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Abstract

Traditionally computer algebra systems use lines and polygons to represent mathematical func-
tions graphically. While these geometric primitives can easily be rendered on conventional raster
graphics hardware, a smooth representation using splines would provide a wider range of trade-
offs between image quality and rendering performance. Since modern computer graphics hardware
directly supports rendering of spline objects, their use becomes more and more interesting.

In this thesis we examine the possibilities for replacing traditional representations of functions
and graphs by spline representations. We describe the use of B-splines for interpolation and approx-
imation, and discuss several approaches for generating parameterizations for these tasks. Finally

we present some novel results regarding the use of rational splines for curve and surface fitting.
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Chapter 1

Introduction

Over the last few years the visualization of mathematical structures has evolved as an integral
part of computer algebra systems. This development has been made possible by the introduction
of inexpensive raster graphics hardware and graphical printing devices.

Current trends in printer technology allow for even higher resolutions and thus higher image
quality. At the same time raster graphics hardware is becoming more sophisticated and instead
of just storing pixel values, it now contains specialized hardware to render 2-dimensional and 3-
dimensional geometric primitives itself. In many cases this results in drastically improved rendering
performance and allows for more interactive applications.

Due to this development, the graphics subsystems of modern computer algebra systems need
to support both high-quality, high-resolution graphics and high-performance, interactive graphics.
Unfortunately, the traditional approach of representing graphs as piecewise lines and polygons is
not well suited for this task, since the granularity of this approximation has to be adopted to the
output device and the desired rendering quality and performance. Usually the user wants to perform
other operations between the approximation step and the rendering of the graph. Unfortunately,
these operations have to be repeated every time the quality parameters change.

Instead of using piecewise linear functions like lines and polygons, it would be better to represent
the geometry with smooth higher order functions. A single representation in terms of smooth basis
functions is then sufficient for rendering at a wide range of resolutions. The tradeoff between quality

and performance can in this case be chosen at a later point in time by selecting an adequate precision
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for rendering the basis functions.

In this thesis we will describe the use of B-splines and rational B-splines (NURBS) in the
computer algebra system MAPLE. We will describe the introduction of B-splines and NURBS as
geometric primitives to the MAPLE plot system and its data structures, and will focus on their use

for fitting discrete data points and representing arbitrary functions.

1.1 Splines and the MAPLE Plot System

One of the advantages of MAPLE over other computer algebra systems is the presence of a variety
of efficiently implemented data structures, which results in a relatively high performance and low
memory usage.

MAPLE is also a very flexible and expandable system due to its modular architecture. The core
mathematical functionality is contained in the MAPLE kernel, a comparatively small program that
is implemented in C. The kernel also contains the implementation of the data structures and an
efficient interpreter for the MAPLE programming language [3].

This programming language has been used to implement the MAPLE library [4], which is actually
a set of different packages that provide support for specific areas of mathematics. Packages for
statistics, p-adic numbers and linear algebra exist, to name just a few. Most important for the
computer graphics part of MAPLE are the plots and plottools packages, which provide functions
for creating and manipulating 2- and 3-dimensional plots. It is these functions that create the
piecewise linear representation of functions for rendering.

A process separate from the MAPLE kernel handles the user interface. This program, called
the Iris, provides a level of abstraction between the platform-independent kernel and the user. It
passes user input to the kernel and prints the results on the screen. If available, the Iris makes use
of raster graphics for displaying formulas. However, it does not directly create 2D or 3D plots.

To create a plot with MAPLE the user typically uses one of the functions that are part of
the library, most importantly plot and plot3d. These procedures store the approximation of the
geometry in a data structure called the plot data structure. For the actual rendering, this data
structure is handed over to the plot driver, which is a separate process in the MAPLE system. Each
driver is capable of rendering a plot in a specific image format. Depending on the driver, this could

either be for immediate display in a window system like X, or for storage in a specific file format if
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the image is to be displayed or printed later.

There are several reasons for keeping the kernel and the plot driver separated. Most importantly
this approach allows adding new drivers for additional hardware or file formats without recompiling
the kernel. The separation of kernel and driver also means that only those drivers that are actually
in use occupy space in the main memory.

On the other hand, this separation makes it necessary to represent the geometry in terms of
simple geometric primitives. Ideally, an exact representation of the function would be transmitted
to the plot driver. The driver would then sample this function based on the hardware and on some
quality requirements that the user provides. Unfortunately, an exact representation of arbitrary
functions would require a lot of the symbolic functionality of the MAPLE kernel within the plot
driver. This is not acceptable if we want to keep the kernel and the drivers separate.

The problem here is that the quality of the rendering is already determined in the MAPLE kernel,
which has no information about the plot driver, the purpose of the plot, or potentially available
hardware. It is, however, possible to approximate arbitrary functions with some smooth function
that is easy to evaluate and is generated by a simple set of basis functions. If this approximation
is good enough, the user can then customize the rendering quality by setting the sampling quality
for the approximated function from within the driver.

An important class of functions with the properties mentioned above are piecewise polynomials.
A well-known and frequently used basis for this class of functions are the so-called basis splines
(B-splines). This idea can be extended to rational B-splines (NURBS) [1, 7, 9, 10]. These functions
have mathematical properties that allow for efficient rendering and comparatively easy handling of
the approximations.

One of the tasks that has to be done in order to implement spline support for MAPLE, is to add
spline objects as geometric primitives to the plot system. Some drivers will then be able to render
these objects using one of the existing direct rendering methods without further approximating the
geometry. Other drivers will still sample these objects and render them as lines and polygons, but
they will allow the user to adjust the number of sample-points to his needs, without having to quit
the driver and recreate the geometry.

However, these changes are only a small part of what is necessary for full NURBS support. A

more challenging problem is to re-implement the functions in the plots and plottools library
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packages so that they create a NURBS approximation of the geometry. In particular we require
methods for approximating and interpolating discrete data points that are obtained by sampling

smooth functions with integral and rational B-spline curves and surfaces.

1.2 Spline Interpolation and Approximation

The usual approach for interpolating a set of discrete points with B-splines involves two separate
steps. Since B-spline curves and surfaces are parametric and defined over a certain parameter in-
terval, the first step involves assigning an appropriate parameter value to every data point. This
value determines the parameter at which the final B-spline curve will evaluate to the data point.
The problem of finding appropriate values for a given set of data points is known as the “parame-
terization problem”, and will be discussed in Chapter 4.

In the second step the actual interpolation problem is solved by creating a set of B-spline
basis functions that is suitable for the data points and their parameter values, and then solving a
linear equation system. As we will see in Chapter 3, the usual way of computing the basis function
introduces additional degrees of freedom and results in an under-determined linear equation system.
In order to make reasonable choices for these degrees of freedom, we can choose between a set of
different “end conditions”, which influence the shape of the curve or surface at the boundaries of
the parameter domain.

If the data points are sampled from a relatively smooth function, it might not be necessary to
compute a full interpolation solution. Instead, it is usually sufficient to generate an approximation
of the data points with significantly less curve or surface segments than a full interpolation would
require. This reduces the computation time and offers the possibility of smoothing the curve in
cases where the data points are subject to sampling errors.

Like the interpolation algorithm, the approximation procedure also consists of two major parts.
The first part, the parameterization problem, is identical to the interpolation case. In the second
part, an approximation is obtained by first generating a set of basis functions, and then generating
a spline curve or surface by minimizing the error between the spline and the data points according
to some norm.

Traditionally the approximation problem for B-splines is solved using the least-squares (Lg)

norm. However, in order to obtain specific approximation properties, it is reasonable to use different
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norms like L and L. In Chapter 5 we will describe how such minimizations can be implemented
using a linear programming approach.

The vast majority of the literature about spline interpolation and approximation only considers
integral B-splines as stated above. However, rational B-splines (NURBS) provide more degrees of
freedom to control the shape of curves and surfaces, and could be used to further reduce the number
of curve or surface segments or to increase the quality of a fit. In particular, NURBS can be used
to create exact representations of conic sections.

The problem with using rational splines for approximation and interpolation tasks is to find a
set of appropriate weights for the control points. A recent paper [17] describes how such weights
can be obtained as a minimization process with respect to the Ly error. The actual control points
of the curve or surface can then be found using methods similar to those used in the integral case.

In Chapter 6 we will describe the original minimization process used for obtaining these weights,
and propose similar methods for more efficient solutions using the L; and Ly, norm. We will also
describe how the well-known end conditions for integral spline interpolation can be used in the
context of rational splines.

Finally, in Chapter 7 we will describe the implementation of these concepts in the environment
of MAPLE, and present the achieved results. We will then conclude by giving pointers to future

research on the topic.



Chapter 2

Preliminaries

Before we go into the details of spline interpolation and approximation, we will now define some
terms and notations that will be used throughout the thesis.
Of particular interest are the B-spline basis functions. Given a degree d and a sequence of

knots T = (to,...,tnrqr1) with t; < t;11, we can recursively define a sequence of n + 1 piecewise

polynomial functions N&(u, T):

1 i <u<tiqr )
N2 (u,T) := ) ;e
0 otherwise

Il
o

..n+d

LT N, T) 4 TR NESYwT) s 0= 0.t d—k
titk —t; bitk+1 — tit1

NF(u,T) :=

If the degree and the knot vector are clear from the context, we will usually use B;(u) := N%(u,T)
as a shorthand notation.

From the definition, it is clear that Nz-d(u,T) is a piecewise polynomial of degree d, and has a

support of [¢;,t;14+1). Other important properties, which can be found in the standard literature

on splines (for example [1, 7, 9, 10]), are the fact that N%(u,T) is non-negative for all u € R, and

that all functions sum up to 1 in the interval [t4, t,11):
n
> N (u,T)=1; u€ [tg,tut1)
0

It can also be proven that in this interval the functions Nld(u,T) are actually a basis for the

function space of all piecewise functions that are polynomial of degree d between any two successive
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Figure 2.1: A sequence of 5 quadratic B-spline functions. The functions represent a basis for all

piecewise quadratic functions that have a domain of [t9, t5) and knots (o, ..., t5).

knots ¢;, t;+1. This important result has been found by Curry and Schoenberg in 1966 [5], and has
led to the name “B-splines” as an abbreviation for “basis-splines” for these functions.

Figure 2.1 shows n+ 1 = 5 B-splines of degree d = 2 defined over a knot vector T' = (tg, ..., 7).
Since each basis function has a support of d + 1 = 3 intervals, we can see that at every parameter
value u in the interval [to, t5) three of the basis functions are non-zero. The polynomials constituting
these three basis functions at u are linearly independent. Hence they are capable of representing

all quadratic polynomials at w.

2.1 Spline Curves and Surfaces

Based on these functions we can now define parametric curves and surfaces in spaces of arbitrary

dimension. Given n + 1 points [co,...,c,]? in this space, a B-spline curve can be defined as

F(u) := Z ¢iB;(u) (2.1)

The ¢; are called “control points”, because they are used to control the shape of the curve.

The following is a short list of those properties of B-spline curves that are most important to
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the topics covered in this thesis. Proofs for these properties can be found in the B-spline literature,

including [1], [7] and [9].

e Convex Hull Property. For every parameter value u with ¢; < u < ;41 the corresponding

point on the curve F'(u) is in the convex hull of the control points ¢; g4,...,¢;.

This property leads to a method for rendering B-splines by iteratively refining the control

polygon. It also helps us for generating reasonable bounding boxes for the curve.

e Affine Invariance. B-spline curves are invariant under affine transformations. This means,
the image of a B-spline curve under an affine transformation is simply the B-spline curve
generated by the images of the control points: A (3. ¢;Bi(u)) = >y A(ci) Bi(u).

This is important, because it allows us to fit data with B-splines without having to worry

about the exact scaling and positioning of the final graph.

e Continuity. A B-spline curve is C%1 continuous at every knot ¢; with ¢; | <t; <{t;41. It is
C4 =1 continuous at #; with ¢;_; < t; = tiv1 = -+ = tiy;—1 < tiy;. In this case we say that
the knot ¢; has multiplicity [. Since B-splines are piecewise polygons, they are C'*° continuous

at every parametric position that is not a knot.

Continuity is useful for generating optically smooth interpolations and approximations. More-

over we can model discontinuities by selecting an adequate knot sequence.

e Local Control. Since the basis functions have a support of d+ 1 intervals, every single point

of the curve only depends on d + 1 control points.

For interpolations this means that a change of one of the data points will only affect the
interpolant locally, segments that are far away from the point of change will not be affected.
As we will see in Chapter 3, local control also means that the interpolation problem is local

as well, and this leads to a well-conditioned, banded matrix for the interpolation problem.

The construction of surfaces on a rectangular parameter domain works similarly to the case
of curves. We can define a set of basis functions using a tensor-product approach. For the two
parametric directions u and v, we require separate degrees d,,,d, and knot sequences T,,,T,. With
the shorthand notations Bj'(u) := N{i“ (u,Ty) and Bj(v) := Nid” (v,T,) the basis is defined as

follows:
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B; j(u,v) := Bj'(u)Bj (v)

Using these basis functions, we can then define a parametric surface F'(u,v) as

Ny Ny Ny Ny

F(u,v) = Z Z cijBij(u,v) = Z Z cij B;'(u) Bj (v) (2.2)

i=0 j=0 i=0 j=0

Surfaces of this type are known as tensor-product B-spline surfaces. By construction it is clear
that the properties for B-spline curves mentioned above also hold for tensor-product surfaces.

It should be mentioned at this point that surfaces with a rectangular parameter domain are
not well suited for several applications like, for example, the interpolation of scattered data points.
If such a surface is forced into a triangular shape, this will usually result in discontinuities. The
development of spline surfaces over triangular parameter domains is a topic of ongoing research.

In the context of MAPLE and other computer algebra systems, however, tensor-product surfaces
are usually sufficient, since these systems typically only evaluate functions over a rectangular domain

anyway.

2.2 Rational Spline Curves and Surfaces

As we have stated in the previous section, B-spline curves and surfaces are invariant under affine
transformations. Unfortunately, this is not in general true for arbitrary projective transformations,
like the ones that are used to project 3-dimensional objects on a 2-dimensional image plane. How-
ever, it turns out that the image of every B-spline under such a transformation can be represented
as a so-called rational B-spline [10].

The definition of a rational B-spline requires the introduction of a separate coefficient w;, called

weight for every control point. We can then write a rational B-spline curve as

> i wici Bi(w)
Z?:o w; B (u)
In cases where the knot sequence is not restricted to be uniformly spaced, these curves are usually

called “Non-Uniform, Rational B-Splines” (NURBS). If we have to distinguish between NURBS

F(u) =

(2.3)

and B-splines as defined in the previous section, the latter will be called integral B-splines.
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Every NURBS curve can be interpreted as the projection of a B-spline curve from a space with
a higher dimensionality. For example, the 2-dimensional, rational B-spline curve with control points
¢i = (zj,vy;) and weights w; can be seen as the projective image of an integral B-spline curve in
3-dimensional space with control points [w;x;, w;y;, w;]. This representation of the rational curve
is also called the homogeneous form. We refer to [10] for an in-depth discussion of the relationship
between the two representations.

An important property of NURBS, and the actual reason why we want to use them, is that
they can exactly represent all conic sections, as well as all integral B-splines. They are therefore
more powerful than integral B-splines and can be used to specify a larger variety of shapes.

The same principle that led to the definition of rational spline curves, can also be applied to
tensor-product surfaces. In this case we require a whole mesh of weights wj; ;, one for each control

point ¢; j. This leads to tensor-product NURBS surfaces:

Doito 2ojto wijci B (u) B (v)
>iso ?;0 “’iszu(U)B}}(U)

F(u,v) = (2.4)



Chapter 3

B-Spline Interpolation

Using the definitions from the previous chapter, we can now formulate the interpolation problem
for curves, first using integral B-splines.

Suppose we are given a set of n+1 data points D = [dy, . ..,d,]". Let us further assume that we
are also given a parameter value u; for every data point d;. If the parameter values are not provided
with the data points, we can use heuristics to generate reasonable choices for the parameterization.
This will be described in Chapter 4.

Given the points and parameter values, we are searching for a B-spline curve of degree d that
interpolates every data point d; at the corresponding parameter value w;. Since the n+1 data points
constitute an interpolation problem with (n + 1) x e degrees of freedom, where e is the dimension
of the space, in general we need a spline curve with exactly the same degrees of freedom. In other
words, we need a B-spline curve with n + 1 control points.

These control points correspond to a set of n + 1 B-spline basis functions, which in turn are
determined by a knot sequence T' of length n + d 4+ 2. In Section 3.2 we will discuss how a knot
sequence can be selected from the parameterization of the data points. For the moment we assume
that both the knots and the basis functions (By(u),. .., By(u)) are already available.

As we have seen in the previous chapter, we can write any B-spline curve as

n

F(u) = ¢;Bi(u),

1=0

where the control points ¢; are to be determined in such a way that the curve interpolates the data

11
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points. This means that the curve has to satisfy the conditions
n
ZCiBi('U/k):dk H k=0...n . (3.1)
i=0

Note that each of these conditions is actually a set of e independent equations, one for each vector
component in the space.

We can rewrite the system of equations 3.1 to get the following matrix form:

Bo(up) Bi(ug) -+ Bn(uo) ) do

Bo(‘ul) By (Ul) s Bn(ul) . C1 _ dl (32)
i BO(Un) Bl(un) Bn(un) 1 L Cn i i dn i
) 5

If we have selected the basis functions such that for all 2 = 0...n the parameter value wu; lies within
the support of basis function B;(u), the square matrix B := (B;(uy)); x is of full rank. This result is
known as the theorem from Schoenberg and Whitney ([7, 6]). Because of the local control property
of B-spline curves, the matrix is also banded (the width of the band is d + 1, the number of basis
functions that are non-zero at a parameter value) and well-conditioned.

Thus, the interpolation problem comes down to independently solving e linear equation systems
of the form of 3.2, one for each vector component in the space. To obtain the solution, we can either

use Gaussian elimination or some specialized algorithm that makes use of the special structure of B.

3.1 Tensor-Product Surface Interpolation

With a similar approach it is possible to solve the interpolation problem for tensor-product surfaces.
Assuming we are given a (n, + 1) x (n, + 1) grid of data points, and we have somehow found two
sequences (ug, ..., Up,) and (vg,...,vy,) so that every data point d; ; is assigned a parameter value
(ui,vj). As in the case of curves, we will also assume that we have already found knot sequences
Ty, and T), and the corresponding basis functions Bj'(u) and B} (v).

Using the formula for tensor-product B-spline surfaces

Ny Ny

Flu,0) =35 i BE(u) Bl (v)

i=0 j=0
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we can set up a system of (n, + 1)(n, + 1) equations with the same amount of unknowns.

Ny Ny

>3 iy By (ug) By (v) = dy. (3.3)

i=0 j=0

A matrix representation of this system can be generated using the following definitions

B = (bij) where bjn, yin,+k = By (ur)Bj(ur),

R T
C'_ [00707“‘7cnua07 7CO,TLU7---,CTL“,’I’LU]

and
D:=[d d d d ]7
: 0,05-++5Wny,00 -+ SOy Ungy,ng| -

The control points for an interpolating spline surface can then be obtained by solving
B-C=D. (3.4)

Due to the local control property, the matrix B is relatively sparse. However, it is not banded as
in the case of curves.

Although it is theoretically possible to obtain a solution by solving the above system, this is in
practice not feasible for larger interpolation problems. For example, a problem with 100 x 100 data
points would involve computing the inverse of a 10000 x 10000 matrix, which could take several
hours on current workstations.

Fortunately, the special structure of tensor-product surfaces allows for a more compact represen-
tation of the problem. By re-positioning the terms in Equation 3.3, we can see that the interpolation

can actually be split into two separate processes:

Ny Ny
Y Bi(ur) [ Y ciBj(v) | = dy
=0 7=0

Note that this is only possible because for every row of points in the data grid there exists only a
single v parameter value, and for every point in a column there is only a single v. In a more general
setting every data point could have its own u and v coordinates (u;;,v; ;). In this case the above
restructuring is not possible.

In matrix form the above system can be written as

B, (C-Bl) =D, (3.5)
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where By, := (B} (ux)), By := (Bj (1)), C:= (¢;;) and D := (d,). A solution can be obtained by
solving the two systems B,X = D and B,C” = X of size (n,+1) x (n,+1) and (n,+1) x (n,+1).
As in the case of curves, the matrices B, and B, are banded and well-conditioned if we have selected

appropriate basis functions. It is therefore possible to use optimized solution methods.

3.2 Knot Selection and Basis Functions

So far we have seen that the interpolation problem reduces to solving a system of linear equations,
once an appropriate knot sequence and the corresponding basis functions have been found. By
“appropriate” we mean that the matrix B from Equation 3.2 as well as the matrices B, and B,
from Equation 3.5 are non-singular.

As we have stated above, we can guarantee this by making sure that for every ¢ = 0...n, the
data point 4 is located in the support of basis function B;(u). For curves this means mathematically
that every data point d; has a parameter value that corresponds to a position within the support
[tistivar1) of Bi.

In the case of tensor-product surfaces we have to select two knot sequences T,, and T, and the
above property has to independently hold for both knot sequences.

The consequence of these observations is that in general we have to take the parameterization
into account when deciding upon a knot sequence. Alternatively, we could create a knot sequence
first, and then select a parameterization based on these knots. However, since there is a one-to-one
correspondence between the data points and the parameter values, it is easier to come up with a
reasonable parameterization first, and then select the knots afterwards.

Because the knot sequence has to depend on the parameterization, we can not simply choose
B-splines with uniformly distributed knots. In addition, since the positioning of the knots has a
substantial influence on the shape of the interpolant, it is important to use a method that produces
“good” interpolations in most cases, or at least in the most common cases. Figure 3.1 shows how
strong the influence of the knot selection algorithm on the curve shape can be.

Most of the existing literature about B-spline interpolation does not address this issue at all but
rather quietly assumes that the knots coincide with the parameter values for the data points. This
method seems to produce reasonable results for most interpolation problems. Since the knots in a

B-spline are exactly those positions where the curve or surface are only C%~! continuous, we can
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Figure 3.1: The effect of different knot sequences on solutions for an interpolation problem. Both
curves are interpolants of the given data points, and use the same parameterization but different

knot sequences.

interpret this method as giving the spline more flexibility around the points we want to interpolate.

When implementing this method, we have to pay attention at the borders of the domain.
Suppose we have m + 1 data points together with the corresponding parameter values. If we use
these parameter values as knots, this will give us m + 1 knots. However, in Chapter 2 we have
stated, that the B-splines over a knot sequence T' = (ty,...,t,1+q+1) only forms a basis for the
interval [tg, tn+1)-

So, in order to have a basis on the complete parameter interval [ug,u,,), we have to generate
an additional d knots to the left of uy and d knots to the right of u,,. A good choice for these extra
knots is usually to set all the knots on the left to uy and all knots on the right to u,,. The result

is a B-spline that passes through its first and its last control point.

T i= (U0, ey U0y Uty e ey Upy—1s Uy -« - 5 Upp)
—_———— —_———

d+1 d+1

This leaves us with (m + 1) + 2d knots. We also know that a knot sequence of length (n+1)+d+1

gives us n + 1 basis functions, and hence allows for a B-spline curve withn+1=(m+1)+d—1
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control points.
Thus our B-spline curve has d — 1 more control points than data points, and the interpolation

problem becomes the following under-determined system of linear equations:

Bo(uo) Bi(ug) -+ Bn(uo) @ do
. Cc1 _
Bo(um) Bi(um) - Bu(um) c: dn

The extra degrees of freedom introduced by this approach can be used to enforce additional
constraints on the curve. There are a variety of possibilities for setting these constraints, which are
usually called “end conditions”. The choice of a particular end condition depends on the specific
application for which the interpolant is required.

Since for tensor-product surfaces the knot selection can be done separately in u and v direction,
we can also directly use the parameterization as knots for the two parametric directions. The result
is a surface with an extra d, — 1 control points in u direction and an extra d, — 1 control points in

v direction.

3.3 End Conditions

The name “end condition” comes from the fact that the extra degrees of freedom are usually filled
in at the borders of the parameter domain, that is, at the ends of the curve or surface. It would also
be possible to specify additional conditions in the interior of the spline, as long as those conditions
are linearly independent from the rows in the matrix B. In practice, however, constraints at the
borders of the domain are the most interesting, as they allow us to smoothly join different curves
or surfaces.

In the case of curves, a simple way of generating a smooth transition between two separate
splines is to specify the tangent vectors in the endpoints and set them to the same vector for both
curves. Setting the extra degrees of freedom by specifying tangent vectors is called the clamped end
condition. In the case where the spline curve is of degree d = 2, we have d — 1 = 1 extra control
points available, and can therefore force the tangent on one side of the curve to a specific value.

If we have a curve of degree 3, we can use the two extra control points to set the tangents on
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both sides of the curve. For even higher degrees we can use a generalization of the clamped end
conditions which allows us to specify higher order derivatives on one or both sides of the curve.
In order to implement clamped end conditions, we need to compute the derivative of a B-spline
curve at the endpoints, and choose the available control points to force this vector to a given tangent
vector . It is a well-known fact (see Appendix A) that the derivative of a B-spline curve F(u) is

given by
n+1

—Ci-1) \d—1
—F )=d N. T).
> Gt )

We can see that the derivative is a hnear comblnatlon of the control points of the curve. If we

re-group the terms to reflect this observation, and set the derivative at some parameter ¢ to &, we

get
d d—1
£ = [ N, T) — ————— N, T
Z tiva —ti " & T) tivdr1 — tiv1 e (b )/
e
This equation can be rewritten in matrix form, which yields
Co
c1
ep €1 ... €p . X = f
Cn

In order to fill in the extra degrees of freedom we have available, we add a number of equations
of the above form to the matrix B from Equation 3.2. For degrees d > 3 we will have to move to
higher order derivatives, but these can be fit into our linear equation system in a similar way. The

result is an equation system of the form

E, £
B - lc| = |D (3.6)
E, =,

E; is a matrix holding the derivatives for the left side of the curve, and Z; is a vector of the
corresponding tangents. Similarly E, and =, describe the end conditions on the right side of the

curve.
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In the next section we discuss a set of end conditions that have often been used in the standard
spline literature. All these constraints have the property of being linear in the control points, and

can be represented in a matrix form similar to the way we have discussed above.

3.3.1 Bessel End Conditions

For many applications it is desirable to have the system spend the degrees of freedom automatically
instead of letting the user supply additional information. This is especially true if the user does not
know the data set well enough to make a good choice. The approach of Bessel end conditions is to
generate a set of tangent vectors automatically, which can then be plugged in to the clamped end
conditions described above.

More specifically, the vectors that are created are the tangents of the interpolating parabola
through the first (or last) three data points. This (parametric) parabola is found by solving the

system of equations

a-ug-i—b-uo—i-c:do,
a-u%+b-u1+c:d1,

a-u%—l—b-ug—i-c:dg.

The tangent vector ¢ we are searching for is then given by the derivative of this parabola at
parameter value ug, that is,

E=2a-ug+b

3.3.2 Natural End Conditions

Another simple choice for end conditions of quadratic or cubic splines are the natural end conditions,

which set the curvature in the endpoints of the curve to zero:

F(uy) = F(u,) =0
In the case of a quadratic spline we have of course only enough degrees of freedom to set the
curvature in one of the points.
This method involves computing the second derivative of a B-spline curve, which is again a

linear combination of the control points. The name “natural” for these constraints originates from
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the field of ship construction. In this field the word “spline” is used to describe wooden planks that
are used to determine the shape of a ship body. When such a plank is fixed to pass through a set of
some specific points, it takes on a shape in which the bending energy in the two outermost points

is zero. Mathematically this is corresponds to the curvature being zero.

3.3.3 Quadratic End Conditions

The next kind of end conditions we want to describe are called quadratic end conditions. Tradition-
ally these have been used for degree 3 curves only, but generalizations to curves of other degrees
are obvious. For a degree 3 curve we make sure that the second derivatives in the two leftmost data

points match, as well as the second derivatives in the two rightmost data points.

F(up) = F(u1) and  F(un_1) = F(uy)
Since we identify the knots with the parameter values of the data points as described in Section 3.2,
the two parameter values on each side are also knots of the spline.

For cubic curves the second derivative is a piecewise linear, C° continuous function. Conse-
quently, if we set F(ug) = F(u;), we actually force F'(u) to be constant on the interval [ug, u1].
Therefore the spline F'(u) is actually quadratic instead of cubic on this segment, and hence the
name of this method. The same applies similarly for the interval [u, 1, u].

Quadratic end conditions can again be described as a linear combination of the control points

of the B-spline curve, and can therefore be written in matrix form.

3.3.4 Not-A-Knot End Conditions

A slightly more complicated set of constraints is represented by the so-called not-a-knot end con-
ditions. Instead of spending the extra degrees of freedom on reducing the degree of a segment, this
method merges two spline segments into a single one, thus increasing the continuity at the knot
that separates the two segments.

Again we identify knots with parameter values and request that the d derivatives at certain
parameter values u; are continuous. In the cubic case we require two of these points, and typically
choose u; and u,_1. Now, since we are dealing with a spline of degree d, the d derivative F(%) (u)isa

piecewise constant function. A simple condition for making this function continuous at a parameter
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value u; is to request that the values at the centers of the two intervals [u;_1,u;] and [u;, u;41] are

the same.
Ui—1 + U

2

Ui + Ujgq

F(d)( 5 )

)= P

For a curve of degree d we have to remove d — 1 knots in this way to get rid of all the extra degrees
of freedom.
Thus we have again reduced the constraints to a condition on higher order derivatives, which

are linear functions in the control points.

3.3.5 Closed End Conditions

Often we want to create closed spline curves from a set of data points. If those points are given
such that dy = d,,, we can use closed end conditions to make the two ends of the curve join together
smoothly. Since we have d — 1 additional control points available, and an interpolating curve for
data points with dy = d,, is C° continuous automatically, we can use the extra degrees of freedom
to achieve C%~! continuity. This is also the degree of continuity we have at the internal knots of
the curve. In other words, we can create a closed spline curve without a distinguished start and
end point.

The conditions for C4~! continuity at the joint are obviously that the first d — 1 derivatives at

the beginning and the end of the curve match:

F® (ug) = F® (u,) 5 k=1.d—1

3.3.6 Multiple Control Point End Conditions

For the sake of completeness, we shall finally mention a very simple end condition that can be
used if no information about the data is available. The additional control points are set by letting
multiple control points coincide. This is usually also done at the end points of the curve.

The resulting constraints are again linear in the control points, but they do not require the
derivative of the B-spline. Thus this method is very efficient to implement, since every constraint
is represented as a fixed vector that does not depend on the data values. For the more complex
methods based on derivatives, on the other hand, each vector has to be created using both the

formula for derivatives of B-splines, and the B-spline recursion formula.



3.4. End Conditions for Tensor-Product Surfaces 21

3.4 End Conditions for Tensor-Product Surfaces

So far we have concentrated on end conditions for spline curves. As we have seen in Section 3.2, the
situation for tensor-product surfaces requires additional constraints in a similar fashion. It turns
out that all the end conditions from the previous section can also be applied in the case of tensor-
product splines. However, some extra care has to be taken for the actual implementation of these
constraints.

In the case of curves we were able add the end conditions directly to the interpolation matrix B,
and thus to rewrite the linear equation system in Equation 3.2 to the one in Equation 3.6. Our first
attempt to handle end conditions for surfaces is to use a similar approach. The equation system we

gain by rewriting Equation 3.5 is

E, =
B, - C - |Ef| BT |EI'| = |2'| D |=I
Ey Ebp

Note that we now have end conditions for the left, right, top and bottom side of the surface.

Unfortunately it turns out that most of the end conditions we discussed in the previous section
do not fit into this scheme. In particular, all the end conditions involving derivatives can not be
handled. This leaves us with the rather simplistic multiple control point end conditions as the only
alternative.

To understand why this is the case, consider the simple case of clamped end conditions. In
the above scheme we have only a simple row vector E in the matrix E; available to represent the
derivative in a whole row of data points. However, the derivative of the surface is a different vector E
in each of the data points. Thus the end condition can not be represented in this scheme. A similar
argumentation shows that all other end conditions involving derivatives can not be represented in
this scheme either.

Since the end conditions are linear in the control points even in the tensor-product case, we can

still create a matrix representation of the constraints. For example the constraints at the top side
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of the surface can be written as

where C is defined as

— T
C = [00,0, N ,Cnu’o, N ,Co,nv, N ,Cnmnv] )

like in Equation 3.4. We thus discover that we can fit the end conditions into the scheme of

Equation 3.4 as

E

(1]

Here B and D are defined as in Equation 3.4, while E and = contain all the end conditions for the
left, right, top and bottom sides. We have already mentioned that the total size of this system is
very big, and solving it is therefore a timeconsuming task.

In order to cut down on execution time, we can obtain the control points in two steps. First we

solve the underdetermined equation system
B, (C'-BI)=D.

this gives us a partial solution C’ that still contains some undetermined variables. These can then
be filled in by solving
E-C=

(1]

afterwards. Since the number of end conditions is usually small compared to the number of basis
functions, this method is typically significantly faster than directly solving the big equation system.

In the case of a computer algebra system like MAPLE, this approach is also relatively easy to
implement, since the symbolic engine of the computer algebra system can be used to obtain the

partial solution C'.



Chapter 4

Parameterization

When we formulated the interpolation problem in the previous chapter, we assumed that an ap-
propriate parameterization is provided together with the data points. In the context of a computer
algebra system, this is actually not a bad assumption, since most of the data sets consist of points
that are sampled from mathematical functions. For these points the exact parameter value (i.e.
the position at which the original function was evaluated to yield the data point) is available, and
can be directly used for the fitting process. Consider following example using the MAPLE library

function spacecurve from the plots package.

spacecurve( [10*cos(t/30), 10*sin(t/30), t/3]1, t=0..240 );

This line of MAPLE code creates a 3-dimensional plot of a helix by sampling the function at
discrete parameter values and then connecting the sample points with line segments. A spline version
of this function could also sample the function at discrete parameter values. Possibly these points
would be uniformly distributed, but the selection of the sample points could also be more involved.
The important part is that the function spacecurve knows the parameter at which the samples
are located, and can consequently use them to do an interpolation as described in Chapter 3, or an
approximation, as we will see in Chapter 5.

However, spacecurve also has a second mode, in which it is only passed a set of points instead

of a function. Using this mode we can write the above example as

23
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helixPoints:= [seq( [10*cos(r/30), 10*sin(r/30), r/3], r=0..240 )];

spacecurve( helixPoints );

While this version of spacecurve is generally not used as often as the first one, it has some
important applications. Similarly, most other MAPLE library functions in the plots and plottools
packages also have corresponding discrete versions in which only a set of sampled data points is
passed to the function.

If we want to create a spline-based version of these discrete functions, we have to generate pa-
rameter values for the data points before we can apply an interpolation or approximation method.
The exact choice we make for the parameter values has a strong influence on the shape of the
resulting interpolant. In this chapter we will present several heuristic methods for determining pa-
rameterizations that produce a “good” interpolant. More examples comparing the different methods
can then be found in Chapter 8. All methods for determining the parameterization where originally
designed for curve interpolation and approximation. In Section 4.7 we will then describe how these

methods can be applied to tensor-product surfaces.

4.1 Uniform Parameterization

The easiest way of choosing a parameterization is the uniform parameterization, which simply
divides the parameter interval into equally spaced segments. Clearly it can not be expected that
this simplistic method works well for arbitrary sets of data points, since the particular position of
the points is not even considered. An example of a data set taken from [11] and interpolated using
the uniform parameterization scheme is shown in Figure 4.1.

The biggest advantage of this method is that the interpolant is a uniform B-spline if we use the
parameter values also as knots, as described in Section 3.2. This might be preferable in situations

where B-splines with arbitrary knot sequences cannot be implemented for some reason.
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Figure 4.1: A data set interpolated with a cubic B-spline using the uniform parameterization. Note

the artifacts between the 3"¢ and the 4** point as well as between the 5" and the 6" point.

4.2 Chord Length Parameterization

The so-called cord length parameterization is probably the easiest parameterization method that
actually takes the data points into account. It tries to resemble the “arc length parameterization”,
that is, to choose the parameter values in such a way that they reflect the length of the curve
segments of the interpolant between the data points. Since in general it is not possible, or at
least infeasible, to find the exact arc length parameterization, the cord length parameterization
approximates the arc length using the distance of the data points (the length of the “chords”
connecting all the data points).

More formally, the distance between the knots u; 1 and u; is made proportional to the Euclidean

distance of the data points d; 1 and d;:
ui—ui g =k-|di—di_1ll2 ; i=1...n

The constant k can be chosen arbitrarily, as can the first parameter value ug. If we set ug := 0 and
1
doicy lldi = dical2”

the resulting parameters u; will be in the interval [0, 1].

k=

In general the chord length parameterization produces better results than the uniform param-

eterization. It has been proven that the slope of an interpolating B-spline using the chord length
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Figure 4.2: The chord length parameterization has been applied to the data set from Section 4.1. For

this specific data set the results are in some sense even worse than with uniform parameterization.

parameterization varies continuously over the curve [8]. In fact this holds for all parameterization

schemes that can be expressed as
U; — Uj—1 = D(di, di—l), (4.1)

where D(.,.) is some metric. A similar result for the uniform parameterization is not known.

There are, however, data sets for which the chord length parameterization actually performs
worse than the uniform parameterization. One example is the data set from the previous section.
Figure 4.2 shows an interpolation of the same data set using the chord length method. We can see
that the interpolant is optically smoother, but has even larger wiggles than the curve generated
with the uniform parameterization.

In the case of this particular data set, the shape of the curve can be slightly improved by using
a different metric D for measuring the distance between the data points. A metric which on average
makes the chord length algorithm perform better is described in Section 4.6. This does, however,
not solve the general problem that parameterizations that are deemed superior can perform worse

on specific data sets.
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4.3 Centripetal Parameterization

The centripetal parameterization is a heuristic method which is very similar to the chord-length
parameterization, but is inspired by a physical model. The author of [15], the original paper about
the centripetal parameterization, challenges the idea of using an approximation of the arc length
parameterization for interpolation. He uses the analogy of a car travelling on the interpolant to
explain the reasons for his objections.

If we succeed in generating an interpolant with the exact arc length parameterization, this
means that a car travelling on the curve will have constant speed, independent of the shape of the
curve. The idea behind the centripetal parameterization is to slow the car down in areas where
the curve has a high curvature. Based on some physical computations and the assumption that
the centripetal force should be kept proportional to the angular change of the curve, the following

formula can be derived for the parameter values:

1/2 .
ui—ui_lzk-Hdi—di_lHQ/ H 1=1...n.

In order to normalize the parameter values to the interval [0, 1], we can set up := 0 and
1
12"
S i = dia Iy

As we can see, the centripetal parameterization is very similar to the chord length parameteriza-

k.=

tion. The only difference is that the square root of the Fuclidean distance is used in the centripetal

case. This suggests that it might be useful to explore different exponents as well. This results in

ldi —di 1|5
Yoy ldi = di1 |5

where e is some constant exponent. The author of [15] writes that different values of e seem to be

U; — Uj_q] = 7 1=1...n

optimal for different sets of data points, but that an exponent of 1/2 is in general better than an
exponent of 1. So far, no method for automatically selecting an optimal e is known.

Figure 4.3 shows an interpolation of the data set using the centripetal parameterization with
an exponent of e = 1/2. The resulting interpolant is significantly tighter and smoother than the
two interpolants using uniform and chord length parameterizations.

Since ||.||§ is not a norm for e # 1 (the homogeneity criterion ||« - z|| = |a| - ||z|| does not hold),

we can not express the chord length parameterization as a parameterization based on a metric in
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Figure 4.3: The centripetal parameterization yields better results than both the uniform and the

chord length parameterizations.

the sense of Equation 4.1. Thus the proof in [8] can not be used to show that interpolants created
with centripetal parameterization have a continuous slope. In practice, however, this seems to be

the case anyway.

4.4 Angular Parameterization

Following the same idea that the parameter values should “slow down” in regions of high curvature,
the authors of [11] introduce a purely heuristic method. The algorithm, which we will call angular
parameterization, takes into account both the angle between the chords connecting the data points,
and the length of these chords. We introduce the shorthand notations ©; for the external angle
between the chords at data point d;, and A; for the length of the chord connecting d; and d;,1, as
depicted in the following diagram:

We also define 6; as an abbreviation for min(©;,7/2), and then the angular parameterization
is given as

AV R Y TS AVIE N B
A+ A; A+ A ’

Ui —u; = O |1+ 1=0...n—1 (4.2)

Note that this formula requires two extra chord lengths A_; and A,,, as well as two extra angles Qg

and O,,. The authors of [11] do not specify how these parameters should be chosen. One possibility
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Figure 4.4: The configuration for the angular parameterization.

is to extrapolate the two outermost segments by setting A 1 = Ay, A, = A, 1 and Oy =6, =0.

The distance between u;_; and w; is the larger the bigger the external angle ©; is, thus slowing
the curve down, and giving it more time to turn. Please note that we use the angle 6; instead of
the real external angle. The upper limit of 7/2 was determined empirically, and was introduced in
order to prevent the curve from slowing down too much.

The influence of the chord lengths A; is chosen such that the distance between two parameter
values u; 1 and wu; is bigger the longer chord A; is in comparison to the neighboring chords A;
and Ajyq.

The parameter k can either be used as a shape control in interactive applications, or should be
set to the constant 1.5, which, according to the authors of [11] constitutes a good value for a large
variety of data sets. This constant has again been chosen empirically.

Despite the fact that no theoretical foundation has been given for this algorithm, and some of the
choices made seem quite arbitrary, the angular parameterization method in practice produces very
good results. It usually outperforms both the chord length and the centripetal parameterization.
The interpolant for our data set using the angular parameterization is shown in Figure 4.5. For this
data set the result is actually very similar to the centripetal parameterization. Other examples, in
which the differences between the parameterization methods are clearly visible, will be shown in

Chapter 8.
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Figure 4.5: The resulting interpolant using the angular parameterization for this data set is com-

parable to the centripetal solution.

4.5 Area Based Parameterization

While the angular parameterization algorithm performs well in practice, it is somewhat unsatisfac-
tory that no theoretical justification is given for this algorithm. We found it particularly disturbing
that Formula 4.2 involves the multiplication of angles with distances, which makes it hard to come
up with a geometric interpretation for the method.

