cover all document components� and yet in
a combined text�relational model it would still involve both the text
and relational sub�databases� We study this task in addition to the
last one since in many situations� information retrieval asks for only
a modest subset of the whole database�

Task � � Document Insertion We insert a new report into the
database�s��
By this we study the processing of component creation and inser�

tion that would involve every component in the whole schema�grammar�
This would include any related activities of disk writing� index build�
ing� database merging� and inter�machine communication�

�

Task � � Document Component Replacement We replace
selected topics in a report with a speci�ed title and cross�reference�
Here we study the process of modifying �hence involving both dele�

tion and insertion� a document component which may involve infor�
mation stored in both the text and relational models� Comparing with
Task �� this one would involve the additional activities of searching
for the existing components� reading them in� parse the edited com�
ponents� deleting the existing components� writing the edited compo�
nents and revising any indices�

Summary of the Types and Numbers of Operations Needed
for the Example Tasks We tabulate below a summary of the
types and numbers of operations required for the four example docu�
ment management tasks de�ned above� We shall describe and discuss
how these are obtained in the subsequent sections� and how these have
been determined by our data placement decisions�

��� Document Representation

In this subsection� we discuss and comment on the general adequacy of
the text and relational models with regard to their relative capabilities
for information preservation and data storage e�ciency�

Data Granularization We need to consider the amount of re�
dundant information needed� e�g� object ids� indices of various kinds�
pointers �to variable sized �elds and�or text segments� of various
kinds� structural tags� Many indices are likely to be needed to support
various document management functionalities e�ciently�
In the SGML�� example� we need an identi�er column �e�g� chapter

id� section id� and topic id� for each of the tables in the grammar�
dependent model� and indices need to be constructed on them to fa�
cilitate more e�cient access� In the grammar�independent model� the
number of nodeids in the textnode nad textattribute tables in�
creases linearly as the number of document components increase� For
the textstructure table� the number of tuples increases superlinearly
as the number of document components increase since it records all
the ancestor�descendant relationships instead of only the parent�child
ones� In the text model� increasing the number of granules increases

�

task Operation Text Grammar� Grammar� Combined Model

Model dependent independent relational text integrator

� locateComp � �
 �
extractComp � �
 ��
assemble � � �
parse �
union �
sort � � �
intersect �
comm � � �
join � � � �

� locateComp � � �
extractComp � � �
assemble � � � �
parse �
sort � �
union �
comm � � �
join � � �

� parse � � � �
comm � � � � �
insert � �
 � �

� locateComp �

 � � �
extractComp � � � �
assemble � � �
parse � � � � �
sort �
intersect �
comm � �
 �
insert �
 � �
delete �
 � �
join � �

Table �� Summary of Operation Types and Numbers for Example Tasks

�

the number of tags that are necessary for demarcating the document
units�
With regard to the storage space requirement� the comparative

advantage of one data model over another in this aspect lies in the
relative sizes of the tags in the text model and the attribute delimiters
and tuple identi�ers in the relational one�
Generally� the amount of such redundant information rises as the

granularity of information decreases� both for the relational and text
database components� Therefore� for storage e�ciency�s sake� it pays
to adopt a larger granule size for the information units and not to
break into smaller components those document units which are often
required in their entirety�

Natural and Intuitive Document Representation The text
model provides a more natural form of representing documents� and it
is much more intuitive since the text model is closely in line with the
display order� We learn to read documents sequentially� We mentally
parse and understand a document in terms of sentence� paragraphs�
sections and parts� On the contrary� representing a text document in
a relational model tends to be much more contrived� In our SGML��
example� we need to introduce the arti�cial para continue text type
in order to encode the sequential order of the contents in the compo�
nents topic and intro in Table ���

Retaining Ordering and Positional Information In a text
model� the contents are retained in their original forms �apart from the
interspersion of some tags�� As such� all the ordering and positional
relationships of document components� at all levels �even down to the
character and punctuation levels�� are fully retained� On the other
hand� many such relationships may be lost when a piece of document
is broken down into components to be stored separately in a relational
model� For similar reasons� much greater care is needed to break
document components into smaller parts to be stored separately than
to break a relation into smaller relations�
Nonetheless� if we do choose to place text documents in a relational

model� to minimize information loss we should granularize a document
in such a way that the sibling ordering among the components� is either
unimportant or may easily be reconstructed� for instance by section

	

�� Parse the list L containing the conditions so that in the resulting parse
tree T each leaf contains either one atomic formula containing no logical
operator ��� �� and �� or non�atomic formulaes that contain components
all belonging to the same set of tuples or texts in S�
We suppose here that all necessary optimization treatments� insofar as
they are supported by the database management system being investi�
gated� have been duly applied during the parsing�

	� In particular� we suppose that the basic operations to be invoked� together
with the places and sequence of invocation� are fully speci�ed in the input
parse tree T �

� if T is empty� return S

�� else

by evaluating T � search for the components whose sub�components col�
lectively satisfy all the speci�ed conditions�

Figure �
 An Outline of Document Search Processing

numbers� paragraph numbers� or sequence numbers� as in Tables � to
�� of our grammar�dependent model�

��� Document Manipulation

����� Search E�ciency

Suppose we want to search for certain components P inside a certain
document as represented in a set S of tuples or texts subject to some
speci�ed conditions L being satis�ed� The steps to be followed in the
search process are shown in Figure �� For the purposes of data place�
ment decision�making� we are primarily interested in step
� We shall
discuss how this step may be performed using our basic operations�
In addition� the amount and types of query optimization work

done by the database management system have a signi�cant impact
on the e�ciency of executing the search process� In these regards� we
suppose that the input parameter T is an optimized parse tree of the
query conditions and we note that the amount and nature of query
optimization performed are system dependent� However� in this thesis
we are not going to study the issue of query optimization�

L � locateComp �sgml��db� sgml��textdtd� f report g� f �para including
of� � security � c� g �

E � extractComp �L�

comm �textdb� � integrator� E�

Figure �� Processing of Component Search in Task � in the Text Models

�� � See Appendix B for a detailed listing of the operations invoked

	� match all reportid in Table �� whose related reports contain a para

which has the word of� and has a security of �c�

� form a join between the relation produced in the last step with each of
Tables � to ���

�� sort the resulting relations by their reportids� chapterids� sectionids�
topicids� and sequence numbers as far as these are available in the tuples

�� invoke the assemble operation to put the text together

Figure �� Processing of Task � in the Grammar�dependent Models and the
Relational and Combined Models

�� see Appendix E for a detailed listing of the operations invoked

	� �nd from the textattribute and textnode tables the nodeids that sat�
isfy the conditions of having a paragraph containing the word of� with
a security of �c�

� �nd from the textstructure and the textnode Tables the reportids
whose related reports contain those nodeids found in the last step

�� pull out the portions of textnode and textstructure that contain the
nodes contained in those matching reports

�� invoke the assemble operation to put together the text

Figure �� Processing of Task � in the Grammar�independent Models

�

L � locateComp �sgml��db� sgml��textdtd� f report g� f � report includ�
ing �title including of�� � g �

E � extractComp �L�

� parse the selected reports into tuples containing both the titles and
information identifying its context �i�e� being a report title� chapter
title� section title� or topic title�

P � parse �E� grammar of E� schema of P �

table of contents � assemble �P � schema of P � grammar of table of

contents�

comm �textdb� � integrator� table of contents�

Figure �� Processing of Task � in the Text Models

�� � See Appendix C for a detailed listing of the operations invoked

	� �nd all reportids whose related reports contain titles that contain
the string of�

� form a join between the relations produced in the last step with each of
Tables �� ��� ��� and �
�

�� form a join between the relation produced in the last step with each of
Tables � to ���

�� sort the resulting relations by their reportids� chapterids� sectionids�
topicids� and sequence numbers as far as these are available in the tuples

�� invoke the assemble operation to put the table of contents together

Figure �� Processing of Task � in the Grammar�dependent Relational Mod�
els and the Combined Text�Relational Models

�� � See Appendix F for a detailed listing of the operations

	� �nd from the textattribute and textnode tables the nodeids that sat�
isfy the condition of having a title containing the word of�

� �nd from the textstructure and the textnode Tables the reportids
whose related reports contain those nodeids found in the last step

�� pull out the portions of textnode and textstructure that contain the
nodes contained in those matching reports

�� invoke the assemble operation to put together the table of contents

Figure �� Processing of Task � in the Grammar�independent Relational
Models

�

Data Granularization On the one hand� reducing the size of
granules tends to increase the number of distinct entities and hence
the relations among them in a relational database� To pull out a piece
of information� we need to navigate more relations� Beside increas�
ing the number of operations� navigating more relations necessitates
more operation invocations and hence their overheads� Speci�cally�
the number of invocations of join and extractComp is proportional to
the number of distinct relations or sets of texts involved in a query�
In task �� six relations are involved and the total number of joins and
extractComps required in the grammar�dependent relational model is
seven and six respectively �see Figure ��� whereas four joins and �ve
extractComps are performed for task � which involves only four rela�
tions in the grammar�dependent and independent models �see Figure
���� On the other hand� large number of relations typically mean that
individually they may be of a smaller size and hence each extractComp

and join would operate on smaller input sets� If concurrent processing
is available in the database management systems� whether it is desir�
able to have multiple invocations of several smaller operations rather
than one invocation of a big operation would depend on the amount
of concurrency that could be exploited among the operations�
The cost of performing a join operation depends on the sizes of

the tuple�text sets to be joined� which are in turn determined by the
numbers and lengths of tuples and sets� Since typically no indexing
is performed on the intermediate tuples and texts� search time within
tuples is linear in most cases�
The number of invocations of the locateComp operations is equal

to the number of distinct values speci�ed for the attributes or text
components involved in the query that belong to the same set of tuples
or texts� Therefore� in task � only one locateComp is invoked for
both the text and grammar�dependent relational models since both
paragraph and security belong to the same collection units in these
models� On the other hand� two locateComp operations are needed
in the combined model since the two components are placed in two
di�erent collection units� one on the text side and the other on the
relational side� The timing of locateComp is also dependent on the
sizes of the tuple or text sets�
Moreover� we want the granularity of the document components to

be large enough to contain at least the complete strings against which
patterns are likely to be matched� This reduces the necessity to cross

��

component boundaries in order to carry out pattern matching in the
locateComp operation� thus avoiding extra joins and disk access times�
For instance� users are often interested in the context in which

matches or a piece of text occur� It is desirable that the granularity of
information is large enough to contain the contexts required� at least
for the frequently raised query types� On the other hand� the context
should not be so big that it becomes distracting to the user� Ideally
the users should be allowed to choose the extent of the contexts� or
be able to try di�erent contexts with ease�
On the other hand� a �ner granularity reduces the amount of se�

quential scan for information contained inside a granule in the absence
of character�based indexing� since the relational schema or the text
grammar allows us to locate the granule containing the information
more precisely� This reduces the amount of work done by the locate�
Comp operation in sequential scan� Moreover� smaller granules are less
expensive to be written and transported� Hence� �ne granularity may
reduce the time cost of other operations as well� where performance
depends on the sizes of the text components and attributes they work
upon� These include extractComp� insert� comm� and any conversion
operations�

Data Partitioning and Organization To begin with� we note
that text matching and extraction functionalities are not exclusive to
the text model� We can achieve the same results of component iden�
ti�cation and text matching functionality by building an appropriate
relational schema if we are willing to su�er an excessive number of
tables and columns to accommodate all the various identi�able com�
ponents in a document�
However� one strength of the textmodel in this aspect is the savings

for not having to perform numerous join operations in order to pull
the components back together to retrieve the required information�
In task �� for example� six joins are needed to pull together the six
relations that contain the various report components� By keeping the
whole source text in one piece� or a few pieces� rather than breaking
it down and scattering it around in various relational table columns�
we may also perform indexing and hence searching on them� using the
locateComp and extractComp operations a lot more e�ciently due to
better locality of reference�
In addition� we need to consider the time spent on communicating

��

intermediate tuple sets between the underlying databases and the in�
tegrator where the join operation is performed� Again the amount of
such communication� via the operation comm� is proportional to the
number of joins between the relational and text database entities� The
time performance would depend� apart from the length of the commu�
nication links and their tra�c loads� on the sizes of the intermediate
result sets to be transmitted� To reduce the sizes of the intermedi�
ate tuple sets� a �rst query optimization measure would be to push
down select through joins as far as possible� In addition� to reduce
communication time and maximize query processing concurrency in
the underlying database management systems� it pays to examine the
frequently occurred query types and choose a data partition such that
for these query types the query processing workload is evenly shared
by the underlying databases and the intermediate tuple�text sets be�
ing transmitted are minimized� Alternatively� there may be situations
where it may be better to forgo concurrency and perform searches on
some databases �rst and use the intermediate results to pose a more
selective subquery to the other databases� Instances of such situations
occurs at steps y �Appendix B� and z in tasks � and
 �Appendices B
and D�� As shown in Appendix B for the combined model in step z�
in order to �nd the topic contents corresponding to a set of topicid
returned from a previous step� it may be necessary to transport all
the topic contents to the integrator where the join operation is per�
formed� This in itself would be a very expensive operation� On the
other hand� in cases where the set of matched topicids is not big� it
may be much cheaper to do a semi�join� We use locateComp followed
by extractComp to locate and retrieve all the matched topicids from
the text side� transport them to the text database via another comm�
use the locateComp and extractComp operations there to return the
matching topic content� and then use the comm operations to ship
the matched content back to the integrator�
In the combined data models� apart from the costs of performing

joins� we also need to consider the trade�o�s in terms of the costs of
any inter�conversion routines that may need to be invoked in order
to allow data from a relational database to be manipulated and inte�
grated with those from a text database� More speci�cally� in the join

and locateComp operations� it is necessary to convert data between
texts and strings to make them compatible for evaluating the join or
select conditions involving components residing in both the text and

��

relational sides� The number of such conversion is proportional to
the number of join operations executed among entries stored in the
relational models and those in the text model� In task
� one such
conversion is necessary as shown in Appendix D� In addition� a struc�
tured text may have to be converted into a set of tuples�texts through
the parse operations in order that they may be joined since the join

operations work only on sets� The number of such operations are also
dependent on the number of joins among entities on the text side and
the relational side� and the manner in which such text�relational join�
ing are carried out� For tasks � and
� one text�relation conversion
may be needed prior to the two joining operations at steps z �Appen�
dices B and D�� unless we choose to implement the joins there using
a for loop in which multiple locateComps are invoked to retrieved the
contents or topics corresponding to each report or topic identi�ers�
The time performance of such conversion operations would depend on
the size of the input text�tuple contents� However� we have not explic�
itly included such parse operations in Appendicies B� D� and Table ��
since as discussed above such parsing operation may not be necessary
depending on the way the text�relational joins are implemented�
In principle� so that the locateComp operations may be more ef�

�ciently carried out� all data components on which text matching
operations are to be performed across and within them should be
stored in a text database to exploit the search capability supported by
its character�based indices which allows pattern matching to be per�
formed in logarithmic time� Accordingly� we place all the para�graphic
components on the text side in the combined model� Moreover� such
components should be stored sequentially in the order in which they
appear in the document� Placing the text units in some other fashion
would not make text matching infeasible� but extra indexing and�or
disk access time would be incurred because of poorer locality of ref�
erence� This favours partitioning at a higher level in the logical docu�
ment structure�
On the other hand� information which describes the textual infor�

mation should be stored as attributes in the relational component of
the databases since typically in performing locateComp operation on
them we attempt to match the whole document components and so
we do not need to perform pattern matching operations that require
sequential scans within these attributes� Accordingly� in the combined
model for the SGML�� database� we store all titles� security codes�

��

and xrefs in the relational sub�database�
For a relational database� storage of attributes is a bit more �ex�

ible� For better locality of reference in physical storage� we may
choose to group together in a small number of relations those at�
tributes which are of frequent use or are closely related �and thus
may frequently be accessed together�� By doing so� we may reduce
the disk access times in performing the locateComp and extractComp

operations� Thus in the SGML�� database� we store all titles and
short�titles for all document components inside the same relation
�Table ��� and all cross�references �xref� and security information
in the topic�content relation�
For similar reasons� it also pays to store all instances of an attribute

�i�e� all values in the same columns in a relational table� close to one
another� However� if we were to do the same for a text model� the
advantages of storing the whole source text in one piece would be lost�

����� Ability to Support Document Display

We focus on the document structures and the e�ects of their complex�
ity on the performance of the document display process�
The results returned from a previous search are a set of tuples

containing the requested components as their attributes� The assem�

ble procedure then puts these components together according to the
schemata of the tuple sets and the grammar of the texts to be assem�
bled�
For tasks � and
 in the text models� all the document components

are already in the order suitable for display� and as such no invocation
of the assemble operation is necessary� For the relational and com�
bined models however� for each collection unit we need to extract all
the tuples or texts that are contained in the texts to be assembled�
Such extraction of tuples or texts may either be done by joins or by a
sequence of locateComp and extractComp operations on the collection
units� Consider task � in the grammar�dependent models for exam�
ple� We perform a join operation on each of the six base relations�
The six sets of intermediate tuples are then sorted in the order of
the reportids� chapterids� sectionids� and sequence �s� as far as
these are available in the tuples� The assemble operation is then in�
voked to pick up the components from the six tuple sets� according to
the grammar of the text to be assembled� Analogous to the parse op�

��

erations which typically may be performed in one pass over the source
text� we assume the assemble operation may be done in one pass over
the sorted tuple sets�
For task � in the text model� to produce the table of contents

we could pull out the titles directly from the matched reports and
displayed them� However� all the contextual information of the titles
would be lost in the extraction process� Accordingly� instead of ex�
tracting the titles from the reports directly� we parse the report
and place the titles together with their contextual information into
tuples� which are then assembled in text�
In addition� as far as the assemble opeation is concerned� storing

information in large granules means that the assemble operation may
pick up its components from a small number of relations� This is
advantageous to the extent that components within the same relation
are typically stored close to one another� thus allowing more locality
of reference to be exploited�
The amount of sorting time is a�ected by the number of tuples

returned� Insofar as information within the same granule are con�
tained in a single tuple� this favours adopting a bigger granule size for
information� In addition� to the extent that document components
containing sub�parts are stored and sorted as one piece in single tu�
ples� this also reduces the number of tuples to be sorted compared
with an alternative representations in which the subparts would have
been returned in di�erent tuples�

����� Ability to Support Document Creation and Mod�
i�cation

We outline the main steps of document creation and modi�cation in
Figure �
� In addition� in Figures �� to ��� we describe the query
processing actions taking place in each of the steps for each of the
relevant example document management tasks � and
 in the data
models�
The types and numbers of document parsing actions performed in

step � in Figure �
 depend on the way user editing is done� Suppose
that editing is done according to a speci�ed DTD� The parse operation
has to validate the edited data against its grammar� which should then
contain the DTD for the edited text� The validated data is parsed into
their constituent components� Appropriate data insertion commands

��

�� let EC denotes the resulting edited contents resulting from user actions

	� parse documents

A � parse�EC� grammar of EC� schema of A� ���

� insert the modi�ed �or newly created� document to the speci�ed storage
device�

for each underlying database

comm�integrator� database� tuples� ��

insert�tuples� �
�

Figure �� The Main Steps of Document Creation and Modi�cation

are then generated by the parse operation at step �� transported to
the underlying database management systems and executed to place
the edited data into the appropriate underlying database management
systems� The timings of such actions would include the activities
of handling communication to the underlying database management
systems� and the insertion time there� which would in turn include the
time of data and index creation� modi�cation� and possibly merging�

Data Granularization and Organization The extensibility
of a document representation structure is enhanced by a �ner gran�
ularity of representation� New document components could easily be
created out of smaller� existing components either by de�ning new
intermediate components or by reorganizing existing ones using the
parse followed by the assemble operations with a set of existing com�
ponents and the assembly description as inputs� On the contrary� to
break existing components into smaller components is much harder
and prone to creating inconsistencies� For example� identifying and
inserting paragraph tags into a SGML�� report chapter in which no
paragraph has been marked up requires that the locations where each
paragraph starts and ends are speci�ed� This is very hard to be done
consistently in the absence of any knowledge that the paragraphs
have been created according to some prede�ned grammars or syntac�
tical rules�
For similar reasons� �ne granularity allows exceptions to existing

�	

�� � user editing action

	� � data validation� parsing� and generation of insertion commands to be
executed at the underlying databases
parse �� edited content� � grammar of the edited contents� � schemata
of the tuples to be generated�

� for each underlying database

� transmitting the tuples to the underlying database
comm �� integrator� � database� � contents to be written�

� executing the tuples to the underlying database

for each collection unit in the underlying database

insert �� tuples� collection unit�

Figure �� Processing of Task � in the Four Data Models

�� l � locateComp �sgml��db� sgml��textdtd� f topic g� f � report in�
cluding ��title including of�� � �xref�xrefid � top����� g �

	� e � extractComp �l�

� delete �l�

�� comm �textdb� � integrator� e�

�� � user editing action

�� � data validation� parsing� and generation of insertion commands to the
underlying databases

�� parse �� edited contents� � grammar of edited contents� � schema of the
set of text fragments to be generated�

�� for each underlying database

� transmitting the tuples to the underlying database

comm �� integrator� database� � contents to be written�

for each collection unit

� inserting the tuples into the underlying database

insert �tuples� collection unit�

Figure �	 Processing of Task � in the Text Model

�

�� � see Appendix D for a detailed listing of the operations

	� � �nd all topicids and their corresponding titles whose topics contain
a para including the word of� and a xref �top��

� � pull out all topic contents corresponding to the topicid found in
the last step

�� � invoke the assemble operation to put together the topics based on
their titles and contents

�� � user editing action

�� � data validation� parsing� and generation of tuples to be inserted into
the underlying databases

parse �� edited contents� � grammar of edited contents� � schema of
tuples to be generated�

�� for each underlying database

� transmitting the tuples to the underlying database

comm �� integrator� database� � contents to be written�

for each collection unit

� inserting the tuples into the underlying database

insert �tuples� collection unit�

Figure �
 Processing of Task � in the Grammar�dependent Relational Mod�
els and the Combined Models

��

�� � See Appendix G for a detailed listing of the operations

	� � �nd from the textattribute and textnode tables the nodeids that
satisfy the conditions of having a title containing the word of� with a
xref of �top��

� � �nd from the textstructure and the textnode Tables the topicids
whose related topics contain those nodeids found in the last step

�� � pull out the portions of textnode and textstructure that contain
the nodes contained in those matching reports

�� � invoke the assemble operation to put together the text

�� � user editing action

�� � data validation� parsing� and generation of tuples to be inserted into
the underlying databases

parse �� edited contents� � grammar of edited contents� � schema of
tuples to be generated�

�� for each underlying database

� transmitting the tuples to the underlying database

comm �� integrator� database� � contents to be written�

for each collection unit

� executing the tuples at the underlying database

insert �� set of tuples� � collection unit to hold the set of tuples�

Figure �� Processing of Task � in the Grammar�independent Relational
Models

��

de�ned document structures to be accommodated much more easily�
One example of this is the optional presence of an intro in a SGML��
report chapter�
A coarse granularity means that many smaller document compo�

nents plus their inter�relationships could exist within a granule� Such
intra�granular structures and relationships would only be understood
by the document management system originally creating the docu�
ment� and therefore any future extentions to such intra�granular struc�
ture could only be handled by the document management system that
has originally created the document� Thus the database management
system provides only limited support�
Furthermore it may be noticed that as far as data granularity and

organization are concerned the requirements of retrieval operations
could be di�erent from those of modi�cation ones� For retrievals� it
is more e�cient if all the closely related items �that may be expected
to be accessed together frequently� are placed contiguous �or at least
close� to one another� On the contrary� for e�cient modi�cation� it is
preferable to have document components broken into small pieces to
be stored apart from one another so as to allow more �exibility for
expansion� In fact� such fragmentation takes place anyway when dele�
tion has to occur� For instance� in an SGML�� report where chapter
titles are stored separately from the report text� adding or modify�
ing one report title necessitates the insert operation to modify the
unit�title relations �Table ��� only� without touching the remain�
der of the database� which is typically much bigger�
Storing documents as a collection of smaller pieces requires more

invocations of the insert operation and possibly of the comm operation
as well� For example� four inserts and four comms are necessary in
task � in the combined model in contrast to only one insert and one
comm for the same task done in the text model� Nevertheless� lesser
time is spent in each individual insert and�or comm operation than
if a huge piece of text is transmitted and written in one single comm

or insert� Therefore� if concurrent writing to multiple relations or
texts is supported by the database management system� it could be
advantageous to store a document as small pieces�
The above discussion addresses situations where only a few tags or

attributes are added�modi�ed�deleted� More complex changes neces�
sitated by substantial grammatical�schematic modi�cations may re�
quire essentially redoing the whole document representation� In this

