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Abstract

The process of understanding a source code in a high-level programming language
involves complex computation. Given a piece of legacy code and a library of program
plan templates, understanding the code corresponds to building mappings from parts of
the source code to particular program plans. These mappings could be used to assist an
expert in reverse engineering legacy code, to facilitate software reuse, or to assist
in the translation of the source into another programming language. In this paper we
present a model of program understanding using constraint satisfaction. Within this
model we intelligently compose a partial global picture of the source program code by
transforming knowledge about the problem domain and the program itself into sets of
constraints. We then systematically study different search algorithms and empirically
evaluate their performance. One advantage of the constraint satisfaction model is its
generality; many previous attempts in program understanding could now be cast under
the same spectrum of heuristics, and thus be readily compared. Another advantage
is the improvement in search efficiency using various heuristic techniques in constraint
satisfaction.

1 Introduction

Humans are particularly adept at successfully interpreting explicit representations of knowl-
edge created by other intelligent agents. A shared understanding of the terms of reference
and subject material provides a basis for this interpretation. In software engineering, ex-
perts often apply such skill to the task of program understanding. As shown in Figure 1, it
1s possible to conceptualize an expert’s understanding of a given source program as a suc-
cessful construction of a mapping between the expert’s store of relevant knowledge and the



structures and components inherent in the source code. The expert or agent can use this
mapping to infer the source program’s high-level goals. This mapping essentially raises the
level of abstraction of the understanding of the source from the level of actual code to the
more abstract level of the existing representation (or language of expression) of the domain
knowledge. This abstract understanding may be exploited as part of the process of: (1)
translating the program into the source code of another programming language, (2) recog-
nizing errors in the legacy code and assisting in debugging the code at the more abstract
level, and (3) replacing understood code portions with generic application code or calls to
other code libraries. We know that in many real-world circumstances, a reduction in the
size of an existing source code library by only a small percentage can result in a substantial
reduction of the maintenance cost, and consequently creating a mapping (even a very partial
one) between existing domain knowledge and a particular legacy source offers many possibles
levers to the experts charged with dealing with this source.

In Artificial Intelligence research, the problem of program understanding has been ap-
proached indirectly from the perspective of plan recognition [7, 1, 2, 25]. In many of these
works, existing human knowledge in a particular domain is represented as hierarchies of
plans that describe relevant actions and goals. Given such a hierarchy, and an observation
of another agent’s plan, a plan-recognizer would typically construct a mapping from input
plan fragments to the leaf nodes of the knowledge-base and infer upwards toward a goal.
To disambiguate among alternative goals, the mapping processes may employ knowledge
about the temporal relations between parts of the plan. These plan recognition programs
have been applied mostly to toy domains (such as the cooking domain), involving small
knowledge bases and a small amount of search.

Recently, researchers have adopted a more direct approach to program understanding. In
this direction, an explicit library of programming plan templates and concepts is constructed,
and various top-down and bottom-up search strategies are utilized to implement the mapping
process. Notable examples are Quilici[18], Kozaczynski and Ning[8], Rich and Waters[23] and
Wills[27, 28]. To some extent, all are aimed at improving the effectiveness of the mapping
process through heuristic knowledge.

In Figure 2 a subset of expert knowledge about a particular application domain is repre-
sented in a fragment of a hierarchical library of program templates. One possible mapping
1s shown between a plan template from the library and a specific legacy source fragment., in
this case a single source statement. The existence of such a mapping essentially ezplains the
presence of the low-level source statement at a higher level of abstraction, in this case as an
instance of the plan template copy-character specified in the library.

Much of the previous program understanding work has failed to demonstrate heuris-
tic adequacy in even partially generating “understanding” of large problems. Specifically,
many recognition algorithms presented may be viewed as collections of heuristic tricks. This
construction makes it difficult for one to perform a systematic analysis of different search
methods within a particular approach, or to understand how the addition or deletion of cer-
tain types of domain-specific knowledge may affect performance. We are unaware of concrete



Legacy Source Code

main()

char* A, B, C;

A="s"+"+ "+ N+ + g+ L

B = "string 2";

sz=1,

for (intj =sz;j>0; j—-) {
Clsz - j] = B[sz - jI;
.}

6[32] =3

for (int i=0; BJ[i]; i++)

print(B[il)

for (int j=0; C[j];j++) {
printf("%s" Cil);
o}

for (int k=0;A[K]; k++) {
aui[’char(A[k]);

Expert Knowledge

Existing Program Libraries
General Algorithms

General Data Structures
Programming Design and Style

Specific Language Syntax

Domain Specific Algorithms

Domain Specific Data Structures

Domain Knowledge

Figure 1: Conceptualizing source with expert knowledge.



Legacy Source Code Program Plan Library (excerpt)
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Figure 2: Conceptualizing source with a plan library.



examples or experiments which might suggest that these approaches might scale up for spe-
cific uses in large sources. One exception might be Wills[28] who presents empirical results
promising in identifying partial mappings of reasonably sized legacy sources to a library of
program plans.

The work presented in this paper is part of the initial phase of work focused on demon-
strating that an effective approach to partial program understanding is possible with large
legacy code examples. Specifically, we intend to clearly categorize the circumstance in which
this use is possible, and the preconditions which must first be met in terms of representation
and application of domain knowledge. We present a generalized representation of program
understanding as a Constraint Satisfaction Problem (CSP)[10]. For a given legacy source
code, the program components (explained later) are variables in the CSP. The domain values
are the known program plans that may ezplain each component. The CSP constraints are
either knowledge constraints which describe how program plans may fit together to form
larger plans, or structural constraints which describe how program components are struc-
turally related. We refer to the program understanding CSP as PU-CSP.

In addition, we present and empirically evaluate a mapping algorithm (as part of the
PU-CSP), also formulated as a CSP, which provides the ability to locate all instances of a
specific general programming plan template, and to map the plan’s structure to actual source
program components. We refer to this mapping CSP as MAP-CSP. Some earlier works also
attempt to define and recognize abstract concepts as part of program understanding[8, 28].
For a given program plan template (explained later), the different parts of the template are
the variables in the MAP-CSP. The various syntactically known pieces of the source code
correspond to domain values for each variable. The constraints among the different parts of
the program plan are constraints in the MAP-CSP.

There are at least two advantages in our constraint-based approach. The first is its gener-
ality; most of the previous recognition methods and heuristics can now be unified under the
constraint-based view. Another advantage is an increased ability to address heuristic ad-
equacy, or scalability; by casting program understanding as a CSP, the previously known
constraint propagation and search algorithms could be easily adapted. We may now perform
a systematic study of different search heuristics, including both top-down and bottom-up
as well as many other hybrids, in order to discover their applicability to a particular source
code.

2 The Program Understanding Problem

2.1 An Illustrative Example

Counsider the C program outlined on the left hand side of Figure 3. This example program
contains declarations, initializations and an embedded print loop for each of three strings.
As an illustration, strings are treated as a primitive data type by the programmer, with no



shared functionality for printing.

main()

char* A; char* B;
A ="string 1",

char* C;

B = "string 2";

C ="string 3";

for (int i=0; BIi]; i++)
print("%s",B[i]);

‘ for (int j=0; C[J;j++)

; ‘print("%s",C[i]);

for (int k=0:A[K]; k++)

main()

String A("string 1);
String B("string 2");

String ADT ZString C("string 3");

A'.printString;
%':'.printString;

i?;l.printString;
)

print("%s",A[K]);

Figure 3: C legacy code mapped as String ADT instance to C++ code.

To understand this program, one might use as a basis a library of program plans as shown
in Figure 4 which represents previously compiled knowledge about program composition
within a particular domain. Figure 1 shows a program plan for the Abstract Data Type
(ADT) or class String which is part of this library of plans. Once a mapping is constructed
between the source and compiled knowledge, one could translate the redundant source code
to one with a single inclusion of the ADT, as shown in the C4++ code on the right hand side
of Figure 3.

Class String {
char localStr [MAXSIZE];

String( char* inStr )

for (int j=0; inStr[j]; j++)
localStr[j] = inStr[j]; }

printString()
for (int j=0; localStr[j]; j++)
printf("%s" localStrj]); } }
Table 1: Example abstract data type.

Given the legacy source code on the left side of Figure 3, we would like to understand
or explain some portions of the source program within the known context of the program
plans such as represented by the String ADT. Successful identification could result in the
replacement of much redundant source code with a single inclusion of the ADT. The C++
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String ADT plan

specialize when: AND
contains ... = "$string™
initialize—string print-string
EC
/’, \\\ *
PRe OR S index when: |
e \\ "near instance" of
Py / copy—character
builtin-char*-copy loop-initialize | format-character
string |

AND

//index when:
loop-through |~ $function in {printf, sprintf}
character-array

copy-character

Figure 4: String ADT within a hierarchical program plan library.

code shown at the right of Figure 3 is obtained with replacement of C source with references
to String ADT functionality. This understanding process might be executed in two steps.
First, one identifies all instances of a particular abstract program plan in a source code. We
refer to this problem as the MAP-CSP problem. Second, one relates some set of identified
plan blocks (or program slices) to conform to the hierarchical structure in a given program-
plan knowledge base. The latter we refer to as the PU-CSP problem.

We identify two important benefits of locating mappings between a programming plan
library and an existing source or legacy code. First, the resulting replacement of legacy
code with ADT instances can result in substantial reduction in code. This size savings
can reduce the amount of effort required for subsequent code understanding or maintenance
by programmers. Second, the mapping between source and library plan can be used as a
building block in attempting to understand and translate the legacy code. The intent of this
work is twofold. We describe how various types of individual mappings can be identified
efficiently, and we outline how this mapping process may be integrated into the larger task
of program understanding.

2.2  Quilici’s Memory-based Method

Quilici’s method is representative of other earlier work in this area, including work by Koza-
czynski and Ning[8]. This approach [18, 20, 19, 21] is based on a construction of an explicit
library of programming plan templates, complete with an indexing ability, which can quickly
assoclate a particular recognized source code with program plan templates in the knowledge
base. Furthermore, a combination of top-down and bottom-up search strategies is utilized
to implement the matching process. With this system Quilici demonstrated how simple C
programs could be translated to C++ programs.



Program plans (such as embedded in ADTs) are organized hierarchically in a library as
shown in Figure 4. Legacy source code in the form of an abstract syntax tree is mapped to
the plan library through the use of indices, which are pointers from the source code to parts
of the plan library. Index tests indicate when to specialize or to infer the existence of other
plans according to a set of conditions. As an example of specialization, consider Figure 4
in which the program plan initialize-string is specialized to builtin-char*-copy when a
direct string assignment is observed in the source code. An example of an inference test is
also shown in Figure 4, where the existence of loop-initialize-string is inferred when an
instance of loop-through-character-array is “near” a related instance of copy-character
in the source code.

Given a source code and a program plan, Quilici describes an approach to understand-
ing the legacy source based on a search in the plan library. Search behaves bottom-up
when existing index tests indicate possible higher-level explanation plans for a particular
lower-level component in the library. Quilici observes that people only make bottom-up
inferences in particular “well-known” circumstances, and consequently limits the number of
upward explanations by inferring only those specified by explicit indexes. On the other hand,
search behaves top-down when low-level components are indexed and subsequently matched
based on some hypothesized high-level plans. Quilici’s algorithm attempts to specialize any
matched plan as much as possible according to predefined specialization tests, and directs
search for low-level plans based on high-level hypothesized plans. This approach marks one
of the first cognitively motivated attempts to program understanding using a hierarchical
library of program plans. There are, however, a number of shortcomings. First, the lack
of a general mathematical model of the indexing and search process makes it unclear as to
how one should coordinate the top-down and bottom-up search. Second, Quilici’s algorithm
depends on a number of heuristics, such as specializing a plan as much as possible. It is not
clear how these heuristics integrate or how they scale-up when the problem size increases.
Finally, Quilici makes a substantial effort in capturing actual programmer’s methodologies
as heuristic enhancements to search control, but presents no empirical results.

While studying this work, it occurred to us that the program understanding problem
could be broken down into a number of choice points. Examples of these choices include: (1)
choosing between candidate unexplained components, (2) choosing between multiple initial
plan assignments for a component, (3) choosing between several plans whose existence is
implied top-down, and (4) choosing a particular index or specialization test from a candidate
set. The existence and interactions of these decisions are buried in Quilici’s presentation, but
are very important in addressing the efficiency of the search problem. In the next section,
we explore how to represent and exploit these choice points using a simple and elegant
mathematical model known as constraint satisfaction.



2.3 Wills’ Graph Parsing Method

Wills[23, 27, 28] outlined an approach to recognition in which stereotypical program or data
structures known as clichés are represented as a type of graph grammar. A source program is
translated into an intermediate representation as a flow graph. These flow graphs are parsed
so as to identify all possible derivations of the flow graph based on the known clichés. These
derivations each represent a possible partialinterpretation of the source program or mapping
to the library of clichés. Wills notes that although the parsing problem is NP-complete in
general, experience suggests that attribute constraint checking significantly prunes the search
space. Wills evaluates the effectiveness of such an approach empirically for two medium-size
source code examples.

Wills’ work differs from our approach in at least 3 important ways: (1) clichéand program
representation, (2) library knowledge representation and exploitation during search, and (3)
method of integrating clichéinstances in the larger understanding problem.

2.4 Other Related Work

Kozaczynski and Ning[8] describe a method of automatically recognizing abstract concepts
in source code given a library of concepts and rules for how to recognize the higher-level
concepts in lower-level language concepts, essentially controlling the concept search in a
top-down fashion. Muller and others[16, 15, 14] are involved in the construction of Rigi,
a system for analyzing software systems which includes visual representations of data and
control flow structures in code towards the identification of subsystems and hierarchies of
structure in code. Rich and Waters[22, 23] headed the Programmer’s Apprentice project
which focused on the development of a demonstration system (Knowledge-Based Editor in
Emacs or KBEmacs) with the ability to assist a programmer in analyzing, creating, changing,
specifying and verifying software systems. In addition, Rich and Waters[23][pp.171-188]
describe a clichérecognizer Recognize based in KBEmacs. Rugaber, Stirewalt, Wills and
others are part of an effort in reverse engineering being conducted at the Georgia Institute
of Technology. Recent work[24] describes one major research area in program understanding
known as interleaving in which program plans intertwine.

3 An Introduction to Constraint Satisfaction

Constraint satisfaction problems (CSPs) provide a simple and yet powerful framework for
solving a large variety of AI problems. The technique has been successfully applied to
machine vision, belief maintenance, scheduling, and planning, as well as many design tasks.
For a successful of this technique to knowledge-based planning, see [34].

A constraint satisfaction problem (CSP) can be formulated abstractly as three compo-
nents:



1. a set of variables, X;,i =1,2...n,

2. for each variable X; a set of values {v;1,v;2,...v;x}. Each set is called a domain for
the corresponding variable, denoted as domain(Xj;),

3. a collection of constraints that defines the permissible subsets of values to variables.

The goal of a CSP is to find one (or all) assignment of values to the variables such that no
constraints are violated. Each assignment, {z; = v;;;, i = 1,2,...,n}, is called a solution

to the CSP.

Red, Green, or Blue

Red, Green, or Blue

Country A

Red, Green, or Blue

Figure 5: A Map Coloring Problem.

As an example of a CSP, consider a map-coloring problem, where the variables are regions
R;,i=1,2,...,n that are to be colored (see Figure 5). In a final solution every region must
be assigned a color such that no two adjacent regions share the same color. A domain for
a variable is the set of alternative colors that a region can be painted with. For example,
a domain for A might be {Green, Red,Blue}. A constraint exists between every pair of
adjacent variables, which states that the pair cannot be assigned the same color. Between
adjacent regions A and B, for example, there is a constraint A # B. A solution to the
problem is a set of colors, one for each region, that satisfies the constraints.

Let Vars = {X, Y, ... Z} be a set of variables. A constraint on Vars is essentially a
relation on the domains of the variables in Vars. If a constraint relate only two variables
then it is called a binary constraint. A CSP is binary if all constraints are binary. For
any two variables X and Y, we say X = v and Y = v is consistent if all binary constraints
between X and Y are satisfied by this assignment.
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A domain = { Red, Green, Blue } B domain = { Red, Green, Blue }

N

Variable A | (adjacent-to A B) Varlagle B
vl Y
(not v1 Red)
(adjacent-to A C) (adjacent-to B C)

Variable C
v3

C domain = { Red, Green, Blue }

Figure 6: Map-Coloring CSP.

A variety of techniques have been developed for solving CSPs. They can be classified
as local consistency-based methods, global backtrack-based methods or local-search methods.
Local-search methods [12] is a kind of greedy algorithm which is gaining popularity. We do
not review this method here, but we do intend for our CSP modeling to be general enough
to include local-search as a reasoning method.

3.1 Local Consistency Methods

Local consistency methods follow the theme of preprocessing. That is, before a more costly
method is used, a consistency-based method could be applied to simplify a CSP and remove
any obviously incompatible values. Often these methods yield tremendous headway toward
eventually solving the problem.

Let X and Y be two variables. If a domain value A of X is inconsistent with all
values of Y, then A cannot be part of a final solution to the CSP. This is because in any
final solution S, any assignment to X must satisfy all constraints in the CSP. Since X = A
violates at least one constraint in all possible solutions, A can be removed from the domain
of X without affecting any solution.

If for a pair of variables (X,Y), for every value of X there is a corresponding consistent
value of Y, then we say (X,Y) is arc-consistent. By the above argument, enforcing arc-
consistency by removing values from variable domains does not affect the final solution. The
process of making every pair of variables arc-consistent is called arc-consistency.
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3.2 Backtrack-based Algorithms

Arc-consistency algorithms only work on pairs of variables, and as such can only handle
binary constraints and cannot always guarantee a final solution to a CSP. A more thorough
method for solving a CSP is backtracking, where a depth-first search is performed on a search
tree formed by the variables in the CSP. A thorough examination of these techniques can be
found in [17] and [9]. During a backtracking search, each variable instantiation is interpreted
as extending the current understanding of a legacy program one step further.

Variables:

(x1=v12) (x1=v13) — X1
— X2

— Xn

Figure 7: A search tree for a backtrack-based algorithm.

A backtracking algorithm instantiates the variables one at a time in a depth-first manner.
It backtracks when the constraints accumulated so far signal inconsistency. In Figure 7 we
show this process. First, variables are ordered in a certain sequence. Different orders of
variables might entail different search efficiency, and heuristics for good ordering of variables
are called variable-ordering heuristics. Similarly, for each variable, the values are tried
out one at a time, and the heuristics for a good ordering of values are called value-ordering
heuristics.

Using the CSP representation, we can also consider a more systematic study of different
search algorithms. Figure 2 provides a general backtracking algorithm for solving a CSP. In
this algorithm, we have a number of hooks where we could place different search heuristics.
They correspond to heuristics for ordering variables and constraints, as well as heuristics for
deciding the amount of constraint propagation.

There are several choice points which both individually and in combination affect the
resulting search performance. These choice points are explained as follows:

1. Initialization and Initial Constraint Propagation are the determination of variables and
domain values before the search starts. It can be viewed as a special type of localized
constraint propagation algorithm, but one that is directed according to pre-defined
domain knowledge. The determination of the set V' and of Dom(X) controls how
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Generic CSP Search
V: variables in a CSP, Dom(X): the domain values of X.

[Initialization] for each variable X; € V, find the set of domain values for X;;
[Initial Constraint Propagation] Reduce Dom(X) by constraint propagation.
Solution = NULL

[Variable Selection] Select and remove a variable X from V

[Value Selection] Select and remove a value of X from Dom/(X).

The value must be consistent with all assignments in Solution.

6. [In-search Propagation] Apply a subset of constraints to V.

7. [Backtrack Point Selection] Backtrack if any Dom(X) in V becomes empty.

8. [Solution Evaluation] If V is empty, exit with Solution (if all-solution, continue);
else, goto Step 4.

AN

Table 2: Generic CSP Search Algorithm.

much work is done in advance. This reduction could also be performed as an in-search
propagation at Step 6 of the Generic CSP algorithm.

2. Constraint Propagation is the reduction of domains locally or globally within the CSP
problem graph. Existing algorithms include AC-3[10], AC-4[13], AC-5[26], and other

variations[4, 3].

3. Variable Selection is the determination of which component variable should be chosen
next for instantiation during search. The decision may be based on domain independent
measures, such as the size of a variable’s domain; on information specific to the instance
and domain plan library, such as frequency of occurrence of particular plan templates
in the variable domain set, or on some combination of these types of information.

4. Domain Value Selection is the determination of a particular plan explanation, taken
from the plan library, to assign to the component variable. Typically this selection
should be made so as to most effectively limit the remaining variable ranges, that is,
to be the most context limiting. In terms of our plan library this means a plan that is
as specific as possible.

5. In-search Propagation is the reduction (as for Step 2) of the remaining uninstantiated
variable domains according to some constraint propagation algorithm. Problem char-
acteristics such as variable domains that exceed some average or absolute bounds are
potential signals that constraint propagation may be useful before continuing search.
In [17] the advantages of exploiting various algorithms for achieving a limited degree
of partial consistency amongst variable sets are examined.
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6. BackTrack point selection is the determination, after it has become evident that no
possible solution exists along a particular variable-instantiation path, of which in-
stantiation to retract. Intelligent backtracking approaches such as BackJumping and
BackMarking! attempt to determine the origin of the conflict that caused the failure,
and to BackTrack as far up the search tree as possible to avoid a repeated failure of
the same condition.

7. Solution Evaluation determines whether or not a particular solution is satisfactory. In
a cooperative interactive approach to program understanding, it is at this point that an
expert might interact and evaluate a particular partial solution for adequacy. Similarly,
if there exists particular measures of adequacy or soft, preferential constraints that may
have been relaxed during search, such measures may be applied here.

There are in addition several other ways to improve the search efficiency. One method is
to employ the particular hierarchical structure of the plan library, and using a hierarchical
constraint satisfaction algorithm[11]. In this approach, the plan library represents plans
at varying levels of abstraction. A set of low-level program components which have been
mapped to the program library may be grouped according to their functional relationships
and form a higher-level component. This component (or variable) may now be explained by
a more abstract plan (or domain value) according to both the structural constraints imposed
in source structure and the knowledge constraints present in the program plan library. We
pursue this type of constraint application more completely in future work.

In the generic search algorithm a set of choice points are presented in the new context of
CSP solving. In the next section of this paper we discuss and evaluate several selection vari-
ations for recognition of one particular template in sets of generated source code examples.
We examine variations that include applying AC-3 as Step 1 combined with BackTracking
and also another more intelligent search algorithm known as Forward Checking[5], which
performs a limited amount of in-search propagation at Step 6. In addition, the intelligent
search algorithm dynamically rearranges the order of variables during search according to
the size of the variable domains, selecting the shortest first.

The order in which constraints are applied can also dramatically affect search. Constraint
ordering or selection would occur at Step 6. In particular, it is advantageous to apply
constraints that are inexpensive computationally and that (potentially) prune alarge number
of domain values. In a particular domain it may be possible to determine or estimate
such relative benefits either from past empirical results or through analysis of the domain
structure itself. For instance, the property that program template features tend to be found
spatially near each other can be exploited through heuristics that limit the range of search
for related components. The effectiveness of such abstraction heuristics has been reported

elsewherel[6, 29].

1These and other intelligent backtracking algorithms are described in detail by Nadel in[17].
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3.3 Program Understanding as CSP

We view the entire program understanding problem as a constraint satisfaction problem. In
this model, a long program code is first divided into blocks, where each block is a set of
closely related source code. The program understanding problem is to identify the top-level
function of each of these program blocks, so that not only the inter-relationships between the
blocks are explained, but also the constraints specified by a program library on the program
plans are respected. A key problem, then, is to assign one plan component to each block,
subject to a set of constraints. This problem we call the program-understanding CSP,
or PU-CSP.

The number of program plan components that one could assign to each block could be
enormous. To be practical, it is crucial to first reduce the number of explanations for each
block as much as possible. This process could be helped by a related constraint satisfaction
problem, one that we will explain in detail in Section 5: the problem of finding all instances
of a given program plan or pattern in the entire source code. This problem we call the
MAP-CSP problem.

Below, we explain both problems in detail.

4 Program Understanding CSP: PU-CSP

PU-CSP is formed in the following way. Suppose that an initial decomposition or slicing of
the source code is given. Each block of source code corresponds to a variable in the PU-CSP.
The Variable domains correspond to all possible explanations of an individual source code
block. As an example, consider the legacy code program statements of Figure 3 as the blocks.
We take each block as a PU-CSP variable which ranges over all possible program plans of
corresponding statement type, such as “declaration”, “assignment”, “print”, etc, in the plan
library of Figure 4.

4.1 The Modeling Process

A Program Understanding CSP (PU-CSP) is formulated via four distinct steps shown in Fig-
ure 8. First, the legacy source is pre-processed creating a set of artifacts that describe some
precise interrelationships in the source regarding data flow relationships between functional
blocks, control flow among the functional blocks, and the creation of an abstract syntax
tree in an intermediate abstract language via parsing of the source. Second, the source code
1s partitioned according to existing program slicing methodologies into spatially localized
blocks of code which are known to exhibit functional relationships among one another, and
cohesive properties within one’s boundaries. Third, a skeleton CSP is formulated consisting
of one variable for each identified source block, and constraints between these variables are
derived from the intermediate representation level artifacts. Each variable ‘typed’ via the
addition of reflexive constraints on the variable which describe properties of the block such
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as kinds of input or output. Finally, each CSP variable is compared against the templates

in the program plan library, with any templates which potentially match a variable with
regards to input and output typing are composed as the domains of that variable.

Program
Source

Complete
Program
Analysis

Sliced Legacy

Intermediate Representation Blocks
Identify Block V1

Abstract Syntax Tree Program -

Control Flow Diagram Blocks
Block V2
Data Flow Diagram
Block V3
Skeleton CSP Graph

Block V4

Variable V1

Variable V2

Constraint 1-3

Constraint 2-3

Variable V3

Create
PU-CSP
Structure

Constraint 3-4

Constraint 1-4

Program Template Hierarchy

PU-CSP Graph

Variable V1

Template
B

Template
A

or

TE

Assign
Initial
Domains

Template Template Template
A A
2 2jj By;

Variable V3

Variable v2

Boajj

Figure 8: PUCSP Formulation; CSP Graph exploded in Figure 9.

Figure 9 shows an example formulated PU-CSP in which the domains of each variable are
shown as instances identified in the program template hierarchy. During discussion of the
PU-CSP we will heretofore discuss two distinct types of constraints: structural constraints
depicted in Figure 9 as the inter-variable constraints, which are exactly those constraints
derived from the intermediate source representation and which describe how program com-

ponents are structurally related, and knowledge constraints, depicted in the figure as the
compositional and specialization constraints in the program template hierarchy, which de-
scribe how program plans or templates may fit together to form larger (more abstract) plans

in this domain.

The program template hierarchy is composed of hierarchically related plan templates (for
a formalization of hierarchical planning knowledge base, see [33]). A template plan may be
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broken down into several sub-plans, in which case this is recorded as an And relationship
between the sub-plans and the parent plan. Further, any required structure between the sub-
plans such as necessary ordering, data flows between the sub-plans or control-flow between
the sub-plans is recorded with the And relationship. Similarly, a template plan may be
a specialization of another plan (or one of many such specializations), and in this case
the constraints that constitute the specialization such as restriction of variable type or a
particular restriction of data or control flow is recorded with the Or relationship. Figure 10
shows a simple And example in which Template A is composed of two subplans A; and
Ay where A; provides the data flow » which A, requires, and a simple Or example in which
Template A may be specialized by either of the plans B;, which also exports n in addition
to the primary exports of B or By, which exports p.

a-> [ Template |9-> c-> Template m->
A X -> B
B, exports n
a r 1
-> A
1A 1A} B, exports p
Or
- /
And
a-> Template r-> Template a-> c-> Template m-> c-> Template m->
-> -
Ar | r>| A2 § By [n- *>1 B2 |p-

Figure 10: Library knowledge constraints.

4.2 More on Constraints

In a PU-CSP, the constraints among variables are of two types:

o Structural constraints are determined from the legacy code. They include such things
as scope or called/calling relations, precedence relations, or shared information rela-
tions between component blocks. For instance, in the legacy source in Figure 3, the
print statements appear within the scope of for statements, declarations precede
their initial assignment, and print statements act upon array positions indexed by
corresponding for statement indexes.

o Knowledge constraints are independent of the legacy code. They are program plans
restricted in their relationship by the AND/OR structure given in the plan library.
AND constraints are for composing program plans into higher level plans, and OR’s
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are for specializing an abstract plan in one of several ways. Assigning one program
plan as an explanation of a particular PU-CSP variable thus constrains consistent
assignments of other component variables.

As an example of a knowledge constraint mandated from the library structure, if a
variable corresponding to program component A = “string 1” in Figure 3 were
instantiated to program plan builtin-char*-copy as shown in Figure 4, then it is
consistent to assign the last for-loop variable an explanation of print-string, where
the strings are the same.

A solution to the PU-CSP is an assignment to each variable by one program plan compo-
nent in the plan library, such that no structural constraint from the source code, or knowledge
constraint from the plan library is violated.

Representing program understanding as PU-CSP provides a convenient framework for in-
terpreting Quilici’s index tests as constraint applications as part of search strategies typically
used for solving CSPs. Specialization tests are specific instances of knowledge constraints
that may be used to systematically reduce the range of domain variables in a hierarchical
CSP. Inference tests identify “related” program plan templates according to earlier compo-
nent instantiation, and can be interpreted as a special kind of variable-ordering heuristic.

5 Program Template Matching as CSP: MAP-CSP

We have seen how PU-CSP resolves integration of “local” explanations of source code blocks.
We represent the process of matching particular abstract program plans to our legacy source
as the MAP-CSP. We view MAP-CSP as an integral part of the more ambitious under-
standing task. Successful matches “locally explain” certain program blocks, and these local
solutions can then be exploited to restrict the larger PU-CSP.

A MAP-CSP or program template matching problem can be stated as follows: given
a plan template with a number of elements and constraints among the elements, find all
instances of the template in a source code. As an example, consider finding all instances
of an abstract data type in a C program. Figure 11 is a String ADT plan template taken
from a plan library. The ADT is described in terms of 5 features describing various key
components of a string class. In addition, there are constraints among the different parts as
well, such as the one that requires one component to go before another.

We could model this problem as a CSP. For the given plan template (or ADT), each
feature 1s a variable in our MAP-CSP. The domain range consists of all possible source
program statements. Variables here can have attributes such as (print.for) that may be
seen as constraints on allowable assignment of program statements (values) to template
features (variables). Other constraints are on the sharing of information among variables,
and on the order in which template features or variable are expected to appear in legacy
source.
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Figure 11: The String ADT in MAP-CSP.

A solution to the MAP-CSP consists of the set of all assignments of plan template
features by source code statements, where each assignment must satisfy all constraints. As
an example, consider the ADT of Table 1. When represented as a plan template as in
Figure 11, the variables of the MAP-CSP are: X;,2 = 1,...,5. Initially the domain for each
variable ranges through all source statements in Figure 3. The constraints are as shown
in the figure. The solution to this problem corresponds to the three alternative consistent
assignments to the variables, one for each character string A, B and C, respectively. Thus,
the solution to a MAP-CSP provides a mapping that ezplains the matched source statements
as parts of an instance of the abstract program plan or ADT.

6 Empirical Results of MAP-CSP

In this section we present and discuss experiments which are intended to show the feasibility
of the MAP-CSP representation and related algorithms.

In Figure 11 a CSP is described for the String ADT. This CSP contains 5 variables each
corresponding to a part of the program plans contained in the ADT in Table 1. The domain
values are made up of source program statement blocks. For this test problem, there are 4
precedence constraints amongst the template variables, along with one additional constraint
that the begin block corresponding to the for statement be within 15 program lines (the
number 15 is arbitrarily chosen).

A test case is produced by instantiating 3 instances of the program template in a sample
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source code, and by adding some variable amount of additional program statements as
“noise” around the template instances?. For example, the legacy source example shown in
Figure 3 contains three separate instances of the String ADT of Figure 11.

Our experiments are undertaken using a specific version of the generic CSP search al-
gorithm. This algorithm has been implemented in Common Lisp on a SPARC server 470
workstation with four different heuristic configurations:

Standard BackTracking

Forward Checking with Dynamic Rearrangement
AC-3 in advance of Standard BackTracking
AC-3 in advance of Forward Checking

Each configuration has been applied to legacy sources ranging in size from 50 source
lines to 1000 source lines, in 50 source line increments. Each increment was tested with 10
different random problem instances.

The MAP-CSP experiments are detailed in Figure 12° for Standard BackTracking, in Fig-
ure 13 for Forward Checking with Dynamic Rearrangement, in Figure 14 for AC-3 constraint
propagation in advance of Standard BackTracking, and in Figure 15 for AC-3 in advance
of Forward Checking. Each figure shows the number of CPU seconds required to find all
template instances, with a 95% confidence interval charted.

600 — T T T T T T T T T T T T T T T T T T
570

BT —
BT 95% Cl +o—i

CPU seconds
@
8
—T T T T T T T T T T T T T T T T T

T T T T T S S S Y SO SO N

A,/ L T R R T R S R B -

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Program statements

Figure 12: Standard BackTrack (95% conf. interval).

2The experiments presented in this paper are undertaken using artificially generated, potentially nonsen-
sical, legacy code. Our ongoing research effort is focused on testing the integrated PU-CSP and MAP-CSP
techniques to large existing commercial source libraries.

3If more than 2/10 of the experiments for a particular level of program statements did not complete in
600 CPU seconds, those results are not charted. This occurs in the results shown in Figures 12 and 14.
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Figure 13: Forward Checking, DR (95% conf. interval).
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Figure 14: AC-3 with BT (95% conf. interval).
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Figure 15: AC-3 with FC, DR (95% conf. interval).

We wish to demonstrate that the MAP-CSP representation and algorithm is capable of
providing all-instance results in moderately sized program slices. An efficient MAP-CSP
algorithm could make the execution of the larger PU-CSP algorithm more feasible. In
addition, the MAP-CSP algorithm for template matching could potentially be stand-alone
as a tool for assisting in the identification of legacy source portions that may be replaced
with existing source library objects.

Several observations can be made from our test results:

e Standard Backtracking exhibited very unstable performance in examples of the same
size. As hoped, more intelligent strategies behaved in a more stable manner. Forward
Checking was considerably more stable, and the applications using AC-3 in advance
of search exhibited very small variance across test cases of similar size. Stability is an
important factor in any application that may be used as part of an online or interactive
tool. In addition, Standard Backtracking was unable to complete in less than 600 CPU
seconds for source instances exceeding 500 program statements.

o For legacy source examples of up to approximately 500 lines of code, the intelligent
strategies located all instances of the ADT in approximately one minute of CPU time.
In examples of up to 300 lines of code, all instances were identified in approximately
30 seconds. In such near-real-time circumstances it would appear that a tool could be
fashioned that could be called up to run as a background process supporting an expert
working with some legacy code.

o In experiments where the number of source lines exceeded 200, the appearance of false
solutions* started to become apparent. These solutions arise through combinations of

1A “false solution” is a satisfying assignment of template variables to program parts such that the template
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actual template instance components and nearby program statements that meet all of
the constraints of the ADT. However, the number of false solutions never exceeded 10
in programs of 900 or less lines, and rarely exceeded 5 in smaller sources. These results
suggest that either our template specifications need to be tightened somewhat so as to
exclude these false solutions, or the system should be capable of interacting with an
expert who may verify solutions before they are adopted. It is important to note that
in the solution of the larger PU-CSP it is expected that these false solutions will be
identified and discarded, primarily on the strength of knowledge constraint restrictions.

7 Conclusions

In this paper we have constructed a general representation of the program understanding
task as a constraint satisfaction problem. Two versions of the task are identified: one is to
find all instances of a given program plan template in a source code, and the other is to
construct or verify an explanation of the source code in terms of a program plan library. In
addition, we have modeled various search heuristics for program understanding as instances
of a generic CSP search algorithm. We believe that the algorithm subsumes the previously
proposed methods for the same problem, and can be systematically studied on a spectrum
of heuristics.

We have also implemented the all-instances template matching problem, MAP-CSP and
demonstrated that MAP-CSP can be solved for problems of non-trivial size using intelligent
backtracking and constraint propagation within a reasonably stable and reasonably short
time period. MAP-CSP has potential application both as a stand-alone tool for legacy code
reduction and as a key component within the program understanding task.

We summarize some of the advantages of our approach below.

Scalability Our empirical results demonstrated that the MAP-CSP problem can be scaled
up for legacy code of useful sizes. This efficiency gain is achieved by viewing the recognition
problem as constraint satisfaction, and applying known constraint satisfaction algorithms. In
our experiment, we haven’t utilized the full range of constraints inherent in a program source
code, such as those derived from program parsing, a technique employed by Kozaczynski &
Ning[8] and Wills[28]. More extensive consideration is given to the specific use of these
constraints in [30]. We expect the empirical results to improve further with use of these
constraints.

Usability We envision our system as one part of a programmer’s assistant toolset. For
the MAP-CSP problem, a programmer could use the system to identify abstract program

constraints are satisfied, however, the found mapping is in fact not an actual instance of the program
template. They arise as a result of overly abstracted template specifications.
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plans in legacy programs up to around 500 lines of code in almost real-time, and can apply
the system in batch-mode to much larger programs.

We are currently engaging in cooperation with a main telecommunications provider to
investigate the applicability of this approach to extremely large source code in the telephony
domain. Achieving partial automatic recognition of even 5% of the code would greatly benefit
software maintainers.

We are currently implementing the search algorithm for PU-CSP. We expect to see similar
effective results from constraining the search with hierarchical plan knowledge, particularly
when this algorithm is fully integrated with the MAP-CSP solutions.
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