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Abstract

We present new algorithms for computing Smith normal
forms of matrices over the integers and over the integers
modulo d� For the case of matrices over ZZ d� we present an
algorithm that computes the Smith form S of an A � ZZ

n�m
d

in only O�n���m� operations from ZZ d� Here� � is the ex�
ponent for matrix multiplication over rings� two n � n
matrices over a ring R can be multiplied in O�n�� opera�
tions from R� We apply our algorithm for matrices over
ZZ d to get an algorithm for computing the Smith form S
of an A � ZZ

n�m in O��n���m � M�n log jjAjj�� bit opera�
tions �where jjAjj � max jAi�jj and M�t� bounds the cost
of multiplying two dte�bit integers�� These complexity re�
sults improve signi	cantly on the complexity of previously
best known Smith form algorithms �both deterministic and
probabilistic� which guarantee correctness�

� Introduction

The Smith normal form is a canonical diagonal form for
equivalence of matrices over a principal ideal ring R� For any
A � R

n�m there exist unimodular �square and invertible�
matrices U and V over R such that

S � UAV �

�
���������

s�
� � �

sr



� ��




�
���������

with each si nonzero and with sijsi�� for � � i � r � �� S
is called the Smith normal form of A and the unimodular
U and V are called transforming matrices� The nonzero
diagonal entries si of S are called the invariant factors of
A and are unique up to units � uniqueness of S can be
ensured by specifying that each si belong to a prescribed
complete set of nonassociates of R� The Smith normal form
was 	rst proven to exist by Smith 
�� ����� for matrices over
the integers �in this case� each si is positive� r � rank�A�
and det�U�� det�V � � ����

In this paper we consider the problem of computing
Smith normal forms of matrices with entries from ZZ and
ZZ d� the ring of integers modulo d� Computing Smith normal

forms over these domains is useful in many applications� in�
cluding Diophantine analysis �see Newman 
�� ������� com�
puting the structure of 	nitely generated abelian groups �see
Haves� Holt � Rees 
�� ������ and computing the structure
of the class group of a number 	eld �see Hafner � McCurley

�� ����� and Buchmann 
�� �������

In Section � we present our main result � an asymp�
totically fast algorithm for computing Smith normal forms
over ZZ d� Let A be an n �m matrix over ZZ d� We assume
without loss of generality that n � m � the Smith nor�
mal form of the transpose of A will have the same invariant
factors as that of A� Our algorithm requires a near opti�
mal O�n���m� operations from ZZ d to compute the Smith
normal form S of A� Here� � is de	ned so that two n � n
matrices over a ring R can be multiplied in O�n�� operations
from R� Using standard matrix multiplication � � �� while
the best known algorithm of Coppersmith � Winograd 
��
���
� allows � � ����� For the case n � m� our complexity
result for computing the Smith normal form matches that
of the best known algorithm to compute det�A� � which
can be computed �up to a unit� as the product of the di�
agonal entries in S� Although we do not prove it here� we
remark that candidates for transforming matrices U and V
can be recovered in O��n���m� � operations from ZZ d� The
asymptotically fast algorithm for computing transforming
matrices over ZZ d is based on the approach we present here�
but requires in addition a number of new results and will be
the subject of a future paper�

In Section � we consider the problem of computing Smith
normal forms of integer matrices� Let A be an n�m input
matrix over ZZ � We show how to apply the result of Section
� to get an algorithm that requires O��n���mM�n log jjAjj��
bit operations to produce the Smith normal form S of A�
The previously best deterministic algorithm of Hafner �Mc�
Curley 
�� ����� requires O��n�m log jjAjjM�n log jjAjj�� bit
operations to produce S� we have improved this worst case
complexity bound by a factor of at least O�n log jjAjj� bit
operations � even assuming standard integer and matrix
multiplication� The previously best Las Vegas probabilistic
algorithm of Giesbrecht 
�� ����� computes S in an expected
number of O��n�mM�n log jjAjj�� bit operations�

The algorithm that we have presented for computing
Smith normal forms over ZZ does not compute unimodu�
lar transforming matrices U and V that satisfy UAV � S�
Since the transforming matrices are highly nonunique� the

�To summarize results we use �soft�Oh� notation� for any f� g �
�
s
�� �� f � O��g	 if and only if f � O�g � logc g	 for some constant

c � 
�



goal is to produce candidates for U and V that have small
entries� Heuristic methods have shown promising results�
especially for large sparse input matrices with small entries
�see Havas� Holt and Rees 
�� ������� but are di�cult to anal�
yse� In the future� we will present deterministic algorithms
that compute multiplier matrices U and V � We mention one
result� for a square nonsingular matrix A� there exists a can�
didate for V that has total size �the sum of the bit lengths
of the individual entries of V � bounded by O��n� log jjAjj�
bits � this is on the same order of space as required to write
down A�

� Preliminaries and Previous Results

Two matrices A and B over a principal ideal ring R are
said to be equivalent if B is related to A via unimodular
transformations U and V � that is� with B � UAV and A �
U��BV ��� It follows that two matrices A and B have the
same Smith normal form if and only if they are equivalent�

Recall that an S � diag�s�� s�� � � � � sr� 
� � � � � 
� � R
n�m

is in Smith normal form if sijsi�� for i � �� �� � � � � r� � and
each si belongs to a prescribed complete set of nonassociates
of R� For the case R � ZZ d� we choose our prescribed set of
nonassociates to be N�

d � fx mod d � x � ZZ � 
 � x �
d� xjdg� and for a� b � ZZ d� write gcdd�a� b� to denote the
unique principal generator of the ideal �a� b� � ZZ d which
belongs to N�

d � Note that gcdd�a� b� can be computed as
gcd��a��b� d� mod d where �a and �b are in ZZ with �a � a mod d
and �b � b mod d� For the case a� b � 
� we have gcdd�
� 
� �

� Over the ring R � ZZ � our prescribed complete set of
nonassociates is simply N� � fx � x � ZZ � x � 
g�

We present some of our complexity results in terms of
the number of operations from ZZ d� Given a� b � ZZ d� we
consider a single operation from ZZ d to be one of� ��� 	nding
a� b� a� b� ab � ZZ d� ��� if a divides b� 	nding a q � ZZ d with
aq � b� ��� 	nding elements g� s� t� u� v � ZZ d such that�

s t
u v

��
a
b

�
�

�
g



�

with g � gcdd�a� b� and sv � tu a unit in ZZ d� Let B�log d�
be a function which bounds the number of bit operations
required to perform a single operations from ZZ d� Using
standard integer arithmetic� B�log d� 	 log� d� while fast
integer arithmetic allows

B�log d� 	 M�log d� log log d�

In Section � we use the fact that B�log d� bounds the number
of bit operations required to apply the Chinese remainder
algorithm with moduli whose product has magnitude less
than d�

Our work on this particular topic �asymptotically fast
algorithms for diagonalizing matrices over rings� was moti�
vated in part by the work of Hafner � McCurley in 
�� �����
where they give asymptotically fast algorithms for triangu�
larizing matrices over rings� Theorem �� which follows from
their work� gives a key subroutine which we require�

Theorem � �Hafner � McCurley ��� �����	 There ex�
ists a deterministic algorithm that takes as input an n�m
matrix A over ZZ d� and produces as output two matrices V
and T satisfying AV � T � with T lower triangular and V

unimodular� If A has last t columns zero� then V can be
written as

V �

�
V� 


 It

�
�

If n�m � b� then the cost of the algorithm is bounded by

O�b�� operations from ZZ d�

� Smith Normal Form over ZZ d

In this section we develop an asymptotically fast algorithm
to compute the Smith normal form of an A � ZZ

n�m
d �

Our approach is to compute a succession of matrices A �
A��A�� � � � �Ak � D with Ai equivalent to Ai�� for i �
�� �� � � � � k� and with D a diagonal matrix� The Smith nor�
mal form of A can then be found quickly by computing the
Smith normal form of the diagonal matrix D�

Our algorithm depends on a number of subroutines� two
of which we present separately in Subsection ��� and ����
In Subsection ��� we present an algorithm that requires
O�n�� operations from ZZ d to transforms an upper trian�
gular B � ZZ

n�n
d to an equivalent bidiagonal matrix C� In

Subsection ��� we show how to compute the Smith normal
form of a bidiagonal C � ZZ

n�n
d in O�n�� operations from

ZZ d� In Subsection ��� we combine these results and give an
algorithm that requires O�n���m� operations from ZZ d to
computing the Smith normal form of an A in ZZ

n�m
d �

��� Reduction of Banded Matrices

A square matrix A is upper b�banded if Aij � 
 for j � i
and j � i� b� that is� if A can be written as

A �

�
�������������


 � � � 

� � �

� � �

� � �
�� �

� � �
� � �

�� � 

� � �

���



�
�������������
� ���

The main purpose of this subsection is to develop an al�
gorithm which transforms A to an equivalent matrix� also
upper banded� but with band about half the width of the
band of the input matrix� Our result is the following�

Theorem 
 For b � �� there exists a deterministic algo�

rithm that takes as input an n � n upper b�banded matrix
A over ZZ d� and produces as output an equivalent n� n up�

per �bb��c � ���banded matrix A�� If A has last t columns
zero� then A� will have last t columns zero� The cost of the

algorithm is O�n�b�� operations from ZZ d�

Proof By augmenting A with at most b rows and columns
of zeroes we may assume that t � �b� that is� that A has
at least �b trailing columns of zeroes� In what follows� we
write sub
i� k� � subA
i� k� to denote the the symmetric k�k
submatrix ofA comprised of rows and columns i��� � � � � i�k�

�



Our work matrix� initially the input matrix A� has the form

�
�
�
�
�
�
�
�

�
�
�
�
�
�

Our approach is to transforms A to A� by applying �in place�
a sequence of equivalence transformations to sub
is�� n�� and
sub
�i���s��js�� n��� where i and j are nonnegative integer
parameters and

s� � bb��c�

n� � bb��c � b� ��

s� � b� ��

n� � ��b� ���

The 	rst step is to convert the work matrix to an equivalent
matrix but with 	rst s� rows in correct form� This trans�
formation is accomplished using subroutine Triang� de	ned
below by Lemma ��

Lemma � For b � �� there exists a deterministic algorithm

Triang that takes as input an n��n� upper b�banded matrix

B �

�
��������������


 � � � 
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�
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�
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�
��

�
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over ZZ d� where the principal block is s� � s�� and produces
as output an equivalent matrix

B� �

�
��������������


 � � � 
 

� � �

��
�

��
�

� � �


 
 � � � 
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 � � � 
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�

��
�
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 � � � 
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If B has last t columns zero� then B� will have last t columns

zero� The cost of the algorithm is O�b�� operations from ZZ d�

Proof Using the algorithm of Theorem �� compute an s� �
s� unimodular matrix V which� upon post�multiplication�

triangularizes the s� � s� upper right hand block of B� and
set

B� � B

�
Is�

V

�
�

Since n� � �b� the cost is as stated�
Apply subroutine Triang to sub

� n�� of our initial work

matrix to e�ect the following transformation�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�

�

�
�
�
�
�

�
�
�
�
�
�

At this stage we can write the work matrix as

�

�
�
�
�
�

�
�
�
�
�
�

where the focus of attention is now sub
s�� n��� Subsequent
transformations will be limited to rows s���� s���� � � � � n�t
and columns s��s���� s��s���� � � � � n� t� The next step
is to transform the work matrix back to an upper b�banded
matrix� This is accomplished using subroutine Shift� de�
	ned below by Lemma ��

Lemma � For b � �� there exits a deterministic algorithm

Shift that takes as input an n� � n� matrix

C �

�
�������
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over ZZ d� where each block is s��s�� and produces as output
an equivalent matrix

C � �

�
�������


 � � � 
 

� � �

�
�
�

�
�
�

� � �


 
 � � � 


 � � � 
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�

��
�


 � � � 


�
�������

If C has last t columns and rows zero� then C � will have last

t columns and rows zero� The cost of the algorithm is O�b��
operations from ZZ d�

Proof Write the input matrix as

C �

�
C� C�

C�

�

where each block is s� � s�� Use the algorithm of Theo�
rem � to compute� in succession� a unimodular matrix UT

such that CT
� U

T is lower triangular� and then a unimodular
matrix V such that �UC��V is lower triangular� Set

C � �

�
U

Is�

� �
C� C�

C�

��
Is�

V

�
�

Since n� � �b� the cost is as stated�
Apply subroutine Shift to sub
s� � js�� n�� for j �


� �� �� � � � � bn�n�c to get the following sequence of transfor�
mations�

�

�
�
�
�
�

�
�
�
�
�
�

�

�
�
�

�
�
�

�
�
�
�
�
�

�

���

�

�
�
�
�
�
�
�

�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

The procedure just described is now recursively applied to
the trailing �n � s�� � �n � s�� submatrix of the work ma�
trix� itself an upper b�banded matrix� For example� the next
step is to apply subroutine Triang to sub
s�� n�� to get the
following transformation�

��
�
�
�
�
�
�
�

�
�
�
�
�

�

�
�

�
�
�
�

�
�
�
�
�
�

We get the following�

Algorithm
 BandReduction
Input
 An upper b�banded matrix A � ZZ

n�n
d with b � �

and last t columns zero� Note� We assume that t � �b� If

�



not� then augment A with �b� t rows and columns of zeros�
Output
 An upper �bb��c����banded matrix that is equiv�
alent to A and has last t columns zero�

��� 
Initialize��
s� � bb��c�
n� � bb��c � b� ��
s� � b � ��
n� � ��b � ���

��� 
Apply equivalence transformations��
for i � 
 to d�n� t��s�e��

apply Triang to subA
is�� n���
for j � 
 to d�n� t� �i� ��s���s�e

apply Shift to subA
�i� ��s� � js�� n���

Let T �n� b� be the the cost of applying algorithm
BandReduction to an n � n upper b�banded input matrix�
To complete the proof of Theorem � we derive a bound on
T �n� b� in terms of number of operations from ZZ d� The
number of iterations of the outer loop in step ��� is

Li � d�n� t��s�e �
�n

b� �
���

while the number of iterations� for any 	xed value of i� of
the inner loop in step ��� is

Lj � d�n� t� �i� ��s���s�e �
n

b� �
� ���

The number of applications of either subroutine Triang or
Shift occurring during algorithm BandReduction is seen to
be bounded by Li�� � Lj�� By Lemma � and �� we have

T �n� b� � Li�� � Lj�cb
� ���

for some absolute constant c� Substituting ��� and ��� into
��� yields

T �n� b� � Li�� � Lj�cb
�

�
	

�n

b� �


	
� �

n

b� �



cb�

�
	

�n

b� �


	
�n

b� �



�c�b� ���

	 n�b���

which completes the proof�

Corollary � There exists a deterministic algorithm that
takes as input an n� n upper triangular matrix A over ZZ d�

and produces as output an upper ��banded matrix A� that is
equivalent to A� The cost of the algorithm is O�n�� opera�

tions from ZZ d�

Proof By augmenting A with at most n rows and columns
of zeros� we can assume that n � �k�� for some k � ZZ � We
consider A as an n� n upper b�banded matrix with b � n�
Let D�n� b� be the cost of computing an upper ��banded
matrix equivalent to an n�n upper b�banded input matrix�
It follows from Theorem � that

D�n� b� � D�n� db��e� �� � cn��b� ����� ���

for some absolute constant c� Replace b with n in ��� and
iterate to obtain

D�n�n� � D�n� bn��c� �� � cn��n� �����

� D�n� �k�� � �� � cn���k����

� D�n� �k�� � �� � cn����k���� � ��k�������

���

� cn�
log���

k�X
i��

��i����

� cn�
log��n���X

i��

	
n� �

�i


���

� cn��n� �����

log��n���X
i��

	
�

����


i
	 n�

which completes the proof�

��� The Smith Normal Form of a Bidiagonal Matrix

A square matrix A is upper bidiagonal if Aij � 
 for j � i
and j � i� �� that is� if A can be written as

