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Abstract

Di
erent program understanding algorithms often use di
erent representational frameworks and
take advantage of numerous heuristic tricks� This situation makes it is di�cult to compare these
approaches and their performance� This paper addresses this problem by proposing constraint sat�
isfaction as a general framework for describing program understanding algorithms� demonstrating
how to tranform a relatively complex existing program understanding algorithm into an instance
of a constraint satisfaction problem� and showing how this facilitates better understanding of its
performance�

Plan recognition is the task of interpreting the actions of agents in the environment� in the

context of the knowledge we possess about how action occurs in the world� and why� The recogni�

tion task involves constructing a mapping� possibly partial� between an existing repository of plan

and domain knowledge and a set of dynamic observations of a subset of the actions taken toward

a goal� Program understanding can be viewed as a special case of plan recognition� where the task

is to recognize the plans programmers have used in constructing a particular piece of legacy source

code� However� program understanding di
ers from generalized plan recognition in that a complete

set of action observations is the basis of goal determination� This paper discusses� in detail� how

this di
erence leads to inadequacies in applying typical plan recognition algorithms to program

understanding� Program understanding can instead be viewed as a special case of plan recognition

which is particularly amenable to constraint satisfaction techniques�
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Chapter �

A Constraint�Satisfaction Framework

for Evaluating

Program�Understanding Algorithms

Introduction

Over the past decade� researchers have proposed and implemented a wide variety of plan�
based program understanding algorithms �Quilici ���	� Kozaczynski � Ning ���	� Kozaczyn�
ski � Ning ����� Wills ����� Wills ����� Hartman ����� Johnson ��

�� While some of these
research e�orts have presented promising empirical results in mapping plan libraries to rea�
sonably sized �up to ���� lines� legacy source code�Wills ����� Quilici � Chin ����� Woods
� Yang ����b�� none have been clearly demonstrated�either analytically or empirically�as
scaling up for use in understanding real�world legacy systems� In addition� little work has
been done in comparing the relative performance of these approaches or analyzing in detail
the similarities and di�erences between these algorithms� In part� this situation has resulted
because the algorithms tend to be based upon di�erent representational frameworks �such as
�owgraphs� components and constraints� regular expressions and transformation rules� and
so on� and to use collections of heuristic tricks to improve performance �indexing� specialized
rule and constraint ordering� and so on��
As a consequence� it is di�cult to systematically compare these di�erent approaches or

to understand how their performance will be a�ected by variants in the plan library �such
as adding large numbers of new plans� or programs being understood �such as changing the
distribution of basic syntax tree items and the dependency relationships between them�
What is needed is a framework for describing these algorithms that allows ready empirical

and analytical comparisons of their behavior� In earlier work �Woods � Yang ����b� Woods
� Yang ����a�� Woods and Yang demonstrate how a particular approach to program under�

	



standing can be viewed as a constraint satisfaction problem �CSP��� It is therefore natural
to wonder whether other� existing program understanding algorithms� despite their di�er�
ing representations and heuristic tricks� can also be mapped into this constraint satisfaction
framework� If this framework is su�ciently general to unify these approaches� then we can
take advantage of it to compare their relative performance and better understand where
these algorithms succeed and fail in attacking the program understanding problem� In ad�
dition� we can potentially achieve improved scalability of these approaches by augmenting
them with the mechanisms developed for e�cient heuristic solving of di�erent classes of con�
straint satisfaction problems� These mechanisms range from ranging from global�Kondrak �
van Beek ����� and local search�based methods�Sosic � Gu ����� Minton� Johnston� Philips
� Laird ����� Yang � Fong ������ constraint�propagation problem simpli�cations�Nadel
��
�� Dechter ����� Prosser ������ hierarchical exploitation of problem structure�Freuder �
Wallace ������ as well as hybrid combinations of these approaches�
This paper demonstrates how one well�known heuristic algorithm for program under�

standing can be placed within a constraint satisfaction framework� how this improves our
understanding of its performance� and shows how this viewpoint facilitates comparing its
performance with other program understanding algorithms� Section � describes this algo�
rithm� Section � provides an overview of how program understanding can be viewed as a
constraint satisfaction problem� Section � shows how an existing algorithm can be turned
into a constraint satisfaction problem� while preserving both its representational framework
and heuristic tricks� Section 	 discusses the performance of a key aspect of this constraint
satisfaction approach� Section � describes our future research path and our conclusions from
our current work�

��� An Existing Plan�Based Program Understanding

Algorithm

This section describes an existing plan�based program understanding algorithm �Quilici
���	�� This algorithm was derived from studies of users doing bottom�up understanding
on functions in C code �Quilici ����� and used in a cooperative program understanding en�
vironment �Quilici � Chin ������ As a result� it has a variety of heuristic tricks to make it
more e�cient to help it model the behavior of these users and to ease the e�ort required in
providing program plans�
This algorithm�s representation of a program plan was based on the Concept Recognizer

�Kozaczynski � Ning ���	� Kozaczynski � Ning ������ The Concept Recognizer divides
plans into two parts� a description of the plan�s attributes �which are instantiated when a plan
instance is recognized� and a set of common implementation patterns� It represents these
code patterns as a combination of components �the particular language items or subplans that

�See �Kumar ����� for an overview of constraint satisfaction�
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must be recognized to have a potential instance of the plan� and constraints �the relationships
that must hold between these components��
Given this representation� the Concept Recognizer takes a library�driven approach to

recognize plans� It takes each code pattern in a plan library� matches its components against
the program� and then applies constraints to the set of candidate plans �actually� it tries to
interleave constraint checking and matching�� When a component can itself be a plan� the
algorithm recursively tries to recognize instances of that plan�
The Concept Recognizer�s representation of plans is both simple and clear and the al�

gorithm is successful at recognizing plans in real�world COBOL programs� However� the
algorithm is slow and does not scale well� either with program size or plan library size
�Kozaczynski � Ning ���	�� DECODE�s program understanding algorithm tried to address
these problems in two ways� First� it is code�driven �bottom�up� rather than library�driven
�top�down�� While library�driven approaches consider all plans in the library� code�driven
approaches consider only the subset of those plans that contain already�recognized compo�
nents� Second� it relies on an extended plan representation that supports careful indexing
and organization of the plan library to reduce the number of constraints that must be eval�
uated and the amount of matching that must take place between the code and the plan
library�

Representation

Figure ��� contains several examples of DECODE�s extended plan representation� As in the
Concept Recognizer� each plan consists of a set of components and constraints� For example�
one implementation of the plan TRAVERSE�STRING �which captures the common notion of
traversing each character in a C string� consists of a set of components� a DECL�ARRAY

to declare the character array� a ZERO sub�plan to initialize the index variable to zero� a
LOOP� two ACCESSes to access an indexed element �one for a comparison� the other to use
the array element�� a BIN�OP to compare the indexed element with a null character� and an
INCREMENT to update the index variable� However� not any combination of these components
is an instance of the plan� There must also be a variety of data and control dependencies
between its components� such as a data dependency between the test of the index variable
and its initialization� Only if all these constraints hold do we have an instance of the plan
TRAVERSE�STRING�
In addition to the basic components and constraints� each plan has an index that says

when it should be considered �that is� fully matched against known program pieces and
recognized plans�� The index combines a plan component with one or more plan constraints
and suggests that the plan should be considered whenever this component is encountered
and the speci�ed constraints hold� TRAVERSE�STRING� for example� is indexed by an ACCESS

that is contained within a LOOP� That means the understander considers this plan each time
it encounters an ACCESS� not every time it encounters any INCREMENT� ZERO� BIN�OP� LOOP�
or DCL�ARRAY �as in most bottom�up approaches�� Evaluating the index involves checking






define TRAVERSE�STRING�String� isa TRAVERSE�PLAN
define PRINT�STRING�String� isa PRINT�PLAN
define PRINT�CHAR�Char� isa PRINT�PLAN
define ZERO�Dest� isa ASSIGN�PLAN

