Surface intersection using affine arithmetic*

Luiz HENRIQUE DE FIGUEIREDO

Computer Systems Group, Department of Computer Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1 (1hf@csg.uwaterloo.ca)

Abstract

We describe a variant of a domain decomposition method proposed by Gleicher and Kass for
intersecting and trimming parametric surfaces. Instead of using interval arithmetic to guide the
decomposition, the variant described here uses affine arithmetic, a tool recently proposed for
range analysis. Affine arithmetic is similar to standard interval arithmetic, but takes into account
correlations between operands and sub-formulas, generally providing much tighter bounds for
the computed quantities. As a consequence, the quadtree domain decompositions are much
smaller and the intersection algorithm runs faster.

KEYWORDS: surface intersection, trimming surfaces, range analysis, interval analysis, CAGD.

1 Introduction

Parametric surfaces are the most popular primitives used in computer aided geometric design
(CAGD). They are easy to approximate and render, and there is a huge literature on special classes
of surfaces suitable for shape design, such as Bézier and splines surfaces, for which special algorithms
exist [1]. However, using parametric surfaces for modeling solids in CSG systems requires efficient
and robust methods for computing surface intersection, mainly for trimming surfaces into patches
that can be sewn together to bound complex shapes. Systems that use implicit surfaces as modeling
primitives do not suffer from this drawback, but implicit surfaces are harder to approximate [2].

Several methods have been proposed for solving the important problem of computing the in-
tersection of two parametric surfaces. These methods can be classified into two major classes:
continuation methods and decomposition methods. In this paper, we describe a variant of a de-
composition method proposed by Gleicher and Kass [3]. Instead of using interval arithmetic to
guide the recursive domain decomposition, as they did, our variant uses affine arithmetic. Affine
arithmetic is similar to standard interval arithmetic, but takes into account correlations between
operands and sub-formulas, generally providing much tighter bounds for the computed quantities.
In many computer graphics methods based on interval arithmetic, affine arithmetic can transpar-
ently replace interval arithmetic. Variants based on affine arithmetic would probably be more
efficient, but each case requires separate investigation. This paper describes such an investigation
for the surface intersection method by Gleicher and Kass [3].

*Technical report CS-95-47, Dept. of Computer Science, U. of Waterloo. Submitted to Graphics Interface ‘96.

The remainder of the paper is organized as follows. In Section 2, we review some general
methods for surface intersection. The most reliable of those seems to be recursive subdivision
of parameter space based on range analysis, i.e., on estimates for the range of values taken by a
function on subsets of its domain. Interval arithmetic is the natural technique for range analysis [4].
However, as we point out in Section 3, the excessive conservatism of interval arithmetic may greatly
reduce the efficiency of the decomposition. In Section 4, we briefly describe affine arithmetic,
a recent technique for range analysis that generally provides much tighter bounds than interval
arithmetic [5]. In Section 5, we review the algorithm proposed by Gleicher and Kass [3] and give
some evidence that their algorithm can be improved by replacing interval arithmetic with affine
arithmetic. Section 6 contains some conclusions and outlines directions for future work.

2 Previous work

Continuation methods, also called marching methods, use a local approach to the surface intersection
problem. Starting from a point known to be on both surfaces, these methods build an approximation
for the intersection curve by marching along the curve, successively computing a new point based
on the previous point (or points) [6]. Continuation methods must use numerical approximations not
only for marching along the curve, but also for finding starting points. Since the intersection might
have several connected components, a starting point is needed on each component. Moreover, care
must be taken for handling closed components correctly. In some applications, such as trimming,
intersection curves computed with continuation methods must be somehow mapped back to the
parameter domains to define trimming curves. This might be a difficult inverse problem.

Decomposition methods, on the other hand, use a more global approach to the problem. A sim-
ple decomposition method is to build polygonal approximations for both surfaces and then intersect
the corresponding polyhedral surfaces. Although it is easy to build polygonal approximations for
parametric surfaces, such approximations need to be very fine to provide a good approximation for
the intersection. A naive polygonal approximation is obtained by simply subdividing the parameter
domain uniformly into many small rectangles. However, intersecting such fine polygonal approxi-
mation is itself a difficult task. Even if we do not care about geometric degeneracies [7, 8], this is a
high complexity task: If there are n rectangles along each main direction in parameter space, then
there are n? faces in each polyhedron. A naive algorithm that computes the intersection of the two
polyhedra by testing every possible pair of faces has to consider ©(n*) cases, most of which do not
contribute to the intersection. This algorithm is not practical because it is very expensive to refine
an approximation.

Adaptive decomposition methods avoid the cost of uniform decompositions by subdividing the
domain until the surface is approximately planar. In that way, the associated polygonal approxi-
mation is adapted to the local curvature of the surface, being finer in regions of high curvature and
coarser in regions of low curvature, where the surface is almost flat. Such methods are generally
restricted to specific types of surfaces, because the nature of the surface can be exploited to derive
efficient tests for local flatness [9].

The decomposition method proposed by Gleicher and Kass [3] takes a global approach for sub-
dividing the domains, using range analysis [4]. Given a rectangle in each domain, they compute an
estimate for the range of values taken by the corresponding parametric function on each rectangle.

This estimate is a bounding box for a surface patch, i.e., a rectangular box in 3d space, aligned
with the coordinate axes, and guaranteed to contain the piece of the surface corresponding to the
given rectangle in parameter space. If two bounding boxes do not intersect, then the corresponding
surfaces patches cannot intersect. If the bounding boxes do intersect, then the surfaces patches may
intersect. In this case, the rectangles are subdivided, and the process is repeated until either the
surfaces patches are proved disjoint or a user defined tolerance is reached; the patches are then as-
sumed to intersect. Gleicher and Kass use interval arithmetic for computing ranges. In this paper,
we show that their method can be improved by replacing interval arithmetic with affine arithmetic,
a tool recently introduced for range analysis that generally produces better bounds than interval
arithmetic [5].

Since decomposition methods work directly on parameter domains, no inverse problem needs to
be solved to find trimming curves. On the other hand, decomposition methods compute trimming
curves in a piecewise, unstructured way; the pieces must be somehow glued together into complete
curves. In addition to the domain decomposition method for finding intersections with interval
arithmetic, Gleicher and Kass [3] also propose complementary algorithms for finding trimming
curves and triangulating the domains to define trimmed surfaces. These algorithms do not depend
on range analysis and can therefore be applied to the decompositions computed by the variant
presented here. For this reason, we concentrate on showing that their algorithm can be improved
by using affine arithmetic instead of interval arithmetic.

3 Interval arithmetic

The classical technique of interval arithmetic (IA), also known as interval analysis, provides a
natural tool for range analysis [4]. In IA, each quantity is represented by an interval of floating-
point numbers. Those intervals are added, subtracted, multiplied, etc., in such a way that each
computed interval is guaranteed to contain the (unknown) value of the quantity it represents.

Simple formulas are easily derived for performing the primitive arithmetic operations on inter-
vals. Interval extensions for a complicated function can be computed by composing these primitive
formulas in the same way the primitive operations are composed to compute the function itself.
In other words, any algorithm for computing a function using primitive operations can be readily
(and automatically) interpreted as an algorithm for computing an interval extension for the same
function. This is specially elegant to implement with programming languages that support operator
overloading, such as C++4, Ada, Pascal-SC and Fortran-90, but can be easily implemented in any
programming language, either manually or with the aid of a pre-compiler. Since it is also relatively
easy to provide interval extensions for elementary transcendental functions such as sin, cos, log, and
exp, the class of functions for which interval extensions can be easily (and automatically) computed
is much larger than the class of rational polynomial functions.

Several methods based on IA have recently been proposed for solving a number of fundamental
problems in computer graphics, including ray tracing [10] and approximation of implicit surfaces
[11, 12, 13]. Those methods have become quite popular, due to their ability to handle arbitrarily
complex non-polynomial surfaces, and their immunity to round-off errors.

Previously, methods based on Lipschitz conditions (global bounds on derivatives) appeared to
be promising for computer graphics applications [9, 14]. However, computing Lipschitz bounds is

a non-trivial mathematical problem that did not seem to have an automatic solution. Methods
using range analysis seem to be more popular now in computer graphics, specially because range
analysis can be automated (typically with IA) [4]. In particular, Lipschitz bounds can be computed
using automatic differentiation and interval arithmetic [15]. Global optimization, which includes
computing Lipschitz bounds as a special case, has recently been shown to be feasible with range
analysis [16, 17]. However, global optimization with range analysis has barely been explored in
computer graphics [12].

The main weakness of IA is that it tends to be too conservative: the computed interval for a
quantity may be much wider than the true range of that quantity, often to the point of useless-
ness. This over-conservatism is mainly due to the assumption that the (unknown) values of the
arguments to primitive operations may vary independently over the given interval. If there are
any mathematical constraints between these arguments, then not all combinations of values in the
corresponding intervals will be valid. As a consequence, the result interval computed by IA may
be much wider than the true range of the result quantity. This is sometimes called the dependency
problem in TA.

As an example of how dependencies are overlooked in IA, consider evaluating (10 — z), where
¢ is known to lie in the interval Z = [4 .. 6]. Applying the IA formulas blindly, we get:

z = [4..6]
10-z = [10..10]—-[4..6]=1[4..6]
z(10—z) = [4..6]-[4..6] =[16 .. 36],

which is 20 times wider than the true range of the expression (10 —z) over [4 .. 6], namely [24 .. 25].
The large discrepancy between the two intervals is due to the inverse relation between the quantities
2 and 10 — #, which is not known to the IA multiplication algorithm. Inverse relations such as this
are common in curve and surface parametrizations used in CAGD, as the examples in Section 5
show.

The over-conservatism of IA is particularly bad in long computation chains, where the intervals
computed by one stage of the chain are the inputs to the following stage. In such cases, one often
observes an “error explosion”: as the evaluation advances down the chain, the relative accuracy
of the computed intervals decreases exponentially, and they soon become too wide to be useful,
by many orders of magnitude. Unfortunately, long computations chains are not uncommon in
computer graphics applications.

4 Affine arithmetic

Affine arithmetic (AA) is a model for numerical computation recently proposed to address the
“error explosion” problem in IA [5]. Like IA, affine arithmetic keeps track automatically of the
round-off and truncation errors affecting each computed quantity. Unlike IA, however, AA keeps
track of correlations between those quantities. This extra information allows AA to provide much
tighter range estimates than IA, especially in long computation chains.

The key feature of AA is an extended encoding of quantities from which one can determine, in
addition to their ranges, also certain relationships to other quantities — such as the ones existing

between # and 10 — z in the example in Section 3. Specifically, a partially unknown quantity is
represented in AA by an affine form &, which is a first-degree polynomial:

T==2g+ T161 + T2E2 + -+ TpEy.

Here, the z; are known real coefficients (stored as floating-point numbers), and the ¢; are symbolic
variables, called noise symbols, whose values are unknown but assumed to lie in the interval U =
[-1 .. +1]. Noise symbols stand for independent sources of error or uncertainty that contribute to
the total uncertainty of the quantity z; the coefficient z; gives the magnitude of that contribution
for the source ¢;.

The main benefit of encoding quantities with affine forms instead of intervals is that the same
noise symbol &; may contribute to the uncertainty of two or more quantities (inputs, outputs, or
intermediate results) arising in the evaluation of an expression. The sharing of a noise symbol
g; by two affine forms &, § indicates a partial dependency between the underlying quantities z,
y. The magnitude and sign of the dependency is determined by the corresponding coeflicients z;,
y;. Taking such correlations into account allows better range estimates to be computed (see the
example at the end of this section).

Other approaches to the dependency problem in IA include centered forms [4] and Hansen’s
generalized interval arithmetic [18], in which quantities are represented by affine combinations of a
fized number of intervals. As we shall see below, new noise symbols are dynamically created during
a long computation with AA.

As one may expect, affine arithmetic is more complex and expensive than ordinary interval
arithmetic. However, its higher accuracy is worth the extra cost in many computer graphics appli-
cations, including adaptive enumeration of implicit objects [2] and computing the intersection of
parametric surfaces, as we show in Section 5.

The use of AA for range analysis is simple: First convert all input intervals to affine forms.
Then, operate on these affine forms with AA to compute the desired function. Finally, convert the
result back into an interval.

The conversion steps are simple. Given an interval Z = [a .. b] representing some quantity z,
an equivalent affine form for the same quantity is given by & = ¢ + €y, where
B b+ a b—a

5 and =z = 5

Lo

Since input intervals are assumed to be unrelated, because they usually represent independent
variables, a new noise symbol e, must be used for each input interval.

Conversely, the value of a quantity represented by an affine form & = 2o + 2161 + - - + 2,6, is
guaranteed to be in the interval

[2] = [®0 — £ .. xo + &], where £ = ||2|| == Z |z;] .
=1

Note that [#] is the smallest interval that contains all possible values of &, assuming that each ¢;
ranges independently over the interval U = [—1 .. +1].

Computing with affine arithmetic

To evaluate a formula in AA, we must replace each of its elementary operations z < f(z,y) on
real numbers by an equivalent operation 2 + f(:z:) on affine forms, where f is a procedure that
computes an affine form for z = f(z,y) that is consistent with &, 7.

When f is an affine function of #, y, the value Z can be expressed exactly as an affine combination
of the noise symbols ¢;. More precisely, if

T = zotaELt+ ot TeE,

Yo + Y11+ + Ynén,

3%
|

and a € R, then

ety = (zoty)+(eity)er+ -+ (2n L yn)én
(azo) + (az1)er + -+ -+ (azy)en
tta = (zoto)tzier+ -+ Tnén.

Q
8
Il

Note that, according to those formulas, the difference & — # between an affine form and itself is
identically zero. In this case, the fact that the two operands share the same noise symbols with
the same coefficients reveals that they are actually the same quantity, and not just two quantities
that happen to have the same range of possible values. Thanks to this feature, in AA we also have
(24+9)—2 =149, (32) — & = 22, and so on. Such properties are not valid in IA, and are one source
of error explosion.

When f is not an affine operation, the value Z cannot be expressed exactly as an affine combi-
nation of the ¢;. In that case, we pick the best affine approximation to f (best in the Chebyshev
sense of minimizing the maximum error), and then append an extra term zpej to represent the
error introduced by this approximation:

2 =20+ 2161 + -+ + 2p€n + 21k

Here, ¢, must be a brand new noise symbol (i.e., distinct from all other noise symbols in the
same computation) and z; must be an upper bound for the approximation error. Note that,
unlike Hansen’s generalized interval arithmetic, new noise symbols are created during a long AA
computation. They account for extra sources of uncertainty introduced during the computation,
such as approximation errors and round-off errors.

Using this approach, formulas can be derived for all elementary operations and functions, both
algebraic and transcendental. For example, the multiplication of two affine forms Z, § is given by

zZ0 = 2ZoYo
zi = zo¥it+ Yoy (i=1.n)
z = |[2][|9l

Like Lipschitz bounds, Chebyshev approximations must be computed by hand. Unlike Lipschitz
bounds, however, Chebyshev approximations need to be found only for primitive functions because
AA formulas for primitive functions can be automatically combined into formulas for arbitrarily

complex functions. This is also true of IA, and TA formulas for primitive functions are usually
easier to find than Chebyshev approximations.

To see how AA handles the dependency problem, consider again evaluating z = (10 — z), for
z in the interval [4 .. 6], but now using AA instead of IA:

z = b+1le
100—-2 = 5—-1¢
2=2(10-2) = 254 0e; — le,
2] = [26—-1..25+4+1]=[24..26].

Observe that the influence of the noise symbol ¢; in the factors happened to cancel out (to first
order) in the product. Note also that the range of 2 is much closer to [24 .. 25], the true range of z,
and much better than the IA estimate, [16 .. 36].

5 Examples

In this section, we show some examples of how the algorithm by Gleicher and Kass [3] can be
improved by using AA instead of IA. Recall that this algorithm is a domain decomposition algorithm
that uses range analysis to decide whether two surfaces patches intersect. If the bounding box
estimates provided by range analysis for the patches do not intersect, then the patches cannot
intersect. If the bounding boxes do intersect, then the surfaces patches may intersect, and the
corresponding rectangles in the domains are subdivided into four equal pieces and further tested.
In this way, a quadtree decomposition is built for each domain. For efficiency, Gleicher and Kass
keep track of all pairs of patches that might intersect: each leaf node in one quadtree contains a
list of leaf nodes in the other quadtree that it overlaps. This list is refined and distributed to its
children when a node is subdivided. The main step in the algorithm is the subdivision of a leaf

node [3]:
subdivide(n):

if n’s overlap list is not empty
subdivide n into four children
for each 7 in n’s overlap list
remove n from %’s overlap list
for each child c of n
if ¢ overlaps ¢
add 7 to ¢’s list
add ¢ to i’'s list

Gleicher and Kass [3] remark that the subdivision step can be applied in several different orders.
They actually combine depth-first search with breadth-first search to control the size and accuracy
of the sampling of the intersection curve. Qur simple implementation uses only breadth-first search,
by enqueueing new nodes as they are created and then subdividing a node from the queue at a time.
For efficiency, a bounding box for a node is computed exactly once, when the node is created. This
happens in each subdivision, when four nodes are created, and also at startup, when one node for

R

O
0%
(ALY
N,

9%
5
S

9%
5%

50

(K
L
2558
5 00'0
5L
ol

L7

ay,
5

,‘0
0%

F

[
LY
X .:.Q

Figure 1: Two intersecting lofted parabolas

each entire domain is created. Note that the use of range analysis is restricted to the computation
of bounding boxes, and this depends exclusively on one function at a time. The examples below
show how this algorithm performs when bounding boxes are computed with A and with AA.

5.1 Intersecting two lofted parabolas

Consider a cubic patch obtained by lofting a parabola to another parabola. More precisely, take
three points ag, a;, as in R®, and consider the quadratic Bézier curve defined by these points:

a(u) = ap(1 — u)? + 2a;u(1 — u) + asu?,
for u € [0,1]. Take three other points ¢, b1, b in R®, and the Bézier parabola defined by them:
B(u) = bo(1 — u)? + 2b1u(1 — u) + bou?,
for u € [0,1]. Now, sweep a to g linearly to obtain a surface:
Fluyv) = (1 - v)a(u) + vB(w),

for u,v € [0,1]. Lofting is a common operation in CAGD. Figure 1 shows two intersecting lofted
parabolas (skew parabolic cylinders in this case).

Because the parametrization contains several occurrences of v and 1 — u, and of v and 1 — v,
the terms are strongly correlated, and we expect AA to provide tighter bounds for f than IA. This
expectation is met: Figure 2 shows the domain decompositions built with IA and AA for computing
the intersection of the two lofted parabolas shown in Figure 1. Both cases use six levels of recursive
subdivision. In the decomposition based on IA, 5314 bounding boxes were computed and 3360
patches remained as possibly intersecting. The decomposition based on AA was approximately 3

times more efficient: 1930 bounding boxes were computed and 968 patches remained. Note how AA
exploits correlations to give much tighter approximations for the intersection, quickly discarding
large parts of both domains. With no graphics output, the AA version ran approximately 3 times
faster than the IA version. (Timings performed on a personal IBM RS6000/320 workstation with
typical load.)

5.2 Intersecting two bicubic patches

Consider now bicubic patches, the most common surface patches in CAGD. A bicubic patch is a
tensor product Bézier surface, defined by sixteen control points a;; € R® (¢, = 0..3):

f(u’ v) = Z Z aijB?(u)B?(v)’

7=0 5=0

where u,v € [0,1] and B is the i-th Bernstein polynomial of degree n:

B (t) = (”) £(1—)",

1

(The lofted parabolas in Section 5.1 are also tensor product Bézier surfaces.)

Figure 3 shows two intersecting bicubic patches. Figure 4 shows the domain decompositions
built with IA and AA for computing the intersection of these two bicubic patches. Because tensor
product parametrizations contain many occurrences of strongly correlated terms, we expect AA to
provide tighter bounds than IA. Again, this expectation is met. In the decomposition based on
IA, 8038 bounding boxes were computed and 5508 patches remained as possibly intersecting. The
decomposition based on AA was much more efficient: 1786 bounding boxes were computed and
728 patches remained. Thus, AA computed approximately 4.5 times fewer bounding boxes than
IA and generated an approximation 7.6 times more accurate. With no graphics output, the AA
version ran approximately 3.7 times faster than the IA version.

An extra subdivision with AA is sufficient to show that the intersection curve is not a loop
(Figure 5). After this extra step, a total of 3066 bounding boxes were computed and 1280 patches
remained.

5.3 Intersecting a parametric surface with an implicit surface

For hybrid modeling systems that mix parametric and implicit surfaces, a simpler intersection
algorithm exists: If one of the surfaces is given implicitly and the other parametrically, then their
intersection can be given implicitly in the domain of the parametric surface. More precisely, the
intersection of a surface given parametrically by a function f : R? — R3 with a surface given
implicitly by a function g : R®> — R is itself given implicitly in the domain of f by the function
h: R? — R, where h(u,v) = g(f(u,v)). Conversely, but trivially, an implicit planar curve given
by h(u,v) = 0 is the intersection of the surface given parametrically by the function f(u,v) =
(u, v, h(u,v)) with the plane given implicitly by z = 0.

Figure 2: Domain decompositions for intersecting two lofted parabolas using IA (top) and AA
(bottom). The patches are skew parabolic cylinders (Figure 1). Six levels of recursive subdivision
were performed. The patch on the left has control points ag = (0,0,0), a; = (1,0,1), a2 = (2,0, 0),
bp = (0,2,0),b; = (1,2,1), b2 = (2, 2,0). The patch on the right has control points ay = (0, 0, 0.55),
ay = (0,1, -0.45), a5 = (0,2,0.55), bo = (2,0,0.55), by = (2,1, —0.45), by = (2, 2, 0.55).

10

Figure 3: Two intersecting bicubic patches

Recursive decompositions methods with AA are very efficient for enumerating implicit curves
[2]. For example, take the quartic curve defined by

h(z,y) = 2* + y* + 2y — (ey)?/2 — 1/4

in the square Q@ = [-2 .. 2] X [-2 .. 2], using a 32 X 32 grid of cells. In a full enumeration, based
on a uniform decomposition of €2, 32 - 32 = 1024 cells have to be scanned, but the curve actually
enters only 66 of these cells.

Figure 6 illustrates an adaptive enumeration with IA and AA, using a recursive 2-d tree decom-
position of Q. With IA, the range of h was evaluated 847 times and 246 cells remained in the model
(i-e., could not be shown to be disjoint from the curve). With AA, the range of h was evaluated 451
times and only 70 cells remained in the model. Thus, IA generated a model with 180 useless cells
whereas AA generated a model with only 4 useless cells, even at such a relatively low resolution.

6 Conclusion

The surface intersection algorithm proposed by Gleicher and Kass [3] is robust, simple to imple-
ment, and its use of interval arithmetic is localized, making it easy to use affine arithmetic instead.
Although AA is indeed more accurate than standard IA, it is more complex and expensive. How-
ever, as shown by the examples, its higher accuracy is worth the extra cost for computing the
intersection of parametric surfaces, specially the surfaces commonly used in CAGD, because of the
many correlations present in their parametrizations. The higher accuracy of AA translates into

11

Figure 4: Domain decompositions for intersecting two bicubic patches using IA (top) and AA (bot-
tom). Six levels of recursive subdivision were performed. The patch on the left has control points
(1.4,0,0.5), (0,0,3), (3,0,3), (1.6,0,0.5), (1.4,1,0.5), (0,1,3), (3,1,3), (1.6,1,0.5), (1.4,2,0.5),
(0,2,3), (3,2,3), (1.6,2,0.5), (1.4,3,0.5), (0,3,3), (3,3,) (1 6,3,0.5). The patch on the right
has control points (0, 0, 0), (0, 3,) (,3,0), (8,0,0), (1,0,1), (0,2,1) (3,2,1), (2,0,1), (1,0,2),
(0,2,2), (8,2,2), (2,0,2), (0,0,) (0,3,3), (3,3,3), (3,0, 3) (Figure 3).

12

s
HH
if

e

i
S
S
iR
i LT 1 e | T
= PR T [[] e
i Msssimismsia | Missainssnal
EE I T 1 b
H Wi sasis ik
= PEEEEEE 1 HEH
i ‘H‘?‘H‘% t$,,
[Mi; i M [
=t mni mnic
H HHHFT H
EEE e
R T T FREH]
- [T Hee e
insinnsimim AN [
I I e
Siciiiais s MMMMEMNNiisisiii
e 11 EH|
HH
e
i
e
Fi
S EEEE
|
I
T
B
|
i
e
i
5Eiel
HHIEA 1 I
B
i
T

Figure 5: Extra subdivision with AA shows that intersection curve is not a loop

~l 1
~ T
\

Figure 6: Adaptive enumeration of quartic with IA (left) and AA (right)

13

more efficient domain decompositions, even though primitive operations in AA are more expensive
than in IA. Because of this improvement in the decompositions, there are fewer pairs of patches to
test for intersection, and the whole algorithm runs faster.

We plan to investigate other computer graphics problems that have solutions based on range
analysis which would benefit from replacing IA with AA. We expect variants based on affine arith-
metic to be more efficient, but each case requires separate investigation.

Acknowledgements. We thank Jorge Stolfi for providing advice and code for AA. Figures 1 and 3 were
generated with Geomview (software written at the Geometry Center, University of Minnesota, and available
at http://www.geom.umn.edu/software/download/geomview.html). The author holds a post-doctoral
fellowship from the Brazilian Council for Scientific and Technological Development (CNPq).

References

[1] R. E. Barnhill. Surfaces in computer-aided geometric design: A survey with new results. Computer

Aided Geometric Design, 2(1-3):1-17, 1985.

[2] L. H. de Figueiredo and J. Stolfi. Adaptive enumeration of implicit surfaces with affine arithmetic. In
Proceedings of Implicit Surfaces 95, pages 161-170, April 1995.

[3] M. Gleicher and M. Kass. An interval refinement technique for surface intersection. In Proceedings of
Graphics Interface 92, pages 242-249, May 1992.

[4] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Ellis Horwood Ltd., Chich-
ester, 1984.

[6] J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to computer graphics. In Proceedings
of VI SIBGRAPI (Brazilian Symposium on Computer Graphics and Image Processing), pages 9-18,
1990. Available at http://dcc.unicamp.br/home/staff/stolfi/EXPORT/affine-arith/.

[6] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Surface/surface intersection. Computer Aided
Geometric Design, 4(1-2):3-16, July 1987.

[7] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, 1989.

[8] A. J. Stewart. Local robustness and its applications to polyhedral intersection. International Journal
on Computational Geometry and Applications, 4(1):87-118, 1994.

[9] D. Filip, R. Magedson, and R. Markot. Surface algorithms using bounds on derivatives. Computer
Aided Geometric Design, 3(4):295-311, 1986.

[10] D. P. Mitchell. Robust ray intersection with interval arithmetic. In Proceedings of Graphics Interface
’90, pages 68-74, May 1990.

[11] K. G. Suffern and E. D. Fackerell. Interval methods in computer graphics. Computers & Graphics,
15:331-340, 1991.

[12] J. M. Snyder. Interval analysis for computer graphics. Computer Graphics (SIGGRAPH 92 Proceed-
ings), 26(2):121-130, July 1992.

[13] T. Duff. Interval arithmetic and recursive subdivision for implicit functions and constructive solid

geometry. Computer Graphics (SIGGRAPH 92 Proceedings), 26(2):131-138, July 1992.

[14] D. Kalra and A. H. Barr. Guaranteed ray intersections with implicit surfaces. Computer Graphics

(SIGGRAPH °89 Proceedings), 23(3):297-306, July 1989.

14

[15] L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1981.

[16] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. Ellis Horwood Ltd.,
Chichester, 1988.

[17] E. Hansen. Global optimization using interval analysis. Number 165 in Monographs and textbooks in
pure and applied mathematics. M. Dekker, New York, 1988.

[18] E. Hansen. A generalized interval arithmetic. In K. Nickel, editor, Interval mathematics, number 29 in
Lecture Notes in Computer Science, pages 7-18, 1975.

15