A �

�
������


 


 



 




� � � 




�
������ � ���

In particular� A is upper bidiagonal if A is upper ��banded
and vice versa� Our result is the following�

Theorem � There exists a deterministic algorithm that

takes as input an upper bidiagonal matrix A � ZZ
n�n
d � and

produces as output the Smith normal form of A� The cost of

the algorithm is O�n�� operations from ZZ d�

We require some intermediate results before proving The�
orem ��

Lemma � Let a� b be elements of ZZ d� There exist elements
x and u of ZZ d� with u a unit� such that xa�b � u gcdd�a� b��

Proof Follows from the fact that ZZ d is a stable ring�

Lemma � Let

A �

�
a b


 d
c e

�

be over ZZ d� with d a multiple of b� If q� is a solution to
to a � q� gcdd�a� b�� and q� is a solution to gcdd�a� b� �
q� gcdd�a� b� c�� then A is equivalent to

�A �

�
�a e


 �d
�c �e

�
where

�a � gcdd�a� b� c��
�d � q�d�
�c � q�q�c�
�e � q�e�

Proof We show that A can be transformed to �A via a se�
quence of unimodular row and column transformations� To
begin� let x� and u� be elements of ZZ d� with u� a unit� such

�



that x�a� b � u� gcdd�a� b�� �We only require the existence
of x� and u�� as per Lemma �� we don�t need to produce x�
and u� explicitly�� Add x� times column � of A to column
� and then switch columns � and � to obtain the equivalent
matrix

A� �

�
g� a
d 

c e

�

where g� � u� gcdd�a� b�� To zero out the entry in row �
column � of A�� multiply column � of A� by �u� �a unit�
and then add q� times column � of A� to column � to obtain
the equivalent matrix

A� �

�
g�
d 
 q�d
c q�c e

�
�

Since g� is an associate of gcdd�a� b�� and b divides d� we
can add a multiple of row � of A� to row � to obtain the
equivalent matrix

A� �

�
g�


 q�d
c q�c e

�
�

The second stage of the reduction is similar to the 	rst� Let
x� and u� be elements of ZZ d� with u� a unit� such that
x�g� � c � u� gcdd�g�� c�� and add x� times the 	rst row
of A� to row � and then switch rows � and � to obtain the
equivalent matrix

A	 �

�
g� q�c e


 q�d
g�

�

where g� � u� gcdd�g�� c�� To zero out the entry in row �
column � of A	� multiply row � of A	 by �u�u

��
� �a unit�

and then add q� times row � of A� to row � to obtain the
equivalent matrix

A
 �

�
g� q�c e


 q�d
q�q�c q�e

�
�

To complete the transformation to �A� transform the entry
in row � column � to gcdd�a� b� c� by multiplying column �
of A
 by a unit� then zero out the entry in row � column �
by adding a multiple of column � to column ��

Corollary � There exists a deterministic algorithm that

takes as input a � � � matrix

A �

�
a b


 d
c e

�

over ZZ d� with d a multiple of b� and produces as output an
equivalent matrix that can be written as

�A �

�
�a e


 �d
�c �e

�

with �e a multiple of e� and �a a divisor of both �c and �d�
Furthermore� the matrix �A produced is equivalent to A under
a sequence of unimodular row and column transformations

limited to columns � and �� The cost of the algorithm is
O��� operations from ZZ d�

Proof Find solutions q� and q� to a � q� gcdd�a� b� and

gcdd�a� b� � q� gcdd�a� b� c�� then compute �a� �d� �c and �e ac�
cording to the de	nitions in Lemma ��

For our next result� we need some notation� For � � k �
n denote by T n

k the set of all n� n matrices over ZZ d which
are upper bidiagonal except with the entry in row � column �
zero and with the entry in row � column k possibly nonzero
but dividing the entry in row k � � column k � that is�
matrices which can be written using a block decomposition
as �

����������������

a b

 




� � � 



 


 d

c e

 




� � � 





�
����������������

� ���

where b is in column k and divides d�

Lemma �� There exists a deterministic algorithm that
takes as input a matrix T over ZZ d and in T

n
k with � � k � n�

and produces as output an equivalent matrix �T in T n
k��� Fur�

thermore� if T�� divides all entries in the �rst k� � columns

of T � then �T�� divides all entries in the �rst k columns of
�T � The cost of algorithm is O��� operations from ZZ d�

Proof Let T be written as in ���� The construction of Corol�
lary � can be applied to the �� � submatrix of T comprised
of rows �� k � �� k and columns �� k � �� k� k � � at a cost of
O��� operations from ZZ d to produce the equivalent matrix

�T �

�
����������������

�a e

 




� � � 



 



 �d
�c �e


 




� � � 




�
����������������

in T n
k��� To prove the second part of the theorem� note that

by Corollary � we have �a � gcdd�a� b� c� d�� and in particular�
�aja� Thus� if a divides all entries in the 	rst k � � columns

of T � then �a divides all entries in the 	rst k columns of �T �

We now return to the proof of Theorem �� Let R�n�
be the number of operations required to compute the Smith
normal form of an n � n upper bidiagonal matrix over ZZ d�
We claim that

R�n� � R�n� �� � cn ���

for some absolute constant c� To prove ���� let A be an n�n
upper bidiagonal matrix over ZZ d� We show how to produce

�



a matrix

B �

�
������

g

 



 




� � � 




�
������ ���

which is equivalent to A and where g is the gcdd of all entries
in B� The Smith normal form of A can now be found by
computing recursively the Smith normal form of the trailing
�n� �� � �n � �� submatrix of B�

To begin� convert A to the �n� ��� �n� �� matrix

�A� �

�
���������


 





 


 




� � � 







�
���������
�

by inserting a row and column of zeros after the pivot entry
and by augmenting with a single row and column of zeros�
The Smith normal form of �A� will have the same invariant
factors as the Smith normal form of A� Furthermore� �A� is
in T n��

� and the entry in row � column � of �A� divides all en�
tries in the 	rst two columns of �A�� Starting with �A�� apply
the algorithm of Lemma �
 for k � �� �� � � � � n � � to com�
pute a succession of equivalent matrices �A	� �A
� � � � � �An���
with �Ak � T n��

k � By Lemma �
� the cost of this is O�n�
operations from ZZ d and� since the last column of �A� is all
zero� �An�� will have the form

�An�� �

�
���������

g 





 


 




� � � 







�
���������

where g divides all entries in the 	rst k�� columns of �An���
Finally� delete rows and columns � and n�� of �An�� �which
contain only zero entries� to produce an n�n matrix equiv�
alent to A and which can be written as in ���� This proves
the inequality ���� To complete the proof of Theorem ��
iterate ��� to obtain

R�n� � R�n � �� � cn

� R�
� � c

nX
i��

i

	 n�

��� The Smith Normal Form Algorithm

Theorem �� There exists a deterministic algorithm that
takes as input an n � m matrix A over ZZ d� and produces

as output the Smith normal form of A� The cost of the
algorithm is O�n���m� operations from ZZ d�

Proof By augmenting A with at most n � � columns� we
can assume that m � kn for some integer k� The algorithm
consists of three steps� First� 	nd an n�n upper triangular
matrix B that has the same invariant factors as A� This can
be accomplished in O�n���m� operations from ZZ d as fol�
lows� Find a lower triangular matrix T that is equivalent to
A by applying the triangularization algorithm of Theorem
�� in succession for i � k� �� k� �� � � � � 
� to the n� �n sub�
matrix of A comprised of columns in��� in��� � � � � �i���n�
Take B to be the transpose of the principal n�n submatrix
of T � For the second step� apply the algorithm of Corollary
� to transform B to an equivalent upper bidiagonal matrix
C� Finally� apply the algorithm of Theorem � to transform
C to Smith normal form S� which will have the same diag�
onal entries as the Smith normal form of A� By Corollary
� and Theorem �� each each of these steps is bounded by
O�n���m� operations from ZZ d�

� Smith Normal Form over ZZ

In this section we show how to use the algorithm for Smith
normal form over ZZ d presented in section � to get an asymp�
totically fast algorithm for computing Smith normal forms
over ZZ � We follow the approach of many previous algo�
rithms and compute over ZZ d� where d is chosen to be a
positive multiple of the product invariant factors of A �see
Hafner � McCurley 
�� ������� To make this idea precise�
we de	ne homomorphisms � � �d and ���� � ����

d which we
use to move between the two domains ZZ and ZZ d� De	ne
� � ZZ 
 ZZ d by � � a �
 �a where �a � a mod d� De	ne the
pullback homomorphism ���� � ZZ d 
 ZZ by ���� � �a �
 a
where �a � a mod d and 
 � �a � d� For the following the�
orem� we denote by snf�X� the Smith normal form of an
input matrix X over the domain of entries of X �either X
is over ZZ or X is over ZZ d�� We also write ��A� to denote
the matrix obtained by applying � to each entry of A�

Theorem �
 Let A be a matrix over ZZ � If d � �d� where d�

is a positive multiple of the product of the invariant factors

of A� then
snf�A� � �����snf���A����

Proof Let snf�A� � diag�s�� s�� � � � � sr� 
� � � � � 
�� Each si
satis	es � � si � d� � d� so we have si � �������si�� for
� � i � r and

snf�A� � �������snf�A���� ��
�

Next� let U and V be unimodular matrices over ZZ such that
UAV � snf�A�� Then

��U���A���V � � ��snf�A��

where ��U� and ��V � are unimodular over ZZ d� It is easily
veri	ed that ��snf�A�� is in Smith normal form over ZZ d�
In particular� ��si� divides ��si��� for � � i � r � � and
��si� � N�

d for � � i � r� Since the Smith normal form of
��A� is unique� we must have

��snf�A�� � snf���A��� ����

The desired result follows by substituting ��
� into �����

Lemma �� There exists a deterministic algorithm that

takes as input an n � m matrix A over ZZ � and pro�
duces as output the determinant d� of a nonsingular max�

imal rank minor of A� The cost of the algorithm is
O�n���mB�n log njjAjj�� bit operations�

�



Proof We apply the standard homomorphic imaging scheme�
Compute a number z such that �p prime

p�z p � nn��jjAjjn�
By Hadamard�s bound every minor of A has magnitude
bounded by b� Next� 	nd a maximal rank nonsingular sub�
matrix A� of A� This can be accomplished using an algo�
rithm of Ibarra� Moran � Hui 
�� ����� to compute the rank
of A over ZZ p for each prime p � z� since their algorithm
returns also a maximal set of linearly independant rows and
columns of A over ZZ p� The cost of their algorithm for a
single prime p is O�n���m� operations form ZZ p� Compute
det�A�� mod p for each prime p � z� again using the algo�

rithm 
�� ������ and reconstruct djast � det�A�� using the
Chinese remainder algorithm�

Theorem �� There exists a deterministic algorithm that

takes as input an n�m matrix A over ZZ � and produces as
output the Smith normal form S of A� The cost of the algo�

rithm is bounded by O�n���mB�n log njjAjj�� bit operations�

Proof It is well known fact is that the invariant factors
s�� s�� � � � � sr are given by si � di�di�� where d� � �
and for � � i � r� di is the gcd of all i � i minors of
A� In particular� the determinant d� of a nonzero maxi�
mal rank minor of A will be a multple of dr� and dr �
�d��d���d��d�� � � � �dr�dr��� � s�s� � � � sr� Set d � �d�

where d� � jd�j and compute S according to Theorem ��
as ����

d �snf��d�A���� By Theorem �� the cost of this is

O�n���mB�log d�� operations from ZZ d� By Lemma ��� d�

can be found in the allotted time and will be bounded in
length by dlog� de � O�n log njjAjj� bits�
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