��

kind of situation� altering a document�s representation would involve
essentially the same amount of computational complexity for both
relational and text databases regardless of the schemata of physical
storage they use�

��� Document Control

��	�� Ability to Support Document Sharing and Reuse

Concurrent Operations on Document Fragments There
are two main sources of concurrency involved here �

�� More than one document may use the same text component�
This occurs especially where there exist multiple versions of a
document� The di�erent versions may have been created at
di�erent times� purposes� and�or owned�controlled by di�erent
users� yet they may share many document components�

�� Several users may wish to modify a single document component�

We want to simplify concurrency control �i�e� address issues such as
transaction management� locking� serialization� atomicity� To reduce
con�icts and the delay due to lock waiting� one approach is to reduce
the granularity of information stored in the database� whether text
or relational� However� we must be careful not to fragment tightly
coupled data units� and we should attempt to avoid as much as possible
the need for distributed concurrency control�

Con�guration Management As much as possible we wish to
localize version changes to those parts of a document that are mod�
i�ed and leave the other parts intact� This minimizes replication of
contents� enhances storage e�ciency� and reduces the computational
e�orts and complexity of mechanism necessary to maintain the consis�
tency of contents among documents� To such ends� as in concurrency
control� �ne granularity is favoured�

Ability to Support Document Reuse Related to con�gura�
tion management is the issue of document reuse� As in software engi�
neering� we promote document reuse by paying attention to the mod�
ularity of document� As in software code� we want document units
that are logically and�or semantically cohesive and self�contained to

��

be de�ned as granules of information� and as such they may be reused
in other documents more easily�

��	�� Ability to Support Security �Access� Control

We wish to allow security control to be more precisely de�nable for
document units� Towards this end� �ne granularity is favoured in
database design� Trade�o�s in this regard parallel those for document
sharing and reuse�

��

� Conclusions and Further Research

��� An Operation Set for Studying and Eval�

uating Data Placement Alternatives

In this thesis� we examined the various major issues surrounding the
appropriate placement of data in a federated database environment
consisting of both text and relational sub�systems� In the course
of doing so� we introduced an operation set and we demonstrated
a methodology of using the set for studying and evaluating the alter�
natives for data placement in a combined text�relational data model�
This evaluation methodology comprises the following four main steps
�

�� de�ne several document management tasks which are represen�
tative of the anticipated usage of the system

�� use our set of primitive operations to simulate each of the tasks
in each model

�� measure and study the numbers and time costs of the operations
under di�erent inputs

� evaluate the desirability of each data placement alternative based
on the results of the last step and the anticipated relative im�
portance and frequency of each document management task

Text and relational datamodels have complementary strengths and
limitations� which render them suitable for document management
tasks of di�erent characteristics�
The text models� with character�based indexing� are more suitable

for tasks that involve frequent searching based on intra�component
pattern matching�
For tasks that involve frequent access and modi�cation of a small

number of document component types� it may be better to place such
frequently accessed elements in a small number of relations� so that
they may be accessed and modi�ed less expensively without a�ecting
the other parts of the databases�
The relational models� however� may be less suitable for document

management tasks that require retrieval of document components if
the sub�units have been split apart and scattered around in various
relations� Joining between collection units residing in di�erent data

��

models is typically even more expensive because of the need to trans�
port intermediate results from one database to another or to the in�
tegrators� Therefore� other factors being equal� it is good policy to
maximize local data access by storing together components that are
frequently accessed together�

��� Further Research

	���� Performance Analysis and Measurement

Further Analytical Work Using the set of basic operations de�
scribed in Chapter � above and the subsequent analysis as a starting
point� further� more low level� analytical work could be performed in
respect of the data models� We need to characterize some major query
types more precisely in terms of these and other� possibly� lower level
operations �for example those that would have allowed us to more
precisely pinpoint the order of magnitude of the number of index or
data entry comparisons� and study how these are a�ected by the data
placement decisions� Thereafter� we should be able to more precisely
quantify the impact of each data placement alternative�
Furthermore� the set of basic operations proposed in Chapter �

may not be adequate to fully represent all the query processing activi�
ties of any given database management system� For instance� we have
not proposed a grouping operation� In addition� the granularity of
operations may not match that of the database management system
being investigated� This would render the time performance of the
operation set unmeasurable� Moreover� the input and output formats
of the basic operations may not �t those of the database management
systems being studied� For instance� the join operation in Oracle may
operate on the actual tuples instead of just their location sets �see
Figure
��
Analytical workmay be extended to cover the use of object�oriented

data models for document management� In an object�oriented data
model �e�g� �CAS�
� and �BA�
��� each document or each of its com�
ponents is stored as an object with its own attributes� On a con�
ceptual level� by explicitly representing documents as objects� the
object�oriented data model lends itself more directly and is naturally
compatible with such object�based or object�oriented document man�
agement approaches as OLE� �Mic�
c� and Opendoc �App���� On

��

the negative side however� an explicit schema needs to be pre�de�ned
and documents need to be broken down into components before they
can be put into the database� Therefore� the object�oriented approach
shares many common limitations with their relational counterparts as
discussed above� Among other things� representing document compo�
nents as objects is no more natural than representing them as column
entries� especially when compared to the nested relation model�

Simulation Studies Simulation work could be performed on the
basis of the models derived from the analytical work� Based on the
characteristics of some selected query types� involving various types
of �elds� sizes of patterns and columns� etc�� we may simulate their
performance in the three models and their combinations� under di�er�
ent statistical distributions of those characteristics� Such simulation
result would help guide our data placement decisions under di�erent
combinations of query types and data characteristics�

Experimental Validation Work In this thesis� we have pro�
posed a set of primitive operations which are useful to represent the
major document management tasks and to study the impact of data
placement decisions on the performance of such tasks� However� no at�
tempt has been made to measure the performance of these operations
experimentally against any commercial database management system�
Based on our use of the PAT �Ope���� Oracle �Ora��b�� and the Hy�
brid Query Processor �BCD���� as design references� we expect such
experimental work would serve to validate the usefulness of our set
of primitive operation� In addition� as for simulation work� we could
experimentally measure and study the relationships between the time
performance of the primitive operators and the various query types
and data characteristics� These experimental results would provide
database designers with much more precise guidance for making their
data placement decisions�

	���� Performance Monitoring in Text Database Man�
agement System

In the current PAT system �Version ��	�� no output of either the query
processing steps or their timings are available� The only way for a
database designer to gather such information is to analyze each query�

��

execute the individual steps interactively �e�g� component locating
followed by component extraction�� and then estimate their timings
by various timing devices outside the system�
To permit the use of our proposed methodology to evaluate data

placement in a federated database management system supported by
both text and relational data models� it is desirable that the text
database management systems can automatically generate execution
plans and produce timing performance statistics corresponding to our
basic operations�

�	

A The SGML	� Source Text

�report�

�title�Getting started with SGML

�chapter�

�title�The business challenge

�intro�

�para�With the ever�changing and growing global market	 companies and

large organizations are searching for ways to become more viable and

competitive� Downsizing and other cost�cutting measures demand more

efficient use of corporate resources� One very important resource is

an organizations information�

�para�As part of the move toward integrated information management	

whole industries are developing and implementing standards for

exchanging technical information� This report describes how one such

standard	 the Standard Generalized Markup Language �SGML�	 works as

part of an overall information management strategy�

�graphic graphname
infoflow�

�chapter�

�title�Getting to know SGML

�intro�

�para�While SGML is a fairly recent technology	 the use of

�emph�markup��emph� in computer�generated documents has existed for a

while�

�section shorttitle
 �What is markup���

�title�What is markup	 or everything you always wanted to know about

document preparation but were afraid to ask�

�intro�

�para�Markup is everything in a document that is not content� The

traditional meaning of markup is the manual �emph�marking��emph� up

of typewritten text to give instructions for a typesetter or

compositor about how to fit the text on a page and what typefaces to

use� This kind of markup is known as �emph�procedural markup��emph��

�topic topicid
top��

�title�Procedural markup

�para�Most electronic publishing systems today use some form of

procedural markup� Procedural markup codes are good for one

presentation of the information�

�topic topicid
top��

�

�title�Generic markup

�para�Generic markup �also known as descriptive markup� describes the

�emph�purpose��emph� of the text in a document� A basic concept of

generic markup is that the content of a document must be separate from

the style� Generic markup allows for multiple presentations of the

information�

�topic topicid
top��

�title�Drawbacks of procedural markup

�para�Industries involved in technical documentation increasingly

prefer generic over procedural markup schemes� When a company changes

software or hardware systems	 enormous data translation tasks arise	

often resulting in errors�

�section shorttitle
 �What is SGML���

�title�What �emph�is��emph� SGML in the grand scheme of the universe	 anyway�

�intro�

�para�SGML defines a strict markup scheme with a syntax for defining

document data elements and an overall framework for marking up

documents�

�para�SGML can describe and create documents that are not dependent on

any hardware	 software	 formatter	 or operating system� Since SGML

documents conform to an international standard	 they are portable�

�section shorttitle
 �How does SGML work���

�title�How is SGML and would you recommend it to your grandmother�

�intro�

�para�You can break a typical document into three layers� structure	

content	 and style� SGML works by separating these three aspects and

deals mainly with the relationship between structure and content�

�topic topicid
top��

�title�Structure

�para�At the heart of an SGML application is a file called the DTD	 or

Document Type Definition� The DTD sets up the structure of a document	

much like a database schema describes the types of information it

handles�

�para�A database schema also defines the relationships between the

various types of data� Similarly	 a DTD specifies �emph�rules��emph�

to help ensure documents have a consistent	 logical structure�

�topic topicid
top��

�title�Content

�para�Content is the information itself� The method for identifying

��

the information and its meaning within this framework is called

�emph�tagging��emph�� Tagging must

conform to the rules established in the DTD �see �xref xrefid
top����

�graphic graphname
tagexamp�

�topic topicid
top��

�title�Style

�para�SGML does not standardize style or other processing methods for

information stored in SGML�

�chapter�

�title�Resources

�section�

�title�Conferences	 tutorials	 and training

�intro�

�para�The Graphic Communications Association ��gcalogo�� has been

instrumental in the development of SGML� GCA provides conferences	

tutorials	 newsletters	 and publication sales for both members and

non�members�

�para security
 c�Exiled members of the former Soviet Unions secret

police	 the KGB	 have infiltrated the upper ranks of the GCA and are

planning the Final Revolution as soon as DSSSL is completed�

��

report id

Table ��

report id seq # � chapter id

Table ��

B Task � in the Relational and Com�

bined Models

� to return the reportid whose related reports satisfy the condi�
tions speci	ed

if relational model

w � locateComp � Table ��� schema of Table ��� f reportid g�
f � �����content including �of�� � � �����security � �c� �
g �

� extracting into Table �� all matched reportids

Table �� � extractComp �w�

else if combined model

w� � locateComp � topic�content� DTD of topic�content
�Figure ���� f reportid g� f � topic�content�content in�
cluding �of�� � � topic�content�security � �c� � g �

� extracting into Table �� all matched reportids

w� � extractComp �w��

Table �� � parse �w�� grammar of w�� schema of w��

if combined model y

� transport Table �� from the text side to the relational side
via the integrator

report id chapter id seq # � section id

Table ��

���

report id section id seq # � topic id

Table ��

report id topic id seq #
 type content security
�for rel model only� �for rel model only�

Table ��

comm �textdb� integrator� Table ���

comm � integrator� reldb� Table ���

� to place all matched reportids� and all their chapterids with
their sequence numbers into Table ��

x � join �Table �� Table ��� f � �����reportid � ����reportid � g�
schemata of Tables �� ��� and x �

y � sort �x� f reportid� seq # �� g� ascending� schema of x�

Table �	 �

�
extractComp �components in y belonging to Table ��
extractComp �components in y belonging to Table ���

� transport �� back to the integrator for later use

comm �reldb� integrator� Table �	�

� to place all matched reportids and all their sectionids� with
their sequence numbers into Table ��

x � join � Table �	� Table ��� f ������report � ��	��reportid � g�
schemata of Tables �� ��� and x �

y � sort � x� f reportid� chapter id� seq # � g� ascending� schema
of x �

report id unit id title

Table ��

���

report id part id intro id

Table ��

Table �� �

�
extractComp �components in y belonging to Table �	�
extractComp �components in y belonging to Table ���

� transport Table �� back to the integrator for later use

comm �reldb� integrator� Table �� �

� to place all matched reportids� and all their topicids� with their
sequence numbers into a Table ��

x � join � Table ��� Table ��� f ������reportid � �����reportid �g�
schemata of Tables ��� ��� and x �

y � sort � x� f reportid� sectionid� seq # � g� ascending� schema
of x �

Table �� �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

� transport Table �� back to the integrator for later use

comm � reldb� integrator� Table ���

if relational model

� to place all matched reportids� and all their topicids�
contents� sequence numbers� together with their types and
security classi	cation in a Table ��

x� join � Table ��� Table ��� f ������reportid� �����reportid
� g� schmata of Tables ��� ��� and x �

y � sort � x� f reportid� topicid� seq #
 g� ascending�
schema of x �

Table �� �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

���

comm �reldb� integrator� Table �� �

else if combined model z

y � join ���� topic�content� f ������reportid� topic�content�reportid
� g� schema of Table �� and grammar of topic�content
�Figure ����

z �

�
extractComp �components in y belonging to topic� content�
extractComp �components in y belonging to Table ���

comm � textdb� integrator� z�

Table �� � sort �z� f reportid� topicid� seq #
 g� ascending�
schemata of z �

� to place all matched reportid� and all their unitids� and their
titles into a Table ��

x � join � Table ��� Table ��� f ������reportid � �����reportid �
g� schemata of Tables ��� ��� and x�

y � sort �x� f reportid� unitid g� ascending� schema of x �

Table �
 �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

comm � reldb� integrator� Table �
 �

� to place all matched reportid� and all their partids� and their
introids into a Table ��

x � join � Table �
� Table ��� f �����reportid � ��
��reportid g�
schemata of Tables �
� ��� and x �

y � sort �x� f reportid� partid g� ascending� schema of x �

Table �� �

�
extractComp �components in y belonging to Table �
�
extractComp �components in y belonging to Table ���

comm � reldb� integrator� Table �� �

� we suppose that the assemble operation is only available at the
integrator

assemble � f Table �	� Table ��� Table ��� Table ��� Table �
� and
Table �� g� schemata of the tables� sgml��textdtd �

���

report id

Table �	

report id seq # � chapter id

Table �

C Task � in the Relational and Com�

bined Models

� 	nd all reportids whose related reports contain titles with the
word �of�

w � locateComp �Table ��� schema of Table ��� f reportid g�
f�unit�title�title including �of�� g�

Table �� � extractComp �w�

comm �reldb� integrator� Table ���

x � join �Table �� Table ��� f ������reportid � ����reportid � g�
schemata of Tables �� ��� and x�

y � sort �x� f reportid� seq # �� chapterid g� ascending� schema
of x�

Table � �

�
extractComp �components in y belonging to Table ��
extractComp �components in y belonging to Table ���

comm �reldb� integrator� Table ��

x � join � Table �	� Table ��� f � �����reportid � ��	��reportid �
g� schemata of Tables �	� ��� and x�

report id chapter id seq # � section id

Table ��

���

report id section id seq # � topic id

Table ��

report id unit id title

Table ��

y � sort � x� f reportid� chapterid� seq # �� sectionid g� ascending�
schema of x �

Table �� �

�
extractComp �components in y belonging to Table �	�
extractComp �components in y belonging to Table ���

comm �reldb� integrator� Table �� �

x � join � Table ��� Table ��� f � �����reportid � �����reportid �
g� schemata of Tables ��� ��� and x �

y � sort � x� f reportid� sectionid� seq # �� topicid g� ascending�
schema of x �

Table �� �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

comm � reldb� integrator� Table ���

� to place the portions of Table �� related to the matched reportids
into a Table ��

x � join �Table ��� Table ��� f � �����reportid � �����reportid� g�
schemata of Tables ��� ��� and x�

y � sort �x� f unitid g� ascending� schema of x�

Table �	 �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

comm �reldb� integrator� Table �	�

assemble � f Table �� Table ��� Table ��� Table �	 g� schemata of
the tables� grammar of the table of contents to be assembled �

���

topic id title

Table ��

D Task � in the Relational and Com�

bined Models

� 	nd all the topicids whose topics contain a xrefid �top�

if combined model

w� � locateComp �topic�content� DTD of topic�content
�Figure ���� f topicid g� f �xref�xrefid � �top
�� g�

w� � extractComp �w��

x� � parse �w�� grammar of w�� schema of x��

comm �textdb� integrator� x��

else if relational model

w� � locateComp �Table ��� schema of Table ��� f topicid g� f
�topic�content�type� �xref�� � �topic�content�content
� �top
�� g�

x� � extractComp �w��

� 	nd all topicids and titles whose titles contain �of�

w� � locateComp �Table ��� schema of Table ��� f unitid� title g�
f �unit�title�title including �of�� g�

w� � join �w�� Table ��� f �w��unitid � �����topicid � g� schemata
of w�� Table ��� and x�

x� �

�
extractComp �components in y belonging to Table ���
extractComp �components in y belonging to Table ���

if combined model

comm �reldb� integrator� x��

� 	nd all topicids and their corresponding titles whose topics
contain a xrefid �top�
 and a title having the word �of�

��	

y� � join �x�� x�� f�x��topicid � x��unitid� g� schemata of x� and
x��

y � locateComp �y�� schema of y�� f topicid� title g �

Table �� �

�
extractComp �components in y belonging to x��
extractComp �components in y belonging to x��

if combined model

comm � integrator� reldb� Table ���

l � join ������topicid� Table ��� f �����topicid � �����topicid g�
schemata of �����topicid and Table �� �

� delete the existing tuple contents in Table �� for the matching
topicids

delete �l�

� to get all topic contents whose topicid is inside Table ��

if combined model z

comm � integrator� textdb� Table ���

x� join �Table ��� topic�content� f �����topicid� topic�content�topicid
g� schema of Table ��� grammar of topic�content �

y� �

�
extractComp �components in x belonging to Table ���
extractComp �components in x belonging to topic� content�

delete �x�

comm �textdb� integrator� y��

else if relational model

x � join � Tables ��� ��� f � �����topicid � �����topicid � g�
schemata of Tables ��� Table ��� and x �

sort �x� f seq #
 g� ascending� schema of x�

y� �

�
extractComp �components in x belonging to Table ���
extractComp �components in x belonging to Table ���

delete �x�

comm �reldb� integrator� y��

��

assemble � Table ��� y�� schemata of Table �� and y�� grammar
of topic �

� user editing action

� data validation� parsing� and generation of tuples to be inserted
the underlying databases

parse � edited content� grammar of edited text� schema of
tuples� grammar�s� of DML�s� for the underlying database�s��
Table �� �

� transmitting the tuples to the underlying databases

if relational model

comm � integrator� reldb� tuples�

else if combined model

comm � integrator� reldb� tuples�

comm � integrator� textdb� tuples�

� inserting the tuples at the underlying databases

if relational model

insert �tuples� Table �� �

insert �tuples� Table �� �

else if combined model

insert �tuples� topic�content �in the text database� �

insert �tuples� Table �� �in the relational database� �

���

E Task � in the Grammar�Independent

Relational Model

� 	nd all nodeids whose nodes have a security of �c

x� � locateComp �Table ��� schema of Table ��� f nodeid g� f
�textattribute�attr � �security�� � � textattribute�value
� �c�� g �

� 	nd all para node containing the word �of�

x� � locateComp �Table ��� schema of Table ��� f nodeid g� f
�textnode�content including �of�� � �textnode�genid� �para��
g �

x� � intersect �x�� x��

� 	nd the report nodes that contains those nodes in x�

x	 � join �x�� Table ��� f �x��nodeid� textnode�nodeid�� �textnode�genid
� �report�� g� schemata of x�� Table ��� and x	�

x� � locateComp �x	� schema of x	� f nodeid g �

� 	nd all the descendant nodes of the matching report nodes

x
 � join �x�� Table �� f � x��nodeid � textstructure�a nodeid �
g� schemata of x�� Table �� and x
 �

� 	nd the union of all nodes in the matching reports

x� � union �x
�a nodeid� x
�d nodeid� schemata of x
�a nodeid and
x
�d nodeid�

� pull out the portions of the textstructure table that contain
nodes in the matching report

x� � join �x�� Table �� f �x��nodeid � textstructure�a nodeid �
g� schemata of x� and Table ��

y � sort �x�� f a nodeid g� schema of x� �

textstructure s� extractComp �components a nodeid and d nodeid

in y belonging to textstructure�

� pull out the portions of the textnode table that contain nodes in
the matching report

x� � join �x�� Table ��� f �x��nodeid� textnode�nodeid � g� schemata
of x� and Table �� �

���

y � sort �x�� f nodeid g� schema of x��

textnode s � extractComp �y�

comm �reldb� integrator� textstructure s�

comm �reldb� integrator� textnode s�

assemble � f textstructure s� textnode s g� schemata of textstructure s

and textnode s� sgml��textdtd�

���

F Task � in the Grammar�Independent

Relational Model

� 	nd all para node containing the word �of�

x� � locateComp �Table ��� schema of Table ��� f nodeid g� f
�textnode�content including �of�� � �textnode�genid� �para��
g �

� 	nd the report nodes that contains those nodes in x�

x	 � join �x�� Table ��� f �x��a nodeid � textnode�nodeid� �
�textnode�genid � �report�� g� schemata of x�� Table ��� and
x	�

x� � locateComp �x	� schema of x	� f nodeid g �

� 	nd the descendant nodes of the matching report nodes

x
 � join �x�� Table �� f � x��nodeid � textstructure�a nodeid �
g� schemata of x�� Table �� and x
 �

� 	nd the union of all nodes in the matching reports

x� � union �x
�a nodeid� x
�d nodeid� schemata of x
�a nodeid and
x
�d nodeid�

� pull out the portions of the textstructure table that contain
nodes in the matching report

x� � join �x�� Table �� f �x��nodeid � textstructure�a nodeid �
g� schemata of x� and Table ��

y � sort �x�� f a nodeid g� schema of x� �

textstructure s� extractComp �components a nodeid and d nodeid

in y belonging to textstructure�

comm �reldb� integrator� textstructure s�

� pull out the portions of the textnode table that contain nodes in
the matching report

x� � join �x�� Table ��� f �x��nodeid� textnode�nodeid � g� schemata
of x� and Table �� �

y � sort �x�� f nodeid g� schema of x��

textnode s � extractComp �y�

comm �reldb� integrator� textnode s�

���

� assemble the table of contents of each report individually

assemble �f textstructure s� textnode s� schemata of textstructure s

and textnode s� DTD for the table of contents g �

���

G Task � in the Grammar�Independent

Relational Model

� 	nd all nodeids whose nodes have a security of �c

x� � locateComp �Table ��� schema of Table ��� f nodeid g� f
�textattribute�attr � �xre�d�� � � textattribute�value �
�top
�� g �

� 	nd all title node containing the word �of�

x� � locateComp �Table ��� schema of Table ��� f nodeid g� f
�textnode�content including �of�� � �textnode�genid � �ti�
tle�� g �

x� � intersect �x�� x��

� 	nd the topic nodes that contains those nodes in x�

x	 � join �x�� Table ��� f �x��a nodeid � textnode�nodeid� �
�textnode�genid � �topic�� g� schemata of x�� Table ��� and
x	�

x� � locateComp �x	� schema of x	� f nodeid g �

� 	nd the descendant nodes of the matching topic nodes

x
 � join �x�� Table �� f � x��nodeid � textstructure�a nodeid �
g� schemata of x�� Table �� and x
 �

� 	nd the union of all nodes in the matching topics

x� � union �x
�a nodeid� x
�d nodeid� schemata of x
�a nodeid and
x
�d nodeid�

� pull out the portions of the textstructure table that contain
nodes in the matching topic

x� � join �x�� Table �� f �x��nodeid � textstructure�a nodeid �
g� schemata of x� and Table ��

y � sort �x�� f a nodeid g� schema of x� �

textstructure s � extractComp �y�

delete �y�

� pull out the portions of the textnode table that contain nodes in
the matching topic

���

x� � join �x�� Table ��� f �x��nodeid� textnode�nodeid � g� schemata
of x� and Table �� �

y � sort �x�� f nodeid g� schema of x��

textnode s � extractComp �y�

delete �y�

� locate the portions of the textattribute Table contain nodes in
the matching topics

x�� � join � x�� Table ��� f �x��nodeid � textattribute�nodeid �
g� schemata of x� and Table �� �

delete �x���

� assemble the topics

assemble �textstructure s� textnode s� schemata of textstructure s

and textnode s� sgml��textdtd�

user editing action

 data validation� parsing� and generation of tuples to be inserted
into the underlying databases

parse � edited contents� grammar of edited contents�
schema of tuples to be generated�

 transmitting the tuples to the underlying database

comm � integrator� textdb� contents to be written�

for each collection unit

 inserting the tuples at the underlying database

insert �tuples� collection unit�

���

References

�App�
� Apple Computer� Inc� �OpenDoc� Shaping Tommorows
Software�� White Paper� ���
�

�App��� Apple
Computer� Inc� OpenDoc Technical Summary� April �
 �����
ftp���ftp�cil�org�pub�cilabs�tech�opendoc�OD�TechSummary �������

OD�TechSummary �������ps�

�Ass�
� Association for Computers and the Humanities �ACH� and
Association for Computational Linguistics �ACL� and Associ�
ation for Literacy and Linguistic Computing �ALLC�� Guide�
lines for Electronic Text Encoding and Interchange� April �
���
�

�AT��� P� Angerstein and Texcel� SGML Sample Queries� �� October
�����

�BA�
� Klemens B�ohm and Karl Aberer� Storing HyTime
Documents in an Object�Oriented Database� GMD�
IPSI� Dolivostra�e� ��� �
��� Darmstadt� Germany�
ftp���ftp�darmstadt�gmd�de�pub�dimsys�reports� ���
�

�BCD���� G�E� Blake� M� P� Consens� I� J� Davis� P� Kilpel�ainen�
E� Kuikka� P��$A Larson� T� Snider� and F� W� Tompa�
Text�Relational Database Management Systems� Overview
and
Proposed SQL Extensions� Technical Report CS������� UW
Centre for the New Oxford English Dictionary and Text Re�
search� University of Waterloo� Ontario� Canada� June �����
ftp���cs�archive�uwaterloo�ca�cs�archive�CS�������CS�������ps�Z�

�BDM��
� C� Mic Bowman� Peter� B� Danzig� Udi Manber� Dar�
ren R� Hardy� and Michael F� Schwartz� A Scalable�
Customizable� Discovery and Access System� In Elec�
tronic Proceedings of the Second World Wide Web Con�
ference 	
� Mosaic and the Web� September ����� ���
�
http���www�ncsa�uiuc�edu�SDG�IT���Proceedings�Searching�

schwartz�harvest�schwartz�harvest�html�

�Ber��� Tim Berners�Lee� Hypertext Markup Language � A
Representation of Textual Information and Metainfor�
mation for Retrieval and Interchange� July �� �����

���

ftp���ftp�w��org�pub�www�doc�html�spec�txt�Z� Draft
HTML Version ��	 Speci�cation currently available on�line
at
http���www�w��org�hypertext�WWW�MarkUp��

�BG��� David Bell and Jane Grimson� Distributed Database Systems�
Addison�Wesley Publishing Company� �����

�BTR��� G� Elizabeth Blake� F� W� Tompa� and Darrel R� Ray�
mond� Hypertext by Link�Resolving Components� In Hypertext
	� Proceedings� pages ���%�	� Seattle� Washington� U�S�A��
November �
��� ����� Association for Computing Machinery�

�Car�
� L�A� Carr� Structure and Hypertext� PhD thesis� Department
of Electronics and Computer Science� Faculty of Engineer�
ing and Applied Sciene� University of Southampton� United
Kingdom� November ���
�

�CAS�
� V� Christophides� S� Abiteboul� and M� Scholl� From Struc�
tured Documents to Novel Query Facilities� In SIGMOD 	
�
����� Le Chesnay� Cedex� France� May ���
�

�CCB��� Charles L� A� Clarke� G� Y� Cormack� and F� J� Burkowski�
An Algebra for Structured Text Search and a Framework for
its Implementation� Computer Journal� ������
�%��� �����

�CDY��� Surajit Chaudhuri� Umeshwar Dayal� and Tak W� Yan� Join
Queries with External Text Sources � Execution and Opti�
mization Techniques� In SIGMOD 	�� San Jose� CA� USA�
�����

�Chu��� Pai�cheng Chu� A Transaction�oriented Approach to At�
tribute Partitioning� Information Systems� ��
�����%
��
�����

�CMVN��� Sharma Chakravarthy� Jaykumar Muthuraj�
Ravi Varadarajan� and Shamkant B� Navathe� An Objective
Function For Vertically Partitioning Relations in Distributed
Databases and its Analysis� Technical Report UF�CIS�TR�
���	
�� Department of Computer and Information Sciences�
University of Florida� �����
ftp���ftp�cis�ufl�edu�pub�tech�reports�tr�������ps�Z�

�CP�
� Stefano Ceri and Giuseppe Pelagatti� Distributed Databases
Principles and Systems� McGraw�Hill Book Company� ���
�

��	

�CP�� Douglas Cornell and Yu Philip� A Vertical Partitioning Al�
gorithm for Relational Databases� In Proceedings of the Third
International Conference on Data Engineering� pages �	%���
February ����

�DD�
� Steven J� DeRose and David G� Durand� Making Hypermedia
Work� A Users Guide to HyTime� Kluwer Academic Pub�
lishers� ���
�

�DDSS��� Samuel DeFazio� Amjad Daoud� Lisa Ann Smith� and Ja�
gannathan Srinivasan� Integrating IR and RDBMS Using Co�
operative Indexing� In SIGIR 	�� Seattle� WA� USA� June
�����

�EN��� Ramez Elmasri and Shamkant B� Navathe� Fundamentals
of Database Systems� The Benjamin�Cummings Publishing
Company� Inc�� �����

�Fur��� Richard Furuta� Concepts and Models for Structured Docu�
ments� In J� Andr&e� R� Furuta� and V� Quint� editors� Struc�
tured Documents� pages %��� Cambridge University Press�
IRIA� �����

�FX��� Peter Fankhauser and Yi Xu� Mark�it Up � An Incremental
Approach to Document Recognition� GMD�IPSI� Dolivostr�
��� D��
��� Darmstadt� Germany� E�mail � ffankhaus	

xuyig�darmstadt�gmd�de
ftp�darmstadt�gmd�de� They are located in the subdirecto�
ries of pub�dimsys�reports named by the year� and are all
compressed� postscript �les�� December �����

�Gol�	� C�F� Goldfarb� The SGML Handbook� Oxford University
Press� Oxford� ���	�

�Hea��� Ian Heath� An Open Model for Hypermedia � Abstracting
Links from Documents� PhD thesis� Department of Electron�
ics and Computer Science� Faculty of Engineering and Ap�
plied Sciene� University of Southampton� United Kingdom�
November �����

�HHR�
� Anja Haake� Christoph H�user� and Klaus Reichenberger�
The Individualized Electronic Newspaper � An Example of an
Active Publication� Electronic Publishing� ������%���� June
���
�

��

�IES�
� IESC Electronic Document Management Sub�Committee�
Data Administration Standards Communications and In�
formation Systems Engineering Branch� Department of
Defence� Australia� Implementing E�ective Procedures
for the Management of Electronic Documents in the
Australian Public Service� Journal of the Ameri�
can Society for Information Science� August � ���
�
ftp���archie�au�ACS�implguid�html�

�Int��� International Organization for Standardization� Information
Processing � Text and O�ce Information Systms � Standard
Generalized Mark�up Language� ISO ���� ISO Committee�
�����

�Int��� International Organization for Stan�
dardization� Hypermedia�Time�based Structuring Language
� HyTime� ISO�IEC �	

� ISO Committee� �����

�Jai��� Raj Jain� The Art of Computing Systems Performance Analy�
sis � Techniques for Experimental Design� Measurement� Sim�
ulation� and Modeling� John Wiley ' Sons� Inc�� �����

�Kil��� Pekka Kilpel�ainen� Tree Matching Problems with Applica�
tions to Structured Text Databases� PhD thesis� Department
of Computer Science� University of Helsinki� Finland� Novem�
ber �����

�Lam��� Leslie Lamport� LATEX� A Document Preparation System�
�����

�Lin��� Barbara Lincoln� Wide Area Information Servers �WAIS�
Bibliography�
gopher���watserv��uwaterloo�ca����servers�guides�wais�

bibliography�txt� January �����

�Mar��� Nenad Marovac� Document Recognition � Concepts and
Implementation� Department of Mathematical Sciences� San
Diego State University� E�mail � nenad�math�sdsu�edu� Au�
gust �����

�Mic�
a� Microsoft Corporation� Microsoft Word Users Manual Ver�
sion ���� October ���
�

�Mic�
b� Microsoft Corporation� �Object Linking and Embedding �
Version ����� Microsoft Technical Backgrounder� June ���
�

���

�Mic�
c� Microsoft Corporation� �OLE Integration Technologies��
Technical Overview� October ���
�

�MIMH��� Shojiro Muro� Toshihide Ibaraki� Hidehiro Miyajima� and
Toshiharu Hasegawa� Evaluation of the File Redundancy in
Distributed Database Systems� IEEE Transactions on Soft�
ware Engineering� SE������� February �����

�ML�
� Michael L� Mauldin
and John R� R� Leavitt� Web Agent Related Research at the
Center for Machine Translation� In SIGNIDR� August ���
�
http���fuzine�mt�cs�cmu�edu�mlm�signidr���html�

�NCWD�
� Shamkant Navathe� Stefano Ceri� Gio Wiederhold� and
Jinglie Dou� Vertical Partitioning Algorithms for Database
Design� ACM Transactions on Database Systems� ��
�� De�
cember ���
�

�Nel�� Nelson� T� Literary Machines� ISBN 	����
�	����� ����

�NM��� Shamkant Navathe and Ra Minyoung� Vertical Partitioning
Algorithms for Database Design � A Graphical Algorithm� In
SIGMOD �	� Portland� June �����

�Nov��� Inc� Novell� Open Document Management API Version ����
January � �����

�Ope��� Open Text Corporation� The Web Index Overview� �����
http���opentext�uunet�ca������intro�html�

�Ope��� Open Text Corporation� PAT Reference Manual and Tuto�
rial� ��������

�Ora��� Oracle Corporation� SQL Language Reference Manual Ver�
sion ���� �����

�Ora��a� Oracle Corporation� Oracle� Server Administrators Guide�
December �����

�Ora��b� Oracle Corporation� Oracle� Server Appolication Devel�
opers Guide� December �����

�Ora��c� Oracle Corporation� Oracle� Server Concepts Manual� De�
cember �����

� �OV��� M� Tamer �Ozsu and Patrick Valduriez� Distributed Database
Systems � Where Are We Now � IEEE Computer� �
����
August �����

���

�QV�
� Vincent Quint and Ir(ene Vatton� Making Structured Docu�
ments Active� Electronic Publishing� ������%
� June ���
�

�Ray��� Darrel R� Raymond� Flexible Text Display with Lector� IEEE
Computer� pages
�%�	� August �����

�RSB��� K� Ramamohanarao� J� Shepherd� I� Balbin� G� Port� L�
Naish� J� Thom� J� Zobel� and P� Dart� The NU�Prolog Deduc�
tive Database System� IEEE Data Engineering� �	�
���	%���
December ����

�RSMA��� Jonathan Rosenberg� Mark Sherman� Ann Marks� and
Jaap Akkerhuis� Multi�media Document Translation� ODA
and the EXPRESS Project� Springer�Verlag� �����

�RTW��� Darrel R� Raymond� F� Wm� Tompa� and Derick Wood�
Markup Reconsidered� Technical Report OED����	�� UW
Centre for the New Oxford English Dictionary and Text Re�
search� University of Waterloo� Ontario� Canada� April �����

�RTW��� Darrel R� Raymond� F� Wm� Tompa� and Derick Wood�
From Data Representation to Data Model � Meta�Semantic
Issues in the Evolution of SGML� Technical Report CS������
UW Centre for the New Oxford English Dictionary and Text
Research� University of Waterloo� Ontario� Canada� April
����� This paper has been accepted for publication in the
July ���� issue of Computer Standards and Interfaces�

�RV��� C&ecile Roisin and Ir(ene Vatton� Merging logical and physi�
cal structures in documents� In Electronic Publishing� volume
��
�� pages ��%��� November �
��� �����

�SAZ�
� Ron Sacks�Davis� Timothy Arnold�Moore� and Justin Zobel�
Database Systems for Structured Documents� In International
Symposium on Advanced Database Technologies and Their In�
tegration ADTI 	
� Nara� Japan� October ���
�

�ST��� Airi Salminen and F� Wm� Tompa� PAT Expressions � An
Algebra for Text Search� Acta Linguistica Hungarica�
����

���%�	�� ��������

�SW��� J�A� Simpson and E�S�C Weiner� editors� The Oxford English
Dictionary� Oxford University Press� Oxford� �����

�Tho��� James Allan Thom� Design of a Document Database Sys�
tem� PhD thesis� RMIT� University of Melbourne� Australia�
December ����� CITRI�TR�������

���

�Tom��� F� W� Tompa� What is �tagged� text � In Dictionaries
in the Electronic Age� Fifth Annual Conference of the UW
Centre for the New Oxford English Dictionary and Text Re�
search� pages ��%��� St� Catherine�s College� Oxford� Eng�
land� September ����� ����� UW Centre for the New Oxford
English Dictionary and Text Research�

�Ull��� Ullman� Je�rey D� Principles of Database Systems� Computer
Science Press� �����

�WLL��� C�C� Woo� F�H� Lochovsky� and A� Lee� Document Man�
agement Systems� In Dionysios C� Tsichritzis� editor� O�ce
Automation� chapter �� pages ��%
	� Springer�Verlag� March
�����

�Wor�	� WordPerfect Corporation� WordPerfect Reference Manual
Version ���� ���	�

�YMW���� Makoto Yoshida� Kyoko Mizumachi� Atsushi Wakino�
Ikuo Oyake� and Yutaka Matsushita� Time and Cost Eval�
uation Schemes of Multiple Copies of Data in Distributed
Database Systems� IEEE Transactions on Software Engineer�
ing� SE������� September �����

���

