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Abstract

We present new algorithms for computing Smith normal
forms of matrices over the integers and over the integers
modulo d. For the case of matrices over Z 4, we present an
algorithm that computes the Smith form S of an 4 € Z)*™
in only O(n’~'m) operations from Z 4. Here, 8 is the ex-
ponent for matrix multiplication over rings: two n X n
matrices over a ring R can be multiplied in O(ng) opera-
tions from R. We apply our algorithm for matrices over
Z ; to get an algorithm for computing the Smith form S
of an A € Z™™ in O (n’~'m - M(nlog||A]|)) bit opera-
tions (where ||A|| = max|4; ;| and M(¢) bounds the cost
of multiplying two [t]-bit integers). These complexity re-
sults improve significantly on the complexity of previously
best known Smith form algorithms (both deterministic and
probabilistic) which guarantee correctness.

1 Introduction

The Smith normal form is a canonical diagonal form for
equivalence of matrices over a principal ideal ring R. For any
A € R™™™ there exist unimodular (square and invertible)
matrices U and V over R such that
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S=UAV =

i 0
with each s; nonzero and with s;|sit1 for 1 <:<r—1. §
is called the Smith normal form of A and the unimodular
U and V are called transforming matrices. The nonzero
diagonal entries s; of S are called the invariant factors of
A and are unique up to units — uniqueness of S can be
ensured by specifying that each s; belong to a prescribed
complete set of nonassociates of R. The Smith normal form
was first proven to exist by Smith [9, 1869] for matrices over
the integers (in this case, each s; is positive, r = rank(4)
and det(U), det(V) = +1).

In this paper we consider the problem of computing
Smith normal forms of matrices with entries from Z and
Z 4, the ring of integers modulo d. Computing Smith normal

forms over these domains is useful in many applications, in-
cluding Diophantine analysis (see Newman [8, 1972]), com-
puting the structure of finitely generated abelian groups (see
Haves, Holt & Rees [6, 1993]) and computing the structure
of the class group of a number field (see Hafner & McCurley
[4, 1989] and Buchmann [1, 1988]).

In Section 3 we present our main result — an asymp-
totically fast algorithm for computing Smith normal forms
over Z 4. Let A be an n X m matrix over Z 4. We assume
without loss of generality that n < m — the Smith nor-
mal form of the transpose of A will have the same invariant
factors as that of A. Our algorithm requires a near opti-
mal O(n’~'m) operations from Z 4 to compute the Smith
normal form S of A. Here, 8 is defined so that two n x n
matrices over a ring R can be multiplied in O(ng) operations
from R. Using standard matrix multiplication 6 = 3, while
the best known algorithm of Coppersmith & Winograd [2,
1990] allows 8 = 2.38. For the case n = m, our complexity
result for computing the Smith normal form matches that
of the best known algorithm to compute det(4) — which
can be computed (up to a unit) as the product of the di-
agonal entries in S. Although we do not prove it here, we
remark that candidates for transforming matrices U and V
can be recovered in O~(n9_1m) 1 operations from Z 4. The
asymptotically fast algorithm for computing transforming
matrices over Z 4 is based on the approach we present here,
but requires in addition a number of new results and will be
the subject of a future paper.

In Section 4 we consider the problem of computing Smith
normal forms of integer matrices. Let A be an n x m input
matrix over Z. We show how to apply the result of Section
3 to get an algorithm that requires O (n’ *mM(nlog ||A||))
bit operations to produce the Smith normal form S of A.
The previously best deterministic algorithm of Hafner & Mc-
Curley [5, 1991] requires O (n*mlog ||A|[M(nlog||A4]|)) bit
operations to produce S; we have improved this worst case
complexity bound by a factor of at least O(nlog||A4||) bit
operations — even assuming standard integer and matrix
multiplication. The previously best Las Vegas probabilistic
algorithm of Giesbrecht [3, 1995] computes S in an expected
number of O (n*mM(nlog [|4]|)) bit operations.

The algorithm that we have presented for computing
Smith normal forms over Z does not compute unimodu-
lar transforming matrices U and V that satisty UAV = S.
Since the transforming matrices are highly nonunique, the

1To summarize results we use “soft-Oh” notation: for any f, g :
RT — R, f = O7(g) if and only if f = O(g - log® g) for some constant
c > 0.



goal is to produce candidates for U and V that have small
entries. Heuristic methods have shown promising results,
especially for large sparse input matrices with small entries
(see Havas, Holt and Rees [6, 1993]), but are difficult to anal-
yse. In the future, we will present deterministic algorithms
that compute multiplier matrices U and V. We mention one
result: for a square nonsingular matrix A, there exists a can-
didate for V that has total size (the sum of the bit lengths
of the individual entries of V) bounded by O (n®log||A||)
bits — this is on the same order of space as required to write

down A.

2 Preliminaries and Previous Results

Two matrices A and B over a principal ideal ring R are
said to be equivalent if B is related to A via unimodular
transformations U and V, that is, with B = UAV and A =
U= BV~'. It follows that two matrices A and B have the
same Smith normal form if and only if they are equivalent.

Recall that an S = diag(s1,s2,...,8r,0,...,0) € R®*™
is in Smith normal form if s;|siy1 for71=1,2,...,7 — 1 and
each s; belongs to a prescribed complete set of nonassociates
of R. For the case R = Z 4, we choose our prescribed set of
nonassociates to be N = {zmodd : ©z € Z,0 < =z <
d,z|d}, and for a,b € Zg4, write ged,(a,b) to denote the
unique principal generator of the ideal (a,b) C Z 4 which
belongs to Nj. Note that ged,(a,b) can be computed as
ged(@, b, d) mod d where @ and b are in Z with @ = @ mod d
and b = b mod d. For the case a,b = 0, we have ged ;(0,0) =
0. Over the ring R = Z, our prescribed complete set of
nonassociates is simply N* ={z :z € Z,z > 0}.

We present some of our complexity results in terms of
the number of operations from Z 4. Given a,b € Z 4, we
consider a single operation from Z 4 to be one of: (1) finding
a+b,a—b,ab € Z g; (2) if a divides b, finding a g € Z 4 with
ag = b; (3) finding elements g, s,t,u,v € Z 4 such that

s t al| _ |g

U v bl |0
with g = gedy(a,b) and sv — tu a unit in Z 4. Let B(logd)
be a function which bounds the number of bit operations
required to perform a single operations from Z 4. Using
standard integer arithmetic, B(logd) < log? d, while fast
integer arithmetic allows

B(log d) < M(log d)log log d.

In Section 4 we use the fact that B(log d) bounds the number
of bit operations required to apply the Chinese remainder
algorithm with moduli whose product has magnitude less
than d.

Our work on this particular topic (asymptotically fast
algorithms for diagonalizing matrices over rings) was moti-
vated in part by the work of Hafner & McCurley in [5, 1991]
where they give asymptotically fast algorithms for triangu-
larizing matrices over rings. Theorem 1, which follows from
their work, gives a key subroutine which we require.

Theorem 1 (Hafner & McCurley [5, 1991]) There ex-
ists a deterministic algorithm that takes as input an n X m
matriz A over Z 4, and produces as output two matrices V.
and T satisfying AV =T, with T lower triangular and V

unsmodular. If A has last t columns zero, then V can be
written as
_[w o
e[n 0],

If nym < b, then the cost of the algorithm is bounded by
O(b?) operations from Z 4.

3 Smith Normal Form over 7 ;4

In this section we develop an asymptotically fast algorithm
to compute the Smith normal form of an A € Z ™.
Our approach is to compute a succession of matrices A =
Ao, Ar,..., Ay = D with A; equivalent to 4;_; for ¢ =
1,2,...,k, and with D a diagonal matrix. The Smith nor-
mal form of A can then be found quickly by computing the
Smith normal form of the diagonal matrix D.

Our algorithm depends on a number of subroutines, two
of which we present separately in Subsection 3.1 and 3.2.
In Subsection 3.1 we present an algorithm that requires
O(ng) operations from Z 4 to transforms an upper trian-
gular B € Z!}*" to an equivalent bidiagonal matrix C. In
Subsection 3.2 we show how to compute the Smith normal
form of a bidiagonal C € Z7*" in O(n?) operations from
Z 4. In Subsection 3.3 we combine these results and give an
algorithm that requires O(ng_lm) operations from Z 4 to
computing the Smith normal form of an 4 in Z}*™.

3.1 Reduction of Banded Matrices

A square matrix A is upper b-banded if A;; = 0 for § < 3
and 7 > ¢+ b, that is, if A can be written as

*

The main purpose of this subsection is to develop an al-
gorithm which transforms A to an equivalent matrix, also
upper banded, but with band about half the width of the

band of the input matrix. Our result is the following.

Theorem 2 For b > 2, there exists a deterministic algo-
rathm that takes as input an n X n upper b-banded matriz
A over Z 4, and produces as output an equivalentn X n up-
per (|b/2] + 1)-banded matriz A'. If A has last t columns
zero, then A will have last t columns zero. The cost of the
algorithm is O(nb?) operations from Z 4.

Proof By augmenting A with at most b rows and columns
of zeroes we may assume that ¢ > 2b, that is, that A has
at least 2b trailing columns of zeroes. In what follows, we
write sub[z, k] = sub 4[7, k] to denote the the symmetric k x &
submatrix of A comprised of rows and columns 1+1, ..., :+k.



Our work matrix, initially the input matrix A, has the form

Our approach is to transforms A to A’ by applying (in place)
a sequence of equivalence transformations to sub[isi, n1] and
sub[(i41)s1+ js2,n2], where 1 and j are nonnegative integer
parameters and

51 = |b/2],

o o= |b/2] +b—1,
82 = b—].,
N2 = 2(17—1)

The first step is to convert the work matrix to an equivalent
matrix but with first s; rows in correct form. This trans-
formation is accomplished using subroutine Triang, defined
below by Lemma 3.

Lemma 3 For b > 2, there exists a deterministic algorithm
Triang that takes as input an n1 X n1 upper b-banded matriz

* “oe * * cee * *
* | % * ok *
* *
B = s
* *
* *
*

over Z 4, where the principal block is s1 X s1, and produces
as output an equivalent matrix

R R ]
* e %

* % *
'
B:

* *

* *

* cee * ok eee X

If B has last t columns zero, then B' will have last t columns
zero. The cost of the algorithm s O(bg) operations from Z 4.

Proof Using the algorithm of Theorem 1, compute an s2 X
s2 unimodular matrix V which, upon post-multiplication,

triangularizes the s1 X s2 upper right hand block of B, and

set
r I,
B_B[ V]'

Since ny < 2b, the cost is as stated. [ |
Apply subroutine Triang to sub[0,n:] of our initial work
matrix to effect the following transformation:

At this stage we can write the work matrix as

where the focus of attention is now sub[si,n2]. Subsequent
transformations will be limited to rows s1+1,81+2,...,n—t
and columns s; +s2+1,81 +$2+2,...,n—t. The next step
is to transform the work matrix back to an upper b-banded
matrix. This is accomplished using subroutine Shift, de-
fined below by Lemma 4.

Lemma 4 For b > 2, there exits a determanistic algorithm
Shift that takes as input an na X ny matric

* * | * *
C:
* cee *




over Z 4, where each block 18 s2 X s2, and produces as output
an equivalent matrix

* * | %

, * | % *
C:

* ces *

* ces *

If C has last t columns and rows zero, then C' will have last
t columns and rows zero. The cost of the algorithm s O(bg)
operations from Z 4.

Proof Write the input matrix as

_[ale
o [*18]

where each block is s2 x s2. Use the algorithm of Theo-
rem 1 to compute, in succession, a unimodular matrix UT
such that CTUT is lower triangular, and then a unimodular
matrix V' such that (UC2)V is lower triangular. Set

o= ] (2] [t

Since ny < 2b, the cost is as stated. [ |

Apply subroutine Shift to sub[s; + js2,m2] for j =
0,1,2,...,|n/n2] to get the following sequence of transfor-
mations.

The procedure just described is now recursively applied to
the trailing (n — s1) X (n — s1) submatrix of the work ma-
trix, itself an upper b-banded matrix. For example, the next
step is to apply subroutine Triang to sub[si,n1] to get the
following transformation.

We get the following.

Algorithm: BandReduction
Input: An upper b-banded matrix A € Z*" with b > 2
and last t columns zero. Note: We assume that ¢ > 2b. If



not, then augment A with 2b — ¢t rows and columns of zeros.
Output: An upper (|b/2|+1)-banded matrix that is equiv-
alent to A and has last ¢ columns zero.

(1) [Initialize:]
51+ |b/2];
me Lb/2] b1
s2 ¢ b—1;
ng < 2(b—1);
(2) [Apply equivalence transformations:]
for i=0to [(n —t)/s1]-1
apply Triang to suba[isi,n1];
for j=0to [(n—t— (14 1)s1)/s2]
apply Shift to suba[(1 + 1)s1 + js2,ns];

Let T(n,b) be the the cost of applying algorithm
BandReduction to an 1 X n upper b-banded input matrix.
To complete the proof of Theorem 2 we derive a bound on
T(n,b) in terms of number of operations from Z 4. The
number of iterations of the outer loop in step (2) is

Li=[(n—t)/s1] < bz_—”l (2)

while the number of iterations, for any fixed value of 4, of
the inner loop in step (2) is
n

Li=[(n—t-G+Ds)/sa] < 7 7re (3)

The number of applications of either subroutine Triang or
Shift occurring during algorithm BandReductionis seen to

be bounded by L;(1 + L;). By Lemma 3 and 4, we have
T(n,b) < Li(1+ L;)cb’ (4)

for some absolute constant ¢. Substituting (2) and (3) into

(4) yields
T(n,b) < Li(1+ Lj)ch’
2n 7 P
= (b—l) (1+b—1)d’
2n 2n 9
< o —— | 4e(b-1
= (b—l) (b—l) cb-1)
< n
which completes the proof. |

Corollary 5 There exists a determanistic algorithm that
takes as input an n X n upper triangular matriz A over Z 4,
and produces as output an upper 2-banded matriz A’ that is
equivalent to A. The cost of the algorithm s O(ng) opera-
teons from Z 4.

Proof By augmenting A with at most n rows and columns
of zeros, we can assume that n = 2% 11 for some k € Z. We
consider A as an n x n upper b-banded matrix with b = n.
Let D(n,b) be the cost of computing an upper 2-banded
matrix equivalent to an n X n upper b-banded input matrix.
It follows from Theorem 2 that

D(n,b) < D(n,[b/2] + 1) + en*(b—1)? (5)

for some absolute constant ¢. Replace b with n in (5) and
iterate to obtain

D(n,n) < D(n,|n/2]+1)+ cn2(n — 1)8_2

log(2%) )
— cn2 Z (21)9—2
i=1
log,(n—1) 0—2
_ 2 n—1
=t ) ( 2 )
i=1
log,(n—1) 1 \i
0—
= cnz(n — 1) 2 Z (29—_2)
i=1
< n’
which completes the proof. |

3.2 The Smith Normal Form of a Bidiagonal Matrix

A square matrix A is upper bidiagonal if 4;; = 0 for j <3
and 7 > ¢+ 1, that is, if A can be written as

In particular, A is upper bidiagonal if A is upper 2-banded
and vice versa. Our result is the following.

Theorem 6 There exists a deterministic algorithm that
takes as input an upper bidiagonal matriz A € 2", and
produces as output the Smath normal form of A. The cost of
the algorithm is O(n?) operations from Z 4.

We require some intermediate results before proving The-
orem 6.

Lemma 7 Let a,b be elements of Z 4. There exist elements
z andu of Z 4, with u a unit, such that za+b = u ged 4(a,b).

Proof Follows from the fact that Z 4 is a stable ring. [ |

a b
* d
c e

be over Z 4, with d a multiple of b. If 1 s a solution to
to a = qigedy(a,b), and g2 is a solution to ged,y(a,b) =
g2 gedy(a, b, c), then A is equivalent to

Lemma 8 Let

A=

4 . dA = gedy(a,b, e),
A=  d where ‘f = ad,
¢ é ¢ T aes
é = qe.

Proof We show that A can be transformed to A via a se-
quence of unimodular row and column transformations. To
begin, let 1 and ui be elements of Z 4, with w1 a unit, such



that z1a+b = uy gedy(a,b). (We only require the existence
of 1 and w1, as per Lemma 7, we don’t need to produce x;
and w1 explicitly.) Add z; times column 1 of A to column
3 and then switch columns 1 and 3 to obtain the equivalent
matrix

g1 a
A1 = d *
c e
where g1 = uy gedy(a,b). To zero out the entry in row 1

column 3 of Ay, multiply column 3 of A; by —u; (a unit)
and then add ¢; times column 1 of 4; to column 3 to obtain
the equivalent matrix

g1
Ar = d x* qld
c qic e

Since g1 is an associate of ged,(a,b), and b divides d, we
can add a multiple of row 1 of A2 to row 2 to obtain the
equivalent matrix

a1
Az = * qd

c qic e

The second stage of the reduction is similar to the first. Let
z2 and w2 be elements of Z 4, with us a unit, such that
z291 + ¢ = uz gedy(g1,¢), and add z; times the first row
of Az to row 3 and then switch rows 1 and 3 to obtain the
equivalent matrix

g2 qgic €
Ay = * qid
91

where go = u2 gedy(g1,¢). To zero out the entry in row 3
column 1 of Ay, multiply row 3 of Ay by —usu]"' (a unit)
and then add ¢» times row 1 of A; to row 3 to obtain the
equivalent matrix

g2 qgic €
A5 = * qld
q192¢  g2¢

To complete the transformation to A, transform the entry
in row 1 column 1 to ged,(a,b, ¢) by multiplying column 1
of As by a unit, then zero out the entry in row 1 column 3
by adding a multiple of column 1 to column 3. |

Corollary 9 There exists a determanistic algorithm that
takes as input a 3 X 4 matriz

b
A: * d
C

over Z 4, with d a multiple of b, and produces as output an
equivalent matrix that can be written as

A= « d
é

with € a multiple of e, and & a divisor of both é and d.
Furthermore, the matrix A produced s equivalent to A under
a sequence of unimodular row and column transformations
limated to columns 1 and 3. The cost of the algorithm s
O(1) operations from Z 4.

Proof Find solutions ¢ and g2 to a = ¢ gedy(a,b) and
gedy(a,b) = g2 gedy(a,b, ¢), then compute 4,d,é and é ac-
cording to the definitions in Lemma 8. |

For our next result, we need some notation. For 2 < k <
n denote by 7" the set of all n x n matrices over Z 4 which
are upper bidiagonal except with the entry in row 1 column 2
zero and with the entry in row 1 column %k possibly nonzero
but dividing the entry in row k& — 1 column k — that is,
matrices which can be written using a block decomposition
as

g b -

where b is in column k and divides d.

Lemma 10 There exists a determanistic algorithm that
takes as input a matriz T overZ q and in T, with2 <k < n,
and produces as output an equivalent matrix T in Tiya. Fur-
thermore, if Ti1 devides all entries in the first k — 1 columns
of T, then Ti1 divides all entries in the first k columns of
T. The cost of algorithm is O(1) operations from Z 4.

Proof Let T be written as in (7). The construction of Corol-
lary 9 can be applied to the 3 x 4 submatrix of T comprised
of rows 1,k — 1,k and columns 1,k — 1,k,k + 1 at a cost of
O(1) operations from Z 4 to produce the equivalent matrix

a e

~,

I

*
[+ P~

* |

*
*

in 7%, . To prove the second part of the theorem, note that
by Corollary 9 we have & = ged4(a, b, ¢, d), and in particular,
dla. Thus, if a divides all entries in the first & — 1 columns
of T, then & divides all entries in the first & columns of 7.
|

We now return to the proof of Theorem 6. Let R(n)
be the number of operations required to compute the Smith
normal form of an n x n upper bidiagonal matrix over Z 4.
We claim that

R(n) <R(n—1)+cn (8)

for some absolute constant c. To prove (8), let A be annxn
upper bidiagonal matrix over Z 4. We show how to produce



a matrix

*
*

B = * (9)

*
*

which is equivalent to A and where g is the gcd ; of all entries
in B. The Smith normal form of A can now be found by
computing recursively the Smith normal form of the trailing
(n — 1) x (n — 1) submatrix of B.

To begin, convert A to the (n + 2) x (n 4+ 2) matrix

e
I
*

0

by inserting a row and column of zeros after the pivot entry
and by augmenting with a single row and column of zeros.
The Smith normal form of As; will have the same invariant
factors as the Smith normal form of A. Furthermore, A3 is
in 7;)""'2 and the entry in row 1 column 1 of A3 divides all en-
tries in the first two columns of As. Starting with As, apply
the algorithm of Lemma 10 for £ = 3,4,...,n + 1 to com-
pute a succession of equivalent matrices A4, As,..., Anya,
with A; € 7,?. By Lemma 10, the cost of this is O(n)

operations from Z 4 and, since the last column of Aj is all

zero, Anto will have the form

g 0

0

where g divides all entries in the first k£ + 1 columns of An+2 .
Finally, delete rows and columns 2 and n+ 2 of A,H.g (which
contain only zero entries) to produce an n x n matrix equiv-
alent to A and which can be written as in (9). This proves
the inequality (8). To complete the proof of Theorem 6,
iterate (8) to obtain

R(n) < R(n—-1)+cn

”

R(0)+ ¢ i

i=1

2

< n

3.3 The Smith Normal Form Algorithm

Theorem 11 There exists a deterministic algorithm that
takes as input an n X m matrix A over Z 4, and produces
as output the Smith normal form of A. The cost of the
algorithm is O(n®~'m) operations from Z 4.

Proof By augmenting A with at most n — 1 columns, we
can assume that m = kn for some integer k. The algorithm
consists of three steps. First, find an n X n upper triangular
matrix B that has the same invariant factors as A. This can
be accomplished in O(ng_lm) operations from Z 4 as fol-
lows. Find a lower triangular matrix T that is equivalent to
A by applying the triangularization algorithm of Theorem
1, in succession for ¢ = k— 2,k —3,...,0, to the n x 2n sub-
matrix of A comprised of columns in+1,in+2,...,(i+2)n.
Take B to be the transpose of the principal n x n submatrix
of T. For the second step, apply the algorithm of Corollary
5 to transform B to an equivalent upper bidiagonal matrix
C. Finally, apply the algorithm of Theorem 6 to transform
C to Smith normal form S, which will have the same diag-
onal entries as the Smith normal form of A. By Corollary
5 and Theorem 6, each each of these steps is bounded by
O(ng_lm) operations from Z 4. |

4 Smith Normal Form over 7

In this section we show how to use the algorithm for Smith
normal form over Z 4 presented in section 3 to get an asymp-
totically fast algorithm for computing Smith normal forms
over Z. We follow the approach of many previous algo-
rithms and compute over Z 4, where d is chosen to be a
positive multiple of the product invariant factors of A (see
Hafner & McCurley [5, 1991]). To make this idea precise,
we define homomorphisms ¢ = ¢4 and ¢~ = (]3;1 which we
use to move between the two domains Z and Z 4. Define
¢:Z — Zi:by ¢ :a v+ a where @ = ¢ mod d. Define the
pullback homomorphism ¢ : Z4 - Z by ¢! : @ — a
where @ = a mod d and 0 < a < d. For the following the-
orem, we denote by snf(X) the Smith normal form of an
input matrix X over the domain of entries of X (either X
is over Z or X is over Z 4). We also write ¢(A) to denote
the matrix obtained by applying ¢ to each entry of A.

Theorem 12 Let A be a matriz over Z . Ifd = 2d’ where d’
18 a positive multeple of the product of the invariant factors

of A, then B
snf(A4) = ¢ (snf(p(4))).

Proof Let snf(A) = diag(s1,s2,...,5,,0,...,0). Each s;
satisfies 1 < s; < d' < d, so we have s; = ¢~ " (¢(s;)) for
1 <2< r and

snf(4) = ¢~ ($(snf(A)). (10)

Next, let U and V be unimodular matrices over Z such that

UAV = snf(A). Then
(U)$(A)$(V) = $(snf(4))

where ¢(U) and ¢(V') are unimodular over Z 4. It is easily
verified that ¢(snf(4)) is in Smith normal form over Z 4.
In particular, ¢(s;) divides ¢(si41) for 1 < ¢ < r — 1 and
¢(s;) € Nj for 1 <1 < r. Since the Smith normal form of
¢(A) is unique, we must have

¢(snf(A)) = snf(¢(4)). (11)
The desired result follows by substituting (10) into (11). W

Lemma 13 There exists a determainistic algorithm that
takes as input an n X m matrizc A over Z, and pro-
duces as output the determinant d* of a nonsingular maz-
smal rank minor of A. The cost of the algorithm s
O(n’~'mB(nlogn||A||)) bit operations.



Proof We apply the standard homomorphic imaging scheme.
Compute a number z such that Hié’:mep > n"/?|| A"
By Hadamard’s bound every minor of A has magnitude
bounded by b. Next, find a maximal rank nonsingular sub-
matrix A* of A. This can be accomplished using an algo-
rithm of Ibarra, Moran & Hui [7, 1982] to compute the rank
of A over Z, for each prime p < z, since their algorithm
returns also a maximal set of linearly independant rows and
columns of A over Z,. The cost of their algorithm for a
single prime p is O(ng_lm) operations form Z ,. Compute
det(A*) mod p for each prime p < z, again using the algo-
rithm [7, 1982], and reconstruct dlast = det(A*) using the
Chinese remainder algorithm. |

Theorem 14 There exists a deterministic algorithm that
takes as input an n X m matriz A over Z, and produces as
output the Smath normal form S of A. The cost of the algo-
rithm is bounded by O(n’ mB(nlogn||A||)) bit operations.

Proof It is well known fact is that the invariant factors
S1,82,...,8, are given by s; = d;/di_y where doy = 1
and for 1 < 7 < r, d; is the gcd of all ¢+ X ¢ minors of
A. In particular, the determinant d* of a nonzero maxi-
mal rank minor of 4 will be a multple of d,, and d, =
(dl/do)(dz/dl)"'(dr/dr_l) = 8182°°°8p. Set d = Zd/
where d’ = |d*| and compute S according to Theorem 12
as ¢7'(snf(¢a(A))). By Theorem 11 the cost of this is
O(n?~'mB(log d)) operations from Z 4. By Lemma 13, d*
can be found in the allotted time and will be bounded in
length by [log, d] = O(nlog n||Al|) bits. ]
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