plan TRAVERSE�STRING�String� �a�
components
decl� DECL�ARRAY�Name� �s� Items� �max� Type� char�
init� ZERO�Dest� �i�
loop� LOOP�Test�Result� �r� Body� �body�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
test� BIN�OP�Op�� �i� Op�� �val�� Op� 	
� Res� �r�
access�� ACCESS�Op�� �s� Op�� �i� Res� �val��
update� INCREMENT�Op� �i�

constraints
declbef� ControlPath�decl� loop�
initbef� DataDep�test� init� �i�
acc�bef� DataDep�test� access�� �val��
testin� DataDep�loop� test� �r�
acc�in� ControlDep�access�� �body�
updaft� DataDep�access�� update� �i�

index
access� WHEN accin

implies PRINT�STRING�Srting� �a�
with
dump� PRINT�CHAR�Source� �value�

when
dumpaft� DataDep�dump� access�� �v�

plan PRINT�CHAR�Char� �c�
specializes Call�Function�Name� putchar� Args� �c�

plan ZERO�Item� �i�
specializes Assign�Dest� �i� Value� ��

Figure ���� An example code pattern�

whether its indexing constraints hold �which may in turn involve trying to match additional
plan components�� In this case� it involves determining whether the ACCESS is contained
within the body of a LOOP�
The idea is that indexes suggest when plans are likely to occur as opposed to when plans

might occur� This has the potential to cut down on the number of plans in the library that
are considered during understanding� as any plan that is not indexed by the elements of
a given program will never be considered� It also has the potential to signi�cantly reduce
the number of times any given plan is considered by a bottom�up understander from the
total number of times any of its components occur in the program to the number of times
its indexing component occurs in the program� Finally� it has the potential to reduce the
amount of matching and constraint evaluation that takes place while recognizing instances of
a particular plan� Ideally� the recognition process should always evaluate any constraint that
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will fail as soon as possible� since a single failed constraint eliminates a plan instance from
further consideration� whereas all constraints must succeed before a plan can be recognized�
Because indexing places a partial ordering on both matching �with the indexed component
of the plan bound �rst� and constraint evaluation �with the indexing constraints evaluated
�rst�� the better the indexing constraints are as a predictor of a plan�s presence� the fewer
uneeded constraints will have to be evaluated�
In addition to indexes� our representation extends the Concept Recognizer to allow plans

to be de�ned as being conditionally implied by other plans� After the understander recognizes
a plan that conditionally implies another plan� it checks whether these conditions hold �which
involves checking for additional components and evaluating additional constraints�� For
example� the plan TRAVERSE�STRING implies the existence of the plan PRINT�STRING when
there exists an additional PRINT�CHAR that is conceptually contained within the LOOP�
The idea behind implications is to take advantage of small di�erences between the im�

plementations of related plans� so that one plan can be recognized as a slight modi�cation
or extension to another� Essentially� plan implementations are organized in a discrimination
net� which allows the understander to use indexing to retrieve general plans to try �rst and
then to use small� additional incremental tests to recognize more speci�c plans�
There are two alternatives to implications� One is to have related plans be complete�

stand�alone implementations that individually contain all necessary components and con�
straints� PRINT�STRING� for example� could be de�ned so that it contains all of TRAVERSE�STRING�s
components and constraints� This approach� however� leads to duplicate component match�
ing and constraint evaluation that can be eliminated by explicit implication links� The other
alternative is to have the speci�c plans contain the general plans as elements� PRINT�STRING
could be de�ned to contain READ�ALL�RECORDS as one of its components and to have addi�
tional constraints that relate it to their other components� The problem with this approach
is that the additional constraints may require access to TRAVERSE�STRING�s implementation
�such as a control �ow relationship involving its LOOP�� which then forces PRINT�STRING
to have additional implementation�oriented attributes� Although this is just as e�cient as
implication links� it makes the de�nitions of plans much more di�cult� So implications allow
a natural representation of relationships between plans without adding a signi�cant cost�
Finally� our representation allows plans to be de�ned as specializations of other plans�

that is� as a set of constraints on an existing plan�s attributes� For example� the plan
ZERO is de�ned as a specialization of an ASSIGN whose Source is �� These specializations
correspond to plans that contain a single component �the plan being specialized�� that are
indexed by that component� and that have constraints on that component�s attributes� In
fact� at de�nition time� these specializations are automatically translated into standard plan
de�nitions�
The idea behind specializations is to make it easy to de�ne one common class of plans

and to encourage the de�nition and use of specialized plans as components and indexes� This
simpli�es the de�nition of higher�level plans that contain specialized plans as components
by reducing the number of constraints that must be speci�ed� This ability is simply a






convenience� however� with no performance implications�

Control

Figure ��� shows the actual algorithm used by our original program understander� The basic
idea is straightforward� run through the program tree and� whenever a component is an
index for a plan and its indexing constraints succeed� match the remaining pieces of that
plan against the code and evaluate the constraints on the partial plan instances formed by
the matching process� In addition� whenever a plan is recognized and implies another plan�
attempt to match the additional components and evaluate the additional constraints� Then
for each plan recognized� recursively see if it indexes any plans�
There are several complications� One is that at the time an index is evaluated� com�

ponents that are themselves plans may not have been recognized yet� For example� the
INCREMENT in TRAVERSE�STRINGmay be a subplan that is recognized after the index triggers
consideration of TRAVERSE�STRING� To avoid this problem� our algorithm assumes that the
plan library is organized in layers� where each layer contains the plans dependent only on
items in the previous layer� At the bottom are plans like PRINT�CHAR and INCREMENT that de�
pend only on abstract syntax tree items� At the next level are plans� like TRAVERSE�STRING�
that depend on these subplans� The algorithm then breaks the indexing process up into
layered traversals through the program tree� �rst seeing if anything in the �rst layer is in�
dexed� then if anything in the next layer is indexed� and so on� Implications are handled in
a similar way� with any plan implied by another plan placed in a layer that is both above it
and above any of its new subcomponents�
The other complication is that evaluating constraints and binding components against

the program tree must be interleaved� A simple approach to recognizing plans would form
all the possible combinations constructed by binding each of its components against program
tree entries and then evaluate the constraints on these components� However� that is far too
ine�cient� Our alternative is to have an ordering for constraints and to form combinations
only as they become necessary to evaluate these constraints�

��� Program Understanding as a CSP

The algorithm described in the previous section has a number of nice properties� such as
limiting the number of plans considered� components matched� and constraints evaluated� as
well as modeling an empirical study of programmers understanding code� However� it also
has some drawbacks� It is relatively di�cult to understand and analyze and to compare in
detail against other program understanding algorithms� To remedy these drawbacks� this
section provides an overview of how program understanding algorithms can be viewed as a
constraint satisfaction problem� and the next section will demonstrate how the preceding
algorithm can be placed in that framework�

�



Constraint Satisfaction Problems �CSPs� consist of three major components� A set of
variables� a �nite domain value set for each variable� and a set of constraints among the
variables which restrict domain value assignments� A solution to a CSP is a set of domain
value�to�variable assignments such that all inter�variable constraints are satis�ed�

PU�CSP

Program understanding can be represented as a constraint satisfaction problem� called PU�
CSP� in the following way �as we demonstrated in earlier work �Woods � Yang ����b���
We assume the source code is divided into a variety of blocks� A block can be anything

from a single statement to a program slice or other arbitrary collection of related state�
ments� The program understanding problem is then to explain what the entire program
does by explaining what each block does and then determining what various sets of blocks
do in conjuction� The possible explanations correspond to a set of plans in a hierarchically
organized program plan library� and an explanation of the source program is a mapping from
members of this library to the program�s components� The PU�CSP problem is to deter�
mine this set of possible explanations for a given set of program blocks using a constraint
satisfaction approach�
The variables in a PU�CSP are the blocks in the program to be understood� The domain

for each variable ranges over all of the plans that could possibly explain that block� However�
this is only a subset of the plan library� The block may be of a particular type� in which case
only plans that contain that type as a component can explain it �such as when the block
corresponds to a single action in the AST�� or it may have particular input and output types
that are matched by only a small set of plans �such as when the block represents a function��
The constraints fall into two categories� structural constraints between blocks and knowl�

edge constraints between plans� The structural constraints correspond to structural relation�
ships between blocks �e�g�� data��ow� control��ow� and temporal�ordering�� The knowledge
constraints correspond to restrictions on the ways plan may be connected �e�g�� that a plan
must fall into a particular category� that a plan must have certain components� those com�
ponents have a characteristic �ow of data between them� and so on�� A mapping between
the plan hierarchy and the blocks is a possible explanation only if the set of knowledge
constraints is consistent with the set of structural relationships present in the source code�
PU�CSP is seeking a global explanation of all or part of a program�s source based upon

its particular components and their structural relationships� However� program plans in
the plan library may be based upon sub�plans at lower levels of abstraction� In addition�
programmers often take advantage of their recognizing familiar functionality by using these
partial explanations when explaining large blocks or chunks of code�von Mayhrhauser �
Vans ������ We can therefore improve on PU�CSP by augmenting it with a mechanism to
locate the initial set of possible� low�level explanations for various blocks� This mechanism
is handled by a separate constraint satisfaction problem� called MAP�CSP�
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MAP�CSP

MAP�CSP represents the problem of locating all instances of a program plan template in the
source code �i�e�� mapping this plan to directly to source code entities�� The variables in the
MAP�CSP are the components of the plan� The domain for each variable ranges over source
code components of compatible types� and the actual occurrences of each of those components
in the source code correspond to possible domain values for the variables� The components
within a given plan are constrained by various data��ow and control��ow relationships that
must hold between them� which are represented as inter�variable constraints in the MAP�
CSP� A solution to the MAP�CSP problem is therefore any assignment of domain values
�AST elements� to template variable �program plan parts� that satis�es the constraints
among the variables �data��ow and control��ow relationships�� A solution is an instance of
the program plan template which we have identi�ed in the source code� and thus explains
that part of the source code being mapped�
Given a plan library� repeated application of MAP�CSP can be used to recognize all

instances of plans whose components correspond solely to abstract�syntax tree elements�
The essence of the PU�CSP�MAP�CSP approach is that PU�CSP attempts to combine

individual MAP�CSP solutions that represent only some subset of all program plans in the
hierarchy� The plan instances identi�ed with these MAP�CSP solutions are integrated into a
partial explanation covering some number of source code components which may be thought
of as blocks of �locally explained� source code� Thus� at any point in time there is some
set of blocks �explained� and some set �unexplained�� with these blocks related structurally
through data and control �ow relationships�
Similarly� the explained blocks are known to relate in speci�c ways to other program

plans in the hierarchy� For instance� consider the case where three blocks A� B and C
exist such that control or data �ow constraints exist between them� Suppose blocks A and
B have been mapped with MAP�CSP to particular program plans in the library� A� and
B� respectively� Block C possibly corresponds to any of � di�erent program plans in the
hierarchy� C�� C� or C�� The knowledge constraints present in the library for program
plans A� and A� may now be usable to constrain the range of block C� For instance� if A�
is known to precede C� according to the library but it is the case that program block A is
structurally constrained in the source to follow block C�� then C� can be safely eliminated as
a possible explanation of C� This process is simply an application of knowledge constraints
against structural relationships� and corresponds to a limited form of constraint propagation�
This behaviour could also be though of as search in which the leaf node representing A�A��
B�B�� and C�C� is pruned or rejected as a potential solution�

An Alternative CSP�Based Approach

Another way to view the program understanding problem is as an ordered set of plan matches
in the �avor of MAP�CSP� If the plan library is constructed in layers� so that plans at each
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level are built only from plans at lower levels� it would be possible to use MAP�CSP to
�nd all instances of the plans based only on items in the AST� and then continue up the
hierarchy� matching each successively higher level� This possibility gives rise to the question�
Why bother with PU�CSP�
The problem with a strictly bottom�up application of MAP�CSP is that it relies on a

mapping of every plan instance in the library� As a result� many independent MAP�CSPs
must be solved� in the sense that it is not clear how in general solving one MAP�CSP can
be exploited to reduce the e�ort made by other MAP�CSPs� �It is possible for MAP�CSPs
at one level to contribute to the solving of MAP�CSPs at a higher�level in that failing to
recognize certain plans in one MAP�CSP quickly eliminates the consideration of the higher�
level MAP�CSPs involving those plans� However� what is not clear is how MAP�CSPs at
one level can contribute to other MAP�CSPs at the same level�� In contrast� if we consider
the PU�CSP approach as a global strategy for controlling the application of MAP�CSPs and
for integrating the MAP�CSP solutions for local code portions� it may be possible to restrict
the range of possible explanations for larger code components more e�ectively�
In any case� a purely layered approach is not entirely satisfactory when we consider

real�world use of program understanding tools� In particular� any real�world program un�
derstanding tool is going to involve some interaction with users� as there is always going
to be some idiosyncratic code that doesn�t correspond to any plan in the existing plan li�
brary �Quilici � Chin ������ As a result� the program understanding task corresponds to
e�ciently partially reverse�engineering the code� In the repeated application of MAP�CSPs�
it�s di�cult to imagine how the programmer can help the process� However� in the PU�CSP
approach� both the algorithm and the programmer can exploit local partial solutions to re�
strict other� possibly higher�level solutions� Larger code components such as procedures or
functions form nicely coupled code chunks with clearly de�ned constraint relations among
them in the form of calling and type relationships� The identi�cation of plans that interact
with one of these function blocks can potentially reduce the combinations of explaining a set
of these function blocks�
Finally� earlier work with spatial templates �Woods ����� has demonstrated that sets of

complex constraints� such as those involved in MAP�CSP�s plan templates� are very di�cult
for experts to quickly identify in noisy situations� such as is provided by confusing or cluttered
source code� Interative large�scale understanding of complex spatial situations was greatly
assisted by local identi�cation of di�cult�to�see spatial relationships� The idea in this earlier
work was that these micro�solutions can be thought of as initial building blocks on which
to build expert�level explanations� Essentially� applying this idea to program understand�
ing suggests doing as many of these micro�observations �MAP�CSPs� as is computationally
a�ordable and then attempt to couple those with the macro constraints of the larger PU�
CSP so as to maximize the e�ectiveness of the high�level easy to identify constraints such as
inter�function control and data �ow�
Another alternative approach is to carefully interleave low�level and high�level MAP�

CSPs� For example� one need not apply all the lowest MAP�CSPs �rst but rather apply the
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lowest ones in a particular portion of the planning hierarchy� and then higher ones atop these
low ones� until the point at which a larger code block has been successfully explained� Then
this larger context explanation could be used to select the next MAP�CSP to match� and so
on� As a result� this interleaving may be able to exploit some of the structued constraints
that exist between high�level plans and source code� However� this is exactly what PU�CSP
is meant to do�

��� DECODE�s Understanding Algorithm as CSP

There are two primary concerns in modeling a particular program understanding methodol�
ogy in a constraint�based framework� representation and control� We must ensure that the
CSP representation is general enough to capture the complexities and nuances of the original
while not abstracting away important details� and we must ensure that the original control
strategy can be interpreted in terms of a particular control strategy for solving CSPs�

Representation

In the memory�based program understanding problem representation described earlier� there
are two primary representational parts� the individual program plans� and the hierarchical
plan library�
The individual program plans �as in Figure ���� are represented in terms of components

and constraints� In our CSP representation �for MAP�CSP�� we model each of these compo�
nents as a variables� Each variable has a domain ranging over the actual statements in the
program that satisfy a set of constraints on the �type� of the variable� These �type� con�
straints may be thought of as re�exive in that they a�ect one variable only� They are derived
from the partial naming and typing information provided in the component description� For
instance� DECL�ARRAY is given as an array declaration structure with � parameters� a name
that locally is allowed to range over any value �unconstrained�� the size of the array �also
unconstrained�� and a type of array element �constrained to character�� Thus� DECL�ARRAY
�matches� any program statement that declares an array �in any fashion� such that the
declaration satis�es the constraint that it is of type character of any size or any name� It is
easy to imagine components that would map into more tightly constrained CSP variables�
MAP�CSP models the memory�based constraints among program plan components as

CSP constraints among variables� A direct mapping exists between the function of con�
straints in the memory�based approach and the CSP approach� In the example plan� a con�
straint ControlPath exists between the DECL�ARRAY and the LOOP such that the DECL�ARRAY
logically precedes the LOOP� This is mapped to the CSP representation directly� where any
instance of the variable corresponding to DECL�ARRAY is constrained to logically precede
any instance of the variable corresponding to the LOOP component� Figure ��� details the
variables and constraints of the resulting MAP�CSP for our example plan�
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We have seen a direct mapping can be made between components and variables as well
as between component constraints and CSP constraints� In particular� these mappings are
exactly those required for the speci�cation of the MAP�CSP sub�problem� However� it is also
possible that� in the memory�based model� the individual components are subplans rather
than elements of the AST�
We currently deal with hierarchical plan structure through a layered plan library and

applications of MAP�CSP a layer at a time� The MAP�CSPs at each subsequent layer
include all of the recognized plans at the previous levels as part of the domain of variables�
We rely on indexing to guarantee that the MAP�CSPs in a given layer fail quickly if the
indexed component hasn�t been recognized from the previous layer� And we rely on the
MAP�CSPs at the lower layers to locate the possible domain values for the components at
the higher levels� This implies that PU�CSP is not strictly necessary for our representation
of our memory�based recognition algorithm �although it�s still useful as part of a general
constraint�based framework��
The parts not yet mapped directly as constraints or components to the CSP methodology

are the INDEX entries of a program plan� and the IMPLICATION entries� We also have not
speci�ed what is to be done with respect to actually matching the program plan to the
source program� In the next subsection we discuss how these elements are combined as
search control for MAP�CSP�

Control

Our memory�based program understanding algorithm traverses the program source� and tries
to match a particular program plan whenever it encounters an index for that plan� Program
plans are organized in layers� with indexed plans at the lowest level of the hierarchy matched
�rst� with indexed or implied plans at higher abstraction levels matched subsequently� Thus�
a pass of the source involves checking each statement against the list of indices for a possible
match� A possible match triggers a closer inspection of the source for an instance of the
matched program plan� This closer inspection is exactly an instance of MAP�CSP in which
the index part of the program plan template has already been identi�ed�
Essentially� the performed MAP�CSP utilizes a strict ordering in which the components

and constraints in the plan�s index are matched �rst� with a successful index signaling the
requirement to continue searching further� If the rest of the program plan components
and constraints are successfully matched to the source code� MAP�CSP has identi�ed an
instance of the plan� What has been created here is a view of the CSP in which a subset of
the variables and constraints are solved �rst� and further� in a particular order� We may view
this as a hierarchical view of the CSP in which the �key� portion is �more important� and
thus matched �rst�� If this key portion of the template contains variables that match only a

�Actually� it traverse the abstract syntax tree�
�See �Freuder 	 Wallace ����� Yang 	 Fong ����� for a detailed discussion of hierarchical CSPs and their

solutions�
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small subset of all possible program components� and constraints that are restrictive then this
may be seen as an attempt to order the constraints so as to reduce the branching factor and
size of the subsequent search space� An index by de�nition is a signi�er of uniqueness� and
thus it is only sensible that an index is matched only infrequently� The result is that indices
in memory�based understanding are interpreted as orderings on variables and constraints in
MAP�CSP�
We handle implication in a similar way to indexing� Any plan that is implied by another

can be thought of as being indexed by the plan and any of the implication constraints� As a
result� when we process a layer of plan library� we also do MAP�CSPs for any plans in that
layer that are implied by plans at earlier layers� with the domain variables of each MAP�CSP
being set up based on the bindings from the previously recognized plan�

An Example of MAP�CSP In Action

We have implemented a MAP�CSP version of the memory�based algorithm� This new algo�
rithm models the identi�cation of program plan instances in the following way� A CSP is
formed in terms of variables mapping from the program components of the program plan�
re�exive variable constraints mapping from the type information of the program plan com�
ponents� and inter�variable constraints mapping from the data �ow and control �ow relations
in the program plan itself� Each variable ranges over some subset of the program�s state�
ments� Once the problem is formulated in this way� the index information speci�ed in the
memory�based model is used as a preliminary ordering heuristic for the constraint set�
Figure ��	 is an example showing how the portion of the plan of Figure ��� corresponding

to the index is actually represented�
The index is formed as an instance of a particular kind of array access which is determined

to reside in a loop structure� We represent the array access �labelled ACCESS in Figure ���� as
a variable v� of a particular type of assignment� Assign� for assigning a value to a character
array� We map the complex operation LOOP in Figure ��� as a combination of a variable v�
of type While� a variable v� of type Begin� and a variable v� of type End� We represent the
program plan index constraint that the Assign exist inside the control environment of the
While with the pair of precedence constraints placing v� after the v� instances and before
the v� instances�
The control proceeds roughly as follows� The �rst variable� v�� is matched against all

program statements� giving a domain ranging over all Assign candidates of the appropriate
type� This range can be thought of as the branching factor of the top of the search space� A
large range signi�es a poor key choice� Now� the constraints are applied in index�order� All
satisfying instances of v� are identi�ed such that v� is before v�� Next� for each instance
of v�� a corresponding Begin instance of v� is identi�ed� The End instances of v� are now
identi�ed according to the naming identi�er of the corresponding Begin instances v�� A
solution is then found for each set of assignments of domain values to variables such that
v� is before v�� Each solution is an instance of an index hit that is a candidate for further
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search to locate full plan instances� The additional components are given domain ranges and
then the remaining constraints are applied�
A typical CSP strategy would attempt to order variables and constraints independent of

the particular enforced ordering implied by the memory�based index� In particular� in many
intelligent backtracking CSP solution schemes this process would be undertaken dynamically
rather than statically� thus taking advantage of particular problem characteristics in reducing
the search space rather than relying on a pre�determined belief about the nature of the source
examples that will be encountered� We discuss a particular approach used for comparison
purposes in the next section�

��� Experimental Discussion

Earlier work�Woods � Yang ����b� Woods � Yang ����a� showed that MAP�CSP prob�
lems with � components and � inter�component constraints could be solved with relative
e�ciency for signi�cantly sized source code blocks up to about ��� lines of code� Sub�
sequent experimentation with well�constrained program plan templates modeled after the
TRAVERSE�STRING example of Figure ��� with � components and �� constraints has shown
even more promising results� Figure ��� outlines some preliminary results for this MAP�CSP
in randomly generated program sources ranging from �� to ���� lines of code� We see that
the results scale quite well over this range� with the time required for MAP�CSP to com�
plete for �� lines laying well below � second �average ��� constraint applications�� and for
���� lines of code approximately � minute��average ������ constraint applications�� Results
graphed are for �� problem instances at each legacy source size interval�
The stability decreases with increasing problem size� however� even the worst case results

are promising� This result is achieved with the relatively straightforward intelligent back�
tracking algorithms known as Forward Checking with Dynamic Rearrangement �FCDR� of
selected variable during search based on smallest domain size� This approach may be thought
of as a dynamic approximation of an index in the memory�based methodology� In the absence
of a selected index �essentially undirected backtracking�� results have a much lower stability
and in fact problems of 	�� lines of code require almost 	� times as many constraint checks
as for the FCDR approach�
We have implemented the memory�based algorithm formulated as an instance of MAP�

CSP with a particular indexing strategy and we shall present results from experiments with
this strategy in future work� We expect to see a result which indicates that a well�chosen
index results in highly e�cient strategies� a poorly chosen index in ine�cient strategies�
however� an open question remains as to whether it is possible to either statically or dy�
namically determine a better index automatically� Since we view any index is as a particular
constraint ordering� it is quite conceivable that the best index from the point of view of the

�Note that these results are obtained on a Sparc �
 workstation�
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memory�based methodology can be approximated better for a particular problem instance
than in general�

��� Conclusion

The constraint�based approach has several clear advantages over previous methodologies�
The �rst is its generality� we have demonstrated how one earlier� complex algorithm can
be represented as a CSP with a particular representation and control strategy� This gives
us hope that we will be able to do the same for other program understanding algorithms
as well� In fact� we are now in the process of doing this same task for other published
program understanding algorithms� The result should be a deeped understanding of the
commonalities and di�erences of these algorithms�
Another key advantage is an increased ability to address heuristic adequacy� or scalability�

By casting program understanding as a CSP� the previously known constraint propagation
and search algorithms can potentially be adapted to improve these algorithms� In addition�
we can compare the e�cacy of speci�c heuristic tricks such as indexing to di�erent methods
of solving constraint satisfaction problems� It may well prove that existing methods are
su�cient to achieve indexing�s performance without the need to index� or alternatively� that
we will see exactly what bene�ts are provided by the speci�c knowledge used in indexing
�such as the likelihood of certain components indicating the presence of certain plans or the
relative cost of evaluating various constraints� over heuristic constraint propagation methods�
The �nal advantage is that it becomes possible to complete a systematic study of di�erent

search heuristics� including both top�down and bottom�up as well as many other hybrids
�such as the comparing the layered MAP�CSP approach to the mixed PU�CSP�MAP�CSP
approach� in order to determine which ones perform the best on understanding source code�
Although we have just begun studying program understanding algorithms in terms of

this constraint satisfaction approach� it appears very promising as a unifying framework for
describing and comparing program understanding algorithms� Our hope is that it will lead
us to a deeper understanding of existing program understanding algorithms and ultimately
to a program understanding approach that scales�
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Plan Recognition Algorithm

� Initialize the program tree 
PT � to the set of elements in the program�s abstract syntax tree

� For each plan library layer L�

� For each element Ei in PT �

� For each plan implementation Pj in L indexed by Ei�

� Form the set of partial plan instances 
PPI� that result from binding Ei to
each Pj �

� Replace PPI with the set that results from processing the indexing constraints
on the original PPI �

� If PPI is non�null� set the recognized plan instances 
RPI� to the result of
processing the remaining constraints on each element in PPI �

� Add each element of RPI to PT and add each plan it implies to the set of
potentially implied plans 
PIP ��

� For each plan Pj in L�

� For any corresponding PIPk in PIP �

� Set the implied plan instances 
IPI� to the result of processing implication
constraints on PIPk�

� Add IPI to PT �

Process�Constraints
CS 
Constraint Set�� PPI 
Partial plan instances��

� For each constraint Ci in CS�

� For each PPIi in PPI �

� Form the set of new partial plan instances 
NPPI� that result from binding the
components in PPIi that are necessary to evaluate C against elements of PT �

� Form the set of remaining partial plan instances 
RPPI� that result from evaluat�
ing Ci on each item in NPPI �

� Set PPI to the concatenation of all the RPPIs�

Figure ���� Our algorithm for automatically recognizing plan instances in code�
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Type: Block-end
Name: $Block1

Type: While
Condition: $ResultA boolean

Type: Assign
AssignTo: $ElemB char
AssignFrom: $NameC array
ArrayIndexType: IndexC int

V8
ArrayIndexType: IndexB int
AssignFrom: $NameB array
AssignTo: $ElemA char
Type: Assign

DeclareVar: $NameA
DeclareType: array, char
ArrMinSize: 0
ArrMaxSize: 10000

V7

Type: Increment
Name: $IndexD V5

V9
Type: Zero
ZeroVar: $IndexA V6

before-pwhile-begin

V3 V1

V4V2
Type: Block-begin 
Name: $Block1

before-p

before-p
before-p

before-p

Type: Not-Equals
Returns: $ResultB, Boolean
Param1: $ElemC, char
Param2: NULL, char

Type (reflexive) constraints

Data flow, shared variables

Control flow, precedence

Arc Explanation Key

same-name-p

before-p

before-p

Figure ���� An example plan in the MAP�CSP representation�

�v� Assign �NameC �array �char���
�IndexC �int�� �ElemB �char���

�v� While �ResultA �boolean���
�v� Begin �Block� �block���
�v
 End �Block� �block���

�before�p �v� v���
�while�begin �v� v���
�same�name�p �v� v
� �Block� Block���
�before�p �v� v
��

Figure ��	� MAP�CSP representation of code patterns�
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Chapter �

Program Understanding and Plan

Recognition � A Comparative Study

��� Introduction

Plan Recognition�PR� is the task of creating a contextual model of the intentions underlying
the actions of agents� Program Understanding�PU� is the task of creating a contextual model
of the intentions underlying actions encoded into program source code� From these simple
descriptions of PU and PR� it may be tempting to view PU as simply an instance of PR� and
further� recognize that methodologies presented for PR should readily apply to PU� In this
paper we clarify the classes of problems that PR and PU methodologies intend to address�
and describe the ways in which these classes both di�er and resemble one another� As part
of this explanation� we show that a straightforward interpretation of PU as a particular kind
of PR is incapable of exploiting the particular temporal and causal structures embedded
in source code� We point out that PU may be thought of as a simpli�ed or more tightly�
constrained version of PR that remains NP�hard�Woods � Yang ���
�� It additionally
provides an interesting example problem on which to build methodologies which may be
extended to e�ectively address the more general PR problem�
This paper is structured as follows� In Sections ��� and ��� we examine each of PR and

PU in turn� and attempt to clarify the structural di�erences in these problems through use
of examples� In Section ��	 we describe an attempt to model an approach to PU in the spirit
of typical PR algorithms� and illustrate the inadequacy of this approach� In Section ��� we
summarize the main points of this work�
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��� The Plan Recognition Paradigm

Plan Recognition can be thought of as the task of determining the best� uni�ed context
which causally explains a set of perceived events as they are observed� These events are
contextualized within a speci�c body of knowledge which describes and limits the types and
combinations of events that may be expected to occur� This knowledge body is frequently
represented as a specialization and decomposition structure of events and actions�
Kautz and Allen�Kautz � Allen ��

� formalized an approach to PR that has served

as a primary building block for many subsequent PR methodologies� including �Carberry
��

� Carberry ����� van Beek� Cohen � Schmidt ������ PR is de�ned as the process
by which �a set of observed or described actions is explained by constructing a plan that
contains them�� A model of PR is formed with the intent of both representing actual events
or occurences� and of proposing hypothetical explanations of actions� Explaining action
through PR involves uncertainty� and therefore it is necessary to somehow recognize some
particular plan that another agent is performing from a possibly large set of explanatory
plans� The process of arbitrating this uncertain selection process is the primary focus of the
work of Kautz and Allen� and of plan recognition systems in general�
The general approach of Kautz and Allen is based upon ordinary deductive inference�

The rules for deduction are rooted in the exhaustive body of knowledge about actions in
a particular domain encoded in the form of an action hierarchy� as shown in Figure ����
The hierarchy depicts specialization relations as dark arrows from speci�c to general ac�
tions� The thinner lines encode decomposition of actions into a set of sub�actions� Not
encoded in this �gure are additional domain constraints such as temporal relations between
sub�actions� although this information is assumed to be available for the plan recognition
process� For instance� in MakePastaDish it is assumed that the constraint that Boil
precede MakeNoodles is included�
The action hierarchy describes all ways in which any expected action may be performed

or used as a step in a more complex action� The trigger for deduction is the perception of an
action� As an example� observe that the hierarchy encodes that Boil and MakeNoodles
are subactions ofMakePastaDish� and further that they are subactions of no other action�
Perception of an instance of Boil then results in the deduction that the more abstract task
being undertaken is MakePastaDish� and similarly� PrepareMeal and TopLevelAct�
Actions are perceived one at a time� with a model of the agent�s intention maintained incre�
mentally following each perception� Although at any point in the process the determination
of the perceived agent�s plan may be ambiguous� �or rather� disjunctive�� speci�c predictions
about future activities can still be made� For instance� imagine the perception of an action
which is identi�ed as eitherMakeSpaghetti orMakeFettucini� Since both of these actions

�Best is a highly subjective term which changes de�nition depending on the intent of the particular plan
recognition application�

�Other work in PR�van Beek et al� ����� addresses the issue of resolving ambiguity only when necessary

through interactive dialogue focusing on explanatory plans that share particular faults�
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are instances ofMakeNoodles� we can deduce that the higher level taskMakeNoodles is
being undertaken� Now� sinceMakePastaDish has the additional sub�action Boil� we can
expect to perceive Boil in the future �if it indeed has not yet perceived��

MakeSpaghetti
Carbonara

MakeFettucini
Alfredo

MakeFettucini
Marinara

MakeChicken
Primavera

MakeChicken
Marinara

StackBlocks

TopLevelAct

PrepareMeal

MakeMeatDish
GoToKitchen

Boil

MakeNoodles

MakeFettucini

MakeSpaghetti

MakePastaDish

MakeMarinara

MakeSauce

MakeChicken

Figure ���� Action hierarchy for the cooking domain�

PR as described by Kautz and Allen� embeds several important assumptions�

� Open Perception� It must always be assumed that a given set of perceptions of the
observed agent or situation may be incomplete� In particular� the perceiver may at
any time realize an observation of an act that will result in the need to update current
beliefs about the agent�s plans�

� Closed Specialization� The known ways of performing an action are the only ways of
performing that action�

� Closed Generalization� All the possible reasons for performing an action are known�

� Closed Decomposition� The given decompositions of actions into subactions are the
only decompositions�

� Full Sensibility� All actions are purposeful� that is� any non top�level action occurs only
as part of the decomposition of some top�level action�
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� Simplicity Heuristic or Minimum Cardinality Assumption� When several actions are
observed� assume that the observations are all part of the same top�level act� In general�
prefer that as few top level actions occur as possible�

Kautz and Allen explain the plan recognition process as follows� First� the plan hierarchy
is processed into a set of axioms according to the hierarchy structure and the assumptions
stated� Next� a specialized forward chaining reasoning process embodying a particular infer�
ence strategy over these axioms is undertaken� As each observation is received� the system
chains up both the abstraction and decomposition hierarchies until a top�level action is
reached� The intermediate steps may include many disjunctive statements� such as in the
MakeFettucini�MakeSpaghetti example introduced in Section ���� The action hierarchy
is used as a control graph which directs and limits this disjunctive reasoning� After more
than one observation arrives� the system will have derived two or more high�level action
instances� The simplicity heuristic is then applied� This heuristic requires that some subsets
of these high�level instances be equal� and uni�es the disjoint perception interpretations�
Exclusive�or reasoning now propagates down the hierarchy� deriving a more restrictive set of
assertions about the top�level actions and their subactions� If an inconsistency is detected
then the number of top�level acts is incremented and the system backtracks to the point at
which the simplicity heuristic was applied�
Kautz �Kautz ��
�� identi�es two primary problems that must be dealt with in incremen�

tal recognition systems� The �rst of these is the combinatorial problem which arises when
the minimum cardinality assumption is relaxed to include two or more primary actions� This
relaxation allows the number of possible ways of grouping together the set of observations
to grow exponentially�� The second problem identi�ed is the persistence problem� once two
observations are tied together or interpreted in a particular context �say as a result of the
minimum cardinality assumption�� entirely discarding this context simply on account of the
arrival of a contradictory piece of information seems unnatural from a human reasoning
viewpoint�
The simplicity heuristic is the basis for Kautz�s model� By minimizing the number of

events which account for all observations and accepting this event covering set as the current
adopted agent plan� we are describing precisely how to recognize a plan from observation�
Consider the following example of the use of minimum event cover in uni�ying the contex�
tualization of two action perceptions�
We refer once again to Figure ���� A Boil action is perceived� Boil only occurs as part

of MakePastaDish� and consequently MakePastaDish is adopted as the covering plan�
Next� aMakeMarinara action is perceived� MakeMarinara can be covered byMakeFet�
tuciniMarinara� and subsequentlyMakePastaDish� or byMakeChickenMarinara� and

�Kautz explicitly recognizes that in some domains the combinatorial problem may be largely mediated
through various constraints on event types� however� he imagines that in realistically sized problems addi

tional principles will be required� We shall see in our later discussion of PU as a special type of PR� that
both action type and other structural problem feature constraints are used in exactly this manner�
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subsequently the additional high�level covering planMakeMeatDish� What then is the plan
being undertaken� According to minimum cover� MakePastaDish covers both Boil and
MakeMarinara� and so MakePastaDish is accepted as the current plan� MakeChick�
enMarinara and MakeMeatDish may be denied� Now suppose the next perception is a
MakeChicken action� MakeChicken can only be part of a MakeChickenMarinara or
MakeChickenPrimavera action and subsequently the high�level plan MakeMeatDish
must be inferred� The uni�ed conclusion is forced to include two high level actions now�
MakeChicken can only be covered by MakeMeatDish� Boil can only be covered by
MakePastaDish� and MakeMarinara can be covered by either or both of MakePas�
taDish and MakeMeatDish� Even this minimization of the high�level actions leaves a
great deal of disjunctiveness� For example� it could be the case that MakePastaDish cov�
ersMakeMarinara and Boil� and a di�erent chicken dish is being made� or� it could be the
case that MakeMeatDish covers both MakeMarinara and MakeChicken� and that a
di�erent pasta dish is being made� In fact� it is possible that theMakeMarinara action is
being shared by MakePastaDish and MakeMeatDish� When such action sharing occurs
between plans� additional constraints such as temporal relationships can be very useful in
limiting disjunctive conclusions�

Kautz�s algorithm

There are three versions of the Kautz approach�Kautz ��
��� Each version is based on a
di�erent interpretation about how to integrate or group multiple observation explanations
and implement the concept of the minimal explanation� The �rst� Non�dichronic� returns
the same result independent of the order of observation of events� and identi�es the current
conclusion as the disjunction of all hypotheses of minimum size� A hypothesis is of minimum
size if it involves a minimum number of top�level acts� The second version� Incremental
minimization� tries to keep the number of top�level acts under consideration to a minimum
and only increases when no other option exists� The third version� Sticky� prefers to explain
each observation by integrating it with the most recently added top�level action�
Kautz�s algorithm�Kautz ��
��� has three main parts� ��� ExplainObservation in

which the plan hierarchy is traversed bottom�up� from the observation instance to a top�
level plan� giving an independent explanation or explanation set according to all possible
disjunctions in the hierarchy� ���MatchGraphs which attempts to merge two independent
observation explanation graphs into a single covering explanation graph based on making
the �End� or top�level plans involved � a failure to merge signals the need to consider higher�
cardinality explanations� and ���Group� which continuously inputs observations and groups
them into sets to be explained with independent explanation graphs� FromGroup� a partic�
ular minimization function is called� selecting the particular set of explanation graphs which
cover all observations�
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Recognition summary

Kautz and Allen�s model is designed for iterative or incremental re�nement of a model of
an agent�s plans as successive observations are made of the agent� and as action occurrences
are revealed� Following each perception� a possibly disjunctive� non�monotonic model is
maintained which hypothesizes the agent�s goals� The implicit assumption in this model
of plan recognition is that at any time� all observations are not available for deduction�
Consequently� non�monotonic conclusions are reached through controlled deduction on the
basis of the current� possibly incomplete� observation set�

��� Program Understanding Overview

Program understanding is the attempt to construct a �possibly partial� mapping between
the expert�s store of relevant knowledge structures and components inherent in the source
code� This mapping may be viewed as the task of determining the best uni�ed context which
causally explains a well�structured set of known program source statements�essentially�
trying to infer which programming plans were instantiated by the actions in the program�
Researchers in PU�Woods � Yang ����b� Woods � Yang ����a� Woods � Yang ����c�

Quilici ���	� Quilici � Chin ���	� Quilici ����� Quilici � Chin ����� Kozaczynski � Ning
���	� Rich � Waters ����� Wills ����� Wills ����� Rugaber� Stirewalt � Wills ����� have
tended to take approaches to PU based on the existence of a domain�dependent knowl�
edge library which consists of programming plan templates and concepts� Source code is
interpreted within the context of a speci�c body of knowledge that describes how programs
in general� and domain�programs in particular� are known to be structured� Various top�
down and bottom�up search strategies are utilized to construct partial mappings between
the legacy source and knowledge� Notable examples include Quilici�Quilici ���	�� Koza�
czynski and Ning�Kozaczynski � Ning ���	�� Rich and Waters�Rich � Waters ����� and
Wills�Wills ����� Wills ������ To some extent� these approaches are all aimed at improving
the e�ectiveness of the mapping process through exploiting heuristic knowledge� Recent
work in PU�Woods � Yang ����c� Woods � Quilici ����� has been motivated by a desire
to bring together the range of program understanding strategies and heuristics into a single
representational framework�
In Figure ���� a subset of expert knowledge about a particular application domain is

represented in a fragment of a hierarchical library of program templates� The encoded
structure� or knowledge constraints� include temporal� control �ow� and data �ow relations
among the components of plans� In addition� typical or expected structure can be represented
in the hierarchy as preferences for certain common specializations or indices for frequently
related plans� Figure ��� shows one possible mapping between a plan template from the
library and a speci�c legacy source fragment� in this case a single source statement� The
existence of such a mapping essentially explains the presence of the low�level source statement
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at a higher level of abstraction� in this case as an instance of the plan template copy�
character speci�ed in the library�

index when:
  "near instance" of
  copy−character

Program Plan Library (excerpt)

AND

 

AND

OR

main()
{
   char* A, B, C; 
   ...

   A = "s" + "t" + "r" + "i" + "n" + "g" +  "1";
    ...

   B = "string 2";
   ...
   sz = 7;
   for (int j = sz; j > 0; j−−) {
         ....
         C[sz − j] = B[sz − j];
         ... }
   ...
   C[sz] = 3;
   ...

   for (int i=0; B[i]; i++)
          ...
      print(B[i])
          ....
   ...

   for (int j=0; C[j];j++) {
          ....         
          printf("%s",C[i]);
          ... }
   ...
   for (int k=0;A[k]; k++) {
          ...
          outchar(A[k]);
          ... }
   ...}

specialize when:
 contains = "$string"

copy−character loop−through
 character array

builtin−char* copy loop−initialize
 string

initialize−string

String ADT plan

plan instance

Legacy Source Code

Figure ���� Conceptualizing source with a plan library�

As in PR� PU frameworks make several key assumptions about the domains in which
they work and the task in general� including�

� Closed Perception� The source program under consideration at any point in time� to�
gether with any derived structural constraints� makes up all of the perceptual infor�
mation that will be available� In particular� it will never be the case that a program
statement or part that was absent in the previously encountered functional speci�ca�
tion will be perceived� Although the focus of PU may be only a sub�part of a larger
program� the part in question is itself complete�

� Closed Specialization� The known ways of specializing a particular abstract plan are
the only ways to consider� despite the fact that others may exist�
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� Open Generalization� All possible reasons for performing a particular source statement
or abstract plan can never be known� however the known specializations are the only
ones of interest in constructing partial explanations�

� Open Decomposition� The given decompositions of plans into subplans are only a subset
of all possible decompositions in any domain� however� the known decompositions are
the only ones of interest in constructing partial explanations�

� Partial Sensibility� All source statement actions are purposeful� that is� any recogznied
non�top�level plan occurs only as part of some top�level plan� However� this top�level
plan may not reside in the knowledge hierarchy� Further� program statements will
necessarily exist that cannot be explained with the partial knowledge hierarchy�

Just as plan recognition has adopted simplicity measures as a way of dealing with combi�
natorial problems in explaining the relationship between two or more observed actions� PU
work has attempted to adopt preferences based on various types of locality� In particular�

� Ordinary spatial locality� Programs exhibit spatial and temporal locality� That is�
statements that are spatially tend to be related to one another with a higher likelihood
than those that are spatially distant�

� Temporal locality� If one were to observe a program�s execution trace� it would be
possible to recognize patterns of commonly executed program parts� These patterns
could be used to identify possibly related program parts based on previously collected
knowledge about the way in which various program parts inter�relate�

� Functional locality� Programs can be statically decomposed into abstract syntax trees
annotated with control and data �ow information� This additional structure greatly
strengthens the notion of spatial locality� in that relatedness is made explicit rather
than inferred� In contrast to the weak or preferential constraints indicated by other
localities� this structure can be thought of as strong constraints� The ability to check
correspondences between such structure and expected relations embedded in the hierar�
chical knowledge library� provides an excellent source of information to use in reducing
the combinatorics of explanation�

In �Woods � Yang ����c� Woods � Yang ����b� Woods � Yang ����a� Woods � Quilici
����� Woods � Yang ���
� we present results as part of a ongoing project� the purpose
of which is to demonstrate that an e�ective approach to partial PU is possible with large
legacy code examples� Additionally through this project we wish to concisely and precisely
represent the particular problem structures� constraints� and solution strategies in a uni�ed
framework� The model we have chosen for this generalized representation of PU is as a
Constraint Satisfaction Problem �CSP��Mackworth ������
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A Constraint Satisfaction Problem� typically consists of three major components� A set
of variables� a �nite domain value set for each variable� and a set of constraints among the
variables which restrict domain value assignments� A solution of a CSP is a set of domain
value�to�variable assignments such that all inter�variable constraints are satis�ed� Much
research has been done in creating algorithms for solving CSPs� ranging from global�Kondrak
� van Beek ����� and local search�based methods�Sosic � Gu ����� Minton et al� �����
Yang � Fong ������ constraint�propagation problem simpli�cations�Nadel ��
�� Dechter
����� Prosser ������ and hybrid combinations of these approaches� The general approach to
representing PU as constraint satisfaction involves two CSPs�

� The program understanding CSP� or PU�CSP in which a large legacy source is
�rst divided into spatially and functionally related blocks� and each block is explained
in terms of the existing program plan hierarchy� It is important to note that the
entire problem may be considered hierarchically� program blocks may be relatively
large� as is the case with a program procedure� or small� as is the case for program
statements� A solution to a PU�CSP �explains� source blocks globally in terms of
mappings to a program library such that the knowledge �library� and structural �source
code� constraints are satis�ed�

� The abstract program plan template matching CSP or MAP�CSP� We view MAP�
CSP as an integral part of the more ambitious understanding task� Successful matches
�locally explain� certain program blocks� and these local solutions can then be exploited
to restrict the larger PU�CSP� AMAP�CSP or program template matching problem can
be stated as follows� given a plan template with a number of elements and constraints
among the elements� �nd all instances of the template in a source code� As an example�
consider �nding all instances of a particular abstract data type in a piece of legacy
source� A template is de�ned in terms of a set of variables corresponding to features of
the data type� Structural properties of the data type are represented as inter�feature
constraints for temporality� data��ow� control��ow and element typing� Each variable
has a domain ranging over all possible source program statements� A solution to
the MAP�CSP �explains� a local subset of program statements in the source through
identi�cation of a mapping between the template features and source statements� Each
assignment must satisfy all knowledge and structural constraints�

Understanding summary

The PU models we have described are designed for non�iterative or all�at�once partial ex�
planation of a source code given a particular program plan library� The primary source
of information is program source annotated for control �ow� data �ow and other statically
available information that strongly constrains explanations for any source element� The

�See �Kumar ����� for an accessible and detailed treatment of Constraint Satisfaction Problems�
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implicit assumption in this model is that a great deal of contextual information is avail�
able in advance of any plan recognition� Consequently� explanatory conclusions are reached
through controlled reduction of sub�part explanations� by exploiting the fact that structural
constraints must match knowledge constraints for consistent explanations�
In other work� we intend to demonstrate the feasibility of PU�CSP in partially under�

standing very large legacy code� Towards this goal� we have successfully implemented and
tested MAP�CSP for several representative examples�Woods � Yang ����a� Woods � Yang
����c�� This empirical work is a step towards demonstrating that the MAP�CSP representa�
tion and algorithm is capable of providing all�instance results in moderately�sized program
blocks� An e�cient MAP�CSP algorithm will signi�cantly reduce the di�culty of the larger
PU�CSP algorithm� We observe that for legacy source examples of up to approximately ���
lines of code� even relatively straightforward strategies located all instances of the ADT in
approximately one minute of CPU time� In examples of up to ��� lines of code� all instances
were identi�able in approximately �� seconds�

��� Program Understanding as Plan Recognition

It is apparent that the PR and PU problems are closely related� In particular� a solution
to either problem must be based upon mapping sets of actions to elements of hierarchical
libraries of plans in a consistent fashion� As we are concerned with identifying good solution
strategies for program understanding� and since a large body of work has been produced
based on the generic plan recognition strategy of Kautz and Allen� a natural question to ask
is whether or not this algorithm can be applied directly to PU�
Consider the following simple legacy source code fragment�

��� f ��� c �� a� b� print�c�� c �� c��� ��� g ���

We interpret this example as the following simple series of observed actions� Sum� Print�
and Divide� We ignore assignment and other structural constraints for this example� We
wish to contextualize the example source with respect to the hierarchy of Figure ���� Consider
that each program statement constitutes a block or program action that must be explained
in the context of the hierarchy�
Consider what Kautz�s approach would suggest as the uni�ed plan after encountering each

of the three observations� After the �rst observation of Sum� the disjunctive result would be
Sum�P�and�Q is�part�of Sum�Values is�part�of �Print�Sum�Plan or �Find�Avg�Plan
is�part�of Print�Avg�Plan��� The second observation of Print would result in an indepen�
dent explanation of ��� Print�Value is�a Print�Sum is�part�of Print�Sum�Plan� or of
��� Print�Value is�a Print�Temp�Result is�part�of Sum�Values is�part�of Find�Avg
is�part�of Print�Avg�Plan� or of ��� Print�Value is�a Print�Average is�part�of Find�
Avg is�part�of Print�Avg�Plan� A minimal covering graph for this observation set would
be rooted in Print�Avg�Plan which covers both observations with cardinality �� The third
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Figure ���� Example program plan hierarchy�

observation is Divide�by��� This would result in an independent explanation of Divide�X�
by�Y is�a Calc�Average is�part�of Find�Avg is�part�of Print�Avg�Plan� The minimal
covering graph for this observation set would be rooted in Print�Avg�Plan once again� since
this plan covers the observation set with cardinality �� This covering explanation �explains�
the Sum instance as an instance of Sum�P�and�Q in Sum�Values� Print as an instance
of Print�Temp�Result in Sum�Values� and Divide as Calc�Average in Find�Avg�
This example demonstrates the inappropriateness of allowing a covering set to cover

more actions than have been encountered� Although the explanation is minimal in terms
of top�level actions� it allows for the assumption that future actions will be encountered�
This di�culty is obvious in the above example where the Print corresponds to the Print�
Average sub�plan� With advance knowledge that there are in fact no more applicable
observations �as is the case with PU�� this assumption is not justi�ed� Consequently� a
non�minimal covering would be the correct �possibly partial� explanation� In addition� any
partial recognition algorithm must account for the fact that it may not be possible to root
every low�level perceived action to a top�level plan� much less the same top�level plan or
minimal set of plans�
We discuss the similarity and di�erence of PR and PU approaches according in terms of

the following points�

� The plan library is assumed to be complete or incomplete at the time of reasoning
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Observation Set � � Library Structure � InComplete Complete

InComplete Extended PR Work Kautz PR Algorithm

Complete Partial PU Special case PU

Table ���� PU versus PR Comparison of assumptions�

or during the deductive step�

� The observation set is assumed to be complete or incomplete at the time of reasoning
or deduction�

� The set of observations or perceived actions is either strongly or weakly causally
constrained� For example� in PU there is no ambiguity regarding the causal relatedness
of some actions �such as in the case of actions in a loop structure�� while in PR
for the cooking domain� action perceptions require additional assumptions to connect
them causally� This di�erence is of great importance in controlling the combinatorial
problem Kautz outlines� the structural constraints available through preprocessing of
legacy source are what support e�cient solution of large PU problems� It is important
to note that Kautz makes use of this type of source constraint where possible� in the
form of observable temporal relationships in the cooking domain�

In particular� we categorize PU and PR approaches based on their assumptions about hi�
erarchy and observation set completeness� These results are highlighted in Table ���� and
discussed as follows�

� Library InComplete� Observation Set InComplete

The Kautz approach is inapplicable to this most general case due to the assumption
that a complete library is integral to Kautz�s minimal cover approach� Some more
recent PR work�Spencer ����� Cohen � Spencer ����� has attempted to extend PR
in this direction� Program understanding approaches capable of admitting partial
understanding �such as the constraint�based approach� are applicable in any library�
incomplete situation� Program understanding typically fails to address the case of
incomplete observations except in the case of partial understanding situations� where it
is explicitly understood that a code fragment is the source input� In these partial PU
cases� it may be assumed that the incomplete observation sets are locally �spatially
and functionally� connected and consequently exhibit the same degree of structural
constrainedness as a complete observation set� In the cases of partial recognition
where it is expected that the source will map to only some subset of the library� no
di�erence in behaviour will be expected for a partial� functionally complete source�
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� Library InComplete� Observation Set Complete

Once again Kautz�s approach requires a complete library assumption� and in this case
we have an additional di�culty� Kautz�s PR algorithm assumes that the observation
set is incomplete and that recognition is done incrementally� We have seen that the PR
minimal cover can be incorrect if one applies an incremental algorithm to a complete
observation set� Partial program understanding algorithms apply in this situation�

� Library Complete� Observation Set InComplete

At any point in time of any reasoning about plan�based explanation of behaviour� this
situation is the precise expectation of PR approaches such as that of Kautz� Non�
monotonic decisions or interpretations are made after each successive observation� an�
ticipating that another observation will be forthcoming� Most program understanding
work is based upon a strong assumption that it is impossible to completely specify a
su�cient program plan library to cover all program source� even in a limited domain�
Some approaches �such as the constraint�based and memory�based�Quilici ���	� ap�
proaches� can make strong claims about their ability to recognize the correct plans in
cases where a complete library is known in advance�

� Library Complete� Observation Set Complete

It would appear that this most strongly constrained situation would admit the most
constrained algorithms as a result� However� Kautz�s approach will not apply here�
For instance� a minimal set covering can imply the existence of observations that are
in fact not present at any point during the incremental approach� This situation is in
fact a special case for PU� One may view this as the case where an attempt is being
made to recognize source code generated solely through automated use of the library�
Thus� the library completely covers the source by de�nition�

��� Conclusion

We have seen that PR and PU approaches exhibit a great deal of similarity�

� PR and PU strategies share a representation of understanding as the successful con�
struction of a mapping between hierarchical pre�existing knowledge libraries and some
input observation set�

� Both strategies attempt to reduce the combinatorial di�culties of integrating multi�
observation explanation by exploiting available knowledge constraints on action com�
position as required temporal ordering of sub�actions�

However� the approaches di�er in very signi�cant ways�
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� The Kautz PR strategy assumes a complete library and incomplete observation set� and
consequently is inapplicable to a more restricted PU domain in which an incomplete
library and complete observation set are the norm�

� The di�ering assumption sets can result in over�committed solutions when the PR
concept of obsevation set minimal covering is applied to PU� The assumption of an
incomplete observation set is the basis for preferring few top�level plans rather than a
number of apparently disjoint partial plans�

� PR has a less�restrictive constraint set upon which to limit the combinatorial problem
of disjunctive explanation� While PU may exploit the wealth of structural constraints
easily�extracted from the source before recognition� PR is limited to explicit temporal
constraints� Consequently� we expect to solve larger PU problems more e�ciently than
comparably sized PR problems�

� PU can be thought of as a special� well constrained� case of PR which remains di�cult
�NP�hard�� While we have seen why general PR approaches are inapplicable to typical
PU problem instances� it should be emphasized that one important result of this study
is the suggestion that the techniques used in PU be considered for the more general PR
problem� In particular� certain PR problem instances could admit pre�processing of the
observation set to identify particular causal relationships� These explicit relationships
should be applied in conjunction with action representations so as to increase the
number and type of constraints available in the problem solution�
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