We tried to overcome the aforementioned shortcomings by performing our own experiments,
and to come up with a method that is based on principles similar to those of the angular param-
eterization, but with a reasonable geometric interpretation. The result is a method which we will
call area based parameterization.

In analogy to the angular parameterization, we will consider two different contributing factors
for selecting the parameter values: the distance A; between two consecutive data points, and the
degree to which the curve has to change direction while passing through these data points. The
first contribution is simply given by the chord length A;, which is normalized by dividing through
the average chord length A :=1/n Z?:_ol A; of the data points:

The normalization is necessary to keep the parameterization independent from the scaling of the

data set.
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For the contribution of the second part we consider the area of the parallelogram formed by

two consecutive chords, as depicted in Figure 4.6.

di Ay dipa

Figure 4.6: The configuration for the area based parameterization.

The area of such a parallelogram is given as A; = sin ®; - A;_1 - A;, and for reasons of symmetry
we have to consider two of these areas, A; and A;1, in order to calculate the value u;+1 — u;. For
similar reasons as in the angular parameterization, we restrict ourselves to internal angles larger
than 7/2, and define ¢; := max(®;, 7/2). We also normalize the term by dividing through the area
of the rectangle with sides of length A;_; and A,;. This results in the second contributing term for

the parameterization:

h2 — Az + Ai—l—l _ sin ¢z . Ai_1 + sin ¢i+1 . Ai-}-l
(Aot D) (A Aggr) A1+ A

Finally, we can express the parameterization as a weighted sum of the two contributing terms:

A;
i1 —u; = khy + (1 — k)h? :kKJr(l—k)

sing; - A; 1 +sing; 1 - A
A1+ A

We have thus separated the two contributing factors for the parameterization into two different
geometric terms that are weighted together. While the method is still purely heuristic, we think
that the two contributing factors have clear geometrical interpretations. The factor k£ can again be
used as a shape control parameter, if this is desired. In practice we found that a factor of k = 2/3
usually produced results that were comparable to the angular parameterization. In other words, the
results were typically superior to the chord length and the centripetal parameterization. Figure 4.7
shows the result of the interpolation with the area based parameterization method. We will show

more examples in Chapter 8.
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Figure 4.7: The area based parameterization typically produces results comparable to the angular

parameterization.

4.6 An Affine Invariant Metric

Except for the uniform parameterization, all of the parameterization schemes we have presented
used the Euclidean distance between the data point to determine the parameterization. These dis-
tances, and also the angles that are used for both the angular and the area based parameterization,
are invariant under rigid body transformations such as rotations and translations.

The parameterizations are also invariant under scalings, provided that the same scaling factor
is used for all directions. The area based scheme is invariant under these uniform scalings by
construction. For all other methods a uniform scaling of the data set scales the distances between

the resulting parameter values by a constant «:
tiv =t = altiyn — 1)

This causes the knot vector to be scaled by the same factor a. As a consequence, the resulting
interpolant will have a parameter domain that is also scaled by «, but the shape of the curve
remains the same.

The situation is different for shearing transformations and for scalings in which the scaling
factor is not uniform in every direction. In such cases the parameterization is not a multiple of

the original one, and thus the shape of the resulting interpolant is different. Unfortunately, this
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means that the parameterization (and thus the resulting interpolant) is not invariant under affine
transformations.

To overcome this problem, an affine invariant metric has been proposed in [11], [18] and [19].
The metric can be used to measure the “distance” of the data points in a way that is invariant
under affine transformations, and especially under non-uniform scalings.

If we are given a set of data points as

o Yo <o

1 Y1 2

In Yn 2n

we call a metric Dy (u,v) affine invariant over the data set V if Dy (z,y) = Davip(Au+b, Av+b)

for all affine transformations f(u) = Au + b.

Assuming that we are in a 3-dimensional space, such a metric can be defined using the norm

T
T o
H[m Y z} iZ[x Y z} n(VTV)il Yy
1%
z
where -~ _
To—T Yo—Y 20— %
_ rL—T Y1—Y 21— 2
V =

_xn_i' Yn —Y Zn_z_
and z:=1/(n+1)Y "z, y:=1/(n+1)> " vy and z:=1/(n + 1) >_7" ;2 are the medians of

the components of the data points. Metrics for spaces of different dimensionality can be created

in a similar fashion. Please note that the matrix V has to be of full rank because otherwise the
product V'V is singular, and the inverse can not be found. This means that, for a 3-dimensional
interpolation problem, not all the data points must be in one plane, and for a 2-dimensional one
not all must be on one line. If such a case happens the parameterization problem has to be solved
in a lower dimension.

We refer the reader to [18] and [19] for a discussion of why Dy (u,v) is a norm, and why it leads

to an affine invariant metric.



4.7. Parameterizations for Tensor-Product Surfaces 34

When we replace the Euclidean distance in the chord length parameterization and in the cen-
tripetal parameterization by this affine invariant metric, it is immediately clear that the resulting
parameterization scheme is affine invariant. Since both schemes only depend on the distances of
the data points, and these do not change under affine transformations, the parameterization does
not change either. As a consequence, the knot sequence and the interpolant also do not change.

The situation for the angular and the area based parameterizations is slightly more difficult.
These parameterization schemes depend not only on the distances but also on the angles between
the chords. Thus a method has to be found to represent these angles in an affine invariant way.
Using the Law of Cosines we can write the internal angle ®; between two chords as

D3y (di—1, di) + D3y (diy dig1) — D%/(dz'l,dm))
2Dv (di—1,d;)Dv (di, diy1)

®, = arccos <

The external angle ©; can then be calculated as ©; = m — Phi;. Using this substitute for the angles
together with the affine invariant metric for the distances allows us to have an affine invariant
version of the angular and the area based parameterization. This is actually the form in which the
angular parameterization has originally been presented in [11].

Figure 4.8 shows the chord length interpolant from Section 4.2 together with a new interpolant
that uses the affine invariant metric together with the chord length parameterization. The new met-
ric yields a slightly improved shape of the interpolant, although still not as good as the centripetal
or angular parameterization. Since the interpolants for these two schemes were already very good,

their results are not further improved by the use of the new metric.

4.7 Parameterizations for Tensor-Product Surfaces

In the case of tensor-product surfaces, some additional considerations are necessary. If we obtain
a grid of data points by sampling a mathematical function ourselves, we can choose the sampling
positions in such a way, that the parameter values form a rectangular grid in the parameter domain.
All data points in a row of the grid then share the same u component, and all points in a column
share the same v component. This means that the parameter of a data point d; ; can be written as
(us, vj).-

A parameterization of this form is advantageous when we then want to fit a tensor-product

B-spline surface through the grid of data points, since it allows us to break down the interpolation
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Figure 4.8: The use of the affine invariant metric improves the chord length parameterization

slightly.

process into two smaller problems, as described in Section 3.1. If we had the more general case of
a data grid in which each point can have its own parameter value (u; j,v; ;) then this would not be
possible, and we would have to solve a single, large system similar to Equation 3.3.

If we do not sample the function ourselves, but are rather given a set of discrete points without
the parameterization, we first have to decide whether a single parameter value per row and per
column is appropriate for the data set. If we think that such a parameterization is appropriate, we
can simply use one of the algorithms described above. We separately compute the parameterization
in 4 and v direction by applying one of the above algorithms to the averaged control points.

If we do not think that such a parameterization is appropriate for the data set, we can generate
the parameter value (u; j,v; ;) for each data point by applying one of the above algorithms separately
to each row and column of the data grid. This will only work reasonably if the variations of the
parameters in the rows and columns is not too high. If this does not hold, or if we don’t even have
gridded data points any more, the parameterization has to be generated with one of the methods
from the field of scattered data interpolation.

Since in computer algebra systems we usually deal with gridded data, for which a rectangular
grid of parameter values is a good assumption, we will not discuss the parameterization methods
for scattered data interpolation at this place. We rather refer to [18], where the angular parame-

terization together with the affine invariant metric is applied to scattered data interpolation.



Chapter 5
B-Spline Approximation

The results of the previous two chapters show how an arbitrary set of discrete data points can
be interpolated with B-splines. It has been shown how a parameterization for the data points can
be generated, and how a set of B-spline basis functions can be selected. Given this information, a
unique solution to the interpolation problem is obtained.

However, interpolation methods have a serious disadvantage if the goal is to represent more
complex functions such as higher-order polynomials or transcendental functions, which can not be
represented ezactly as B-splines.

Since the interpolant is forced to go through the specified data points, the error in these points
is zero, but the error between the points is relatively high. If too few data points are used for the
interpolation, this tends to introduce bumps and other artifacts on the interpolant, which results
in an unacceptable shape. Of course this problem can be avoided by using more sampling points,
but then the size of the linear equation system grows rapidly, and obtaining a solution becomes
expensive.

Figure 5.1 shows a quadratic interpolant for 11 data points sampled from a logarithm. The
exact parameterization was used for the interpolation process, together with clamped end conditions
specifying the original tangents in the end points. The interpolation process has introduced a bump
near the second data point.

An alternative to B-spline interpolation is the use of B-spline approzimation techniques. The
idea behind approximation is to provide a large number of data points but to generate only a B-

spline with a significantly lower number of control points. This means that there are fewer degrees of

36
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Figure 5.1: Interpolating sampled points from transcendental functions like logarithms sometimes

introduces artifacts, like the bump in this example.

freedom than there are conditions, and that, in general, not all the conditions can be met. However,
it is possible to minimize the error between the spline curve and the data points according to some
norm.

If the right norm is chosen for this minimization process, the resulting curve can actually
preserve the shape better than an interpolant through the same number of points, although the
number of spline segments is lower in the case of an approximation. The idea is to give the spline
more flexibility than in the interpolation case, and hopefully this results in a fit that does not pass
exactly through all the data points, but is a better approximation to the shape of the original
function.

In the case of curves, a set of m + 1 data points D = [dy, . ..,d,]" is provided for the approxi-

mation process. The parameterization of these data points is either provided as well, or it can be
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chosen using one of the methods described in Chapter 4. The approximation process determines the
n + 1 control points C = [cp, .. .,c,]" of a B-spline curve F(u) = Y, ¢; B;(u). Since the resulting
linear equation system

B-C=D

is over-determined, such a solution does not exist in general. However, an approximation can be
computed by minimizing ||B - C — D|| according to a norm [|.||. The choice of this norm has
significant impact on the properties of the curve or surface, and can be chosen depending on the

problem domain.

5.1 Least-Squares Fitting

Almost all of the literature on B-spline approximation uses the least-squares (Ly) norm for deter-
mining the “best” fit. The Ly norm of a vector z is given as |z||s = /> g2? = VT -z, where
x; is the i component of z.

The popularity of the Lo norm for B-spline approximations is probably due to the simplicity
with which this norm can be implemented. The following theorem describes how the least squares
solution of an arbitrary over-determined linear equation system of the form B - C' — D can be

obtained as the solution of a square linear equation system with full rank.

Theorem 5.1.1 (Least-squares solution for |B-C — D||)
For every (n + 1) x (m + 1) matrix B of full rank n + 1 < m + 1 the least-squares solution of

min||B - C — DJ|, can be obtained by solving the (square) linear equation system
B'B-C=B".-D
Proof: The least-squares solution min [|B - C' — D||, is equivalent to the solution of min ||B-C'—D]||3.

min||B-C — D||3 =min [(B-C - D)"(B-C - D)] =
=min [CT BT - DT)(B-C - D)] =
=min [C"-B"B-C-D"-B-C-C"-B".-D]=
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r 2
m n m n n m m
: 2
= min E E bi,jcj — E d; bi,jCj — E Cj E bi,jdi + E di =
i—0 \ j=0 i—0  j—=0 =0 i=0 i—0
r 2
m n m n m
= min E bi,jCj -2 E d; E bi,jCj + E d?
i=0 \ j=0 =0 j=0 i=0
M

In order to find this minimum, we compute the partial derivative of M with respect to all the

control points c¢:

oM & - <
8—% = Z 2- Zbi’jcj Qi — 2. Zdibi,k

1=0
ZQ'i(ibi,kbi,j>cj_2'idibi,k H k=0...n
Jj=0 \:i=0 1=0

Setting each of these derivatives to zero and writing the resulting equations in matrix form yields
2(B"B-C-B"-D)=0

or

B'’B.c =8BT.D.

Since it was assumed that B is of rank n +1 < m + 1, the (n + 1) x (n + 1) matrix BB is of full

rank, and can be solved using standard techniques like Gaussian elimination. O

The importance of this result lies in the fact that we can compute the least-squares approxima-
tion by solving a linear equation system of size (n+ 1) x (n+ 1) instead of (m+1) x (m+1) in the
interpolation case. Of course the equation system for the approximation has to be created before it
can be solved. This involves the multiplication of two matrices B? and B of size (m +1) x (n + 1)
and (n 4+ 1) x (m + 1), respectively. The time complexity of these operations is O(n? + mn?),
which compares to O(m3) for interpolation. This means that the approximation is faster than the
interpolation if m is significantly larger than n.

Another efficient way of obtaining the least-squares solution is to compute the Q-R decompo-
sition

B=Q-R=Q-
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first. Here, Q is an orthogonal m + 1 X m + 1 matrix, and R; is a upper triangular n + 1 x n + 1
matrix. It can be shown that any m + 1 X n + 1 matrix of full rank n +1 < m + 1 can be written

as a product of matrices of this form. Given this factorization of B, it is easy to see that
IB-C-DI3=1Q"B-C-Q'D|}=|R-C—-Q"D|} =|Ri-C— Ei|} + B3

where Q7D = [E;, E]".
Therefore, the least-squares solution can be obtained from |R; - C' — Eq||2. Since R; is a square

matrix of full rank, the solution is identical to the solution of the linear equation system
Rl -C = E17

which can be calculated easily due to the fact that R is an upper triangular matrix.

The complete algorithm takes O(mn?) operations for the Q-R decomposition, followed by (n?)
operations for actually obtaining the least-squares solution. This means that the asymptotic be-
havior of this algorithm is even better than the behavior of the first approximation algorithm and
of B-spline interpolation.

Not only is approximation more efficient, it often also produces results that preserve the shape
of the original curve better than interpolation does. Figure 5.2 shows the result of a least-squares
approximation for the logarithm-data set shown before. The data set consists of the same 11 data
points, but the approximation is done with a quadratic B-spline curve that has only 3 segments
(6 control points). The resulting curve is much more pleasing, and visually closer to the original

logarithm function.

5.2 Spline Fitting for Uncertain Data

An important field of applications for approximation techniques is the fitting of uncertain data
that occurs for example in statistics or as a result of measurements in experiments. Approximation
techniques in this context usually involve fitting a polynomial through a set of data points that are
subject to some error. The error distribution depends on the specific application domain, and could
for example be a uniformly distributed error on a few data points, or mostly correct data points

with a few outliers.
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Figure 5.2: The least-squares approximation using 11 data points but only 6 control points yields a
result that is superior to the interpolation solution, and visually significantly closer to the original

logarithm function.

In most cases the approximation process is formulated as a functional problem. That is, given
data points y; that have been measured at specific positions z; (for example points in time), a
function f(z) is desired, which minimizes |ly; — f(x;)||. As mentioned above, usually a polynomial
approximation is required, that is f(z) is a polynomial function.

There are several differences between the scenario described above, and spline approximations.
First of all, splines as described in this thesis define parametric instead of functional curves. How-
ever, since the B-spline approximation (like the interpolation) treats every component of the vector
space separately, the parametric approximation can be seen as a composition of several indepen-
dent functional approximations. Thus the only difference between a functional and a parametric

approximation really is that in the functional case the exact parameterization is always known.
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This is a significant advantage for the approximation of uncertain data, since it is not clear how
an appropriate parameterization could be generated automatically. All the methods described in
Chapter 4 have specifically been designed for generating curves that meet all points as close as pos-
sible. It can therefore not be expected that the removal of outliers is possible with parameterizations
generated by these methods.

Another difference is that splines have different approximation properties than polynomials.
Because of the local control property of B-splines, it is to be expected that a spline approximation
locally changes to meet outliers better, and that the removal of outliers is therefore not as good
as in the polynomial case. On the other hand with splines it should be possible to create good
approximations to data sets with a more complex shape. The negative effects of the local control
property can partly be compensated by increasing the degree of the curve, and thus extending the
support of every basis function.

A final point to be aware of is that traditional fitting techniques for uncertain data involve the
use of different norms for the minimization process, where a specific norm is selected according to
the expected error distribution of the data set. In particular, the Lo norm is typically used for data
sets in which every data point is subject to a small, normally distributed error [20]. The L; norm
is well-suited for removing a small set of outliers from a set of data points with otherwise high
precision. Finally the L., norm is appropriate if every single data point is very precise.

In the context of B-spline approximation, the Lo norm is traditionally the only norm used.
Consequently the form of B-spline approximation described in most of the literature is not well
suited for handling uncertain data with outliers. Figure 5.3 shows a data set of 21 points sampled
from a logarithm. One of these points has been moved in order to simulate an outlier. It is clearly
visible that the approximating least-squares fit is trying to get close to the outlier, at the cost of
introducing a larger error on the rest of the curve.

In the following we will describe how the Ly and L., norms can be applied to B-spline approx-
imation problems using a linear programming approach. This allows the efficient combination of

B-splines with standard techniques for fitting uncertain data.
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Figure 5.3: Quadratic least-squares approximation of a data set with a single outlier. Since the Lo
norm penalizes large distances from single points, the curve tries to get closer to the outlier, at the

price of a larger error on the rest of the curve.

5.3 Fitting Using the L; Norm

The Ly norm ||z||; = Y ", |zi| creates approximations that tend to ignore outliers. The reason is
that the use of the absolute value penalizes a small error in a lot of points more than a large error
in very few points. A curve created by an L; approximation therefore tries to be as close as possible
to as many data points as possible, while at the same time accepting a large error in a very small
number of points.

The L; B-spline approximation || B-C'—D||; of a data set can be reduced to a linear programming
problem (see Appendix B). Introducing B; as a shorthand notation for the i row-vector of B, the
B-spline approximation using the L; norm can be written as min Y"1~ |B] C —d;|. The first step of
transforming this to a linear programming problem is to make the function linear by removing the
absolute value function. This can be achieved by introducing two vectors P and N of slack variables
p; and n;. Slack variables are additional variables that are introduced to fit a linear programming
problem into a specific form. This is a standard technique of linear programming.

Using these two vectors of variables, we can write

BfC—di=pi—ni ; pi>0,n;>0 (5.1)
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The intention is to have

BI'C—d; ;BI'C—-d;>0 0 :BI'C —d; >0
pbi = and n; =
0 ; otherwise —BI'C +d; ;otherwise

Using these definitions, the expression
m
Z pi+ 1y
i=0
becomes the function to minimize and Equation 5.1 becomes the constraint. We define 0,, to be a

vector of n zeroes, and 1, to be a vector of n ones. The linear programming problem for the L

approximation can now be written as

Minimize
C
[On 1., lm] P
N

subject to

[B _1d,, 1d, =D ; p;>0,n;>0

=2 v Q

This linear programming problem can be solved using the normal simplex method. An optimized
implementation of the simplex method for this specific problem could be created, considering the
special structure of the problem for the selection of pivot elements.

An L, fit using this method is shown in Figure 5.4. It contains the same data set as the least-
squares fit shown in Figure 5.4 above. The L; fit does a much better job in ignoring the outlier
and approximating the remainder of the curve. The figure also shows a problem that the L; norm
sometimes has at the ends of the parameter interval. Since the leftmost point is relatively far away

from the other points, it is treated as an outlier as well, although its position is actually correct.
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Figure 5.4: The quadratic L; approximation mostly ignores the outlier, and yields a good approxi-

mation to the rest of the curve.

5.4 Fitting Using the L, Norm

As stated above, the Lo, norm ||z||sc = maxo=1..m |z;|, also called mazimum-norm, is particularly
good for fitting curves to data points that are very exact. The reason is that this norm penalizes a
large distance from a single point very strongly. The resulting curves consequently tend to distribute
the error evenly across the whole curve.

As with the L; norm, it is also possible to express the approximation problem for the L., norm

as a linear programming problem. The L, fit of some data points D = [dg,...,d,,]" is given as

max ‘di —BiT-C‘.
=0...m

)

By defining ¢¢ := max;—g.. m |d; — BiT -C ‘, the approximation process can then be rewritten
as a linear programming problem. The expression ¢y becomes the objective function, while the

constraints are given as

6020
co>di— Bl -Cocy+BI-C>d

co>—di+Bl'-Cecy—B'-C>d
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In matrix form this results to

Minimize
C
[on 1]
Co
subject to
B 1l C D
: Z ) Co Z 0
-B 10 co -D

By introducing a vector S of slack variables the problem can be rewritten into the following

form, which contains only equality and non-negativity constraints.

Minimize _ _
C
co

[ o, 1 1,, 1, ] . s
- T =
subject to

R

B 17 _—1Id c D
mo 7= L >0, 8>0,T;>0

-B 1, -1d,, S -D

- T -

As in the case of the L; fit, the special structure of this problem could be used to implement
an optimized version of the simplex algorithm.
For the sake of completeness we show the L, approximation of the data set from the previous

sections in Figure 5.5, although the L., norm is inappropriate for data sets with outliers. We can
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Figure 5.5: The Ly norm penalizes large errors in a single point even more than the Ly norm, and
thus the approximation comes even closer to the outlier, while at the same time sacrificing precision

on the rest of the curve.

see that the shape of the curve is even worse than in the least-squares case, and that the error is

distributed over the whole curve.

5.5 Reproducing B-Splines From Sampled Points

So far all arguments about the quality of an approximations have been very informal, mostly de-
scribing the resulting curve as being “good” or “pleasing” for certain applications, without a math-
ematical definition of what is “good” or “pleasing”. Unfortunately, there exist very few objective
ways of measuring the quality of an approximation in a general setting.

The goal of any approximation method is that the shape of the resulting curve be similar to
the shape of the function from which the data points were sampled. Thus, an important criterion
for the quality of an approximation method is under which circumstances is the result an exact
representation of the original function. In the case of B-spline approximation, we are interested in
the conditions under which a B-spline curve can be exactly reproduced from a set of data points.

The following theorem describes which information is required to make this possible.

Theorem 5.5.1 (Reproduction of B-splines with exact parameterization)

Suppose we are given m + 1 > n + 1 data points D = [dy, ... ,d,]" that have been sampled from a
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degree d B-spline curve F(u) = Y7 ¢; B;(u) at parameter values (uo, ..., um). Suppose these values
have been chosen in such a way that the matrix B is of full rank. Then the degree d approximation
process using either the least-squares (Lg), Ly or Lo, norm and the original parameter values as
well as the original knot vector T yields the original control points C' = [cy, ..., c,]".

Proof: Since the data points have been sampled from the B-spline curve F'(u), the matrix equation
B-C = D holds for the B-spline matrix B = (B;(u;)) and the control points C'. Because the original
knot vector and parameterization is known, this matrix B is known as well, and can be used for
the approximation process. Consequently, the approximation problem is solved by a minimization
of |B - C'" — D|| where |.|| may be any of the above norms, and C’ is the vector of the resulting
control points.

Using B; as a shorthand notation for the i row vector of matrix B, the least-squares solution
C’ obtained by the approximation process is then characterized as

m m
r%m; (BT - ' —d;)” = rrélng (BT .c' - B -C)?

Because M := Y_1" BI' (C' — C) is a sum of non-negative values, the minimal value that can
be expected is M = 0. This value can actually be achieved by using the original control points
C’" = C. In other words, the original control points are one possible solution to the minimization
problem. If we can prove that it is the only solution, we are done, because then it is clear that the
original control points C' = C' will always be retrieved by the minimization process.

Since every term in the sum M = Y- BT (C'" — C) is non-negative, M = 0 actually enforces

that every single term B! (C' — C) =0; i =0...m. This gives us the linear equation system
B-(C'-0C)=0.

Since it was assumed that the matrix B has full rank n + 1, the only solution to this equation
system is C' — C' = 0.
A similar argument can be used to prove that the L; norm min Y"1 |BI - C — d;| and the Lo,

norm min (maXi:()mm |BF - C — dz|) reproduce the original control points. O

The consequence of this theorem is that B-spline curves with exact parameterization, knot
sequence, and degree can always be reproduced exactly as long as the sample points are chosen in

such a way that the matrix B is of full rank. It is important to note that the exact knot sequence
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is necessary and has to be provided. The knot vector represents the parametric values at which the
polynomial segments of the spline join together. This information can not be generated from a set

of discrete data points.

5.6 Surface Approximation Using Tensor-Product B-Splines

The methods for B-spline approximation described above can easily be extended to tensor-product
B-spline surfaces. In analogy to the tensor-product B-spline interpolation, the approximation pro-

cess can be described as minimizing the equation
B-C-D

where B is a matrix of dimension (m,+1)(m—v+1) x (n,+1)(n,+1). Using a similar argumentation

as in Section 3.1, this expression can be rewritten as the minimization of
B, - (C-BI)-D.

Thus a tensor-product approximation can be obtained by sequentially solving the two minimization

problems

B, -X-D (5.2)

B, -CcT - XxT (5.3)
For the Ls norm a solution can therefore be found by solving the equation
BB, (C-B!IB,) =Bl .D.B,.

In order to apply the L; and L., norm to these two minimization problems, the norms have to
be transformed into the form of linear programming problems defined in Appendix B. This can be
achieved by rewriting the difference of matrices from Equation 5.2 into a difference of vectors in
the following way:

B, Z0,0 do.o

B, T1p dy,0

)

BU Ty ) | dmu sMy
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The second minimization step B, - CT — X” can be rewritten in the same way. Please note that
the resulting matrix is banded, and can therefore be handled efficiently.
Using these equations, the tensor-product approximation can be computed by separately ap-
plying the linear programming approach described in Sections 5.3 and 5.4 to the v and v direction.
As a consequence of this construction, the results from Theorem 5.5.1 directly translate to

tensor-product approximation:

Corollary 1 (Reproduction of tensor-product B-spline surfaces)

Suppose we are given a grid of (m, + 1) x (m, + 1) data points d; ; that have been sampled from a
degree d,, x d,, B-spline surface F'(u,v) = > ", > " ¢i jBi(u)Bj(v), where m,, > n, and my, > n,.
Suppose the parameter values (ug, ..., U, ) and (vg,...,vn,,) have been chosen in such a way that
the matrices B, and B, are of full rank. Then the d, x d, approximation process using either the

least-squares (Lg), Li or Lo, norm and the original parameter values as well as the original knot

vectors T, and T, yields the original control points c; ;. O



Chapter 6

Rational Approximation Using

NURBS

The vast majority of existing interpolation and approximation methods only produce integral B-
spline curves and surfaces. However, rational B-splines provide more degrees of freedom for the
shape of a curve or surface, and thus have the potential of producing better fits. NURBS are also
easy to implement, and are frequently used for modeling purposes.

Unfortunately, the use of rational splines for approximation and interpolation is not well un-
derstood at this time. In [9], Farin suggests formulating the rational interpolation problem as
follows: Given data points D = [dy,...,dy]", weights W = [wy,...,wy,]T and parameter values
(g, - .., Up), find the control points ¢; of the NURBS curve that interpolates data points d; and
weights w; at parameter values u;. The approximation problem can be defined in a similar way.
A solution for such a rational interpolation or approximation problem is easily obtained from the
solution [c;w}, w!]T of the integral problem for data points [d;w;, w;]T in homogeneous coordinates.

The weights are usually not provided with the data set, however, and hence the weight for each
data point has to be calculated first. This can be seen in analogy to finding a parameterization in
cases where the exact parameterization is not known. Unfortunately, no algorithm for determining
a set of weights for a given data set is known to date. Any algorithm for this task would have to
determine the weights in such a way that the weights of all control points of the interpolant are

non-negative. This is a hard task, since the interpolation process in homogeneous coordinates could

o1
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set some of these weights to zero or to negative values, even if the weights in all data points are
positive.

The lack of an algorithm for determining the weights practically renders the above approach
for rational fitting useless for most applications.

In this situation, a recent paper by Ma and Kruth [17] describes a different approach for ap-
proximation with rational B-splines. Instead of trying to calculate the weights in the data points,
they describe a way of directly determining the weights in the control points as a preprocessing
step. The homogeneous form of the actual control points is then found by applying an integral

approximation method to data points w;d;.

6.1 Observation Equations and Weights

Following the original paper [17], we now briefly describe how the weights in the control points of a
curve can be obtained as the results of a minimization process. The arguments are be presented for
approximations in a 3-dimensional vector space, but can easily be extended to other dimensions.

A NURBS curve F(u) with n + 1 control points ¢; has the following form

_ 2icowiciBi(u)
) = S B

The evaluation of such a curve at m + 1 parameter values (ug, ..., uy) yields m + 1 equations

Yor o wici By (ug)
Z?:o w; By (uy)

Since the curve is assumed to be in 3-space, each of these equations actually denotes a set of three

=dg; k=0...m.

separate observation equations

n n

di Y wiBi(ug) = > wict Bi(uy),

=0 1=0

n n

dy Z w;Bi(ug) = Z w;c? By (ug),
n n

di > wiBi(ug) = wic; By(uy).

We would like to write these equations in matrix form, and define C, = [cfwy, ... ,cﬁwn]T,
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Cy = [cwo, ... ,Aw,] and C, = [cEwy, . .., cEw,]" as well as
dg dg dg
D, := ) Dy = ; Dyi=
dz, din A,

The C, Cy and C, are vectors containing the components of the control points in homogeneous
form, while D;, D, and D, are diagonal matrices containing the components of the sampled points.

Using these definitions, the resulting matrix form of the observation equations is

D,-B-W =B-C,,
D,-B-W =B-(, (6.1)
D, -B-W=B-C,.

These can further be rewritten into a single matrix system of dimension 3(m + 1) x 4(n + 1),

Cr
B 0o 0 -D,B o Ot
o B 0o -DB |- Cy = | Oyt |- (6.2)
0 0 B -D,B ’ Omt1
R _ | w
A

From these observation equations it follows that the approximation of m 4 1 data points with
rational B-splines comes down to minimizing the left hand side of Equation 6.2 according to some
norm. Unfortunately this equation system is rather large. It is, however, possible to manipulate the
equation system in such a way, that the weights can be calculated separately by solving a smaller

equation system. First, Equation 6.2 is multiplied by A7, yielding

B"B 0 0 -B"D,B Cy 0,11

0 BB 0 -B"D,B Cy | _ | Onta (6.3)
0 0 BB -B"D.B C, 0,11
-B’D,B -B’D,B -B’D.B M, w 01

where My, = B'D?B + BTDzB + BTD?2B. Note that the multiplication by AT does not change



6.2. Solving the Homogeneous Equation System o4

the rank of the equation system. Eliminating the first elements of the last row results in

BB 0 0 -B"D,B C, 0,11
o B'B 0 -B'D,B C,y 011 (6.4)
0 o B’B -B’D.B C. Ops1 '
0 0 0 M |14 0,11
with
M =M, - [(B'D,B)(B"B)"'(B"D,B) +
(B"D,B)(B"B) '(B"D,B) + (6.5)

(B"D,B)(B"B)"'(B"D,B)].

Note that M only depends on the data points and the B-spline basis functions. We have there-
fore managed to separate the weights from the control points, and can solve for them using the
homogeneous equation system M - W = 0,,4; of dimension (n +1) x (n +1).

Once a set of weights W has been found, the positions of the control points can be obtained
by applying the minimization methods described in Chapter 5 to the observation equations (Equa-
tion 6.1). Figure 6.1 compares the integral approximation of a sine wave from 11 data points with
the rational fit. Both approximations use produce a cubic curve with 3 intervals, and have been

calculated using the Lo norm.

6.2 Solving the Homogeneous Equation System

In order to obtain the weights W from Equation 6.4, a non-zero solution to the homogeneous
equation system M- W = 0,11 has to be found. Actually, a positive solution (i.e. one with w; > 0)
is in general desirable, since negative weights, and especially the mixture of negative and positive
weights in the same curve, may result in singularities, which is not acceptable.

For general sets of data points it might not be possible to obtain a non-negative solution,
because the matrix M might well be non-singular. A solution only exists if the (n + 1) x (n + 1)
matrix M has rank(M) < n. If the rank of M is exactly n, the solution is unique up to a scalar
factor. Because scalar factors in the weights cancel out in the NURBS formula, the shape of the

approximating curve is uniquely determined by such a system. If, on the other hand, the rank of
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Figure 6.1: A comparison of a rational and an integral approximation. The rational approximation

nearly interpolates the data points, while the integral one shows a significantly higher error.

M is smaller than n, the nullspace of M has a dimension larger than 1, and thus the solution is
not unique.

Since it can not in general be assumed that the equation system actually has a solution, we
are forced to use a minimization algorithm to find a set of weights. In cases where more than one
solution is possible, the choice of the minimization algorithm determines which of the solutions is
selected.

The authors of [17] propose two methods for determining a set of positive weights as the least-
squares minimum of the equation system.

The first method is based on the singular value decomposition (SVD, see for example [12]). The
SVD algorithm decomposes any matrix M into three matrices M = Q - D - P, such that Q and
P are orthogonal, and D is a diagonal matrix with non-negative, decreasing entries. If the last p
entries of D are zero or negligible, then the dimension of the nullspace of M is p. In this case the
last p columns of P contain a basis for the nullspace.

If M is the matrix from Equation 6.5, any linear combination of these vectors can be chosen
as a set of weights. If p = 0, that is, if the matrix M is not singular, simply the last vector of P is
chosen. It can be proven that this is a least-squares solution of the equation system [12].

Another problem is that, even if M is singular, the obtained weights might be negative or zero.

A set of positive weights might be obtained by choosing an appropriate linear combination of the
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basis vectors. If such a linear combination does not exist in the nullspace, it has been suggested
that additional vectors from P be added until a positive solution is possible.

However, it is not clear, how the coefficients of a linear combination yielding positive weights can
be found. The authors of [17] therefore suggest a second algorithm, based on quadratic programming,
to find a set of positive weights. Quadratic programming is a method for solving minimization
problems with linear constraints, but a quadratic objective function. One way of solving quadratic
programming problems is to use an extension to the simplex algorithm for linear programming,
as described in Appendix B. The details about quadratic programming can for example be found
in [2] and [16].

Using quadratic programming, a set of positive weights can be obtained by minimizing ||M-W |2
subject to w; > w, where w is some positive value. A typical choice would be w = 1, in which case
the smallest weight is 1. Recall that a constant factor in the weights (and thus the value of w) does
not have an effect on the shape of the curve.

Unfortunately, the use of the general quadratic programming algorithm on this problem is rather

inefficient. Stated as a quadratic programming problem, our minimization problem takes the form

Minimize

w! M Muw

subject to

The inefficiencies arise from forming M7 M and the fact that the constraints have a very special
form. On the other hand, it is not clear why a least-squares solution for the weights should be
preferable to the solution obtained using some other norm.

Obvious alternatives for the least-squares norm include the L; and L, norms already described

in Chapter 5. Using these norms, the weights can be obtained as the solution of a linear programming
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problem, which can in general be solved more efficiently than a quadratic programming problem of
the same size.

Since the weights are required to be positive, additional constraints have to be added to the
linear programming problems presented in Chapter 5. The minimization problem for obtaining L

weights can be stated as

Minimize

w2 v =

subject to

B -1d, Id,
Id, -Id,

w2 v S
o

The additional slack variables s; are used to ensure that the smallest weight has a value of 1
and is therefore positive. It should again be pointed out that the matrix of conditions, although
larger than the matrix from Section 5.3, still has a special and very simple structure, which allows
for optimized solution methods.

A comparable extension to the Lo, problem presented in 5.4 can be stated in a similar fashion.

6.3 Analysis

It is clear that the evaluation of the quality of rational approximation methods is strongly depen-

dent on the quality of the determined weights. The approximation of the control points using the
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observation equations 6.1 after the weights have been found, has properties similar to the integral
approximation described in Chapter 5.

Since the weights are computed as the solutions of the homogeneous equation system M-W = 0,
where M is the matrix from Equation 6.5, the rank of M plays an important role in the analysis
of rational approximation. The following lemma provides an upper bound for this rank. It uses the
dimension e of the space, and assumes that m > n, and that the matrix B is of full rank n + 1.
Since these two assumptions were already necessary in the case of integral approximation, it follows

that they also have to hold for the rational case. This will be assumed throughout this section.

Lemma 1 (Rank of M)
An upper bound for the rank of M is given as

rank(M) < min(n + 1,e(m — n))

Proof: In Equation 6.2 the observation equation for a 3-dimensional NURBS curve with n + 1

control points, evaluated at m + 1 data points was given as

Cy
B 0o 0 -D,B . Omit
o Bo -DB|-| "|=]|0.1
C;
0 0 B —-D.,B Omit
~ ~ S W
A

This equation can be generalized to spaces of different dimensions e. The dimension of these
generalized matrices A is e(m + 1) x (e + 1)(n + 1) since B is of dimension (m + 1) x (n + 1). The
rank of A is therefore limited by

rank(A) <e(m +1)
for under-determined systems, and
rank(A) < (e+1)(n+1)

for over-determined systems. This rank does not change under the matrix transformations that

lead from Equation 6.2 over Equation 6.3 (multiplication by A”) to Equation 6.4 (elimination of
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row entries). The matrix in Equation 6.4 is given as

BB 0 o0 |-B"D,B
o BB o0 |-B"D,B
0 B'B|-B"D.B

0 0 0 M

with the obvious modifications for spaces with dimension e # 3. Since it was assumed that B is of
full rank n+1 < m+ 1, the (n+1) x (n+ 1) matrix BT B is also of full rank. Thus the upper part
of the above matrix has full rank e(n + 1) as well. For under-determined systems this means that

the rank of M is bounded by

rank(M) <e(m+1) —e(n +1) = e(m —n),
while for over-determined systems

rank(M) < (e+1)(n+1)—e(n+1)=n+1

holds. Since the matrix A is under-determined exactly in those cases where e(m —n) < n+1, these

two results can be summarized as
rank(M) < min(n + 1, e(m —n))
O

When comparing rational and integral approximation, it is an interesting question how many
control points are required in order to guarantee the interpolation of all data points. From Chapter 3,
it is known that in the integral case interpolation is achieved with n + 1 = m + 1 control points.

For the rational case, Lemma 1 helps proving the following theorem:

Theorem 6.3.1 (Interpolation of data points)

The rational approximation process with at least

em
n >
“e+1

control points yields a curve that interpolates all data points.

Proof: Interpolation is achieved if and only if all the observation equations from Equation 6.1 are
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fulfilled. This is equivalent to matrix A of Equation 6.2 being of less than full row rank, which in
turn holds if and only if matrix M of Equation 6.4 is not of full rank n + 1. From

m > ¢f )
Sn>e(m—n
e+1

and Lemma 1 it follows that rank(M) <n <n+1 for n > (em)/(e + 1). O

Obviously, the higher the value of n, the lower the rank of M will be. Consequently the dimension
of the nullspace increases and the resulting weights are no longer unique. In these cases, it depends
on the norm, which set of weights is generated by the minimization process.

The optimal case would be a rank of n, one lower than the full rank. In this case the nullspace has
dimension 1, and the weights are determined uniquely up to a constant factor. This is of particular
importance when a NURBS curve is to be reconstructed from discrete sample points.

It is easy to show that, if the data points are sampled from a NURBS curve, the original weights
are always in the nullspace of M, and are therefore always one possible solution, as long as the
original parameterization of the original NURBS curve is used. The matrix M is a sum of terms of
the form

B".D2.B- (B"-D,-B)-(B"-B)"'-(B".D,-B)

Since the parameterization is known, the matrix B in the approximation process is identical to the
matrix B in the observation equations. Thus the relationship D,-B-W = B-C,, from the observation

equations holds. Multiplying the above matrix terms with W, and using this relationship yields
B".D,.B-C,—-(B".D,-B)-(B"-B)"'.B".B.C, = B".D,-B.C,—(B"-D,-B)-C, = 0

Thus M - W is a sum of zero vectors if W is the original vector of weights, or a multiple thereof.
Reconstruction of NURBS curves with exact parameterization is therefore guaranteed if the

rank of M is n. A necessary, however not sufficient condition for this is given by
n
m>n+—<n>e(m—n)>rank(M)
e

In other words, if less than n 4+ n/e sample points are provided, the rank of M is always less than
n, and a unique solution can not exist.
Since no non-trivial lower bound for the rank of M is known at this time, it is unfortunately

not possible to state a sufficient condition that results in 1-dimensional nullspace of M.
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It is questionable, whether such a lower bound exists, since the exact rank of M depends
on the components of the data points provided. For example consider a 2-dimensional curve in

3-dimensional space, say the z = 1 plane. The matrix A from Equation 6.2 then reduces to
B o 0 -D,B
A=]10 B 0 -D,B
0 0 B -B

Clearly the last row of block matrices has only rank n + 1 instead of m + 1. Therefore the rank of
A is not full, and the resulting rank of M is less than the value determined in Lemma 1. While this

is an extreme example, it is clear that other data points can reduce the rank of the matrix as well.

6.4 Fitting With Tensor-Product NURBS

The algorithm for rational approximation presented above can easily be extended to tensor-product

surfaces. Using the definitions

B = (bi,j) where bjnu+z',lnu+k = B%‘(uk)B;?(vl),

T
T T i
Cy = [ €, €10 T M )
1T
W= [ wo,0 W10 Wny yny
and _ -
T
do,o
T
) d1,0
D:v = 9
T
L NusNy |

the observation equations from Section 6.1 also hold for tensor-product NURBS. This leads to the

known homogeneous equation system

M-W=0

for the weights. The matrix M has dimension (n, + 1)(n, + 1) x (n, + 1)(n, + 1). Its generation
involves a matrix product of the matrix B of dimension (m,, +1)(my + 1) X (n, +1)(n, +1) with its

transpose. Fortunately, B is sparse and is only multiplied by its transpose and by diagonal matrices,
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so that an efficient formula for each element of M can be found, and general matrix products need
not to be used.

After the weights have been obtained we can once again take advantage of the special structure
of tensor-product surfaces. We define B, and B, as in Chapter 3 and Chapter 5. Furthermore we
define the (n, + 1) x (n, + 1) matrix W = (w; ;) and the (m, + 1) x (m, + 1) matrix D = (d; ;).
Finally, we define Dy as the component-wise product of the two (m,,+1) x (m, +1) matrices D and

(B, - W-BT). This matrix Dy is the right hand side of the observation equation for tensor-product

surfaces
Ny No Ny No
SO wijei By (ug) By (v) = dyg - > > wi i By (ug) B (v) 5k =0...my,l=0...m,
i=0 j=0 i=0 j=0

With this definition the homogeneous form C' = (w; jc; ;) of the control points can be computed
from

B, -C-B! =Dy.



Chapter 7

Implementation

Based on the concepts described in the previous chapters, a framework for integral and rational
B-spline interpolation and approximation has been implemented in MAPLE. This package allows
for the generation of B-spline based approximations of functions or discrete data points for the
purpose of generating graphical plots of functions or sampled data.

The major design goal of this framework was a modular structure that allows for the easy ex-
change of the basic algorithms, in order to support experiments necessary for the research presented
in this thesis. Thus modularity usually took precedence over efficiency where such a decision had
to be made.

The implementation itself is structured into three parts. The first part is the addition of ge-
ometric primitives for B-splines and NURBS to the existing plot data structure of MAPLE. This
allows to send spline data directly to the plot driver. That is, instead of approximate splines as
a sequence of lines or polygons, these extensions allow to send the control points and the knot
sequence to the plot driver, and thus provides the driver with an exact representation of the spline.
The spline extensions were implemented for the existing OpenGL driver for MAPLE [14].

The second part consists of the actual framework for the implementation of the interpolation
and approximation methods described in Chapters 3 through 6. This has been implemented as a
MAPLE library package.

Finally, the third part involves replacing the functions in the MAPLE plots and plottools
packages by spline based versions. This is the actual user-level programming interface for generating

plots in MAPLE. This part is mostly to be seen as a proof of concept, since only the most important
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functions like plot and plot3d have been re-implemented based on splines.
In the following we briefly outline the basic design concepts behind the three parts of the

implementation.

7.1 NURBS Extensions for the Plot Data Structure of MAPLE

User-level plot functions like plot and plot3d store the geometry they generate in a MAPLE data
structure, called the plot data structure. Besides the actual geometry, this data structure contains all
the rendering attributes, such as drawing mode, color, line style and so on. The plot data structure
is accessible from the MAPLE programming language like every other data structure in MAPLE.

An example of a plot data structure containing two red points is shown below.

PLOT( POINTS( [0,0], [1,1] ), COLOR( RGB, 1, 0, 0 ) );

Note the keyword PLOT, which denotes a data structure for 2-dimensional plots. A 3-dimensional
plot would use the keyword PLOT3D.

For the actual rendering, the plot data structure is converted to a more compact binary repre-
sentation as a C structure, and then transmitted to the plot driver. The driver then renders all the
geometric primitives in the plot structure with the appropriate rendering parameters.

The existing MAPLE plot structure provides points, connected lines, polygons, rectangular poly-
gon grids, and text as geometric primitives. In order to support NURBS curves and surfaces, two
new primitives were added, NURBS and TP_NURBS. The NURBS primitive describes a potentially ra-
tional spline curve in two or three dimensions, while TP_NURBS describes a tensor-product surface
in three dimensions only.

The arguments of the NURBS primitive are the degree of the curve, followed by the list of control

points and an optional knot sequence. If no knot sequence is present, the sequence
T:=(0,...,0,1,....,k — Lk,..., k)
~—— ——
d+1 d+1

is assumed, where k := n — d is the number of spline segments. This convention makes it easy to

specify Bezier-style NURBS curves, as the following example of a quarter circle demonstrates.
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PLOT( NURBS( 2, [[1,0], [1,1,sqrt(.5)], [0,111 ) );

The example also shows that the specification of weights is optional. A default weight of 1 is
assumed if none is provided.

The general structure of the TP_NURBS primitive is similar to the case of curves. However, the
control points for tensor-product surfaces form a grid, and are specified as a list of lists. Different
degrees and knot sequences for the  and v direction of the surface are also supported. They can
be specified as a list of degrees or knot sequences, respectively. An example for a tensor-product

surface is shown below.

PLOT3D( TP_NURBS( [2,3],
( Cfo,o0,01, r1,1,01, [2,1,01, [3,0,011,
cfo,1,11, [1,2,11, [2,2,1]1, [3,1,1]1],
([0,0,2], [1,1,2], [2,1,2], [3,0,2]11 1 ) );

These two new drawing primitives have also been added to the C variant of the plot data
structure, and are currently supported by the OpenGL plot driver [14]. The NURBS support
in the OpenGL driver has been implemented using the NURBS facilities in OpenGL. The other
MAPLE plot drivers do not support splines at this point, and simply ignore the additional draw-
ing primitives. Spline support for these drivers could easily be implemented using subdivision or

forward-differencing algorithms [1]. This is, however, beyond the scope of this thesis.

7.2 A Framework for Integral and Rational B-Spline Fitting

The actual spline fitting is implemented as a MAPLE package, and can be loaded like normal
library packages. The interpolation code generates plot data structures, which normally contain the
geometry directly represented in terms of the NURBS primitives defined in the previous section.
Since these primitives are not yet supported by most drivers, it is alternatively possible to generate a

plot data structure that contains only lines and polygon grids, and which can therefore be rendered
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Figure 7.1: Dependency graph of the modules in the framework.

by all existing drivers. This feature was used to generate most of the figures in this thesis with the
help of the PostScript driver.

The framework of modules making up the package is divided into three layers (see Figure 7.1).
The lowest layer contains three modules of support functions: a B-spline package and one module for
linear programming and quadratic programming, respectively. The module for linear programming
contains an extended version of the standard MAPLE linear programming facilities. The B-spline
module contains an implementation of the basis functions, and of integral as well as rational spline
curves and surfaces, based on MAPLEs piecewise functions.

The intermediate layer is itself structured into a layer of support modules and the actual fitting
modules. The former consists of a module of end conditions for interpolation, a module of minimiz-
ers for the approximation process, and another set of minimizers for determining the weights for
NURBS fitting. It also provides a set of metrics for the parameterization algorithms. Each of these

modules contains implementations for all algorithms described in the corresponding chapters.
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The modules for the actual spline fitting are one module for B-spline interpolation, one for
B-spline approximation and one for NURBS fitting. Each of these modules handles both curves
and tensor-product surfaces. There also exists a module that contains all the parameterization
algorithms described in Chapter 4.

The selection of the different algorithms is done with a scheme of callback functions. For example
there is one callback that specifies which metric is to be used for generating the parameterization.
This way, it is easy to exchange the Euclidean metric with the affine invariant one by simply
changing the callback. A similar mechanism applies to the selection of a norm for minimization, a
norm for determining the weights, and an end condition.

It is important to note that the spline fitting functions on this level do not directly use the
parameterization methods themselves. Instead, they expect a vector of parameter values as one
of their arguments. It is the user-level functions forming the third layer, which actually choose a
parameterization, and pass it on to the second layer functions. This allows for the use of the exact

parameterization where it is available.

7.3 Spline Replacements of MAPLE Library Functions

The user-level module contains a relatively small set of functions that are modeled after the most
important existing MAPLE library functions. Most importantly, these include functions for gener-
ating both curves and surfaces, for both discrete data and continuous functions. The remaining
library functions of the plots and plottools packages do either not generate geometry, or would
not require techniques that are significantly different from the ones already used.

The functions that have been implemented support the full repertoire of options for 2-
dimensional and 3-dimensional plots, as defined in [4]. In addition, a few new parameters have
been defined, which influence the selection of algorithms and several other parameters that have
been discussed in previous chapters. A complete list of the new options, as well as a description of
the implemented functions can be found in Appendix C. The following is an example for generating

a 2-dimensional plot showing a B-spline approximation of a sine curve on the interval [0, 7].
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SplinePlot( sin(x), x=0..Pi, color=red, degree=2, segments=3, linestyle=2 );

The spline curve generated by this line will have 3 segments of degree 2 and will be rendered in
red, using a dotted line style. Note, how the newly introduced options degree and segments are

used together with the standard MAPLE options color and linestyle.



Chapter 8

Results

In Chapters 3 through 6 we have presented a set of algorithms for different parts of spline fitting. In
this chapter we conclude by summarizing the effects of the different algorithms and showing results
that have been obtained during experiments with the framework described in Chapter 7. Since
at this stage every algorithm has only been considered in isolation, we also discuss how different

parameters of the fitting process correlate.

8.1 Parameterization

We start by having a more detailed look at the different parameterization techniques. In Chapter 4
the different parameterization methods have been presented in the context of the interpolation
problem. However, no statement has been made about the quality of these methods for spline
approximation.

Fortunately, it turns out that the parameterization methods are relatively independent of the
fitting algorithm. That is, a parameterization that works well for interpolating a specific set of
data points usually also performs well for integral and rational approximation of the same data
set. In other words, the angular and the area based parameterization techniques are usually prefer-
able over other techniques like chord-length or centripetal parameterization. A comparison of the
parameterization techniques applied to an approximation problem is shown in Figure 8.1.

An interesting data set for comparing different parameterization methods is shown in Fig-

ures 8.2, 8.3 and 8.4. It consists of 8 points, the first and the last 4 of which are collinear. The
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Figure 8.1: A comparison of the different parameterization schemes for approximation. From bottom

to top: chord-length, centripetal, angular and area based parameterization.

two lines form a right angle, and the chord between the fourth and the fifth point is very short
compared to the other chords.

The reason why this data set is so interesting, is that it is very ill-conditioned. On the one hand,
the fourth and the fifth point are very close together in comparison to the other data points, and
therefore the corresponding parameter values should be close together as well. On the other hand, a
sharp turn occurs between these two points, so that the curve should slow down. This corresponds
to parameter values that are further apart.

In Figure 8.2 the Fuclidean metric has been used for all parameterizations. The centripetal
method and the angular algorithm produce equally good parameterizations for this data set. The
chord-length method does not take the sharp turn into account, and therefore places the fourth
and the fifth parameter value too close together. This leads to the introduction of artifacts on the
interpolant.

The uniform parameterization, on the other hand, places the two parameter values too far
away from each other, and thereby introduces a loop in the curve, which can better be seen in the
closeup in Figure 8.3. Also visible in the closeup is a sharp corner that is generated by the angular
parameterization method.

Figure 8.4 depicts the results of using the affine invariant metric for all parameterization meth-
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Figure 8.2: A comparison of the parameterization schemes using the Euclidean metric. The param-
eterization schemes (from bottom to top) are uniform, chord-length, centripetal, angular and area

based parameterization.

)

Figure 8.3: A closeup of Figure 8.2.
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Figure 8.4: The same data set as used in Figure 8.2, now with the affine invariant metric.

ods. The result of the centripetal parameterization is further improved by this change, while the
remaining parameterizations keep roughly the same characteristics.

An example where the affine invariant metric significantly improves the result is given in Fig-
ure 8.5. It contains data 9 points d; = [z;, yi]T with z; = 7 and y; = 0 except for y4, which is 10. The
interpolation of this data set using the angular parameterization and both the Euclidean and the
affine invariant metric produces a thin peak. If the data is sheared and scaled so that ds = [8, G]T,
the Euclidean metric causes a loop in the curve. The interpolation using the affine invariant metric
on the same data set yields the sheared version of the original interpolant (for better visibility

Figure 8.5 actually shows the symmetric problem dy4 = [0,6]7 for the affine invariant metric).

8.2 End Conditions and Degrees of Interpolants

End conditions have a very strong influence on the shape of an interpolant, and the wrong choice
of conditions for a particular data set can cause unacceptable results. For even degrees, none of the
end conditions presented in Chapter 3 seems to be able to produce good results. The reason is that

for even degrees d, the number d — 1 of required end conditions is odd. This means that on one
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Figure 8.5: The effect of applying the affine invariant metric to sheared data. The central peak is
generated using the original data set. If the Euclidean metric is used, a loop is generated for the

sheared data set, while with the affine invariant metric the result is a shearing of the original curve.

side of the curve more end conditions have to be specified than on the other side. The result are
unacceptable artifacts that are introduced on the side of the curve where less conditions have been
specified. This is particularly disturbing if the original data set is symmetric. Such a situation is
depicted in Figure 8.6.

The figure shows interpolants of different degrees for the data set from the previous section.
The angular parameterization scheme has been used for all interpolations. For even degrees, one
more end condition has been specified on the left side than on the right side. While the interpolants
of odd degree are smooth and symmetric, those of even degree show large artifacts on the right
side. For this particular figure, not-a-knot end conditions have been used, but similar results are
achieved with the other end conditions.

In cases where the user has complete control over the interpolation process, the situation for
even degrees can be improved, by applying the last “end condition” in the center of the curve. All
methods described in Section 3.3 can be applied at an arbitrary parameter value. However, it is

not clear how a good parameter value for the last end condition could be found automatically. The
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Figure 8.6: For even degrees the number of end conditions is odd. This leads to unacceptable
artifacts on the side of the curve, on which less end conditions have been specified. (From bottom

to top: degree 2 to 5.)

center of the parameter interval is a good choice if the data set is symmetric, but for asymmetric

data it might be as bad of a choice as one of the ends of the curve.

8.3 Interpolation Versus Approximation

Because of these restrictions, it seems questionable whether B-spline interpolation can be used for
representing arbitrary functions in mathematical plots. B-spline interpolation certainly has its place
in applications where suitable end conditions can be specified by the user, or arise naturally from
the problem domain.

However, the plot systems in mathematical applications like MAPLE require a robust algo-
rithm which, without human intervention, produces good representations for a very large variety of
functions. The problem of selecting good end conditions and the tendency of interpolation meth-
ods to introduce high frequencies between the data points, seriously restrict the use of B-spline

interpolation for this task.
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B-spline approximation, on the other hand, does not suffer from these deficiencies and is well-
suited for representing smooth curves. However, care has to be taken in the selection of the number
of sample points and the number of spline segments that are used for the approximation. If these
numbers are too low, high-frequency detail of the original curve is lost.

Mathematical functions with discontinuities could be handled by finding the discontinuities first,
and then generating a spline representation for each continuous piece of the curve. This removes too
high frequencies which can not be handled by the approximation algorithm. The code for locating
discontinuities is already available in the current MAPLE library [4], and can optionally be used to
improve line-based approximations in the current plot system.

Using this strategy, B-spline approximation is a much more robust algorithm than interpolation.
Especially in cases where the original parameterization of the data set is known, it constantly
produces fits of high quality. Since it is also more efficient than B-spline interpolation, it is preferable

for our purposes.

8.4 Integral Versus Rational Fitting

The already good results of integral B-spline approximation can further be improved using rational
splines. In the experiments we have performed the rational approximation always produced at least
as good results as the integral approximation. In rare cases all the generated weights were equal,
so that the resulting curve was identical to the integral fit. This was mostly the case for data sets
that had been sampled from an integral B-spline curve.

Of course the use of rational splines is particularly interesting for functions that have an exact
representation as a NURBS curve but not as a B-spline curve, for example arbitrary conic sections.
The quality of the rational fit depends on the parameterization that is used. Even rational fitting
with exact parameterization can only generate the exact representation of the conic if the conic is
parameterized the right way.

For example, a quarter circle in the first quadrant could either be given as the points
[cos(a),sin(a)]?, where @ € [0...7/2], or in the NURBS representation with control points [1, 0],
[1,1]7 and [0,1]", as well as weights (1,1/2/2,1), and a knot sequence of (0,0,0,1,1,1). The ratio-
nal fitting process with exact parameterization only retrieves the exact quarter circle if the data

points were sampled from the second representation.
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Figure 8.7: An approximation of a quarter circle with integral B-splines (top) and NURBS (bottom).

The exact quarter circle is shown in the center.

If the first representation is used, the rational fitting algorithm determines the weight of the
second control point as approximately 0.8 (as opposed to v/2 /2 = 0.707). This result is independent
from the norm used for obtaining the weights (Li, Ly and Ly,). The resulting curve is shown in
Figure 8.7 together with the integral approximation.

We found that, in practice, all conic sections that are parameterized as B-spline curves can be
reconstructed using the exact parameterization and at least m +1 =4 > n + [n/e| sample points.
Note that this only holds for conics, that is, for quadratic NURBS curves with one segment.

As mentioned in Chapter 6, a lower bound for the rank of the matrix used to determine the
weights is not known, and thus a sufficient condition for the reproduction of arbitrary NURBS can
not be formulated.

Despite this restriction, rational fitting often significantly improves the shape of the curve. It
is worth mentioning that throughout all our experiments not a single case was found, in which
rational approximation actually produced worse results than integral approximation. Therefore,

the decision between integral and rational approximation has to be made based on whether the
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improvement in quality is worth the performance penalty for determining the weights.

8.5 Performance

Due to the prototype-character of the implementation and some inefficiencies in parts of the MAPLE
library that were heavily used through this project, it is hard to make a statement about the relative
performance of the different algorithms. In particular, the implementation of B-splines relies on the
facility for piecewise functions in MAPLE. Unfortunately, piecewise functions are very slow in the
version of MAPLE that was used for the implementation. For example, the evaluation of a cubic
B-spline curve with 10 segments at 50 points could take up to 20 seconds on a DEC Alpha system.

The reason for this slowness is that piecewise functions in the available version of MAPLE had
been implemented on a high level in the maple library. In the mean time, piecewise functions have
been re-implemented on a lower level, and make now use of different optimizations in the MAPLE
kernel. These changes significantly improved the performance of piecewise functions. Unfortunately,
they are incompatible to the older MAPLE kernel that was available for this thesis, and could
therefore not be used.

Without these changes in the library, integral B-spline fitting of 50 data points with 10 B-spline
segments of degree 3 takes approximately 8 seconds with the least-squares norm, and around 15
seconds for the Ly and Ly, norms. These times could be significantly improved by using specifically
tailored algorithms for solving the linear equation systems and the linear programming problems.
The combinations of these changes with the faster implementation of piecewise functions should
allow for acceptable performance in generating mathematical plots.

The additional overhead for doing a rational approximation turns out to be roughly a factor
of two for the L; and Ly norm, and a factor of three for the Ly norm (using singular value-
decomposition for determining the weights). A table of the measured times is shown below (times

are rounded to seconds).
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Norm | Points | Segments | Time (integral) | Time (rational)

Ly 50 10 15 27
Lo 50 10 8 23
L 50 10 15 28

Keep in mind that the implementations of the minimization algorithms, that is, for the simplex
algorithm and the singular value decomposition, have not been optimized at all. Significant perfor-
mance improvements would be possible if these algorithms were implemented in such a way, that

all computations are done in a purely numeric fashion.

8.6 Conclusions and Future Work

In this thesis we have discussed several ways of representing mathematical functions as integral or
rational B-splines. A system has been implemented on top of the computer algebra system MAPLE,
which uses these representations to generate resolution-independent mathematical plots, and thus
provides a wide range of tradeoffs between image quality and performance in the actual rendering
step.

In order to generate these representations, several algorithms including B-spline interpolation
and approximation, as well as rational spline fitting have been evaluated.

B-spline interpolation (Chapter 3) is a widely used technique for fitting spline curves through
a set of discrete data points. The specific way in which the B-spline knot sequence is selected
for this task introduces additional degrees of freedom that can be specified using end conditions.
While these end conditions can be useful in applications where they can be specified as additional
constraints by the user, the sensibility of the interpolation algorithm to these constraints makes
B-spline interpolation inappropriate for automated processes.

An alternative to interpolation is B-spline approximation (Chapter 5), where more data points
are specified than control points are available. Since this leads to an over-determined equation
system, which can not in general be solved, an approximation to the data has to be found by
minimizing the error according to a norm. While almost all the available B-spline literature uses

the least-squares (Lo) norm for this task, it has been shown, that the L; and Ly, norm can also
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be useful, especially for fitting uncertain data. The minimization problem using either of these
two norms can be formulated as a linear programming problem, and can thus be solved using the
well-known simplex algorithm.

Finally, the possibility of using rational B-splines (NURBS) for the approximation process has
been explored (Chapter 6). In this algorithm the weight of every control point is obtained from a
constrained minimization process that takes place before the actual curve fitting. Possible norms for
this constrained minimization are again L;, Ly and L. L; and L, minimizations can be achieved
using linear programming, while the Ly norm requires quadratic programming.

The analysis of the rational fitting algorithm yields sufficient conditions for obtaining interpo-
lation of the data points, and necessary conditions for the reconstruction of NURBS curves from
discrete sample points. Further research is necessary to find sufficient conditions for the reconstruc-
tion of NURBS and conic sections. Results in this area could possibly be achieved by considering
the special structure of the B-spline coefficient matrix B.

For interpolation and approximation problems in which the original parameterization is not
known, a set of algorithms for determining the parameter value of each data point has been
presented (Chapter 4). Unfortunately, the parameterization algorithms that work best (i.e. the
angular and the centripetal parameterization) are mostly heuristic methods, and there is only a
limited understanding on why they work well. An attempt has been made to modify the angular
parameterization so that its contributing factors are geometrically meaningful and thus easier to
understand.

Future research in the area of parameterization schemes could involve the development of more
theoretically based parameterization methods. Another interesting research topic would be to try
to develop a parameterization scheme that reproduces the exact parameterization for data that is
sampled from integral or even rational B-splines. That is, given a set of data points, and assuming
that these points have been sampled from a B-spline, the method would attempt to generate the
parameter value that each point has on the spline.

In summary, we have presented a set of algorithms for representing mathematical functions
as splines. We have also created a working prototype implementation of the algorithms described
throughout the thesis. For the inclusion of these concepts in a commercial product, however, a

substantial amount of optimizations is still necessary.



Appendix A

Derivatives of B-Splines

The derivatives of B-spline curves and surfaces are of importance for determining end conditions for
curve and surface interpolation. Fortunately it turns out that these derivatives are linear functions
in the control points, and can be interpreted as B-spline curves or surfaces of a lower degree. As a
consequence, the computation of these derivatives is relatively simple and efficient. We sum up the
most important facts about B-spline derivatives in the following.

From the construction of B-splines, it is clear that the derivative of the basis function plays an
important role in determining the derivative of spline curves and surfaces. The following lemma,
describes the formula for the derivative of a basis function. The proof of this lemma is relatively

straightforward and can be found in most of the B-spline literature, for example in [1].

Lemma 2 (Derivative of the B-spline basis functions)

The derivative of the B-spline basis functions N%(u, T) is given by

d d

d
—NHu, T) = ———— N (u, T) - —————— N (u, T
@ T) tiva—ti " (. T) tivapr — tis1 (w.T)
Proof by induction over the B-spline recursion formula. O

The importance of this lemma lies in the fact that the derivative of a basis function of degree
d is the linear combination of two basis functions of degree d — 1. Recursive application of this
formula yields higher order derivatives.

By applying this formula to the definition of B-spline curves, we can calculate the derivative of

those curves.
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Theorem A.0.1 (Derivative of a B-spline curve)

The derivative of a B-spline curve of degree d with knot vector T' = (%o, ..., tp1q+1) 18 given by
n+1 e
—F )=d (&= ein1) yaa u,T
Z z+d - t ! ( )

where the extra control points c_1 = ¢y = 0 have been introduced to simplify the result.

Proof:
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Setting c_.1 = c¢p11 =0 ylelds the result stated above. O

In a similar fashion we can derive the partial derivative of a tensor-product B-spline surface.

Corollary 2 (Derivative of a tensor-product B-spline surface)
The partial derivatives of a tensor-product B-spline surface of degree d,, x d, with knot vectors
Ty =(t6,--sty g, 1) and T, = (t§,...,t) ., ) are given as follows

0 W
G F(u0) =dy Y0 Y I’JNd"_l(uT)N (v, T,)

du i=0 j=0 H‘du
0 e Metl g
G (wv) =dy Y0 7 St 1Ndu—l(u T, )N (v,T,)

i=0 j=0 ]+dv
Since we can separate the sums for the v and the v direction, the proof is analogous to the curve

case. O

Unfortunately, the situation is significantly harder in the case of rational splines. Since a rational
spline is the projection of a integral spline from a higher dimension, rational splines can have
discontinuities. Also, it is not possible to represent the derivative as a linear function in the control
points. While a relatively simple closed form exists for the first derivative, a recursion formula has

to be used for higher order derivatives [10].
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Linear Programming

A linear programming problem [16] consists of an objective function that is linear in some variables,
and a set of equality and inequality constraints that are linear in the same variables. The goal of
linear programming is to determine values for the variables that minimize the objective function
while at the same time fulfilling the conditions. This problem may be solved using the simplex
algorithm or a modification thereof.

For the purposes of this thesis, only a specific form of linear programming problems will be
considered, which can be directly used with MAPLE. Using X := [z,..., 2]’ as the vector of

variables, this particular form, called standard form [16], can be written as

Minimize

QY- X —q

subject to

A-X=B

In addition some of the variables z; may be restricted to non-negative values: x; > 0.
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Although this specific form is a restricted version of the more general linear programming
problem, it is as powerful as the full version, since problems with arbitrary linear conditions can
be rewritten into the above form by introducing additional variables, called slack variables.

An example for this kind of transformations is the replacement of inequalities in the side con-
ditions. Every inequality a - £ > b can be rewritten as a - £ — s = b with the additional condition

s > 0. Applying this trick to a linear programming problem of the form

Minimize

QT X —q

subject to

yields a new linear programming problem in standard form:

Minimize

subject to




Appendix C

The User-Level Interface of the Spline
Fitting Library

In the following we briefly describe the user-level functions that have been implemented. The

additional options that have been introduced for these functions are then listed in Section C.2.

C.1 User-Level Functions

The user-level functions, which are described in the following, are mostly based on existing plots

and plottools packages that are part of the MAPLE library.

e SplinePlot
This is a replacement for the function plot and the continuous version of spacecurve from

the MAPLE library. The function to be plotted can be specified in one of four ways:

SplinePlot( f(x), x=a..b ); # 2-dimensional only
SplinePlot( f, a..b ); # 2-dimensional only
SplinePlot( [x(t), y(t)], t=a..b ); # or the 3-dimensional equivalent

SplinePlot( [x, yl, a..b ); # or the 3-dimensional equivalent
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e SplinePlot3d
This function replaces plot3d from the MAPLE library. It fits a tensor-product spline surface
through a function that is defined over a rectangular parameter domain. The four variants

are

SplinePlot3d( f(x,y), x=a..b, y=c..d );

SplinePlot3d( f, a..b, c..d );

SplinePlot3d( [x(s,t), y(s,t), z(s,t)], s=a..b, t=c..d );
SplinePlot3d( [x, y, z], a..b, c..d );

e SplineCurve
This function fits a curve through a set of discrete data points that are supplied in a list. Tt
is therefore comparable to the discrete version of the library function spacecurve, although

it also handles 2-dimensional curves.

e SplineSurface

This is the equivalent to SplineCurve for surfaces. Thus it is a replacement for surfdata.

e SplineMatrix
This function takes a matrix, and interprets the values as heights over the z = 0 plane. It is

comparable to matrixplot.

e SplinePlotOptions
This function allows global changes to the default of the additional options described in the
next section. In addition, it allows changes to the callbacks for the underlying algorithms.

This is done using the additional parameter options

— parameterization: the function that generates the parameterization. Currently avail-
able are uniformParam, chordLengthParam, centripetalParam, angularParam and

areaParam.

— metric: the metric used for some of the parameterizations. Possible values are

euclideanMetric and affineInvariantMetric.



C.2. Additional Parameter Options 86

— endcondition: the algorithm for end conditions used in interpolations. Currently
available are naturalEndcond, quadraticEndcond, notAKnotEndcond, besselEndcond,
closedEndcond and multiplePointEndcond, as well as clampedEndcond, which has to

be supplied with actual tangent vectors for the left and the right side of the curve.

— weightMinimizer: the minimizer used for the weights (weightsL1, weightsL2 and

weightsLinf).

— fitMinimizer: the minimizer used for the control points (fitL1, fitL2 and fitLinf).

C.2 Additional Parameter Options

The following list describes the additional options that are available for the spline fitting functions.

The original options from plot and plot3d (see [4]) are still available.

e numpoints (integer)
In analogy to plot, specifies the number of sample points used to approximate a curve. The

default is 20.

e grid (integer list)
Specifies the number of sample points in © and v direction, similar to the use in plot3d. The

default is 10 x 10.

e degree (integer)

The degree of the B-spline or NURBS curve. The default is 3.

e segments (integer)

The number of B-spline segments. The default is —1, which stands for interpolation (n = m).

e rational (boolean)
Specifies whether integral or rational splines should be used. The default is false, for integral

splines.

e nurbsextension (boolean)
This option specifies whether the NURBS extensions to the plot data structure should be

used or not. The default is true.
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