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Abstract

Traditionally computer algebra systems use lines and polygons to represent mathematical func�

tions graphically� While these geometric primitives can easily be rendered on conventional raster

graphics hardware� a smooth representation using splines would provide a wider range of trade�

o�s between image quality and rendering performance� Since modern computer graphics hardware

directly supports rendering of spline objects� their use becomes more and more interesting�

In this thesis we examine the possibilities for replacing traditional representations of functions

and graphs by spline representations� We describe the use of B�splines for interpolation and approx�

imation� and discuss several approaches for generating parameterizations for these tasks� Finally

we present some novel results regarding the use of rational splines for curve and surface �tting�
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Chapter �

Introduction

Over the last few years the visualization of mathematical structures has evolved as an integral

part of computer algebra systems� This development has been made possible by the introduction

of inexpensive raster graphics hardware and graphical printing devices�

Current trends in printer technology allow for even higher resolutions and thus higher image

quality� At the same time raster graphics hardware is becoming more sophisticated and instead

of just storing pixel values� it now contains specialized hardware to render 
�dimensional and 
�

dimensional geometric primitives itself� In many cases this results in drastically improved rendering

performance and allows for more interactive applications�

Due to this development� the graphics subsystems of modern computer algebra systems need

to support both high�quality� high�resolution graphics and high�performance� interactive graphics�

Unfortunately� the traditional approach of representing graphs as piecewise lines and polygons is

not well suited for this task� since the granularity of this approximation has to be adopted to the

output device and the desired rendering quality and performance� Usually the user wants to perform

other operations between the approximation step and the rendering of the graph� Unfortunately�

these operations have to be repeated every time the quality parameters change�

Instead of using piecewise linear functions like lines and polygons� it would be better to represent

the geometry with smooth higher order functions� A single representation in terms of smooth basis

functions is then su�cient for rendering at a wide range of resolutions� The tradeo� between quality

and performance can in this case be chosen at a later point in time by selecting an adequate precision

�
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for rendering the basis functions�

In this thesis we will describe the use of B�splines and rational B�splines �NURBS� in the

computer algebra system MAPLE� We will describe the introduction of B�splines and NURBS as

geometric primitives to the MAPLE plot system and its data structures� and will focus on their use

for �tting discrete data points and representing arbitrary functions�

��� Splines and the MAPLE Plot System

One of the advantages of MAPLE over other computer algebra systems is the presence of a variety

of e�ciently implemented data structures� which results in a relatively high performance and low

memory usage�

MAPLE is also a very 	exible and expandable system due to its modular architecture� The core

mathematical functionality is contained in the MAPLE kernel� a comparatively small program that

is implemented in C� The kernel also contains the implementation of the data structures and an

e�cient interpreter for the MAPLE programming language �
��

This programming language has been used to implement theMAPLE library ���� which is actually

a set of di�erent packages that provide support for speci�c areas of mathematics� Packages for

statistics� p�adic numbers and linear algebra exist� to name just a few� Most important for the

computer graphics part of MAPLE are the plots and plottools packages� which provide functions

for creating and manipulating 
� and 
�dimensional plots� It is these functions that create the

piecewise linear representation of functions for rendering�

A process separate from the MAPLE kernel handles the user interface� This program� called

the Iris� provides a level of abstraction between the platform�independent kernel and the user� It

passes user input to the kernel and prints the results on the screen� If available� the Iris makes use

of raster graphics for displaying formulas� However� it does not directly create 
D or 
D plots�

To create a plot with MAPLE the user typically uses one of the functions that are part of

the library� most importantly plot and plot�d� These procedures store the approximation of the

geometry in a data structure called the plot data structure� For the actual rendering� this data

structure is handed over to the plot driver� which is a separate process in the MAPLE system� Each

driver is capable of rendering a plot in a speci�c image format� Depending on the driver� this could

either be for immediate display in a window system like X� or for storage in a speci�c �le format if
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the image is to be displayed or printed later�

There are several reasons for keeping the kernel and the plot driver separated� Most importantly

this approach allows adding new drivers for additional hardware or �le formats without recompiling

the kernel� The separation of kernel and driver also means that only those drivers that are actually

in use occupy space in the main memory�

On the other hand� this separation makes it necessary to represent the geometry in terms of

simple geometric primitives� Ideally� an exact representation of the function would be transmitted

to the plot driver� The driver would then sample this function based on the hardware and on some

quality requirements that the user provides� Unfortunately� an exact representation of arbitrary

functions would require a lot of the symbolic functionality of the MAPLE kernel within the plot

driver� This is not acceptable if we want to keep the kernel and the drivers separate�

The problem here is that the quality of the rendering is already determined in theMAPLE kernel�

which has no information about the plot driver� the purpose of the plot� or potentially available

hardware� It is� however� possible to approximate arbitrary functions with some smooth function

that is easy to evaluate and is generated by a simple set of basis functions� If this approximation

is good enough� the user can then customize the rendering quality by setting the sampling quality

for the approximated function from within the driver�

An important class of functions with the properties mentioned above are piecewise polynomials�

A well�known and frequently used basis for this class of functions are the so�called basis splines

�B�splines�� This idea can be extended to rational B�splines �NURBS� ��� �� �� ���� These functions

have mathematical properties that allow for e�cient rendering and comparatively easy handling of

the approximations�

One of the tasks that has to be done in order to implement spline support for MAPLE� is to add

spline objects as geometric primitives to the plot system� Some drivers will then be able to render

these objects using one of the existing direct rendering methods without further approximating the

geometry� Other drivers will still sample these objects and render them as lines and polygons� but

they will allow the user to adjust the number of sample�points to his needs� without having to quit

the driver and recreate the geometry�

However� these changes are only a small part of what is necessary for full NURBS support� A

more challenging problem is to re�implement the functions in the plots and plottools library
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packages so that they create a NURBS approximation of the geometry� In particular we require

methods for approximating and interpolating discrete data points that are obtained by sampling

smooth functions with integral and rational B�spline curves and surfaces�

��� Spline Interpolation and Approximation

The usual approach for interpolating a set of discrete points with B�splines involves two separate

steps� Since B�spline curves and surfaces are parametric and de�ned over a certain parameter in�

terval� the �rst step involves assigning an appropriate parameter value to every data point� This

value determines the parameter at which the �nal B�spline curve will evaluate to the data point�

The problem of �nding appropriate values for a given set of data points is known as the �parame�

terization problem�� and will be discussed in Chapter ��

In the second step the actual interpolation problem is solved by creating a set of B�spline

basis functions that is suitable for the data points and their parameter values� and then solving a

linear equation system� As we will see in Chapter 
� the usual way of computing the basis function

introduces additional degrees of freedom and results in an under�determined linear equation system�

In order to make reasonable choices for these degrees of freedom� we can choose between a set of

di�erent �end conditions�� which in	uence the shape of the curve or surface at the boundaries of

the parameter domain�

If the data points are sampled from a relatively smooth function� it might not be necessary to

compute a full interpolation solution� Instead� it is usually su�cient to generate an approximation

of the data points with signi�cantly less curve or surface segments than a full interpolation would

require� This reduces the computation time and o�ers the possibility of smoothing the curve in

cases where the data points are subject to sampling errors�

Like the interpolation algorithm� the approximation procedure also consists of two major parts�

The �rst part� the parameterization problem� is identical to the interpolation case� In the second

part� an approximation is obtained by �rst generating a set of basis functions� and then generating

a spline curve or surface by minimizing the error between the spline and the data points according

to some norm�

Traditionally the approximation problem for B�splines is solved using the least�squares �L��

norm� However� in order to obtain speci�c approximation properties� it is reasonable to use di�erent
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norms like L� and L�� In Chapter � we will describe how such minimizations can be implemented

using a linear programming approach�

The vast majority of the literature about spline interpolation and approximation only considers

integral B�splines as stated above� However� rational B�splines �NURBS� provide more degrees of

freedom to control the shape of curves and surfaces� and could be used to further reduce the number

of curve or surface segments or to increase the quality of a �t� In particular� NURBS can be used

to create exact representations of conic sections�

The problem with using rational splines for approximation and interpolation tasks is to �nd a

set of appropriate weights for the control points� A recent paper ���� describes how such weights

can be obtained as a minimization process with respect to the L� error� The actual control points

of the curve or surface can then be found using methods similar to those used in the integral case�

In Chapter � we will describe the original minimization process used for obtaining these weights�

and propose similar methods for more e�cient solutions using the L� and L� norm� We will also

describe how the well�known end conditions for integral spline interpolation can be used in the

context of rational splines�

Finally� in Chapter � we will describe the implementation of these concepts in the environment

of MAPLE� and present the achieved results� We will then conclude by giving pointers to future

research on the topic�



Chapter �

Preliminaries

Before we go into the details of spline interpolation and approximation� we will now de�ne some

terms and notations that will be used throughout the thesis�

Of particular interest are the B�spline basis functions� Given a degree d and a sequence of

knots T � �t�� � � � � tn�d��� with ti � ti��� we can recursively de�ne a sequence of n � � piecewise

polynomial functions Nd
i �u� T ��

N�
i �u� T � ��

��
� � ti � u � ti��

� otherwise
� i � � � � � n� d

Nk
i �u� T � ��

u� ti
ti�k � ti

Nk��
i �u� T � �

ti�k�� � u

ti�k�� � ti��
Nk��
i�� �u� T � � i � � � � � n� d� k

If the degree and the knot vector are clear from the context� we will usually use Bi�u� �� Nd
i �u� T �

as a shorthand notation�

From the de�nition� it is clear that Nd
i �u� T � is a piecewise polynomial of degree d� and has a

support of �ti� ti�d���� Other important properties� which can be found in the standard literature

on splines �for example ��� �� �� ����� are the fact that Nd
i �u� T � is non�negative for all u � R� and

that all functions sum up to � in the interval �td� tn����

nX
�

Nd
i �u� T � � �� u � �td� tn���

It can also be proven that in this interval the functions Nd
i �u� T � are actually a basis for the

function space of all piecewise functions that are polynomial of degree d between any two successive

�
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t0 t1 t2 t3 t4 t5 t6 t7
u

Figure 
��� A sequence of � quadratic B�spline functions� The functions represent a basis for all

piecewise quadratic functions that have a domain of �t�� t�� and knots �t�� � � � � t���

knots ti� ti��� This important result has been found by Curry and Schoenberg in ���� ���� and has

led to the name �B�splines� as an abbreviation for �basis�splines� for these functions�

Figure 
�� shows n�� � � B�splines of degree d � 
 de�ned over a knot vector T � �t�� � � � � t���

Since each basis function has a support of d� � � 
 intervals� we can see that at every parameter

value u in the interval �t�� t�� three of the basis functions are non�zero� The polynomials constituting

these three basis functions at u are linearly independent� Hence they are capable of representing

all quadratic polynomials at u�

��� Spline Curves and Surfaces

Based on these functions we can now de�ne parametric curves and surfaces in spaces of arbitrary

dimension� Given n� � points �c�� � � � � cn�
T in this space� a B�spline curve can be de�ned as

F �u� ��
nX
i��

ciBi�u� �
���

The ci are called �control points�� because they are used to control the shape of the curve�

The following is a short list of those properties of B�spline curves that are most important to
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the topics covered in this thesis� Proofs for these properties can be found in the B�spline literature�

including ���� ��� and ����

� Convex Hull Property� For every parameter value u with ti � u � ti�� the corresponding

point on the curve F �u� is in the convex hull of the control points ci�d� � � � � ci�

This property leads to a method for rendering B�splines by iteratively re�ning the control

polygon� It also helps us for generating reasonable bounding boxes for the curve�

� A
ne Invariance� B�spline curves are invariant under a�ne transformations� This means�

the image of a B�spline curve under an a�ne transformation is simply the B�spline curve

generated by the images of the control points� A �
Pn

i�� ciBi�u�� �
Pn

i��A�ci�Bi�u��

This is important� because it allows us to �t data with B�splines without having to worry

about the exact scaling and positioning of the �nal graph�

� Continuity� A B�spline curve is Cd�� continuous at every knot ti with ti�� � ti � ti��� It is

Cd�l���continuous at ti with ti�� � ti � ti�� � � � � � ti�l�� � ti�l� In this case we say that

the knot ti has multiplicity l� Since B�splines are piecewise polygons� they are C
� continuous

at every parametric position that is not a knot�

Continuity is useful for generating optically smooth interpolations and approximations� More�

over we can model discontinuities by selecting an adequate knot sequence�

� Local Control� Since the basis functions have a support of d�� intervals� every single point

of the curve only depends on d� � control points�

For interpolations this means that a change of one of the data points will only a�ect the

interpolant locally� segments that are far away from the point of change will not be a�ected�

As we will see in Chapter 
� local control also means that the interpolation problem is local

as well� and this leads to a well�conditioned� banded matrix for the interpolation problem�

The construction of surfaces on a rectangular parameter domain works similarly to the case

of curves� We can de�ne a set of basis functions using a tensor�product approach� For the two

parametric directions u and v� we require separate degrees du� dv and knot sequences Tu� Tv � With

the shorthand notations Bu
i �u� �� Ndu

i �u� Tu� and Bv
j �v� �� Ndv

i �v� Tv� the basis is de�ned as

follows�
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Bi�j�u� v� �� Bu
i �u�B

v
j �v�

Using these basis functions� we can then de�ne a parametric surface F �u� v� as

F �u� v� �
nuX
i��

nvX
j��

cijBi�j�u� v� �
nuX
i��

nvX
j��

cijB
u
i �u�B

v
j �v� �
�
�

Surfaces of this type are known as tensor�product B�spline surfaces� By construction it is clear

that the properties for B�spline curves mentioned above also hold for tensor�product surfaces�

It should be mentioned at this point that surfaces with a rectangular parameter domain are

not well suited for several applications like� for example� the interpolation of scattered data points�

If such a surface is forced into a triangular shape� this will usually result in discontinuities� The

development of spline surfaces over triangular parameter domains is a topic of ongoing research�

In the context of MAPLE and other computer algebra systems� however� tensor�product surfaces

are usually su�cient� since these systems typically only evaluate functions over a rectangular domain

anyway�

��� Rational Spline Curves and Surfaces

As we have stated in the previous section� B�spline curves and surfaces are invariant under a�ne

transformations� Unfortunately� this is not in general true for arbitrary projective transformations�

like the ones that are used to project 
�dimensional objects on a 
�dimensional image plane� How�

ever� it turns out that the image of every B�spline under such a transformation can be represented

as a so�called rational B�spline �����

The de�nition of a rational B�spline requires the introduction of a separate coe�cient wi� called

weight for every control point� We can then write a rational B�spline curve as

F �u� �

Pn
i�� wiciBi�u�Pn
i�� wiBi�u�

�
�
�

In cases where the knot sequence is not restricted to be uniformly spaced� these curves are usually

called �Non�Uniform� Rational B�Splines� �NURBS�� If we have to distinguish between NURBS

and B�splines as de�ned in the previous section� the latter will be called integral B�splines�
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Every NURBS curve can be interpreted as the projection of a B�spline curve from a space with

a higher dimensionality� For example� the 
�dimensional� rational B�spline curve with control points

ci � �xi� yi� and weights wi can be seen as the projective image of an integral B�spline curve in


�dimensional space with control points �wixi� wiyi� wi�� This representation of the rational curve

is also called the homogeneous form� We refer to ���� for an in�depth discussion of the relationship

between the two representations�

An important property of NURBS� and the actual reason why we want to use them� is that

they can exactly represent all conic sections� as well as all integral B�splines� They are therefore

more powerful than integral B�splines and can be used to specify a larger variety of shapes�

The same principle that led to the de�nition of rational spline curves� can also be applied to

tensor�product surfaces� In this case we require a whole mesh of weights wi�j� one for each control

point ci�j � This leads to tensor�product NURBS surfaces�

F �u� v� �

Pnu
i��

Pnv
j��wijcijB

u
i �u�B

v
j �v�Pnu

i��

Pnv
j��wijBu

i �u�B
v
j �v�

�
���



Chapter �

B�Spline Interpolation

Using the de�nitions from the previous chapter� we can now formulate the interpolation problem

for curves� �rst using integral B�splines�

Suppose we are given a set of n�� data points D � �d�� � � � � dn�
T � Let us further assume that we

are also given a parameter value ui for every data point di� If the parameter values are not provided

with the data points� we can use heuristics to generate reasonable choices for the parameterization�

This will be described in Chapter ��

Given the points and parameter values� we are searching for a B�spline curve of degree d that

interpolates every data point di at the corresponding parameter value ui� Since the n�� data points

constitute an interpolation problem with �n� ��� e degrees of freedom� where e is the dimension

of the space� in general we need a spline curve with exactly the same degrees of freedom� In other

words� we need a B�spline curve with n� � control points�

These control points correspond to a set of n � � B�spline basis functions� which in turn are

determined by a knot sequence T of length n � d � 
� In Section 
�
 we will discuss how a knot

sequence can be selected from the parameterization of the data points� For the moment we assume

that both the knots and the basis functions �B��u�� � � � � Bn�u�� are already available�

As we have seen in the previous chapter� we can write any B�spline curve as

F �u� �

nX
i��

ciBi�u��

where the control points ci are to be determined in such a way that the curve interpolates the data

��
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points� This means that the curve has to satisfy the conditions

nX
i��

ciBi�uk� � dk � k � � � � � n � �
���

Note that each of these conditions is actually a set of e independent equations� one for each vector

component in the space�

We can rewrite the system of equations 
�� to get the following matrix form��
�������

B��u�� B��u�� � � � Bn�u��

B��u�� B��u�� � � � Bn�u��
���

���
� � �

���

B��un� B��un� � � � Bn�un�

�
������	


 �z �
B

�

�
�������

c�

c�
���

cn

�
������	 �

�
�������

d�

d�
���

dn

�
������	 �
�
�

If we have selected the basis functions such that for all i � � � � � n the parameter value ui lies within

the support of basis function Bi�u�� the square matrix B �� �Bi�uk��i�k is of full rank� This result is

known as the theorem from Schoenberg and Whitney ���� ���� Because of the local control property

of B�spline curves� the matrix is also banded �the width of the band is d� �� the number of basis

functions that are non�zero at a parameter value� and well�conditioned�

Thus� the interpolation problem comes down to independently solving e linear equation systems

of the form of 
�
� one for each vector component in the space� To obtain the solution� we can either

use Gaussian elimination or some specialized algorithm that makes use of the special structure of B�

��� Tensor�Product Surface Interpolation

With a similar approach it is possible to solve the interpolation problem for tensor�product surfaces�

Assuming we are given a �nu � ��� �nv � �� grid of data points� and we have somehow found two
sequences �u�� � � � � unu� and �v�� � � � � vnv � so that every data point di�j is assigned a parameter value

�ui� vj�� As in the case of curves� we will also assume that we have already found knot sequences

Tu and Tv and the corresponding basis functions B
u
i �u� and B

v
j �v��

Using the formula for tensor�product B�spline surfaces

F �u� v� �

nuX
i��

nvX
j��

ci�jB
u
i �u�B

v
j �v�
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we can set up a system of �nu � ���nv � �� equations with the same amount of unknowns�

nuX
i��

nvX
j��

ci�jB
u
i �uk�B

v
j �vl� � dk�l� �
�
�

A matrix representation of this system can be generated using the following de�nitions

B �� �bi�j� where bjnu�i�lnu�k �� Bu
i �uk�B

v
j �vl��

C �� �c���� � � � � cnu��� � � � � c��nv � � � � � cnu�nv �
T

and

D �� �d���� � � � � dnu��� � � � � d��nv � � � � � dnu�nv �
T �

The control points for an interpolating spline surface can then be obtained by solving

B � C � D� �
���

Due to the local control property� the matrix B is relatively sparse� However� it is not banded as

in the case of curves�

Although it is theoretically possible to obtain a solution by solving the above system� this is in

practice not feasible for larger interpolation problems� For example� a problem with ���� ��� data
points would involve computing the inverse of a ����� � ����� matrix� which could take several
hours on current workstations�

Fortunately� the special structure of tensor�product surfaces allows for a more compact represen�

tation of the problem� By re�positioning the terms in Equation 
�
� we can see that the interpolation

can actually be split into two separate processes�

nuX
i��

Bu
i �uk�

�
� nvX
j��

ci�jB
v
j �vl�

�
	 � dk�l

Note that this is only possible because for every row of points in the data grid there exists only a

single u parameter value� and for every point in a column there is only a single v� In a more general

setting every data point could have its own u and v coordinates �ui�j � vi�j�� In this case the above

restructuring is not possible�

In matrix form the above system can be written as

Bu � �C �BT
v � � D� �
���
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where Bu �� �B
u
i �uk��� Bv �� �B

v
j �vl��� C �� �ci�j� and D �� �dk�l�� A solution can be obtained by

solving the two systems BuX � D and BvC
T � XT of size �nu�����nu��� and �nv�����nv����

As in the case of curves� the matrices Bu and Bv are banded and well�conditioned if we have selected

appropriate basis functions� It is therefore possible to use optimized solution methods�

��� Knot Selection and Basis Functions

So far we have seen that the interpolation problem reduces to solving a system of linear equations�

once an appropriate knot sequence and the corresponding basis functions have been found� By

�appropriate� we mean that the matrix B from Equation 
�
 as well as the matrices Bu and Bv

from Equation 
�� are non�singular�

As we have stated above� we can guarantee this by making sure that for every i � � � � � n� the

data point i is located in the support of basis function Bi�u�� For curves this means mathematically

that every data point di has a parameter value that corresponds to a position within the support

�ti� ti�d��� of Bi�

In the case of tensor�product surfaces we have to select two knot sequences Tu and Tv� and the

above property has to independently hold for both knot sequences�

The consequence of these observations is that in general we have to take the parameterization

into account when deciding upon a knot sequence� Alternatively� we could create a knot sequence

�rst� and then select a parameterization based on these knots� However� since there is a one�to�one

correspondence between the data points and the parameter values� it is easier to come up with a

reasonable parameterization �rst� and then select the knots afterwards�

Because the knot sequence has to depend on the parameterization� we can not simply choose

B�splines with uniformly distributed knots� In addition� since the positioning of the knots has a

substantial in	uence on the shape of the interpolant� it is important to use a method that produces

�good� interpolations in most cases� or at least in the most common cases� Figure 
�� shows how

strong the in	uence of the knot selection algorithm on the curve shape can be�

Most of the existing literature about B�spline interpolation does not address this issue at all but

rather quietly assumes that the knots coincide with the parameter values for the data points� This

method seems to produce reasonable results for most interpolation problems� Since the knots in a

B�spline are exactly those positions where the curve or surface are only Cd�� continuous� we can
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Figure 
��� The e�ect of di�erent knot sequences on solutions for an interpolation problem� Both

curves are interpolants of the given data points� and use the same parameterization but di�erent

knot sequences�

interpret this method as giving the spline more 	exibility around the points we want to interpolate�

When implementing this method� we have to pay attention at the borders of the domain�

Suppose we have m � � data points together with the corresponding parameter values� If we use

these parameter values as knots� this will give us m � � knots� However� in Chapter 
 we have

stated� that the B�splines over a knot sequence T � �t�� � � � � tn�d��� only forms a basis for the

interval �td� tn����

So� in order to have a basis on the complete parameter interval �u�� um�� we have to generate

an additional d knots to the left of u� and d knots to the right of um� A good choice for these extra

knots is usually to set all the knots on the left to u� and all knots on the right to um� The result

is a B�spline that passes through its �rst and its last control point�

T �� �u�� � � � � u�
 �z �
d��

� u�� � � � � um��� um� � � � � um
 �z �
d��

�

This leaves us with �m����
d knots� We also know that a knot sequence of length �n����d��

gives us n� � basis functions� and hence allows for a B�spline curve with n� � � �m� �� � d� �
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control points�

Thus our B�spline curve has d� � more control points than data points� and the interpolation
problem becomes the following under�determined system of linear equations�

�
����

B��u�� B��u�� � � � Bn�u��
���

���
� � �

���

B��um� B��um� � � � Bn�um�

�
���	 �

�
�������

c�

c�
���

cn

�
������	 �

�
����

d�
���

dm

�
���	

The extra degrees of freedom introduced by this approach can be used to enforce additional

constraints on the curve� There are a variety of possibilities for setting these constraints� which are

usually called �end conditions�� The choice of a particular end condition depends on the speci�c

application for which the interpolant is required�

Since for tensor�product surfaces the knot selection can be done separately in u and v direction�

we can also directly use the parameterization as knots for the two parametric directions� The result

is a surface with an extra du� � control points in u direction and an extra dv � � control points in
v direction�

��� End Conditions

The name �end condition� comes from the fact that the extra degrees of freedom are usually �lled

in at the borders of the parameter domain� that is� at the ends of the curve or surface� It would also

be possible to specify additional conditions in the interior of the spline� as long as those conditions

are linearly independent from the rows in the matrix B� In practice� however� constraints at the

borders of the domain are the most interesting� as they allow us to smoothly join di�erent curves

or surfaces�

In the case of curves� a simple way of generating a smooth transition between two separate

splines is to specify the tangent vectors in the endpoints and set them to the same vector for both

curves� Setting the extra degrees of freedom by specifying tangent vectors is called the clamped end

condition� In the case where the spline curve is of degree d � 
� we have d � � � � extra control

points available� and can therefore force the tangent on one side of the curve to a speci�c value�

If we have a curve of degree 
� we can use the two extra control points to set the tangents on
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both sides of the curve� For even higher degrees we can use a generalization of the clamped end

conditions which allows us to specify higher order derivatives on one or both sides of the curve�

In order to implement clamped end conditions� we need to compute the derivative of a B�spline

curve at the endpoints� and choose the available control points to force this vector to a given tangent

vector �� It is a well�known fact �see Appendix A� that the derivative of a B�spline curve F �u� is

given by

d

du
F �u� � d

n��X
i��

�ci � ci���

�ti�d � ti�
Nd��
i �u� T ��

We can see that the derivative is a linear combination of the control points of the curve� If we

re�group the terms to re	ect this observation� and set the derivative at some parameter t to �� we

get

� �

nX
i��



d

ti�d � ti
Nd��
i �t� T �� d

ti�d�� � ti��
Nd��
i�� �t� T �

�

 �z �

ei

� ci�

This equation can be rewritten in matrix form� which yields

h
e� e� � � � en

i
�

�
�������

c�

c�
���

cn

�
������	 � ��

In order to �ll in the extra degrees of freedom we have available� we add a number of equations

of the above form to the matrix B from Equation 
�
� For degrees d � 
 we will have to move to

higher order derivatives� but these can be �t into our linear equation system in a similar way� The

result is an equation system of the form

El

B

Er

� C �

�l

D

�r

�
���

El is a matrix holding the derivatives for the left side of the curve� and �l is a vector of the

corresponding tangents� Similarly Er and �r describe the end conditions on the right side of the

curve�
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In the next section we discuss a set of end conditions that have often been used in the standard

spline literature� All these constraints have the property of being linear in the control points� and

can be represented in a matrix form similar to the way we have discussed above�

����� Bessel End Conditions

For many applications it is desirable to have the system spend the degrees of freedom automatically

instead of letting the user supply additional information� This is especially true if the user does not

know the data set well enough to make a good choice� The approach of Bessel end conditions is to

generate a set of tangent vectors automatically� which can then be plugged in to the clamped end

conditions described above�

More speci�cally� the vectors that are created are the tangents of the interpolating parabola

through the �rst �or last� three data points� This �parametric� parabola is found by solving the

system of equations

a � u�� � b � u� � c � d��

a � u�� � b � u� � c � d��

a � u�� � b � u� � c � d��

The tangent vector � we are searching for is then given by the derivative of this parabola at

parameter value u�� that is�

� � 
a � u� � b

����� Natural End Conditions

Another simple choice for end conditions of quadratic or cubic splines are the natural end conditions�

which set the curvature in the endpoints of the curve to zero�

�F �u�� � �F �un� � �

In the case of a quadratic spline we have of course only enough degrees of freedom to set the

curvature in one of the points�

This method involves computing the second derivative of a B�spline curve� which is again a

linear combination of the control points� The name �natural� for these constraints originates from
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the �eld of ship construction� In this �eld the word �spline� is used to describe wooden planks that

are used to determine the shape of a ship body� When such a plank is �xed to pass through a set of

some speci�c points� it takes on a shape in which the bending energy in the two outermost points

is zero� Mathematically this is corresponds to the curvature being zero�

����� Quadratic End Conditions

The next kind of end conditions we want to describe are called quadratic end conditions� Tradition�

ally these have been used for degree 
 curves only� but generalizations to curves of other degrees

are obvious� For a degree 
 curve we make sure that the second derivatives in the two leftmost data

points match� as well as the second derivatives in the two rightmost data points�

�F �u�� � �F �u�� and �F �un��� � �F �un�

Since we identify the knots with the parameter values of the data points as described in Section 
�
�

the two parameter values on each side are also knots of the spline�

For cubic curves the second derivative is a piecewise linear� C� continuous function� Conse�

quently� if we set �F �u�� � �F �u��� we actually force �F �u� to be constant on the interval �u�� u���

Therefore the spline F �u� is actually quadratic instead of cubic on this segment� and hence the

name of this method� The same applies similarly for the interval �un��� un��

Quadratic end conditions can again be described as a linear combination of the control points

of the B�spline curve� and can therefore be written in matrix form�

����� Not�A�Knot End Conditions

A slightly more complicated set of constraints is represented by the so�called not�a�knot end con�

ditions� Instead of spending the extra degrees of freedom on reducing the degree of a segment� this

method merges two spline segments into a single one� thus increasing the continuity at the knot

that separates the two segments�

Again we identify knots with parameter values and request that the dth derivatives at certain

parameter values ui are continuous� In the cubic case we require two of these points� and typically

choose u� and un��� Now� since we are dealing with a spline of degree d� the d
th derivative F �d	�u� is a

piecewise constant function� A simple condition for making this function continuous at a parameter
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value ui is to request that the values at the centers of the two intervals �ui��� ui� and �ui� ui��� are

the same�

F �d	�
ui�� � ui



� � F �d	�

ui � ui��



�

For a curve of degree d we have to remove d� � knots in this way to get rid of all the extra degrees
of freedom�

Thus we have again reduced the constraints to a condition on higher order derivatives� which

are linear functions in the control points�

����� Closed End Conditions

Often we want to create closed spline curves from a set of data points� If those points are given

such that d� � dn� we can use closed end conditions to make the two ends of the curve join together

smoothly� Since we have d � � additional control points available� and an interpolating curve for
data points with d� � dn is C

� continuous automatically� we can use the extra degrees of freedom

to achieve Cd�� continuity� This is also the degree of continuity we have at the internal knots of

the curve� In other words� we can create a closed spline curve without a distinguished start and

end point�

The conditions for Cd�� continuity at the joint are obviously that the �rst d� � derivatives at
the beginning and the end of the curve match�

F �k	�u�� � F �k	�un� � k � ���d � �

����� Multiple Control Point End Conditions

For the sake of completeness� we shall �nally mention a very simple end condition that can be

used if no information about the data is available� The additional control points are set by letting

multiple control points coincide� This is usually also done at the end points of the curve�

The resulting constraints are again linear in the control points� but they do not require the

derivative of the B�spline� Thus this method is very e�cient to implement� since every constraint

is represented as a �xed vector that does not depend on the data values� For the more complex

methods based on derivatives� on the other hand� each vector has to be created using both the

formula for derivatives of B�splines� and the B�spline recursion formula�
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��� End Conditions for Tensor�Product Surfaces

So far we have concentrated on end conditions for spline curves� As we have seen in Section 
�
� the

situation for tensor�product surfaces requires additional constraints in a similar fashion� It turns

out that all the end conditions from the previous section can also be applied in the case of tensor�

product splines� However� some extra care has to be taken for the actual implementation of these

constraints�

In the case of curves we were able add the end conditions directly to the interpolation matrix B�

and thus to rewrite the linear equation system in Equation 
�
 to the one in Equation 
��� Our �rst

attempt to handle end conditions for surfaces is to use a similar approach� The equation system we

gain by rewriting Equation 
�� is

Et

Bu

Eb

� C � ET
l BT

v ET
r �

�t

�Tl D �Tr

�b

Note that we now have end conditions for the left� right� top and bottom side of the surface�

Unfortunately it turns out that most of the end conditions we discussed in the previous section

do not �t into this scheme� In particular� all the end conditions involving derivatives can not be

handled� This leaves us with the rather simplistic multiple control point end conditions as the only

alternative�

To understand why this is the case� consider the simple case of clamped end conditions� In

the above scheme we have only a simple row vector E in the matrix Et available to represent the

derivative in a whole row of data points� However� the derivative of the surface is a di�erent vector E

in each of the data points� Thus the end condition can not be represented in this scheme� A similar

argumentation shows that all other end conditions involving derivatives can not be represented in

this scheme either�

Since the end conditions are linear in the control points even in the tensor�product case� we can

still create a matrix representation of the constraints� For example the constraints at the top side
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of the surface can be written as

Et � C � �t

where C is de�ned as

C �� �c���� � � � � cnu��� � � � � c��nv � � � � � cnu�nv �
T �

like in Equation 
��� We thus discover that we can �t the end conditions into the scheme of

Equation 
�� as

E

B
�

C
�

�

D

Here B and D are de�ned as in Equation 
��� while E and � contain all the end conditions for the

left� right� top and bottom sides� We have already mentioned that the total size of this system is

very big� and solving it is therefore a timeconsuming task�

In order to cut down on execution time� we can obtain the control points in two steps� First we

solve the underdetermined equation system

Bu � �C� �BT
v � � D�

this gives us a partial solution C� that still contains some undetermined variables� These can then

be �lled in by solving

E � C � �

afterwards� Since the number of end conditions is usually small compared to the number of basis

functions� this method is typically signi�cantly faster than directly solving the big equation system�

In the case of a computer algebra system like MAPLE� this approach is also relatively easy to

implement� since the symbolic engine of the computer algebra system can be used to obtain the

partial solution C��



Chapter �

Parameterization

When we formulated the interpolation problem in the previous chapter� we assumed that an ap�

propriate parameterization is provided together with the data points� In the context of a computer

algebra system� this is actually not a bad assumption� since most of the data sets consist of points

that are sampled from mathematical functions� For these points the exact parameter value �i�e�

the position at which the original function was evaluated to yield the data point� is available� and

can be directly used for the �tting process� Consider following example using the MAPLE library

function spacecurve from the plots package�

spacecurve� ����cos�t����	 ���sin�t����	 t��
	 t����
�� ��

This line of MAPLE code creates a 
�dimensional plot of a helix by sampling the function at

discrete parameter values and then connecting the sample points with line segments� A spline version

of this function could also sample the function at discrete parameter values� Possibly these points

would be uniformly distributed� but the selection of the sample points could also be more involved�

The important part is that the function spacecurve knows the parameter at which the samples

are located� and can consequently use them to do an interpolation as described in Chapter 
� or an

approximation� as we will see in Chapter ��

However� spacecurve also has a second mode� in which it is only passed a set of points instead

of a function� Using this mode we can write the above example as
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helixPoints�� �seq� ����cos�r����	 ���sin�r����	 r��
	 r����
�� �
�

spacecurve� helixPoints ��

While this version of spacecurve is generally not used as often as the �rst one� it has some

important applications� Similarly� most otherMAPLE library functions in the plots and plottools

packages also have corresponding discrete versions in which only a set of sampled data points is

passed to the function�

If we want to create a spline�based version of these discrete functions� we have to generate pa�

rameter values for the data points before we can apply an interpolation or approximation method�

The exact choice we make for the parameter values has a strong in	uence on the shape of the

resulting interpolant� In this chapter we will present several heuristic methods for determining pa�

rameterizations that produce a �good� interpolant� More examples comparing the di�erent methods

can then be found in Chapter �� All methods for determining the parameterization where originally

designed for curve interpolation and approximation� In Section ��� we will then describe how these

methods can be applied to tensor�product surfaces�

��� Uniform Parameterization

The easiest way of choosing a parameterization is the uniform parameterization� which simply

divides the parameter interval into equally spaced segments� Clearly it can not be expected that

this simplistic method works well for arbitrary sets of data points� since the particular position of

the points is not even considered� An example of a data set taken from ���� and interpolated using

the uniform parameterization scheme is shown in Figure ����

The biggest advantage of this method is that the interpolant is a uniform B�spline if we use the

parameter values also as knots� as described in Section 
�
� This might be preferable in situations

where B�splines with arbitrary knot sequences cannot be implemented for some reason�
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Figure ���� A data set interpolated with a cubic B�spline using the uniform parameterization� Note

the artifacts between the 
rd and the �th point as well as between the �th and the �th point�

��� Chord Length Parameterization

The so�called cord length parameterization is probably the easiest parameterization method that

actually takes the data points into account� It tries to resemble the �arc length parameterization��

that is� to choose the parameter values in such a way that they re	ect the length of the curve

segments of the interpolant between the data points� Since in general it is not possible� or at

least infeasible� to �nd the exact arc length parameterization� the cord length parameterization

approximates the arc length using the distance of the data points �the length of the �chords�

connecting all the data points��

More formally� the distance between the knots ui�� and ui is made proportional to the Euclidean

distance of the data points di�� and di�

ui � ui�� � k � kdi � di��k� � i � � � � � n

The constant k can be chosen arbitrarily� as can the �rst parameter value u�� If we set u� �� � and

k ��
�Pn

i�� kdi � di��k� �

the resulting parameters ui will be in the interval ��� ���

In general the chord length parameterization produces better results than the uniform param�

eterization� It has been proven that the slope of an interpolating B�spline using the chord length
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Figure ��
� The chord length parameterization has been applied to the data set from Section ���� For

this speci�c data set the results are in some sense even worse than with uniform parameterization�

parameterization varies continuously over the curve ���� In fact this holds for all parameterization

schemes that can be expressed as

ui � ui�� � D�di� di���� �����

where D��� �� is some metric� A similar result for the uniform parameterization is not known�

There are� however� data sets for which the chord length parameterization actually performs

worse than the uniform parameterization� One example is the data set from the previous section�

Figure ��
 shows an interpolation of the same data set using the chord length method� We can see

that the interpolant is optically smoother� but has even larger wiggles than the curve generated

with the uniform parameterization�

In the case of this particular data set� the shape of the curve can be slightly improved by using

a di�erent metric D for measuring the distance between the data points� A metric which on average

makes the chord length algorithm perform better is described in Section ���� This does� however�

not solve the general problem that parameterizations that are deemed superior can perform worse

on speci�c data sets�
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��� Centripetal Parameterization

The centripetal parameterization is a heuristic method which is very similar to the chord�length

parameterization� but is inspired by a physical model� The author of ����� the original paper about

the centripetal parameterization� challenges the idea of using an approximation of the arc length

parameterization for interpolation� He uses the analogy of a car travelling on the interpolant to

explain the reasons for his objections�

If we succeed in generating an interpolant with the exact arc length parameterization� this

means that a car travelling on the curve will have constant speed� independent of the shape of the

curve� The idea behind the centripetal parameterization is to slow the car down in areas where

the curve has a high curvature� Based on some physical computations and the assumption that

the centripetal force should be kept proportional to the angular change of the curve� the following

formula can be derived for the parameter values�

ui � ui�� � k � kdi � di��k���� � i � � � � � n�

In order to normalize the parameter values to the interval ��� ��� we can set u� �� � and

k ��
�Pn

i�� kdi � di��k����

�

As we can see� the centripetal parameterization is very similar to the chord length parameteriza�

tion� The only di�erence is that the square root of the Euclidean distance is used in the centripetal

case� This suggests that it might be useful to explore di�erent exponents as well� This results in

ui � ui�� �
kdi � di��ke�Pn
i�� kdi � di��ke�

� i � � � � � n

where e is some constant exponent� The author of ���� writes that di�erent values of e seem to be

optimal for di�erent sets of data points� but that an exponent of ��
 is in general better than an

exponent of �� So far� no method for automatically selecting an optimal e is known�

Figure ��
 shows an interpolation of the data set using the centripetal parameterization with

an exponent of e � ��
� The resulting interpolant is signi�cantly tighter and smoother than the

two interpolants using uniform and chord length parameterizations�

Since k�ke� is not a norm for e �� � �the homogeneity criterion k� � xk � j�j � kxk does not hold��
we can not express the chord length parameterization as a parameterization based on a metric in
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Figure ��
� The centripetal parameterization yields better results than both the uniform and the

chord length parameterizations�

the sense of Equation ���� Thus the proof in ��� can not be used to show that interpolants created

with centripetal parameterization have a continuous slope� In practice� however� this seems to be

the case anyway�

��� Angular Parameterization

Following the same idea that the parameter values should �slow down� in regions of high curvature�

the authors of ���� introduce a purely heuristic method� The algorithm� which we will call angular

parameterization� takes into account both the angle between the chords connecting the data points�

and the length of these chords� We introduce the shorthand notations �i for the external angle

between the chords at data point di� and �i for the length of the chord connecting di and di��� as

depicted in the following diagram�

We also de�ne �i as an abbreviation for min��i� 	�
�� and then the angular parameterization

is given as

ui�� � ui � �i



� �

k � �i ��i��

�i�� ��i
�
k � �i�� ��i��

�i ��i��

�
� i � � � � � n� � ���
�

Note that this formula requires two extra chord lengths ��� and �n� as well as two extra angles ��

and �n� The authors of ���� do not specify how these parameters should be chosen� One possibility
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�i

di��

�idi

di��

Figure ���� The con�guration for the angular parameterization�

is to extrapolate the two outermost segments by setting ��� � ��� �n � �n�� and �� � �n � ��

The distance between ui�� and ui is the larger the bigger the external angle �i is� thus slowing

the curve down� and giving it more time to turn� Please note that we use the angle �i instead of

the real external angle� The upper limit of 	�
 was determined empirically� and was introduced in

order to prevent the curve from slowing down too much�

The in	uence of the chord lengths �i is chosen such that the distance between two parameter

values ui�� and ui is bigger the longer chord �i is in comparison to the neighboring chords �i��

and �i���

The parameter k can either be used as a shape control in interactive applications� or should be

set to the constant ���� which� according to the authors of ���� constitutes a good value for a large

variety of data sets� This constant has again been chosen empirically�

Despite the fact that no theoretical foundation has been given for this algorithm� and some of the

choices made seem quite arbitrary� the angular parameterization method in practice produces very

good results� It usually outperforms both the chord length and the centripetal parameterization�

The interpolant for our data set using the angular parameterization is shown in Figure ���� For this

data set the result is actually very similar to the centripetal parameterization� Other examples� in

which the di�erences between the parameterization methods are clearly visible� will be shown in

Chapter ��
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Figure ���� The resulting interpolant using the angular parameterization for this data set is com�

parable to the centripetal solution�

��� Area Based Parameterization

While the angular parameterization algorithm performs well in practice� it is somewhat unsatisfac�

tory that no theoretical justi�cation is given for this algorithm� We found it particularly disturbing

that Formula ��
 involves the multiplication of angles with distances� which makes it hard to come

up with a geometric interpretation for the method�

We tried to overcome the aforementioned shortcomings by performing our own experiments�

and to come up with a method that is based on principles similar to those of the angular param�

eterization� but with a reasonable geometric interpretation� The result is a method which we will

call area based parameterization�

In analogy to the angular parameterization� we will consider two di�erent contributing factors

for selecting the parameter values� the distance �i between two consecutive data points� and the

degree to which the curve has to change direction while passing through these data points� The

�rst contribution is simply given by the chord length �i� which is normalized by dividing through

the average chord length � �� ��n
Pn��

i�� �i of the data points�

h�i ��
�i

�

The normalization is necessary to keep the parameterization independent from the scaling of the

data set�
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For the contribution of the second part we consider the area of the parallelogram formed by

two consecutive chords� as depicted in Figure ����

�i

di��

di��di �i

Figure ���� The con�guration for the area based parameterization�

The area of such a parallelogram is given as Ai � sin i ��i�� ��i� and for reasons of symmetry

we have to consider two of these areas� Ai and Ai��� in order to calculate the value ui�� � ui� For

similar reasons as in the angular parameterization� we restrict ourselves to internal angles larger

than 	�
� and de�ne 
i �� max� i� 	�
�� We also normalize the term by dividing through the area

of the rectangle with sides of length �i�� and �i� This results in the second contributing term for

the parameterization�

h�i ��
Ai �Ai��

��i�� ��i� � ��i ��i���
�
sin
i ��i�� � sin
i�� ��i��

�i�� ��i��

Finally� we can express the parameterization as a weighted sum of the two contributing terms�

ui�� � ui � kh�i � ��� k�h�i � k
�i

�
� ��� k�

sin
i ��i�� � sin
i�� ��i��

�i�� ��i��

We have thus separated the two contributing factors for the parameterization into two di�erent

geometric terms that are weighted together� While the method is still purely heuristic� we think

that the two contributing factors have clear geometrical interpretations� The factor k can again be

used as a shape control parameter� if this is desired� In practice we found that a factor of k � 
�


usually produced results that were comparable to the angular parameterization� In other words� the

results were typically superior to the chord length and the centripetal parameterization� Figure ���

shows the result of the interpolation with the area based parameterization method� We will show

more examples in Chapter ��
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Figure ���� The area based parameterization typically produces results comparable to the angular

parameterization�

��� An A	ne Invariant Metric

Except for the uniform parameterization� all of the parameterization schemes we have presented

used the Euclidean distance between the data point to determine the parameterization� These dis�

tances� and also the angles that are used for both the angular and the area based parameterization�

are invariant under rigid body transformations such as rotations and translations�

The parameterizations are also invariant under scalings� provided that the same scaling factor

is used for all directions� The area based scheme is invariant under these uniform scalings by

construction� For all other methods a uniform scaling of the data set scales the distances between

the resulting parameter values by a constant ��

t�i�� � t�i � ��ti�� � ti�

This causes the knot vector to be scaled by the same factor �� As a consequence� the resulting

interpolant will have a parameter domain that is also scaled by �� but the shape of the curve

remains the same�

The situation is di�erent for shearing transformations and for scalings in which the scaling

factor is not uniform in every direction� In such cases the parameterization is not a multiple of

the original one� and thus the shape of the resulting interpolant is di�erent� Unfortunately� this
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means that the parameterization �and thus the resulting interpolant� is not invariant under a�ne

transformations�

To overcome this problem� an a�ne invariant metric has been proposed in ����� ���� and �����

The metric can be used to measure the �distance� of the data points in a way that is invariant

under a�ne transformations� and especially under non�uniform scalings�

If we are given a set of data points as

V �

�
�������

x� y� z�

x� y� z�
���

���
���

xn yn zn

�
������	

we call a metric DV�u� v� a�ne invariant over the data set V if DV�x� y� � DAV�b�Au� b� Av� b�

for all a�ne transformations f�u� � Au� b�

Assuming that we are in a 
�dimensional space� such a metric can be de�ned using the norm

����h x y z
iT����

V

��
h
x y z

i
� n� !VT !V��� �

�
���
x

y

z

�
��	

where

!V �

�
�������

x� � !x y� � !y z� � !z
x� � !x y� � !y z� � !z
���

���
���

xn � !x yn � !y zn � !z

�
������	

and !x �� ���n � ��
Pn

i�� xi� !y �� ���n � ��
Pn

i�� yi and !z �� ���n � ��
Pn

i�� zi are the medians of

the components of the data points� Metrics for spaces of di�erent dimensionality can be created

in a similar fashion� Please note that the matrix !V has to be of full rank because otherwise the

product !VT !V is singular� and the inverse can not be found� This means that� for a 
�dimensional

interpolation problem� not all the data points must be in one plane� and for a 
�dimensional one

not all must be on one line� If such a case happens the parameterization problem has to be solved

in a lower dimension�

We refer the reader to ���� and ���� for a discussion of why DV�u� v� is a norm� and why it leads

to an a�ne invariant metric�
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When we replace the Euclidean distance in the chord length parameterization and in the cen�

tripetal parameterization by this a�ne invariant metric� it is immediately clear that the resulting

parameterization scheme is a�ne invariant� Since both schemes only depend on the distances of

the data points� and these do not change under a�ne transformations� the parameterization does

not change either� As a consequence� the knot sequence and the interpolant also do not change�

The situation for the angular and the area based parameterizations is slightly more di�cult�

These parameterization schemes depend not only on the distances but also on the angles between

the chords� Thus a method has to be found to represent these angles in an a�ne invariant way�

Using the Law of Cosines we can write the internal angle  i between two chords as

 i � arccos

�
D�
V
�di��� di� �D�

V
�di� di����D�

V
�di��� di���


DV�di��� di�DV�di� di���

�
The external angle �i can then be calculated as �i � 	�Phii� Using this substitute for the angles

together with the a�ne invariant metric for the distances allows us to have an a�ne invariant

version of the angular and the area based parameterization� This is actually the form in which the

angular parameterization has originally been presented in �����

Figure ��� shows the chord length interpolant from Section ��
 together with a new interpolant

that uses the a�ne invariant metric together with the chord length parameterization� The new met�

ric yields a slightly improved shape of the interpolant� although still not as good as the centripetal

or angular parameterization� Since the interpolants for these two schemes were already very good�

their results are not further improved by the use of the new metric�

��
 Parameterizations for Tensor�Product Surfaces

In the case of tensor�product surfaces� some additional considerations are necessary� If we obtain

a grid of data points by sampling a mathematical function ourselves� we can choose the sampling

positions in such a way� that the parameter values form a rectangular grid in the parameter domain�

All data points in a row of the grid then share the same u component� and all points in a column

share the same v component� This means that the parameter of a data point di�j can be written as

�ui� vj��

A parameterization of this form is advantageous when we then want to �t a tensor�product

B�spline surface through the grid of data points� since it allows us to break down the interpolation
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Figure ���� The use of the a�ne invariant metric improves the chord length parameterization

slightly�

process into two smaller problems� as described in Section 
��� If we had the more general case of

a data grid in which each point can have its own parameter value �ui�j � vi�j� then this would not be

possible� and we would have to solve a single� large system similar to Equation 
�
�

If we do not sample the function ourselves� but are rather given a set of discrete points without

the parameterization� we �rst have to decide whether a single parameter value per row and per

column is appropriate for the data set� If we think that such a parameterization is appropriate� we

can simply use one of the algorithms described above� We separately compute the parameterization

in u and v direction by applying one of the above algorithms to the averaged control points�

If we do not think that such a parameterization is appropriate for the data set� we can generate

the parameter value �ui�j� vi�j� for each data point by applying one of the above algorithms separately

to each row and column of the data grid� This will only work reasonably if the variations of the

parameters in the rows and columns is not too high� If this does not hold� or if we don"t even have

gridded data points any more� the parameterization has to be generated with one of the methods

from the �eld of scattered data interpolation�

Since in computer algebra systems we usually deal with gridded data� for which a rectangular

grid of parameter values is a good assumption� we will not discuss the parameterization methods

for scattered data interpolation at this place� We rather refer to ����� where the angular parame�

terization together with the a�ne invariant metric is applied to scattered data interpolation�
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B�Spline Approximation

The results of the previous two chapters show how an arbitrary set of discrete data points can

be interpolated with B�splines� It has been shown how a parameterization for the data points can

be generated� and how a set of B�spline basis functions can be selected� Given this information� a

unique solution to the interpolation problem is obtained�

However� interpolation methods have a serious disadvantage if the goal is to represent more

complex functions such as higher�order polynomials or transcendental functions� which can not be

represented exactly as B�splines�

Since the interpolant is forced to go through the speci�ed data points� the error in these points

is zero� but the error between the points is relatively high� If too few data points are used for the

interpolation� this tends to introduce bumps and other artifacts on the interpolant� which results

in an unacceptable shape� Of course this problem can be avoided by using more sampling points�

but then the size of the linear equation system grows rapidly� and obtaining a solution becomes

expensive�

Figure ��� shows a quadratic interpolant for �� data points sampled from a logarithm� The

exact parameterization was used for the interpolation process� together with clamped end conditions

specifying the original tangents in the end points� The interpolation process has introduced a bump

near the second data point�

An alternative to B�spline interpolation is the use of B�spline approximation techniques� The

idea behind approximation is to provide a large number of data points but to generate only a B�

spline with a signi�cantly lower number of control points� This means that there are fewer degrees of


�
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Figure ���� Interpolating sampled points from transcendental functions like logarithms sometimes

introduces artifacts� like the bump in this example�

freedom than there are conditions� and that� in general� not all the conditions can be met� However�

it is possible to minimize the error between the spline curve and the data points according to some

norm�

If the right norm is chosen for this minimization process� the resulting curve can actually

preserve the shape better than an interpolant through the same number of points� although the

number of spline segments is lower in the case of an approximation� The idea is to give the spline

more 	exibility than in the interpolation case� and hopefully this results in a �t that does not pass

exactly through all the data points� but is a better approximation to the shape of the original

function�

In the case of curves� a set of m� � data points D � �d�� � � � � dm�
T is provided for the approxi�

mation process� The parameterization of these data points is either provided as well� or it can be
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chosen using one of the methods described in Chapter �� The approximation process determines the

n�� control points C � �c�� � � � � cn�
T of a B�spline curve F �u� �

Pn
i�� ciBi�u�� Since the resulting

linear equation system

B � C � D

is over�determined� such a solution does not exist in general� However� an approximation can be

computed by minimizing kB � C � Dk according to a norm k�k� The choice of this norm has

signi�cant impact on the properties of the curve or surface� and can be chosen depending on the

problem domain�

��� Least�Squares Fitting

Almost all of the literature on B�spline approximation uses the least�squares �L�� norm for deter�

mining the �best� �t� The L� norm of a vector x is given as kxk� �
qPm

i�� x
�
i �

p
xT � x� where

xi is the i
th component of x�

The popularity of the L� norm for B�spline approximations is probably due to the simplicity

with which this norm can be implemented� The following theorem describes how the least squares

solution of an arbitrary over�determined linear equation system of the form B � C � D can be

obtained as the solution of a square linear equation system with full rank�

Theorem ����� �Least�squares solution for kB � C �Dk�
For every �n � �� � �m � �� matrix B of full rank n � � � m � � the least�squares solution of

min kB � C �Dk� can be obtained by solving the �square� linear equation system

BTB � C � BT �D

Proof� The least�squares solution min kB � C �Dk� is equivalent to the solution of min kB�C�Dk���

min kB � C �Dk�� � min
�
�B � C �D�T �B � C �D�

�
�

� min
�
CT �BT �DT ��B � C �D�

�
�

� min
�
CT �BTB � C �DT �B � C � CT �BT �D� �
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� min

�
� mX
i��

�
� nX

j��

bi�jcj

�
A�

�
mX
i��

di

nX
j��

bi�jcj �
nX

j��

cj

mX
i��

bi�jdi �
mX
i��

d�i

�
	 �

� min

�
� mX
i��

�
� nX

j��

bi�jcj

�
A�

� 
 �
mX
i��

di

nX
j��

bi�jcj �
mX
i��

d�i

�
	


 �z �
M

In order to �nd this minimum� we compute the partial derivative of M with respect to all the

control points ck�

�M

�ck
�

mX
i��

�
�
 � nX

j��

bi�jcj

�
A ai�k � 
 �

mX
i��

dibi�k

� 
 �
nX

j��

�
mX
i��

bi�kbi�j

�
cj � 
 �

mX
i��

dibi�k � k � � � � � n

Setting each of these derivatives to zero and writing the resulting equations in matrix form yields



�
BTB � C �BT �D� � �

or

BTB � C � BT �D�

Since it was assumed that B is of rank n� � � m� �� the �n� ��� �n� �� matrix BTB is of full

rank� and can be solved using standard techniques like Gaussian elimination� �

The importance of this result lies in the fact that we can compute the least�squares approxima�

tion by solving a linear equation system of size �n���� �n��� instead of �m���� �m��� in the
interpolation case� Of course the equation system for the approximation has to be created before it

can be solved� This involves the multiplication of two matrices BT and B of size �m���� �n���
and �n � �� � �m � ��� respectively� The time complexity of these operations is O�n
 � mn���

which compares to O�m
� for interpolation� This means that the approximation is faster than the

interpolation if m is signi�cantly larger than n�

Another e�cient way of obtaining the least�squares solution is to compute the Q�R decompo�

sition

B � Q �R � Q �
�
� R�

�

�
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�rst� Here� Q is an orthogonal m� � �m� � matrix� and R� is a upper triangular n� �� n� �

matrix� It can be shown that any m� �� n� � matrix of full rank n� � � m� � can be written

as a product of matrices of this form� Given this factorization of B� it is easy to see that

kB � C �Dk�� � kQTB � C �QTDk�� � kR � C �QTDk�� � kR� � C �E�k�� � kE�k��

where QTD � �E�� E��
T �

Therefore� the least�squares solution can be obtained from kR� �C�E�k��� Since R� is a square

matrix of full rank� the solution is identical to the solution of the linear equation system

R� � C � E��

which can be calculated easily due to the fact that R is an upper triangular matrix�

The complete algorithm takes O�mn�� operations for the Q�R decomposition� followed by �n��

operations for actually obtaining the least�squares solution� This means that the asymptotic be�

havior of this algorithm is even better than the behavior of the �rst approximation algorithm and

of B�spline interpolation�

Not only is approximation more e�cient� it often also produces results that preserve the shape

of the original curve better than interpolation does� Figure ��
 shows the result of a least�squares

approximation for the logarithm�data set shown before� The data set consists of the same �� data

points� but the approximation is done with a quadratic B�spline curve that has only 
 segments

�� control points�� The resulting curve is much more pleasing� and visually closer to the original

logarithm function�

��� Spline Fitting for Uncertain Data

An important �eld of applications for approximation techniques is the �tting of uncertain data

that occurs for example in statistics or as a result of measurements in experiments� Approximation

techniques in this context usually involve �tting a polynomial through a set of data points that are

subject to some error� The error distribution depends on the speci�c application domain� and could

for example be a uniformly distributed error on a few data points� or mostly correct data points

with a few outliers�
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Figure ��
� The least�squares approximation using �� data points but only � control points yields a

result that is superior to the interpolation solution� and visually signi�cantly closer to the original

logarithm function�

In most cases the approximation process is formulated as a functional problem� That is� given

data points yi that have been measured at speci�c positions xi �for example points in time�� a

function f�x� is desired� which minimizes kyi � f�xi�k� As mentioned above� usually a polynomial
approximation is required� that is f�x� is a polynomial function�

There are several di�erences between the scenario described above� and spline approximations�

First of all� splines as described in this thesis de�ne parametric instead of functional curves� How�

ever� since the B�spline approximation �like the interpolation� treats every component of the vector

space separately� the parametric approximation can be seen as a composition of several indepen�

dent functional approximations� Thus the only di�erence between a functional and a parametric

approximation really is that in the functional case the exact parameterization is always known�
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This is a signi�cant advantage for the approximation of uncertain data� since it is not clear how

an appropriate parameterization could be generated automatically� All the methods described in

Chapter � have speci�cally been designed for generating curves that meet all points as close as pos�

sible� It can therefore not be expected that the removal of outliers is possible with parameterizations

generated by these methods�

Another di�erence is that splines have di�erent approximation properties than polynomials�

Because of the local control property of B�splines� it is to be expected that a spline approximation

locally changes to meet outliers better� and that the removal of outliers is therefore not as good

as in the polynomial case� On the other hand with splines it should be possible to create good

approximations to data sets with a more complex shape� The negative e�ects of the local control

property can partly be compensated by increasing the degree of the curve� and thus extending the

support of every basis function�

A �nal point to be aware of is that traditional �tting techniques for uncertain data involve the

use of di�erent norms for the minimization process� where a speci�c norm is selected according to

the expected error distribution of the data set� In particular� the L� norm is typically used for data

sets in which every data point is subject to a small� normally distributed error �
��� The L� norm

is well�suited for removing a small set of outliers from a set of data points with otherwise high

precision� Finally the L� norm is appropriate if every single data point is very precise�

In the context of B�spline approximation� the L� norm is traditionally the only norm used�

Consequently the form of B�spline approximation described in most of the literature is not well

suited for handling uncertain data with outliers� Figure ��
 shows a data set of 
� points sampled

from a logarithm� One of these points has been moved in order to simulate an outlier� It is clearly

visible that the approximating least�squares �t is trying to get close to the outlier� at the cost of

introducing a larger error on the rest of the curve�

In the following we will describe how the L� and L� norms can be applied to B�spline approx�

imation problems using a linear programming approach� This allows the e�cient combination of

B�splines with standard techniques for �tting uncertain data�
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Figure ��
� Quadratic least�squares approximation of a data set with a single outlier� Since the L�

norm penalizes large distances from single points� the curve tries to get closer to the outlier� at the

price of a larger error on the rest of the curve�

��� Fitting Using the L� Norm

The L� norm kxk� �
Pm

i�� jxij creates approximations that tend to ignore outliers� The reason is
that the use of the absolute value penalizes a small error in a lot of points more than a large error

in very few points� A curve created by an L� approximation therefore tries to be as close as possible

to as many data points as possible� while at the same time accepting a large error in a very small

number of points�

The L� B�spline approximation kB�C�Dk� of a data set can be reduced to a linear programming

problem �see Appendix B�� Introducing Bi as a shorthand notation for the i
th row�vector of B� the

B�spline approximation using the L� norm can be written as min
Pm

i�� jBT
i C�dij� The �rst step of

transforming this to a linear programming problem is to make the function linear by removing the

absolute value function� This can be achieved by introducing two vectors P and N of slack variables

pi and ni� Slack variables are additional variables that are introduced to �t a linear programming

problem into a speci�c form� This is a standard technique of linear programming�

Using these two vectors of variables� we can write

BT
i C � di � pi � ni � pi 	 �� ni 	 � �����
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The intention is to have

pi �

��
� BT

i C � di �BT
i C � di 	 �

� � otherwise
and ni �

��
� � �BT

i C � di 	 �
�BT

i C � di � otherwise

Using these de�nitions� the expression
mX
i��

pi � ni

becomes the function to minimize and Equation ��� becomes the constraint� We de�ne �n to be a

vector of n zeroes� and �n to be a vector of n ones� The linear programming problem for the L�

approximation can now be written as

Minimize

h
�n �m �m

i
�

�
���

C

P

N

�
��	

subject to

h
B �Idm Idm

i
�

�
���
C

P

N

�
��	 � D � pi 	 �� ni 	 �

This linear programming problem can be solved using the normal simplex method� An optimized

implementation of the simplex method for this speci�c problem could be created� considering the

special structure of the problem for the selection of pivot elements�

An L� �t using this method is shown in Figure ���� It contains the same data set as the least�

squares �t shown in Figure ��� above� The L� �t does a much better job in ignoring the outlier

and approximating the remainder of the curve� The �gure also shows a problem that the L� norm

sometimes has at the ends of the parameter interval� Since the leftmost point is relatively far away

from the other points� it is treated as an outlier as well� although its position is actually correct�
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Figure ���� The quadratic L� approximation mostly ignores the outlier� and yields a good approxi�

mation to the rest of the curve�

��� Fitting Using the L� Norm

As stated above� the L� norm kxk� � max������m jxij� also called maximum�norm� is particularly

good for �tting curves to data points that are very exact� The reason is that this norm penalizes a

large distance from a single point very strongly� The resulting curves consequently tend to distribute

the error evenly across the whole curve�

As with the L� norm� it is also possible to express the approximation problem for the L� norm

as a linear programming problem� The L� �t of some data points D � �d�� � � � � dm�
T is given as

max
i�����m

��di �BT
i � C

�� �
By de�ning c� �� maxi�����m

��di �BT
i � C

��� the approximation process can then be rewritten
as a linear programming problem� The expression c� becomes the objective function� while the

constraints are given as

c� 	 �
c� 	 di �BT

i � C 
 c� �BT
i � C 	 di

c� 	 �di �BT
i � C 
 c� �BT

i � C 	 di
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In matrix form this results to

Minimize h
�n �

i
�
�
� C

c�

�
	

subject to

�
� B �Tm

�B �Tm

�
	 �

�
� C

c�

�
	 	

�
� D

�D

�
	 � c� 	 �

By introducing a vector S of slack variables the problem can be rewritten into the following

form� which contains only equality and non�negativity constraints�

Minimize

h
�n � �m �m

i
�

�
������
C

c�

S

T

�
�����	

subject to

�
� B �Tm �Idm
�B �Tm �Idm

�
	 �

�
������
C

c�

S

T

�
�����	 �

�
� D

�D

�
	 � c� 	 �� Si 	 �� Ti 	 �

As in the case of the L� �t� the special structure of this problem could be used to implement

an optimized version of the simplex algorithm�

For the sake of completeness we show the L� approximation of the data set from the previous

sections in Figure ���� although the L� norm is inappropriate for data sets with outliers� We can
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Figure ���� The L� norm penalizes large errors in a single point even more than the L� norm� and

thus the approximation comes even closer to the outlier� while at the same time sacri�cing precision

on the rest of the curve�

see that the shape of the curve is even worse than in the least�squares case� and that the error is

distributed over the whole curve�

��� Reproducing B�Splines From Sampled Points

So far all arguments about the quality of an approximations have been very informal� mostly de�

scribing the resulting curve as being �good� or �pleasing� for certain applications� without a math�

ematical de�nition of what is �good� or �pleasing�� Unfortunately� there exist very few objective

ways of measuring the quality of an approximation in a general setting�

The goal of any approximation method is that the shape of the resulting curve be similar to

the shape of the function from which the data points were sampled� Thus� an important criterion

for the quality of an approximation method is under which circumstances is the result an exact

representation of the original function� In the case of B�spline approximation� we are interested in

the conditions under which a B�spline curve can be exactly reproduced from a set of data points�

The following theorem describes which information is required to make this possible�

Theorem ����� �Reproduction of B�splines with exact parameterization�

Suppose we are given m�� 	 n�� data points D � �d�� � � � � dm�
T that have been sampled from a
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degree d B�spline curve F �u� �
Pn

i�� ciBi�u� at parameter values �u�� � � � � um�� Suppose these values

have been chosen in such a way that the matrix B is of full rank� Then the degree d approximation

process using either the least�squares �L��� L� or L� norm and the original parameter values as

well as the original knot vector T yields the original control points C � �c�� � � � � cn�
T �

Proof� Since the data points have been sampled from the B�spline curve F �u�� the matrix equation

B�C � D holds for the B�spline matrix B � �Bi�uj�� and the control points C� Because the original

knot vector and parameterization is known� this matrix B is known as well� and can be used for

the approximation process� Consequently� the approximation problem is solved by a minimization

of kB � C � � Dk where k�k may be any of the above norms� and C � is the vector of the resulting

control points�

Using Bi as a shorthand notation for the i
th row vector of matrix B� the least�squares solution

C � obtained by the approximation process is then characterized as

min
C�

mX
i��

�
BT
i � C � � di

��
� min

C�

mX
i��

�
BT
i � C � �BT

i � C
��

Because M ��
Pm

i��B
T
i �C

� � C� is a sum of non�negative values� the minimal value that can

be expected is M � �� This value can actually be achieved by using the original control points

C � � C� In other words� the original control points are one possible solution to the minimization

problem� If we can prove that it is the only solution� we are done� because then it is clear that the

original control points C � � C will always be retrieved by the minimization process�

Since every term in the sum M �
Pm

i��B
T
i �C

� � C� is non�negative� M � � actually enforces

that every single term BT
i �C

� � C� � �� i � � � � � m� This gives us the linear equation system

B � �C � � C
�
� ��

Since it was assumed that the matrix B has full rank n � �� the only solution to this equation

system is C � � C � ��

A similar argument can be used to prove that the L� norm min
Pm

i�� jBT
i �C � dij and the L�

norm min
�
maxi�����m jBT

i � C � dij
�
reproduce the original control points� �

The consequence of this theorem is that B�spline curves with exact parameterization� knot

sequence� and degree can always be reproduced exactly as long as the sample points are chosen in

such a way that the matrix B is of full rank� It is important to note that the exact knot sequence
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is necessary and has to be provided� The knot vector represents the parametric values at which the

polynomial segments of the spline join together� This information can not be generated from a set

of discrete data points�

��� Surface Approximation Using Tensor�Product B�Splines

The methods for B�spline approximation described above can easily be extended to tensor�product

B�spline surfaces� In analogy to the tensor�product B�spline interpolation� the approximation pro�

cess can be described as minimizing the equation

B � C �D

whereB is a matrix of dimension �mu����m�v�����nu����nv���� Using a similar argumentation
as in Section 
��� this expression can be rewritten as the minimization of

Bu � �C �BT
v ��D�

Thus a tensor�product approximation can be obtained by sequentially solving the two minimization

problems

Bu �X�D ���
�

Bv �CT �XT ���
�

For the L� norm a solution can therefore be found by solving the equation

BT
uBu � �C �BT

vBv� � BT
u �D �Bv �

In order to apply the L� and L� norm to these two minimization problems� the norms have to

be transformed into the form of linear programming problems de�ned in Appendix B� This can be

achieved by rewriting the di�erence of matrices from Equation ��
 into a di�erence of vectors in

the following way� �
�������

Bu

Bu

� � �

Bu

�
������	 �

�
�������

x���

x���
���

xnu�nv

�
������	 �

�
�������

d���

d���
���

dmu�mv

�
������	
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The second minimization step Bv � CT �XT can be rewritten in the same way� Please note that

the resulting matrix is banded� and can therefore be handled e�ciently�

Using these equations� the tensor�product approximation can be computed by separately ap�

plying the linear programming approach described in Sections ��
 and ��� to the u and v direction�

As a consequence of this construction� the results from Theorem ����� directly translate to

tensor�product approximation�

Corollary � �Reproduction of tensor�product B�spline surfaces�

Suppose we are given a grid of �mu���� �mv ��� data points di�j that have been sampled from a

degree du� dv B�spline surface F �u� v� �
Pnu

i��

Pnv
i�� ci�jBi�u�Bj�v�� where mu 	 nu and mu 	 nu�

Suppose the parameter values �u�� � � � � umu
� and �v�� � � � � vmv

� have been chosen in such a way that

the matrices Bu and Bv are of full rank� Then the du � dv approximation process using either the

least�squares �L��� L� or L� norm and the original parameter values as well as the original knot

vectors Tu and Tv yields the original control points ci�j � �
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Rational Approximation Using

NURBS

The vast majority of existing interpolation and approximation methods only produce integral B�

spline curves and surfaces� However� rational B�splines provide more degrees of freedom for the

shape of a curve or surface� and thus have the potential of producing better �ts� NURBS are also

easy to implement� and are frequently used for modeling purposes�

Unfortunately� the use of rational splines for approximation and interpolation is not well un�

derstood at this time� In ���� Farin suggests formulating the rational interpolation problem as

follows� Given data points D � �d�� � � � � dm�
T � weights W � �w�� � � � � wm�

T and parameter values

�u�� � � � � um�� �nd the control points ci of the NURBS curve that interpolates data points di and

weights wi at parameter values ui� The approximation problem can be de�ned in a similar way�

A solution for such a rational interpolation or approximation problem is easily obtained from the

solution �ciw
�

i� w
�

i�
T of the integral problem for data points �diwi� wi�

T in homogeneous coordinates�

The weights are usually not provided with the data set� however� and hence the weight for each

data point has to be calculated �rst� This can be seen in analogy to �nding a parameterization in

cases where the exact parameterization is not known� Unfortunately� no algorithm for determining

a set of weights for a given data set is known to date� Any algorithm for this task would have to

determine the weights in such a way that the weights of all control points of the interpolant are

non�negative� This is a hard task� since the interpolation process in homogeneous coordinates could

��
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set some of these weights to zero or to negative values� even if the weights in all data points are

positive�

The lack of an algorithm for determining the weights practically renders the above approach

for rational �tting useless for most applications�

In this situation� a recent paper by Ma and Kruth ���� describes a di�erent approach for ap�

proximation with rational B�splines� Instead of trying to calculate the weights in the data points�

they describe a way of directly determining the weights in the control points as a preprocessing

step� The homogeneous form of the actual control points is then found by applying an integral

approximation method to data points widi�

��� Observation Equations and Weights

Following the original paper ����� we now brie	y describe how the weights in the control points of a

curve can be obtained as the results of a minimization process� The arguments are be presented for

approximations in a 
�dimensional vector space� but can easily be extended to other dimensions�

A NURBS curve F �u� with n� � control points ci has the following form

F �u� �

Pn
i��wiciBi�u�Pn
i��wiBi�u�

�

The evaluation of such a curve at m� � parameter values �u�� � � � � um� yields m� � equationsPn
i�� wiciBi�uk�Pn
i��wiBi�uk�

� dk� k � � � � � m�

Since the curve is assumed to be in 
�space� each of these equations actually denotes a set of three

separate observation equations

dxk

nX
i��

wiBi�uk� �

nX
i��

wic
x
iBi�uk��

dyk

nX
i��

wiBi�uk� �

nX
i��

wic
y
iBi�uk��

dzk

nX
i��

wiBi�uk� �
nX
i��

wic
z
iBi�uk��

We would like to write these equations in matrix form� and de�ne Cx �� �cx�w�� � � � � c
x
nwn�

T �
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Cy �� �c
y
�w�� � � � � c

y
nwn�

T
and Cz �� �c

z
�w�� � � � � c

z
nwn�

T as well as

Dx ��

�
����
dx�

� � �

dxm

�
���	 � Dy ��

�
����
dy�

� � �

dym

�
���	 � Dz ��

�
����
dz�

� � �

dzm

�
���	

The Cx� Cy and Cz are vectors containing the components of the control points in homogeneous

form� whileDx�Dy andDz are diagonal matrices containing the components of the sampled points�

Using these de�nitions� the resulting matrix form of the observation equations is

Dx �B �W � B � Cx�

Dy �B �W � B � Cy� �����

Dz �B �W � B � Cz�

These can further be rewritten into a single matrix system of dimension 
�m� ��� ��n� ���

�
���
B � � �DxB

� B � �DyB

� � B �DzB

�
��	


 �z �
A

�

�
������
Cx

Cy

Cz

W

�
�����	 �

�
���
�m��

�m��

�m��

�
��	 � ���
�

From these observation equations it follows that the approximation of m� � data points with

rational B�splines comes down to minimizing the left hand side of Equation ��
 according to some

norm� Unfortunately this equation system is rather large� It is� however� possible to manipulate the

equation system in such a way� that the weights can be calculated separately by solving a smaller

equation system� First� Equation ��
 is multiplied by AT � yielding�
������

BTB � � �BTDxB

� BTB � �BTDyB

� � BTB �BTDzB

�BTDxB �BTDyB �BTDzB M�

�
�����	 �

�
������
Cx

Cy

Cz

W

�
�����	 �

�
������
�n��

�n��

�n��

�n��

�
�����	 ���
�

where M� � BTD�
xB �BTD�

yB �BTD�
zB� Note that the multiplication by A

T does not change
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the rank of the equation system� Eliminating the �rst elements of the last row results in�
������
BTB � � �BTDxB

� BTB � �BTDyB

� � BTB �BTDzB

� � � M

�
�����	 �

�
������
Cx

Cy

Cz

W

�
�����	 �

�
������
�n��

�n��

�n��

�n��

�
�����	 �����

with

M �M� � ��BTDxB��B
TB����BTDxB� �

�BTDyB��B
TB����BTDyB� � �����

�BTDzB��B
TB����BTDzB���

Note thatM only depends on the data points and the B�spline basis functions� We have there�

fore managed to separate the weights from the control points� and can solve for them using the

homogeneous equation system M �W � �n�� of dimension �n� ��� �n� ���
Once a set of weights W has been found� the positions of the control points can be obtained

by applying the minimization methods described in Chapter � to the observation equations �Equa�

tion ����� Figure ��� compares the integral approximation of a sine wave from �� data points with

the rational �t� Both approximations use produce a cubic curve with 
 intervals� and have been

calculated using the L� norm�

��� Solving the Homogeneous Equation System

In order to obtain the weights W from Equation ���� a non�zero solution to the homogeneous

equation systemM �W � �n�� has to be found� Actually� a positive solution �i�e� one with wi � ��

is in general desirable� since negative weights� and especially the mixture of negative and positive

weights in the same curve� may result in singularities� which is not acceptable�

For general sets of data points it might not be possible to obtain a non�negative solution�

because the matrix M might well be non�singular� A solution only exists if the �n � �� � �n � ��
matrix M has rank�M� � n� If the rank of M is exactly n� the solution is unique up to a scalar

factor� Because scalar factors in the weights cancel out in the NURBS formula� the shape of the

approximating curve is uniquely determined by such a system� If� on the other hand� the rank of
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Figure ���� A comparison of a rational and an integral approximation� The rational approximation

nearly interpolates the data points� while the integral one shows a signi�cantly higher error�

M is smaller than n� the nullspace of M has a dimension larger than �� and thus the solution is

not unique�

Since it can not in general be assumed that the equation system actually has a solution� we

are forced to use a minimization algorithm to �nd a set of weights� In cases where more than one

solution is possible� the choice of the minimization algorithm determines which of the solutions is

selected�

The authors of ���� propose two methods for determining a set of positive weights as the least�

squares minimum of the equation system�

The �rst method is based on the singular value decomposition �SVD� see for example ��
��� The

SVD algorithm decomposes any matrix M into three matrices M � Q �D � PT � such that Q and

P are orthogonal� and D is a diagonal matrix with non�negative� decreasing entries� If the last p

entries of D are zero or negligible� then the dimension of the nullspace of M is p� In this case the

last p columns of P contain a basis for the nullspace�

If M is the matrix from Equation ���� any linear combination of these vectors can be chosen

as a set of weights� If p � �� that is� if the matrixM is not singular� simply the last vector of P is

chosen� It can be proven that this is a least�squares solution of the equation system ��
��

Another problem is that� even ifM is singular� the obtained weights might be negative or zero�

A set of positive weights might be obtained by choosing an appropriate linear combination of the
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basis vectors� If such a linear combination does not exist in the nullspace� it has been suggested

that additional vectors from P be added until a positive solution is possible�

However� it is not clear� how the coe�cients of a linear combination yielding positive weights can

be found� The authors of ���� therefore suggest a second algorithm� based on quadratic programming�

to �nd a set of positive weights� Quadratic programming is a method for solving minimization

problems with linear constraints� but a quadratic objective function� One way of solving quadratic

programming problems is to use an extension to the simplex algorithm for linear programming�

as described in Appendix B� The details about quadratic programming can for example be found

in �
� and �����

Using quadratic programming� a set of positive weights can be obtained by minimizing kM�Wk��
subject to wi 	 !w� where !w is some positive value� A typical choice would be !w � �� in which case

the smallest weight is �� Recall that a constant factor in the weights �and thus the value of !w� does

not have an e�ect on the shape of the curve�

Unfortunately� the use of the general quadratic programming algorithm on this problem is rather

ine�cient� Stated as a quadratic programming problem� our minimization problem takes the form

Minimize

wTMTMw

subject to

w 	 �

The ine�ciencies arise from formingMTM and the fact that the constraints have a very special

form� On the other hand� it is not clear why a least�squares solution for the weights should be

preferable to the solution obtained using some other norm�

Obvious alternatives for the least�squares norm include the L� and L� norms already described

in Chapter �� Using these norms� the weights can be obtained as the solution of a linear programming
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problem� which can in general be solved more e�ciently than a quadratic programming problem of

the same size�

Since the weights are required to be positive� additional constraints have to be added to the

linear programming problems presented in Chapter �� The minimization problem for obtaining L�

weights can be stated as

Minimize

h
�n �m �m �n

i
�

�
������
W

P

N

S

�
�����	

subject to

�
� B �Idm Idm

Idn �Idn

�
	 �

�
������
W

P

N

S

�
�����	 �

�
� D

�n

�
	 � pi 	 �� ni 	 �� si 	 �

The additional slack variables si are used to ensure that the smallest weight has a value of �

and is therefore positive� It should again be pointed out that the matrix of conditions� although

larger than the matrix from Section ��
� still has a special and very simple structure� which allows

for optimized solution methods�

A comparable extension to the L� problem presented in ��� can be stated in a similar fashion�

��� Analysis

It is clear that the evaluation of the quality of rational approximation methods is strongly depen�

dent on the quality of the determined weights� The approximation of the control points using the
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observation equations ��� after the weights have been found� has properties similar to the integral

approximation described in Chapter ��

Since the weights are computed as the solutions of the homogeneous equation systemM�W � ��

where M is the matrix from Equation ���� the rank of M plays an important role in the analysis

of rational approximation� The following lemma provides an upper bound for this rank� It uses the

dimension e of the space� and assumes that m 	 n� and that the matrix B is of full rank n � ��

Since these two assumptions were already necessary in the case of integral approximation� it follows

that they also have to hold for the rational case� This will be assumed throughout this section�

Lemma � �Rank of M�

An upper bound for the rank of M is given as

rank�M� � min�n� �� e�m � n��

Proof� In Equation ��
 the observation equation for a 
�dimensional NURBS curve with n � �

control points� evaluated at m� � data points was given as

�
���
B � � �DxB

� B � �DyB

� � B �DzB

�
��	


 �z �
A

�

�
������
Cx

Cy

Cz

W

�
�����	 �

�
���
�m��

�m��

�m��

�
��	

This equation can be generalized to spaces of di�erent dimensions e� The dimension of these

generalized matrices A is e�m� ��� �e����n� �� since B is of dimension �m� ��� �n� ��� The
rank of A is therefore limited by

rank�A� � e�m� ��

for under�determined systems� and

rank�A� � �e� ���n� ��

for over�determined systems� This rank does not change under the matrix transformations that

lead from Equation ��
 over Equation ��
 �multiplication by AT � to Equation ��� �elimination of
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row entries�� The matrix in Equation ��� is given as�
������
BTB � � �BTDxB

� BTB � �BTDyB

� � BTB �BTDzB

� � � M

�
�����	

with the obvious modi�cations for spaces with dimension e �� 
� Since it was assumed that B is of

full rank n�� � m��� the �n���� �n��� matrix BTB is also of full rank� Thus the upper part

of the above matrix has full rank e�n� �� as well� For under�determined systems this means that

the rank of M is bounded by

rank�M� � e�m� ��� e�n� �� � e�m� n��

while for over�determined systems

rank�M� � �e� ���n� ��� e�n� �� � n� �

holds� Since the matrix A is under�determined exactly in those cases where e�m�n� � n��� these

two results can be summarized as

rank�M� � min�n� �� e�m � n��

�

When comparing rational and integral approximation� it is an interesting question how many

control points are required in order to guarantee the interpolation of all data points� From Chapter 
�

it is known that in the integral case interpolation is achieved with n � � � m � � control points�

For the rational case� Lemma � helps proving the following theorem�

Theorem ����� �Interpolation of data points�

The rational approximation process with at least

n 	 em

e� �

control points yields a curve that interpolates all data points�

Proof� Interpolation is achieved if and only if all the observation equations from Equation ��� are
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ful�lled� This is equivalent to matrix A of Equation ��
 being of less than full row rank� which in

turn holds if and only if matrix M of Equation ��� is not of full rank n� �� From

n 	 em

e� �

 n 	 e�m� n�

and Lemma � it follows that rank�M� � n � n� � for n 	 �em���e � ��� �

Obviously� the higher the value of n� the lower the rank ofM will be� Consequently the dimension

of the nullspace increases and the resulting weights are no longer unique� In these cases� it depends

on the norm� which set of weights is generated by the minimization process�

The optimal case would be a rank of n� one lower than the full rank� In this case the nullspace has

dimension �� and the weights are determined uniquely up to a constant factor� This is of particular

importance when a NURBS curve is to be reconstructed from discrete sample points�

It is easy to show that� if the data points are sampled from a NURBS curve� the original weights

are always in the nullspace of M� and are therefore always one possible solution� as long as the

original parameterization of the original NURBS curve is used� The matrixM is a sum of terms of

the form

BT �D�
x �B� �BT �Dx �B� � �BT �B��� � �BT �Dx �B�

Since the parameterization is known� the matrix B in the approximation process is identical to the

matrixB in the observation equations� Thus the relationshipDx�B�W � B�Cx from the observation

equations holds� Multiplying the above matrix terms with W � and using this relationship yields

BT �Dx �B�Cx��BT �Dx �B���BT �B��� �BT �B�Cx � BT �Dx �B�Cx��BT �Dx �B��Cx � �

ThusM �W is a sum of zero vectors if W is the original vector of weights� or a multiple thereof�

Reconstruction of NURBS curves with exact parameterization is therefore guaranteed if the

rank of M is n� A necessary� however not su�cient condition for this is given by

m 	 n�
n

e

 n 	 e�m� n� 	 rank�M�

In other words� if less than n� n�e sample points are provided� the rank of M is always less than

n� and a unique solution can not exist�

Since no non�trivial lower bound for the rank of M is known at this time� it is unfortunately

not possible to state a su�cient condition that results in ��dimensional nullspace of M�
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It is questionable� whether such a lower bound exists� since the exact rank of M depends

on the components of the data points provided� For example consider a 
�dimensional curve in


�dimensional space� say the z � � plane� The matrix A from Equation ��
 then reduces to

A �

�
���
B � � �DxB

� B � �DyB

� � B �B

�
��	

Clearly the last row of block matrices has only rank n� � instead of m� �� Therefore the rank of

A is not full� and the resulting rank ofM is less than the value determined in Lemma �� While this

is an extreme example� it is clear that other data points can reduce the rank of the matrix as well�

��� Fitting With Tensor�Product NURBS

The algorithm for rational approximation presented above can easily be extended to tensor�product

surfaces� Using the de�nitions

B �� �bi�j� where bjnu�i�lnu�k �� Bu
i �uk�B

v
j �vl��

Cx ��
h
cx��� cx��� � � � cxnu�nv

iT
�

W ��
h
w��� w��� � � � wnu�nv

iT
and

Dx ��

�
�������

dx���

dx���
� � �

dxnu�nv

�
������	 �

the observation equations from Section ��� also hold for tensor�product NURBS� This leads to the

known homogeneous equation system

M �W � �

for the weights� The matrix M has dimension �nu � ���nv � �� � �nu � ���nv � ��� Its generation
involves a matrix product of the matrix B of dimension �mu����mv���� �nu����nv��� with its
transpose� Fortunately� B is sparse and is only multiplied by its transpose and by diagonal matrices�
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so that an e�cient formula for each element ofM can be found� and general matrix products need

not to be used�

After the weights have been obtained we can once again take advantage of the special structure

of tensor�product surfaces� We de�ne Bu and Bv as in Chapter 
 and Chapter �� Furthermore we

de�ne the �nu � �� � �nv � �� matrixW � �wi�j� and the �mu � �� � �mv � �� matrix D � �di�j��

Finally� we de�neDH as the component�wise product of the two �mu�����mv��� matrices D and

�Bu �W �BT
v �� This matrix DH is the right hand side of the observation equation for tensor�product

surfaces

nuX
i��

nvX
j��

wi�jci�jB
u
i �uk�B

v
j �vl� � dk�l �

nuX
i��

nvX
j��

wi�jB
u
i �uk�B

v
j �vl� � k � � � � � mu� l � � � � � mv

With this de�nition the homogeneous form C � �wi�jci�j� of the control points can be computed

from

Bu �C �BT
v � DH �
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Implementation

Based on the concepts described in the previous chapters� a framework for integral and rational

B�spline interpolation and approximation has been implemented in MAPLE� This package allows

for the generation of B�spline based approximations of functions or discrete data points for the

purpose of generating graphical plots of functions or sampled data�

The major design goal of this framework was a modular structure that allows for the easy ex�

change of the basic algorithms� in order to support experiments necessary for the research presented

in this thesis� Thus modularity usually took precedence over e�ciency where such a decision had

to be made�

The implementation itself is structured into three parts� The �rst part is the addition of ge�

ometric primitives for B�splines and NURBS to the existing plot data structure of MAPLE� This

allows to send spline data directly to the plot driver� That is� instead of approximate splines as

a sequence of lines or polygons� these extensions allow to send the control points and the knot

sequence to the plot driver� and thus provides the driver with an exact representation of the spline�

The spline extensions were implemented for the existing OpenGL driver for MAPLE �����

The second part consists of the actual framework for the implementation of the interpolation

and approximation methods described in Chapters 
 through �� This has been implemented as a

MAPLE library package�

Finally� the third part involves replacing the functions in the MAPLE plots and plottools

packages by spline based versions� This is the actual user�level programming interface for generating

plots inMAPLE� This part is mostly to be seen as a proof of concept� since only the most important

�
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functions like plot and plot�d have been re�implemented based on splines�

In the following we brie	y outline the basic design concepts behind the three parts of the

implementation�


�� NURBS Extensions for the Plot Data Structure of MAPLE

User�level plot functions like plot and plot�d store the geometry they generate in a MAPLE data

structure� called the plot data structure� Besides the actual geometry� this data structure contains all

the rendering attributes� such as drawing mode� color� line style and so on� The plot data structure

is accessible from the MAPLE programming language like every other data structure in MAPLE�

An example of a plot data structure containing two red points is shown below�

PLOT� POINTS� ��	�
	 ��	�
 �	 COLOR� RGB	 �	 �	 � � ��

Note the keyword PLOT� which denotes a data structure for 
�dimensional plots� A 
�dimensional

plot would use the keyword PLOT�D�

For the actual rendering� the plot data structure is converted to a more compact binary repre�

sentation as a C structure� and then transmitted to the plot driver� The driver then renders all the

geometric primitives in the plot structure with the appropriate rendering parameters�

The existingMAPLE plot structure provides points� connected lines� polygons� rectangular poly�

gon grids� and text as geometric primitives� In order to support NURBS curves and surfaces� two

new primitives were added� NURBS and TP NURBS� The NURBS primitive describes a potentially ra�

tional spline curve in two or three dimensions� while TP NURBS describes a tensor�product surface

in three dimensions only�

The arguments of the NURBS primitive are the degree of the curve� followed by the list of control

points and an optional knot sequence� If no knot sequence is present� the sequence

T �� ��� � � � � �
 �z �
d��

� �� � � � � k � �� k� � � � � k
 �z �
d��

�

is assumed� where k �� n� d is the number of spline segments� This convention makes it easy to

specify B#ezier�style NURBS curves� as the following example of a quarter circle demonstrates�
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PLOT� NURBS� 
	 ���	�
	 ��	�	sqrt����
	 ��	�

 � ��

The example also shows that the speci�cation of weights is optional� A default weight of � is

assumed if none is provided�

The general structure of the TP NURBS primitive is similar to the case of curves� However� the

control points for tensor�product surfaces form a grid� and are speci�ed as a list of lists� Di�erent

degrees and knot sequences for the u and v direction of the surface are also supported� They can

be speci�ed as a list of degrees or knot sequences� respectively� An example for a tensor�product

surface is shown below�

PLOT�D� TP NURBS� �
	�
	

� ���	�	�
	 ��	�	�
	 �
	�	�
	 ��	�	�

	

���	�	�
	 ��	
	�
	 �
	
	�
	 ��	�	�

	

���	�	

	 ��	�	

	 �
	�	

	 ��	�	


 
 � ��

These two new drawing primitives have also been added to the C variant of the plot data

structure� and are currently supported by the OpenGL plot driver ����� The NURBS support

in the OpenGL driver has been implemented using the NURBS facilities in OpenGL� The other

MAPLE plot drivers do not support splines at this point� and simply ignore the additional draw�

ing primitives� Spline support for these drivers could easily be implemented using subdivision or

forward�di�erencing algorithms ���� This is� however� beyond the scope of this thesis�


�� A Framework for Integral and Rational B�Spline Fitting

The actual spline �tting is implemented as a MAPLE package� and can be loaded like normal

library packages� The interpolation code generates plot data structures� which normally contain the

geometry directly represented in terms of the NURBS primitives de�ned in the previous section�

Since these primitives are not yet supported by most drivers� it is alternatively possible to generate a

plot data structure that contains only lines and polygon grids� and which can therefore be rendered
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Figure ���� Dependency graph of the modules in the framework�

by all existing drivers� This feature was used to generate most of the �gures in this thesis with the

help of the PostScript driver�

The framework of modules making up the package is divided into three layers �see Figure �����

The lowest layer contains three modules of support functions� a B�spline package and one module for

linear programming and quadratic programming� respectively� The module for linear programming

contains an extended version of the standard MAPLE linear programming facilities� The B�spline

module contains an implementation of the basis functions� and of integral as well as rational spline

curves and surfaces� based on MAPLEs piecewise functions�

The intermediate layer is itself structured into a layer of support modules and the actual �tting

modules� The former consists of a module of end conditions for interpolation� a module of minimiz�

ers for the approximation process� and another set of minimizers for determining the weights for

NURBS �tting� It also provides a set of metrics for the parameterization algorithms� Each of these

modules contains implementations for all algorithms described in the corresponding chapters�
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The modules for the actual spline �tting are one module for B�spline interpolation� one for

B�spline approximation and one for NURBS �tting� Each of these modules handles both curves

and tensor�product surfaces� There also exists a module that contains all the parameterization

algorithms described in Chapter ��

The selection of the di�erent algorithms is done with a scheme of callback functions� For example

there is one callback that speci�es which metric is to be used for generating the parameterization�

This way� it is easy to exchange the Euclidean metric with the a�ne invariant one by simply

changing the callback� A similar mechanism applies to the selection of a norm for minimization� a

norm for determining the weights� and an end condition�

It is important to note that the spline �tting functions on this level do not directly use the

parameterization methods themselves� Instead� they expect a vector of parameter values as one

of their arguments� It is the user�level functions forming the third layer� which actually choose a

parameterization� and pass it on to the second layer functions� This allows for the use of the exact

parameterization where it is available�


�� Spline Replacements of MAPLE Library Functions

The user�level module contains a relatively small set of functions that are modeled after the most

important existing MAPLE library functions� Most importantly� these include functions for gener�

ating both curves and surfaces� for both discrete data and continuous functions� The remaining

library functions of the plots and plottools packages do either not generate geometry� or would

not require techniques that are signi�cantly di�erent from the ones already used�

The functions that have been implemented support the full repertoire of options for 
�

dimensional and 
�dimensional plots� as de�ned in ���� In addition� a few new parameters have

been de�ned� which in	uence the selection of algorithms and several other parameters that have

been discussed in previous chapters� A complete list of the new options� as well as a description of

the implemented functions can be found in Appendix C� The following is an example for generating

a 
�dimensional plot showing a B�spline approximation of a sine curve on the interval ��� 	��
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SplinePlot� sin�x�	 x����Pi	 color�red	 degree�
	 segments��	 linestyle�
 ��

The spline curve generated by this line will have 
 segments of degree 
 and will be rendered in

red� using a dotted line style� Note� how the newly introduced options degree and segments are

used together with the standard MAPLE options color and linestyle�
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Results

In Chapters 
 through � we have presented a set of algorithms for di�erent parts of spline �tting� In

this chapter we conclude by summarizing the e�ects of the di�erent algorithms and showing results

that have been obtained during experiments with the framework described in Chapter �� Since

at this stage every algorithm has only been considered in isolation� we also discuss how di�erent

parameters of the �tting process correlate�

��� Parameterization

We start by having a more detailed look at the di�erent parameterization techniques� In Chapter �

the di�erent parameterization methods have been presented in the context of the interpolation

problem� However� no statement has been made about the quality of these methods for spline

approximation�

Fortunately� it turns out that the parameterization methods are relatively independent of the

�tting algorithm� That is� a parameterization that works well for interpolating a speci�c set of

data points usually also performs well for integral and rational approximation of the same data

set� In other words� the angular and the area based parameterization techniques are usually prefer�

able over other techniques like chord�length or centripetal parameterization� A comparison of the

parameterization techniques applied to an approximation problem is shown in Figure ����

An interesting data set for comparing di�erent parameterization methods is shown in Fig�

ures ��
� ��
 and ���� It consists of � points� the �rst and the last � of which are collinear� The

��
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Figure ���� A comparison of the di�erent parameterization schemes for approximation� From bottom

to top� chord�length� centripetal� angular and area based parameterization�

two lines form a right angle� and the chord between the fourth and the �fth point is very short

compared to the other chords�

The reason why this data set is so interesting� is that it is very ill�conditioned� On the one hand�

the fourth and the �fth point are very close together in comparison to the other data points� and

therefore the corresponding parameter values should be close together as well� On the other hand� a

sharp turn occurs between these two points� so that the curve should slow down� This corresponds

to parameter values that are further apart�

In Figure ��
 the Euclidean metric has been used for all parameterizations� The centripetal

method and the angular algorithm produce equally good parameterizations for this data set� The

chord�length method does not take the sharp turn into account� and therefore places the fourth

and the �fth parameter value too close together� This leads to the introduction of artifacts on the

interpolant�

The uniform parameterization� on the other hand� places the two parameter values too far

away from each other� and thereby introduces a loop in the curve� which can better be seen in the

closeup in Figure ��
� Also visible in the closeup is a sharp corner that is generated by the angular

parameterization method�

Figure ��� depicts the results of using the a�ne invariant metric for all parameterization meth�
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Figure ��
� A comparison of the parameterization schemes using the Euclidean metric� The param�

eterization schemes �from bottom to top� are uniform� chord�length� centripetal� angular and area

based parameterization�

Figure ��
� A closeup of Figure ��
�
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Figure ���� The same data set as used in Figure ��
� now with the a�ne invariant metric�

ods� The result of the centripetal parameterization is further improved by this change� while the

remaining parameterizations keep roughly the same characteristics�

An example where the a�ne invariant metric signi�cantly improves the result is given in Fig�

ure ���� It contains data � points di � �xi� yi�
T with xi � i and yi � � except for y�� which is ��� The

interpolation of this data set using the angular parameterization and both the Euclidean and the

a�ne invariant metric produces a thin peak� If the data is sheared and scaled so that d� � ��� ��
T �

the Euclidean metric causes a loop in the curve� The interpolation using the a�ne invariant metric

on the same data set yields the sheared version of the original interpolant �for better visibility

Figure ��� actually shows the symmetric problem d� � ��� ��
T for the a�ne invariant metric��

��� End Conditions and Degrees of Interpolants

End conditions have a very strong in	uence on the shape of an interpolant� and the wrong choice

of conditions for a particular data set can cause unacceptable results� For even degrees� none of the

end conditions presented in Chapter 
 seems to be able to produce good results� The reason is that

for even degrees d� the number d � � of required end conditions is odd� This means that on one



��
� End Conditions and Degrees of Interpolants �


Figure ���� The e�ect of applying the a�ne invariant metric to sheared data� The central peak is

generated using the original data set� If the Euclidean metric is used� a loop is generated for the

sheared data set� while with the a�ne invariant metric the result is a shearing of the original curve�

side of the curve more end conditions have to be speci�ed than on the other side� The result are

unacceptable artifacts that are introduced on the side of the curve where less conditions have been

speci�ed� This is particularly disturbing if the original data set is symmetric� Such a situation is

depicted in Figure ����

The �gure shows interpolants of di�erent degrees for the data set from the previous section�

The angular parameterization scheme has been used for all interpolations� For even degrees� one

more end condition has been speci�ed on the left side than on the right side� While the interpolants

of odd degree are smooth and symmetric� those of even degree show large artifacts on the right

side� For this particular �gure� not�a�knot end conditions have been used� but similar results are

achieved with the other end conditions�

In cases where the user has complete control over the interpolation process� the situation for

even degrees can be improved� by applying the last �end condition� in the center of the curve� All

methods described in Section 
�
 can be applied at an arbitrary parameter value� However� it is

not clear how a good parameter value for the last end condition could be found automatically� The
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Figure ���� For even degrees the number of end conditions is odd� This leads to unacceptable

artifacts on the side of the curve� on which less end conditions have been speci�ed� �From bottom

to top� degree 
 to ���

center of the parameter interval is a good choice if the data set is symmetric� but for asymmetric

data it might be as bad of a choice as one of the ends of the curve�

��� Interpolation Versus Approximation

Because of these restrictions� it seems questionable whether B�spline interpolation can be used for

representing arbitrary functions in mathematical plots� B�spline interpolation certainly has its place

in applications where suitable end conditions can be speci�ed by the user� or arise naturally from

the problem domain�

However� the plot systems in mathematical applications like MAPLE require a robust algo�

rithm which� without human intervention� produces good representations for a very large variety of

functions� The problem of selecting good end conditions and the tendency of interpolation meth�

ods to introduce high frequencies between the data points� seriously restrict the use of B�spline

interpolation for this task�
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B�spline approximation� on the other hand� does not su�er from these de�ciencies and is well�

suited for representing smooth curves� However� care has to be taken in the selection of the number

of sample points and the number of spline segments that are used for the approximation� If these

numbers are too low� high�frequency detail of the original curve is lost�

Mathematical functions with discontinuities could be handled by �nding the discontinuities �rst�

and then generating a spline representation for each continuous piece of the curve� This removes too

high frequencies which can not be handled by the approximation algorithm� The code for locating

discontinuities is already available in the current MAPLE library ���� and can optionally be used to

improve line�based approximations in the current plot system�

Using this strategy� B�spline approximation is a much more robust algorithm than interpolation�

Especially in cases where the original parameterization of the data set is known� it constantly

produces �ts of high quality� Since it is also more e�cient than B�spline interpolation� it is preferable

for our purposes�

��� Integral Versus Rational Fitting

The already good results of integral B�spline approximation can further be improved using rational

splines� In the experiments we have performed the rational approximation always produced at least

as good results as the integral approximation� In rare cases all the generated weights were equal�

so that the resulting curve was identical to the integral �t� This was mostly the case for data sets

that had been sampled from an integral B�spline curve�

Of course the use of rational splines is particularly interesting for functions that have an exact

representation as a NURBS curve but not as a B�spline curve� for example arbitrary conic sections�

The quality of the rational �t depends on the parameterization that is used� Even rational �tting

with exact parameterization can only generate the exact representation of the conic if the conic is

parameterized the right way�

For example� a quarter circle in the �rst quadrant could either be given as the points

�cos���� sin����T � where � � �� � � � 	�
�� or in the NURBS representation with control points ��� ��T �
��� ��T and ��� ��T � as well as weights ���

p

�
� ��� and a knot sequence of ��� �� �� �� �� ��� The ratio�

nal �tting process with exact parameterization only retrieves the exact quarter circle if the data

points were sampled from the second representation�



���� Integral Versus Rational Fitting ��

Figure ���� An approximation of a quarter circle with integral B�splines �top� and NURBS �bottom��

The exact quarter circle is shown in the center�

If the �rst representation is used� the rational �tting algorithm determines the weight of the

second control point as approximately ��� �as opposed to
p

�
 � ������� This result is independent

from the norm used for obtaining the weights �L�� L� and L��� The resulting curve is shown in

Figure ��� together with the integral approximation�

We found that� in practice� all conic sections that are parameterized as B�spline curves can be

reconstructed using the exact parameterization and at least m� � � � 	 n� dn�ee sample points�
Note that this only holds for conics� that is� for quadratic NURBS curves with one segment�

As mentioned in Chapter �� a lower bound for the rank of the matrix used to determine the

weights is not known� and thus a su�cient condition for the reproduction of arbitrary NURBS can

not be formulated�

Despite this restriction� rational �tting often signi�cantly improves the shape of the curve� It

is worth mentioning that throughout all our experiments not a single case was found� in which

rational approximation actually produced worse results than integral approximation� Therefore�

the decision between integral and rational approximation has to be made based on whether the
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improvement in quality is worth the performance penalty for determining the weights�

��� Performance

Due to the prototype�character of the implementation and some ine�ciencies in parts of theMAPLE

library that were heavily used through this project� it is hard to make a statement about the relative

performance of the di�erent algorithms� In particular� the implementation of B�splines relies on the

facility for piecewise functions in MAPLE� Unfortunately� piecewise functions are very slow in the

version of MAPLE that was used for the implementation� For example� the evaluation of a cubic

B�spline curve with �� segments at �� points could take up to 
� seconds on a DEC Alpha system�

The reason for this slowness is that piecewise functions in the available version of MAPLE had

been implemented on a high level in the maple library� In the mean time� piecewise functions have

been re�implemented on a lower level� and make now use of di�erent optimizations in the MAPLE

kernel� These changes signi�cantly improved the performance of piecewise functions� Unfortunately�

they are incompatible to the older MAPLE kernel that was available for this thesis� and could

therefore not be used�

Without these changes in the library� integral B�spline �tting of �� data points with �� B�spline

segments of degree 
 takes approximately � seconds with the least�squares norm� and around ��

seconds for the L� and L� norms� These times could be signi�cantly improved by using speci�cally

tailored algorithms for solving the linear equation systems and the linear programming problems�

The combinations of these changes with the faster implementation of piecewise functions should

allow for acceptable performance in generating mathematical plots�

The additional overhead for doing a rational approximation turns out to be roughly a factor

of two for the L� and L� norm� and a factor of three for the L� norm �using singular value�

decomposition for determining the weights�� A table of the measured times is shown below �times

are rounded to seconds��
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Norm Points Segments Time �integral� Time �rational�

L� �� �� �� 
�

L� �� �� � 



L� �� �� �� 
�

Keep in mind that the implementations of the minimization algorithms� that is� for the simplex

algorithm and the singular value decomposition� have not been optimized at all� Signi�cant perfor�

mance improvements would be possible if these algorithms were implemented in such a way� that

all computations are done in a purely numeric fashion�

��� Conclusions and Future Work

In this thesis we have discussed several ways of representing mathematical functions as integral or

rational B�splines� A system has been implemented on top of the computer algebra system MAPLE�

which uses these representations to generate resolution�independent mathematical plots� and thus

provides a wide range of tradeo�s between image quality and performance in the actual rendering

step�

In order to generate these representations� several algorithms including B�spline interpolation

and approximation� as well as rational spline �tting have been evaluated�

B�spline interpolation �Chapter 
� is a widely used technique for �tting spline curves through

a set of discrete data points� The speci�c way in which the B�spline knot sequence is selected

for this task introduces additional degrees of freedom that can be speci�ed using end conditions�

While these end conditions can be useful in applications where they can be speci�ed as additional

constraints by the user� the sensibility of the interpolation algorithm to these constraints makes

B�spline interpolation inappropriate for automated processes�

An alternative to interpolation is B�spline approximation �Chapter ��� where more data points

are speci�ed than control points are available� Since this leads to an over�determined equation

system� which can not in general be solved� an approximation to the data has to be found by

minimizing the error according to a norm� While almost all the available B�spline literature uses

the least�squares �L�� norm for this task� it has been shown� that the L� and L� norm can also
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be useful� especially for �tting uncertain data� The minimization problem using either of these

two norms can be formulated as a linear programming problem� and can thus be solved using the

well�known simplex algorithm�

Finally� the possibility of using rational B�splines �NURBS� for the approximation process has

been explored �Chapter ��� In this algorithm the weight of every control point is obtained from a

constrained minimization process that takes place before the actual curve �tting� Possible norms for

this constrained minimization are again L�� L� and L�� L� and L� minimizations can be achieved

using linear programming� while the L� norm requires quadratic programming�

The analysis of the rational �tting algorithm yields su�cient conditions for obtaining interpo�

lation of the data points� and necessary conditions for the reconstruction of NURBS curves from

discrete sample points� Further research is necessary to �nd su�cient conditions for the reconstruc�

tion of NURBS and conic sections� Results in this area could possibly be achieved by considering

the special structure of the B�spline coe�cient matrix B�

For interpolation and approximation problems in which the original parameterization is not

known� a set of algorithms for determining the parameter value of each data point has been

presented �Chapter ��� Unfortunately� the parameterization algorithms that work best �i�e� the

angular and the centripetal parameterization� are mostly heuristic methods� and there is only a

limited understanding on why they work well� An attempt has been made to modify the angular

parameterization so that its contributing factors are geometrically meaningful and thus easier to

understand�

Future research in the area of parameterization schemes could involve the development of more

theoretically based parameterization methods� Another interesting research topic would be to try

to develop a parameterization scheme that reproduces the exact parameterization for data that is

sampled from integral or even rational B�splines� That is� given a set of data points� and assuming

that these points have been sampled from a B�spline� the method would attempt to generate the

parameter value that each point has on the spline�

In summary� we have presented a set of algorithms for representing mathematical functions

as splines� We have also created a working prototype implementation of the algorithms described

throughout the thesis� For the inclusion of these concepts in a commercial product� however� a

substantial amount of optimizations is still necessary�
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Derivatives of B�Splines

The derivatives of B�spline curves and surfaces are of importance for determining end conditions for

curve and surface interpolation� Fortunately it turns out that these derivatives are linear functions

in the control points� and can be interpreted as B�spline curves or surfaces of a lower degree� As a

consequence� the computation of these derivatives is relatively simple and e�cient� We sum up the

most important facts about B�spline derivatives in the following�

From the construction of B�splines� it is clear that the derivative of the basis function plays an

important role in determining the derivative of spline curves and surfaces� The following lemma

describes the formula for the derivative of a basis function� The proof of this lemma is relatively

straightforward and can be found in most of the B�spline literature� for example in ����

Lemma � �Derivative of the B�spline basis functions�

The derivative of the B�spline basis functions Nd
i �u� T � is given by

d

du
Nd
i �u� T � �

d

ti�d � ti
Nd��
i �u� T �� d

ti�d�� � ti��
Nd��
i�� �u� T �

Proof by induction over the B�spline recursion formula� �

The importance of this lemma lies in the fact that the derivative of a basis function of degree

d is the linear combination of two basis functions of degree d � �� Recursive application of this
formula yields higher order derivatives�

By applying this formula to the de�nition of B�spline curves� we can calculate the derivative of

those curves�

��
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Theorem A���� �Derivative of a B�spline curve�

The derivative of a B�spline curve of degree d with knot vector T � �t�� � � � � tn�d��� is given by

d

du
F �u� � d

n��X
i��

�ci � ci���

�ti�d � ti�
Nd��
i �u� T �

where the extra control points c�� � cn�� � � have been introduced to simplify the result�

Proof�

d

du
F �u� �

d

du

nX
i��

ciN
d
i �u� T � �

nX
i��

ci
d

du
Nd
i �u� T � �

�
nX
i��

ci



d

ti�d � ti
Nd��
i �u� T �� d

ti�d�� � ti��
Nd��
i�� �u� T �

�
�

� d

�
nX
i��

ci
ti�d � ti

Nd��
i �u� T ��

nX
i��

ci
ti�d�� � ti��

Nd��
i�� �u� T �

�
�

� d

�
nX
i��

ci
ti�d � ti

Nd��
i �u� T ��

n��X
i��

ci��
ti�d � ti

Nd��
i �u� T �

�

Setting c�� � cn�� � � yields the result stated above� �

In a similar fashion we can derive the partial derivative of a tensor�product B�spline surface�

Corollary � �Derivative of a tensor�product B�spline surface�

The partial derivatives of a tensor�product B�spline surface of degree du � dv with knot vectors

Tu � �t
u
� � � � � � t

u
nu�du��

� and Tv � �t
v
�� � � � � t

v
nv�dv��

� are given as follows

�

�u
F �u� v� � du

nu��X
i��

nvX
j��

ci�j � ci���j
tui�du � tui

Ndu��
i �u� Tu�N

dv
j �v� Tv�

�

�v
F �u� v� � dv

nuX
i��

nv��X
j��

ci�j � ci�j��
tvj�dv � tvj

Ndu��
i �u� Tu�N

dv
j �v� Tv�

Since we can separate the sums for the u and the v direction� the proof is analogous to the curve

case� �

Unfortunately� the situation is signi�cantly harder in the case of rational splines� Since a rational

spline is the projection of a integral spline from a higher dimension� rational splines can have

discontinuities� Also� it is not possible to represent the derivative as a linear function in the control

points� While a relatively simple closed form exists for the �rst derivative� a recursion formula has

to be used for higher order derivatives �����
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Linear Programming

A linear programming problem ���� consists of an objective function that is linear in some variables�

and a set of equality and inequality constraints that are linear in the same variables� The goal of

linear programming is to determine values for the variables that minimize the objective function

while at the same time ful�lling the conditions� This problem may be solved using the simplex

algorithm or a modi�cation thereof�

For the purposes of this thesis� only a speci�c form of linear programming problems will be

considered� which can be directly used with MAPLE� Using X �� �x�� � � � � xm�
T as the vector of

variables� this particular form� called standard form ����� can be written as

Minimize

QT �X � q�

subject to

A �X � B

In addition some of the variables xi may be restricted to non�negative values� xi 	 ��

�
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Although this speci�c form is a restricted version of the more general linear programming

problem� it is as powerful as the full version� since problems with arbitrary linear conditions can

be rewritten into the above form by introducing additional variables� called slack variables�

An example for this kind of transformations is the replacement of inequalities in the side con�

ditions� Every inequality a � x 	 b can be rewritten as a � x � s � b with the additional condition

s 	 �� Applying this trick to a linear programming problem of the form

Minimize

QT �X � q�

subject to

A �X 	 B

yields a new linear programming problem in standard form�

Minimize

h
QT �

i
�
�
� X

S

�
	� q�

subject to

h
A �Id

i
�
�
� X

S

�
	 � B � si 	 �



Appendix C

The User�Level Interface of the Spline

Fitting Library

In the following we brie	y describe the user�level functions that have been implemented� The

additional options that have been introduced for these functions are then listed in Section C�
�

C�� User�Level Functions

The user�level functions� which are described in the following� are mostly based on existing plots

and plottools packages that are part of the MAPLE library�

� SplinePlot

This is a replacement for the function plot and the continuous version of spacecurve from

the MAPLE library� The function to be plotted can be speci�ed in one of four ways�

SplinePlot� f�x�	 x�a��b �� � 
�dimensional only

SplinePlot� f	 a��b �� � 
�dimensional only

SplinePlot� �x�t�	 y�t�
	 t�a��b �� � or the ��dimensional equivalent

SplinePlot� �x	 y
	 a��b �� � or the ��dimensional equivalent

��
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� SplinePlot�d

This function replaces plot�d from the MAPLE library� It �ts a tensor�product spline surface

through a function that is de�ned over a rectangular parameter domain� The four variants

are

SplinePlot�d� f�x	y�	 x�a��b	 y�c��d ��

SplinePlot�d� f	 a��b	 c��d ��

SplinePlot�d� �x�s	t�	 y�s	t�	 z�s	t�
	 s�a��b	 t�c��d ��

SplinePlot�d� �x	 y	 z
	 a��b	 c��d ��

� SplineCurve

This function �ts a curve through a set of discrete data points that are supplied in a list� It

is therefore comparable to the discrete version of the library function spacecurve� although

it also handles 
�dimensional curves�

� SplineSurface

This is the equivalent to SplineCurve for surfaces� Thus it is a replacement for surfdata�

� SplineMatrix

This function takes a matrix� and interprets the values as heights over the z � � plane� It is

comparable to matrixplot�

� SplinePlotOptions

This function allows global changes to the default of the additional options described in the

next section� In addition� it allows changes to the callbacks for the underlying algorithms�

This is done using the additional parameter options

� parameterization� the function that generates the parameterization� Currently avail�

able are uniformParam� chordLengthParam� centripetalParam� angularParam and

areaParam�

� metric� the metric used for some of the parameterizations� Possible values are

euclideanMetric and affineInvariantMetric�



C�
� Additional Parameter Options ��

� endcondition� the algorithm for end conditions used in interpolations� Currently

available are naturalEndcond� quadraticEndcond� notAKnotEndcond� besselEndcond�

closedEndcond and multiplePointEndcond� as well as clampedEndcond� which has to

be supplied with actual tangent vectors for the left and the right side of the curve�

� weightMinimizer� the minimizer used for the weights �weightsL�� weightsL
 and

weightsLinf��

� fitMinimizer� the minimizer used for the control points �fitL�� fitL
 and fitLinf��

C�� Additional Parameter Options

The following list describes the additional options that are available for the spline �tting functions�

The original options from plot and plot�d �see ���� are still available�

� numpoints �integer�

In analogy to plot� speci�es the number of sample points used to approximate a curve� The

default is 
��

� grid �integer list�

Speci�es the number of sample points in u and v direction� similar to the use in plot�d� The

default is ��� ���

� degree �integer�

The degree of the B�spline or NURBS curve� The default is 
�

� segments �integer�

The number of B�spline segments� The default is ��� which stands for interpolation �n � m��

� rational �boolean�

Speci�es whether integral or rational splines should be used� The default is false� for integral

splines�

� nurbsextension �boolean�

This option speci�es whether the NURBS extensions to the plot data structure should be

used or not� The default is true�
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