
Program Understanding as Constraint Satisfaction�

Representation and Reasoning Techniques

Steven Woods Qiang Yang

Department of Computer Science

University of Waterloo

Waterloo� ONTARIO N�L �G�

fsgwoods�qyangg�logos�uwaterloo�ca

Abstract

The process of understanding a source code in a high�level programming language

involves complex computation� Given a piece of legacy code and a library of program

plan templates� understanding the code corresponds to building mappings from parts of

the source code to particular program plans� These mappings could be used to assist an

expert in reverse engineering legacy code� to facilitate software reuse� or to assist

in the translation of the source into another programming language� In this paper we

present a model of program understanding using constraint satisfaction� Within this

model we intelligently compose a partial global picture of the source program code by

transforming knowledge about the problem domain and the program itself into sets of

constraints� We then systematically study di�erent search algorithms and empirically

evaluate their performance� One advantage of the constraint satisfaction model is its

generality� many previous attempts in program understanding could now be cast under

the same spectrum of heuristics� and thus be readily compared� Another advantage

is the improvement in search e�ciency using various heuristic techniques in constraint

satisfaction�

� Introduction

Humans are particularly adept at successfully interpreting explicit representations of knowl�
edge created by other intelligent agents� A shared understanding of the terms of reference
and subject material provides a basis for this interpretation� In software engineering� ex�
perts often apply such skill to the task of program understanding� As shown in Figure �� it
is possible to conceptualize an expert�s understanding of a given source program as a suc�
cessful construction of a mapping between the expert�s store of relevant knowledge and the

�

structures and components inherent in the source code� The expert or agent can use this
mapping to infer the source program�s high�level goals� This mapping essentially raises the
level of abstraction of the understanding of the source from the level of actual code to the
more abstract level of the existing representation �or language of expression� of the domain
knowledge� This abstract understanding may be exploited as part of the process of� ���
translating the program into the source code of another programming language� �	� recog�
nizing errors in the legacy code and assisting in debugging the code at the more abstract
level� and �
� replacing understood code portions with generic application code or calls to
other code libraries� We know that in many real�world circumstances� a reduction in the
size of an existing source code library by only a small percentage can result in a substantial
reduction of the maintenance cost� and consequently creating a mapping �even a very partial
one� between existing domain knowledge and a particular legacy source o�ers many possibles
levers to the experts charged with dealing with this source�
In Arti�cial Intelligence research� the problem of program understanding has been ap�

proached indirectly from the perspective of plan recognition
�� �� 	� 	��� In many of these
works� existing human knowledge in a particular domain is represented as hierarchies of
plans that describe relevant actions and goals� Given such a hierarchy� and an observation
of another agent�s plan� a plan�recognizer would typically construct a mapping from input
plan fragments to the leaf nodes of the knowledge�base and infer upwards toward a goal�
To disambiguate among alternative goals� the mapping processes may employ knowledge
about the temporal relations between parts of the plan� These plan recognition programs
have been applied mostly to toy domains �such as the cooking domain�� involving small
knowledge bases and a small amount of search�
Recently� researchers have adopted a more direct approach to program understanding� In

this direction� an explicit library of programming plan templates and concepts is constructed�
and various top�down and bottom�up search strategies are utilized to implement the mapping
process� Notable examples are Quilici
���� Kozaczynski and Ning
��� Rich and Waters
	
� and
Wills
	�� 	��� To some extent� all are aimed at improving the e�ectiveness of the mapping
process through heuristic knowledge�
In Figure 	 a subset of expert knowledge about a particular application domain is repre�

sented in a fragment of a hierarchical library of program templates� One possible mapping
is shown between a plan template from the library and a speci�c legacy source fragment� in
this case a single source statement� The existence of such a mapping essentially explains the
presence of the low�level source statement at a higher level of abstraction� in this case as an
instance of the plan template copy�character speci�ed in the library�
Much of the previous program understanding work has failed to demonstrate heuris�

tic adequacy in even partially generating �understanding� of large problems� Speci�cally�
many recognition algorithms presented may be viewed as collections of heuristic tricks� This
construction makes it di�cult for one to perform a systematic analysis of di�erent search
methods within a particular approach� or to understand how the addition or deletion of cer�
tain types of domain�speci�c knowledge may a�ect performance� We are unaware of concrete

	

main()
{
 char* A, B, C;
 ...

 A = "s" + "t" + "r" + "i" + "n" + "g" + "1";
 ...

 B = "string 2";
 ...
 sz = 7;
 for (int j = sz; j > 0; j−−) {

 C[sz − j] = B[sz − j];
 ... }
 ...
 C[sz] = 3;

 ...

 for (int i=0; B[i]; i++)
 ...
 print(B[i])

 ...

 for (int j=0; C[j];j++) {

 printf("%s",C[i]);
 ... }
 ...
 for (int k=0;A[k]; k++) {
 ...
 outchar(A[k]);
 ... }
 ...
 ...
 }

Legacy Source Code

Domain Knowledge

Domain Specific Algorithms

Domain Specific Data Structures

Programming Design and Style

General Algorithms

General Data Structures

Existing Program Libraries

Specific Language Syntax

Expert Knowledge

?
Expert

Figure �� Conceptualizing source with expert knowledge�

Program Plan Library (excerpt)Legacy Source Code

index when:
 "near instance" of
 copy−character

loop−through
 character−array

loop−initialize
 string

copy−character

AND

AND

OR

builtin−char*−copy

initialize−string

String ADT plan

plan instance

main()
{
 char* A, B, C;
 ...

 A = "s" + "t" + "r" + "i" + "n" + "g" + "1";
 ...

 B = "string 2";
 ...
 sz = 7;
 for (int j = sz; j > 0; j−−) {

 C[sz − j] = B[sz − j];
 ... }
 ...
 C[sz] = 3;
 ...

 for (int i=0; B[i]; i++)
 ...
 print(B[i])

 ...

 for (int j=0; C[j];j++) {

 printf("%s",C[i]);
 ... }
 ...
 for (int k=0;A[k]; k++) {
 ...
 outchar(A[k]);
 ... }
 ...}

specialize when:
 contains = "$string"

Figure 	� Conceptualizing source with a plan library�

�

examples or experiments which might suggest that these approaches might scale up for spe�
ci�c uses in large sources� One exception might be Wills
	�� who presents empirical results
promising in identifying partial mappings of reasonably sized legacy sources to a library of
program plans�
The work presented in this paper is part of the initial phase of work focused on demon�

strating that an e�ective approach to partial program understanding is possible with large
legacy code examples� Speci�cally� we intend to clearly categorize the circumstance in which
this use is possible� and the preconditions which must �rst be met in terms of representation
and application of domain knowledge� We present a generalized representation of program
understanding as a Constraint Satisfaction Problem �CSP�
���� For a given legacy source
code� the program components �explained later� are variables in the CSP� The domain values
are the known program plans that may explain each component� The CSP constraints are
either knowledge constraints which describe how program plans may �t together to form
larger plans� or structural constraints which describe how program components are struc�
turally related� We refer to the program understanding CSP as PU�CSP�
In addition� we present and empirically evaluate a mapping algorithm �as part of the

PU�CSP�� also formulated as a CSP� which provides the ability to locate all instances of a
speci�c general programming plan template� and to map the plan�s structure to actual source
program components� We refer to this mapping CSP as MAP�CSP� Some earlier works also
attempt to de�ne and recognize abstract concepts as part of program understanding
�� 	���
For a given program plan template �explained later�� the di�erent parts of the template are
the variables in the MAP�CSP� The various syntactically known pieces of the source code
correspond to domain values for each variable� The constraints among the di�erent parts of
the program plan are constraints in the MAP�CSP�
There are at least two advantages in our constraint�based approach� The �rst is its gener�

ality� most of the previous recognition methods and heuristics can now be uni�ed under the
constraint�based view� Another advantage is an increased ability to address heuristic ad�
equacy� or scalability� by casting program understanding as a CSP� the previously known
constraint propagation and search algorithms could be easily adapted� We may now perform
a systematic study of di�erent search heuristics� including both top�down and bottom�up
as well as many other hybrids� in order to discover their applicability to a particular source
code�

� The Program Understanding Problem

��� An Illustrative Example

Consider the C program outlined on the left hand side of Figure
� This example program
contains declarations� initializations and an embedded print loop for each of three strings�
As an illustration� strings are treated as a primitive data type by the programmer� with no

�

shared functionality for printing�

String ADT

main()
{
 String A("string 1");
 String B("string 2");

 String C("string 3");
 ...
 A.printString;
 ...
 C.printString;
 ...
 B.printString;
 ...
 }

main()
{
 char* A; char* B; char* C;
 A = "string 1";
 B = "string 2";

 C = "string 3";
 ...
 for (int i=0; B[i]; i++)
 print("%s",B[i]);
 ...
 for (int j=0; C[j];j++)
 {
 print("%s",C[i]);
 }
 ...
 for (int k=0;A[k]; k++)
 print("%s",A[k]);
 ... }

Figure
� C legacy code mapped as String ADT instance to C�� code�

To understand this program� one might use as a basis a library of program plans as shown
in Figure � which represents previously compiled knowledge about program composition
within a particular domain� Figure � shows a program plan for the Abstract Data Type
�ADT� or class String which is part of this library of plans� Once a mapping is constructed
between the source and compiled knowledge� one could translate the redundant source code
to one with a single inclusion of the ADT� as shown in the C�� code on the right hand side
of Figure
�

Class String {
 char localStr [MAXSIZE];

 String(char* inStr)
 {
 for (int j=0; inStr[j]; j++)
 localStr[j] = inStr[j]; }

 printString()
 {
 for (int j=0; localStr[j]; j++)
 printf("%s",localStr[j]); } }

Table �� Example abstract data type�

Given the legacy source code on the left side of Figure
� we would like to understand
or explain some portions of the source program within the known context of the program
plans such as represented by the String ADT� Successful identi�cation could result in the
replacement of much redundant source code with a single inclusion of the ADT� The C��

�

index when:
 "near instance" of
 copy−character

index when:
$function in {printf, sprintf}loop−through

 character−array

print−string

AND

loop−initialize
 string

copy−character

AND

format−character

AND

OR

builtin−char*−copy

initialize−string

String ADT plan

specialize when:
 contains ... = "$string""

Figure �� String ADT within a hierarchical program plan library�

code shown at the right of Figure
 is obtained with replacement of C source with references
to String ADT functionality� This understanding process might be executed in two steps�
First� one identi�es all instances of a particular abstract program plan in a source code� We
refer to this problem as the MAP�CSP problem� Second� one relates some set of identi�ed
plan blocks �or program slices� to conform to the hierarchical structure in a given program�
plan knowledge base� The latter we refer to as the PU�CSP problem�
We identify two important bene�ts of locating mappings between a programming plan

library and an existing source or legacy code� First� the resulting replacement of legacy
code with ADT instances can result in substantial reduction in code� This size savings
can reduce the amount of e�ort required for subsequent code understanding or maintenance
by programmers� Second� the mapping between source and library plan can be used as a
building block in attempting to understand and translate the legacy code� The intent of this
work is twofold� We describe how various types of individual mappings can be identi�ed
e�ciently� and we outline how this mapping process may be integrated into the larger task
of program understanding�

��� Quilici�s Memory�based Method

Quilici�s method is representative of other earlier work in this area� including work by Koza�
czynski and Ning
��� This approach
��� 	�� ��� 	�� is based on a construction of an explicit
library of programming plan templates� complete with an indexing ability� which can quickly
associate a particular recognized source code with program plan templates in the knowledge
base� Furthermore� a combination of top�down and bottom�up search strategies is utilized
to implement the matching process� With this system Quilici demonstrated how simple C
programs could be translated to C�� programs�

�

Program plans �such as embedded in ADTs� are organized hierarchically in a library as
shown in Figure �� Legacy source code in the form of an abstract syntax tree is mapped to
the plan library through the use of indices� which are pointers from the source code to parts
of the plan library� Index tests indicate when to specialize or to infer the existence of other
plans according to a set of conditions� As an example of specialization� consider Figure �
in which the program plan initialize�string is specialized to builtin�char��copy when a
direct string assignment is observed in the source code� An example of an inference test is
also shown in Figure �� where the existence of loop�initialize�string is inferred when an
instance of loop�through�character�array is �near� a related instance of copy�character
in the source code�
Given a source code and a program plan� Quilici describes an approach to understand�

ing the legacy source based on a search in the plan library� Search behaves bottom�up
when existing index tests indicate possible higher�level explanation plans for a particular
lower�level component in the library� Quilici observes that people only make bottom�up
inferences in particular �well�known� circumstances� and consequently limits the number of
upward explanations by inferring only those speci�ed by explicit indexes� On the other hand�
search behaves top�down when low�level components are indexed and subsequently matched
based on some hypothesized high�level plans� Quilici�s algorithm attempts to specialize any
matched plan as much as possible according to prede�ned specialization tests� and directs
search for low�level plans based on high�level hypothesized plans� This approach marks one
of the �rst cognitively motivated attempts to program understanding using a hierarchical
library of program plans� There are� however� a number of shortcomings� First� the lack
of a general mathematical model of the indexing and search process makes it unclear as to
how one should coordinate the top�down and bottom�up search� Second� Quilici�s algorithm
depends on a number of heuristics� such as specializing a plan as much as possible� It is not
clear how these heuristics integrate or how they scale�up when the problem size increases�
Finally� Quilici makes a substantial e�ort in capturing actual programmer�s methodologies
as heuristic enhancements to search control� but presents no empirical results�
While studying this work� it occurred to us that the program understanding problem

could be broken down into a number of choice points� Examples of these choices include� ���
choosing between candidate unexplained components� �	� choosing between multiple initial
plan assignments for a component� �
� choosing between several plans whose existence is
implied top�down� and ��� choosing a particular index or specialization test from a candidate
set� The existence and interactions of these decisions are buried in Quilici�s presentation� but
are very important in addressing the e�ciency of the search problem� In the next section�
we explore how to represent and exploit these choice points using a simple and elegant
mathematical model known as constraint satisfaction�

�

��� Wills� Graph Parsing Method

Wills
	
� 	�� 	�� outlined an approach to recognition in which stereotypical program or data
structures known as clich�es are represented as a type of graph grammar� A source program is
translated into an intermediate representation as a �ow graph� These �ow graphs are parsed
so as to identify all possible derivations of the �ow graph based on the known clich�es� These
derivations each represent a possible partial interpretation of the source program or mapping
to the library of clich�es� Wills notes that although the parsing problem is NP�complete in
general� experience suggests that attribute constraint checking signi�cantly prunes the search
space� Wills evaluates the e�ectiveness of such an approach empirically for two medium�size
source code examples�
Wills� work di�ers from our approach in at least
 important ways� ��� clich�eand program

representation� �	� library knowledge representation and exploitation during search� and �
�
method of integrating clich�einstances in the larger understanding problem�

��� Other Related Work

Kozaczynski and Ning
�� describe a method of automatically recognizing abstract concepts
in source code given a library of concepts and rules for how to recognize the higher�level
concepts in lower�level language concepts� essentially controlling the concept search in a
top�down fashion� Muller and others
��� ��� ��� are involved in the construction of Rigi�
a system for analyzing software systems which includes visual representations of data and
control �ow structures in code towards the identi�cation of subsystems and hierarchies of
structure in code� Rich and Waters
		� 	
� headed the Programmer�s Apprentice project
which focused on the development of a demonstration system �Knowledge�Based Editor in
Emacs or KBEmacs� with the ability to assist a programmer in analyzing� creating� changing�
specifying and verifying software systems� In addition� Rich and Waters
	
�
pp���������
describe a clich�erecognizer Recognize based in KBEmacs� Rugaber� Stirewalt� Wills and
others are part of an e�ort in reverse engineering being conducted at the Georgia Institute
of Technology� Recent work
	�� describes one major research area in program understanding
known as interleaving in which program plans intertwine�

� An Introduction to Constraint Satisfaction

Constraint satisfaction problems �CSPs� provide a simple and yet powerful framework for
solving a large variety of AI problems� The technique has been successfully applied to
machine vision� belief maintenance� scheduling� and planning� as well as many design tasks�
For a successful of this technique to knowledge�based planning� see

���
A constraint satisfaction problem �CSP� can be formulated abstractly as three compo�

nents�

�

�� a set of variables� Xi� i � �� 	 � � � n�

	� for each variable Xi a set of values fvi�� vi�� � � � vikg� Each set is called a domain for
the corresponding variable� denoted as domain�Xi��

� a collection of constraints that de�nes the permissible subsets of values to variables�

The goal of a CSP is to �nd one �or all� assignment of values to the variables such that no
constraints are violated� Each assignment� fxi � viji� i � �� 	� � � � � ng� is called a solution
to the CSP�

Red, Green, or Blue

Red, Green, or Blue

Red, Green, or Blue

Country A

Country B

Country C

Figure �� A Map Coloring Problem�

As an example of a CSP� consider a map�coloring problem� where the variables are regions
Ri� i � �� 	� � � � � n that are to be colored �see Figure ��� In a �nal solution every region must
be assigned a color such that no two adjacent regions share the same color� A domain for
a variable is the set of alternative colors that a region can be painted with� For example�
a domain for A might be fGreen�Red�Blueg� A constraint exists between every pair of
adjacent variables� which states that the pair cannot be assigned the same color� Between
adjacent regions A and B� for example� there is a constraint A �� B� A solution to the
problem is a set of colors� one for each region� that satis�es the constraints�
Let Vars � fX� Y� � � � Zg be a set of variables� A constraint on Vars is essentially a

relation on the domains of the variables in Vars� If a constraint relate only two variables
then it is called a binary constraint� A CSP is binary if all constraints are binary� For
any two variables X and Y � we say X � u and Y � v is consistent if all binary constraints
between X and Y are satis�ed by this assignment�

��

Variable A Variable B

Variable C

A domain = { Red, Green, Blue } B domain = { Red, Green, Blue }

C domain = { Red, Green, Blue }

v1
v2

v3

(not v1 Red)

(adjacent−to A B)

(adjacent−to A C) (adjacent−to B C)

Figure �� Map�Coloring CSP�

A variety of techniques have been developed for solving CSPs� They can be classi�ed
as local consistency�based methods� global backtrack�based methods or local�search methods�
Local�search methods
�	� is a kind of greedy algorithm which is gaining popularity� We do
not review this method here� but we do intend for our CSP modeling to be general enough
to include local�search as a reasoning method�

��� Local Consistency Methods

Local consistency methods follow the theme of preprocessing� That is� before a more costly
method is used� a consistency�based method could be applied to simplify a CSP and remove
any obviously incompatible values� Often these methods yield tremendous headway toward
eventually solving the problem�
Let X and Y be two variables� If a domain value A of X is inconsistent with all

values of Y � then A cannot be part of a �nal solution to the CSP� This is because in any
�nal solution S� any assignment to X must satisfy all constraints in the CSP� Since X � A

violates at least one constraint in all possible solutions� A can be removed from the domain
of X without a�ecting any solution�
If for a pair of variables �X�Y �� for every value of X there is a corresponding consistent

value of Y � then we say �X�Y � is arc�consistent� By the above argument� enforcing arc�
consistency by removing values from variable domains does not a�ect the �nal solution� The
process of making every pair of variables arc�consistent is called arc�consistency�

��

��� Backtrack�based Algorithms

Arc�consistency algorithms only work on pairs of variables� and as such can only handle
binary constraints and cannot always guarantee a �nal solution to a CSP� A more thorough
method for solving a CSP is backtracking� where a depth��rst search is performed on a search
tree formed by the variables in the CSP� A thorough examination of these techniques can be
found in
��� and
��� During a backtracking search� each variable instantiation is interpreted
as extending the current understanding of a legacy program one step further�

Root

...

...

Backtrack!

X1=v11 X1=v12 X1=v13 X1=v1k

X2=v21 X2=v22 X2=v2k

Variables:

X1

X2

Xn

Figure �� A search tree for a backtrack�based algorithm�

A backtracking algorithm instantiates the variables one at a time in a depth��rst manner�
It backtracks when the constraints accumulated so far signal inconsistency� In Figure � we
show this process� First� variables are ordered in a certain sequence� Di�erent orders of
variables might entail di�erent search e�ciency� and heuristics for good ordering of variables
are called variable�ordering heuristics� Similarly� for each variable� the values are tried
out one at a time� and the heuristics for a good ordering of values are called value�ordering
heuristics�
Using the CSP representation� we can also consider a more systematic study of di�erent

search algorithms� Figure 	 provides a general backtracking algorithm for solving a CSP� In
this algorithm� we have a number of hooks where we could place di�erent search heuristics�
They correspond to heuristics for ordering variables and constraints� as well as heuristics for
deciding the amount of constraint propagation�
There are several choice points which both individually and in combination a�ect the

resulting search performance� These choice points are explained as follows�

�� Initialization and Initial Constraint Propagation are the determination of variables and
domain values before the search starts� It can be viewed as a special type of localized
constraint propagation algorithm� but one that is directed according to pre�de�ned
domain knowledge� The determination of the set V and of Dom�X� controls how

�	

Generic CSP Search
V � variables in a CSP� Dom�X�� the domain values of X�

�� �Initialization� for each variable Xi � V � �nd the set of domain values for Xi�
	� �Initial Constraint Propagation� Reduce Dom�X� by constraint propagation�

� Solution � NULL
�� �Variable Selection� Select and remove a variable X from V

�� �Value Selection� Select and remove a value of X from Dom�X��
The value must be consistent with all assignments in Solution�

�� �In�search Propagation� Apply a subset of constraints to V �
�� �Backtrack Point Selection� Backtrack if any Dom�X� in V becomes empty�
�� �Solution Evaluation� If V is empty� exit with Solution �if all�solution� continue��
else� goto Step ��

Table 	� Generic CSP Search Algorithm�

much work is done in advance� This reduction could also be performed as an in�search
propagation at Step � of the Generic CSP algorithm�

	� Constraint Propagation is the reduction of domains locally or globally within the CSP
problem graph� Existing algorithms include AC�

���� AC��
�
�� AC��
	��� and other
variations
��
��

� Variable Selection is the determination of which component variable should be chosen
next for instantiation during search� The decision may be based on domain independent
measures� such as the size of a variable�s domain� on information speci�c to the instance
and domain plan library� such as frequency of occurrence of particular plan templates
in the variable domain set� or on some combination of these types of information�

�� Domain Value Selection is the determination of a particular plan explanation� taken
from the plan library� to assign to the component variable� Typically this selection
should be made so as to most e�ectively limit the remaining variable ranges� that is�
to be the most context limiting� In terms of our plan library this means a plan that is
as speci�c as possible�

�� In�search Propagation is the reduction �as for Step 	� of the remaining uninstantiated
variable domains according to some constraint propagation algorithm� Problem char�
acteristics such as variable domains that exceed some average or absolute bounds are
potential signals that constraint propagation may be useful before continuing search�
In
��� the advantages of exploiting various algorithms for achieving a limited degree
of partial consistency amongst variable sets are examined�

�

�� BackTrack point selection is the determination� after it has become evident that no
possible solution exists along a particular variable�instantiation path� of which in�
stantiation to retract� Intelligent backtracking approaches such as BackJumping and
BackMarking� attempt to determine the origin of the con�ict that caused the failure�
and to BackTrack as far up the search tree as possible to avoid a repeated failure of
the same condition�

�� Solution Evaluation determines whether or not a particular solution is satisfactory� In
a cooperative interactive approach to program understanding� it is at this point that an
expert might interact and evaluate a particular partial solution for adequacy� Similarly�
if there exists particular measures of adequacy or soft� preferential constraints that may
have been relaxed during search� such measures may be applied here�

There are in addition several other ways to improve the search e�ciency� One method is
to employ the particular hierarchical structure of the plan library� and using a hierarchical
constraint satisfaction algorithm
���� In this approach� the plan library represents plans
at varying levels of abstraction� A set of low�level program components which have been
mapped to the program library may be grouped according to their functional relationships
and form a higher�level component� This component �or variable� may now be explained by
a more abstract plan �or domain value� according to both the structural constraints imposed
in source structure and the knowledge constraints present in the program plan library� We
pursue this type of constraint application more completely in future work�
In the generic search algorithm a set of choice points are presented in the new context of

CSP solving� In the next section of this paper we discuss and evaluate several selection vari�
ations for recognition of one particular template in sets of generated source code examples�
We examine variations that include applying AC�
 as Step � combined with BackTracking
and also another more intelligent search algorithm known as Forward Checking
��� which
performs a limited amount of in�search propagation at Step �� In addition� the intelligent
search algorithm dynamically rearranges the order of variables during search according to
the size of the variable domains� selecting the shortest �rst�
The order in which constraints are applied can also dramatically a�ect search� Constraint

ordering or selection would occur at Step �� In particular� it is advantageous to apply
constraints that are inexpensive computationally and that �potentially� prune a large number
of domain values� In a particular domain it may be possible to determine or estimate
such relative bene�ts either from past empirical results or through analysis of the domain
structure itself� For instance� the property that program template features tend to be found
spatially near each other can be exploited through heuristics that limit the range of search
for related components� The e�ectiveness of such abstraction heuristics has been reported
elsewhere
�� 	���

�These and other intelligent backtracking algorithms are described in detail by Nadel in�����

��

��� Program Understanding as CSP

We view the entire program understanding problem as a constraint satisfaction problem� In
this model� a long program code is �rst divided into blocks� where each block is a set of
closely related source code� The program understanding problem is to identify the top�level
function of each of these program blocks� so that not only the inter�relationships between the
blocks are explained� but also the constraints speci�ed by a program library on the program
plans are respected� A key problem� then� is to assign one plan component to each block�
subject to a set of constraints� This problem we call the program�understanding CSP�
or PU�CSP�
The number of program plan components that one could assign to each block could be

enormous� To be practical� it is crucial to �rst reduce the number of explanations for each
block as much as possible� This process could be helped by a related constraint satisfaction
problem� one that we will explain in detail in Section �� the problem of �nding all instances
of a given program plan or pattern in the entire source code� This problem we call the
MAP�CSP problem�
Below� we explain both problems in detail�

� Program Understanding CSP� PU�CSP

PU�CSP is formed in the following way� Suppose that an initial decomposition or slicing of
the source code is given� Each block of source code corresponds to a variable in the PU�CSP�
The Variable domains correspond to all possible explanations of an individual source code
block� As an example� consider the legacy code program statements of Figure
 as the blocks�
We take each block as a PU�CSP variable which ranges over all possible program plans of
corresponding statement type� such as �declaration�� �assignment�� �print�� etc� in the plan
library of Figure ��

��� The Modeling Process

A Program Understanding CSP �PU�CSP� is formulated via four distinct steps shown in Fig�
ure �� First� the legacy source is pre�processed creating a set of artifacts that describe some
precise interrelationships in the source regarding data �ow relationships between functional
blocks� control �ow among the functional blocks� and the creation of an abstract syntax
tree in an intermediate abstract language via parsing of the source� Second� the source code
is partitioned according to existing program slicing methodologies into spatially localized
blocks of code which are known to exhibit functional relationships among one another� and
cohesive properties within one�s boundaries� Third� a skeleton CSP is formulated consisting
of one variable for each identi�ed source block� and constraints between these variables are
derived from the intermediate representation level artifacts� Each variable �typed� via the
addition of re�exive constraints on the variable which describe properties of the block such

��

as kinds of input or output� Finally� each CSP variable is compared against the templates
in the program plan library� with any templates which potentially match a variable with
regards to input and output typing are composed as the domains of that variable�

Block V1

Block V3

Block V4

Block V2

Variable V2

Constraint 1-3

Constraint 1-4

Constraint 3-4Constraint 2-3

Skeleton CSP Graph

Template TemplateTemplateTemplate

Template Template Template

Template Template

A

A A

AA

B

B

BB

1 1

2 2

Variable V3

Template

2i ii i ii

And
Or

And
Or

Program Template Hierarchy

B2B1A2i
A2ii

1A

A2ii
C2 ii

{ }

{ }

Variable V4

Variable V3
Variable V1

Variable V2

Constraint 2-3

Constraint 1-3

Constraint 1-4

Constraint 3-4

Constraint 3-4

{ }

{ }

PU-CSP Graph

Program
Source

B

Abstract Syntax Tree

Control Flow Diagram

Data Flow Diagram

Intermediate Representation
Identify
Program
Blocks

Assign
Initial
Domains

Complete
Program
Analysis

Create
PU-CSP
Structure

Sliced Legacy

Blocks

2

2

Variable V4

2

Variable V1

Figure �� PUCSP Formulation� CSP Graph exploded in Figure ��

Figure � shows an example formulated PU�CSP in which the domains of each variable are
shown as instances identi�ed in the program template hierarchy� During discussion of the
PU�CSP we will heretofore discuss two distinct types of constraints� structural constraints
depicted in Figure � as the inter�variable constraints� which are exactly those constraints
derived from the intermediate source representation and which describe how program com�
ponents are structurally related� and knowledge constraints� depicted in the �gure as the
compositional and specialization constraints in the program template hierarchy� which de�
scribe how program plans or templates may �t together to form larger �more abstract� plans
in this domain�
The program template hierarchy is composed of hierarchically related plan templates �for

a formalization of hierarchical planning knowledge base� see

��� A template plan may be

��

B2B1A2i
A2ii

1A

A2ii
C2 ii

A2i

2 i
C C2 ii

A2A1

2C

A2ii

B1 B2

Template Template

Template Template

Template

B

BB2 2i ii

Or

And

PU-CSP Graph (node consistent)

{ }

{ }

Variable V4

Variable V3
Variable V1

Variable V2

Constraint 2-3

Constraint 1-3

Constraint 1-4

Constraint 3-4

Constraint 3-4

{ }

{ }

Template

Template

Or

And

C

TemplateTemplate

Template

Template

A

And

Or

And

Template Template

Template

Program Template Hierarchy

Figure �� PUCSP Graph�

��

broken down into several sub�plans� in which case this is recorded as an And relationship
between the sub�plans and the parent plan� Further� any required structure between the sub�
plans such as necessary ordering� data �ows between the sub�plans or control��ow between
the sub�plans is recorded with the And relationship� Similarly� a template plan may be
a specialization of another plan �or one of many such specializations�� and in this case
the constraints that constitute the specialization such as restriction of variable type or a
particular restriction of data or control �ow is recorded with the Or relationship� Figure ��
shows a simple And example in which Template A is composed of two subplans A� and
A� where A� provides the data �ow r which A� requires� and a simple Or example in which
Template A may be specialized by either of the plans B�� which also exports n in addition
to the primary exports of B or B�� which exports p�

Template

B2

Template

A2

Template

A1

q ->a -> Template

A
Template

B
m ->c ->

x ->

Template

B1

And

|A | -> |A |

Or

B exports p
1

2

c ->

x ->

c ->

x ->

m ->

p ->

m ->

n ->

a -> q ->r ->

r ->

ra
q

B exports n
1 2

Figure ��� Library knowledge constraints�

��� More on Constraints

In a PU�CSP� the constraints among variables are of two types�

� Structural constraints are determined from the legacy code� They include such things
as scope or called�calling relations� precedence relations� or shared information rela�
tions between component blocks� For instance� in the legacy source in Figure
� the
print statements appear within the scope of for statements� declarations precede
their initial assignment� and print statements act upon array positions indexed by
corresponding for statement indexes�

� Knowledge constraints are independent of the legacy code� They are program plans
restricted in their relationship by the AND�OR structure given in the plan library�
AND constraints are for composing program plans into higher level plans� and OR�s

��

are for specializing an abstract plan in one of several ways� Assigning one program
plan as an explanation of a particular PU�CSP variable thus constrains consistent
assignments of other component variables�
As an example of a knowledge constraint mandated from the library structure� if a
variable corresponding to program component A � �string �� in Figure
 were
instantiated to program plan builtin�char��copy as shown in Figure �� then it is
consistent to assign the last for�loop variable an explanation of print�string� where
the strings are the same�

A solution to the PU�CSP is an assignment to each variable by one program plan compo�
nent in the plan library� such that no structural constraint from the source code� or knowledge
constraint from the plan library is violated�
Representing program understanding as PU�CSP provides a convenient framework for in�

terpreting Quilici�s index tests as constraint applications as part of search strategies typically
used for solving CSPs� Specialization tests are speci�c instances of knowledge constraints
that may be used to systematically reduce the range of domain variables in a hierarchical
CSP� Inference tests identify �related� program plan templates according to earlier compo�
nent instantiation� and can be interpreted as a special kind of variable�ordering heuristic�

� Program Template Matching as CSP� MAP�CSP

We have seen how PU�CSP resolves integration of �local� explanations of source code blocks�
We represent the process of matching particular abstract program plans to our legacy source
as the MAP�CSP� We view MAP�CSP as an integral part of the more ambitious under�
standing task� Successful matches �locally explain� certain program blocks� and these local
solutions can then be exploited to restrict the larger PU�CSP�
A MAP�CSP or program template matching problem can be stated as follows� given

a plan template with a number of elements and constraints among the elements� �nd all
instances of the template in a source code� As an example� consider �nding all instances
of an abstract data type in a C program� Figure �� is a String ADT plan template taken
from a plan library� The ADT is described in terms of � features describing various key
components of a string class� In addition� there are constraints among the di�erent parts as
well� such as the one that requires one component to go before another�
We could model this problem as a CSP� For the given plan template �or ADT�� each

feature is a variable in our MAP�CSP� The domain range consists of all possible source
program statements� Variables here can have attributes such as �print�for� that may be
seen as constraints on allowable assignment of program statements �values� to template
features �variables�� Other constraints are on the sharing of information among variables�
and on the order in which template features or variable are expected to appear in legacy
source�

��

Declare array NameA char (SizeA)

For (index1, initVal, endVal)

Begin block1

Print(NameD[index2]

End block2

A before B

B before C

C before D

D before E

same(
 index1,
 index2
)

same(
 NameA,
 NameD
)

same(
 block1,
 block2
)

Variable X1

Variable X2

Variable X3

Variable X4

Variable X5

Figure ��� The String ADT in MAP�CSP�

A solution to the MAP�CSP consists of the set of all assignments of plan template
features by source code statements� where each assignment must satisfy all constraints� As
an example� consider the ADT of Table �� When represented as a plan template as in
Figure ��� the variables of the MAP�CSP are� Xi� i � �� � � � � �� Initially the domain for each
variable ranges through all source statements in Figure
� The constraints are as shown
in the �gure� The solution to this problem corresponds to the three alternative consistent
assignments to the variables� one for each character string A� B and C� respectively� Thus�
the solution to a MAP�CSP provides a mapping that explains the matched source statements
as parts of an instance of the abstract program plan or ADT�

� Empirical Results of MAP�CSP

In this section we present and discuss experiments which are intended to show the feasibility
of the MAP�CSP representation and related algorithms�
In Figure �� a CSP is described for the String ADT� This CSP contains � variables each

corresponding to a part of the program plans contained in the ADT in Table �� The domain
values are made up of source program statement blocks� For this test problem� there are �
precedence constraints amongst the template variables� along with one additional constraint
that the begin block corresponding to the for statement be within �� program lines �the
number �� is arbitrarily chosen��
A test case is produced by instantiating
 instances of the program template in a sample

	�

source code� and by adding some variable amount of additional program statements as
�noise� around the template instances�� For example� the legacy source example shown in
Figure
 contains three separate instances of the String ADT of Figure ���
Our experiments are undertaken using a speci�c version of the generic CSP search al�

gorithm� This algorithm has been implemented in Common Lisp on a SPARC server ���
workstation with four di�erent heuristic con�gurations�

� Standard BackTracking
� Forward Checking with Dynamic Rearrangement
� AC�
 in advance of Standard BackTracking
� AC�
 in advance of Forward Checking

Each con�guration has been applied to legacy sources ranging in size from �� source
lines to ���� source lines� in �� source line increments� Each increment was tested with ��
di�erent random problem instances�
The MAP�CSP experiments are detailed in Figure �	� for Standard BackTracking� in Fig�

ure �
 for Forward Checking with Dynamic Rearrangement� in Figure �� for AC�
 constraint
propagation in advance of Standard BackTracking� and in Figure �� for AC�
 in advance
of Forward Checking� Each �gure shows the number of CPU seconds required to �nd all
template instances� with a �� con�dence interval charted�

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

510

540

570

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
P

U
 s

ec
on

ds

Program statements

BT
BT 95% CI

Figure �	� Standard BackTrack ��� conf� interval��

�The experiments presented in this paper are undertaken using arti�cially generated� potentially nonsen�
sical� legacy code� Our ongoing research e	ort is focused on testing the integrated PU�CSP and MAP�CSP
techniques to large existing commercial source libraries�

�If more than
��� of the experiments for a particular level of program statements did not complete in

�� CPU seconds� those results are not charted� This occurs in the results shown in Figures �
 and ���

	�

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

510

540

570

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
P

U
 s

ec
on

ds

Program statements

FCDR
FCDR 95% CI

Figure �
� Forward Checking� DR ��� conf� interval��

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

510

540

570

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
P

U
 s

ec
on

ds

Program statements

AC3+BT
AC3+BT 95% CI

Figure ��� AC�
 with BT ��� conf� interval��

		

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

510

540

570

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
P

U
 s

ec
on

ds

Program statements

AC3+FCDR
AC3+FCDR 95% CI

Figure ��� AC�
 with FC� DR ��� conf� interval��

We wish to demonstrate that the MAP�CSP representation and algorithm is capable of
providing all�instance results in moderately sized program slices� An e�cient MAP�CSP
algorithm could make the execution of the larger PU�CSP algorithm more feasible� In
addition� the MAP�CSP algorithm for template matching could potentially be stand�alone
as a tool for assisting in the identi�cation of legacy source portions that may be replaced
with existing source library objects�
Several observations can be made from our test results�

� Standard Backtracking exhibited very unstable performance in examples of the same
size� As hoped� more intelligent strategies behaved in a more stable manner� Forward
Checking was considerably more stable� and the applications using AC�
 in advance
of search exhibited very small variance across test cases of similar size� Stability is an
important factor in any application that may be used as part of an online or interactive
tool� In addition� Standard Backtracking was unable to complete in less than ��� CPU
seconds for source instances exceeding ��� program statements�

� For legacy source examples of up to approximately ��� lines of code� the intelligent
strategies located all instances of the ADT in approximately one minute of CPU time�
In examples of up to
�� lines of code� all instances were identi�ed in approximately

� seconds� In such near�real�time circumstances it would appear that a tool could be
fashioned that could be called up to run as a background process supporting an expert
working with some legacy code�

� In experiments where the number of source lines exceeded 	��� the appearance of false
solutions� started to become apparent� These solutions arise through combinations of

�A �false solution� is a satisfying assignment of template variables to program parts such that the template

	

actual template instance components and nearby program statements that meet all of
the constraints of the ADT� However� the number of false solutions never exceeded ��
in programs of ��� or less lines� and rarely exceeded � in smaller sources� These results
suggest that either our template speci�cations need to be tightened somewhat so as to
exclude these false solutions� or the system should be capable of interacting with an
expert who may verify solutions before they are adopted� It is important to note that
in the solution of the larger PU�CSP it is expected that these false solutions will be
identi�ed and discarded� primarily on the strength of knowledge constraint restrictions�

	 Conclusions

In this paper we have constructed a general representation of the program understanding
task as a constraint satisfaction problem� Two versions of the task are identi�ed� one is to
�nd all instances of a given program plan template in a source code� and the other is to
construct or verify an explanation of the source code in terms of a program plan library� In
addition� we have modeled various search heuristics for program understanding as instances
of a generic CSP search algorithm� We believe that the algorithm subsumes the previously
proposed methods for the same problem� and can be systematically studied on a spectrum
of heuristics�
We have also implemented the all�instances template matching problem� MAP�CSP and

demonstrated that MAP�CSP can be solved for problems of non�trivial size using intelligent
backtracking and constraint propagation within a reasonably stable and reasonably short
time period� MAP�CSP has potential application both as a stand�alone tool for legacy code
reduction and as a key component within the program understanding task�
We summarize some of the advantages of our approach below�

Scalability Our empirical results demonstrated that the MAP�CSP problem can be scaled
up for legacy code of useful sizes� This e�ciency gain is achieved by viewing the recognition
problem as constraint satisfaction� and applying known constraint satisfaction algorithms� In
our experiment� we haven�t utilized the full range of constraints inherent in a program source
code� such as those derived from program parsing� a technique employed by Kozaczynski !
Ning
�� and Wills
	��� More extensive consideration is given to the speci�c use of these
constraints in

��� We expect the empirical results to improve further with use of these
constraints�

Usability We envision our system as one part of a programmer�s assistant toolset� For
the MAP�CSP problem� a programmer could use the system to identify abstract program

constraints are satis�ed� however� the found mapping is in fact not an actual instance of the program
template� They arise as a result of overly abstracted template speci�cations�

	�

plans in legacy programs up to around ��� lines of code in almost real�time� and can apply
the system in batch�mode to much larger programs�
We are currently engaging in cooperation with a main telecommunications provider to

investigate the applicability of this approach to extremely large source code in the telephony
domain� Achieving partial automatic recognition of even � of the code would greatly bene�t
software maintainers�
We are currently implementing the search algorithm for PU�CSP� We expect to see similar

e�ective results from constraining the search with hierarchical plan knowledge� particularly
when this algorithm is fully integrated with the MAP�CSP solutions�

Acknowledgments

We thank Alex Quilici and Jim Ning for their insight and comments and Grant Weddell for
many helpful discussions� This research has been carried out with the support of the Nat�
ural Sciences and Engineering Research Council of Canada and the Institute for Computer
Research �ICR��

References

�� Sandra Carberry� Modeling the user�s plans and goals� Computational Linguistics�
���
��	
"
�� �����

	� Sandra Carberry� Incorporating default inferences into plan recognition� Proceedings of
the �th AAAI� �����"���� �����

� Martin C� Cooper� An optimal k�consistency algorithm� Arti�cial Intelligence� �����"���
�����

�� E�C� Freuder� A su�cient condition of backtrack�free search� Journal of the ACM�
	�����	
"
	� ���	�

�� R�M� Haralick and G�L Elliott� Increasing tree�search e�ciency for constraint satisfac�
tion problmes� Arti�cial Intelligence� ���	�
"
�
� �����

�� R� Holte� T� Mkadmi� R� Zimmer� and A� MacDonald� Speeding up problem�solving
by abstraction� A graph�oriented approach� Technical report TR������� University of
Ottawa� March �����

�� Henry Kautz and James Allen� Generalized plan recognition� In Proceedings of the Fifth
National Conference on Arti�cial Intelligence� pages
	"
�� Philadelphia� Pennsylvania�
�����

	�

�� Wojtek Kozaczynski and Jim Q� Ning� Automated program understanding by concept
recognition� Automated Software Engineering� ����"��� �����

�� Vipin Kumar� Algorithms for constraint�satisfaction problems� AI Magazine� pages

	"��� Spring ���	�

��� A�K� Mackworth� Consistency in networks of relations� Arti�cial Intelligence� ����"����
�����

��� Alan Mackworth� Jan Mulder� and William Havens� Hierarchial arc consistency� exploit�
ing structured domains in constraint satisfaction problems� Computational Intelligence�
�����"�	�� �����

�	� Steve Minton� Quantitative results concerning the utility of explanation�based learning�
Arti�cial Intelligence� �	�
�
"
��� �����

�
� R� Mohr and T�C� Henderson� Arc and path consistency revisited� Arti�cial Intelligence�
	��		�"	

� �����

��� H� Muller� K� Wong� and S�R� Tilley� Understanding software systems using reverse engi�
neering technology� In Proceedings of the Colloquim on Object Orientation in Databases
and Software Enginering� pages ��"��� The �	nd Congress of the �L�Association Cana�
dienne Francaise pour l�Avancement des Sciences �ACRAS��� December ����� May
������ ���� Montreal� Quebec� Canada�

��� Hausi Muller� M�A� Orgun� S�R� Tilley� and J�S� Uhl� A reverse engineering approach
to subsytem structure identi�cation� Journal of Software Maintenance� ���
�

��� Hausi Muller� M� Tilley� M�A� Orgun� B� Corrie� and N� Madhavji� A reverse engineering
environment based on spatial and visual software interconnetion modules� In Proceed�
ings of the Fifth ACM SIGSOFT Symposium on Software Development Environments
�SIGSOFT �	
�� ACM Software Engineering Notes� pages ��"��� December ���	�

��� Bernard A� Nadel� Constraint satisfaction algorithms� Computational Intelligence�
�����"		�� �����

��� Alex Quilici� A memory�based approach to recognizing programming plans� Communi�
cations of the ACM�
�������"�
� May �����

��� Alex Quilici� Toward practical automated program understanding� Proceedings of the
�		� IJCAI Workshop on AI and Software Engineering �AISE�	��� August �����

	�� Alex Quilici and David Chin� A cooperative program understanding environment� In
Proceedings of the Ninth Knowledge�Based Software Engineering Conference� pages �	�"
�
	� Monterey� CA� �����

	�

	�� Alex Quilici and David Chin� DECODE� A cooperative environment for reverse�
engineering legacy software� In Proceedings of the Second Working Conference on
Reverse�Engineering� pages ���"���� ����	 Los Vaqueros Circle� Los Alamitos CA
���	���	��� July ����� IEEE Computer Society Press�

		� C� Rich and R�C� Waters� The Programmer�s Apprentice� A research overview� IEEE
Comput
� 	��������"	�� �����

	
� C� Rich and R�C� Waters� The programmer�s apprentice� Addison�Wesley� Reading�
Mass�� �����

	�� Spencer Rugaber� Kurt Stirewalt� and Linda Wills� The interleaving problem in pro�
gram understanding� In Proceedings of the Second Working Conference on Reverse�
Engineering� pages ���"���� ����	 Los Vaqueros Circle� Los Alamitos CA ���	���	���
July ����� IEEE Computer Society Press�

	�� Peter van Beek� Robin Cohen� and Ken Schmidt� From plan critiquing to clari�cation
dialogue for cooperative response generation� Computational Intelligence� ��
�� ���
�

	�� P� Van Hentenryck� Y� Deville� and C�M� Teng� A generic arc�consistency algorithm
and its specializations� Arti�cial Intelligence� ���	��"
	�� ���	�

	�� L� M� Wills� Automated program recognition� A feasibility demonstration� Arti�cial
Intelligence� ���	����
"��	� February �����

	�� L� M� Wills� Automated program recognition by Graph Parsing� PhD thesis� MIT� July
���	�

	�� Steven Woods� A method of interactive recognition of spatially de�ned model deploy�
ment templates using abstraction� In Proceedings of the Knowledge Based Systems and
Robotics Workshop� pages ���"���� Government of Canada� November ���
�

�� Steven Woods� A constraint�based approach to program plan recognition in software
reverse engineering� Ph�D� Thesis Proposal� University of Waterloo� February �����

�� Steven Woods and Qiang Yang� Constraint�based plan recognition in legacy code�
Proceedings of the �		� IJCAI Workshop on AI and Software Engineering �AISE�	���
August �����

	� Steven Woods and Qiang Yang� Program understanding as constraint satisfaction� In
Proceedings of the IEEE Seventh International Workshop on Computer�Aided Software
Engineering �CASE�	��� pages
��"
	�� IEEE Computer Society Press� July ����� Also
appears in the Proceedings of the
nd Working Conference on Reverse Engineering
�WCRE�� July �����

	�

� Qiang Yang� Formalizing planning knowledge for hierarchical planning� Computational
Intelligence� �� �����

�� Qiang Yang� A theory of con�ict resolution in planning� Arti�cial Intelligence� �����

��
��"
�	� ���	� Special Issue on Constraint�directed Reasoning�

	�

