
1

Process Spaces �

Radu Negulescu

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1

����������	
����
������
�
�
����
����
�	������
������
��
����
�	�������������������������

December 1995

                                                  
� This research was supported by a grant and a scholarship from the Information Technology Research Centre of

Ontario, by an Ontario Graduate Scholarship, and by Grant No. OGP0000871 from the Natural Sciences and
Engineering Research Council of Canada.

Abstract
This paper introduces process spaces, a unified theory of interacting systems.  The
main new trait, abstract executions, leads to a simple and general set formalism.
For concurrent systems (including digital circuits), process spaces apply to diverse
correctness concerns and yield a new classification of liveness and progress faults.
The resulting studies of different correctness concerns are decoupled and
homogeneous (i.e., they do not interfere with each other and they have the same
algebraic structure).  Applications to other interacting systems, such as electrical
networks and dynamical systems, are also possible.  Process spaces have many
meaningful properties; here, some results from concurrency theory are generalized
and simplified, and some new results are found.

1   Introduction

Concurrent systems are practically everywhere; some examples are digital circuits (synchronous
and asynchronous), distributed programs and data structures, communication protocols, and work
flows in a factory.

By interacting systems we mean systems that can be coupled and compared.  This paper
introduces process spaces, a unified theory of interacting systems, including concurrent systems as
particular cases.  Also, this paper starts to investigate the applications and the algebraic properties
of this theory.
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In process spaces, the notion of ‘execution’ is abstract, and is a primitive notion.  An execution
is not necessarily a sequence of events, a function of time, etc.; a priori, an execution has no
structure.  As a result, process spaces may model the entire spectrum of discrete-state, continuous-
state, and hybrid systems, and allow for discrete and continuous time as well.  Another
consequence of abstract executions is a simple set-theoretic formalism.  Many meaningful
properties can be simply checked by Venn diagrams.

For concurrent systems, process spaces apply to diverse correctness concerns: safety, liveness,
progress, timing, and even absence of dangling inputs.  These applications can be obtained as
separate instances of the same theory, by choosing a suitable type of execution for each correctness
concern.  These applications are completely decoupled (e.g., the study of liveness has no safety or
connectivity restrictions) and homogeneous (i.e., they have precisely the same algebraic properties).
A comparison between the process space studies of liveness and progress yields a formal
classification of liveness and progress faults (called ‘lock faults’).

Process spaces have strong relationships with several theories of concurrency (see Section 3);
however, we are not aware of previous work with any of the characteristics mentioned above.

We first present the process space formalism (Section 2).  Then, we show how process spaces
can be used to study the behavior of concurrent systems; we provide several examples and a
classification of lock faults (Section 3).  We give several algebraic properties of process spaces and
discuss some of their practical and theoretical significance; some results from concurrency theory
are generalized and simplified (Section 4).  We discuss further applications to electrical networks,
dynamical systems, behavior analysis in cases where ports can change direction (input/output
lines), a connectivity concern for concurrent systems (input control), and frameworks for studying
timing and true concurrency (Section 5).  Finally, we summarize the contributions of this paper and
their significance, and we indicate directions for further work (Section 6).

2   The Process Space Formalism

In this section, we present the main concepts of process spaces.  We offer some intuition, but no
justifications.  The justification for this formalism is ‘because it works’.  This will be substantiated
in the rest of the paper, where particular examples of applications and interpretations are given.
We recommend that the readers consider at least the examples in Subsections 3.2, 5.1, and 5.4 in
order to understand how the model can be interpreted and applied.  However, we chose to omit
examples from this section, because the model itself is quite simple, and because we should not
create a bias towards the types of systems which are more familiar to the author.

Our model consists of the following definitions of execution, process, and process space.  Let � be
an arbitrary set; we refer to the elements of � as executions.  A process over � is a pair  (X, Y )
of subsets of � such that  X � Y = �.  The set of all processes over � is called the process space
of � and is denoted by ��.

Our main intuition for this model is the agreement pattern presented below; particular
interpretations are discussed in other sections.  A process can describe a device by means of an
agreement between the device and its environment, regarding executions.  Notice that a process
partitions � into three disjoint sets:  �X,  X � Y, and  �Y  (where � denotes the complement with
respect to �).  The agreement stipulates that only executions from  X � Y  are allowed to occur in
the presence of the device.  Nevertheless, all executions in � are considered to be possible: all can
occur, although some may be forbidden by the agreement.  The agreement also qualifies the
executions that are not allowed to occur, by assigning the ‘blame’ to either the device or the
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environment.  Set  �X  contains the executions in which the device violates the agreement, while set
�Y  contains the executions in which the environment violates the agreement.  Accordingly, X
contains executions where the device respects the agreement (but the environment may or may not
violate it), while Y contains executions in which the environment respects the agreement (but the
device may or may not violate it).  Note that the case where both the device and the environment
violate the agreement is not possible, because the condition  X � Y = �  implies  �X � �Y  = �.
Thus, the ‘blame’ cannot be assigned to both the device and the environment for the same
execution.

We denote processes by  p, q, ….  For process  p = (X, Y), we use the following terminology
and notation (see Figure 1):

as p = X = the accessible set of p,
at p = Y = the acceptable set of p,
vp = � X �� Y = the violation set of p,
rp = � Y = the reject set of p,
cp =  X � Y = the contract set of p,
ep = � X = the error set of p.

These terms refer to the agreement described above, as seen from the perspective of the device
(rather than the environment).  For example, the acceptable executions are acceptable to the device.

Refinement is a binary relationship � on �� such that

(X1, Y1) � (X2, Y2)   ⇔   X1 � X2  	  Y1 
 Y2.

Intuitively, refinement represents a relative notion of correctness:  p � q  means that p can be
replaced by q without bad effects.  The directions of the set inequalities can be understood by
considering that the occurrence of an execution constitutes a danger of misusing certain processes
(the danger of misuse is formalized by the presence of that execution in the reject sets of those
processes).  A better process accepts more executions, thus it is less exposed to misuse.  Also, a
better process accesses fewer executions, thus it is less likely to misuse other processes.  Examples
will be given in Sections 3 and 5, for particular applications of the formalism.

Reflection is a unary operation − on �� such that

−(X, Y) = (Y, X).

Informally, if a process p is viewed as an agreement between a device and its environment from
a device point of view (as described above), then reflection turns the table:  −p  represents the
corresponding agreement from the environment point of view.  The environment undertakes not to
misuse the device; thus, the device rejects become the environment errors.  Also, the environment
demands that the device does not err; thus, the device errors become the environment rejects.  In
this sense, −p models the ‘matching environment’ of a device represented by p.

Product, written �, and exclusive sum, written �, are binary operations on �� such that

(X1, Y1)  �  (X2, Y2)    =    (X1 � X2,   Y1 � Y2  �  ����X1 � X2),
(X1, Y1)  �  (X2, Y2)    =    (X1 � X2  �  ����Y1 � Y2,   Y1 � Y2).

as p = X

r p c p e p

at p = Y

�

v p

Figure 1: Execution sets of a process.
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Informally speaking, the product models a system formed by two devices operating jointly.
The new system’s accessible executions include all executions that are accessible to both
participating devices, and its acceptable executions include all executions that are acceptable to
both devices.  In Figure 2, we see that the executions marked with ‘?’ are so far not accounted for.
These executions are errors for the resulting system, because they should be avoided by one of the
devices.  Accordingly, these executions are acceptable to the resulting system.  In the definition of
product, notice that  ����X1 � X2 \ (Y1 � Y2)  =  �X1 � �Y2 � �Y1 � �X2, i.e., the acceptable set is
augmented from  Y1 � Y2  by precisely the executions marked ‘?’.  The exclusive sum is similar to
the product, except for the executions marked ‘?’.  Each of these executions should be avoided not
only by one of the devices, but also by the environment of the other.  In the exclusive sum, we
consider these executions to be rejects, rather than errors, for the resulting system.  (This amounts
to blaming the environments, rather than the devices, for not avoiding these executions.  In this
sense, the exclusive sum assumes that the environments, rather than the devices, operate jointly.)
Accordingly, these executions are accessible to the exclusive sum.  Notice that  ����Y1 � Y2 \ (X1 � X2)
=  �X1 � �Y2 � �Y1 � �X2.

Statement 1  For processes p, q and r, we have

(a) p � p  = p, (a��) p � p = p, (idempotency of � and �)
(b) (p�q)�r = p�(q�r), (b��) (p�q)�r = p�(q�r), (associativity of � and �)
(c) p � q = q � p, (c��) p � q = q � p. (commutativity of � and �)

Idempotency ensures that connecting a device with an identical replica of itself produces an
identical device.  Commutativity and associativity ensure that the order of connecting devices (in
parallel) does not matter.

Top, denoted by 
, is the process  (�, �), where � is the empty set.  Bottom, denoted by �,
is the process  (�, �).  Void, denoted by Φ, is the process  (�, �).  Void has no rejects and no
errors.

A process  (X, Y)  is robust if  Y = �.  A process  (X, Y)  is chaotic if  X = �.
Informally, a process  (X, Y)  guarantees that certain executions do not occur in its presence

(its errors) and requires that other executions must not occur in its presence (its rejects).  In this
interpretation, robust and chaotic processes are pure guarantees and pure requirements,
respectively.  Robustness also represents an absolute notion of correctness.  The fact that a process
has no rejects means that it needs no guarantees from the environment and can operate
autonomously, hence the term ‘robust’.  Chaotic processes are so called because any execution is
accessible to them.  Void is both robust and chaotic.

Y1

X2

X1

Y2

X1�X2

Y1�Y2

�

?

?

Figure 2: Deriving the product and exclusive sum operators.
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Figure 3 (b) charts a process space and Figure 3 (a) illustrates the notation.  The subsets of �
are represented by disjoint segments on the coordinate axes.  Every subset has two segments, one
on each axis, equidistant from the origin.  Notice the positions of Z on the two axes in Figure 3 (a).
Complementary subsets are represented by segments equidistant from the middle of an axis.
Notice the segments for �Z and Z in Figure 3 (a).  Each pair of subsets of � is represented by a
square whose projections on the axes are the segments of the subsets in the pair.  Notice the
positions of p, asp, and atp in Figure 3 (a).  With these conventions, a process space �� is
represented in Figure 3 (b):  �� contains none of the pairs in the heavily shaded area, some of the
pairs in the lightly shaded area, and all the pairs in the delimited blank area of Figure 3 (b).  The
upper and right borders in Figure 3 (b) are the sets of robust and chaotic processes, denoted by ��

and ��, respectively.  The set �� contains the pairs of the form  (Z, �Z ), called diagonal processes
(just because of their position).  The � signs indicate the direction of the refinement order on sets
��, �� and ��.

3   Behavior of Concurrent Systems

In this section, we apply the process space formalism to particular correctness concerns regarding
the behavior of concurrent systems.  The only parameter of a process space is the execution set; we
instantiate the whole construction by choosing an execution set.  For each application, refinement
and robustness have specific meanings as conditions for safety, liveness, etc.  In examples, we
apply refinement and robustness to detect diverse faults in concurrent systems.

��Z

�

atp
�� ��

Φ��

��

��

p

� Zasp

(a) (b)

�Z

Z
�

�

at

�

�� as

Figure 3: Charting a process space (and beyond).
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Concurrent systems have discrete state spaces and operate in continuous time.  Some examples of
types of concurrent systems were given in Section 1.  The state spaces can be finite or countable.
The state transitions are called events (however, events do not necessarily change state, because a
state transition may be from a state into the same state).  For simplicity, in this section events are
assumed to be instantaneous and not simultaneous; however, process spaces are by no means
bound to this point of view or even to concurrent systems.  In Section 5, we discuss other possible
applications and points of view.

For this type of concurrent systems, the process space product resembles the ‘�’ operator in
Hoare’s communicating sequential processes [Ho85] (see the laws for ‘failures’ and ‘divergences’);
the process space refinement is similar to the ‘�’ ordering of ‘non-deterministic processes’ in
[Ho85] (in terms of ‘failures’ and ‘divergences’); and the process space reflection is similar to the
‘reflection’ in Ebergen’s method for the design of delay-insensitive circuits [Eb89, Eb91].  Some
other formalisms of concurrent systems define similar operators for parallel composition (product),
comparison of an implementation to a specification (refinement), or the matching environment of a
specification (reflection), in terms of particular types of executions (‘partial’ and ‘complete’
executions, ‘computations’, ‘traces’, etc.).  For example, we mention: the failure models of
Brookes, Hoare, and Roscoe [BHR84, BR85]; the testing equivalences of de Nicola and Hennessy
[dNH83]; Dill’s trace theories [Di89]; Josephs’ receptive process theory [Jo92]; and Verhoeff’s
models of delay-insensitive systems [Ve94b].  (A complete literature survey is, unfortunately,
beyond the scope of this paper.)  However, the process space operators are simpler (e.g., they have
no connectivity restrictions, and they do not need action sets) and more general (they are not bound
to a particular type of executions, and they apply wherever process spaces apply).  Exclusive sum
of processes does not seem to have a precedent.

Concurrent systems can have diverse pathologies: hazards, deadlock, livelock, starvation, etc.
Three main classes of correctness concerns for concurrent systems are connectivity, behavior, and
performance.  Performance concerns involve bounds or other relationships on quantitative
parameters such as delays and probabilities.  Roughly speaking, behavior concerns regard those
aspects of the operation of a concurrent system that can be determined without specifying
quantitative parameters1.  Connectivity concerns regard proper connections of ports.  There can be
other concerns, such as maintainability, cost, and fault tolerance.  Both performance and behavior
concerns are topics of active research, and even the connectivity concerns need some work.  We
further categorize behavior concerns as safety (absence of hazards, wrong outputs, etc.), liveness
(absence of deadlock, starvation, etc.) and progress (absence of deadlock (again), livelock, etc.).

                                                  
1 Reference to parameters seems to be the distinction between ‘metric-containing’ and ‘metric-free’ concerns [Mo95].

Correctness

Connectivity
  Behavior

Performance

  Safety
Liveness

Progress

⋅ ⋅ ⋅

Figure 4: Correctness concerns for concurrent systems.
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For the examples of concurrent systems, we use the following terminology and notation.  Let � be
a set, called the action universe.  An alphabet is a subset of �.  A word over an alphabet Σ is a
(finite or infinite) sequence of actions from Σ.  Concatenation of a finite word with an arbitrary
word is denoted by their juxtaposition.  The empty word is ε.  For words u and v, we write  u � v
if u is a prefix of v, i.e., if there exists word w such that uw = v, or if v is infinite and  u = v.

A language is a set of words.  We use the following notation for languages: pref is prefix-
closure (the set of all prefixes of the words in a language), * is Kleene closure (defined if all words
in the language are finite), \ is set difference, � is union, � is intersection, ⋅ or juxtaposition is
concatenation (defined if all words in the first operand are finite), action x can represent language
{x}, and alphabet Σ can represent the language of single-action words with actions from Σ.  A
language L is prefix-closed if  L = pref L.  Throughout this paper, the unary operators have higher
precedence than the binary operators.

A regular language of finite words is represented by a finite automaton over �.  We render an
automaton as follows.  The initial state is marked with an incoming arrow.  The accepting states
are circled.  Each edge has a label from �.  Double arrows on an edge represent two edges with
the same label heading in opposite directions.  Multiple labels on an edge represent several edges,
between the same two states, each having a single label.  For example, the language of the
automaton in Figure 5 is  (a (a � b � c))* ⋅ (ε � abd*).  Word ε is in the language, because it
leads to a circled state, the initial state.  Word  aba  is not in the language, because it leads to a
state that is not circled.

For language L, L� is the set of all concatenations of infinitely many words from L, and L� is
the set of all concatenations of (finitely or infinitely many) words from L.  We have  L� = L* � L�.
For finite word u,  u�  is the infinite word  uuu⋅⋅⋅.  The precedence of unary language operators is *
(highest), �, �, pref (lowest).

The projection of a word u on an alphabet Σ is a word  u�Σ  obtained by deleting from u all
actions which are not in Σ.  For language L and alphabet Σ, the expansion of L from Σ is the
language  L�Σ  =  { u ∈  ��  |  u�Σ ∈  L }, i.e., the set of all words whose projections on Σ are in
L.  The precedence of binary operators on languages and alphabets is ⋅ (highest), �, �, \, �, �
(lowest).

To represent concurrent systems, each event (state transition) is associated with the ‘occurrence’ of
an action.  Several events, possibly in different concurrent systems, can be associated with the
same action.

a b,c

b
d

Figure 5:  A finite automaton.
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Some aspects of the behavior of a concurrent system are well described by two alphabets and a
language.  Actions that are controlled by that concurrent system are called outputs; actions that are
controlled by the environment are called inputs; and, the set of finite sequences of inputs and
outputs that can occur up to a certain time in correct operation of concurrent system s is called the
language of s.  In this section, we shall sometimes describe devices by their inputs and outputs,
shown in a figure, and by their languages.  For example, the inverter in Figure 6 has input a and
output b, and we may assign to it the language pref(ba)*.  Events correspond to changes in the
voltage signals on the terminals of the inverter.  In determining the language, we assume that
initially all signals are low (power off).

On the other hand, such descriptions are insufficiently flexible: e.g., they do not permit a
terminal to be sometimes an input and other times an output, and they do not contain explicit
liveness or progress information.  (One can attach certain implicit liveness or progress properties
to such descriptions (see [NB95a, NB95b]), but that is done at the expense of flexibility.)  Here,
we use such descriptions only informally, to introduce examples.  The only formal representations
in this paper are by processes.

3.1   Safety

Informally speaking, safety properties of concurrent systems assert that ‘something bad does not
happen’ [LL90].  Safety violations include hazards, illegal output events, and illegal input events.

For studying safety, we take the execution set to be  �*  and we consider that each concurrent
system s is represented by its safety process, a process  �s  over  �*.  A partial execution is a
finite sequence of actions that can be observed up to a certain time.  The safety processes are
determined by the agreement pattern described in Section 2, applied to partial executions.  A theory
of safety, containing all operators and properties of process spaces, is obtained by just choosing the
execution set to be  �*  and by applying the agreement pattern to partial executions.  Since the
operators and properties are for arbitrary processes over  �*, this theory has no connectivity
restrictions or interference from any other correctness concerns.  The following examples illustrate
safety processes and meanings of robustness and product in the safety interpretation.

a b

Figure 6: Inverter.

(d) circuit

a

b
c

c

a

a

a

a

b

b

b

b
c

c

c

(a) AND

c b

(c) INV2

c a

(b) INV1

b

b

a

a

Figure 7:  Contract sets and circuit for Example 1.
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Example 1   The robustness condition can be used, for instance, to detect hazards in a digital
circuit.  Hazards can be represented by employing particular models of gate behavior in which
certain transitions are declared illegal.  Also see [Di89], p. 46, and the ‘stability’ condition in
[St94], p. 165.  For definitions and other techniques for the analysis of hazards see, e.g., [BS95].

We first construct safety processes representing the components of a circuit.  Then, we check
robustness of their product; violations of this condition constitute safety faults.

Let  �INV1,  �AND, and  �INV2  be the safety processes of the three gates in Figure 7 (d)
(from top to bottom).  Assuming  � = {a, b, c}, the contract sets of these processes are
represented by the finite automata in Figure 7 (b), (a), and (c), respectively.  Each event
corresponds to a change of the logical value of the corresponding voltage signal in the circuit.  We
consider all signal voltages to be low in the initial state (power off).  For example, the contract  aca
of  �INV1  specifies that a goes from low to high, then c goes from low to high, then a goes from
high to low.  Hazards are ruled out by omitting those input events that disable output events.  For
example, two consecutive transitions on c are omitted from the contract set of INV1, because the
second c would disable the output event a and thus constitutes a hazard.  The rejects of each of
�AND,  �INV1, and  �INV2  are finite words u such that there exist finite word v and input a such
that  va  is a prefix of u, v is in the contract set of the respective process, and  va  is not in the
contract set.  Informally, the rejects of these processes are finite words that get out of the contract
set by an invalid input.  For example,  abbcabc  is a reject of  �AND, because the second b is an
invalid input, but  ab  is a contract.  Dually, the errors of these processes are finite words that get
out of the contract language by an invalid output.  For example,  abcbaabc  is an error of  �INV1,
because the third a is an invalid output.

Notice that the contract sets of �INV1 and �INV2 are different from the languages of INV1 and
INV2, because of actions that are neither inputs nor outputs.  Events whose actions are neither
inputs nor outputs of a gate can occur arbitrarily in the contracts, rejects, and errors of the safety
process of that gate (such events are not ‘seen’ by the gate), but do not appear in the language of
that gate.  Events from outside the alphabets of a gate produce self-loops in every state.

Next, we check the robustness of the product of the safety processes representing the parts of
the circuit.  For the circuit in Figure 7 (d), the condition is not satisfied.  Let  u = abcac.  We note
that  u ∈  as� INV1 � as�AND, since u is in the contract sets in Figure 7 (a) and (b).  Also,  u ∈
as� INV2, since u gets out of the contract set in Figure 7 (c) by an input to INV2 (the second c), and
thus u is a reject for � INV2.  We also note that  u ∉  at� INV2, because u is a reject for  � INV2.
After some set manipulations, it follows that  u ∉  at(� INV1 � �AND � � INV2), and thus  � INV1

� �AND � � INV2 ∉  ��*.  (One can check the last sentence directly or by applying Statement 12
(a) from Section 4.)  Therefore, the safety condition is violated.

The violation can be interpreted as follows.  The offending word represents a hazard.  After
abca, both the input and the output signals of INV2 are high, and an output event is enabled.
However, another input transition c can occur first, changing the input voltage to low and disabling
the output transition.  Also see the ‘oscor’ example in [St94], p. 167.
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Example 2   For the circuit in Figure 7 (d) (Example 1), it is up to the users whether or not to
consider hazards to be safety violations (or to choose which types of hazards constitute safety
violations).  One may, for instance, permit arbitrary input transitions under an inertial gate model.
The contract sets of the modified safety processes of  INV1,  AND, and  INV2  are shown in Figure 8
(b), (a), and (c), respectively.  The rejects are still the finite words that get out of the contract set
by an input event, and the errors are still the finite words that get out of the contract set by an
output.  Note that any input event is allowed from any state; therefore the reject sets are empty.
Thus, the safety processes of the three gates are robust.  It follows that the product of these safety
processes is also robust.  (One can check the last sentence directly or by applying Statement 17.)
Thus, there is no safety fault.

3.2   Liveness

Informally speaking, liveness properties of concurrent systems assert that ‘something good
eventually does happen’ [LL90].  Examples of liveness faults include deadlock and starvation.

For studying liveness, we consider that each concurrent system s is represented by its liveness
process, a process �s over ��.  A complete execution is a finite or infinite sequence of actions
that can be observed until the ‘end of time’.  The liveness processes are determined by the
agreement pattern described in Section 2, applied to complete executions.  A theory of liveness,
containing all operators and properties of process spaces, is obtained by just choosing the
execution set to be   ��  and by applying the agreement pattern to complete executions.  Since the
operators and properties are for arbitrary processes over  ��, this theory has no safety restrictions
or interference from any other correctness concerns.  The following examples illustrate liveness
processes and meanings of refinement and product in the liveness interpretation.

c

a

a

a

a

b

b

b

b
c

c

c

(a) AND

c b

(c) INV2

c a

(b) INV1

b

b

a

a

Figure 8: Contract sets for Example 2.
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Example 3   The refinement relationship on liveness processes can be used to verify faults such as
deadlock (‘wait-for’ cycle) and unfairness in a digital circuit.  In this example, we check whether
the circuit in Figure 9 (d) is a correct implementation of the AND gate in Example 1.

Let C (a C-element), BUF (a buffer), and INV (an inverter) denote the three components in
Figure 9 (d) (from top to bottom).  The languages of  C,  BUF, and  INV are shown in Figure 9 (a),
(b), and (c), respectively.  In determining the liveness processes we will consider the liveness
properties of the components, as explained below.

We take

as�BUF = ((de)� � (de)*dd{d, e}�)�{d, e},
at�BUF = (pref(de)� � (de)*e{d, e}�)�{d, e}.

Recall that  (de)� = (de)* � (de)�  and that  (de)� � pref(de)�.  The finite words in  (de)*  are
contracts of  �BUF  because, at any time, the environment of BUF may stop producing d events.
The infinite word  (de)�  is a contract of  �BUF  because the environment and BUF need not stop at
all.  (We have used ‘strong liveness with respect to outputs’ [NB95a, NB95b] as a guide for
determining the contracts of ����.)  The words in  (de)*dd{d, e}�  are rejects and are accessible
to BUF.  After two consecutive d events, which are not expected, BUF may stop at any time or may
not stop at all.  The words in  (de)*d  are errors, since BUF should eventually produce an e after
receiving a d.  The words in  (de)*e{d, e}�  are also errors, since the environment does not expect
two consecutive e events.  Notice that the errors in  (de)*e{d, e}�  are not only safety violations,
but also liveness violations, because, after two consecutive e events, the environment may demand,
for instance, events that BUF cannot produce (e.g., events whose actions are not in the output
alphabet of BUF).  Also, arbitrary interleavings of actions from outside  {d, e}  can occur in the
accessible and acceptable executions of  �BUF, hence the expansions from {d, e}.

By similar considerations, we take

as� INV = ((de)*d � (de)� � (de)*e{d, e}�)�{d, e},
at� INV = (pref(de)� � (de)*dd{d, e}�)�{d, e},

as�C = ((aa � bb � abc � bac)� � (aa � bb � abc � bac)*⋅(ε � a � b)
� (aa � bb � abc � bac)*⋅(ab � ba)⋅(a � b)⋅{a, b, c}�)�{a, b, c},

at�C = (pref(aa � bb � abc � bac)�

� (aa � bb � abc � bac)*⋅(c � ac � bc)⋅{a, b, c}�)�{a, b, c}.

C

a

b
c

ed

e d

(b) BUF (d) circuit

ab

a b

c

(a) C

e d

(c) INV

Figure 9:  Languages and circuit for Example 3.
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Let  u = abca(de)�.  We have  u ∈  as�C � as�BUF � as�INV.  On the other hand,  u ∉
as�AND because AND should eventually produce a second c after the second a (the a signal
becomes low, thus the c signal should eventually become low).  Thus, we have  as(�C � �BUF �
�INV)  /
 as�AND, and, therefore,  �AND  /�� �C � �BUF � �INV.

The violation can be interpreted as follows.  Word u causes a deadlock (a ‘wait-for cycle’
occurs).  After abca, C waits for the environment of AND to send another input event, while the
environment of AND waits for C to produce an output event.  Note that deadlock occurs despite the
fact that some parts in the circuit never stop producing events d and e.

Example 4   Let us consider a classical example of
starvation adapted from [Be90] (p. 35).  The
concurrent program in Figure 11 attempts to ensure
mutual exclusion between the critical sections of
tasks �� and �� by using variables �� and ��.  ��
and �� are initially set at �.  We state the
specification as the task �� in Figure 10.  Let the
actions be

rxyz = �x  reads  �y = z,
wxyz = �x  sets  �y  to  z,
ecsx = enter  �	
�
�
������
���x,
lcsx = leave  �	
�
�
������
���x,
encsx = enter �����	
�
�
������
���x,
lncsx = leave �����	
�
�
������
���x.

Consider infinite execution  u = encs2lncs2(encs1

lncs1w110r121w220r210ecs1lcs1w111w221)�.  Word u is
an accessible complete execution for ��, because
�� executes its main loop, in which it can stay
forever.  Word u is also an accessible complete
execution for ��, because �� executes its inner
loop and reads  �� = �  at every iteration, and thus
can stay in its inner loop forever.  On the other
hand, we take u not to be an accessible complete
execution for ��, because �� executes a non-
deterministic choice in its loop (between ecs1 and
ecs2), and, for any non-zero probability of  ecs2,
�� will eventually choose  ecs2.  (We have used
‘strong liveness with respect to outputs’ [NB95a,
NB95b] as a guide for determining the contracts of
���, ���, and ���.)  Thus,  u ∈  as(��� � ���)
and  u ∉  as���.  Consequently, we have   as���
/� as(��� � ���)  and thus  ���  /�� (��� �
���).

The violation can be interpreted as follows.
Word u causes starvation because it never allows
�� to enter its critical section.

�
�� ���� �� 
�
���
�

����
������

�	
�
�
������
�����
�	

�	
�
�
������
�����
��� �������

��� �����
��� ���

Figure 10:  Specification for Example 4.
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Figure 11:  Implementation for Example 4.
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3.3   Progress

Informally speaking, progress properties of concurrent systems assert that ‘something good does
happen within a bounded time’ (our interpretation).  (Progress is a behavior concern rather than a
performance concern, because it does not refer to the values of the delay bounds, but only to their
existence.  The values of the delay bounds need not be known for progress analysis.)  Examples of
progress faults include deadlock and livelock.

For studying progress, we consider that each concurrent system s is represented by its progress
process, a process  �s  over  ��.  An unbounded execution is a finite or infinite sequence u of
actions with the property that, after every prefix of u, the execution point can continue to follow u
(can remain in u) for any amount of time.  (An unbounded execution u may or may not be
complete, as the execution point may or may not follow u forever.)  The progress processes are
determined by the agreement pattern described in Section 2, applied to unbounded executions.  A
theory of progress, containing all operators and properties of process spaces, is obtained by just
choosing the execution set to be  ��  and by applying the agreement pattern to unbounded
executions.  Since the operators and properties are for arbitrary processes over  ��, this theory
has no safety restrictions or interference from any other correctness concerns.  The following
examples illustrate progress processes and meanings of refinement and product in the progress
interpretation.

Example 5   Consider the following communication protocol.  The specification of the
communication protocol is a 1-bit buffer, as in Figure 12 (a).  The language of the buffer is
represented in Figure 12 (b), but more explanations of its operation are necessary.  After an input
message in, an output message out follows within a bounded delay, and then the operation may be
repeated indefinitely.  The implementation uses a lossy channel with two interfaces, as in Figure 12
(c).  The languages of the components are represented in Figure 12 (c), (d), and (e), but more
explanations are necessary.  After in, SENDER sends s0 messages.  Some may be lost, causing l0

events which reset CHANNEL and are not seen by RECEIVER.  Some may get through, causing r0

events to be fired.  After an r0, RECEIVER issues out.  According to the specification, another in is
now allowed (there exists some feedback from out to in in the environment).  The operation is then
repeated, with s1, l1 and r1 instead of s0, l0, and r0, and so on.  Some allowances are made for out of
place s0, r0, s1, and r1 events, which do not change the state of RECEIVER when repeated.

Consider  u = in(s0l0)�.  Word u is an accessible unbounded execution of SENDER, because the
environment is under no obligation to provide another in.  It is also an accessible unbounded
execution of CHANNEL: although CHANNEL cannot choose l0 over r0 infinitely many times,
CHANNEL can choose l0 any finite number of times.  Thus, the execution point of CHANNEL can

l0

s0

r0

SENDER

RECEIVER

s1

in

out

(c)

BUFFER

in

out

(a)

out in

(b) BUFFER

out

r1

outr1

r0

r0

in in

(d) SENDER

s1

s0

r1CHANNEL

r1r0

s0

s0,s1

r0

r1
s1

(e) CHANNEL (f) RECEIVER

s0,s1

l0 l1
l1

Figure 12:  Communication protocol for Example 5.
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stay in u for an unbounded time after any prefix of u.  Word u is also an accessible unbounded
execution of RECEIVER, since RECEIVER remains in its initial state, where it is not expected to issue
an output event.  Since  u ∈  as�SENDER � as�CHANNEL � as�RECEIVER, we have  u ∈  as
(�SENDER � �CHANNEL � �RECEIVER).  On the other hand, u is not an accessible unbounded
execution of BUFFER, because an out event must follow in within a bounded time.  Hence,  u ∉  as
�BUFFER.  Therefore,  �BUFFER  /�� as(�SENDER � �CHANNEL � �RECEIVER).

The violation can be interpreted as follows.  Word u causes a livelock.  After in, SENDER starts
producing s0 events.  For fairness, CHANNEL will eventually choose r0; however, this choice can be
delayed for any amount of time.  On the other hand, the specification demands an out within a
bounded delay, which cannot be granted, regardless of the value of the bound.

Example 6   The deadlock fault in Example 3 also constitutes a violation of progress.  The
progress processes of the components in Example 3 are exactly the same as their liveness
processes.  (This is not always true.  For instance, the liveness and progress processes of CHANNEL

in Example 5 are different.)  Hence, the fault in Example 3 can be detected with progress processes
in the same manner as with liveness processes.

3.4   Classification of Lock Faults

The fact that the progress execution set is the same as the liveness execution set (��) invites a
comparison between liveness and progress.  By this comparison, we obtain a classification of
liveness and progress faults (called ‘lock faults’), in absolute and relative versions.

Let s be a concurrent system.  For robustness, we require that, for all  u ∈  ��, we have  u ∈
at�s  and  u ∈  at�s.  This condition can be violated in three ways: (i)  u ∉  at�s  and  u ∉  at�s;
(ii)  u ∉  at�s  but  u ∈  at�s; and (iii)  u ∈  at�s  but  u ∉  at�s.  We define these situations as
absolute locks of type I, II, and III, respectively (see the diagram in Figure 13 (a)).  There are no
other liveness or progress faults.

Lock faults can also be considered in a relative sense, whereby two concurrent systems s1 and
s2 are compared.  System s1 can be thought to be a specification, and s2 an implementation.  For s2

to be better or as good as s1 with respect to liveness and progress, we require  �s1 � �s2  and  �s1

� �s2, i.e.  as�s1 � as�s2,  as�s1 � as�s2,  at�s1 
 at�s2, and  at�s1 
 at�s2.  A word can
be in sixteen positions with respect to  as�s1,  as�s2,  as�s1, and  as�s2, as shown in the diagram
in Figure 14 (a).  (Figure 14 (b) is similar to Figure 14 (a), except that s1 and s2 have been
swapped.)  We define relative locks of type I, II, and III as the existence of a word in at least one
of the regions marked ‘I’, ‘II’, and ‘III’, respectively, in either Figure 14 (a) or (b).

Locks of type I, II, and III appear to generalize the notions of deadlock, starvation, and
livelock, respectively.  For instance, the deadlock fault in Example 3 and Example 6 is a relative

II

�� at�s

at�s

IIII

Figure 13: Absolute lock faults.
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lock of type I; the starvation fault in Example 4 is relative lock of type II; and, the livelock fault in
Example 5 is a relative lock of type III.  Denoting by s1 the respective specifications and by s2 the
respective implementations, we have: in Example 3 and Example 6,  u ∈  as�s2,  u ∈  as�s2,  u ∉
as�s1, and  u ∉  as�s1; in Example 4,  u ∈  as�s2,  u ∈  as�s2,  u ∉  as�s1, and  u ∈  as�s1  (we
consider that the execution point of the specification can follow u for an unbounded time because
the option ecs1 can be chosen any finite number of times in a row); and, in Example 5,  u ∉  as�s2,
u ∈  as�s2,  u ∉  as�s1, and  u ∉  as�s1.

Relationships between relative and absolute lock faults follow from a relationship between
refinement and robustness, which will be given later in this paper (Statement 13, Subsection 4.3).
For example, a relative lock of type I can be viewed as an absolute lock of type I between an
implementation and the environment of a specification.

The diagrams for relative lock faults can be simplified by the following observation.  In many
concurrent systems, every complete execution is also an unbounded execution (if the execution
point can stay in execution u forever, it can also stay for an unbounded time after any prefix of u).
Therefore, we often have, for concurrent system s,  as�s 
 as�s  and  at�s 
 at�s.  In such
situations, the shaded areas in Figure 14 (a) and (b) are void.

4   Process Space Structure

In this section, we discuss several process space properties and their significance.
In Subsection 4.1, we address some basic questions about the algebraic structure of process

spaces.  Some highlights are the level of abstraction of our theory (see comment after Statement 2),
the lattice structure, and a duality principle.

In Subsection 4.2, the product and exclusive sum operators are extended to arbitrary sets of
processes, in order to deal with possibly infinite systems.

In Subsection 4.3, properties with a more practical meaning are derived.  We show how
process spaces allow for structured verification.  We link the process space notions of absolute and
relative correctness, and the verification and testing viewpoints.  A design equation for process
spaces is stated and solved.  A decomposition into robust and chaotic processes and a separate
treatment of robust and chaotic processes are proposed.

I
as�s2

as�s2

as�s1

as�s1

II

II

II

III III

III

(a) (b)

I
at�s1

at�s1

at�s2

II

II

II

III III

III

at�s2

Figure 14:  Relative lock faults.
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4.1   Basic Algebraic Properties

Statement 2  For processes p, q and r,

(a) p � p, (reflexivity of �)
(b) p � q  	  q � r   ⇒    p � r, (transitivity of �)
(c) p � q  	  q � p   ⇒    p = q. (antisymmetry of �)

Statement 2 shows that refinement is a partial order.  Reflexivity and transitivity are
commonsense properties of a worse-or-as-good-as relationship.  Antisymmetry ensures that
process spaces are a fully abstract model (with respect to the refinement relationship).

Statement 3  (Monotonicity)  For processes p, q and r,

(a) p � q   ⇒    p � r  �  q � r, (monotonicity of � with respect to �)
(a��) p � q   ⇒    p � r  �  q � r. (monotonicity of � with respect to �)

In words, if p is refined by q, then p coupled with r is refined by q coupled with the same r.
Statement 3 (a) does not have restrictions on the ports of the devices represented by p, q, and r.

(There are no ports in process spaces.)  For the safety and liveness conditions deriving from �, this
absence of restrictions may be surprising.  For example, the device of r may have common internal
ports with the device of q, but not with the device of p; the property still holds.  Also see the
‘compatibility with union’ theorems in [NB95a] and [NB95b].

Statement 4  For processes p and q,

(a) −−p = p,
(b) p � q   ⇔   −q � −p,
(c) −(p � q)  =  −p � −q, (c��) −(p � q)  =  −p � −q. (de Morgan’s laws for −, �, and �)

Statement 5  (Process Lattice)  For subset � of �� , there exist unique processes �� (the join of
�) and �� (the meet of �) such that, for every process p,

(a) (� q ∈  �:  p � q)  ⇔  p � ��, (�� is the least upper bound of �)
(a��) (� q ∈  �:  p � q)  ⇔  p � ��. (�� is the greatest lower bound of �)

Statement 5 shows that  〈��, ��  is a complete lattice.
Join and meet are also defined as operators on processes.  Join, written �, and meet, written

�, are binary operations on �� such that

(X1, Y1)  �  (X2, Y2)   =   (X1 � X2,  Y1 � Y2)     and
(X1, Y1)  �  (X2, Y2)   =   (X1 � X2,  Y1 � Y2).

Informally speaking, meet models the non-deterministic choice between two devices: the device
p � q  can choose to act either like p or like q in deciding which executions are accessible or
acceptable, and may take the choice that causes the most violations.  For instance, if execution u is
acceptable to p but not to q, it is not acceptable to  p � q.  Dually, join models the non-



Process Spaces

17

deterministic choice between two environments.  The device  p � q  has an acceptable set just large
enough and an accessible set just small enough to accommodate an environment that can choose to
behave either like  −p  or like  −q.

Statement 6  For processes p and q,

(a) p � q  =  �{p, q} (a��) p � q  =  �{p, q}.

Statement 6 shows the correspondence between the join and meet operators we define and the
join and meet induced by the refinement order.  The induced join and meet satisfy laws of
associativity, commutativity, idempotency, absorption, etc. (see for instance [DP90], Theorem
5.2); thus, so do the join and meet we define.

Statement 7  For processes p, q and r,

(a) p � (q � r)  =  (p � q) � (p � r), (distributivity of � through �)
(a��) p � (q � r)  =  (p � q) � (p � r). (distributivity of � through �)

In conjunction with Statement 6, Statement 7 shows that  〈��, ��  is a distributive lattice.

Statement 8  For process p,

(a) � � p � 
, (extremal elements for �)
(b) p � Φ = p, (b��) p � Φ = p, (identity elements for � and �)
(c) p � � = p, (c��) p � 
 = p, (identity elements for � and �)
(d) p � 
 = 
, (d��) p � � = �, (dominant elements for � and �)
(e) p � 
 = 
, (e��) p � � = �. (dominant elements for � and �)

The identity element properties for � and � ensure that introducing a void device in a system
does not change the system.

Statement 9

(a) −Φ = Φ, (a��) −
 = �, (a����) −� = 
,
(b) −�� = ��, (b��) 
 = � �� = � �, (b����) � = � �� = � �,
(c) −�� = ��, (c��) −��  =  ��, (c����) −��  =  ��.

where, for process set  � 
 ��,  −�  denotes the process set { −p  |  p ∈  � }.

Remark  (Duality Principle)  Let X be a statement about process spaces.  The dual of X is a
statement X∂ obtained by replacing in X every occurrence of � by �, of � by �, of � by �, of
�� by ��, of as by at, of r by e, and conversely.  (−, Φ, ��, ��, c, and v are their own duals.)
Notice that  X∂∂ = X.  Process spaces admit the following duality principle: if statement X holds,
then X∂ holds, too.  (Informally speaking, the duality principle is a consequence of the de Morgan’s
laws in Statement 4 (c) and (c’), which essentially say that reflection is an isomorphism of process
spaces.)
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4.2   Systems

In order to deal with possibly infinite systems, product and exclusive sum are extended to sets of
processes in the natural way.  For  � 
 ��, the product and exclusive sum of � are, respectively,

� �   =   �  �
p∈ �

 asp ,   �
p∈ �

 atp  �  ����       �
p∈ � asp �,

� �   =   �  �
p∈ �

 asp  �  ����   �
p∈ � atp ,   �

p∈ �
 atp �.

A system is a set of processes.  A system can be treated as a single ‘composite’ process that
behaves exactly like the whole system.  The definitions above determine composite processes from
the processes in the system.  Product can be regarded as the law of composition for devices, while
exclusive sum can be regarded as the law of composition for environments.  Also see the
explanation for deriving the binary � and � operators (Section 2).

Statement 10  For processes p and q,

(a) p � q  =  �{p, q} (a��) p � q  =  �{p, q}.

Statement 10 establishes the correspondence between the binary and extended product and
exclusive sum operators.

The following two statements provide criteria for relative and absolute correctness (refinement and
robustness) on systems.

Statement 11  (System Refinement Lemma)  For process sets � and �,

(a)   �
p∈ �

 asp  �  �
q∈ �

 asq   	   �
p∈ �

 atp  
  �
q∈ �

 atq   ⇒    � �  �  � �,

(a��)   �
p∈ �

 asp  �  �
q∈ �

 asq   	   �
p∈ �

 atp  
  �
q∈ �

 atq   ⇒    � �  �  � �.

Remark   [Ve94b] mentions a difficulty regarding further model extensions for dealing with
systems of infinitely many devices (p. 111).  If we have  pi � qi  for every  i∈ �, where � is the set
of natural numbers, do we also have  �{pi | i∈ �} � �{qi | i∈ �} ?  Our answer is yes, even for
uncountable process sets; for such sets, we replace � by an arbitrary index set I.

For all i,  pi � qi  implies  aspi � asqi  and  atpi 
 atqi.  Therefore,  �
i ∈ I

 aspi �  �
i ∈  I

 asqi  and

�
i ∈  I

 atpi 
 �
i ∈  I

 atqi.  By Statement 11 (a), we have  �{pi | i∈ I} � �{qi | i∈ I}.

�

Statement 12  (System Robustness Lemma)  For process set �,

(a) � � ∈ �� ⇔ �
p∈ �

 asp 
 �
p∈ �

 atp,

(a��) � � ∈ �� ⇔ �
p∈ �

 atp 
 �
p∈ �

 asp.
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4.3   Structured Manipulation of Processes

Transitivity of � and monotonicity of � allow for structured (hierarchical and modular)
verification.  The problem is to determine whether  p � q, where p represents a specification and q
an implementation of an interacting system.  Typically, one devises a chain of intermediate
specifications  s0, s1, …, sn  such that  s0 = p  and  sn = q  (see Figure 15).  Consecutive
specifications (including p and q) may be broken into components:  si =  c1 � c2 � ⋅⋅⋅  and  si+1 =
(d11 � d12 � ⋅⋅⋅) � (d21 � d22 � ⋅⋅⋅) � ⋅⋅⋅.  One verifies, for each j, that  cj � dj1 � dj2 � ⋅⋅⋅.  By
monotonicity of � with respect to �, one obtains  si � si+1.  By the same procedure, one obtains  sk

� sk+1  for each k in  {0, …, n�1}.  By transitivity,  p � q  is established.
Structured verification can reduce computational costs by breaking the overall verification

problem into smaller problems.  Note that projection operators may be useful as constructors of
intermediate specifications, but are not necessary for structured verification.  Intermediate
specifications may be guessed or derived by other methods.

Statement 13  (Verification)  For processes p and q,

p � q  ⇔  −p � q ∈  ��.

Proof   Let  p = (X1, Y1)  and  q = (X2, Y2).

−p � q ∈  ��

⇔ at(−p � q) = �
⇔ X1 � Y2 � ����Y1 � X2  =  �
⇔ (X1 � Y2) � �Y1 � �X2  =  �
⇔ (X1 � �Y1 � �X2) � (Y2 � �Y1 � �X2)  =  � {distributivity of � through �}
⇔ (X1 � �X2) � (Y2 � �Y1)  =  � {�Y1 
 X1  	  �X2 
 Y2}
⇔ X1 � �X2  =  �   	   Y2 � �Y1  =  �
⇔ X1 � X2  	  Y1 
 Y2

⇔ p � q.
�

           c1        �       c2   �   ⋅⋅⋅ =  si

             p =  s0

�

��

��

q =  sn

 (d11�d12�⋅⋅⋅) � (d21�d22�⋅⋅⋅) � ⋅⋅⋅ = si+1

Figure 15: Modular and hierarchical verification.



Process Spaces

20

Another proof of Statement 13 can be obtained by inspecting
the Venn diagrams in Figure 16.  The markers in Figure 16
(a) indicate set intersections that must be void for  p � q  to
hold.  For example, the two markers on the rightmost column
of Figure 16 (a) mean that  X2 � �X1 = �, i.e.,  X2 
 X1.  The
markers in Figure 16 (b) indicate the acceptable set of  −p �
q.  We check that the sets in Figure 16 (a) and (b) are
complementary, meaning that the set in Figure 16 (a) is void
if and only if the set in Figure 16 (b) is �.  Although this
proof technique can be applied to most statements in this
paper, we prefer logical deduction for a more insightful
presentation.

Statement 13 links the autonomous and relative notions of correctness.  Informally speaking,
implementation q is correct with respect to specification p if and only if q operates correctly in the
matching environment of p.

Statement 13 permits to verify whether an implementation satisfies a specification by placing
the implementation in the environment of the specification, and then checking an absolute
correctness condition on their product.  Such approaches were taken in [Eb89, Eb91] and further
developed in [Di89], for their models.

Statement 14  (Testing)  For processes p and q,

p � q   ⇔   � r ∈  ��:  ( r � p ∈  ��  ⇒   r � q ∈  �� ).

Proof   By Statement 13 and Statement 4 (a),  r � p ∈  ��  ⇔  −r � p  and  r � q ∈  ��  ⇔  −r
� q.  Thus, it is sufficient to prove

p � q   ⇔   � r ∈  ��:  (−r � p  ⇒   −r � q).

(⇒⇒ ) By transitivity of � (Statement 2 (b)),  p � q  	  −r � p  ⇒   −r � q.
(⇐⇐ ) Let  r = −p.  By Statement 4 (a),  −r = p.  By reflexivity of � (Statement 2 (a)),  −r � p.
By hypothesis,  −r � q.  Since  −r = p, we have  p � q.

�

Statement 14 is another link between the autonomous and relative notions of correctness.  One
can define refinement from a testing point of view: p is refined by q if q passes any test that p
passes.  Passing a test r can be viewed as the absence of rejects when the device is coupled with r.
Statement 14 shows that this testing definition of refinement is equivalent to the direct definition we
use.

The testing paradigm is commonplace in concurrency theory (see e.g. [dNH83]).

Statement 15  (Design)  For processes p, q  and r,

p � q � r   ⇔   p � −q � r.

X1

Y1

X2

Y2

X1

Y1

X2

Y2

(a) (b)

Figure 16:  Diagrams for proving
Statement 13.
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Proof

p  �  q � r
⇔ −p � q � r ∈  �� {Statement 13}
⇔ −(p � −q) � r ∈  �� {Statement 4 (a) and (c��)}
⇔ p � −q  �  r. {Statement 13}

�

The design equation is

p � q � r,

where process p represents a known specification, process q represents a known part of the
implementation and process r represents the unknown remaining part of the implementation.
Statement 15 solves the design equation by showing that the minimal solution is  p � −q.

Related results can be found, for instance, in [Pr91], [Ve94a], and [Ve94b].
One possible application of the design equation may be the design of software for embedded

systems.  In that case, p can be the (known) specification of the embedded system, q the (known)
description of the underlying machine, and r the (unknown) specification for the software.  Another
possible application is the design of interface circuitry for communication protocols: p and q are
two interfaces, and r is the specification for the ‘glue’ circuit.

By the duality principle (Subsection 4.1), we also claim the duals of the results above.

Many available parts and subsystems are robust (or sold as such), i.e., they are intended to be fool-
proof and have a defined behavior in any environment.  For example, voltage regulated sources
often have overload protection.  At the same time, the environments (e.g. users) should ideally be
assumed to be chaotic.  In these conditions, it is important to understand and exploit the
characteristics of robust and chaotic processes.

Statement 16  (RC Decomposition)

(a)  For process p, there exist unique chaotic process q and robust process r such that

q � r = p.

(b)  For p, q, and r as in Part (a), we have

q = p � Φ  	  r = p � Φ.

Recall that robust processes can be regarded as pure guarantees, and chaotic processes as pure
requirements.  Statement 16 (a) shows that every process is the product of a pure guarantee and a
pure requirement, while Statement 16 (b) provides a way to compute the factors.  One application
is that the robust and chaotic facets of a process can be ‘dealt with’ separately.  For example,
dynamic RAMs have a periodic refresh requirement in order to preserve valid data.  Such a
requirement can be satisfied by a subsystem designed specifically for that purpose, i.e., by a
subsystem that refines the reflection of the chaotic part of the DRAM.  The product of the DRAM
with the refresh subsystem can then be used as a robust subsystem.
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By duality, the same decomposition holds for the exclusive sum.

Statement 17  �� is closed under �, �, �, and �.

Statement 17 implies that the coupling of two robust devices or environments is also robust.  A
consequence is that one can ensure the robustness of a system simply by using robust components.

By duality, the same closure properties hold for ��.

Statement 18  (Robustness)  In the lattice ���, �, ��, �� is the principal filter generated by Φ.

Statement 18 provides a characterization of robust processes as those processes better or
identical to the void process.

By duality, �� is the principal ideal generated by Φ, and the chaotic processes are those
processes worse or identical to the void process.

5   Further Applications of Process Spaces

In this section, we propose other applications of the process space formalism, by instantiating the
execution set.

5.1   Electrical Networks

Process spaces may also be useful in the study of electrical networks, especially if the precise
values of the parameters (coefficients) are unknown, but only ranges are given.  If there are n real

state variables of interest in the network, one may take the execution set to be  �
n
.  The processes

corresponding to parts or sub-networks are determined according to the agreement pattern
described in Section 2.

Example 7   Figure 17 represents a steady-state network (a DC circuit).  The outputs of two
voltage sources  ��  and  ��  are connected by a resistor &.  There are four variables of interest:
V1,  I1,  V2, and  I2, the output voltages and currents of the two sources; correspondingly, we take

the executions to be vectors  (V1, I1, V2, I2)  from  �
4
  (the units are in the international system).

We assume that source  �x  delivers an electromotive force between  Vx min  and  Vx max  as long as  Ix

is between  Ix min  and  Ix max.  Accordingly, we represent the sources by processes

��� = ( {(V1, I1, V2, I2) ∈  �
4
  |  V1min � V1 � V1max},

{(V1, I1, V2, I2) ∈  �
4
  |  I1min � I1 � I1max}   ),

I1 I2

V1 V2
&

�� ��

Figure 17: Network for Example 7.
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��� = ( {(V1, I1, V2, I2) ∈  �
4
  |  V2min � V2 � V2max},

{(V1, I1, V2, I2) ∈  �
4
  |  I2min � I2 � I2max}   ).

We also assume that the resistance of & is r and that & can operate under any voltages.
Accordingly,

�&   =   ( {(V1, I1, V2, I2) ∈  �
4
   |   I1 + I2 = 0  	  r I1 = V1 � V2},   �

4
 ).

Now, we assume that  V1min = V2min = 4.9V,  V1max = V2max = 5.2V,  I1max = I2max = 25mA,  I1min

= I2min = �25mA,  and  r = 10Ω.  Robustness of product is not satisfied for parameters in these
ranges.  For execution  z = (5.2, 0.03, 4.9, �0.03), we have  z ∈  as��� � as��� � as�&,  but  z

∉  at���.  It follows that  ��� � ��� � �& ∉  ��
4.

The violation can be interpreted as follows.  Due to slack in the values of the electromotive
forces, a short with a current larger than 25mA may occur, which may damage the sources.

5.2   Dynamical Systems

Process spaces may also be useful in the study of dynamical systems.  If there are n real state
variables of interest (counting derivatives as well), one may take the execution set to be the set of

functions from � (the time domain2) to  �
n
.  Some simplifications are possible for particular types

of dynamical systems.  For instance, the execution set can be taken to contain only continuous
functions or can be taken to contain distributions whose Laplace transforms are ratios of
polynomials.  The processes corresponding to dynamical systems are determined according to the
agreement pattern described in Section 2.

One possible use for process spaces in dynamical systems may be to set proof obligations
sufficient to allow for a simpler paradigm, such as the discrete-state approximation (where states
are assumed to be from a finite or countable set).  [GC94] demonstrates several difficulties with a
toggle element at very high and very low switch frequencies.  However, [GC94] uses a sine wave
for input.  Some of these difficulties may turn out to be avoidable if all voltages in the circuit are
restricted to be either low, high, or changing fast.  This requirement (a Brockett ring requirement
[Br89]) amounts to restricting the phase trajectories for each variable (i.e. the possible sets of pairs
(V, dV/d t)) to be within a region of the phase plane such as the shaded area in Figure 18 (a region

                                                  
2 The time domain can also be discrete (e.g., the set of integers).

V

dV/d t

Figure 18:  Requirement of Brockett ring type.
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topologically isomorphic to an annulus, i.e., there exists a continuous bijective mapping of the
phase plane to itself that transforms that region into a ring-shaped region), under appropriate
differentiability assumptions.  Accordingly, one can restrict the contract sets to comprise only
functions that satisfy such a requirement.  If an execution violates this requirement on an input
variable of a dynamical system, that execution will be considered a reject for the process
representing that system.  If an execution violates the requirement on an output variable, that
execution will be considered an error.  The refinement condition may be used to prove that, for
each cell in a circuit, if the input signals of that cell satisfy the Brockett ring requirement, then that
cell operates according to a discrete-state approximation, and moreover, its output signals also
satisfy the Brockett ring requirement.  The robustness condition will tell whether the Brockett ring
requirement is satisfied by the inputs of all cells, to ensure that the discrete-state approximation can
be used without bad effects.

5.3   Bi-directional Ports

In Section 3, we have assumed that the ports of a concurrent system are either inputs or outputs
throughout the operation of that system.  However, sometimes a port may change direction.  For
example, in larger digital components, a data line is sometimes an input (driven by the
environment) and other times an output (driven by the device), in order to reduce the number of
pins on the package.  In such situations, one can treat an event as an input event if that event
occurs while the corresponding action is an input action, and as an output event if that event occurs
while its action is an output.3

Example 8   The component � in Figure 19 has a control output c and a data line d.  When c is
high, d is an output; when c is low, d is an input.  Signal d may change only once or may not
change at all between two transitions on c or before the first transition on c.  Both d and c are
initially low.  The safety process of component � is a process over �*, determined by the
agreement pattern in Section 2.

�� = ( pref(dc � c)*  �  ((dc � c)(dc � c))*⋅dd{c, d}*
, pref(dc � c)*  �  ((dc � c)(dc � c))*⋅(dc � c)⋅dd{c, d}*  ).

The contracts of �� are finite words that have no two consecutive d events.  If two consecutive d
events occur in a finite word, that word is a reject or an error according to whether signal d is an
input or an output at the time the second d event occurs.  For instance, execution dd is a reject
because the second d occurs while d is an input, and the violation is due to the environment.
Execution cdd is an error because the second d occurs while d is an output, thus the violation is
due to the device.

                                                  
3 Here, we assume that the direction switches are instantaneous, just as events are.  More detailed treatments can also

be obtained with process spaces, by a dynamical system or by ‘true concurrency’ execution models.

c
P

d

Figure 19: Component for Example 8.
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5.4   Input Control

Input control is a connectivity concern for concurrent systems which forbids dangling inputs.
In [Ve94a], studies of various connectivity concerns are proposed.  Those studies are based on

the ‘testing paradigm’, and thus have a high degree of similarity with the models in [Ve94b].  On
the other hand, those studies are not homogeneous (e.g., the operators for parallel composition
actually differ among the various models for connectivity and behavior concerns in [Ve94a,
Ve94b]) and are not decoupled (e.g., absence of dangling inputs was not studied independently
from other connectivity concerns).

For studying input control, we consider that each concurrent system s is represented by its
action control process, a process  �s  over �.  By an uncontrolled action we mean an action that
is not an output of a process.  The action control processes are determined by the agreement
pattern described in Section 2, applied to uncontrolled actions.  The following examples illustrate
action control processes and meanings of robustness and product in this interpretation.

Example 9   Let the components of the circuit in Figure 20 (a) be C, BUF, and INV, from top to
bottom.  For each component in Figure 20 (a), we take the accessible uncontrolled actions to be all
actions from � that are not outputs of that component, and the acceptable uncontrolled actions to
be all actions that are not inputs of that component.  Letting  � = {a, b, c, d, e}, we have (after
some straightforward manipulations):

�C � �BUF � � INV

= ({a, b, d, e},  {c, d, e})  �  ({a, b, c, d},  {a, b, c, e})  �  ({a, b, c, e},  {a, b, c, d})
= ({a, b},  {c} � ���{a, b})
= ({a, b},  {c, d, e})
∉ �{a, b, c, d, e}.

Note that  � \ at(�C � �BUF � � INV) = {a, b}  indicates precisely the two dangling inputs in the
circuit.

C

a

b
c

ed

a

b
c

(a) (b)

Figure 20: Circuit and gate for Example 9 and Example 10.



Process Spaces

26

Example 10   Input control can also be considered in a relative sense.  Let us check whether the
circuit in Figure 20 (a) is a correct implementation of the AND gate in Figure 20 (b), with respect to
input control.  For that, we demand  �AND � �C � �BUF � � INV.  The action control processes
of the components are as in Example 9.  We have

as(�C � �BUF � � INV)
= {a, b} {as in Example 9}

 {a, b, d, e}
= as�AND

at(�C � �BUF � � INV)
= {c, d, e} {as in Example 9}
= at�AND

The condition is satisfied.  Informally speaking, the two dangling inputs of the circuit are
controlled by the environment of the AND gate.

5.5   Timing

Timing properties can be decided by the time-stamped partial executions of a concurrent system,
i.e., the finite or infinite sequences of pairs of actions and time-stamps representing events that
occur up to a certain time.  We take the time domain to be [0, ), the set of non-negative real
numbers.4

For pair  (a, t) ∈  ��[0, ), let  a(a, t) = a  and  t(a, t) = t.  For finite sequence x, let dx be the
domain of indices of x, which is the set  {i ∈  	  |  0 � i < l}, where 	 is the set of integer numbers
and l is the length of x.  Let the elements of x be  x0, …, xl−1.  For example, the domain of indices of
aba  is  {0, 1, 2},  (aba)1  is b, and the domain of indices of ε is �.  With this notation, we take
the execution set to be  ! = {x ∈  (��[0, ))* | � i, j ∈  dx: (i � j ⇒  txi � txj)}.  In words, the
executions for timing are the finite sequences of pairs of an action and a time-stamp such that time-
stamps are in increasing order.  For instance,  (a, 0.4)(b, 0.4)(c, 2) ∈  !, but  (a, 1)(b, 0.7) ∉  !.
For studying timing, we represent a concurrent system by its timing process, a process over  !.
The timing processes are specified by the agreement pattern described in Section 2, applied to time-
stamped partial executions.  There are no other restrictions on specifying the timing processes.

Under this representation, timing faults are detected as violations of refinement or robustness.

5.6   True Concurrency

In Section 3, we have assumed that events are instantaneous.  Simultaneous occurrence of two
events was modeled as two possible interleavings of those events.  In the ‘true concurrency’
paradigm, simultaneous occurrence of two atomic events is different from the possibility of both
interleavings, which is perhaps a more accurate but more complicated point of view.

For a ‘true concurrency’ model, one can consider actions to be elements of  "(�)  (subsets of
�), as opposed to atomic actions, which are elements of �.  Events are occurrences of actions,

                                                  
4 Other time domains are also possible, such as the whole set of reals, the set of natural numbers, etc.
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and atomic events are occurrences of atomic actions.  The execution sets are determined by the
agreement pattern in Section 2, applied to sequences over  "(�).  Contracts can be determined
just like in Section 3, but they contain sequences over  "(�)  instead of over �.  Determining
reject and error sets has a subtlety, if an illegal event contains both an illegal input event and an
illegal output event.  In such situations, the resulting execution is typically a reject rather than an
error.

Example 11  Consider a component TOGGLE with input a and outputs b and c, which repeatedly
inputs an a event and outputs either a b event or a c event, alternating b and c.  For illustrative
purposes, assume there also exists an atomic action d which is not ‘seen’ by the TOGGLE.  The true
concurrency safety process of TOGGLE is a process � ′ TOGGLE over  "(�)*.  The contract set of
� ′ TOGGLE is as in Figure 21, where events are represented as lists of atomic events within square
brackets.  Note that d atomic events may occur arbitrarily.  Execution  [a][a, b]  is a reject of � ′
TOGGLE, because TOGGLE may issue a b after the first a, but a second a is not expected until an
output atomic event of TOGGLE.  On the other hand, execution  [a][a, c]  is an error of  � ′ TOGGLE,
because [a, c] contains both an illegal input atomic event (no a is expected until an output atomic
event) and an illegal output atomic event (it is not the turn of c).

6   Conclusions and Further Work

A new theory of interacting systems has been presented.  Some of its novelties are abstract
executions, totally decoupled and homogeneous correctness concerns, a unified treatment of
discrete-state and continuous-state systems, the absence of connectivity restrictions, a
representation of interacting systems by execution sets only (no states or action sets), the formal
operators for this representation, the existence, meaning, and properties of an exclusive sum
operation for interacting systems, a definition and characterization of robust and chaotic processes,
the decomposition of a process into a ‘pure guarantee’ and a ‘pure requirement’, a classification of
lock faults, an approach for dealing with bi-directional (input/output) ports, generalizations and
simplifications of previous results from concurrency theory, new algebraic properties of concurrent
systems and other interacting systems, a study of systems with possibly infinitely many
components, a duality principle for interacting systems, a procedure for structured verification
without connectivity restrictions, and diagrams for process spaces and for absolute and relative
lock faults.

[a], [a, d]

[d]

[a], [a, d] [b], [b, d]

[c], [c, d]

[d] [d]

[d]

Figure 21:  Contract set for Example 11.
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The process space product, refinement, and reflection, and some of their properties relate to
operators introduced previously in concurrency theory (see Sections 3 and 4).  However, we are not
aware of a previous treatment of concurrency with any of the characteristics of process spaces we
have mentioned in Section 1.  In particular, it appears that the key idea of abstracting the notion of
execution has not been proposed before.  The ‘lack of popularity’ of this idea is not surprising.  To
eliminate the structure of executions, we have abandoned the notions of events, states, actions, and
ports, and we have had to abandon all the related restrictions as well.  These notions, in one form
or another, stand at the basis of each of the previous treatments of concurrency known to us.  Also,
in process spaces there are no concepts of causality or even sequential ordering.

Process spaces are applied to safety, liveness, progress, and other correctness concerns and
types of systems.  For this, executions are finite words, infinite words, input and output actions,
time-stamped sequences, vectors of real numbers, or functions of a real variable.  More
applications should be possible, for other types of executions; this is an important direction for
further work.

From the study of liveness and progress by process spaces, a new classification of absolute and
relative liveness and progress faults is obtained, which appears to generalize the notions of
deadlock, starvation, and livelock.  Another topic for further work may be the modularity and
hierarchy properties for the proposed types of lock faults, following from the results in Section 4
applied to liveness and progress processes.

Another direction for further work is to identify and characterize classes of systems that occur
often in practice, and to study the closure properties of such classes under the process space
operators.  For example, a frequently occurring relationship between the liveness and progress
processes of a concurrent system has been presented at the end of Subsection 3.4.

The refinement partial order induces a lattice of processes which is complete (Subsection 4.1)
and has all elements defined explicitly.  (We did not need to introduce new elements by their
operations to complete the structure.)  It may be interesting to philosophize over the execution sets
of top, bottom, and void, and what they stand for in ‘real life’.

Process spaces admit a duality principle based on de Morgan’s laws for product and exclusive
sum (Subsection 4.1).  Certain aspects of this duality have appeared before in concurrency theory,
but, to the best of our knowledge, this duality has never been formally stated.  Apparently, the
existence of a dual operation for the parallel composition, or its de Morgan’s laws, have not been
mentioned before.  The difference between the process space product and its dual (exclusive sum)
is subtle enough, and they are the same, say, for robust processes; it is easy to confuse them at an
intuitive level.

This paper only starts to explore the algebraic properties of process spaces.  These algebraic
properties and the related techniques for verification, design, etc. are inherited wherever process
spaces apply.  We are currently studying other algebraic properties of process spaces.

Automated manipulation of finite-state processes can be achieved by tools for regular
languages.  However, as in other concurrent system problems, one encounters the obstacle of state
explosion: the number of states of the product of a system may grow exponentially with the number
of processes in the system.  Further work should explore and apply efficient methods for coping
with state explosion.  For now, the complexity of the verification problem can be reduced by
applying the structured verification procedure we outline in Subsection 4.3.  For the first time, we
have eliminated all connectivity restrictions from structured verification.

Further work should also link process spaces to other models of interacting systems by
assigning safety processes, liveness processes, etc., to objects in other models, and then relating the
process space operators and relationships to their counterparts in other models.  Such work may
provide a unified point of view in concurrency theory and a basis of comparison among models.
Moreover, such work may benefit the other models by ensuring that all process space properties
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(present and future) apply to those models as well (perhaps under certain restrictions on the
processes involved).  This way, the users may apply process space techniques, while still enjoying
advantages of other models.  It is hoped that simplicity and a higher-level understanding will lead
to a greater confidence in concurrent systems.

Acknowledgements   I am grateful to Robert Berks, Jo C. Ebergen, Charles E. Molnar, and Tom
Verhoeff for critical reviews of previous drafts.  I am indebted to J. A. Brzozowski and Jo C.
Ebergen for many insights into related topics.  I am also indebted to J. A. Brzozowski for constant
support, many critical reviews, and many comments and suggestions regarding the results and
presentation of this paper.

References

[Be90] M. Ben-Ari.  Principles of Concurrent and Distributed Programming.  Prentice Hall, 1990.

[Br89] R. W. Brockett.  Smooth dynamical systems which realize arithmetical and logical operations.
In H. Nijmeijer and J. M. Schumacher, eds., Three Decades of Mathematical Systems Theory:
A Collection of Surveys at the Occasion of the 50th Birthday of J. C. Willems, vol. 135 of
Lecture Notes in Control and Information Sciences, pp. 19-30, Springer Verlag, 1989.

[BHR84] S. D. Brookes, C. A. R. Hoare, A. W. Roscoe.  A theory of communicating sequential
processes.  Journal of the ACM, 31(7):560-599, 1984.

[BR85] S. D. Brookes and A. W. Roscoe.  An improved failures model for communicating sequential
processes.  In Proceedings NSF-SRC Seminar on Concurrency, pp. 281-305, 1985.

[BS95] J. A. Brzozowski and C.-J. H. Seger.  Asynchronous Circuits.  Springer Verlag, 1995.

[DP90] B. A. Davey and H. A. Priestley.  Introduction to Lattices and Order.  Cambridge University
Press, 1990.

[Di89] D. Dill.  Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
ACM distinguished dissertations.  MIT Press, 1989.

[dNH83] R. de Nicola and M. Hennessy.  Testing equivalences for processes.  Theoretical Computer
Science, 34:83-133, 1983.

[Eb89] J. C. Ebergen.  Translating programs into delay-insensitive circuits.  CWI Tract 56, Centre for
Mathematics and Computer Science, Amsterdam, The Netherlands, 1989.

[Eb91] J. C. Ebergen.  A formal approach to designing delay-insensitive circuits.  Distributed
Computing, (5):107-119, 1991.

[GC94] M. R. Greenstreet and P. Cahoon.  How fast will the flip flop?  In Proceedings of the
International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp.
77-86, 215, 1994.

[He88] M. Hennessy.  Algebraic Theory of Processes.  Series in Foundations of Computing.  The MIT
Press, Cambridge, Mass., 1988.

[Ho85] C. A. R. Hoare.  Communicating Sequential Processes.  Prentice Hall, 1985.



Process Spaces

30

[Jo92] M. B. Josephs.  Receptive process theory.  Acta Informatica, 29(1):17-31, 1992.

[JLUV94] M. B. Josephs, P. G. Lucassen, J. T. Udding, and T. Verhoeff.  Formal design of an
asynchronous DSP counterflow pipeline: a case study in Handshake Algebra.  (Appendix:
Handshake Algebra.)  In Proceedings of the International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 206-215, 1994.

[LL90] L. Lamport and N. Lynch.  Distributed computing:  models and methods.  In J. van Leeuwen,
ed., Handbook of Theoretical Computer Science, vol. B, Formal Methods and Semantics, pp.
1159-1196, The MIT Press - Elsevier, 1990.

[Ma86] A. Mazurkiewicz.  Trace Theory.  In W. Brauer, W. Reisig, and G. Rozenberg, eds., Petri
Nets, part II: Applications and Relationships to Other Models of Concurrency, volume 255 of
Lecture Notes in Computer Science, pp. 279-324, 1986.

[Mi89] R. Milner.  Communication and Concurrency.  Prentice Hall, 1989.

[Mo95] C. E. Molnar.  Personal communication.  1995.

[NB95a] R. Negulescu and J. A. Brzozowski.  Relative liveness: from intuition to automated
verification.  In Proceedings of the Second Working Conference on Asynchronous Design
Methodologies, South Bank University, London, U.K., pp. 108-117, 1995.

[NB95b] R. Negulescu and J. A. Brzozowski.  Relative liveness: from intuition to automated
verification.  Research report CS-95-32,  University of Waterloo, Waterloo, Canada, 1995.
'���((��)
	�%
*�!+$
��	���!�
(��)
	�%
*�(��),-).�(��),-).�!��!/

[Pr91] I. S. W. B. Prasetya.  Solving the Design Equation in the Failures Model.  Master’s thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1991.

[St94] J. Staunstrup.  A Formal Approach to Hardware Design.  Kluwer Academic Publishers, 1994.

[Ud86] J. T. Udding.  A formal model for defining and classifying delay-insensitive circuits and
systems.  Distributed Computing 1(4):197-204, 1986.

[vdS83] J. L. A. van de Snepscheut.  Trace Theory and VLSI Design.  Ph.D. Thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands, 1983.

[Ve94a] T. Verhoeff.  The testing paradigm applied to network structure.  Computing Science Notes
94/10, Dept. of Math. and C. S., Eindhoven University of Technology, Eindhoven, The
Netherlands, 1994.

[Ve94b] T. Verhoeff.  A Theory of Delay-Insensitive Systems.  Ph.D. Thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands, 1994.


