
Surface intersection using a�ne arithmetic�

Luiz Henrique de Figueiredo

Computer Systems Group� Department of Computer Science� University of Waterloo
Waterloo� Ontario� Canada N�L �G� �lhf�csg�uwaterloo�ca�

Abstract

We describe a variant of a domain decomposition method proposed by Gleicher and Kass for
intersecting and trimming parametric surfaces� Instead of using interval arithmetic to guide the
decomposition� the variant described here uses a�ne arithmetic� a tool recently proposed for
range analysis� A�ne arithmetic is similar to standard interval arithmetic� but takes into account
correlations between operands and sub�formulas� generally providing much tighter bounds for
the computed quantities� As a consequence� the quadtree domain decompositions are much
smaller and the intersection algorithm runs faster�

keywords� surface intersection� trimming surfaces� range analysis� interval analysis� CAGD�

� Introduction

Parametric surfaces are the most popular primitives used in computer aided geometric design
�CAGD�� They are easy to approximate and render� and there is a huge literature on special classes
of surfaces suitable for shape design� such as B�ezier and splines surfaces� for which special algorithms
exist ���� However� using parametric surfaces for modeling solids in CSG systems requires e	cient
and robust methods for computing surface intersection� mainly for trimming surfaces into patches
that can be sewn together to bound complex shapes� Systems that use implicit surfaces as modeling
primitives do not su
er from this drawback� but implicit surfaces are harder to approximate ����

Several methods have been proposed for solving the important problem of computing the in�
tersection of two parametric surfaces� These methods can be classi
ed into two major classes�
continuation methods and decomposition methods� In this paper� we describe a variant of a de�
composition method proposed by Gleicher and Kass ���� Instead of using interval arithmetic to
guide the recursive domain decomposition� as they did� our variant uses a�ne arithmetic� A	ne
arithmetic is similar to standard interval arithmetic� but takes into account correlations between
operands and sub�formulas� generally providing much tighter bounds for the computed quantities�
In many computer graphics methods based on interval arithmetic� a	ne arithmetic can transpar�
ently replace interval arithmetic� Variants based on a	ne arithmetic would probably be more
e	cient� but each case requires separate investigation� This paper describes such an investigation
for the surface intersection method by Gleicher and Kass ����

�Technical report CS������� Dept� of Computer Science� U� of Waterloo� Submitted to Graphics Interface ����

�



The remainder of the paper is organized as follows� In Section �� we review some general
methods for surface intersection� The most reliable of those seems to be recursive subdivision
of parameter space based on range analysis� i�e�� on estimates for the range of values taken by a
function on subsets of its domain� Interval arithmetic is the natural technique for range analysis ����
However� as we point out in Section �� the excessive conservatism of interval arithmetic may greatly
reduce the e	ciency of the decomposition� In Section �� we brie�y describe a�ne arithmetic�
a recent technique for range analysis that generally provides much tighter bounds than interval
arithmetic ���� In Section �� we review the algorithm proposed by Gleicher and Kass ��� and give
some evidence that their algorithm can be improved by replacing interval arithmetic with a	ne
arithmetic� Section � contains some conclusions and outlines directions for future work�

� Previous work

Continuation methods� also calledmarching methods� use a local approach to the surface intersection
problem� Starting from a point known to be on both surfaces� these methods build an approximation
for the intersection curve by marching along the curve� successively computing a new point based
on the previous point �or points� ���� Continuation methods must use numerical approximations not
only for marching along the curve� but also for 
nding starting points� Since the intersection might
have several connected components� a starting point is needed on each component� Moreover� care
must be taken for handling closed components correctly� In some applications� such as trimming�
intersection curves computed with continuation methods must be somehow mapped back to the
parameter domains to de
ne trimming curves� This might be a di	cult inverse problem�

Decomposition methods� on the other hand� use a more global approach to the problem� A sim�
ple decomposition method is to build polygonal approximations for both surfaces and then intersect
the corresponding polyhedral surfaces� Although it is easy to build polygonal approximations for
parametric surfaces� such approximations need to be very 
ne to provide a good approximation for
the intersection� A naive polygonal approximation is obtained by simply subdividing the parameter
domain uniformly into many small rectangles� However� intersecting such 
ne polygonal approxi�
mation is itself a di	cult task� Even if we do not care about geometric degeneracies ��� ��� this is a
high complexity task� If there are n rectangles along each main direction in parameter space� then
there are n� faces in each polyhedron� A naive algorithm that computes the intersection of the two
polyhedra by testing every possible pair of faces has to consider ��n�� cases� most of which do not
contribute to the intersection� This algorithm is not practical because it is very expensive to re
ne
an approximation�

Adaptive decomposition methods avoid the cost of uniform decompositions by subdividing the
domain until the surface is approximately planar� In that way� the associated polygonal approxi�
mation is adapted to the local curvature of the surface� being 
ner in regions of high curvature and
coarser in regions of low curvature� where the surface is almost �at� Such methods are generally
restricted to speci
c types of surfaces� because the nature of the surface can be exploited to derive
e	cient tests for local �atness ����

The decomposition method proposed by Gleicher and Kass ��� takes a global approach for sub�
dividing the domains� using range analysis ���� Given a rectangle in each domain� they compute an
estimate for the range of values taken by the corresponding parametric function on each rectangle�

�



This estimate is a bounding box for a surface patch� i�e�� a rectangular box in �d space� aligned
with the coordinate axes� and guaranteed to contain the piece of the surface corresponding to the
given rectangle in parameter space� If two bounding boxes do not intersect� then the corresponding
surfaces patches cannot intersect� If the bounding boxes do intersect� then the surfaces patches may

intersect� In this case� the rectangles are subdivided� and the process is repeated until either the
surfaces patches are proved disjoint or a user de
ned tolerance is reached� the patches are then as�
sumed to intersect� Gleicher and Kass use interval arithmetic for computing ranges� In this paper�
we show that their method can be improved by replacing interval arithmetic with a	ne arithmetic�
a tool recently introduced for range analysis that generally produces better bounds than interval
arithmetic ����

Since decomposition methods work directly on parameter domains� no inverse problem needs to
be solved to 
nd trimming curves� On the other hand� decomposition methods compute trimming
curves in a piecewise� unstructured way� the pieces must be somehow glued together into complete
curves� In addition to the domain decomposition method for 
nding intersections with interval
arithmetic� Gleicher and Kass ��� also propose complementary algorithms for 
nding trimming
curves and triangulating the domains to de
ne trimmed surfaces� These algorithms do not depend
on range analysis and can therefore be applied to the decompositions computed by the variant
presented here� For this reason� we concentrate on showing that their algorithm can be improved
by using a	ne arithmetic instead of interval arithmetic�

� Interval arithmetic

The classical technique of interval arithmetic �IA�� also known as interval analysis� provides a
natural tool for range analysis ���� In IA� each quantity is represented by an interval of �oating�
point numbers� Those intervals are added� subtracted� multiplied� etc�� in such a way that each
computed interval is guaranteed to contain the �unknown� value of the quantity it represents�

Simple formulas are easily derived for performing the primitive arithmetic operations on inter�
vals� Interval extensions for a complicated function can be computed by composing these primitive
formulas in the same way the primitive operations are composed to compute the function itself�
In other words� any algorithm for computing a function using primitive operations can be readily
�and automatically� interpreted as an algorithm for computing an interval extension for the same
function� This is specially elegant to implement with programming languages that support operator
overloading� such as C��� Ada� Pascal�SC and Fortran���� but can be easily implemented in any
programming language� either manually or with the aid of a pre�compiler� Since it is also relatively
easy to provide interval extensions for elementary transcendental functions such as sin� cos� log� and
exp� the class of functions for which interval extensions can be easily �and automatically� computed
is much larger than the class of rational polynomial functions�

Several methods based on IA have recently been proposed for solving a number of fundamental
problems in computer graphics� including ray tracing ���� and approximation of implicit surfaces
���� ��� ���� Those methods have become quite popular� due to their ability to handle arbitrarily
complex non�polynomial surfaces� and their immunity to round�o
 errors�

Previously� methods based on Lipschitz conditions �global bounds on derivatives� appeared to
be promising for computer graphics applications ��� ���� However� computing Lipschitz bounds is

�



a non�trivial mathematical problem that did not seem to have an automatic solution� Methods
using range analysis seem to be more popular now in computer graphics� specially because range
analysis can be automated �typically with IA� ���� In particular� Lipschitz bounds can be computed
using automatic di
erentiation and interval arithmetic ����� Global optimization� which includes
computing Lipschitz bounds as a special case� has recently been shown to be feasible with range
analysis ���� ���� However� global optimization with range analysis has barely been explored in
computer graphics �����

The main weakness of IA is that it tends to be too conservative� the computed interval for a
quantity may be much wider than the true range of that quantity� often to the point of useless�
ness� This over�conservatism is mainly due to the assumption that the �unknown� values of the
arguments to primitive operations may vary independently over the given interval� If there are
any mathematical constraints between these arguments� then not all combinations of values in the
corresponding intervals will be valid� As a consequence� the result interval computed by IA may
be much wider than the true range of the result quantity� This is sometimes called the dependency
problem in IA�

As an example of how dependencies are overlooked in IA� consider evaluating x���� x�� where
x is known to lie in the interval �x � �� �� ��� Applying the IA formulas blindly� we get�

�x � �� �� ��

��� �x � ��� �� ���� �� �� �� � �� �� ��

�x���� �x� � �� �� �� � �� �� �� � ��� �� ����

which is �� times wider than the true range of the expression x����x� over �� �� ��� namely ��� �� ����
The large discrepancy between the two intervals is due to the inverse relation between the quantities
x and ��� x� which is not known to the IA multiplication algorithm� Inverse relations such as this
are common in curve and surface parametrizations used in CAGD� as the examples in Section �
show�

The over�conservatism of IA is particularly bad in long computation chains� where the intervals
computed by one stage of the chain are the inputs to the following stage� In such cases� one often
observes an �error explosion�� as the evaluation advances down the chain� the relative accuracy
of the computed intervals decreases exponentially� and they soon become too wide to be useful�
by many orders of magnitude� Unfortunately� long computations chains are not uncommon in
computer graphics applications�

� A�ne arithmetic

A	ne arithmetic �AA� is a model for numerical computation recently proposed to address the
�error explosion� problem in IA ���� Like IA� a	ne arithmetic keeps track automatically of the
round�o
 and truncation errors a
ecting each computed quantity� Unlike IA� however� AA keeps
track of correlations between those quantities� This extra information allows AA to provide much
tighter range estimates than IA� especially in long computation chains�

The key feature of AA is an extended encoding of quantities from which one can determine� in
addition to their ranges� also certain relationships to other quantities � such as the ones existing

�



between x and ��� x in the example in Section �� Speci
cally� a partially unknown quantity x is
represented in AA by an a�ne form  x� which is a 
rst�degree polynomial�

 x � x� � x��� � x��� � � � �� xn�n�

Here� the xi are known real coe	cients �stored as �oating�point numbers�� and the �i are symbolic
variables� called noise symbols� whose values are unknown but assumed to lie in the interval U �
��� �� ���� Noise symbols stand for independent sources of error or uncertainty that contribute to
the total uncertainty of the quantity x� the coe	cient xi gives the magnitude of that contribution
for the source �i�

The main bene
t of encoding quantities with a	ne forms instead of intervals is that the same
noise symbol �i may contribute to the uncertainty of two or more quantities �inputs� outputs� or
intermediate results� arising in the evaluation of an expression� The sharing of a noise symbol
�i by two a	ne forms  x�  y indicates a partial dependency between the underlying quantities x�
y� The magnitude and sign of the dependency is determined by the corresponding coe	cients xi�
yi� Taking such correlations into account allows better range estimates to be computed �see the
example at the end of this section��

Other approaches to the dependency problem in IA include centered forms ��� and Hansen!s
generalized interval arithmetic ����� in which quantities are represented by a	ne combinations of a
�xed number of intervals� As we shall see below� new noise symbols are dynamically created during
a long computation with AA�

As one may expect� a	ne arithmetic is more complex and expensive than ordinary interval
arithmetic� However� its higher accuracy is worth the extra cost in many computer graphics appli�
cations� including adaptive enumeration of implicit objects ��� and computing the intersection of
parametric surfaces� as we show in Section ��

The use of AA for range analysis is simple� First convert all input intervals to a	ne forms�
Then� operate on these a	ne forms with AA to compute the desired function� Finally� convert the
result back into an interval�

The conversion steps are simple� Given an interval �x � �a �� b� representing some quantity x�
an equivalent a	ne form for the same quantity is given by  x � x� � xk�k � where

x� �
b� a

�
and xk �

b� a

�
�

Since input intervals are assumed to be unrelated� because they usually represent independent
variables� a new noise symbol �k must be used for each input interval�

Conversely� the value of a quantity represented by an a	ne form  x � x� � x��� � � � �� xn�n is
guaranteed to be in the interval

� x� � �x� � � �� x� � ��� where � � k xk ��
nX

i��

jxij �

Note that � x� is the smallest interval that contains all possible values of  x� assuming that each �i
ranges independently over the interval U � ��� �� ����

�



Computing with a�ne arithmetic

To evaluate a formula in AA� we must replace each of its elementary operations z � f�x� y� on
real numbers by an equivalent operation  z �  f� x�  y� on a	ne forms� where  f is a procedure that
computes an a	ne form for z � f�x� y� that is consistent with  x�  y�

When f is an a	ne function of x� y� the value  z can be expressed exactly as an a	ne combination
of the noise symbols �i� More precisely� if

 x � x� � x��� � � � �� xn�n

 y � y� � y��� � � � �� yn�n�

and � � R� then

 x�  y � �x� � y�� � �x� � y���� � � � �� �xn � yn��n

� x � ��x�� � ��x���� � � � �� ��xn��n

 x� � � �x� � �� � x��� � � � �� xn�n�

Note that� according to those formulas� the di
erence  x �  x between an a	ne form and itself is
identically zero� In this case� the fact that the two operands share the same noise symbols with
the same coe	cients reveals that they are actually the same quantity� and not just two quantities
that happen to have the same range of possible values� Thanks to this feature� in AA we also have
� x�  y��  x �  y� �� x��  x � � x� and so on� Such properties are not valid in IA� and are one source
of error explosion�

When f is not an a	ne operation� the value  z cannot be expressed exactly as an a	ne combi�
nation of the �i� In that case� we pick the best a	ne approximation to f �best in the Chebyshev
sense of minimizing the maximum error�� and then append an extra term zk�k to represent the
error introduced by this approximation�

 z � z� � z��� � � � �� zn�n � zk�k�

Here� �k must be a brand new noise symbol �i�e�� distinct from all other noise symbols in the
same computation� and zk must be an upper bound for the approximation error� Note that�
unlike Hansen!s generalized interval arithmetic� new noise symbols are created during a long AA
computation� They account for extra sources of uncertainty introduced during the computation�
such as approximation errors and round�o
 errors�

Using this approach� formulas can be derived for all elementary operations and functions� both
algebraic and transcendental� For example� the multiplication of two a	ne forms  x�  y is given by

z� � x�y�

zi � x�yi � y�xi �i � ���n�

zk � k xk k yk�

Like Lipschitz bounds� Chebyshev approximations must be computed by hand� Unlike Lipschitz
bounds� however� Chebyshev approximations need to be found only for primitive functions because
AA formulas for primitive functions can be automatically combined into formulas for arbitrarily

�



complex functions� This is also true of IA� and IA formulas for primitive functions are usually
easier to 
nd than Chebyshev approximations�

To see how AA handles the dependency problem� consider again evaluating z � x���� x�� for
x in the interval �� �� ��� but now using AA instead of IA�

 x � � � ���

���  x � �� ���

 z �  x����  x� � �� � ��� � ���

� z� � ���� � �� �� � �� � ��� �� ����

Observe that the in�uence of the noise symbol �� in the factors happened to cancel out �to 
rst
order� in the product� Note also that the range of  z is much closer to ��� �� ���� the true range of z�
and much better than the IA estimate� ��� �� ����

� Examples

In this section� we show some examples of how the algorithm by Gleicher and Kass ��� can be
improved by using AA instead of IA� Recall that this algorithm is a domain decomposition algorithm
that uses range analysis to decide whether two surfaces patches intersect� If the bounding box
estimates provided by range analysis for the patches do not intersect� then the patches cannot
intersect� If the bounding boxes do intersect� then the surfaces patches may intersect� and the
corresponding rectangles in the domains are subdivided into four equal pieces and further tested�
In this way� a quadtree decomposition is built for each domain� For e	ciency� Gleicher and Kass
keep track of all pairs of patches that might intersect� each leaf node in one quadtree contains a
list of leaf nodes in the other quadtree that it overlaps� This list is re
ned and distributed to its
children when a node is subdivided� The main step in the algorithm is the subdivision of a leaf
node ����

subdivide�n��
if n�s overlap list is not empty

subdivide n into four children
for each i in n�s overlap list

remove n from i�s overlap list
for each child c of n

if c overlaps i
add i to c�s list
add c to i�s list

Gleicher and Kass ��� remark that the subdivision step can be applied in several di
erent orders�
They actually combine depth�
rst search with breadth�
rst search to control the size and accuracy
of the sampling of the intersection curve� Our simple implementation uses only breadth�
rst search�
by enqueueing new nodes as they are created and then subdividing a node from the queue at a time�
For e	ciency� a bounding box for a node is computed exactly once� when the node is created� This
happens in each subdivision� when four nodes are created� and also at startup� when one node for

�



Figure �� Two intersecting lofted parabolas

each entire domain is created� Note that the use of range analysis is restricted to the computation
of bounding boxes� and this depends exclusively on one function at a time� The examples below
show how this algorithm performs when bounding boxes are computed with IA and with AA�

��� Intersecting two lofted parabolas

Consider a cubic patch obtained by lofting a parabola to another parabola� More precisely� take
three points a�� a�� a� in R�� and consider the quadratic B�ezier curve de
ned by these points�

��u� � a���� u�� � �a�u��� u� � a�u
��

for u � ��� ��� Take three other points b�� b�� b� in R�� and the B�ezier parabola de
ned by them�

��u� � b���� u�� � �b�u��� u� � b�u
��

for u � ��� ��� Now� sweep � to � linearly to obtain a surface�

f�u� v� � ��� v���u� � v��u��

for u� v � ��� ��� Lofting is a common operation in CAGD� Figure � shows two intersecting lofted
parabolas �skew parabolic cylinders in this case��

Because the parametrization contains several occurrences of u and � � u� and of v and � � v�
the terms are strongly correlated� and we expect AA to provide tighter bounds for f than IA� This
expectation is met� Figure � shows the domain decompositions built with IA and AA for computing
the intersection of the two lofted parabolas shown in Figure �� Both cases use six levels of recursive
subdivision� In the decomposition based on IA� ���� bounding boxes were computed and ����
patches remained as possibly intersecting� The decomposition based on AA was approximately �

�



times more e	cient� ���� bounding boxes were computed and ��� patches remained� Note how AA
exploits correlations to give much tighter approximations for the intersection� quickly discarding
large parts of both domains� With no graphics output� the AA version ran approximately � times
faster than the IA version� �Timings performed on a personal IBM RS����"��� workstation with
typical load��

��� Intersecting two bicubic patches

Consider now bicubic patches� the most common surface patches in CAGD� A bicubic patch is a
tensor product B�ezier surface� de
ned by sixteen control points aij � R

� �i� j � ������

f�u� v� �
�X

i��

�X
j��

aijB
�

i �u�B
�

j �v��

where u� v � ��� �� and Bn
i is the i�th Bernstein polynomial of degree n�

Bn
i �t� �

�
n

i

�
ti��� t�n�i�

�The lofted parabolas in Section ��� are also tensor product B�ezier surfaces��
Figure � shows two intersecting bicubic patches� Figure � shows the domain decompositions

built with IA and AA for computing the intersection of these two bicubic patches� Because tensor
product parametrizations contain many occurrences of strongly correlated terms� we expect AA to
provide tighter bounds than IA� Again� this expectation is met� In the decomposition based on
IA� ���� bounding boxes were computed and ���� patches remained as possibly intersecting� The
decomposition based on AA was much more e	cient� ���� bounding boxes were computed and
��� patches remained� Thus� AA computed approximately ��� times fewer bounding boxes than
IA and generated an approximation ��� times more accurate� With no graphics output� the AA
version ran approximately ��� times faster than the IA version�

An extra subdivision with AA is su	cient to show that the intersection curve is not a loop
�Figure ��� After this extra step� a total of ���� bounding boxes were computed and ���� patches
remained�

��� Intersecting a parametric surface with an implicit surface

For hybrid modeling systems that mix parametric and implicit surfaces� a simpler intersection
algorithm exists� If one of the surfaces is given implicitly and the other parametrically� then their
intersection can be given implicitly in the domain of the parametric surface� More precisely� the
intersection of a surface given parametrically by a function f � R� � R

� with a surface given
implicitly by a function g � R� � R is itself given implicitly in the domain of f by the function
h � R� � R� where h�u� v� � g�f�u� v��� Conversely� but trivially� an implicit planar curve given
by h�u� v� � � is the intersection of the surface given parametrically by the function f�u� v� �
�u� v� h�u� v�� with the plane given implicitly by z � ��

�



Figure �� Domain decompositions for intersecting two lofted parabolas using IA �top� and AA
�bottom�� The patches are skew parabolic cylinders �Figure ��� Six levels of recursive subdivision
were performed� The patch on the left has control points a� � ��� �� ��� a� � ��� �� ��� a� � ��� �� ���
b� � ��� �� ��� b� � ��� �� ��� b� � ��� �� ��� The patch on the right has control points a� � ��� �� ������
a� � ��� ��������� a� � ��� �� ������ b� � ��� �� ������ b� � ��� ��������� b� � ��� �� ������

��



Figure �� Two intersecting bicubic patches

Recursive decompositions methods with AA are very e	cient for enumerating implicit curves
���� For example� take the quartic curve de
ned by

h�x� y� � x� � y� � xy � �xy����� ���

in the square # � ��� �� ��� ��� �� ��� using a �� � �� grid of cells� In a full enumeration� based
on a uniform decomposition of #� �� � �� � ���� cells have to be scanned� but the curve actually
enters only �� of these cells�

Figure � illustrates an adaptive enumeration with IA and AA� using a recursive ��d tree decom�
position of #� With IA� the range of h was evaluated ��� times and ��� cells remained in the model
�i�e�� could not be shown to be disjoint from the curve�� With AA� the range of h was evaluated ���
times and only �� cells remained in the model� Thus� IA generated a model with ��� useless cells
whereas AA generated a model with only � useless cells� even at such a relatively low resolution�

� Conclusion

The surface intersection algorithm proposed by Gleicher and Kass ��� is robust� simple to imple�
ment� and its use of interval arithmetic is localized� making it easy to use a	ne arithmetic instead�
Although AA is indeed more accurate than standard IA� it is more complex and expensive� How�
ever� as shown by the examples� its higher accuracy is worth the extra cost for computing the
intersection of parametric surfaces� specially the surfaces commonly used in CAGD� because of the
many correlations present in their parametrizations� The higher accuracy of AA translates into

��



Figure �� Domain decompositions for intersecting two bicubic patches using IA �top� and AA �bot�
tom�� Six levels of recursive subdivision were performed� The patch on the left has control points
����� �� ����� ��� �� ��� ��� �� ��� ����� �� ����� ����� �� ����� ��� �� ��� ��� �� ��� ����� �� ����� ����� �� �����
��� �� ��� ��� �� ��� ����� �� ����� ����� �� ����� ��� �� ��� ��� �� ��� ����� �� ����� The patch on the right
has control points ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ���
��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� �� �Figure ���

��



Figure �� Extra subdivision with AA shows that intersection curve is not a loop

Figure �� Adaptive enumeration of quartic with IA �left� and AA �right�

��



more e	cient domain decompositions� even though primitive operations in AA are more expensive
than in IA� Because of this improvement in the decompositions� there are fewer pairs of patches to
test for intersection� and the whole algorithm runs faster�

We plan to investigate other computer graphics problems that have solutions based on range
analysis which would bene
t from replacing IA with AA� We expect variants based on a	ne arith�
metic to be more e	cient� but each case requires separate investigation�

Acknowledgements� We thank Jorge Stol� for providing advice and code for AA� Figures � and � were
generated with Geomview �software written at the Geometry Center� University of Minnesota� and available
at http���www�geom�umn�edu�software�download�geomview�html	� The author holds a post�doctoral
fellowship from the Brazilian Council for Scienti�c and Technological Development �CNPq	�

References


�� R� E� Barnhill� Surfaces in computer�aided geometric design� A survey with new results� Computer
Aided Geometric Design� 
����	������ �����



� L� H� de Figueiredo and J� Stol�� Adaptive enumeration of implicit surfaces with a�ne arithmetic� In
Proceedings of Implicit Surfaces ���� pages �������� April �����


�� M� Gleicher and M� Kass� An interval re�nement technique for surface intersection� In Proceedings of
Graphics Interface ���� pages 
�
�
��� May ���
�


�� H� Ratschek and J� Rokne� Computer Methods for the Range of Functions� Ellis Horwood Ltd�� Chich�
ester� �����


�� J� L� D� Comba and J� Stol�� A�ne arithmetic and its applications to computer graphics� In Proceedings
of VI SIBGRAPI �Brazilian Symposium on Computer Graphics and Image Processing�� pages �����
����� Available at http���dcc�unicamp�br�home�staff�stolfi�EXPORT�affine�arith��


�� R� E� Barnhill� G� Farin� M� Jordan� and B� R� Piper� Surface�surface intersection� Computer Aided
Geometric Design� ����
	������ July �����


�� C� M� Ho�mann� Geometric and Solid Modeling� An Introduction� Morgan Kaufmann� �����


�� A� J� Stewart� Local robustness and its applications to polyhedral intersection� International Journal
on Computational Geometry and Applications� ���	�������� �����


�� D� Filip� R� Magedson� and R� Markot� Surface algorithms using bounds on derivatives� Computer
Aided Geometric Design� ���	�
������� �����


��� D� P� Mitchell� Robust ray intersection with interval arithmetic� In Proceedings of Graphics Interface
���� pages ������ May �����


��� K� G� Su�ern and E� D� Fackerell� Interval methods in computer graphics� Computers 	 Graphics�
����������� �����


�
� J� M� Snyder� Interval analysis for computer graphics� Computer Graphics �SIGGRAPH ��� Proceed

ings�� 
��
	��
������ July ���
�


��� T� Du�� Interval arithmetic and recursive subdivision for implicit functions and constructive solid
geometry� Computer Graphics �SIGGRAPH ��� Proceedings�� 
��
	��������� July ���
�


��� D� Kalra and A� H� Barr� Guaranteed ray intersections with implicit surfaces� Computer Graphics
�SIGGRAPH ��� Proceedings�� 
���	�
������� July �����

��




��� L� B� Rall� Automatic Di�erentiation� Techniques and Applications� volume �
� of Lecture Notes in
Computer Science� Springer Verlag� Berlin� �����


��� H� Ratschek and J� Rokne� New Computer Methods for Global Optimization� Ellis Horwood Ltd��
Chichester� �����


��� E� Hansen� Global optimization using interval analysis� Number ��� in Monographs and textbooks in
pure and applied mathematics� M� Dekker� New York� �����


��� E� Hansen� A generalized interval arithmetic� In K� Nickel� editor� Interval mathematics� number 
� in
Lecture Notes in Computer Science� pages ����� �����

��


