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Abstract

This report deals with techniques for minimal space representation of a subset of
elements from a bounded universe so that various types of searches can be performed in
constant time� In particular� we introduce a data structure to represent a subset of N
elements of ��� � � � �M��� in a number of bits close to the information	theoretic minimum
and use the structure to answer membership queries in constant time� Next� we describe
a representation of an arbitrary subset of points on an M �M grid such that closest
neighbour queries 
under L� and L�� can be performed in constant time� This structure
requires M�� o
M�� bits� Finally� under a byte overlap model of memory we present an
M � o
M� bit� constant time solution to the dynamic one	dimensional closest neighbour
problem 
hence� also union	split	
nd and priority queue problems� on ��� � � � �M � ���
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Introduction

Zrno na zrno � poga�ca�
kamen na kamen � pala�ca�

slovenski pregovor

A grain on a grain � a cake�
a stone on a stone � a castle�

Slovene proverb
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� CHAPTER �� INTRODUCTION

The number of data items computers deal with continues to increase rapidly� This
is made possible by the increasing size of memory on the typical computer� Demand�
however� continues to outpace physical capacity� In principle one could add disk space as
needed� but in practice this is not always possible� For example� if we want to produce a
product on CD	ROM� we are limited by the size of a disk� as requiring a user to repeatedly
change disks has a catastrophic e�ect on performance�

The most natural approach to overcoming this problem is to �compress� the data
by some standard method� However� such compressions� because of complex internal
structure� usually increase the operation time dramatically� Returning to our CD	ROM
example� �� instead of � or � accesses to the disk� because of the format of the compressed
data� can be prohibitively time consuming�

In this thesis we develop techniques that not only store data succinctly� but also
permit basic operations to be performed quickly� The common thrust of all techniques
presented here is their concern with the individual bits of the representation� E�cient
encoding at the bit level permits us to decrease not only space requirements� but also the
time bounds for the complete data structure � because we handle small stones better� the
whole castle is in a better shape�

As a case study we use several simple data types� First� we study a simple membership
problem in which the only operation is to determine whether a query value is a member
of a subset of an underlying 
nite universe� Later� we extend the study to 
nding the
closest element in the structure to a query point�

��� Organization and Guide for the Reader

This and the following chapter contain introductory material� The results of the thesis are
presented in Chapters � through �� Chapter � provides a brief summary and conclusions�

Chapter � presents the notation� several machine models� and how these models in	
terrelate� Most of the material is fairly standard and is included primarily for the sake
of completeness and to provide the reader with a self contained document� Lists of all
terms that are de
ned and all notation that is used are given in Appendices A and B�
respectively�

In Chapter � we focus on the problem of representing an arbitrary subset of size N
chosen from a universe of size M � The method given permits constant time searches in a
representation of size close to the information	theoretic lower bound� The result is then
extended to the dynamic version of the problem�

Chapter � presents some preparatory results for the following two chapters� In par	
ticular this chapter contains a number of algorithms for manipulating individual words
to perform tasks such as searching for extremal set bits in various forms of registers�



���� ORGANIZATION AND GUIDE FOR THE READER �

Chapter � deals with the problem of succinctly representing a subset of a 
nite grid
so that the closest element to a query point can be found in constant time� Chapter � is
concerned with the dynamic version of this problem in one dimension�





Chapter �

The Name of the Game

The beginning of wisdom is to name
things by their right name�

Chinese wisdom

�



� CHAPTER �� THE NAME OF THE GAME

Models of computation help us to better understand the complexity of problems and
to better describe classes of algorithms� The most popular and widely accepted models in
computer science� in increasing order of power� are 
nite automata� pushdown machines�
and Turing machines 
for further references cf� ���� ��� ��� ���� ������

The third model� the Turing machine� has been proven to be equal in power to a
number of other models 
cf� ���� ��� ��� ����� though the equivalence usually introduces a
non	constant� but polynomial� factor in a run time 
cf� ������ The model used throughout
this thesis is a random access machine 
RAM� which is presented in x ���� The model is
further generalized in x ��� and in x ���� Before discussing these models we 
rst introduce
some common mathematical notation and de
nitions also used in this work�

��� Notations and De�nitions

To establish asymptotic bounds� the following standard notation is used 
cf� ���� ��� ������

De
nition ��� Let f
n� and g
n� be two non�negative functions� Then�

	 g
n� � o
f
n�� 
� �� � �� 
n� � � � �n � n�� g
n�� �f
n�

	 g
n� � O
f
n�� 
� 
� � �� 
n� � � � �n � n�� g
n� � �f
n�

	 g
n� � �
f
n�� 
� 
� � �� 
n� � � � �n � n�� g
n� � �f
n�

	 g
n� � �
f
n�� 
� �� � �� 
n� � � � �n � n�� g
n� � �f
n�

	 g
n� �  
f
n�� 
� g
n� � O
f
n��� g
n� � �
f
n��

De
nition ��� Let � log�� denote the logarithm with base �� then the function � log
�i�
� �

is the so called iterated logarithm de	ned as 
cf� ��
� p�����

log
�i�
� x �

�
log� x if i � �

log� log
�i���
� x otherwise

�

Function �log��� is de
ned as the minimal number of iterations of a logarithm function
such that the result is at most �

log�� x � min
i

�
log

�i�
� x � �

�
� 
����

We use lg x to denote log� x and lnx for loge x�

De
nition ��� Let A denote Ackermann�s function 
cf� ��
� p�
����



���� THE SPIRIT AND THE BODY OF A COMPUTATION �

	 A
�� j� � �j for j � �
	 A
i� �� � A
i� �� �� for i � �
	 A
i� j� � A
i� �� A
i� j� ��� for i� j � �

then its functional inverse is de	ned as

	
m�n� � min
i��

�
A
�
i�
jm
n

k�
� lgn

�
�

��� The Spirit and the Body of a Computation

Kolmogorov and Uspensky in ���� ��� based their de
nition of an algorithm on the notion
of state� A distinguished part of each state is its active part and the transformation to the
following state depends solely on the information contained in that part� In particular�
the active part consists of variables and relations among them that de
ne the next step
of the algorithm� This notion is similar to that of Turing machines 
������ in which the

nite control and data in the cell currently under a read head determine the next move�
However� there is a major di�erence between the two models� Kolmogorov and Uspensky
allow nodes of the graph to be connected arbitrarily� Therefore� the advantage of their
model is a concept of locality of data and clearer representation of variables � i�e� the
issue of random access�

The algorithm� in a sense� represents the �spirit� while the computer represents the
�body� of a computation� To describe building blocks of computer models considered in
this work we use a common taxonomy� shown in Figure ���� The taxonomy is similar to
the one mentioned by Akl in ��� and consists of�

	 an active block 
processor��
	 a passive block 
memory� storage�� and
	 a communication channel 
the path between processor and memory��

This is also a taxonomy of a so called cell probe model introduced by Yao in ����� and
later extended by Fredman in Saks in ���� 
see also ���� ����� Under this model time is
measured by the number of probes to memory�

The active block of all models we consider can perform a constant number of di�erent
h	bit operations� each of which takes unit time� and has a constant sized internal memory
� i�e� a 
xed number of h	bit arithmetic registers� Thus� if we de
ne the capacity of a
communication channel to be k bits� we can measure the time in the model as

! of operations � bits per operation
capacity of channel

� ! of operations � h
k
� number of probes � 
����
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block

passiveactive

block
communication channel

Figure ���� Taxonomy of computer models�

This is the same measure as in a cell probe model� Moreover� in most cases k �  
m�
and h �  
m� where m is a size of a word 
memory register� and will be de
ned later�
On the other hand� the organization and accessibility of a passive block varies among the
models� In fact� the di�erences in organization of the passive block are the key issue in
this work�

��� The Random Access Machine

We use the random access machine 
cf� ���� p����� ��� pp��	����� as an idealized model of a
von Neumann computer� In this model the static block consists of an unbounded number
of memory registers labeled by non	negative integers� while the active block can perform
the usual arithmetic operations 
addition and subtraction�� and comparison operations�
compute addresses of memory registers� and move data between the registers��

The computational power of a random access machine is the same as that of a pointer
machine 
������ or Turing machine� However� as shown by Ben	Amram and Galil in �����
a step by step emulation of a random access machine by a pointer machine can introduce
a logarithmic slow	down factor which is matched by balanced trees 
e�g� ��� �� ��� ��� ���
������

The logarithmic factor occurs only when dealing with so called incompressible data
types which are de
ned analogously to incompressible strings in theory of Kolmogorov
complexity 
cf� ���� ��� ����� On the other hand� Ben	Amram and Galil in the same work
also proved the upper bound O
t	
s�� for dealing with compressible data types 
t is time
spent by random access machine and s the size of its data structure�� They show this
by emulating a random access machine with many registers by a random access machine
with a single register� However� their instruction set includes additional instructions such
as integer multiplication and division�� This brings us to the next model�

�Neither integer multiplication nor division are included in this model�

�Shifting of the register is just a special case of multiplication or division by a power of ��



���� ASSOCIATIVE MEMORY �

����� Putting More Muscles on the Body

The main advantage of the cell probe model is its ability to do any operation on m bits in
one unit of time 
cf� uniform cost criterion ��� ����� This notion is useful when considering
lower bounds� but when we design an algorithm we have to 
x the instruction set � the
instruction set heavily in�uences the power of the machine model 
cf� ���� ��� ������

For example� consider a subset of N elements from a universe of size M and store
them in a table of O
N� registers� For a model which includes integer division and
multiplication� Fredman� Koml"os and Szemer"edi in ���� present a solution which permits
a constant access time� On the other hand for the instruction set lacking these two
operations Miltersen and Fich in ���� show a �
logN� lower bound�

In ���� van Emde Boas discusses two particular random access machine models�
MRAM and MBRAM� The former is a random access machine with integer multipli	
cation� and the latter is an MRAM with bitwise Boolean operations 
cf� ������ Moreover�
if we allow exponentially large registers and width of communication channel� one can
use the MBRAM as the parallel processing model PRAM 
cf� ���� ��� ����� � MBRAM
is considered a member of a second machine class 
���� p����� Such a model misses the
notion of a serial processing computer and hence we restrict the register size to m bits�
The value of m is likely to be �� or �� on processors available today 
cf� ������

��� Associative Memory

In theoretical computer science� machines with associative memory� or �content address	
able memory�� are not usually considered� However� to avoid certain problems later in
the de
nition of a general model� we brie�y touch on them here� The notion of associative
memory we use is primarily due to Potter 
����� see also ���� or the whole issue �����

In terms of our taxonomy 
Figure ����� the interesting aspect is the static block� It
consists of unlabeled 
i�e� without addresses� memory locations which are accessed in two
steps� In the 
rst step a number of locations are tagged using mask and data registers� and
in the second step all tagged locations are either modi
ed or the content of an arbitrary
such location is sent through the communication channel 
cf� ������

The emulation of a random access machine by an associative memory machine is
straightforward� a register� a� containing a datum� d� in a random access machine is stored
as a pair� 
a� d�� in the associative memory� and there is no time loss in the emulation�

The problems arise with the inverse emulation� A machine with an associative memory
can change its entire memory in a couple of steps� This is not possible on a random
access machines� Hence� the worst case delay in a step	by	step emulation is as large as
the memory� We consider this possibility of changing the entire memory in a constant
number of steps to be unrealistic and thus undesirable under the general model of serial
computation� Therefore� we explicitly forbid such a possibility�
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��� The Extended Random Access Machine� ERAM

Our de
nition of a general model of computation to be used in this work is based on the
taxonomy from Figure ��� and is derived from the de
nition of a random access machine�
We want to bound the amount of information the active block can handle at a time and
do this in two ways� 
rst we limit the size of a register and the width of a communication
channel to m bits 
cf� x ������� and second we permit only m bits of a passive block to be
changed at a time 
cf� x �����
De
nition ��� The extended random access machine� ERAM� consists of 
cf� Fig�
ure �����

	 an active block� which performs the following augmented set of unit�time operations
on b�bit arithmetic registers 
b �  
m���

� comparisons�

� branching 
conditional and unconditional��

� integer arithmetic 
addition� subtraction� multiplication� and division�� and

� bitwise Boolean operations 
conjunction� disjunction� and negation��

	 a passive block� which consists of bounded� m�bit memory registers each of which
is accessible by the active block� and

	 a communication channel� which transports data between the active and the passive
block and is m bits wide�

The transportation ofm bits of data through the communication channel is called a probe�
A single probe in�uences at most one memory register � it can change at most m bits in
a passive block�

Since widths of the channel and the memory registers are the same in the model� we can
measure time� as mentioned in eq� 
����� by the number of probes 
cf� cell probe model in
���� ������ Further� the only di�erence between the aforementioned MBRAM and ERAM
is that ERAM has memory registers of a bounded width�

The notion of a memory register in De
nition ��� is vague in the sense that it only
says that predetermined aggregates of bits are somehow accessible� We will explore this
notion further in x ���� However� in most of the thesis� we assume that passive block
consists of a linear array of non	overlapping m	bit memory registers�

Finally� the bound on the register size and on the width of the transportation channel
inherently limits the size of the set of all possible objects� If a model can transport m
bits at a time� it is reasonable to assume that the set of all possible objects is no larger
than �m� More precisely� we assume that the model can handle at least one and at most
m objects at a time� This brings us to the notion of a bounded universe used throughout
the thesis�
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De
nition ��� The set of di�erent objects or universe M � f�� �� � � � �M � �g has size
M � �m� where m is the width of transportation channel and the size of memory registers�

��	 The Random Access Machine with Bytes Overlapping�

RAMBO

By De
nition ���� the passive block consists of a set of m	bit memory registers which
can be accessed by the active block� So far we have assumed that the individual bits

not their values�� appearing in registers are distinct� We now drop this assumption and
permit registers to share bits� In other words� a bit can now appear simultaneously in
several registers� and so the update of a register will also change the contents of those
registers which share bits with the updated register� As Fredman and Willard put it in
����� we speak of overlapping of registers 
bytes� and so of a �random access memory
with bytes overlapping� or RAMBO� Such memory would appear quite implementable in
practice 
������� We feel this has not been done because it has not been shown to give
signi
cantly faster solutions to important problems�

When the overlapping of registers is prede
ned� it is an attribute of a passive block�
we speak of an implicit RAMBO� Conversely� when the active block can explicitly de
ne
the overlapping and hence the overlapping can be changed during the execution of a
program� we speak of an explicit RAMBO� To illustrate the di�erence between these
versions of RAMBO and regular RAM� we investigate in each model the in�uence of the
same operation on passive blocks 
memories� with the identical initial content�

Example ���� Let the memories consist of eight three	bit registers 
m � �� with
the initial content shown in Figure ���� and let reg�i� denote the ith register� The
operation we consider is write �� 	


	 which sets all bits in register reg��� to ����
reg����b����
 
� reg����b�
��
 
 and reg����b����
 
� The result of this operation
on the usual RAM is shown in the 
rst diagram of Figure ��� with the updated bits boxed�

register b��� b��� b���

� � � �
� � � �
� � � �

� � � �

register b��� b��� b���

� � � �
� � � �
� � � �
� � � �

Figure ���� Initial content of a memory�

In a RAMBO machine model� the same bit can appear in di�erent registers� We
model this by appearance sets �
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register b��� b��� b���

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

register b��� b��� b���

� � � �

� � � � �

� � � � � �

� � � � � � �

� � � � � �

� � � � �

� � � �
� � � �

Figure ���� Di�erence between updated memory contents of the usual RAM and implicit

RAMBO�

De
nition ��� B� the appearance set of a bit� consists of locations of a single bit in
the memory registers � B essentially is this bit��

Thus� using the three	bit	register memory as above we de
ne the implicit RAMBO
with the following appearance sets�

Bi � freg�
i� j� mod �m��b�j� j j � �� � � � � � m� �g 
����

where i � �� �� � � � � m� �� That is� bit Bi appears as reg�i�j MOD �m��b�j� simultane	
ously for all � � j � m 
e�g� B� � freg����b���� reg����b���� reg����b���g� etc��� On
this RAMBO we apply the same operation� write �� 	


	� which now assigns value �
to appearance sets B�� B�� and B�� The result of the operation is shown in the second
diagram of Figure ���� with updated bits boxed and subscripted with their respective
appearance sets� EF

The memory of an explicit RAMBO is also de
ned using appearance sets� However�
in this case contents of appearance sets can change dynamically during the execution of
the program� This brings us to the formal de
nition of RAMBO�

De
nition ��	 The random access machine memory model with bytes overlap�

ping� RAMBO� has the same active block and the communication channel as ERAM
from De	nition ��
� However� its passive block consists of bits each of which appears one
or more times in m�bit memory registers� The appearances of individual bits are speci	ed
by their respective appearance sets� The appearance sets are formed either statically� in
the implicit RAMBO� or dynamically� in the explicit RAMBO�

Note that a RAMBO� whose appearance sets each contain a single element� is an ERAM�

�We freely interchange bits and their appearance sets when this does not introduce an ambiguity�
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A more �data	structure	�avored� description of a RAMBO#s passive block is given
by modeling appearance sets as vertices of a directed graph� The vertices 
bits� are
connected by multiple labeled directed edges representing registers� More precisely� if
reg�i��b�j� � Bk and reg�i��b�j�
� � Bl� then the graph has the edge 
Bk�Bl� la	
beled i� Therefore� any operation on register reg�i� a�ects m consecutive nodes 
bits�
connected by the edges labeled i� For example� the directed graph in Figure ��� repre	
sents the passive block of the implicit RAMBO from Example ���� The shaded area in
the 
gure indicates the register reg���� studied in the example�

���

���

������

���

�� �

B�

reg���

B�

B�

B�

B�

��	

B�

B�

	��

B�

Figure ���� Directed graph representing an implicit RAMBO from Example ����

In this thesis we use only an implicit RAMBO and this only in x � to solve the
dynamic closest neighbour problem in one dimension� However� RAMBO itself is a source
of countless open questions� For example� how does the topology of bits in the the passive
block in�uence the power of the model$ Or� what is the power of the explicit RAMBO

e�g� in comparison with PRAM or even with machines with an associative memory �
cf� x ����$ The most interesting question is that of 
nding other problems in which the
model is helpful�
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Membership in Constant Time

and Minimum Space

Yet it isn�t the gold that I�m
wanting

So much as just 	nding the
gold�

Robert Service� The Spell of the Yukon
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�� CHAPTER �� MEMBERSHIP IN CONSTANT TIME AND MINIMUM SPACE

This chapter deals with the problem of storing a subset of elements from the bounded
universe so that membership queries can be performed in constant time and the space
used for the data structure is small 
cf� ������

The chapter starts with a brief introduction� followed by de
nitions� notation and
background literature� In x ��� we present a constant time solution with space bound
within a constant factor of the minimum required� In x ��� we improve the space bound
to the minimum required plus some lower order terms� The results of x ��� and x ��� are
extended in x ��� to the dynamic case� Finally� x ��� contains two explicit examples in
which our technique is used�

��� Introduction

The membership problem� that is� maintaining a data structure to answer the question
as to whether a certain element is in a given 
static� set� is a fundamental problem
in computer science� According to Yao 
������� Minsky and Papert were the 
rst to
address the problem� which they called exact match 
������ The problem also appears
implicitly� hidden in problems including search and retrieval 
������ set manipulation 
�����
dictionary implementation 
������� Although these problems seem diverse� the solution
to any of them 
rst requires the answer to the membership problem� In most� cases only
after a successful answer to this query can we proceed with the rest of the work�

Because the set membership problem is so central to the computer science� it has a
great deal of work related to it� It is outside the scope to give a comprehensive overview
of this work� and so� we address only those references which are closely related to our
solution�

Since our 
rst goal is a constant time bound per operation� we will use random access
machines with integer division 
������ and discard all classical tree	like structures� which
have logarithmic worst case performance 
cf� ��� �� ��� ��� ��� ��� ���� ������ This leaves
us with perfect hash tables 
functions� and bit maps� both of which have constant time
worst case behaviour� However� hash tables and bit maps solve the membership problem
using almost minimum space only when the set at hand contains� respectively� either only
a few 
or almost all� or about a half the elements of the universe�� In this chapter we
address speci
cally the range between these two cases with the goal of introducing a data
structure whose size is close to that minimum�

Roughly speaking� our basic approach is to use either perfect hashing or a bit map
whenever one of them achieves the optimum space bound� and otherwise to split the
universe into subranges of equal size� We discover that� with care� after a couple of
iterations of this splitting� the subranges are small enough so that succinct indices into

�The meaning of �minimum space� is formally de�ned in eq� ����	�
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a single table of all possible con
gurations of these small ranges 
table of small ranges�
permit the encoding in the minimal space bound� This is an example of what we call
word�size truncated recursion 
cf� ���� ����� Namely� the recursion continues only to a
level of �small enough� subproblems� at which point indexing into a table of all solutions
su�ces� We can do this because� at this level� a single word in the machine model is large
enough to encode a complete solution to each of these small problems�

��� Notation
 De�nitions and Background

De
nition ��� Given a universal set M � f�� �� � � � �M � �g with an arbitrary subset
N � fe�� e�� � � � � eN��g� where N and M are known� the static membership problem
is to determine whether a query value x � M is in N �

It has an obvious dynamic extension�

De
nition ��� The dynamic membership problem is the static membership problem
extended by two operations� insertion of an element x � M into N 
if it is not already
in N �� and deletion of x from a set N 
if it is in N ��

Since solving either problem for N trivially gives a solution for N we assume � � N � M
� �

We use the ERAM machine model from De
nition ��� 
also cf� ���� ��� ����� which
performs the usual operations 
including integer multiplication and division� on words

registers� in unit time� The size of memory registers is m�dlgMe bits 
cf� De
nition �����
which means that one memory register 
word� can be used to represent a single element
of M� specify an arbitrary subset of a set of m elements� refer to some portion of the
data structure� or have some other role that is a m	bit blend of these� For convenience
we measure space in bits rather than in words�

We take as parameters of our problem M and N � Hence� the information	theoretic
lower bound says that we need

B �

�
lg

�
M

N

��

����

bits to describe any possible subset of N elements chosen fromM elements� Since we are
interested only in solutions which use O
B� or B� o
B� bits for a data structure� we will
omit the ceiling and �oor functions altogether�

Using Stirling#s approximation 
cf� ���� p������ we compute from eq� 
���� a lower
bound on the number of bits required�

B � lg

�
M

N

�
� lgM �� lgN �� lg
M �N��
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� M lgM �N lgN � 
M �N� lg
M �N� with error � lgN �O
��

� M lgM �N lgN � 
M �N�
lgM � lg
�� N

M
��

� N lg
M

N
� 
M �N� lg
�� N

M
� 
����

The error bound is computed fromRobbins# approximation of the function n� 
���� p�������
Further� de
ning the relative sparseness of the set N

r �
M

N
� 
����

and observing that � � r � �� we rewrite the second term of eq� 
���� into

N � �N � 

r� �� lg
�� r���� � �

ln �
N � ������ � � �N � 
����

Thus� for the purposes of much of this work� we can use

B � N lg
M

N
� N lg r 
����

with an error bounded in eq� 
���� by  
N� bits� Note� the error is positive and hence
eq� 
���� an underestimate�

An intuitive explanation of eq� 
���� is that N is fully described when each element in
N �knows� its successor� Since there are N elements in N � the average distance between
them is r � M

N and to encode this distance we need lg r bits� Moreover� it is not hard to
argue that the worst case� and indeed the average one� occurs when elements are fairly
equally spaced� This is exactly what eq� 
���� says�

����� A Short Walk Through the Literature

We address three aspects� the static case� the dynamic case� and the information	theoretic
tradeo�s� In the 
rst two cases it has generally been assumed that there is enough space
to list those keys that are present or to list all the answers to queries� The 
rst assumption
takes us to hash tables� and the second to a bit map� Here we deal with the situation in
which we can not always a�ord the space needed to use either structure directly�

We start with the static case� and� in particular� with the implicit data structures in
Yao#s sense� His notion of an implicit structure was that one has room to store only N
data items� although these were not constrained to be those in the �logical� table� In
other words� by the term implicit structure he meant a structure using only N registers

N lgM bits� and no additional storage�

For such data structures Yao 
������ showed that in a bounded universe there always
exists some subset for which any implicit data structure requires at least logarithmic
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search time� Fiat and Naor 
����� later improved the bound to N � They proved that
there is no constant time implicit solution when N is less than lg�O����M � but that there
is such a solution when N � �

logM����

Adding some storage changes the situation� For example� with one more register

lgM bits� Yao 
������ showed that there exists a constant time solution for N � M

or N � �
�

p
lgM � while Tarjan and Yao 
������ presented a constant time solution using

O
N lgM� bits of space for N � O
M �� and � � 
 � �� However� there was still
a substantial gap between  
M� and O
M ��� Fredman� Koml"os and Szemer"edi 
�����
closed this gap� developing a constant time algorithm with a data structure of N lgM
bits plus O
N

p
logN � log���M� additional bits� Fiat� Naor� Schmidt and Siegel in ����

decreased additional bits to dlgNe�
l
log���M

m
�O
��� Moreover� combining their result

with Fiat and Naor#s 
����� construction of an implicit search scheme forN � �

logM�p�

they had a scheme using fewer than 
� � p�
l
log���M

m
�O
�� additional bits�

Mairson in ���� took a di�erent approach� He assumed all structures are implicit in
Yao#s sense and the additional storage represents the complexity of a searching program�
Following a similar path� Schmidt and Siegel in ���� proved a lower bound of �
N

k�
e�k �

log���M� bits spatial complexity for k	probe oblivious hashing� In particular� for a �	
probe hashing this gives a spatial complexity of  
log���M �N� bits�

For the dynamic case� Dietzfelbinger et al� 
����� proved an �
logN� worst case lower
bound for a class of realistic hashing schemes� In the same paper they also presented a
scheme which� using results of ���� and a standard doubling technique� achieved constant
amortized expected time per operation with a high probability� However� the worst case
time per operation 
non	amortized� was �
N�� Later Dietzfelbinger and Meyer auf der
Heide in ���� upgraded the scheme and achieved constant worst case time per operation
with a high probability� A similar result was also obtained by Dietzfelbinger� Gil� Matias
and Pippenger in �����

In the data compression technique described by Choueka et al� 
������ a bit	vector
is hierarchically compressed� First� the binary representations of elements stored in the
dictionary are split into pieces of equal size� Then the elements with the same value of the
most signi
cant piece are put in the same bucket� and the technique is recursively applied
within each bucket� When the number of elements which fall in the same bucket becomes
su�ciently small� they are stored in a compressed form� The authors experimentally
tested their ideas but did not formally analyze them� They claim their result gives a
relative improvement of about ��% over similar methods�

Finally� we turn to some information	theoretic work� Elias 
����� addressed a more
general version of the static membership problem which involved several di�erent types
of queries� For these queries he discussed a tradeo� between the size of the data structure
and the average number of bit probes required to answer the queries� In particular� for
the set membership problem he described a data structure of a size N lg M

N �O
N� 
using
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eq� 
����� B�o
B�� bits which required an average of 
��
� lgN�� bit probes to answer
a query� However� in the worst case� the method required N bits� Elias and Flower in
���� further generalized the notion of a query into a database� They de
ned the set of
data and a set of queries� and in a general setting studied the relation between the size
of the data structure and the number of bits probed� given the set of all possible queries�
Later� the same arrangement was more rigorously studied by Miltersen in �����

��� Solution for the Static Case

As noted earlier� if more than half the elements are present we can solve the comple	
mentary problem� The static solution is presented in two parts� The separation point
between them is de
ned in terms of relative sparseness

rsep � log�M � 
����

or the size of sets

Nsep �
M

rsep
�

M

log�M
� 
����

where the prede
ned constant � � � is used later for 
ne tuning a practical solution�
First we describe a solution for r � M

N
� rsep and then we deal with the case when

rsep � r � �� that is� with N � Nsep and then Nsep � N � M
� � We refer to the 
rst case

as sparse and to the second as dense�

Both of these cases have an extreme situation� In the dense case this occurs when
N � 	M � for some � � 	 � �

� and requires �
M� bits� Thus� we use a bit map of size M
to represent the set N � In the sparse case� a special situation occurs for very sparse sets�
When N � M��� for some � � 
 � �� we are allowed  
N logM� bits which is enough
to list all the elements of N � For N � c � O
�� we simply list them� beyond this we use
a perfect hashing function of some form 
cf� ���� ��� ����� Note� that all these structures
allow us to answer a membership query in constant time� Moreover� the constant is at
most � or � using the hashing schemes suggested�

The parameters c� 	� 
� and � are used in tuning speci
c example� They have no
particular role in the asymptotic solution as addressed in x ����

����� Indexing � Solution for r � log�M

We 
rst focus on the sparse case r � rsep de
ned in eq� 
����� The bottom end of this
range� that is r � rsep� typi
es the case in which both simple approaches require too

much space� as B �  
N log���M�� Indeed� this solution suggests the 
rst iteration of
our general approach for the dense case�
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Lemma ��� If N � Nsep �
M

log�M

i�e� � � r � rsep � log�M� for some � � �� then

there is an algorithm which answers a membership query in constant time using O
B�
bits of space for a data structure�

Proof
 The idea is to split the universeM into p buckets� where p is to be determined
later� The data falling into individual buckets are then organized using perfect hashing�
The buckets are contiguous ranges of equal sizes� M� �

M
p
� so that a key x � M falls

into bucket
j

x
M�

k
� To reach individual buckets� we index through an array of pointers�

To consider this in detail� let us assume that we split the universe into p buckets� We
build an index of pointers to individual buckets� where each pointer occupies dlgMe bits�
Hence� the total size of the index is p � dlgMe bits�

We store all elements that fall in the same bucket in a perfect hash table 
���� ��� ����
for that bucket� Since the ranges of all buckets are equal� the space required for these hash

tables is
l
lg M

p

m
bits per element� and so� to describe all elements in all buckets we require

only N �
l
lg M

p

m
bits� In addition to this� we also need some space to describe individual

hash tables� If we use a particular implementation due to Fiat� Naor� Schmidt and Siegel


����� the additional space for a bucket i is bounded by dlgNie�
l
lg���M�

m
�O
�� where

Ni is the number of elements in a bucket� Thus� the additional space to describe all hash
functions is bounded by p � 
lgN � O
��� � lg���M � Putting the pieces together we get
the expression for the size of the structure

S � p � lgM �N � lgM
p
� p � 
lgN �O
��� � lg���M � 
����

To minimize it we solve

dS

dp
� lgM �N � lg e

p
� lgN � O
�� � �

and get the minimum at

p �
N

lnM � lnN � O
��

buckets� It turns out that the approximation of

p �
N

lgM

����

is adequate and simpli
es the analysis� So� from eq� 
����� the size of the data structure
is

S � N �N � 
lgM
N
� lg���M� �N � lgN �O
��

lgM
� lg���M using eq� 
����
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� N � lg r � 
N � lg r� lg
���M

lg r
�N �N � lgN �O
��

lgM
� lg���M using eq� 
����

� B �B � lg
���M

lg r
� o
B� � 
�����

Hence� for a sparse subset� i�e� r � rsep� the size of the structure is O
B� bits� It is also
easy to see that the structure permits constant time search� QED

Note that if rsep � lgM 
i�e� in eq� 
���� � � �� the lead term of eq� 
����� is less than
�B� Moreover� if in eq� 
���� we do not count the hash table descriptions of individual
buckets� the optimal number of buckets becomes p � M

lnM & in which case the lead term
of eq� 
����� is less than �B for � � e�

Table ��� summarizes the cases covered so far� We still require a solution for

Nsep �
M

log�M
� N � 	M � M

�

rsep � log�M � r � �

	
� � �


�����

Next we assume N 
and so r� lies in this awkward range� that is� the N is moderately
dense�

range of N B structure

� � nil
� to c  
logM� unordered list
c to M���  
N logM� hash table

M��� to
M

log�M
 
N log���M� indexing

M

log�M
to 	M  
N log r� $

	M to
�

�
M  
M� bit map

Table ���� Ranges of N and structures used to represent set N �

����� Complete Solution

Consider� then� setsN whose sizes lie in the range given in eq� 
������ For such moderately
dense N we apply the technique of Lemma ���� that is� split the universeM into equal	
range buckets� However� this time the ranges of buckets remain too big to use hash tables�
and therefore we apply the splitting scheme again� In particular� we treat each bucket as
a new� separate but smaller� universe� If its relative sparseness falls in the range de
ned
by eq� 
����� 
with respect to the size of its smaller universe� we recursively split it�



���� SOLUTION FOR THE STATIC CASE ��

Such a straightforward strategy leads� in the worst case� to an  
log�M� level struc	
ture and therefore to an  
log�M� search time� However� we observe that at each level
the number of buckets with the same range increases and ultimately there must be so
many small subsets that not all can be di�erent� Therefore we build a table of all possible
subsets of universes of size up to a certain threshold� This table of small ranges allows re	
placement of buckets in the main structure by pointers 
indices� into the table� Although
the approach is not new 
cf� ���� ����� it does not appear to have been given a name�
We refer to the technique as word�size truncated recursion because the pointers into the
table of small ranges are small enough to be stored in one m	bit word 
m � lgM�� In
our structure the truncation occurs after two splittings�� In the rest of this section we
give a detailed description of the structure and its analysis�

On the 
rst split we could partition the universe into B
lgM buckets� but to ensure

continuity with the sparse case discussed before we split the universe into

p �
Nsep

lgM
�

M
rsep

lgM
�

M


log�M� � 
lgM�

�����

buckets� each of which has a range M� �
M
p
� Hence� at the separating point between

sparse and dense buckets eq� 
����� becomes eq� 
����� At the second level we have again
relatively sparse and dense buckets which now separate at the relative sparseness

r	sep � log�M� � log�
M

p
� O
log���M� � 
�����

For sparse buckets we apply the solution from x ����� and for very dense ones with more
than the fraction 	 of their elements present we use a bit map� For the moderately dense
buckets� with relative sparseness within the range de
ned in eq� 
������ we re	apply the
splitting� However� this time the number of buckets is 
cf� eq� 
������

p� �

M�
r�sep

lgM�
�

M�

r	sep � 
lgM��

�����

so that each of these smaller buckets has the same range

M� �
M�

p�
� O

log���M��� 
�����

because lgM� � O
log���M��

At this point we build the table of small ranges� which consists of bit map represen	
tations of all possible subsets chosen from the universe of size M�� Thus we can replace

�In fact
 because all our second level buckets are of the same range
 our table of small ranges consist
only of all possible subsets of a single universe�
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buckets in the main structure with �indices� 
pointers of varying sizes� into the table�
We order the table 
rst according to the number of elements in the subset and then lexi	
cographically� If we store� as the representation of a pointer to the table of small ranges�
a record consisting of two 
elds 
�� the number of elements in the bucket� which takes
dlgM�e bits& and �� the lexicographic order of the bucket in question among all buckets
containing � elements� which from eq� 
���� is

l
lg
�
M�
�

	m
bits�� then the actual position of

the corresponding bit map of the bucket is

���X
i��

�
M�

i

�
� � � � � 
�����

The sum is found by table lookup and so a search is performed in constant time�

This concludes the description of our data structure used by Algorithm ��� to answer
the membership queries� Probes to the data structure data are explicitly denoted by
the use of procedure Probe with an additional parameter describing how the structure
is interpreted and which part is read� The structure allows constant time membership
queries� but remains to be seen how much space it occupies� In the analysis we are
interested only in moderately dense subsets 
cf� eq� 
������� as otherwise we use the
structure of x ������

First we analyze the main structure and begin with the following lemma�

Lemma ��� Suppose we are given a subset of N elements from the universe M and B
as de	ned in eq� 
����� If this universe is split into p buckets of sizes Mi containing Ni

elements each 
now� using eq� 
����� Bi �
l
lg
�
Mi

Ni

	m
� then B � p �

Pp
i��Bi�

Proof
 If
Pp

i��Mi � M and
Pp

i��Ni � N we know from ���� p����� inequality
������� that � �

Qp
i��

�
Mi

Ni

	 � �
M
N

	
and therefore

Pp
i�� lg

�
Mi

Ni

	 � lg
�
M
N

	
� On the other

hand� from eq� 
���� we have Bi �
l
lg
�
Mi

Ni

	m
and therefore Bi � � � lg

�
Mi

Ni

	 � Bi� This

gives us
Pp

i��
Bi � �� � B and 
nally B � p �
Pp

i��Bi� QED
In simpler terms� Lemma ��� proves that if sub	buckets are encoded within the

information	theoretic bound then the complete bucket is also within the information	
theoretic minimum provided that the number of buckets is small enough 
p � o
B�� and
that the index does not take too much space�

The main structure itself is analyzed from the top to the bottom� The 
rst level index
consists of p pointers each of which is of size lgM bits� Therefore� using eq� 
����� and
eq� 
����� the size of that complete index for the range de
ned in eq� 
����� is

p � lgM �
M

log�M
� Nsep � o
B� � 
�����
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PROCEDURE Member �M� data� elt�

IF M � M� THEN �� Use data as a pointer into a table of small ranges� TSR� ��
��� ���	 Probe �data� record�
 �� number of elements and lexicographic order� ��

pointer�	 Probe �Binomials���� number� � � �

 �� real pointer by eq� ����	
� ��
RETURN �elt IN Probe �TSR�pointer�� bit map�� �� bit map from the TSR� ��

ELSE N�	 Probe �data� number�
 �� Number of elements in N � ��

IF N � M�� THEN negate�	 TRUE
 N�	 M�N �� We are solving N � ��

ELSE negate�	 FALSE END


�� How sparse set N is� ��

IF N 	 � THEN answer�	 FALSE �� an empty set � r ��� ��
ELSIF N � c THEN �� a very sparse set � r � c

M
� ��

answer�	 FindOL �Probe �data� ordered list�� elt�

ELSIF N � M��� THEN �� less sparse set � r � M �� ��
answer�	 FindHT �Probe �data� hash table�� elt�


ELSIF N � M�log��M� THEN �� even less sparse set � r � log� M � ��
answer�	 Find�L �Probe �data� two level indexing structure from x ����	�� elt�


ELSIF N � ��M THEN �� moderately dense set � r � �
�
� ��

M��	 Floor �log��M��lg�M��
 �� Split into buckets of range M� by eq� �����
� ��
data��	 Probe �data�elt DIV M��� index�
 �� 
nd bucket in which falls elt� ��
answer�	 Member �M�� data�� elt MOD M�� �� and recursively search it� ��

ELSE �� very dense set � r � � ��

answer�	 LookUpBM �Probe �data� bit map�� elt�


END


IF negate THEN RETURN NOT answer

ELSE RETURN answer END


END

END Member


Algorithm ���� Membership query if elt is in N � M� where N is represented by a data

structure data and the jMj � M �

For the sparse buckets on the second level we use solution presented in x ����� and
for the very dense buckets 
r � �

�
�� we use a bit map� Both of these structures guarantee

space requirements within a constant factor of the information	theoretic bound on the
number of bits 
see Table ����� If the same also holds for the moderately dense buckets�
then� using Lemma ��� and eq� 
������ the complete main structure uses O
B� bits� Note�
that we can apply Lemma ��� freely because the number of buckets p is o
B��

It remains to see how large the encoding of the second level moderately dense buckets
is� that is the encoding of buckets with sparseness in the range of eq� 
������ For this
purpose we 
rst consider the size of bottom level pointers 
indices� into the table of small
ranges� As mentioned� the pointers are records consisting of two 
elds� The 
rst 
eld�
� 
number of elements in the bucket�� occupies dlgM�e bits� and the second 
eld takes
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B� � as de
ned in eq� 
����� Since B� � dlgM�e� the complete pointer� takes at most
twice the information	theoretic bound on the number of bits� B� � On the other hand� the
size of an index is bounded using an expression similar to eq� 
������ Subsequently� this�
together with Lemma ���� also limits the size of moderately dense second level buckets
to be within a constant factor of the information	theoretic bound� This� in turn� limits
the size of the complete main structure to O
B� bits�

It remains to compute the size of the table of small ranges� There are �M� entries in
the table and each of the entries isM� bits wide� where by eq� 
�����M� � O

log���M����
This gives us the total size of the table

M� � �M� � O

log���M�� � 
logM�log��� M�
� O


log logM

logM
� 
log���M � 
logM��	log���M��

� o

log rsep
rsep

�M� by eq� 
����

� o
Nsep � log rsep� � o
B� 
�����

for moderately dense sets 
cf� eq� 
������� Moreover� this also bounds the size of the whole
structure to O
B� bits and� hence� proves in a connection with Lemma ��� the theorem�

Theorem ��� There is an algorithm which solves the static membership problem in O
��
time using a data structure of size O
B� bits�

Note the constants in order notation of Theorem ��� are relatively small� Algo	
rithm ��� performs at most two recursive calls of Member and � probes of the data struc	
ture�

	 � probes in the 
rst call of Member 
one to get N � and one to get data���
	 � probes in the second call of Member 
same as above�� and
	 � probes in the last call of Member 
the 
rst line of Algorithm ���� ' the initial
probe to get the number of elements in the bucket� �� and the lexicographic order
of the bucket� �& the next probe to get the sum in eq� 
����� by table lookup& and
the 
nal probe into the table of small ranges�

The space requirement is certainly less than �B bits� and in the next section we reduce it
to B�o
B� bits while retaining the constant query time� For 
ne tuning of the structure
we can adjust the constants c� 
� �� and 	 of Table ��� and Algorithm ����

�Note
 that the size of a pointer depends on the number of elements that fall into the bucket�
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��� Static Solution Using B � o�B� Space

The solution presented in the preceding section can easily be adapted to use 
� � 
�B �
o
B� bits of space for arbitrary 
 � �� We can� in fact� construct a data structure
requiring B � o
B� bits�

First� we observe that for very dense sets 
r � �
�
� we can not a�ord to use a bit map

because it always takes B �  
B� bits of space� For a similar reason we can not a�ord
to use hash tables for very sparse sets 
i�e� r �M����� Therefore� we categorize sets only
as sparse or dense 
and not moderately dense�� Finally� to decrease the space usage to
B � o
B� bits at the separation point between sparse and dense sets 
cf� eq� 
������ we
rede
ne the point 
cf� eq� 
���� and eq� 
����� setting it to

rsep � 
lgM�
lg���M 
�����

or� in other words� using eq� 
����� to

Nsep �
M


lgM�lg
���M

� 
�����

B mentioned above is the exact one from eq� 
����� though for sparse sets we can still
use the approximation N lg r from eq� 
���� since in eq� 
���� the error is bounded by
 
N� � o
B��

����� Sparse Subsets

Again� sparse subsets are those whose relative sparseness is greater than rsep � For such
subsets we always apply the two level indexing from x ������ In fact� all equations from
x ������ and in particular eq� 
������ remain unchanged� However� this time the second
term of eq� 
����� becomes o
B�� because now the relative sparseness r is at least rsep
de
ned in eq� 
������� This proves the lemma�

Lemma ��� If N � Nsep de	ned in eq� 
����� 
i�e� � � r � rsep de	ned in eq� 
�������
then there is an algorithm which answers a membership query in constant time using
B � o
B� bits of space for a data structure�

����� Dense Subsets

The dense subsets are treated in exactly the same way as were moderately dense subsets
in x ������ Thus most of the analysis can be taken from there with the appropriate change

�Indeed
 it is su�cient to set rsep � �log�M	���� and still have asymptotically B 
 o�B	 solution but
it is easy to see that the larger is rsep the smaller is the second term of eq� �����	�
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of rsep 
cf� eq� 
����� and r
	
sep 
cf� eq� 
������� To compute the size of the main structure�

we 
rst bound the size of pointers into the table of small ranges� Recall that each pointer
consists of two 
elds� the number of elements in the bucket� �� and the lexicographic order
of the bucket in question among all buckets with � elements� �� Although the number
of bits necessary to describe � can be as large as the information	theoretic minimum for
some buckets� this is not true on the average� By Lemma ���� all pointers together occupy
no more than B � o
B� bits�

Furthermore� indices are also small enough so that all of them together occupy o
B�
bits 
cf� eq� 
������� As a result we conclude that the main structure occupies B � o
B�
bits of space� It remains to see how big the table of small ranges is�

First� since rsep was rede
ned in eq� 
����� we have� by eq� 
������ on the 
rst level

p �
M

rsep � lgM �
M


lgM��	lg���M

�����

buckets each of the range

M� �
M

p
� rsep � lgM � 
lgM��	lg���M � 
�����

To simplify further analysis we set the rede
ned separation sparseness between 
rst level
sparse and dense buckets 
cf� eq� 
������ to

r	sep � 
lgM��
lg���M���

� 
�����

which is still 
log�M��
���� as required by eq� 
����� 
cf� footnote � on page ���� This

sparseness r	sep is further bounded by

r	sep � 
lg
rsep � lgM��
lg����rsep�lgM���

� using eq� 
�����

� 
� lgrsep�
lg�� lg rsep���

� since rsep � lgM by eq� 
�����

� 
�
lg���M���
lg��lg���M�����

� again using eq� 
�����

� 

lg���M���
lg���M��

� since � � lg���M

�
�

�
� 
lg���M�lg���M�� since 
lg���M��� � �

� � 
�����

Next� the 
rst level dense buckets are further split into p� 
cf� eq� 
������ sub	buckets
each of range M� �

M�
p�
� r	sep � lgM�� Finally� since M� is also the range of buckets in

the table of small ranges� the size of the table is

M� � �M� � r	sep � lgM� �M r�sep
�
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� r	sep � lg
rsep lgM� � 
rsep lgM�r
�
sep by eq� 
�����

� � lgrsep � r	sep � rsep�r
�
sep since rsep � 
lgM�

����

� lg rsep � rsep�r�sep��

�
lg rsep
rsep

� 

lgM�lg���M��lg���M�lg
���M��

by eq� 
����� and eq� 
�����

�
lg rsep
rsep

� 
lgM��lg���M�lg
���M

� o

M

rsep
� lg rsep� � o
Nsep � lg rsep�

� o
B�

for r � rsep� This brings us to the 
nal theorem�

Theorem ��� There is an algorithm which solves the static membership problem in O
��
time using data structure of size B � o
B� bits�

Proof
 The discussion above dealt only with the space bound� However� since the
structure is more or less the same as that of x ��� the time bound can be drawn from
Theorem ���� QED

With Theorem ��� we proved only that the second term in space complexity is o
B��
In fact� using a very rough estimate from the second term of sparse 
rst level buckets
we get the bound O
 B

lg���M
�� To improve the bound one would have to re
ne values rsep

and r	sep 
cf� footnote � on page ����

��� Dynamic Version

The solutions presented in x ��� and in x ��� deal with a 
xed set� It is natural to ask
how we can incorporate updates while maintaining the time and space bounds� Before
presenting a dynamic solution we describe the memory management scheme used�

����� Memory Management Scheme

We assume we are operating in an environment in which we have a currently held chunk
of memory of size H � If more memory is requested the chunk is extended upward and H
is increased� If space requirements reduce we release some from the top of the chunk and
H is decreased� Under a slightly di�erent model memory may not be extended in this
way� in which case we simply request new space of a desired size and release the old one
after copying� All results also hold in the latter model with the caveat that both chunks
are required while the copying is being performed�
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The basic idea is to operate on a chunk of memory of size� H � by simply allocating
new storage from the chunk as required and not reusing storage that has been freed� We
say the chunk is the space held� while the size of the data structure is amount in use�
The space that has been used refers to that space that has been allocated in the chunk

i�e� it includes the space that has been released�� If the amount of memory in use falls
below some threshold� E� or if all the storage in the chunk has been used� we compress
the data to the bottom of the chunk 
by mark ( sweep cf� ���� and perhaps modify the
chunk size� The period of time between the point at which we compress our data into
the bottom of the chunk until the next such point is called a phase� The actual values of
H and E are determined 
dynamically� at the beginning of each phase and depend on S�
the amount of memory in use at that time�

The manipulation outlined above requires the additional variables to keep track of
how much of the chunk has been used and how much is actually in use� � lgH bits clearly
su�ce� In the following lemma we bound the amortized cost in a phase�

Lemma ��� Let S be the amount of memory in use in a chunk of size H at the beginning
of a phase 
S � H� and let E � S�

H � We then service a sequence of allocate and deallocate
requests� with the assumption that after an allocate or deallocate request the supported
algorithms take time at least proportional to that needed to copy data of the size of the
request before issuing another space request� Then the amortized computing time of the
sequence lasting up to one phase is

� �O

H

H � S
� � � � O


S

S �E
� � 
�����

This time includes all storage management operations including initialization of the next
phase�

Proof
 Initially observe that equality in eq� 
����� holds� because E � S�

H
� It is

easy to see that the worst case occurs when the sequence consists solely of allocate or of
deallocate requests� Since the proofs for both cases are almost identical we present only
the one for allocate requests�

At the beginning of a phase there are H�S bits of contiguous free space in the chunk�
This is also the largest amount of space requested by all but the last allocation request�
However� to issue requests for this much space takes at least T � �
H � S� computing
time� Thus� the total elapsed time in the phase� excluding the computing time of the
last request� is T �O
H�� The second term comes from copying data from one chunk of
memory to another one� Amortizing over the computing time of the whole phase we get
eq� 
������ QED

Note� that the memory management scheme used in Lemma ��� is extremely simple
and any improvements 
cf� ��� Chapter ���� would also improve an amortized computing
time of eq� 
������ Lemma ��� bounds the amortized computing time while the following
theorem relates it to the ratio between the amount of occupied and allocated memory�
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Theorem ��� Let D be the amount of memory in use at some moment� If S � E��
E�

�
E� � O
E� and �
E� � �
��� then the amortized computing time is

O
� �
E

�
E�
� 
�����

and the chunk in current use is of size

D � O
�
D�� � 
�����

Proof
 The amortized time bound follows directly from Lemma ���� The amount
of used memory is H � and thus

H �
S�

E
�

E� � �E�
E� � �
E��

E
� E � 
��
E� �O
�
E�� since �
E� � O
E�

� E �O
�
E��

� D �O
�
D�� since E � D

QED
One can tighten the analysis in the proof of Lemma ��� and consequently relax the

condition �
E� � �
�� to �
E� � �
�� in Theorem ����

����� Solution

The dynamic solution is based on the static solution from x ���� We present three versions�
the 
rst retains the static counterpart#s space bound B � o
B�� but degrades the time
bound to a bit more than constant amortized time with a high probability� The second
has constant amortized time with a high probability� but the space bound degrades to
�B�o
B� bits� In the last version we further improve the result to the worst case constant
time with a high probability but use O
B� bits of space� Indeed we use as a starting point
for the third version the solution presented in x ��� as it is amenable to 
ne tuning�

All of our solutions use the standard technique of �doubling�� The core of this method
is to maintain� at any given time� the most appropriate data structure and when the
situation changes� to switch to some other� better structure� In other words� at a certain
moment we discard the old structure and build a new one� while the build	up time is
amortized over preceding operations� Since the size of a new structure is usually half or
double the previous one� hence the name �doubling��

However� it is not clear that the doubling technique is directly applicable to the
structure from x ���� Clearly� there are no problems with a table of small ranges� because
it is built only once ' the range of small buckets M� is independent of N �
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On the other hand� the main structure consists of a number of buckets and to use
the technique on them� we have to prove the desired time and space bounds for any
sequence of operations on each individual bucket� More precisely� each bucket consists
of a number of sub	buckets and even if operations on individual sub	buckets do have the
desired bounds and the total space occupied by all sub	buckets does not change� their
individual sizes might change and we have to guarantee� for any sequence of operations�
that sub	buckets can �live� inside a bucket within a desired amortized time� Fortunately�
Theorem ��� gives exactly such guarantees provided sub	buckets do not change their sizes
too quickly� This brings us to the 
rst solution�

Theorem ��� Let �
B� � �
�� and �
B� � o
B�� then there is an algorithm which
solves the dynamic membership problem in O
 B

��B�� amortized time per operation with the

high probability using a data structure of size B � o
�
B�� bits�

Proof
 First observe that all sub	structures used in the static solution of x ���
individually support the claimed time and space bounds ' even a hash table if we use
the solution due to Dietzfelbinger et al� 
������ Next� since B changes more slowly than
N � it takes �
R� computing time after a memory request for R bits and thus Lemma ���
applies� The proof now follows directly from Theorem ���� QED

The attribute �high probability� appears in the text of Theorem ��� because we use
the dynamic perfect hash tables of Dietzfelbinger et al� If we set �
B� to B� the second
version of our dynamic solution follows by a similar argument to that of Theorem ����

Theorem ��� There is an algorithm which solves the dynamic membership problem in
constant amortized time per operation with high probability using a data structure of size
�B � o
B� bits�

These two solutions presented have an amortized constant time behaviour� but we
want to achieve a worst case constant time bound� Indeed� observe we do not need to
build a new structure from scratch when a certain threshold is reached� but we can build
it smoothly through a su�cient number of preceding operations� To put it di�erently�
we always maintain a pair of structures� where one contains �real� data� while the other
one is in the process of building	up� In this way we do not have only amortized� but also
worst case behaviour provided that all sub	structures support this process�

As mentioned� this 
nal solution is based on a static solution from x ��� which employs
as sub	structures those listed in Table ���� All of them� indeed� support smooth doubling
including hash tables 
cf� dynamic perfect hashing ���� ����� This brings us to the last
theorem�

Theorem ��� There is an algorithm which solves the dynamic membership problem in
O
�� time per operation with high probability using a data structure of size O
B� bits�
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The constant in the space bound is mostly contributed by the dynamic hash tables
and is less than �� 
cf� ���� �����

��	 Two �Natural� Examples

There are many situations in which we are dealing with a subset of a bounded universe
in which the size of the subset is relatively large but not big enough to justify a bit map
representation� We give two such examples� The 
rst is the set of primes less than some
number M � hence N is of size approximately M

lnM � We pretend that the set of primes is
random and that we are to store them in a structure to support the query of whether
given number is prime� Clearly� we could use some kind of compression 
e�g� implicitly
omit the even numbers or sieve more carefully�� but for the purpose of this example we
will not do so�

In the second example we consider Canadian Social Insurance Numbers 
S�I�N�#s��
allocated to each individual� Canada has approximately �� million people and each
person has a � digit Social Insurance Number� One may want to determine whether or
not a given number is allocated� This query is in fact a membership query in the universe
of size M � ��
 with a subset of size N � �� � ���� since we ignore the check digit for a
valid S�I�N�

Both examples deal with sparse sets and we can use the method of x ����� directly
with using in buckets a perfect hashing function described in ����� On the other hand� no
special features of data are used which makes our space calculations slightly pessimistic�

Using an argument similar to that of Lemma ���� we observe that the worst case
distribution occurs when all buckets are equally sparse� and therefore� we can assume
that in each bucket there are N

p
elements�

Table ��� contains the sizes of data structures for both examples comparing a hash
function� a bit map� and a tuned version of our structure 
computed from eq� 
������ with
the information	theoretic bound�

Example M N B ours hash bit map

primes ��� ���� ��� ���� ��� ���
 ��� ���� ��� ���� ��� ����
SINs ��� ���
 ��� ���� ��� ���� ��� ���
 ��� ���
 ��� ���


Table ���� Space usage for sets of primes and SINs for various data structures�

��
 Discussion and Conclusions

In this chapter we have presented a solution to a static membership problem� Our initial
solution answers queries in constant time and uses space within a small constant factor
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of the minimum required by the information	theoretic lower bound� Subsequently� we
improved the solution reducing the required amount of space to the information	theoretic
lower bound plus a lower order term� We also addressed the dynamic problem and
proposed a solution based on a standard doubling technique�

Data structures used in solutions consist of three major sub	structures which are
used in di�erent ranges depending on the relative sparseness of the set at hand� that is�
depending on the ratio between the size of the set and the universe� When the set is
relatively sparse we use a perfect hashing& when the set is relatively dense we use a bit
map& and in the range between we use recursive splitting 
indexing�� The depth of the
recursion is bounded by the use of word�size truncation and in our case it is ��

The practicality of the data structure was addressed through a couple of examples�
However� to make the structure more practical one would need to tune the parameters c�

� �� and 	 mentioned Table ��� and Algorithm ���� Moreover� for the practical purposes
it is probably necessary to increase the depth of recursive splitting to cancel out the e�ect
of a constant hidden in the order notation and� in particular� to decrease the size of the
table of small ranges below the information	theoretic minimum de
ned by N and M at
hand� For example� in the case of currently common �� and �� bit architectures 
cf� �����
the depths should be increased to � and � respectively�

There are many open problems� The most intriguing one is to decrease the second
order term in the space complexity as there is still a substantial gap between our result�
B � O
 B

lg���M
�� and the information	theoretic minimum� B� But do we need a more

powerful machine model to close this gap$



Chapter �

Word�Size Parallelism

So we grew together�
Like to a double cherry�
seeming parted�

But yet a union in partition�
Two lovely berries moulded
on one stem�

So� with two seeming bodies�
but one heart�

William Shakespeare� A Midsummer
Night�s Dream

��
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In this chapter we present a programming technique called word�size parallelism and
use it to solve a number of examples 
problems� whose solutions will prove useful later
in a more general context� Word	size parallelism is a programming technique based
on splitting of the register into a number of blocks on which parallel� non	interfering
operations are performed� For example� a bitwise Boolean negation can be considered as
a number of parallel single bit negations 
cf� also SMID and MIMD architectures��

The chapter is organized as follows� after a brief introduction we de
ne a linear
register in x ��� and then use it in x ��� to present word	size parallelism� We continue
by introducing rectangular and multidimensional registers in x ��� and x ��� respectively�
and conclude by developing algorithms for search of extremal set bits in such registers�

��� Introduction

Though one can 
nd individual examples of word	size parallelism in the literature 
cf� ����
��� ���� the technique itself has never been formally exploited� This kind of parallelism
is found in standard processor instruction sets where it is perfectly justi
able to consider
any bitwise Boolean operation as a parallel operation performed on the individual bits
of the register� Such parallelism has� with the latest �� and �� bit generation of RISC
processors� even greater practical signi
cance 
cf� ������

The model we use in this chapter is the ERAM of De
nition ���� As mentioned� in this
model the memory register and communication channel are m bits wide� while arithmetic
registers are b �  
m� bits� Further� the the active block of the model can perform its
operations in unit	time 
cf� uniform cost criterion in ��� p������ These operations are those
found in standard processor instruction sets including integer multiplication and division�
and bitwise Boolean operations 
cf� MBRAM from x �������

��� Linear Registers

In this chapter registers do not denote locations in memory� but entities on which opera	
tions are performed 
arithmetic registers or accumulators�� They are b �  
m� bits wide

cf� multiple precision operations��� where the constant is essentially the dimension of a
register and thus small 
cf� x ���

�If the actual processor can not perform multiple precision operations
 we assume that they are done
in software at the cost of a constant factor delay�
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De
nition ��� A linear register xl consists of b bits enumerated from � to b�� where
xl�b��� is the least signi	cant bit� The integer value stored in a register is

b��X
i��

xl�b�i� � �i � 
����

Obviously the value of a register with all bits set is

P � �b � � � 
����

In the course of work we will represent linear registers graphically and thus we need
to de
ne their orientation� Usually pictures show the least signi
cant bit of the register
at its right� but for our purposes this proves to be inappropriate� since in x � we relate
positions of a bit in a register to the position of a point in a coordinate system� Therefore
we decided to reverse the orientation of the register and put the least signi
cant bit b���
at its left end� and the most signi
cant bit b�b � �� at its right end� Because of this
decision also operations ShiftLeft and ShiftRight exchange their usual meaning and
now become division and multiplication by a power of � respectively� Thus

x�b�i� � 
x div �i�� � � ShiftLeft�x� i� AND 
 
����

extracts the value of the ith bit from x� Using a similar approach we mask out all less
signi
cant 
left� bits than x�b�i� 
i�e� all bits x�b�j�� where j � i� by

x AND ShiftRight�P� i� 
����

and eliminate all more signi
cant 
right� bits by

x AND ShiftLeft �P� b�
�i� � 
����

We conclude this section de
ning two special linear registers�

De
nition ��� Let � � k � s� Then a register x is 
s� k��sparse if all its set bits are
among x�b�a� si� j� 
for some a�� where � � j � k and � � i �



b�k�a

s

�
�

In simpler terms� an 
s� k�	sparse register has all bits set to � with a possible exception
of those bits which are in blocks of size k where starting bits of these blocks appear in an
arithmetic progression with a di�erence s� The 
rst block starts at a bit b�a��

De
nition ��� A register x is s�small if all its set bits are among the least signi	cant
s bits x�b�i� where � � i � s�

Note� that for a given b an s	small register is also a 
b� s�	sparse register�
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��� The Technique

We present word�size parallelism 
rst through a generic form of a function in Algo	
rithm ��� and later accompany it with a few examples� The generic form� also illustrated
in Figure ���� consists of two steps� in the 
rst step operations Fi are applied in parallel
on parameters x�i� 
i � �� � � � l� and in the second step the results of the 
rst step� stored
in vector answer� are combined by the function C into 
nal result y� A parameter x�i�
may contain k � b bits and can be considered either a k	bit register or a b	bit register�
However� in the latter case the remaining b� k bits are irrelevant for our purposes� For
example� let x�i� be a �	bit register containing only a bit x�i��b��� 
the value of x is
x�i��b��� � ��� then in its b	bit representation of other bits can have values either � or
�� Further�

GENERIC PROCEDURE Technique �x�


FOR i�	
 TO l DO PARALLEL

answer�i��	 Apply �Fi� x�i��


END


y�	 C �answer�


RETURN y


END Technique


Algorithm ���� Generic form of word�size parallelism�

x

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 Fl

� � i l

Fi

C

F�F�

answer

y

Figure ���� Graphic illustration of word�size parallelism�

De
nition ��� A register u is in con�ict with a register v if there is a bit u�b�k� ��
v�b�k��
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If u is fewer than b bits wide� then it can con�ict with v only on bits it contains� because�
as mentioned above� values of other bits in a b	bit representation of u are irrelevant �
they can be either � or � and thus always �match� bits of v�

The main idea of the technique is to replace the parallel loop of Algorithm ��� with
a few 
sequential� operations of our model#s active block 
processor�� In other words� we
substitute for a constant number of sequential operations l parallel operations and still
have the same run time as the parallel version�

First� the combination function C can be an identity and hence omitted� Next� the
operation Fi can take more than one parameter x�i�� Finally� individual operations need
not be identical� though in this work we assume that they are 
e�g� all Fi are subtractions�
or all are multiplications� etc��� The last constraint simpli
es the derivation of a proper
sequential replacement�

Lemma ��� If in Algorithm 
��


i�� parameters are not in a con�ict� x�i� does not con�ict with any x�j� and for
multiple parameters let this hold for each parameter separately�


ii�� intermediate results are not in a con�ict� answer�i� does not con�ict with any
answer�j�� and


iii�� all Fi are identical� all Fi are F�

then the value of procedure Technique �x� is

C � F �

lX
i��

x�i��� � 
����

When operations Fi have multiple parameters� then F in eq� 
���� has also multiple pa	
rameters each of which is a sum of corresponding parameters of Fi�

Proof
 First� since parameters x�i� are not in con�ict� they can be added together�
Next� since all Fi are identical they can be replaced by F and� consequently� F can be
applied to the added parameters x� Finally� since results of Fi are not in con�ict� neither
are the results of F applied to the added parameters� QED

In the rest of this section we apply the technique in a number of very simple practical
examples� These examples are subsequently used in solutions of more involved problems�

Example 	��� Let x be a k	small register� We want to generate an 
s� k�	sparse
register y in which the individual blocks are copies of the k least signi
cant bits in x�
That is� given s � t � b� we want x�b�i� � y�b�i � sj� for � � j � l and � � i � k� In
the copying process� illustrated in Figure ��� and implemented in Algorithm ���� the 
nal
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combination step C is omitted because it is an identity� Further� the parameter x is the
same for all i and it does not con�ict with itself� Also parameters �is are not in con�ict�
nor are results of individual Fi� Finally� since all Fi are identical 
they are multiplications�

by Lemma ��� the expression x �Pl��
j�� �

js � x � �ls���s�� or its equivalent

x � �ShiftRight�
� l�s� � 
� � �ShiftRight�
� s� � 
� 
����

replaces Algorithm ���� EF

� � �

	 	 	 	 	 	

	 s m

	 s �s �s 
i � ��s is 
t� ��s m

x

y � � �

Figure ���� Distribution of a block across a linear register�

PROCEDURE Distribute
D �s� l� x�


FOR i�	� TO l�
 DO PARALLEL

y�	 x � �is

END


RETURN y


END Distribute
D


Algorithm ���� Distribution of a block of at most s bits l times across the register�

Above we distributed bits across the register� while now we spread them�

Example 	��� Let x be an s	small register consisting of l blocks of k bits� i�e�
s � k � l� Spread these blocks across register y to get an 
s� k� k�	sparse register� where
the order of spread blocks is a reverse of the original one as shown in Figure ���� More
precisely� since s � k � l we have x�b�
l � i� �� � k � j� � y�b�i � s � j� where � � i � l

and � � j � k� Note that� since y is b bits wide� s � 
l � �� � k � b or equivalently

s �
j
b�k
l��
k
� In fact� for l � s� that is when each block contains a single bit� this becomes

s �
�p

b� ����� ���
�
The parallel loop of Algorithm ��� is this time slightly more complicated� 
rst we

copy all s bits 
cf� Algorithm ���� and then mask out the unwanted bits in each copy�
Algorithm ��� also contains the 
nal step� C� which shifts y for s � k bits to the left�
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Figure ���� Spreading of bits across a linear register�

PROCEDURE Spread
D �x� s� k�


l�	 s � k


FOR i�	� TO l�
 DO PARALLEL

offset�	 �is

y�	 x � offset


y�	 y AND ��
l�i���k � ��k�
� � offset�


END


RETURN ShiftLeft �y� s�k�


END Spread
D


Algorithm ���� Spreading of a block of k � s bits across the register in a reverse order creating

an 
s� k� k��sparse register�

Finally� since none of the parameters or the intermediate results are in con�ict� and
since all Fi are identical� we replace the parallel loop of Algorithm ��� by the expression�

x �
l��X
i��

�is

�
�
�

�k � �� � ��l���k �

l��X
i��

��s�k�i
�
� 
x� �

ls � �
�s � � ��

�

k���� �
ls � �s
�s � �k � � 
����

which is under our model computable in a constant time� EF
The last example in this section is the most elaborate and gives the feeling of the full

power of the technique� It is� in a way� an inverse of Example ��� where we produced an

s�k� k�	sparse register from an s	small register by spreading its k	bit blocks� This time
we take an 
s� k�	sparse register and compress its k	bit blocks together into an s	small
register� but without reversing their relative order�

Example 	�
� Let x be an 
s� k�	sparse register from which we produce an s	small
register y by �squeezing� out all zero bits� That is� let t � k � s and� because x is b bits
wide� t � s� k � b� then y�b�i� j � k� � x�b�i� j � s� for � � i � k and � � j � t�

The compression is performed in two steps� shown in Figure ���� which coincide with
two steps of our technique� First� all blocks are copied to contiguous positions by a parallel
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loop of Algorithm ���� Then� the copied blocks are shifted left to the least signi
cant
position while unwanted bits are masked out�

step �

step �

	 	 	

	 	 	

	 	 	

	 s 
t� ��s

	 s

y

x

y

	 	 	

Figure ���� Two step compression of an 
s� k��sparse register�

PROCEDURE Compress �x� s� k� t�


FOR l�	 � TO t�
 DO PARALLEL

y�	 x � �
t�l��� � s � 
l��� � k


END


RETURN ShiftLeft �y� �t�
��s � k� AND ��tk�
�

END Compress


Algorithm ���� Compression of an 
s� k��sparse register�

To replace the parallel loop using Lemma ���� we have to satisfy the lemma#s three
conditions� Obviously� all Fi are identical and parameters are not in con�ict� while we
prove the same for intermediate results by a contradiction�

First� by Lemma ���� we rewrite the parallel loop into

y � x �
t��X
l��

��t�l���
s	�l	��
k 
����

�
t��X
i��

k��X
j��

t��X
l��

x�b�i � s � j� � �i
s	j	�t�l���
s	�l	��
k by De
nition ���

� ��t���
s	k �
t��X
i��

k��X
j��

t��X
l��

x�b�i � s� j� � ��i�l�
s	l
k	j �
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Next� assume that two intermediate results are in con�ict at some bit� which means for
two exponents 
i��l�� �s�l� �k�j� � 
i��l�� �s�l��k�j� the values of bits x�b�i� �s�j��
and x�b�i� �s�j�� are di�erent� Since � � j�� j� � k� this is true i� j� � j� which gives us

i�� l�� � s� l� �k � 
i�� l�� � s� l� �k� Using the same reasoning again� though this time
based on an assumption t � k � s� we get l� � l�� and� 
nally� i� � i�� This makes bits
x�b�i� � s� j�� and x�b�i� � s� j�� identical and thus they can not have di�erent values�
Therefore� expression 
���� replaces the parallel loop of Algorithm ���� Further� it can be

rewritten into x � �ts��tk
�s�k�� which is computable in a constant time under our model� EF

If in Example ��� we set k � � we get Fredman and Willard#s Lemma � in ������ Their
lemma also inspired the name for our 
s� k�	sparse registers� in the lemma they de
ne a
family of d	sparse registers which corresponds to our 
d� ��	sparse registers� Example ���
can be also used to develop the 
eld packing algorithm in ����� Finally� combining Algo	
rithm ��� and Algorithm ��� we get a constant time algorithm which reverses the relative

order of k	bit blocks in a s	small register� where s � l � k �
j
b�k
l��
k

cf� ������

��� Rectangular Registers

In Chapter � we search for the closest neighbour in two dimensions and represent the
universe by a bit map stored in a rectangular register� In this section we de
ne these
registers and their relation to linear registers� We also present some special instances of
rectangular registers and how they are generated using word	size parallelism�

De
nition ��� A rectangular register xr consists of r rows and c columns of bits� where
r � c � b� The bit xr�b�i� j�� for � � i � c and � � j � r� is positioned in the ith column
of jth row� and the bit xr�b��� �� is the least signi	cant bit of xr� The integer value stored
in a rectangular register is

c��X
i��

r��X
j��

xr�b�i� j��
j
c	i � 
�����

i�e� concatenate all rows and read as binary number�

In the notation used for rectangular registers� and later for multidimensional ones� we
could adopt eithermatrix or geometric convention� For example� under matrix convention
bit b�i� j� is on the ith row and the jth column� but under a geometric one on the ith

column and the jth row� We chose to use a geometric convention which will prove more
convenient in x ���

A special rectangular register is a square register �

�However
 their proof did not use word�size parallelism�

�Note
 indices are increasing from left to right and bottom to top�
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De
nition ��� A square register is a rectangular register with the same number of
rows and columns

r � c � p �
p
b � 
�����

Rectangular and linear registers are only a helpful logical abstraction � a special
interpretation of a number� Assuming the value of a number remains unchanged when
we switch its interpretation from a linear xl to a rectangular xr� we get� from eq� 
�����
and eq� 
����� the bijective mapping between bits of two interpretations

xr�b�i� j� � xl�b�i� j � c�
xl�b�k� � xr�b�k mod c� k div c� �


�����

Subsequently� we have a bijective mapping between two di�erent rectangular registers x�

r � c� and x� 
s� d�

x��b�i� j� � x��b�
i� j � c� mod d� 
i� j � c� div d� � 
�����

In our work we require masks to zero 
by AND operations� bits in speci
c portions of
other registers� Such rectangular registers are generalizations of s	small registers from
De
nition ��� and are shown in Figure ����

	 i j

r

c 	
	

c
	

i

j

r

Figure ���� Column� and row�stripe registers SCi�j and SRi�j�

De
nition ��	 A column�stripe register SCi�j has set bits only from column i to j

SCi�j �b�k� l� �

�
� if � � i � k � j � c and � � l � r

� otherwise

�����

and the row�stripe register SRi�j only between rows i and j

SRi�j �b�k� l� �

�
� if � � k � c and � � i � l � j � r

� otherwise �

�����
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Using mapping in eq� 
����� we observe that the column	stripe register SCi�j is also 
c� j�i�	
sparse register from De
nition ��� 
the o�set a � i��

Two special stripe registers are

SR��� �
c��X
i��

�i � �c � � � ShiftRight�
� c� � 
 
�����

with bits set only in the 
rst row and

SC��� �
r��X
i��

�ci �
�rc � �
�c � � �

�b � �
�c � � �

P

SR���

�����

with bits set only in the 
rst column�� These registers� both of which can be constructed
in constant time� are used to generate all other stripe registers in constant time using
word	size parallelism�

Example 	�	� Algorithm ��� generates SCi�j from SC��� by copying S
C
��� to all columns

from i to j � � in parallel� Applying Lemma ���� Algorithm ��� is equivalent to the
expression

SCi�j � SC��� �
j��X
l�i

�l � SC��� � 
�j � �i� � 
�����

PROCEDURE GenerateColumnStripe �i� j�


FOR l�	 i TO j � 	 DO PARALLEL

y�	 SC	�� � �l

END


RETURN y


END GenerateColumnStripe


Algorithm ���� Generation of SCi�j from SC	���

Similarly� Algorithm ��� generates SRi�j by parallel copying of S
R
���� Again using

Lemma ���� we replace Algorithm ��� by

SRi�j � SR��� �
j��X
l�i

�cl � SR��� �
�cj � �ci
�c � � � �cj � �ci 
�����

since� by eq� 
������ SR��� � �
c � �� EF

The next registers we consider are generalization of 
s� ��	sparse register�

�From eq� �����	 we also get P � S
R
	�� � SC	�� 
 where P is de�ned in eq� ����	�
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PROCEDURE GenerateRowStripe �i� j�


FOR l�	 i TO j � 	 DO PARALLEL

y�	 SR	�� � �cl

END


RETURN y


END GenerateRowStripe


Algorithm ���� Generation of SRi�j from SR	���

De
nition ��� A rectangular register x is an s�column �s�row� sparse if all its set
bits are among b�a�si� j� 
b�i� a�sj��� where � � i �



c���a

s

�
and � � j � r 
� � i � c

and � � j �


r���a

s

�
��

In simpler terms� an s	column sparse rectangular register has set bits only in columns
that are s bits apart� A similar characterization holds for row sparse registers��

A number which is SC��h under an r � c rectangular interpretation 
c � h � s for some
integer s� becomes the s	row sparse register xr under the 
s � r�� h interpretation� This
follows by using eq� 
����� and eq� 
������ as for the non	zero bits we have the mapping
SC��h�b�i� j� � xr�b�i� j � s��

Next consider a number which is SR��h under an r�c rectangular interpretation� Under
the linear interpretation it is a 
c � h�	small register� Now we apply Algorithm ���� with
block size k � c� and convert the result back to an r� c interpretation� What we end up
with is an 
s� ��	row sparse register� In other words� application of Algorithm ��� on an
r � c row	stripe register SR��h� with k � c and s � c � h� produces an 
s � ��	row sparse
register with reversed relative order of rows� This observation extends to the reversal of
blocks of rows�

Later we will need to generate an 
s���	column spread register from SC��s by spreading
its columns in reverse order 
cf� Example ��� for linear registers��

Example 	��� We spread only individual columns 
cf� Figure ���� though we could
spread blocks of columns in the same way as we spread blocks of bits in a linear register�
Let x be a column	stripe register SC��s with s � p

c� �� We spread its left s columns
across the register in a reverse order producing an 
s���	row sparse register y�� Formally�
x�b�s� i� �� j� � y�b�j � 
s� ��� i� for � � i � s� The implementation in Algorithm ���
is similar to that of Algorithm ���� though this time we work with columns� Again� the
three conditions of Lemma ��� are satis
ed and thus we can replace the parallel loop in

�In a notation for sparse
 small
 and stripe registers �linear and rectangular	 we leave out the o�set a
appearing in de�nitions
 since it is possible to derive its value from the context � in most cases it is ��

�Obviously
 not all bits in �rst s columns of x need be set�
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Algorithm ��� by the expression�
x �

s��X
i��

�is

�
�
�
SC��� �

s��X
i��

�s�i��	is
�
�

�
x �

s��X
i��

�is

�
�
�
SC��� � �s�� �

s��X
i��

��s���
i
�

�

which simpli
es into �
x � �

s� � �
�s � �

�
�
�
SC��� �

�s
��� � �s��
�s�� � �

�
� 
�����

EF
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Figure ���� Spreading of a stripe across a rectangular register�

The last group of rectangular registers we consider are P
�

c�� and P
�

c��� depicted in
Figure ���� The registers are de
ned by two groups of parameters� the 
rst speci
es the
direction of the slope� and the second� its size� More precisely� the second group de
nes
r and c� the number of rows and columns in the register� and the height of a single block
h� Assuming r � � 
mod h� and since� by De
nition ���� b � r � c� we need only two of
three values� in particular c and the slope

� �
c

h
� 
�����

Formally the registers are de
ned as

P
�

c��
�b�i� j��

�
� if i � b� � 
j mod h� ��c � � � �� � 
j mod c

�
� ��


� �
� otherwise


�����



�� CHAPTER �� WORD�SIZE PARALLELISM

PROCEDURE Spread�D �x� s�


FOR i�	� TO s�
 DO PARALLEL

offset�	 �is

y�	 x � offset


y�	 y AND �SC	�� � �s�i�� � offset�


END


RETURN ShiftLeft �y� s�k�


END Spread�D


Algorithm ��	� Spreading of columns across the register in a reverse order creating an s�column

sparse register�

and

P
�

c���b�i� j� �

�
� if i � c� b� � 
j mod h� ��c � � � c� �� � 
j mod c

�
� ��


� �
� otherwise


�����

where in both equations � � i � c and � � j � r� Note� P � P
�

b�b
� P

�

b�b
� where P is

de
ned in eq� 
����� In addition to P we need two more special instances of P�
c��
and P�

c��
�

in a square register let � � �� then� by eq� 
����� and eq� 
������

P� � P
�
p�� and P� � P

�
p�� � 
�����

The border between set and unset bits in these registers is a diagonal running from the
top left corner� in P�� and top right corner� in P��

�
	 	

	

	

�

�

�

�

�

r r

h

	 c
	

	 c
	

h

	

	

Figure ��	� Graphical representation of rectangular registers P�c�� and P
�
c�� for � �

�c
r
� �c�

b
�

Because of the bijective mapping between linear and rectangular interpretations of
numbers� all operations on linear registers are directly applicable to the rectangular ones�
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The most interesting are shifts� and it is not hard to see that a shift of a number#s
rectangular interpretation k rows down 
up� is equivalent to shift of its linear counterpart
k � r bits to the left 
right��

Shifting by columns is slightly more complicated� and 
rst we investigate the e�ect of
a shift of linear interpretation xl on a rectangular one xr� Shifting xl h bits to the right�
sets xl�b�k� to the value of xl�b�k�h�� Further� let these bits correspond to xr�b�i�� j��
and xr�b�i�� j�� respectively� Now� if xr�b�i�� j�� and xr�b�i�� j�� are both in the same
row� that is if j� � j�� the shift looks like a shift inside a row� However� if they are in
di�erent rows� xr�b�i�� j�� is �wrapped around� to the right end of a row� For example�
in Figure ��� registers P�

c��
and P

�

c��
are shifted to the right for k bits and the wrapped

around bits appear in a row above of the original one� Similar conclusions can be drawn
for shift to the left illustrated in Figure ���� This brings us to the constant time shifting
of rectangular registers by rows and columns�

k	 c

h � �

r

	
k	 c

h � �

r

	

Figure ��
� Shifting of P�r�� and P
�
r�� k bits to the right�

Example 	��� First� as mentioned� shifting k rows up 
ShiftUpRows� and down

ShiftDownRows� is equivalent to shifting right and left k � c bits respectively�

Shifting k columns left and right is basically shifting left and right for k bits respec	
tively� with additional elimination of unwanted portions of the result� For example� in
the shift k columns right 
cf� Figure ���� we want to eliminate left k columns which form
SC��k� Similarly� at the shift k columns left 
cf� Figure ���� we have to deal with the right

k columns � SCk�c�k � We can eliminate columns by setting them either to � or to � 
see
Figure ������ In Algorithm ��� we indicate this by the third parameter shiftedIn� There
is similar algorithm for shifting to the left 
ShiftLeftColumns� while all algorithms for
shifting by rows or columns have the same parameters�

Finally� since column	stripe and row	stripe registers can be generated in constant time

see Example ����� all shifting algorithms run in constant time as well� EF
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k	 c

r

	

h

k	 c

r

	

h

Figure ���� Shifting of P�r�� and P
�
r�� k bits to the left�

PROCEDURE ShiftRightColumns �x� k� shiftedIn�


x�	 ShiftRight �x� k�


IF shiftedIn THEN RETURN x OR SC	�k


ELSE RETURN x AND SCk�c�k


END


END ShiftRightColumns


Algorithm ��
� Shifting of the rectangular register x k columns to the right�

��� Multidimensional Registers

The last interpretation of a number is an obvious generalization to d dimensions�

De
nition ��� The hyper�cuboidal register xc has the following properties�


i�� it has dimensions fs�� s�� � � � � sdg where d � O
�� is some prede	ned constant�


ii�� the total number of bits in a register is b �
Qd

i�� si�


iii�� the bit in position 
��� ��� � � � � �d�� where � � �i � si and � � i � d� is denoted by
xc�b���� ��� � � � � �i� � � � � �d��


iv�� bit xc�b��� �� � � � � �� is the least signi	cant bit�


v�� the integer value stored in the register is

s���X

���

s���X

���

� � �
sd��X

d��

�
xc�b���� ��� � � � � �i� � � � � �d� � �

Pd
k
� 
k

Qk��
j
� sj

�
� 
�����
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Figure ����� Results of ShiftRightColumns�P
�
r��� k� FALSE� and

ShiftRightColumns�P
�
r��� k� TRUE��

Setting d to � or � in De
nition ��� and eq� 
����� gives corresponding de
nitions for
linear or rectangular registers respectively� Similar observation can be made for every
multidimensional entity in this section�

In x ��� we dealt with a general form of rectangular registers and similarly we could
deal with hyper	cuboidal ones� However� we are interested only in its special form�

De
nition ���� A hyper�cubic register is a hyper�cuboidal register with the same num�
ber of bits in all dimensions 
� � i � d�

si � p �
d
p
b 
�����

As with as rectangular and linear registers� hyper	cubic registers are also just an
interpretation of a number� The bijective mapping between di�erent interpretations is
based on the fact that change of an interpretation must not change the value of a number�
Let xc be a hyper	cubic� xr a pd�k � pk rectangular� and xl a linear interpretation of the
same number� Then bits of xc and xl are related by

xl�b�

dX
k��

�k � pk��� � xc�b���� ��� � � � � �k� � � ��d� � 
�����

and� using eq� 
������ bits of xc and xr by

xr�b�i� j� � xl�b�i� j � pk� by eq� 
�����

� xl�b�

kX
l��

�l � pl��� � 

dX

l�k	�

�l � pl�k��� � pk�

� xc�b���� ��� � � � � �l� � � ��d� by eq� 
�����
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where

� � i �
kX
l��

�l � pl�� � pk

� � j �
dX

l�k	�

�l � pl�k�� � pd�k �


�����

There are some useful mappings of special hyper	cubic registers to rectangular ones�

Example 	�
� Consider a hyper	cubic register with bits set if �k � �� Then� using
eq� 
������ indices of set bits in its pd�k � pk rectangular interpretation are xr�b�i� j��
where � � pk�� � i � 
� � �� � pk�� for every row � � j � pd�k � Thus� by eq� 
������ xr is
a column	stripe register SC



p���
	��
p� where p
	 � pk�� 
see Figure ������ EF

	 � � � � � � � p

	

pd�k

�

	 pkp� � � p�

Figure ����� Rectangular interpretation of a hyper�cubic register with bits set if �k � � is a

column�stripe register�

The last numbers we introduce have the following hyper	cubic interpretation

Hk�l�b� � � � � �k� � � � � �l� � � �� �

�
� if �k � �l
� otherwise


�����

and

Hk��l�b� � � � � �k� � � � � �l� � � �� �
�
� if �k � p� �l
� otherwise �


�����

That is�Hk�l has those bits set for which the kth index is smaller than the lth 
for k � l�� A
similar characterization holds for Hk��l� Figure ���� shows the relation between indices in
both registers� while the following example investigates their rectangular interpretations�

Example 	��� Consider pd�k � pk rectangular interpretation xr of Hk�l� First� by
eq� 
����� and eq� 
������ the set bits of xr�b�i� j� are

i �
k��X
g��

�g � pg�� � �k � pk�� �
k��X
g��

�g � pg�� � �l � pk�� � 
�����
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�k
p

�l

p

�l

p

�k
p

Figure ����� Relation between kth and lth index of Hk�l and Hk��l�

Further� if h � pl�k and � � p�k�l� then by eq� 
����� we get

j mod h �

�
� l��X
g�k	�

�g � pg�k�� � �l � pl�k�� �
dX

g�l	�

�g � pg�k��
�
A mod h

�
l��X

g�k	�

�g � pg�k�� � 
�l � pk��� � pl��k

�
l��X

g�k	�

�g � pg�k�� � 
�l � pk��� � ��� �

Next� we rewrite
Pl��

g�k	� �g � pg�k�� to
Pk��

g��k�l	� �g � pg��k	l�� and using eq� 
����� get

i �
�����
j mod h� � k��X

g��

�g � pg�� �
k��X

g��k�l	�

�g � pg��k	l�� � �
����

�
�����
j mod h� � k��X

g��

�g � pg�� �
k��X

g��k�l	�

�g � pg��
����

�
�����
j mod h� � �k�lX

g��

�g � pg��
����

where the sum is at most p�k�l � � � � � � and thus i � b�
j mod h � ��c � �� This
inequality de
nes P�r�� from eq� 
�����& that is� number Hk�l is in pd�k � pk rectangular

interpretation P
�

r��
where � � p�k�l� Similarly� Hi��j is in a rectangular interpretation

P
�

r�� as de
ned in eq� 
������ EF
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��	 Extremal Bits in Linear Registers

In the rest of this chapter we are looking for the extremal set bits in registers� The 
rst
register we consider is a linear register and in particular we search for the left most 
the
least signi
cant� set bit in an s	small linear register�

Lemma ��� Let s�� dlg se� � � b� Then there is a constant time algorithm which 	nds
the left most set bit in an s�small linear register using O
m� bits of memory�

Proof
 Without loss of generality we assume the number in question x �� � and
s� � dlg se � � � b� The main idea of Algorithm ��� is to iterate i from � to s � �
and count the number of iterations in which no less signi
cant bit than x�b�i� is set�
Obviously� this count gives us the index of the least signi
cant set bit in x�

PROCEDURE Lmb �x�

xd�	 Distribute
D �s 
 	� s� x�


FOR i�	� TO s�
 DO PARALLEL

offset�	 �i
s���


xs�	 Negate ��xd AND ���i���
��offset�� � ��s�
��offset� AND ��s�offset�

END


xs�	 ShiftLeft �xs� s�


RETURN ShiftLeft �xs � ��s
��s�
����s���
�� s�s�
� AND ��s���
�

END Lmb


Algorithm ���� Searching for the left most set bit in an s�small linear register�

In detail� the algorithmworks in three steps� 
rst� a block of s�� least signi
cant bits
of x is distributed across the register using Algorithm ���&� second� the most signi
cant
bit in the ith copy is set i� none of the less signi
cant bit in the copy than the ith is set&
and third� the number of set bits is counted� The last two step are implemented using
word	size parallelism�

To describe the second step consider an expression


xi � 
�i	� � ��� � 
�s � �� 
�����

where xi is the i
th copy of s�� least signi
cant bits in x� The 
rst term of the expression

masks out all but i left most bits� and the second term �slides� the remaining set bits to
position b�s � ��� In other words� if none of the i left most bits was set then the most
signi
cant bit is � and otherwise it is �� Obviously� if we negate expression 
����� and
mask it with �s we end up with the most signi
cant bit set i� none of i left most bits in xi

�Note the most signi�cant bit of a block
 and thus in each of its copies
 is ��
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was set� This is also the expression used in each iteration of the second step � the parallel
loop of Algorithm ���� The most signi
cant bits of all copies form 
s� �� ��	sparse linear
register with an o�set a � s 
see De
nition ����� Finally� we shift the register for s bits
left and get xs �

Pq��
i�� xs�b�i � t��it� where t � s� �� and q � t � b�

The last step of Algorithm ��� counts the number of set bits in xs� Let us multiply



xs by � �
Pq��

j�� �
jt � �qt��

�t�� which gives

xs � � �
�
q��X
i��

xs�b�i � t� � �it
�
�
�
�q��X

j��

�jt

�
A �

��q���X
k��

�
B��kt � X

	�i�j�q
i�j
k

xs�b�k � t�

�
CA � 
�����

Since t � s� � and q � s all internal sums are smaller than q � �t and thus they are not
in con�ict 
cf� Lemma ����� Moreover� the sum at k � q � � is the sum of all sparse bits
in xs� From eq� 
����� we also get the bound 
q � �� � t � dlg qe � b� which� in our case�
translates into s� � � � dlg se � b�

Finally� since all three conditions of Lemma ��� are satis
ed we replace the parallel
loop of Algorithm ��� by an expression�

xs �

��
xd �

�s��X
i��


�i	� � �� � �i�s	��
��

�
s��X
i��


�s � �� � �i�s	��

�
�

s��X
i��


�s � �i�s	���

�

��
xd �

�s��X
i��

�i�s	��	� �
s��X
i��

�i�s	��
��

� �s �
s��X
i��

�i�s	��

�
�
�
�s �

s��X
i��

�i�s	��

�

� 

xd � 
� � �� � �� � �

where

� �
s��X
i��

�i�s	��	� �
��s	��� � �
�s	� � � � � �

s��X
i��

�i�s	�� �
�s

�	s � �
�s	� � � � and � � �s � � �

This proves that Algorithm ��� runs in O
�� time and O
m� bits of memory� QED
This leads us to the theorem�

Theorem ��� There is a constant time algorithm which computes the index of the left
most set bit in a linear register using O
m� bits of memory�

Proof
 Algorithm ���� works in two phases� in the 
rst phase it splits linear register

x into t blocks of s �
lp

b� �
m
bits each and 
nds the left most non	zero block& in the

second phase it computes the index of the left most set bit in the previously found block�
The combination of results of both phases gives the index of the left most set bit in x�


For sum manipulation formulae see e�g� ���
 ch����
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PROCEDURE LMB �x�

s�	 Floor �sqrt �x� � 
�
 t�	 Ceiling �m�s�


�� ��� phase � ��� ��

FOR i�	� TO t�
 DO PARALLEL �� Representatives ��

offset�	 �is

xr�	 �x OR ��x AND ���s���
��offset�� � ��s���
��offset�� AND ��s���offset�


END


xr�	 ShiftLeft �xr� s�
�


y�	 Compress �xr� s� 
� t�


kr�	 Lmb �y�
 �� the index of the block ��

kr�	 kr � s
 �� which starts at the bit ��

�� ��� phase � ��� ��

x�	 ShiftLeft �x� kr� AND ��s�
�

kb�	 Lmb �x�


RETURN �kr � kb�


END LMB


Algorithm ����� Searching for the left most set bit in the linear register x�

In the 
rst phase each block xi 
rst �elects� its representative� block#s most signi
cant
bit xi�b�s� is set i� at least one bit in the block is set� The election is equivalent to test
if xi�b�s� � � or if some less signi
cant bit is � which is used in�

xi � �s��
�
�
�


xi � 
�s�� � ��� � 
�s�� � ���� �s��

�

�����

where the second term employs the same �sliding� of set bits to the most signi
cant
position as it was used in eq� 
������ Further� eq� 
����� simpli
es into�

xi �
�

xi � 
�s�� � ��� � 
�s�� � ��

��
� �s�� � 
�����

which is used in the parallel loop of Algorithm ���� � another application of word	size
parallelism� The loop produces an 
s� ��	sparse register of representatives that are shifted
to the left� to the least signi
cant position� and compressed 
using Algorithm ���� into a
t	small linear register y�
 The phase concludes by computing the left most set bit in y


using Algorithm ���� which also corresponds to the left most non	zero block�

The found block is in the second phase shifted to the least signi
cant position which
permits re	application of Algorithm ��� on it� Finally� the indices from both phases are
combined into the 
nal result�

Next� parameters of the parallel loop in Algorithm ���� are not in con�ict and all
parallel operations are the same� Further� by considering separately the most signi
cant

�Note that t �
�
b
s

�
� s �

lp
b
 �

m
and hence we can use Lmb and Compress�
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bit of each block we built a �
re	wall� bit between blocks and hence also intermediate
results are not in a con�ict� Therefore� using Lemma ���� we can replace the loop by the
expression

xr �

�
x �

��
x � 

�s�� � ��

t��X
i��

�is�
�
� 
�s�� � ��

t��X
i��

�is
��

�
�
�s��

t��X
i��

�is

�

�

�
x �

��
x � 
�s��

t��X
i��

�is�
�
� 
�s��

t��X
i��

�is�

��
�
�
�s��

t��X
i��

�is

�

�����

which simpli
es into 
x�

x��������� where � � �s��Pt��
i�� �

is � �st�s����s��

�s�� � QED
Unfolding function calls in Algorithm ���� and optimizing code a bit� we get less than

�� instructions 
excluding assignments�� none of which is branching 
cf� ������ This makes
Algorithm ���� especially suitable for modern pipelined computer architectures� Finally�
all algorithms in this section assume non	zero parameters� and to make them robust� a
proper test has to be added�

It is not hard to verify that by omitting negation in a parallel loop of Algorithm ��� we
get function Rmb which 
nds the right most set bit of s	small linear register� Furthermore�
by replacing calls of Lmb by calls of Rmb in Algorithm ���� we get function RMB which
computes the right most set bit in a linear register��� This brings us to the theorem�

Theorem ��� There is a constant time algorithm which computes the index of the right
most set bit in a linear register using O
m� bits of memory�

Proof
 See discussion above or refer to the computation of blgxc in ������� QED

��
 Extremal Bits in Rectangular Registers

In the previous section we searched for extremal bits in linear registers and here we do
the same in rectangular ones� In rectangular registers we have four extremal set bits�
the left most� the bottom most� the right most and the top most� They are not de
ned
unambiguously� because there can be more than one set bit in the same row or column�
However� in this work any of these ambiguous bits is acceptable� Therefore� and because
of bijective mapping in eq� 
������ function LMB from Algorithm ���� is used to 
nd the
bottom most set bit� Similarly� procedure RMB is used to 
nd the top most set bit� Thus�

�	The computation of the most signi�cant set bit in x is equivalent to blg xc�
��Indeed
 our algorithms were inspired by work of Fredman and Willard
 though
 because of the word�

size parallelism
 we could develop and verify them in a more straightforward manner�
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Corollary ��� The indices of the bottom most and the top most set bits in a rectangular
register are computed in constant time using O
m� bits of memory�

Let BMBofRectReg �x� r� c� 
TMBofRectReg �x� r� c�� denote the function that com	
putes the index of the bottommost 
topmost� set bits in r � c rectangular register x�

To 
nd the left most and the right most set bits it is su�cient to 
nd the extremal
non	zero columns and then choose any set bit in them � in particular the top or the
bottom most� We describe in detail only the algorithm for search of the left most non	
zero column� while the search for the right most is just sketched�

Now� if we count the number of bits in each column� then the left most non	zero
count represents the left most non	zero column� Unfortunately� we can count bits only in
columns of s	column sparse rectangular registers�

Lemma ��� Let x be an s�column sparse rectangular register 
dlg re � s � c� and let

y � 

x � SC���� div �c�r���� � SR��� � 
�����

Then the value stored in bits y�b�is� �� � � � y�b�
is � s � ��� ��� is the sum of bits in the

is�th column of x� That is

Ps��
k�� y�b�is� k� �� � �k �Pc��

l�� x�b�is� l��

Proof
 Algorithm ���� 
rst applies eq� 
����� in parallel for all non	zero columns
xi� Note� a single column is a 
c� ��	sparse linear register� Now� since u �

�
c
s



� and

t � c� q and � in eq� 
����� became r and SC��� respectively� Further� using mapping from

eq� 
������ we observe that eq� 
����� leaves the counting result for ath column in the ath

column of the 
r � ��st row for any � � a � c� dlg re 
cf� De
nition ����� Therefore� we
must shift results down for r�� rows and mask out the unwanted rows 
see Example �����

PROCEDURE CountBits �x� s�


FOR l�	� TO u�
 DO PARALLEL

y�	 xi � SC	��


END


RETURN ShiftDownRows �y� r�
� FALSE�

END CountBits


Algorithm ����� Counting the number of set bits in individual columns of the s�column sparse

rectangular register x�

Next� all operations in the parallel loop are identical� and parameters are not in
con�ict� To prove that partial results are not in con�ict either we observe that in the
proof of Lemma ��� internal sums of eq� 
����� are all smaller than t� which in our case
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is r� Now� since s � dlg re no two internal sums inside an individual column nor between
two columns are in con�ict� Finally� by Lemma ���� the parallel loop of Algorithm ����
is replaced by x � SC��� and subsequently the whole algorithm by eq� 
������ QED

Now it is easy to 
nd the extremal non	zero column of s	column sparse register�

Lemma ��� Let x be an s�column sparse rectangular register� where dlg re � s � dpc� �e�
Then there is a constant time algorithm which 	nds the left 
right� most non�zero column
in x using O
m� bits of memory�

Proof
 Algorithm ���� adds up each column and then 
nds the left most non	zero
sum� Replacing the call of function LMB by a call of RMB 
right most set bit� we get pro	
cedure Rmc which 
nds the right most non	zero column� The lemma follows immediately
from Lemma ���� and Theorem ���� QED

PROCEDURE Lmc �x� s�


xc�	 CountBits �x� s�


xr�	 LMB �xc�


RETURN xr DIV s


END Lmc


Algorithm ����� Searching for the left most non�empty column in the s�column sparse rectan�

gular register x�

It remains to show how to 
nd the left most non	zero column in an arbitrary rectan	
gular register�

Lemma ��� There is a constant time algorithm which computes the index of the left
most non�empty column in a rectangular register x using O
m� bits of memory�

Proof
 Algorithm ���� works in similar two phases as Algorithm ����� in the 
rst
phase it splits the register into column stripes s � dpc� �e bits wide and 
nds the left
most non	zero stripe� which� in the second phase� searches for the left most non	zero
column� Combination of results of both phases gives the index of the searched column�

First� each stripe elects its representatives 
cf� Theorem ���� using eq� 
������ The
election is done in parallel for all stripes and for all rows� where the double parallel loop can
be replaced by a single one� The representatives are than shifted to the left	most column
creating an s	column sparse rectangular register xr� The left most non	zero column in
xr� which de
nes the left most non	zero stripe� is then found using Algorithm �����

In the second phase� the found stripe is shifted to the left most column and then spread
across the register using Algorithm ��� creating again an s	column sparse rectangular
register� However� this time the columns are in a reverse order which is taken into
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PROCEDURE LMC �x� r� c�


�� ��� phase � ��� ��

s�	 Ceiling �Sqrt �r� � 
�
 t�	 Ceiling �r�s�


FOR j�	� TO r�
 DO PARALLEL �� Representatives ��

FOR i�	� TO t�
 DO PARALLEL

offset�	 �is�jc

xr�	 �x OR ��x AND ���s���
��offset�� � ��s���
��offset�� AND

��s���offset�


END


END


xr�	 ShiftLeftColumns �xr� s�
� FALSE�


stripe�	 Lmc �xr� s��s
 �� start of the left most non�zero stripe ��

�� ��� phase � ��� ��

x�	 ShiftLeftColumns �x� stripe� FALSE�


x�	 Spread�D �x� s�


inStripe�	 s � Rmc �x� s�


RETURN �stripe � inStripe�

END LMC


Algorithm ����� Searching for the left most non�empty column in the r� c rectangular register

x�

account by applying the function Rmc� which returns the right most non	zero column�
The combination of both phases# results gives the searched column�

Finally� since all three conditions of Lemma ��� are satis
ed we can replace parallel
loops in Algorithm ���� by the expression�
x�
��

x�

�s������
t��X
i��

r��X
j��

�is	jc�
�
�
�s������

t��X
i��

r��X
j��

�is	jc
��

�
�
�s���

t��X
i��

r��X
j��

�is	jc

�

which� using SC��� from eq� 
����� and � �
Pt��

i�� �
is � �st��

�s�� simpli
es into�
x �

��
x � 
�s�� � SC��� � ��

�
� 
�s�� � SC��� � ��

��
�
�
�s�� � SC��� � �

�
� 
�����

QED
Note� that for r � � eq� 
����� becomes eq� 
����� as expected� Further� it is not hard

to see if in Algorithm ���� we swap calls of functions Lmc by Rmc we get procedure RMC
which 
nds the right most non	zero column in x� This brings us to the 
nal theorem�

Theorem ��� Let x be a rectangular register� then there are constant time algorithms
which 	nd the extremal set bits in x using O
m� bits of memory�
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Proof
 To 
nd the top most and the bottom most set bit see Corollary ���� Further�
Algorithm ���� 
nds the left most set bit of a rectangular register� while the implementa	
tion of a similar function to 
nd the right most set bit� RMBofRectReg� is similar� QED

PROCEDURE LMBofRectReg �x� r� c�


i�	 LMC �x� r� c�
 �� 
rst 
nd the column ��

x�	 ShiftLeftColumns �x� row� FALSE�
 �� shift it to the left ��

x�	 Compress �x� r� 
� c�
 �� compress the rest ��

j�	 LMB �x�
 �� and get the row ��

RETURN �i� j�

END LMBofRectReg


Algorithm ����� Searching for the left most set bit in the r � c rectangular register x�

��� Extremal Bits in Multidimensional Registers

In this section we are interested in hyper	cubic registers only� The searching algorithms
for extremal set bits in them heavily depends on a mapping between multidimensional
and rectangular registers in eq� 
������ As in two dimensions� many set bits may have the
same kth dimension index� and we accept any such bit as a feasible solution�

Theorem ��� Let x be a hyper�cubic register� Then there is a constant time algorithm
which 	nds the extremal set bits in the kth dimension of x using O
m� bits of space�

Proof
 In general there are two extremal set bits in the kth dimension� the left most
and the right most � the one with the smallest and with the largest kth index respectively�
In Example ��� we saw that hyper	cubic registers with set �th bit in the kth dimension
are under rectangular interpretation column	stripe registers� Thus� the search for the left
most set bit in the kth dimension of x is equivalent to the search for the left most set bit in
its pd�k�pk rectangular interpretation as shown in Algorithm ����� The implementation
of RMBofCubic is almost identical� QED

PROCEDURE LMBofCubic �k� x�


RETURN LMBofRectReg �x� pd�k� pk�


END LMBofCubic


Algorithm ����� Searching for the left most set bit in the kth dimension of the hyper�cubic

register x�
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��� Conclusions

This chapter used the programming technique of word�size parallelism in a number of
examples� The main advantage of word	size parallelism is that it permits a formal devel	
opment of fast sequential algorithms using parallelism inherently available in processor#s
instruction set� It is not surprising that the operations fromwhich the technique bene
ted
most are integer multiplication and division� and bitwise Boolean operations� The intu	
ition behind this is that multiplication and division permit rapid information spreading
across a register�

We also formally introduced linear� rectangular and hyper	cubic registers� revealing
them as di�erent interpretations of one another� Finally� using word	size parallelism we
developed constant time algorithms for search of extremal set bits in the various registers�
These algorithms will be used in the following chapters�
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�� CHAPTER 	� THE CLOSEST NEIGHBOUR IN CONSTANT TIME

Chapter � dealt with the problem of a simple membership over a 
nite universe� In
this chapter we extend the operations to include 
nding the closest value in the given set
to a query element�

The chapter consists of three major parts� First we de
ne the problem with some
additional notation and review the literature� The bulk of the chapter deals with solutions
to the problem in one� two and d dimensions� The 
nal section includes some conclusions
and a short discussion�

��� Introduction

Given a set of points� a query point and a distance metric� the closest neighbour problem
is that of determining the point of the set whose distance from the query point is minimal�
Note� that if the query point is a member of the given set then it will be the solution�
Furthermore� if two or more elements are of equal distance from the query point we choose
one of them arbitrarily� Most of our attention will be restricted to the L� and L� norms�
though we will keep as much of the discussion as possible independent of the norm�

The closest neighbour problem arises in many other areas such as modeling of robot
arm movements and integrated circuits layouts 
cf� ������ In computational geometry
the problem is usually solved using Voronoi diagrams� Furthermore� the problem can
be generalized by considering the points as multidimensional records in which individual

elds are drawn from an ordered domain 
cf� ������

In x ����� we give a general overview of the problem� but the principal version we
address in this chapter is a static neighbourhood problem in a bounded universe on a d	
dimensional grid 
d is 
xed� under the norm L�� The solution to the problem is presented
as a combination of two straightforward approaches� under the 
rst� the universe is
represented by a bit map& and under the second� each point of the universe �knows� who
is its closest neighbour � it has a pointer to the closest point� Under the model we use

cf� De
nition ���� these approaches useMd andMd � lgM bits of space respectively� The
advantage of the 
rst approach is that it minimizes space required if the measure is based
solely on the size of the universe� The second guarantees constant response time� Using
word	size parallelism introduced in x � and some geometric properties of the norm L��
we are able to combine both approaches into a constant time solution using Md� o
Md�
bits of space�

Our general approach is to divide the universe into regions we call tiles� Each tile
contains a number of universe points equal to the number of bits necessary to write down
the coordinates of an arbitrary point in the universe� If any of the points in a tile are
present� then we simply store a bit map representation of a tile& and if a tile is empty we
store a candidate value� This value is the closest element in the entire set to the middle
of the tile� Note that because of a choice of size of a tile� both options require the same
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amount of space� The method� however� does not seem to apply to the norm L� because
candidate values there do not restrict the searching space su�ciently�

In this chapter we show that the closest neighbour to any query point� in a d	
dimensional space under the norm L�� can be determined by inspecting O
d� ��d� � O
��
tiles� On the other hand� word	size parallelism facilitates 
nding the closest element in a
tile represented by a bit map�

��� De�nitions and Background

In general we deal with the set of points in d	dimensional space where d is a prede
ned
constant� The points are de
ned by d orthogonal coordinates

T � 
x�� x�� � � � � xd� 
����

where each individual coordinate is chosen from a bounded universe of size M as de
ned
in De
nition ����

Given two points T� � 
x���� x���� � � � � x��d� and T� � 
x���� x���� � � � � x��d�� there are a
number of di�erent measures of distance between them� However� the family of distance
functions we use has a general form 
cf� ���� p������

�f 
T�� T�� � 

dX
i��

���
x��i � x��i�
f
���� �f 
����

for a real parameter � � f � �� The distance function �f 
�� also de
nes Lf � the norm
of the space� The family of the distance functions de
ned this way satisfy the triangle
inequality�

�f 
T�� T�� � �f 
T�� T�� � �f 
T�� T�� � 
����

Although in eq� 
���� � � f � �� we will focus on f � � which� as the limit as
f ��� de
nes the distance function

��
T�� T�� � max
��i�d

jx��i � x��ij � 
����

When d is � or �� things are a bit easier� First� when d � � eq� 
���� becomes jx��� � x���j
for any f � Secondly� Lee and Wong 
����� proved that in two dimensional space 
d � ���
a search for the closest neighbour under L� is computationally equivalent to a search
under L��

In this chapter we use the ERAM machine model from De
nition ���� The instruc	
tion set of this model includes integer multiplication and division� and bitwise Boolean
operations� while the width of a memory register and transportation channel is m bits
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m � lgM�� In accordance with De
nition ��� we assume that one memory register is
large enough to store one coordinate of a point� Further� d memory registers are grouped
together and they can represent either one point in the universe or a b � d �m point
small universe called a tile� Note that b is also the width of ERAM arithmetic registers
and� therefore� the active block of ERAM� its processor� can handle one tile at a time �
reading b � d �m bits takes time d but arithmetic on them only takes unit time�

Based on eq� 
���� we formally de
ne the problem�

De
nition ��� Let N be a subset of points from the universe M � �� � � �M �d� The
static closest neighbour problem is to represent these points in a data structure so
that given a query point� T � M� the closest member of N under the norm Lf can be
found e�ciently�

Note that if the query point is in the set� then it is its own closest neighbour� Furthermore�
if there are several points of minimal distance to the query point� any of them is a
satisfactory answer� The dynamic version of a problem is addressed in x ��

All solutions presented in this chapter consist of two parts� 
rst we explain how to
search for the closest neighbour in a small� b	point universe� and second how to search in
a big Md	point universe 
Md � �b��

Throughout the section we assume that all divisions which de
ne the size of a problem
at hand do not produce a reminder� It can be veri
ed� that by dropping this assumption�
all algorithms and data structures remain correct� though the third order terms of the
space bounds may be changed�

����� Literature Background

Finding the closest element in a set to a query element is an important problem arising
in many sub
elds of computer science� including computational geometry� pattern recog	
nition� VLSI design� data compression and learning theory 
cf� ���� ��� ����� We will
highlight some of the key ideas that have been applied to various versions of the problem
and relate them to the approach taken in our solutions�

As noted in previous section� there are several versions of the problem� Clearly� the
number of dimensions� d� and the distance norm� typically L�� L� or L�� impact the
appropriate choice of methods�

First we consider a continuous searching space 
domain�� and in it� the basic static
version of the problem and its deterministic solutions� In one dimensional space� where
all norms are equivalent� there is a simple logarithmic lower bound under the comparison
based model� which is matched by a binary search algorithm�

�A comparison based model is essentially a pointer machine model �cf� �����	�
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In two dimensions and under the Euclidean norm� L�� the problem is also known as a
post�o�ce problem 
����� and is related to the point�location problem 
cf� ������ The most
common approach to solve it is to use Voronoi diagrams 
cf� ���� ��� ����� which gives
logarithmic running time 
see also ������ However� Chang and Wu in ���� went outside the
comparison based model� Using hashing they achieved constant running time at the cost
of using� in the worst case� O
N��M� words� All Voronoi diagram based approaches have
similar bounds also under the norms L� and L�� although the diagrams have di�erent
shapes 
������ Finally� most logarithmic solutions generalize to higher dimensions at the

expense of using O
N�d��
� words 
�������

Going to probabilistic solutions� we observe that they range from expected logarithmic
time under the comparison based model 
cf� ���� ������ to expected constant time under
the random access machine model which includes integer division and multiplication

cf� ������ All mentioned solutions use O
N� words�

The next distinction is between static and dynamic versions of the problem� Unlike
the static problem� there is no known e�cient deterministic solution to the dynamic ver	
sion� There are� however� poly	logarithmic expected time algorithms to maintain Voronoi
diagrams under the comparison based model 
����� and constant time probabilistic solu	
tions under the random access machine model with integer division and multiplication

cf� ���� ����� Both of these use O
N� words�

This distinction can be extended even further� One version is to consider the problem
of being given the set and a single query point 
or perhaps a few points� and being asked
for the closest set member to the query point 
cf� ������ Another form of the problem
is not to allow the preprocessing otherwise inherently present in all above mentioned
static solutions� In this case� we are given the set of points and when the query comes�
only the part of a data structure� relevant to the query point� is constructed 
���� � lazy
construction� The 
rst queries take  
N� time� but the subsequent ones might take less
time until� eventually 
when the complete structure is constructed�� they are answered
in a logarithmic time� Another variation restricts search to the closest neighbour inside
a speci
c angle 
cf� ���� ������ This problem arises in geographic applications 
������

A generalization of the problem is to 
nd the k closest neighbours where k is a prede	

ned constant� Chazelle et al� in ���� use 
ltering search 
����� to present a logarithmic
time solution which they claim is extensible to higher dimensions� The main idea of

ltering search is a two phase approach� 
rst restrict the searching space to a small
enough area so that the second phase 
nds the solution e�ciently� The two phases in our
solutions� though substantially di�erent� have similar roles�

A further generalization is to search for the kth closest� or k closest neighbours� where
k is not 
xed in advance 
cf� ������ Arya et al� in ���� present a logarithmic approximate
solution to the later problem for any number of dimensions and any 
xed norm� Their
approach is to recursively split space into smaller� d	dimensional boxes� with a limited
ratio between the longest and the shortest side� Splitting is a very common technique in
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neighbourhood related problems 
among others also ���� ���� ���� ����� and we apply it
in our solutions as well� However� the split in our case is controlled by the size of the
universe and not by the size of the set�

The 
nal distinction we consider is between a continuous and discrete domain upon
which� in combination with a bounded universe� we concentrate in this work� The
bounded discrete universe permits completely di�erent data structures� For example�
Karlsson in ����� and Karlsson� Munro and Robertson in ���� adapt the van Emde Boas
et al� one	dimensional strati
ed trees 
����� to two dimensions� Thus they achieve� for a
static problem in a universe of size M �M points and under the norms L� and L�� a
worst case running time of O
log���M� using O
N� words�

On the other hand� the pattern recognition approach for the same problem usually
requires O
N� searching time and uses a plain M �M bit map though there are cases
which use M� words rather than bits 
cf� ������� Because of the nature of digitized
images on large point sets the  
M�� bits of space is usually the best one can achieve�
The universe in our solutions is essentially represented by a bit map as well� To search for
the closest neighbour in a vicinity of a query point� we use word	size parallel algorithms�
When the neighbour is farther away� we use additional information stored in the structure�

Finally� the only known lower bound under the cell probe model on the space required

to support constant time search in a bounded discrete universe is the trivial one�
l
lg
�
M
N

	m

see also eq� 
������

��� One Dimension

First we study search for the closest neighbour in one dimension� The family of distance
functions from eq� 
���� simplify to

�
T�� T�� � jx� � x�j 
����

where x� and x� are coordinates of the respective points�

We present two algorithms� the 
rst assumes the size of the universe is at most m
consecutive points� and the second one deals with up to M � �m points� We start with
the smaller universe�

Theorem ��� Let the size of the universe be m points and let N be the subset of that
universe� Then there is an algorithm which 	nds the closest neighbour in N to a query
point in constant time using m bits of memory for the data structure and O
m� bits for
internal constants that do not depend on N �

Proof
 We represent the set as a simple bit map� domain� over the m points of the
universe� The presence of the point U � 
u� is indicated by bit u being set to �� i�e�
domain�b�u�

�
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To 
nd the right neighbour of the point T � 
x� we simply mask out all bits up
to 
but not including� domain�b�x� and then 
nd the left most bit which is set� The
left neighbour is found in a similar manner� Algorithm ����� gives pseudo	code for this
procedure� QED

PROCEDURE SUneighbour �domain� T�


�� Right neighbour� ��

right�	 ShiftRight �P� x�
 �� P � 	�� this zeros the left most x bits �cf� eq� ����

� ��
N��	 LMB �domain AND right�
 �� left most bit by Algorithm ����� ��

left�	 ShiftLeft �P� m�
�x�
 �� Similarly� get the left neighbour� ��

N��	 RMB �domain AND left�


RETURN Closest ��� 
� T� N�� N�� �� Choose closer of two values� see eq� ���	
� ��

END SUneighbour


Algorithm ���� Searching for the closest neighbour of point T � 
x� in an m�point universe

domain�

For the sake of notational simpli
cation� Algorithm ��� uses a polymorphic procedure

Closest �f� d� T� T�� � � �� Ti� � � �� 
����

that returns the closest d	dimensional point Ti to the point T � under the metric �f
���
We assume that the number of parameter points Ti is not 
xed� but it is small 
i�e� less
than ��� We now extend Theorem ��� to a search over a large universe�

Theorem ��� Let the size of the universe be at most M � �m points and let N be a
subset of that universe� Then there is an algorithm which 	nds the closest neighbour in
N to a query point in constant time using M � M

lgM �O
logM� bits of memory�

Proof
 We split the universe into M
m

m	point tiles� where a point T � 
x� lies on
tile x div m� Associated with each tile is a bit B�i�� which indicates whether the tile is
nonempty� Nonempty tiles are then represented by bit maps S�i�� and the space of empty
tiles is used to indicate the closest neighbour to the middle of the tile�� Thus� the point
T � 
x� is mapped to a bit

S�x div m��b�x modm� 
����

and the space used for the data structure is 
m� �� � Mm �M � M
lgM bits�

To 
nd the closest neighbour of T we examine the register S�i� 
cf� eq� 
������ corre	
sponding to the tile containing T � and the registers S�i� �� and S�i� �� corresponding

�The name SUneighbour stands for �Small Universe neighbour��

�Ties are broken arbitrarily�
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to the tiles on either side�� From each register we determine the candidate point for the
closest neighbour to T � If the tile is empty� the candidate is the point closest to the
middle of a tile� otherwise it is the closest point to T in the tile� The solution to the
closest neighbour query is the closest of these three� not necessarily distinct� candidate
points� The correctness of this approach is immediate�

Algorithm ��� gives pseudo	code for 
nding the candidate points and Algorithm ���
gives the 
nal solution although ignoring the trivial complication of T falling on an
extremal tile 
cf� footnote ���

PROCEDURE SUneighbour �domain� bitMap� origin� T�


IF bitMap THEN T�	 SubCoordinates �T� origin�


right�	 GenerateMask �T�
 �� generate masks ��� ��

left�	 Negate �right�


N��	 LMB �domain AND right�
 �� ��� for search in both directions ��

N��	 RMB �domain AND left�


RETURN AddCoordinates �origin� Closest ��� 
� T� N�� N���

ELSE RETURN domain

END

END SUneighbour


Algorithm���� Generalized searching for the closest neighbour of the point T in a small universe�

PROCEDURE Neighbour �T�

i�	 T DIV m
 �� First tile from eq� ����
� ��
origin�	 i�m


�� and local coordinates� ��

N	�	 SUneighbour �S�i�� B�i�� origin� T�
 �� Then search tile i ��� ��

N��	 SUneighbour �S�i�
�� B�i�
�� origin�m� T�
 �� ��� and both ��� ��

N��	 SUneighbour �S�i�
�� B�i�
�� origin�m� T�
 �� ��� neighbours� ��

RETURN Closest ��� 
� T� N	� N�� N��
 �� Finally� select the closest point� ��

END Neighbour


Algorithm ���� Searching for the closest neighbour of the query point T in one dimension�

Algorithm ��� actually extends Algorithm ��� and hence permits a more uniform
treatment in higher dimensions� First� it establishes a local coordinate system with origin
at the left most point of the tile� The location of the local origin in global coordinates
is given by origin� The query point T is still given in the global coordinates� but it is
translated into local ones if the tile is not empty and we search it� The translation between
coordinate systems is done using procedures SubCoordinates and AddCoordinates�

�If i � � �i � M
m
� �	 there is no left �right	 tile
 though�
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Next� the query point need not lie in the tile� This a�ects mask generation and is
taken into account by GenerateMask 
otherwise based on eq� 
������ Also� it is not hard
to see that the left mask can be generated by a negation of the right mask instead of
using eq� 
����� Finally� the parameter bitMap speci
es whether the value of domain is a
bit map or a pointer � i�e� whether the tile is non	empty� QED

Algorithm ��� is easily modi
ed to deal with a universe of size S � m � �m �M lgM
points� Reference to the closest neighbour of a centre of an empty tile is simply replaced
by a reference to the tile containing that neighbour� The exact point is found using
Algorithm ��� on that tile� Thus�

Corollary ��� Let the size of a universe be S points� where � � S � m � �m and let N
be a subset of that universe� Then there is an algorithm which 	nds the closest neighbour
to the query point in N in constant time using S � S

m
� O
m� bits of memory�

Finally� note that this technique does not necessarily 
nd the right 
left� neighbour
of T � However� by extending the size of a tile to �m points� we can explicitly store the
left and the right neighbours of the middle of an empty tile� Hence� this more general
neighbour search problem� of 
nding either the left or right neighbour of a query point�
can also be solved with essentially the same time and space bounds�

��� Two Dimensions

In this section we extend the results of the previous section to two dimensions� In one
dimension� the distances between points 
see eq� 
����� were the same for all norms�
This is not true in higher dimensions and leads to our consideration of only L� and L��
Although the mapping

x	 �
y � x

�
y	 �

y � x

�

����

of the point 
x� y� under L� into the point 
x	� y	� under L� preserves the closest neigh	
bourhood property 
������ we present solutions under each of the norms separately to
maintain the space bound of M� � o
M�� bits for the complete structure�

The next subsection gives some geometric background� This background is essentially
norm independent� but most e�ciently applied when considering the L� and L� norms�

����� Circles and Some More Circles

First we extend our one dimensional tiles to the more natural two dimensional space

cf� cells in ���� ��� ��� ����� We require tiles to have the following properties� they
have to tile plane in a regular pattern such that from the coordinates of a point we can
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e�ciently compute the tile in which it lies& and if we put a circle under the relevant norm
with diameter m anywhere on a plane� it must lie in O
�� tiles� Obviously there are
many di�erent tilings which satisfy above conditions� but for the purpose of simplicity of
explanation we choose to de
ne�

De
nition ��� A tiling polygon 
tile� is a regular polygon� which tiles the plane 
see
Figure ����� The tiles sharing a common edge with a given tile are its direct neighbours�

T�

T�

T�

T	

T�

T�

T�

Figure ���� Regular hexagons as tiling polygons�

For convenience we number direct neighbours of a tile in a clockwise manner� Hence� in
Figure ���� the direct neighbours of T� are T� through T��

There are only � regular polygons which tile the plane� triangles� squares� and
hexagons� In this section we use all of them to illustrate geometrical entities and their
properties� However� later� in x ����� and in x ������ we will further restrict our attention
to squares�

The circles are sets of points that are equidistant from some central point under the
norm that is being used� Therefore�

De
nition ��� Let Cx be the middle of a tiling polygon Tx�
� then Cx� the empty circle

of Tx� is the largest circle with centre Cx whose interior is empty� Thus� if Nx is the
closest neighbour of Cx� Nx lies on the circumference of Cx�

�
Cx need not be a point in the discrete domain�
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This notion is illustrated in Figure ���� Here we consider the tiling triangleT�� with centre
C�� and its direct neighbours T�� T� and T�� The closest neighbours of the middles of
tiles T�� T� and T� are 
respectively� N�� N� and N�� These infer the empty circles C��
C� and C� indicated in white�

N�

T�

T�

C�

C�

P�
N�

C�C�
T�

C�

C�

N�

C�

CT

T

T	

Figure ���� Query point T � empty circles� a circle of candidates� and an enclosing polygon in

two dimensions�

Based on the de
nition of tiling polygons and empty circles we de
ne an enclosing
polygon�

De
nition ��� Let T� be a polygon in a regular tiling of degree k and let fCig be the
empty circles of its direct neighbours 
respectively�� Then P�� the enclosing polygon
of T�� is the smallest polygon that has sides parallel to T� and includes all empty circles

see the big shaded triangle in Figure �����

A particularly interesting part of the plane is the area which is inside the enclosing
polygon� but outside the empty circles� In order to properly identify this area we de
ne

rst a wedge�

De
nition ��� Let T� be a tiling polygon� and P� its enclosing polygon as above� Let
Ti and Tj 
where j � 
i mod k���� be direct neighbours of T�� Further� draw lines from
C� through Ci� and from C� through Cj� Then the quadrilateral de	ned by these two lines
and sides of the enclosing polygon is called a wedge of the enclosing polygon�



�� CHAPTER 	� THE CLOSEST NEIGHBOUR IN CONSTANT TIME

In Figure ��� we have tiling triangles� and the wedge associated with C� and C� has a
heavier line around it� Obviously� if we draw lines from C� through middles of all direct
neighbours� we split the enclosing polygon into the same number of wedges as is the
number of corners� that is the degree� of a tiling polygon�

A�A�

T�

C�

C�

T�

C�

T	

T�

A�

C�

Figure ���� Wedge and a corner area of a polygon as de
ned by empty circles C� and C��

Inside the wedge we de
ne a corner area�

De
nition ��� Consider the wedge de	ned by direct neighbours Ti and Tj as above�
Then the area that lies inside the wedge and outside empty circles of all direct neighbours
is called a corner area Ai�

In Figure ��� the dark shaded area is the corner area� A�� Since the number of corner
areas is at most the number of wedges� which is itself at most k� it follows that�

Lemma ��� If the tiling polygon has degree k� then there are at most k corner areas�

The next term used in our discussion is the circle of candidates �
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De
nition ��	 Let the point T lie on the tiling polygon T� of degree k� and let Ci


� � i � k� be middle points of respective direct neighbours with their closest neighbours
Ni� Further� among all points Ni� let Nx be the closest point to T � Then the circle CT
with centre at T and Nx on its circumference is called the circle of candidates�

As an illustration� see the small parts of the dark shaded circle of candidates in Figure ����
Observe there are at most k such regions�

Based on De
nition ��� and De
nition ���� we can restrict the location of the closest
neighbour of a given point�

Lemma ��� Let T� be a tile of degree k and let T be a point inside it� Then the closest
neighbour of T lies on the circumference or inside the circle of candidates CT � and outside
the interior of the empty circles Ci� where � � i � k 
see dark shaded areas in Figure �����

Proof
 By de
nition� the point Nx is on the circumference of the circle of candidates
CT � and therefore the closest neighbour of T is either Nx itself or some other point� which
is closer than Nx� However� all such points lie inside the circle of candidates� On the
other hand� from De
nition ��� we know that there is no point inside an empty circle�

QED
Lemma ��� concludes our brief geometrical excursion and hints at the idea behind our

algorithm� compute empty circles of direct neighbours� compute the circle of candidates
and search its intersection with the union of complements of empty circles� Later we will
show that under the norms L� and L� the intersection lies inside corner areas� and that
the corner areas are small enough that we can perform an exhaustive search on them�

����� L�� or How Circles Became Squares

We explore the L� norm where distance is de
ned by eq� 
����� using d � �� Under this
norm� �circles� have a square shape� nevertheless� the results proven in x ����� still hold�

The solution for L� is presented in two steps� First we show how to answer queries
in constant time on a single tile� This result is later used for the general solution on a
larger universe�

The Small Universe

The small universe is a square containing order m points� We represent it by a square
register described in De
nition ���� As in x ���� we map the point T � 
x�� x�� to a bit
b�x�� x�� of the register and denote the point#s presence or absence by setting the bit to
� or � respectively�
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The main parameter used in the de
nition of a square register is b� the number of
bits in a register� In our case this is also the size of the small universe� Since in the big
universe we require �m bits to denote one point� it is convenient to have tiles of the same
size� i�e� �m points� Hence� we work with square registers of size

b � � �m 
����

bits� This sets the number of rows and columns in the register to p �
p
b �

p
� �m


cf� eq� 
�������

The search algorithm is based on the idea of a search inside several 
in this case ��
search regions 
see Figure �����

N�

N�

N�

N�

left

	 p � �

R�
x�

x�

p � �

	

right

T

R	�

R


R	�

R��

R�

R��

R�

Figure ���� Four search regions in a plane�

De
nition ��� Let T � 
x�� x�� be a query point� at which a left border line and a
right border line� with slopes ���� and ���� respectively� cross� These lines divide the
plane into four search regions R
� R�� R�� and R��

In order to search one region at a time� we eliminate points from other regions� This
requires that we generate proper masks�

Lemma ��� Let the left and right border lines cross at point T � 
x�� x��� Then we can
generate masks for all four search regions in constant time using O
m� bits of space�

Proof
 Each border line splits the plane into a positive and a negative half	plane�
where the negative half	plane lies below the respective border line� In Figure ��� the
half	planes are denoted by R	�� R��� R	� and R���
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Let us assume that we have masks available for half	planes R�� and R��& then
masks for the search regions can be computed using formulae

R� � R�� �R��
R
 � R�� �R��
R� � R�� �R

R� � R�� �R
 �


�����

It remains to generate masksR�� and R�� e�ciently� First observe these masks are�
perhaps shifted� numbers P� and P� respectively 
see eq� 
������� More precisely� the
right border line has equation y � x�)� where ) � x�� x�� Thus� to get R�� we have
to shift P� right for ) columns� if ) � �� and left for �) columns� if ) � �� Similarly we
get mask R��� At this point we only assume that there exists procedure GenerateMask
which implements the described mask generation� while its detailed description will be
given later in a more general context 
see Algorithm ������ Obviously� GenerateMask runs
in constant time� and� thus� masks for all search regions can be generated in constant
time using eq� 
������ QED

Using Lemma ��� we can easily prove�

Theorem ��� Let the universe be a set of b � �m discrete points on a square grid and
let N be a subset of that universe� Then there is an algorithm that 	nds the closest
neighbour to a query point in N under the norm L� in constant time using b bits for a
data structure and O
m� bits for internal constants�

Proof
 As a data structure representing the set we use the obvious bit map stored
in a b	bit square register domain� The search algorithm divides the plane into four search
regions from De
nition ���� It then determines the closest point to the query point T
in each region� Because of the norm we are using 
cf� eq� 
����� this amounts� for R�
and R
� to 
nding the point in the row closest to T and� for R� and R�� to 
nding
the point in the closest column 
see Figure ����� Since the universe is represented by a
square register domain� we can employ extremal set bits searching algorithms from x ���

see Theorem ����� This leads us to the full algorithm as represented at the schematic
level in Algorithm ���� QED

Another approach to 
nding the extremal set bits in a register is to employ table
lookup� Clearly a table of all possible register values would have M� entries� too many
for our purposes� However� if we divide a register into �

� disjoint pieces� and build a
table of all possible values any of these pieces can have� then the space required will be
O
M��� log���M� bits� Searches still require only a constant time�

The Big Universe

Algorithm ��� allows us to search quickly for the closest neighbour under the L� norm
in a square universe of a size up to that of an arithmetic register� Using ideas similar to
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PROCEDURE SUneighbour �domain� bitMap� origin� T�


IF bitMap THEN T�	 SubCoordinates �T� origin�


R���	 GenerateMask �T� ����
 �� First� masks for both half�planes ��

R���	 GenerateMask �T� ����
 �� using Algorithm ����� ��
R��	 R�� AND R��
 �� and then masks for all search regions ��� ��

R��	 Negate �R�� OR R���
 �� ��� using eq� �����
� ��

R��	 Negate �R�� OR R��
 R��	 Negate �R�� OR R��


�� Next� search for points in search regions ��

N��	 TMBofRectReg �domain AND R�� p� p�


N��	 RMBofRectReg �domain AND R�� p� p�


N��	 LMBofRectReg �domain AND R�� p� p�


N��	 BMBofRectReg �domain AND R�� p� p�


�� and� 
nally� the closest among the found points� ��

RETURN AddCoordinates �origin� Closest ��� �� T� N�� N�� N�� N���

ELSE RETURN domain

END


END SUneighbour


Algorithm ���� General version of a search for the closest neighbour of T in a small universe

under the norm L��

those of x ���� we extend this result to the universe exponential in the register size� that
is to M �M points where M � �m�

Most of the discussion in x ����� was based on a notion of a tiling polygon� The tiling
polygons we use here are squares of size p � p � b points 
b � �m� cf� eq� 
������ The
sides of the tile are parallel to the axes of the coordinate system� This also implies the
orientation and shape of an enclosing polygon P�� P� is a rectangle with sides parallel
to the axes of the coordinate system 
cf� De
nition �����

A �circle�� the locus of all points equidistant from a given point� is� under the L�
norm� in fact a square with sides parallel to coordinate axes� Hence the empty circles
and the circle of candidates are indeed squares� Moreover� circles� tiles� and enclosing
polygons all have parallel sides�

The remaining entities of interest are corner areas which� by De
nition ���� consist of
the area inside an enclosing polygon and outside empty circles� Under the L� norm� the
corner areas have the following important property�

Lemma ��� Let T� be some tiling square� Then there are at most four corner areas
associated with T�� each of which lies in at most six tiles�

The most important consequence of Lemma ��� is that corner areas can be exhaus	
tively searched in constant time using Algorithm ����
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Figure ���� Query point T on a tile T	 with its direct neighbour tiles T�� T�� T� and T��

corresponding empty circles C�� C�� C� and C�� an enclosing rectangle P	� and corner areas A��

A�� A� and A��

Proof
 By Lemma ��� there are at most four corner areas 
cf� Figure ����� Without
loss of generality we con
ne our attention to A� 
see Figure ����� Let a� and a� be the
radii of C� and C� respectively� First� assume that either a� or a� is at least p and let the
sides of A� be of lengths u and v 
see the left diagram in Figure ����� Then� since the
distance from C� to the top side of P� is v� a� � p� a� and since the distance from C�

to the right side of P� is u � a� � p� a�� u � v � �p and� consequently� � � u� v � �p�
Furthermore� the area of A� is u � v � p� � b� Thus� A� lies on at most � tiling squares�

On the other hand� if a�� a� � p� then A� lies on both of the tiles that are adjacent
to T� and T� 
the right diagram in Figure ����� It is not hard to verify that A� lies on
at most three other tiles and that this occurs when p � a�� a� � p

� � QED
The next property relates the circle of candidates and the enclosing polygon�

Lemma ��� Under the norm L�� when tiles are squares aligned with coordinate axes�
the circle of candidates lies inside the enclosing polygon�

Proof
 Let the middle of tile T� be point C� � 
�� �� and let T � 
xT � yT � be a query
point where �p

� � xT � yT � p
� � Furthermore� let the radius of the circle of candidates be

rT � min��i�� ��
T�Ni�� where Ni are closest neighbours of middles of direct neighbours�
Thus� we have to show� for all points U on the circumference of the enclosing polygon
P�� that ��
T� U�� rT �
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Figure ���� Corner area A� limited by a distance between centres of empty circles C� and C��

Without loss of generality� we may assume that the closest point to T on the circum	
ference of P� is W � 
xW � yW � where yW � yT � Simultaneously� by the de
nition of
the enclosing polygon 
De
nition ���� xW is either ���
C�� N��� p or ��
C�� N�� � p�
Further� again without loss of generality we may assume xW � ���
C�� N�� � p and
thus

��
T�W � � jxT � p� ��
C�� N��j � jxT � pj� ��
C�� N�� � 
�����

However� since tileT� is immediately to the left ofT�� C� � 
�p� �� and hence ��
T� C�� �
jxT � pj� Therefore� using eq� 
����� and a triangle inequality 
����� we get

��
T�W � � ��
T� C�� � ��
C�� N�� � ��
T�N�� � min
��i��

��
T�Ni� � rT �

QED
In the rest of this section we prove�

Theorem ��� Let the universe be a set of M � M discrete points on a square grid
and let N be a subset of that universe� Then there is an algorithm which 	nds the
closest neighbour in N to a query point under the norm L� in constant time using
M� � M�

� lgM � O
logM� bits of memory�

Proof
 We tile universe with an M
p
� M

p
array of b	point square tiles with origin in

the bottom left� Therefore point T � 
x� y� falls on a tile� tile� with coordinates

tile�
� � 
x div p� and tile��� � 
y div p� � 
�����
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As in Algorithm ���� each tile is associated with a bit B�tile�� This bit indicates
whether the tile is nonempty� If the tile is nonempty it is represented by a bit map stored
in S�tile�� and if it is empty S�tile� stores the coordinates of the closest neighbour to
the centre of the tile� Each of the arrays S��� and B��� has 
M

p �
� entries� and thus the

whole data structure occupies 
Mp �
� � b � 
Mp �� � M� � M�

� lgM bits of space 
b � p�� cf�
eq� 
������

According to Lemma ���� to 
nd the closest neighbour of T we search that part of
the interior of the circle of candidates CT which is outside the empty circles C�� C�� C��
and C�� By Lemma ���� CT lies inside the enclosing polygon� and thus it is su�cient to
search the corner areas� Furthermore� according to Lemma ���� each corner area overlaps
at most six tiles� Since by Theorem ��� each tile can be searched in constant time� the
closest neighbour can be found in constant time�

In the rest of the proof we describe the searching algorithm in a greater detail� First�
we introduce Algorithm ���� which exhaustively searches the interior of CT in one cor	
ner area� The circle of candidates� CT � is de
ned by the query point T and its closest
neighbour found so far� NT �

� Further� the corner area is de
ned by the tile tile� and the
direction� )� into which the area �extends� from tile� The direction ) also determines
the order in which the corner area is searched� Finally� to test when the search in the
area reaches the border of CT the function Outside is used� Its implementation is left
out� but the function obviously runs in constant time and O
m� bits of space�

PROCEDURE SearchCorner �tile� �� T� NT�


columnStart�	 tile�
�
 �� Starting tile in each row� ��

WHILE �NOT Outside �T� NT � tile�� DO �� Then� search by rows ��

WHILE �NOT Outside �T� NT� tile�� DO �� and in each row by columns� ��

origin�	 �tile�
��p� tile����p�
 �� origin of a tile by eq� �����
� ��
NT�	 Closest ��� �� T� �� search it using Algorithm ���� and ��

NT� SUneighbour �S�tile�� B�tile�� origin� T��


tile�
��	 tile�
� � ��
� �� go to the next column� ��

END


tile�	 �columnStart� tile���������


END


RETURN NT 


END SearchCorner


Algorithm ���� Searching for the closest neighbour of T in a corner area starting from tile

under the norm L��

For search of an individual tile� Algorithm ��� is used� If the tile to be searched is
empty� the algorithm returns the closest neighbour of the centre of such a tile instead

�This circle of candidates is not necessarily the same as in De�nition ���
 because it might shrink due
to updates of NT � However
 this does not a�ect the correctness of Lemma ����
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of the closest neighbour of the query point in the tile� However� it is easy to see that
this di�erence has no in�uence on the correctness of Algorithm ���� Finally� the most
�expensive� are searches of non	empty tiles 
see again Algorithm ����� By a proper
ordering of how tiles are being searched� we can reduce the number of such searches to
at most three per corner area� Thus� in total at most �� non	empty tiles are searched�

Finally� Algorithm ��� presents a pseudo	code of the complete searching procedure
though ignoring the trivial complication if T falls on an extremal tile� Note� if direct
neighbours of T� are not empty Algorithm ��� does not exactly construct their respective
empty circles� but this has no in�uence on the correctness or running time of the algo	
rithm� Algorithm ��� uses function Intersect to compute the tile� tile� on which lies I �
the �intersection� of the empty circles Ci and Cj 
cf� Figure ����� The 
rst two pairs of
parameters of Intersect de
ne Ci and Cj 
tile on which lies the centre of the respective
circle and the point on the circle#s circumference�� while the last parameter determines
which of two possible intersections of the circles is needed� Although the implementation
of Intersect is left out� it obviously runs in constant time and O
m� bits� QED

PROCEDURE Neighbour �T�


T	�	 ��T�
� DIV p�� �T��� DIV p��
 �� First� using eq� �����
 get tile T	 ��

T��	 �T	�
�� T	����
�
 T��	 �T	�
��
� T	����
 �� and its direct neighbours� ��

T��	 �T	�
�� T	����
�
 T��	 �T	�
��
� T	����


�� Next� circles are implicitly de
ned by the closest neighbours� ��

N�	 ��� ��
 �� the initial circle of candidates CT � ��
FOR i�	 
 TO degree DO origin�	 �Ti�
��p� Ti����p�
 �� all ��
Ni�	 SUneighbour �S�Ti�� B�Ti�� origin� T�
 �� empty circles Ci� and ��

N�	 Closest ��� �� T� N� Ni�
 �� updated CT � ��

END


�� Finally� search corner areas� ��

���	 ��
� �
�
 ���	 ��
� �
�
 �� directions in which ��� ��

���	 ��
� �
�
 ���	 ��
� �
�
 �� ��� corner areas extend� ��

FOR i�	 
 TO degree DO j�	 �i MOD degree� � 

 �� search corner area Ai� ��
tile�	 Intersect �Ti� Ni� Tj� Nj� i�
 �� which starts on tile� ��

N�	 Closest ��� �� T� N� SearchCorner �tile� �i� T� N��


END


RETURN N

END Neighbour


Algorithm ���� Searching for the closest neighbour of the query point T under the norm L��

A couple of trivial improvements further reduce the running time of Algorithm ����
First� in the initial approximation of the circle of candidates� CT � we can use infor	
mation about tile T� stored in S�T��� instead of putting the point N to the in
nity

i�e� N�
 SUneighbour �S�T��� B�T��� origin� T��� Secondly� if any empty circle
has a diameter smaller than p� we search tile T� several times 
cf� the right diagram in
Figure ���� and this can be avoided�
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����� L�� or How Circles Became Diamonds

Under the norm L�� the distance between points T� � 
x�� y�� and T� � 
x�� y�� is de
ned
as

��
T�� T�� � jx� � x�j� jy� � y�j � 
�����

As before� we 
rst describe a solution for a small universe and then extend it to the more
general case�

As previously noted 
see eq� 
����� there is a direct mapping between the norms L�

and L�� which preserves the closest neighbourhood property� However� this mapping
expands the domain� and so we opt to build our solution from scratch to achieve the
space bound M� � o
M�� bits�

The Small Universe

The solution for a small universe is presented in two parts� the representation of the
universe� and the searching algorithm� Under the L� norm� circles have a square shape
which made the square tiling of the plane very convenient� Under the L� norm we have
a similar� though not quite as convenient situation in that circles are now diamonds

squares rotated ��� from the axes�� This is also the shape of our small� b	point 
b � �m�
cf� eq� 
����� universe 
see the diamond shaped area in Figure �����

The universe lies in a plane with the original coordinate system� whose axes� x and y�
run on the bottom and the left sides respectively� As before� inside the small universe we
have a local coordinate system which consists of rows and columns 
r and c respectively��

The local system is rotated clockwise ��� and shifted p points right� where p �
p
�b
� �

p
m


see Figure ����� This puts the point 
x� y� of the original systems at the point 
c� r� in
the local system where

r � 
x� 
p� �� � y� mod �p � 
x� y � 
p� ��� mod �p
c � 
�
x� 
p� ��� � y� mod �p � 
�x� y � 
p� ��� mod �p �


�����

In the mapping we omit a
p
�
� factor 
cf� ���� pp� �������� and ������ but introduce an

additional �mod� operation� the reason for which will become evident later� Note that
adjacent points in Figure ��� di�er in both� c and r� coordinates and that the coordinates
along the columns 
rows� of local system go up by �#s�

The range of mapping 
����� is �p� � �b� since � � r � �p and � � c � �p� Thus� half
of points� call them empty points� in the local system are not images of any point from
the original system� Therefore� we do not need to de
ne the inverse mapping for these
points either� Finally� observing that empty points are in odd columns of even rows and
in even columns of odd rows� and using eq� 
����� we get the mapping

x �
c� r

�
� 
p� �� and y �

r� c

�

�����
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Figure ��	� Small universe under the norm L��

of the point 
c� r� in the local system to the point 
x� y� in the original system��

As before� we represent a small universe by a bit map�

Lemma ��� Let the small universe lie in original coordinate system as above� Then
there is a b�bit bit map representation of the small universe in which the mapping between
the bits of the bit map and the points in the universe is computable in constant time in
each direction�

Proof
 The mapping between the bit map and the original coordinate system is
done via the local coordinate system� which is� however� never materialized� Therefore
we do not need to store empty points� This halves the amount of necessary space�
 The
bit map is stored in a pair of m	bit square registers domain��� where the even rows are
stored in the 
rst register and the odd ones in the second one 
leaving out the empty
points�� In detail� the point 
c� r� of the local coordinate system is represented by a bit

domain�r MOD ���b�c DIV �� r DIV �� � 
�����

�Omission of factor
p
�
� in eq� �����	 not only introduces empty points
 but also puts non�empty points

on a discrete grid�


If we had used the mapping in eq� ����	 we would have to store empty points as well�
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while the bit domain�k��b�i�j� represents a point


� � i� k� � � j � k� � 
�����

Finally� since both these mappings and the mappings between the local and original
coordinate systems 
see eq� 
����� and eq� 
������ can be computed in constant time� the
mappings between the bit map representation and the original coordinate system can be
computed in constant time as well� QED

Figure ��� illustrates the mapping between the local coordinate system and bit map
representation stored in registers domain��� and domain�
� 
the left and the right dia	
gram respectively
�� The inner numbers in each diagram indicate local coordinates and
the outer ones bit indices in registers� Further� the query point� the black square in Fig	
ure ���� is mapped in a bit only in one register 
the black square in the left diagram and
the black dot in the right one��
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Figure ��
� Mapping of points from the local coordinate system into bits of a register pair�

The following lemma relates the search for the closest neighbour in the original system
to one in the local coordinate system�

Lemma ��	 The circle under the norm L� in the original coordinate system maps bijec�
tively to the circle under the norm L� in the local coordinate system�

Proof
 Trivially from eq� 
����� and eq� 
������ QED
Lemma ��� essentially says that the search for the closest neighbour in the original

coordinate system under the L� norm is equivalent to the search for the closest neighbour

�The left diagram is intentionally shaded to show a clear connection with shaded points in Figure ����
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in the local coordinate system under the L� norm� Thus� as under L�� we de
ne left
and right border lines 
cf� Figure ����� which� in turn� split the universe into four search
regions R
� R�� R�� R� 
see Figure ��� and Figure ����� Now� to 
nd the closest
neighbour� we search under the norm L� each of this regions separately�

Theorem ��� Let the universe be a set of b � �m discrete points on a diamond shaped
grid 
see Figure ����� and let N be a subset of that universe� Then there is an algorithm
which 	nds the closest neighbour in N to a query point under the norm L� in constant
time using b bits for the data structure and O
m� bits for internal constants�

Proof
 We represent N by a b	bit bit map stored in m	bit registers domain��� and
domain�
� 
see Lemma �����

Next� by Lemma ��� the search for the closest neighbour under the norm L� in original
coordinates is equivalent to the search under the norm L� in local coordinates� Thus�
to 
nd the closest neighbour we search each register domain��� separately using Algo	
rithm ��� � a version of Algorithm ���� In the algorithm the indices of the bit� bit� whose
closest set bit we are looking for� are not restricted to integers� However� the sums and
di�erences of the indices have to be integers to make the generated masks correct� For
example� in the left and right diagrams of Figure ��� the indices have values 
�� p��� and

���� p� ���� respectively� Because of correctness of Algorithm ���� the whole algorithm
is correct�

PROCEDURE SearchRegister �register� bit�


R���	 GenerateMask �bit� ����
 �� First� masks for both half�planes� ��
R���	 GenerateMask �bit� ����


R��	 R�� AND R��
 R��	 Negate �R�� OR R���
 �� and for search regions� ��

R��	 Negate �R�� OR R��
 R��	 Negate �R�� OR R��


N��	 TMBofRectReg �register AND R��
p
m�

p
m�
 �� Next� search for points ��� ��

N��	 RMBofRectReg �register AND R��
p
m�

p
m�
 �� ���in search regions� ��

N��	 LMBofRectReg �register AND R��
p
m�

p
m�


N��	 BMBofRectReg �register AND R��
p
m�

p
m�


RETURN Closest ��� �� bit� N�� N�� N�� N�� �� and return the closest� ��

END SearchRegister


Algorithm ��	� Searching for the closest set bit to the bit in the square register under the

norm L��

Finally� Algorithm ��� gives a pseudo	code of complete searching algorithm� It obvi	
ously runs in constant time and uses a b	bit bit map as a data structure and additional
O
m� bits for internal constants� QED

We left out the implementation of functions for mapping from the original to the local
coordinate systems� Orig�Local� and from indices of bits in bit maps back to the original
system� BMindex�Orig� They obviously run in constant time by Lemma ����
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PROCEDURE SUneighbour �domain� bitMap� origin� T�


IF bitMap THEN T�	 SubCoordinates �T� origin�
 �� In domain is a bit map� so ��

local�	 Orig�Local �T�
 �� switch to local coordinates by eq� �����
� ��

�� Then search in even rows� ��

indices�	 �local�
���� local������
 �� get indices of searched bit by eq� ����	
� ��
NE�	 BMindex�Orig �SearchRegister �domain���� indices��
 �� and search� ��

�� and similarly in odd rows� ��

indices�	 AddCoordinates �indices� ��
��� �
����


NO�	 BMindex�Orig �SearchRegister �domain�
�� indices��


�� Finally� return the closer of two found points� ��

RETURN AddCoordinates �origin� Closest �
� �� T� NE� NO�

ELSE RETURN domain

END


END SUneighbour


Algorithm ��
� Searching for the closest neighbour of the query point T in a small domain

under the norm L��

The Big Universe

The big universe consists of M � M points where M � �m� We tile it with b	point
diamond tiles 
squares rotated ����� The searching algorithm takes the same approach
as the one for the norm L�� 
rst� construct empty circles of direct neighbours and circle
of candidates& next� compute corner areas& and� 
nally� exhaustively search that part of
the corner areas which is inside the circle of candidates� Obviously� search inside a tile is
done using Algorithm ����

Before going into the details of the searching algorithm� we address the tiling and
in particular the mapping from the point T 
x� y� into a data structure� As shown in
Figure ���� the tiles are positioned in even and odd rows� Each set of rows is numbered
separately by a pair of indices 
i� j� starting at the bottom left corner� A tile has its own
original and local coordinate systems� and an origin� The origin of a tile is the point in
which we have to put point 
�� �� of the original coordinate system to bring the point

�� �� of the local coordinate system to a point 
p � �� �� in the original system� For
example� in Figure ��� the point 
�� �� is itself the origin of a tile& while in Figure ��� the
point in the bottom left corner of the shaded square 
near the ���� is the origin of the
tile marked �� This convention permits us to search individual tiles using results from
the previous section in combination with the following lemma�

Lemma ��� Given the coordinates 
x� y� of a point T � we can in constant time determine
the tile on which it lies and coordinates of this tile�s origin�

Proof
 We split the universe into �p	point stripes� which form a M
�p � M

�p mesh of
squares 
see the shaded square in Figure ����� Each square consists of 
ve regions also
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Figure ���� Big universe tiled by diamonds�

shown in Figure ���� The region � is an even row tile with the origin in the bottom
left corner of the square� The other regions are parts of odd row tiles which have their
origins properly shifted� Further details are presented in Algorithm ���� which computes
the tile and the coordinates of its origin through a simple four	case analysis� Obviously�
the algorithm runs in constant time and uses O
m� bits of space for constants� QED

Under the L� norm� circles are diamonds and have� as under the L� norm� sides
parallel to the tiles� This property limits the size of corner areas� and� hence� permits us
to perform an exhaustive search 
cf� Lemma �����

Lemma ��� Let T� be some tiling diamond� Then there are at most four corner areas
associated with T� and each of them lies on at most six tiles�

In the proof we refer to a general arrangement of objects shown in Figure �����
Proof
 By Lemma ��� there are four corner areas and to limit the size of each of them
we consider two general cases shown in Figure ���� 
cf� Figure ����� The lemma easily
follows for the right case using similar reasoning as in the proof of Figure ����

For the left case we use Pythagoras# theorem and the de
nition of tiling to get the
distance between C� and C� 
centres of tiling diamonds T� and T� respectively� �p �
up
�
� vp

�
� Therefore� � � u� v � �

p
� � p � �p� Furthermore� the area of A� is u � v �

u � 
�p� � p � u�� which has a maximum at �p� � b� Thus� A� lies on at most � tiles�
QED



	��� TWO DIMENSIONS ��

PROCEDURE PointToTile �T�


tile�	 �T�
� DIV ���p�� T��� DIV ���p��


row�	 �
 �� Assume T lies in region � � an even row tile� ��

origin�
��	 tile�
� � ���p�
 origin����	 tile��� � ���p�


offset�	 SubCoordinates �T� origin�
 �� Position of the point in the shaded square� ��

local�	 Orig�Local �offset�
 �� and in local coordinates by eq� �����
� ��

�� Finally� check if T is not in region � in Figure ���� ��

IF local�
� � ��p THEN row�	 

 �� region 	 ��

INC �tile�
��
 INC �tile����
 origin�	 AddCoordinates �origin� �p� p��


ELSIF local��� � � THEN row�	 

 �� region � ��

INC �tile�
��
 origin�	 AddCoordinates �origin� �p� �p��


ELSIF local�
� � � THEN row�	 

 �� region � ��

origin�	 AddCoordinates �origin� ��p� �p��


ELSIF local��� � ��p THEN row�	 

 �� region � ��

INC �tile����
 origin�	 AddCoordinates �origin� ��p� p��


END


RETURN �row� tile� origin�


END PointToTile


Algorithm ���� Computation of the tile on which the point T lies and of the origin of that tile�

As under L� 
cf Lemma ���� we have�

Lemma ���� Under the norm L�� when tiles are diamonds� the circle of candidates lies
inside the enclosing polygon�

Proof
 This lemma is an immediate consequence of Lemma ��� and a neighbourhood
preserving mapping in eq� 
����� QED

This brings us to the theorem�

Theorem ��� Let the universe be a set of M �M discrete points on a square grid and
let N be a subset of that universe� Then there is an algorithm which 	nds the closest
neighbour in N to a query point under the norm L� in constant time using

M� �
M�

�m
�M � �m� �p

m
�O
m� 
�����

bits of memory where M � �m�

Proof
 The universe is tiled as explained in Lemma ���� As before� if a given tile
is non	empty we indicate this by setting the corresponding bit in B and then store the
bit map representation of the tile in the corresponding entry of S� Otherwise� the tile
is empty and we store in S the position of the closest neighbour to the centre of this
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Figure ����� Placement of corner areas under the norm L��

tile� Both arrays� B and S� have three indices� For example� entries B��� i� j� and
S��� i� j� correspond to the even row tile with indices i and j 
cf� Figure �����

The number of even	row tiles is M
�p � M

�p � and the number of odd	row tiles 

M
�p � ���


M�p��� 
cf� Figure ����� Therefore� the number of all tiles� and thus the number of entries

in arrays S and B� is � � 
M�p�� � � � M�p � � which puts the size of a data structure at

M� �
M�

�m
�M � �m� �p

m
� �m� � 
�����

bits�

Since Algorithm ���� searches for the closest neighbour exactly in the same way as does
Algorithm ��� under the norm L�� we omit further details� We also assume the existence
of functions Intersect and SearchCorner with similar roles to their counterparts in
Algorithm ����

Finally� the space used by Algorithm ���� is bounded by eq� 
����� for the data
structure and O
m� bits for internal constants� as indicated in eq� 
������ QED
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The tiling presented in Lemma ��� leaves the left most and the bottom most tiles
inherently broken 
not whole�� Hence� not all bits of bit map representations of these
tiles are used� One can 
x this by combining appropriate bit map entries of S� In
particular� if the number of points in the right most and the top most �half	tiles� of odd
rows 
see Figure ���� is at most b

� we can reduce� by mere combination of bit maps� the
size of a data structure to

M� �
M�

� lgM
� O
logM� 
�����

bits� which is the same bound as under the norm L� mentioned in Theorem ����

����� L�� or the Trouble with Curved Circles

The basic technique for the large universe� used in x ����� and x ������ is to construct
empty circles of direct neighbours� construct the circle of candidates� and exhaustively
search the area inside the circle of candidates and outside empty circles� By Lemma ���
and Lemma ���� under L� and L� respectively� these areas are not only small� but they
also intersect only a few tiles�

Unfortunately the same is not true under the norm L�� Consider the case illustrated
in Figure ����� where query point T is approximately in the middle of the universe� The
closest neighbours of C� and C� 
N� and N� respectively� are in opposite directions from
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PROCEDURE Neighbour �T�


�row� T	� origin	��	 PointToTile �T�
 �� First� tile T	 and its origin� ��
T��	 �T	�
��
�row� T	����
�row��
 �� then direct neighbours and ��� ��

origin��	 AddCoordinates �origin	� �p� p��
 �� ��� their origins� ��

T��	 �T	�
��
�row� T	����row��
 origin��	 AddCoordinates �origin	� �p� �p��


T��	 �T	�
��row� T	����row�
 origin��	 AddCoordinates �origin	� ��p� �p��


T��	 �T	�
��row� T	����
�row� origin��	 AddCoordinates �origin	� ��p� p��


�� Next� closest points implicitly de
ne circles� ��

N�	 ��� ��
 �� the initial circle of candidates CT � ��
otherRow�	 �
�row�
 �� direct neighbours are in �other� row ��

FOR i�	 
 TO degree DO �� construct empty circle Ci ��

offset�	 SubCoordinates �T� origini�


Ni�	 SUneighbour �S�otherRow� Ti�� B�otherRow� Ti�� origini� offset�


N�	 Closest �
� �� T� N� Ni�
 �� and update CT � ��

END


�� Finally� search corner areas� ��

���	 ��
� �
�
 ���	 ��
� �
�
 ���	 ��
� �
�
 ���	 ��
� �
�


FOR i�	 
 TO degree DO j�	 �i MOD degree� � 



�row� tile��	 Intersect �Ti� Ni� Tj� Nj� i�


N�	 Closest �
� �� T� N� SearchCorner �row� tile� �i� T� N��


END


RETURN N

END Neighbour


Algorithm ����� Searching for the closest neighbour to the query point T under the norm L��

T � and ��
T� C�� � ��
T� C�� and ��
T�N�� � ��
T�N��� In this case the corner area� A�


the right dark shaded area in Figure ����� has area  

p
b �M� and lies on  
Mp

b
� tiles�

One might hope that adding more empty circles would decrease the number of tiles
which need be searched� Assume that the centre of the next empty circle� Ci� is at point
Ci� Now draw a line from query point T through Ci and put the closest neighbour of Ci�
Ni� at the point where this line crosses the circumference of CT � It is not hard to verify
that this is a possible situation� Obviously� we decreased the area of A�� but we did not
decrease the number of tiles on which it lies� The same step can be repeated arbitrary
many times�

The reason the technique does not seem to work is the di�erence in curvatures of
the circle of candidates� CT � and the empty circles� Ci� In other words� in the worst
case circumferences of CT and Ci have in common only one point and thus the empty
circle does not substantially decrease the �length� of the corner area� On the other hand�
under the norms L� or L� one common point implies a long common section of both
circumferences 
curvatures of CT and Ci are the same � circumferences are straight lines�
and the length of the corner area is decreased to a few tiles only� The same reasoning
we have applied to L� can be extended to other norms� Lf � where � � f ��� However�
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there remains the open question of how many tiles the discrete points of a corner area can
intersect� We conjecture that this number is also too large� It is possible to stop adding
new empty circles after a constant number of steps and get an approximate solution� It
remains open as to how good an approximation this gives�

����� Conclusion

In x ����� and x ����� we presented constant time solutions for the static closest neigh	
bour problem in two dimensions under the norms L� and L� respectively� Both solutions
assumed a universe of size M �M points� We can easily adapt these solutions to other
rectangular universes� we just have to change the tiling and� subsequently� the enumer	
ation of arrays S��� and B���� Next� if we store in the array S��� either the bit map
or a pointer to the tile� instead of to the point� we can cope with even a larger universe

cf� Corollary �����

Corollary ��� Let the universe be a set S� � S� discrete points on a grid� where � �

W � S� � S� � �m �M� � m � ��m	�� and let N be a subset of that universe� Then there
are algorithms which 	nd the closest neighbour to a query point in N under either norm
L� or L�� in constant time using

W �
W

�m
�O

S� � S�� �

p
m� 
�����

bits of space�

The third order term in eq� 
����� comes from eq� 
������ As mentioned� under certain
circumstances 
see eq� 
������ this term can be eliminated and the total space bound
reduced to

W �
W

d �m �O
m� 
�����
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bits� In eq� 
������ d is the dimension of the space and by setting it to � 
that is by setting
S� � �� we get a one	dimensional solution from Corollary ����

��� Many Dimensions

In this section we extend our solution of the closest neighbour problem under the norm
L� to an arbitrary� though constant� number of dimensions� d� First we generalize
geometrical entities de
ned in x ������ and then describe the data structure and the
searching algorithm�

����� Introduction

In higher dimensions we use similar entities as were de
ned in x ������ In fact� most of
the entities keep the same names though pre
xed by �hyper	�� The pre
x is� however�
omitted when this does not introduce ambiguity�

We could de
ne tiles as generally as in two dimensions 
cf� De
nition ����� but for the
purpose of this work we de
ne only one kind of them�

De
nition ��� A hyper�tile� is a d�dimensional hyper�cube with facets parallel to coor�
dinate axes� The tiles sharing a common facet with a given tile are its direct neighbours�

The direct neighbours of tile T� in ith dimension are Ti and Td	i�

A hyper�sphere� the generalization of a circle� is a set of equidistant points from some
central point� which gives 
cf� De
nition �����

De
nition ���� Let CX be a middle point of a hyper�tile TX � then the empty hyper�
sphere of TX � CX � is the largest hyper�sphere with centre CX and empty interior� Thus�
the closest neighbour of CX� NX� lies on the surface of CX �

Since the only norm we use in this section is L�� hyper	spheres are hyper	cubes�

From a hyper	tile� its direct neighbours and direct neighbours# empty hyper	spheres�
we get a de
nition of an enclosing hyper�cuboid 
cf� De
nition �����

De
nition ���� Let T� be a tiling hyper�cube and let fCig be empty spheres of respective
direct neighbours� Then the enclosing hyper�cuboid of T�� P�� is the smallest hyper�
cuboid that has facets parallel with T� and includes all empty spheres Ci�

Inside the enclosing hyper	cuboid we have hyper	wedges 
cf� De
nition �����
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De
nition ���� Let T� be a tiling hyper�cube� and C� and P� its centre and enclosing
hyper�cuboid respectively� Next� make d hyper�planes parallel to coordinate axes and in�
tersecting in C�� Then each volume enclosed by all hyper�planes and P� which contains
a vertex of P� is a hyper�wedge�

It is not hard to see that De
nition ���� in two dimensions becomes De
nition ���� because
there the centre of a direct neighbour always lies on the line which is orthogonal on a side
of an enclosing polygon and goes through the middle point C� 
cf� Figure �����

Corner area 
cf� De
nition ���� and circle of candidates 
cf� De
nition ���� are the
last two geometrical entities generalized to d dimensions�

De
nition ���� Consider the hyper�wedge de	ned by the corner point Vi of P�� Then
the volume that lies inside this hyper�wedge and outside the empty hyper�spheres of all
direct neighbours is called the corner hyper�area Ai�

De
nition ���� Let the point T lie in the tiling hyper�cube T� and let Ci be centres of
its direct neighbours with respective closest neighbours Ni� Further� among Ni let NX be
the closest to T � Then the hyper�sphere CT with a centre in T and NX on its surface is
a hyper�sphere of candidates�

Both lemmata from x ����� easily generalize to d dimensions�

Lemma ���� There are at most �d corner areas�

Proof
 Trivially from De
nition ���� since hyper	cube has �d vertices� QED

Lemma ���� Let the point T lie inside hyper�tile T�� Then the closest neighbour of T
lies on a surface or inside the sphere of candidates CT � and outside the interior of the
empty spheres of T��s direct neighbours�

Proof
 Following the same reasoning as in Lemma ���� QED
This concludes the geometrical part of section and we proceed with description of the

data structure and the searching algorithm�

����� Search for the Closest Neighbour

As mentioned we deal only with the norm L� 
cf� eq� 
������ As before� we 
rst de	
scribe how to search individual tile and then the whole universe� Both solutions are
generalization of respective solutions for lower dimensions under the norm L��
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The Small Universe

The small universe is a d	dimensional hyper	cube of pd � b points and is represented by a
bit map stored in a hyper	cubic register xc 
see De
nition ������ The presence or absence
of a point T � 
x�� x�� � � � � xd� is denoted by setting of bit xc�b�x�� x�� � � � � xd� to � or �
respectively�

The searching algorithm is based on the same idea as it was used in Algorithm ����
split the universe into regions and then search each of them� Therefore we generalize the
notion of search regions�

De
nition ���� Let T � 
t�� t�� � � � � td� be a query point in a d�dimensional universe�
Then hyper�pyramids� a pair for each dimension � � i � d�

Ri� � fX � 
x�� x�� � � � � xd� j �j � 
� � j � d� � 
xi � ti � jxj � tj j�g
R�i � fX
x�� x�� � � � � xd� j �j � 
� � j � d�� 
xi � ti � jxj � tj j�g 
�����

are called search regions�

In simpler terms region 
hyper	pyramid�Ri�� which lies in the intersection of half	spaces
xi� ti � xj� tj and xi� ti � �
xj� tj� 
where � � j � d�� has its top at the point T and
extends �in the ith dimension to the right�� Similarly� the region R�i� the intersection
of complements of the above half	spaces� extends �in the ith dimension to the left��
For example� in two dimensions R�� is R�� R�� is R�� R�� is R
� and R�� is R�

see De
nition ��� and Figure �����

Because the search is performed in each region separately� we have to eliminate points
from all other regions� This is done using proper masks� which we can generate e�ciently�

Lemma ���� Let the hyper�planes de	ning the search regions intersect at the point T �
Then we can generate masks for all search regions in O
d�� � O
�� time using O
d�m� �
O
m� bits of space�

Proof
 By eq� 
����� each search region is de
ned as an intersection of �d half	
spaces��� and the intersection� when we deal with bit masks� translates into a conjunction
of corresponding bit masks� Assuming that we have masks for individual half	spaces 
Hk�l

and Hk��l for xk � tk � xl � tl and xk � tk � �
xl � tl� respectively� we can generate
masks for individual search regions by

Rk� �
d�
l��


Hk�l �Hk��l�

R�k �
d�
l��


Hk��l �Hk��l� �


�����

�	Half�spaces xi � xi and xi � �xi are whole universes and we would not need to consider them at all�
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in O
d� time� Finally� since there are �d search regions� we can generate masks for all of
them in O
d�� � O
�� time�

The numbers Hk�l and Hk��l� de
ned in eq� 
����� and eq� 
����� respectively� are
masks for special case of half	spaces which intersect in points xk � xl �

p
� 
see also Fig	

ure ������ Further� in Example ��� we have shown that these numbers are in rectangular

interpretation P�r�� and P
�

r�� respectively 
see eq� 
������ eq� 
������ and Figure ����� Fi	
nally� it is easy to see that using shift operation from Example ��� we can generate from
these special masks allHk�l andHk�l 
see Figure ������ This brings us to Algorithm ����
which generates Hk��l which intersect at point� Note the only restriction on the coor	
dinates of point is that their di�erence and sum have to be integer values� Obviously
Algorithm ���� uses O
m� bits of space and runs in a constant time� QED

PROCEDURE GenerateMask �point� k� l� slope�


IF k 	 l THEN RETURN P END
 �� All bits set by eq� ����
� ��

negate�	 k � l
 �� The order of dimensions is reversed� ��

IF negate THEN tmp�	 k
 k�	 l
 l�	 tmp END


r�	 pk
 ��	 p�k�l
 �� Which rectangular register we are dealing with� ��

IF slope 	 ��� THEN �� The left border plane ��

maskSeed�	 P
�
r��
 ��	 point�k� � point�l� �� by eq� �����
� or ��

ELSE �� the right one ��

maskSeed�	 P
�
r��
 ��	 pd�k � point�k� � point�l� �� by eq� �����
� ��

END


IF negate THEN maskSeed�	 Negate �maskSeed� END


IF � 	 � THEN RETURN maskSeed �� Finally� shifting� ��

ELSIF � � � THEN RETURN ShiftRightColumns �maskSeed� �� NOT negate�

ELSE RETURN ShiftLeftColumns �maskSeed� ��� negate�

END

END GenerateMask


Algorithm ����� Generation of mask Hk�l or Hk��l�

By setting k � �� l � �� and d � � in Algorithm ���� we get a two	dimensional
instance of the function�

Finally� we prove�

Theorem ��	 Let the universe be a set of b � d �m discrete points on a hyper�cubic grid
and let N be a subset of that universe� Then there is algorithm which 	nds the closest
neighbour in N under the norm L� in constant time using b bits for a data structure and
O
m� bits for internal constants�

Proof
 The data structure we use is an obvious bit map stored in a b	bit hyper	
cubic register� Further� Algorithm ���� is a mere generalization of two	dimensional Algo	



�� CHAPTER 	� THE CLOSEST NEIGHBOUR IN CONSTANT TIME

rithm ��� under the normL�� For search of extremal set bits it uses functions LMBofCubic
and RMBofCubic presented in Algorithm ����� QED

PROCEDURE SUneighbour �domain� bitMap� origin� T�


IF bitMap THEN T�	 SubCoordinates �T� origin�
 �� domain stores bit map� ��

FOR i�	 
 TO d DO �� First� generate masks for ��� ��

FOR j�	 
 TO d DO �� ��� all half�spaces� ��

Hi�j�	 GenerateMask �T� i� j� ����


Hi��j�	 GenerateMask �T� i� j� ����


END

END


FOR i�	 
 TO d DO �� Next� generate masks for ��� ��

Ri��	 Hi�� AND Hi���
 �� ��� search regions by eq� �����
� ��

R�i�	 Negate �Hi��� AND Negate �Hi����


FOR j�	 � TO d DO

Ri��	 Ri� AND Hi�j AND Hi��j


R�i�	 R�i AND Negate �Hi�j� AND Negate �Hi��j�


END


END


N�	 �
 �� The closest point is far away� ��

FOR i�	 
 to d DO �� Finally� search all regions� ��

N��	 RMBofCubic �i� domain AND R�i�
 �� 
rst left direction� ��
N��	 LMBofCubic �i� domain AND Ri��
 �� then the right one� ��
N�	 Closest ��� d� T� N� N�� N��
 �� and choose the closest point� ��

END


RETURN AddCoordinates �origin� N�

ELSE RETURN domain �� The domain is a pointer� ��

END


END SUneighbour


Algorithm ����� Searching for the closest neighbour in a small d�dimensional universe under

the norm L��

Similarly as before� the solution can be adapted from hyper	cubic universe to a more
general hyper	cuboid universe 
cf� De
nition �����

The Big Universe

The big universe has a hyper	cubic shape� and contains Md points where M � �m� We
�tile� it with hyper	cubic tiles 
see De
nition ���� of size b � d �m points 
the length
of a side is p � d

p
b � d

p
dm�� Note that the size of a tile is again chosen so that its bit

map representation takes as much space as the speci
cation of an arbitrary point in the
universe� Further� we generalize Lemma ����
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Lemma ���� Let T� be some some tiling hyper�cube� Then there are at most �
d corner

areas each of which lies on at most �d tiles�

Proof
 By Lemma ���� there are �d corner areas� Let us consider a corner area As�
Similarly as before� we have two cases 
cf� Figure ���� and we restrict our attention only
to the more general one� where T� is not part of As�

If we project As on any pair of coordinates 
i� j� we get a two dimensional corner area
which sides have lengths li and lj � It is easy to see 
cf� Lemma ���� that the lengths are
bounded by � � li� lj � �p and thus the projected corner area lies on at most �� � � tiles�
Using the same argument over all coordinates we get the bound of �d tiles��� QED

Next we generalize Lemma ����

Lemma ���� Under the norm L� and hyper�cubic tiling as explained above� the sphere
of candidates lies inside the enclosing body�

Proof
 Let us assume that this is not true� Now� consider any pair of coordinates

i� j� and projections of a sphere of candidates and an enclosing body onto these coordi	
nates� The bodies map into a circle of candidates and an enclosing polygon respectively�
Because of our initial assumption there must exist a pair of coordinates 
i� j� projection
onto which maps a circle of candidates partially outside the enclosing polygon� However�
this contradicts Lemma ���� QED

With machinery built so far we can prove the 
nal theorem�

Theorem ��� Let the universe be a set of Md d�dimensional discrete points and let N
be a subset of that universe� Then there is an algorithm which 	nds the closest neighbour
of a query point in N under the norm L� in O
d� � �d � �d� � O
�� time and using

Md � Md

d lgM � O
logM� bits of memory�

Proof
 Again� after tiling the universe� we store in the array S��� the bit map
representations of non	empty tiles and coordinates of the closest neighbour of centres of
empty tiles� As before� to distinguish what is stored in the array S��� we use the array of
bits� B���� The mapping between a point and a bit map representation is straightforward

T � 
x�� x�� � � � � xd�� S�y�� y�� � � �� yd��b�z�� z�� � � � � zd� 
�����

where yi � xi div p and zi � xi mod p� Further� since there are
M
p
tiles in each dimension�

the space occupied by arrays S��� and B��� is

Md

pd
� 
b� �� �Md �

Md

d lgM

�����

��Obviously
 this bound can be improved �cf� Lemma ���	�



��� CHAPTER 	� THE CLOSEST NEIGHBOUR IN CONSTANT TIME

bits�

Since the implementation of a search in Algorithm ���� is almost identical to the search
in two dimensions 
cf� Algorithm ����� we skip a more detailed explanation� However� we
observe� that the running time of Algorithm ���� is dominated by search in corner areas�
By Lemma ���� there are �d corner areas and each lies on at most �d tiles� Further� by
Theorem ��� each tile is searched in O
d�� time� Therefore� the total running time of
Algorithm ���� is O
d� � �d � �d� � O
�� time� QED

PROCEDURE Neighbour �T�


FOR i�	 
 TO d DO T	�i��	 T�i� DIV p END
 �� First� tile T	 from eq� �����
 ��

FOR i�	 
 TO d DO �� and its direct neighbours� ��

Ti�	 T	
 INC �Ti�i��
 Td�i�	 T	
 DEC �Td�i�i��

END


�� Next� spheres are implicitly de
ned by the closest neighbours� ��

N�	 �
 �� the initial sphere of candidates CT � ��
FOR i�	 
 TO ��d DO FOR j�	 
 TO d DO origin�j��	 Ti�j��p END
 �� all ��
offset�	 SubCoordinates �T� origin�
 �� empty spheres Ci� ��
Ni�	 SUneighbour �S�Ti�� B�Ti�� origin� offset�


N�	 Closest ��� d� T� N� Ni� �� and update CT � ��

END


�� Finally� search corner areas� ��

FOR i�	 
 TO �d DO �� directions in which is expanding Ai ��

��i��	 CreateDirectionVector �i�
 �� are computed in O
d� time� ��
END


FOR i�	 
 TO �d DO �� search corner area Ai ��

tile�	 Intersect �N� ��i��


N�	 Closest ��� d� T� N� SearchCorner �tile� ��i��� T� N�

END


RETURN N

END Neighbour


Algorithm ����� Searching for the closest neighbour of the query point T in the d�dimensional

universe under the norm L��

By a proper order of tile	searching in corner areas we can reduce the number of non	
empty tiles being searched to O
d� � �d� and thus the time to O
d� � �d�� 
cf� explanation
following Algorithm �����

At the very end� after the same deliberation as for Corollary ��� and Corollary ����
we generalize these corollaries to d dimensions�

Corollary ��� Let the universe be a set of fS�� S�� � � �Sdg discrete d�dimensional points�
where � � W �

Qd
i�� Si � dm ��dm	�� and let N be a subset of that universe� Then there

is an algorithm which 	nds the closest neighbour of a query point in N under the norm
L� in constant time using W � W

d lgM �O
logM� bits of memory�
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��	 Conclusions and Discussion

This chapter addressed the problem of a static closest neighbour problem� We presented
solutions which in constant time 
nd the closest point to the query point under the
norm L� using W � W

d
m � O
m� bits of space� where W is the number of points in a
d	dimensional universe� and m the size of a memory register� If we use a table lookup
method to 
nd the extremal set bits� the third order term becomes O
M��� � log���M�
bits due to the table size� In some applications� the points may have names� These can
be stored in a perfect hash table� using their coordinates as the key 
cf� ���� ��� �����

Because of properties of a distance function in one dimension� the same solution
applies to all norms� In two dimensions we developed a separate solution for the norm
L� although Lee and Wong showed that the norms L� and L� are computationally
equivalent� The reason for a separate solution was to keep the bound on the use of space
at W � o
W � bits�

The extension of our approach to other norms 
e�g� Euclidean� L�� norm� to more than
one dimension does not seem to work� The main reason is that we can not bound the
number of tiles on which individual corner area lies� and therefore� we can not perform
in constant time an exhaustive search inside corner areas� Consequently� it remains an
interesting open question whether there exists a constant time algorithm which 
nds the
closest neighbour under the norms Lf � where � � f ��� using W � o
W � bits of space

W is the size of universe�� We conjecture that there is no such algorithm� In fact� we
do not even know if there is such an algorithm for d � � and the norm L��

The second order term in the amount of space of our solutions is W
d
m � But� can we

further reduce it$ This question introduces another interesting open problem� a lower
bound on the amount of space that would still permit constant response time� For a

simple membership problem and a cell probe model we have a lower bound
l
lg
�
M
N

	m
from eq� 
���� and� to our knowledge� this is also the best lower bound for the closest
neighbour problem� We think� though� that the real lower bound is higher and depends
on a sparseness of a set 
see eq� 
������ Note� that when the relative sparseness is constant�
our solutions come within a constant factor of a lower bound for a membership problem�

The construction of the complete structure takes �d sweeps of the universe 
two per
dimension� and� since the time of one sweep is proportional to the number of tiles� the time

O
 Md

logM �� In each sweep we 
nd� for the center of each empty tile� the closest neighbour
in one of the centre#s �d hyper	pyramids 
see De
nition ������ These hyper	pyramids now
extends over the complete universe and are not restricted to a single tile�
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The natural next step from a static closest neighbour problem addressed in x � is to
make it dynamic� that is to permit insertions and deletions� This appears to be a di�cult
problem even in the bounded universe in which we are operating� In one dimension the
problem was solved in  
lg���M� time by van Emde Boas et al� 
���� ����� This solution
was shown to be optimal under the comparison based model 
������ We extend the model
to RAMBO 
see x ����� which permits an individual bit to appear in several memory
registers� and provide a constant time solution under this model�

After a short introduction and motivation� we de
ne a few additional terms� show how
a one	dimensional dynamic closest neighbour problem is related to some other common
problems� and brie�y browse through the literature� In the following section� x ���� we
unwrap the van Emde Boas et al� recursive data structure 
cf� ���� ���� and use this
unwrapped structure in x ��� for the 
nal solution of the problem� The chapter concludes
with a short discussion and some open problems�

	�� Introduction and Motivation

There are two orthogonal approaches to the closest neighbour problem� If each element
in the universe knows its closest neighbour� constant query response time is easy� but
updates are time consuming� This approach may be very attractive when there are only
a few updates� and is clearly helpful if there are none 
cf� x ��� The second approach is
to note the presence or absence of a value in a small number of places 
a bit map is the
extreme�� but this makes queries very costly�

Fredman in ���� goes through the same arguments in maintaining the partial sums
of an array� As a tradeo� between the approaches he introduces a tree	like recursive
structure which does not store a complete answer to a query in one spot� but distributes
it over the structure� This way he avoids the worst case scenario of either approach� Our
solution to the dynamic closest neighbour problem follows similar lines� as the RAMBO
facilitates more e�cient handling of the distributed answers�

	�� Related Problems and Literature

We study a one	dimensional dynamic closest neighbour problem�

De
nition ��� Let N be a subset of elements of the universeM � f� � � �M � �g� Then
the one�dimensional dynamic closest neighbour 
neighbourhood� problem is to sup�
port the following operations e�ciently 
cf� ������

	 Insert �e� which inserts element e into the subset N �
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	 Delete �e� which deletes element e from the subset N �
	 Left �e� �Right �e�� which returns the largest 
smallest� element of N smaller

larger� than e� If such an element does not exist �� 
��� is returned�

To be able to talk also about both neighbours of the largest and the smallest element
in N � we augmentM by �� and ��� Consequently the right 
left� neighbour of ��

��� is the smallest 
largest� element in N �

	���� Related Problems

The dynamic closest neighbour problem is related to a number of problems including
the union�split�	nd problem and the priority queue problem� In the union	split	
nd� or
interval sets� problem 
����� we have a set of contiguous and pairwise disjoint interval
sets taken from a bounded universe� The interval I is identi
ed by its minimum element�
min
I�� The following operations are to be supported 
cf� ������

	 Find �e� which returns min
I�� where e � I�
	 Split �e� which splits the interval I 
e � I� into consecutive intervals I� and I�
such that min
I�� � min
I� and min
I�� � e� and

	 Merge �I� which puts elements from intervals I 
e � I� and I� 

e� �� � I�� into
the interval I�� Obviously� min
I�� � min
I���

Since an interval is identi
ed by its smallest element� we can replace the set of intervals
with the set of these smallest elements� This makes union	split	
nd and neighbourhood
problems equivalent as shown in Table ����

neighbourhood � interval sets

Insert �e� � Split �e�

Delete �I� � Merge �I�
Left �e� � Find �e�

Table ���� A mapping between the neighbourhood and interval sets problems�

On the other hand� in an extended version� of the priority queue problem we have a
set of elements� N � from a bounded universe and the following operations 
cf� �������

	 Insert �e� which inserts an element e into N �
�The basic version of the problem includes only operations Insert and DeleteMin�
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	 DeleteMin which deletes the smallest element from N and returns it�

	 ChangePriority �e� )� which changes the value of the element e in N for )�

	 Delete �e� which deletes an element e from N � and
	 MinPriority which returns the smallest element in N �

As presented in Table ��� priority queue operations can be e�ciently emulated by the
operations of the neighbourhood problem� Thus� the priority queue problem is no harder
than the neighbourhood problem� However� it is not known to be easier� In summary� a
solution of a neighbourhood problem gives us also solutions for the union	split	
nd and
the priority queue problems with the same time and space bounds�

priority queue � neighbourhood

Insert �e� � Insert �e�

DeleteMin � tmp�
 Right ����� Delete �tmp��

return tmp
ChangePriority �e� )� � Delete �e�� Insert �e �)�
Delete �e� � Delete �e�

MinPriority � Right ����

Table ���� A mapping of the priority queue problem onto the neighbourhood problem�

	���� And the Last Stroll Through the Literature

Under the pointer machine model 
cf� ������ there are two versions of algorithms for the
union	split	
nd problem� separable � in which data structures contain no path between
subgraphs representing di�erent sets� and non�separable� For separable algorithms there
is an obvious logarithmic upper bound achieved by any balanced tree 
cf� ��� �� ��� ���
���� ����� which matches the amortized lower bound of Mehlhorn� N*aher� and Alt in �����
In the same papers they also prove an amortized lower bound of �
log���M� for non	
separable algorithms� This lower bound is matched by the strati
ed trees of van Emde
Boas et al� 
���� ��� ����� which were improved by Johnson 
����� to use less space� Our
solution is also based on the van Emde Boas et al� work� La Poutre"e in ���� proves that
the sequence ofM�� splits and f 
nds takes at least �
M�f �	
f�M�� operations under
either the separable or non	separable model� This is matched by a number of algorithms

cf� ��� ��� ������

Under the more powerful cell	probe model� and restricting space to  
N� words�
there is a lower bound of �
log���M� on a static version of the problem due to Ajtai

����� This bound is matched in ����� by Willard who combines strati
ed trees with the
perfect hashing of Fredman� Koml"os� and Szemer"edi 
������ This solution can be upgraded
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to the same amortized expected bound for a dynamic version of the problem using the
Dietzfelbinger et al� 
����� randomized hashing scheme 
cf� ������ Employing ���� or
���� gives an even better result� Finally� under the same model in ���� Miltersen proved

a �


q
log���M� lower bound on the Find operation for a split	
nd problem 
without

merge��

Assuming words are large enough to store the complete data structure 
a trie in their
case�� Ajtai� Fredman� and Koml"os in ��� describe a constant time solution to the problem�
Although such an approach is in general unrealistic� it becomes manageable if the size
of the data structure is proportional to the word size� Thus� Maggs and Rauch in ����
combine the Ajtai et al� structure for small chunks of a problem with strati
ed trees on
a large scale to obtain a solution using O
N �M �� bits� and performing p operations
in worst case O
p log���M� and expected O
p� time� Their approach is similar to the
word	size truncated recursion technique used in x ��

For the priority queue problem there is a straightforward logarithmic amortized lower
bound under pointer and random access machines models� It is derived from the lower
bound for sorting and matched by any balanced tree structure 
cf� ��� �� ��� ��� ���� ������
On the other hand� to our knowledge there is no known lower bound under the cell
probe model� However� there is a recent O
N log���N� sorting algorithm 
����� under
the ERAM model 
see De
nition ���� which may hint of a double	logarithmic amortized
lower bound � the same as for the neighbourhood problem� Finally� all algorithms for the
neighbourhood problem are directly applicable to the priority queue problem with the
same time and space bounds using the reductions in Table ����

	�� Strati�ed Trees and Binary Tries

Strati
ed trees were originally de
ned as a recursive data structure 
���� ����� However�
�unwrapping� the recursive de
nition reveals a complete binary tree 
trie� with the el	
ements of M at the leaves of the tree and those leaves representing the elements of N
joined in a doubly linked list 
cf� Figure ����� We tag each that is a root of a subtree
containing an element of N 
including leaves in N �� Furthermore� each tagged internal
node has a pointer to the largest and smallest elements of N in its subtree�

To 
nd either neighbour of any e � M it is su�cient to 
nd the other as the desired
value can be reached following pointers at the leaves� An approach to locating one of e#s
neighbours is to 
nd the lowest tagged node on the path from the leaf e to the root� A
linear scan does this in O
logM� time� Van Emde Boas at al� 
���� ���� realized that it
can be done using binary search� This changes the role of tags and some details of the
representation� but more importantly� it leads to an algorithm with O
log���M� worst
case running time� On the other hand� the RAMBO machine model 
see De
nition ����
permits us to use word	size parallelism to perform this search in constant time� Thus� the
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��	 � � � � � � � � � �	 �� �� �� ��

Figure ���� Underlying complete binary tree �trie
 of the strati
ed tree for a subset of the

universe of size �	�

discussion in the remainder of x ��� tacitly assumes the ability to quickly 
nd the lowest
tagged node above a given point and concentrates on minimizing the changes necessary
in performing updates in the structure�

	���� Tagging Trees

Summarizing the description above we de
ne�

De
nition ��� A simple tagged tree is a complete binary tree with elements ofM at
its leaves and


i�� each node that is the root of a subtree containing an element of N is tagged�


ii�� each internal tagged node has a pointer to the largest and smallest elements of N
in its subtree� and


iii�� elements of N are connected in a doubly linked list�

The neighbours of an element in a simple tagged tree are easily found in constant
time once the lowest tagged ancestor of the query point is found� The di�culty is that
a single element of N may be referred to by up to lgM internal nodes� This would
appear to impose a �
lgM� bound on any update algorithm� A simple modi
cation of
the structure to remove a multiple reference problem begins with the idea of a splitting
node 
see boxed nodes in Figure �����
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��	 � � � � � � � � � �	 �� �� �� ��

Figure ���� A tree with boxed splitting nodes�

De
nition ��� An internal node is a splitting node if there is at least one element of
N in each of its subtrees�

We now maintain tags and pointers only at splitting nodes� This does not quite
solve the problem as a single element of N may still be the smallest 
largest� in up to
lgM subtrees 
see Figure ����� The 
nal twist is to maintain references to the leftmost

smallest� element in the right subtree and the rightmost 
largest� element in the left
subtree� That is to the �inside� rather than �outside� descendents� Thus� we have�

De
nition ��� A split tagged tree is a complete binary tree onM in which�


i�� a splitting node of the tree has a tag and pointers to the largest element in its left
subtree and the smallest element in its right subtree�


ii�� each leaf representing an element from N is tagged� and


iii�� the elements of N are connected in a doubly linked list�

We now show that a split tagged tree supports both constant time updates and constant
time queries�

	���� Where to Look for Neighbours

To simplify further discussion we introduce a few terms�



��� CHAPTER �� ONE�DIMENSIONAL DYNAMIC NEIGHBOUR

� � �

x

Figure ���� Element x as the smallest in many subtrees�

De
nition ��� The lowest common node 
or lowest common ancestor� of two leaves
is the root of the smallest subtree containing both leaves�

De
nition ��� The node n is a left 
right� splitting node of e if e is a leaf in the left

right� subtree of n� The 	rst left 
right� splitting node on a path from e to the root is the
lowest left 
right� splitting node of e�

To permit constant time updates only a few splitting nodes may have references to a
given element in N � In fact� there are at most two such nodes�

Lemma ��� Consider a split tagged tree� a tagged leaf e� and all left 
right� subtrees
at splitting nodes of the tree� Then e is the largest 
smallest� element in the left 
right�
subtree of e�s lowest left 
right� splitting node� and in no other subtree rooted at a splitting
node�

Proof
 We prove only half of the lemma since the other half is symmetrical� First�
if e is the smallest element in N � then it has no left splitting node� Next� if n is e#s
right splitting node� then e is larger than any element in the left subtree of n� Since�
by De
nition ���� the lowest left splitting node� nl is the 
rst left splitting node on the
path from e to the root� all other elements in the left subtree of nl are smaller than e�
Finally� assume e is also the largest element in the left subtree of the left splitting node
ni� Since nl is e#s left splitting node there is an element� f � in the right subtree of nl and
e � f � By De
nition ��� ni is above nl and thus e and f are both in the left subtree
of ni� However� this contradicts the assumption that e is the largest element in the left
subtree of ni� QED
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Finally� the following lemma indicates how to answer queries quickly�

Lemma ��� Let nl and nr be e�s lowest left and right splitting nodes respectively� and
let x� y � N be the neighbours of e where x � e � y� Then� if e �� N either the pointers
at nl or at nr point to x and y� and if e � N then the pointers at nr refer to x and e�
and those at nl refer to e and y�

Proof
 If e � N � this lemma follows from Lemma ���� If e �� N Figure ��� presents
two of four possible situations 
the other two are symmetrical�� Let nc be the lowest
common node of x and y� By de
nition� it is also a splitting node� and moreover� it is a
splitting node on a path from e to the root� Since x and y are e#s neighbours� they are
each other#s neighbours in N and therefore� x is the largest element in nc#s left subtree
and y the smallest element in nc#s right subtree� Consequently� the pointers at nc point
to x and y� e#s neighbours� A contradiction argument similar to that of the proof of
Lemma ��� shows that nc is either nl or nr� QED

n

nr

nlnr

n

nl

x e y x e y

Figure ���� Pointers to both neighbours of element e �� N are either at the lowest left �nl
 or

right �nr
 splitting node�

	�� The Solution

To solve the dynamic one	dimensional closest neighbour problem we 
rst describe the
data structure and how it is stored in memory� and then give the algorithms�

	���� The Data Structure

Our data structure is a split tagged tree� from De
nition ���� with the nodes represented
in an array in standard heap order� i�e� the root is n�� n� and n� are its left and right
child respectively� In general� node ni has left and right children n�i and n�i	��
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To store this data structure� we divide the passive block 
memory� into an overlapped

see RAMBO model in x ���� and a non	overlapped 
conventional� part� The graph
describing the overlapped part is a complete binary tree of height m 
it is a level shorter
than the split tagged tree� where the registers are represented by paths from leaves to the
root 
cf� Figure ����� Thus� the leaves are not shared and appear in the least signi
cant
position of individual registers� while the root� which is shared by all registers� appears in
the most signi
cant position of registers�� The bits of the overlapped memory� Bi where
� � i � �m �M � are enumerated in standard heap order as well� Hence�

reg�i��b�j�� Bk where k � 
i div �j� � �m�j�� 
����

since k � 
i� �m��� div �j � 
i div �j� � �m�j��� This brings us to a formal description
of how the split tagged tree is stored in the memory�

B��

	 � � � � � � � � �	 �� �� �� �� ��

B�

B� B�

B� B� B� B�

B	 B
 B�� B�� B�� B�� B�� B��

B�� B�� B�	 B�� B�� B�� B��B�� B�� B�� B�� B�	 B�
 B��

reg���

B�


Figure ���� Overlapped memory� modeled as a complete binary tree of height m � �� with

marked reg����

De
nition ��	 The memory representation of a split tagged tree from De	nition ��

in Algorithm ��� consists of four variables residing in two parts of memory�

reg
 overlapped registers storing internal nodes of the tree 
see eq� 
������ Bit Bi is set
i� node ni is tagged�

elt
 leaves of the tree where bit elt�e� is set i� leaf e is tagged�

� It will be seen later that we could not choose the root to appear as the least signi�cant bit of registers�
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internal
 internal node pointers to the largest element in the left subtree and to the
smallest element in the right subtree of a given node� Pointers internal�i� corre�
spond to node ni�

leaf
 ordered doubly linked list of elements of N �

CONST M	 �m
 �� size of universe M ��

VAR �� binary tree of tags� ��

reg� ARRAY ����M���
� OF WORD IN Overlapped
 �� internal nodes and ��

elt� ARRAY ����M�
� OF BOOLEAN IN Conventional
 �� leaves� ��

�� pointers� ��

internal� ARRAY �
��M�
� OF RECORD �� at internal nodes point to ��

left� �� the largest element in the left subtree and ��

right� WORD
 �� the smallest element in the right subtree� and ��

END IN Conventional


leaf� ARRAY ����M�
� OF RECORD �� at leaves ��

prev� next� WORD
 �� connect elements of N in a doubly linked list� ��

END IN Conventional


Algorithm ���� Memory representation of a split tagged tree �data structure
 used for the

dynamic neighbourhood problem�

The size of this data structure is dominated by the arrays of pointers and remains
 
M logM� bits as in the original van Emde Boas solution� We will reduce it later�

	���� Finding Internal Nodes

To 
nd the neighbours of e� by Lemma ��� we need only 
nd e#s lowest left and right
splitting nodes� By De
nition ��� the register reg�e DIV �� represents the path from the
leaf e to the root and the set bits in the register correspond to splitting nodes� Therefore�
we must separate those bits representing left internal nodes from those representing right
internal nodes� and 
nd the least signi
cant set bit among each�

To separate the bits consider a path from the leaf e to the root and the ith level node
nk on this path� It is not hard to see that if e�b�i� � �� where k � 
e div �i� � �m�i��


cf� eq� 
������ then element e is in the left subtree of nk and otherwise it is in the right
subtree of nk � In other words� the element e itself is a mask that can be used to separate
bits representing left and right internal splitting nodes� and hence expressions

reg�e DIV �� � e and reg�e DIV �� � e 
����

extract bits representing e#s right and left splitting nodes respectively� We can use such
simple expressions only because we put the root of the tree in the most signi
cant position
of the overlapped registers reg��� 
cf� footnote ��� Now it is easy to prove�
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Lemma ��� Given an element e � M we can compute its lowest left and right splitting
nodes in constant time�

Proof
 After separating bits by eq� 
���� we compute the least signi
cant 
the left
most in Theorem ���� set bit by Algorithm ���� 
for details see Algorithm ����� QED

PROCEDURE LowestSplittingNodes �e�


tmp�	 e DIV �
 path�	 reg�tmp�
 �� The path from e to the root� ��
j�	 LMB �path AND Negate �e��
 �� the least signi
cant set bit by by eq� �	��
� ��
nl�	 �tmp DIV �j� � �m���j
 �� and the corresponding node by eq� �	��
� ��

j�	 LMB �path AND e�
 �� Similarly� the lowest right splitting node� ��

nr�	 �tmp DIV �j� � �m���j


RETURN �nl� nr�

END LowestSplittingNodes


Algorithm ���� The lowest left and right splitting nodes of e�

We also require the lowest common node of elements e and f �

Lemma ��� The lowest common node of two elements can be computed in constant time�

Proof
 The lowest common node of elements e and f is the last common node in
the paths from the root to e and f � Therefore� the most signi
cant set bit of exclusive
or of e and f corresponds to the node immediately below the lowest common node�
Algorithm ��� presents the details of the calculation� QED

PROCEDURE LowestCommonNode �e� f�


j�	 LMB �e XOR f� � 

 �� The appearance of bit in a register� ��

nj�	 �e DIV �j��� � �m���j
 �� and corresponding node by eq� �	��
� ��

RETURN �nj� j�

END LowestCommonNode


Algorithm ���� The lowest common node of e and f � and an appearance of a corresponding bit

in overlapped registers�

	���� The Algorithms

In this section we 
nally implement the operations required in the dynamic closest neigh	
bour problem� We use the data structure of De
nition ���� All implementations 
nd both
closest neighbours of e � M in N � From the preceding discussion and Algorithm ���� we
easily see by Algorithm ����
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PROCEDURE Neighbours �e�


IF elt�e� THEN �� If e � N we can use a double linked list� ��

RETURN leaf�e�

ELSE �nl� nr��	 LowestSplittingNodes �e�
 �� Otherwise pointers at one ��

IF Between �internal�nl�� e� THEN �� of the lowest splitting nodes ��

RETURN internal�nl� �� point to both neighbours� ��

ELSE RETURN internal�nr� END

END

END Neighbours


Algorithm ���� The neighbours of e � M in N �

PROCEDURE Left �e�


�left� right��	 Neighbours �e�


RETURN left


END Left


PROCEDURE Right �e�


�left� right��	 Neighbours �e�


RETURN right


END Right


Algorithm ���� Searching for the left and the right neighbour of e in N �

Lemma ��� The left and the right neighbours of e in N can be found in constant time�

Figure ��� is helpful in describing the insert and delete operations� It shows the e�ect
of inserting e into the corresponding diagrams of Figure ���� Now� to insert�

Lemma ��� Updates necessary for an insertion can be performed in constant time�

Proof
 Let x and y be the left and right neighbours of e 
e �� N �� which is to be
inserted� We prove that Algorithm ��� properly inserts e into N maintaining the split
tagged tree of De
nition ���� First� the algorithm tags the proper leaf and inserts it in a
doubly linked list� so the second and third parts of De
nition ��� are satis
ed�

By a simple counting argument it is easy to see that if we insert one element� exactly
one internal node in a split tagged tree becomes a splitting node� Without loss of general	
ity assume nr is the lowest right splitting node of e� n is the lowest common node of e and
y� and n is lower than the lowest common node of x and e� To prove that Algorithm ���
also maintains the 
rst part of De
nition ��� we have to show that after the insertion n
becomes a splitting node 
it gets tagged� and that the pointers at e#s lowest left and right
splitting nodes are properly updated�
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y

nr

nl
nnr

n

nl

x e y x e

Figure ���� The situation after an insertion of e in N �

As n is the lowest common node of e and y� these elements are in its left and right
subtrees respectively 
cf� left diagram in Figure ����� Hence n is a splitting node after
the insertion� If n were a splitting node before the insertion� there would be at least one
element� z� in the left subtree of n� Hence� either x � z � e or e � z � y which contradicts
the initial assumption about e#s neighbours� Moreover� after the insertion e is the only
element in the left subtree of n� and so n is also e#s lowest left splitting node� while nr
remains its lowest right splitting node� Algorithm ��� properly updates pointers at both
nodes� while Lemma ��� guarantees that no other pointers need be changed� Constant
run time follows from Algorithm ��� and Algorithm ���� QED

Finally� we deal with a deletion�

Lemma ��	 An element can be deleted from N in constant time�

Proof
 Algorithm ��� takes constant time� Assuming e � N � its correctness follows
from Lemma ��� by similar reasoning to the proof of Lemma ���� QED

We conclude the section by�

Theorem ��� Under an implicit RAMBO model 
see De	nition ���� the one�dimensional
dynamic closest neighbour problem on a universe of sizeM can be solved in constant time
and O
M logM� bits of space�

Proof
 The space bound follows from the data structure described in De
nition ����
and the time bound from Lemma ���� Lemma ���� and Lemma ���� QED

	���� Final Improvements and Simpli
cations

The doubly linked list leaf is used only to 
nd neighbours when e � N � In this case� by
Lemma ���� the pointers to e#s neighbours are located in its lowest splitting nodes� and
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PROCEDURE Insert �e�


�nl� nr��	 LowestSplittingNodes �e�


�� Update leaves� ��

�x� y��	 Neighbours �e�
 �� Find both neighbours� ��
elt�e��	 TRUE
 �� tag a proper leaf and ��

leaf�x��next�	 e
 leaf�y��prev�	 e
 �� insert e in a doubly linked list� ��

�� Update the tree� ��

�nx� jx��	 LowestCommonNode �x� e�
 �� First� lowest common nodes ��

�ny� jy��	 LowestCommonNode �e� y�
 �� with both neighbours ��

IF nx � ny THEN �� and the lower of them will be ��

n�	 nx
 bit�	 jx
ELSE n�	 ny
 bit�	 jy
END
 �� a new splitting node� ��
reg�e DIV ���b�bit��	 TRUE
 �� so� it gets a tag� ��

IF e�b�bit� 	 TRUE THEN �� Finally� get e�s new lowest splitting nodes and ��

newRight�	 n
 newLeft�	 nl
ELSE newRight�	 nr
 newLeft�	 n END


internal�newRight��left�	 x
 internal�newRight��right�	 e
 �� update ��

internal�newLeft��left�	 e
 internal�newLeft��right�	 y
 �� their pointers� ��

END Insert


Algorithm ���� Insertion of e into N �

so� by Lemma ���� they can be computed in constant time and we can dispense with the
doubly linked list�

The bit array elt stores tags at leaves of a binary tree� A leaf has a tag i� the
corresponding element is in N � However� by Lemma ���� e � N i� one of the pointers at
its lowest splitting node refers back to e� By Lemma ��� the lowest splitting node can be
computed in constant time� so the array elt is redundant�

Next we reexamine internal� the array ofm	bit pointers at the internal nodes� These
references are to descendents of the nodes in question� Hence the pointers need only
indicate the path from the internal node itself to the relevant leaf� If the internal node is
i levels above the leaves this takes i bits� Moreover� it takes only i�� bits� since the value
of the ith bit of the pointer to the largest 
smallest� element in the left 
right� subtree is �

��� To summarize� from the data structure in De
nition ��� we are left with overlapped
registers reg� for a tree of tags� and an array of variable length pointers internal� The
size of such a data structure is expressed by the recurrence 
cf� ���� p� �����

s
l� �

�
�� if i � �
� � s
i� �� � 
� � � � 
i� ���� otherwise


����

with a closed form

s
m� � � � �m � �m� � � �M � �m� � � �M �O
m� � 
����
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PROCEDURE Delete �e�


�nl� nr��	 LowestSplittingNodes �e�


�� Update leaves� ��

�x� y��	 Neighbours �e�
 �� Find both neighbours� ��
leaf�x��next�	 y
 leaf�y��prev�	 x
 �� delete e from a double linked and ��

elt�e��	 FALSE
 �� take a tag o� a proper leaf� ��

�� Update the tree� ��

IF nr � nl THEN �� The lowest splitting nodes ��

�tmp� bit��	 LowestCommonNode �x� e�
 higher�	 nl
ELSE �tmp� bit��	 LowestCommonNode �e� y�
 higher�	 nr
END
 �� are treated di�erently� ��

reg�e DIV ���b�bit��	 FALSE
 �� the lower is no longer a splitting node and ��

internal�higher��left�	 x
 �� the higher gets pointers ��

internal�higher��right�	 y
 �� to both neighbours� ��

END Delete


Algorithm ��	� Deletion of e from N �

The simpli
cation of the data structure not only improves the space bound� but also the
running time of the algorithms� as they need not maintain leaves� elt� and a doubly
linked list leaf� at these leaves�

A further saving in space is achieved by splitting the universe into buckets of m
consecutive elements and representing each bucket by a bit map� The insertion and
deletion in a bit map are trivial� and constant time neighbour searches follow from Theo	
rem ���� Treating buckets as elements of a smaller� M

m
	element universe 
a bucket	element

is present i� at least one of its elements is present�� we build the split tagged tree structure
as described above� The bit maps require M bits� and the tree on the top� by eq� 
�����
only �M

m � O
m� bits� The second application of this bucketing trick reduces the space
requirement to M � M

m
� �M

m� �O
m� bits and so�

Theorem ��� Under the implicit RAMBO model the one�dimensional dynamic closest
neighbour problem on the universe of size M can be supported in constant time using
space M � M

lgM � o
 M
lgM � bits�

For N �  
M� this matches within a constant factor the lower bound �
M� for the
membership problem 
cf� eq� 
������

	�� Conclusion
 Discussion and Open Questions

This chapter presented a constant time�M � o
M� bit solution to a generalization of the
priority queue� the dynamic one	dimensional closest neighbour problem on �� � � �M � ���
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When about half of elements are present� our solution matches the lower bound of M �
o
M� bits� The solution� which was primarily in�uenced by the strati
ed trees of van
Emde Boas et al� 
���� ����� uses the RAMBO machine model and word	size parallelism
to manipulate the data structure e�ciently�

An interesting challenge is to use an implicit RAMBO to solve the dynamic neigh	
bourhood problem in two dimensions� We suspect that a constant time solution may be
best possible under the L� norm and� perhaps� under L��

Finally� the only known lower bounds are those under the cell probe model and for
restricted versions of the problem 
cf� ���� ����� There is� however� nothing known about
the tradeo� between the space and time bounds� In particular� what is the minimal
size of the structure that would still permit constant time operations under the implicit
RAMBO or even ERAM$ We believe that this depends on the size of N � and on M �





Chapter �

Summary and Conclusions

Da stech ich nun� ich armer
Tor�

Und bin so klug als wie
zuvor�

� � �

Und sehe� da� wir nichts
wissen k�onen�

Das will mir schier das
Herz verbrennen�

Johann Wolfgang von Goethe� Faust

Poor fool� with all this
sweated lore�

I stand no wiser than I was
before�

� � �

And round we go� on
crooked ways or straight�

and all I know that
ignorance is our fate�
and this I hate�

Johann Wolfgang von Goethe� Faust

���
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� SUMMARY AND CONCLUSIONS

The model used throughout the thesis is an extended random access machine model�
ERAM� whose instruction set is augmented to include integer division and multiplication�
and bitwise Boolean operations� On the other hand� the width of a memory register and
the width of the communication channel between an active block 
processor� and a passive
block 
memory� is bounded in the model bym bits� The bound on the width of a memory
register also limits the number of di�erent objects we can deal with in a single step to
M � �m� These objects form a bounded universe�M 
jMj �M�� of all possible objects�

In the thesis we further developed three e�cient methods of bit management�

	 table lookup for small ranges 
domains��
	 word	size parallelism� and
	 various organizations of the passive block�

Table lookup for small ranges is useful when we have a data structure with many instances
of the same sub	structure� In this case we keep only one instance of the sub	structure
and replace the others by pointers to the kept one� This results in better space bounds�

Word	size parallelism is a programming technique which uses the parallelism inher	
ently present in a processor#s instruction set� It permits us to replace a number of
non	con�icting parallel operations with a constant number of sequential operations� The
technique improves time bounds�

The organization of bits in the passive block was the last technique introduced� The
RAMBO approach views bits as individual entities mapped into registers� Individual
bits may appear in several registers simultaneously� This multiple appearance drastically
enhances information dissemination� and thus� improves time and space bounds�

These methods were employed in solving the following two problems�

	 membership problem in a bounded universe� and

	 closest neighbour problem in a d	dimensional bounded universe�

The solution to the static membership problem permits constant time queries and
uses information	theoretic necessary bound� B� on the number of bits necessary� plus
some lower order terms� In the solution of the dynamic version of the problem� the same
space bound is kept� but the time bound degrades to a bit more than average constant
time with a high probability� The 
nal solution of the dynamic problem takes constant
worst case time� with a high probability� but uses O
B� bits� In all solutions the universe is
recursively split into smaller pieces until they are small enough to be described succinctly�
However� there are situations when this recursive split would require non	constant depth�
In these cases we observe that as the depth of recursion increases� not all pieces can be



���

di�erent� Therefore� we terminate the recursion using a method of table lookup for small
ranges� The depth at which we stop the recursion depends on the size of the pieces�
which in turn depends on the register 
word� size� and so we call the technique word	size
truncated recursion�

The closest neighbour problem depends heavily on the number of dimensions� d� and
on the norm� Lf � When d � �� all norms� Lf are equivalent and we present a constant
time� M � M

m
� O
m� bit solution� For the two dimensional case under norms L� and

L�� and for the d	dimensional case 
d � �� under norm L� we again achieve a constant
time and near optimal space solution� All these solutions work in two phases� 
rst�
they restrict the area in which the candidates for the closest neighbour can occur& and
then they exhaustively search this area� Since the area to be searched exhaustively is
proportional to the word size� the search takes constant time using word	size parallelism�

The solution to the dynamic closest neighbour problem for a one dimensional universe
uses as a data structure a complete binary tree augmented with pointers at internal nodes�
The complete structure uses only M � o
M� bits� The binary tree is stored in a specially
organized passive block that permits us� with the help of word	size parallelism� to 
nd in
constant time the lowest common ancestor of the query element and one of its neighbours�
The node found and pointers associated with it lead us in a single step to both neighbours
of the query element�

The general topic addressed in this thesis is the e�cient handling of bits on a small
scale 
in registers� in a way that leads to improved algorithms on a larger scale� However�
there do remain a number of unanswered questions that we have already highlighted in
the conclusions of individual chapters� These intriguing questions are paths to further
research which� in turn� will pose even more interesting questions�

Our knowledge is like an interior of a balloon and our ignorance is like a
surface of balloon� more knowledge we have� the more gets balloon in�ated�
but more the balloon is in�ated the larger is its surface and larger is our
ignorance�
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A

Glossary of De�nitions

A
appearance set 
bit�� ��

B
bounded universe� ��

C
circle

empty circle� ���
of candidates� ���

closest neighbour problem
dynamic� ���
static� ��

corner area
multi dimensional� ���
two dimensional� ���

D
data structure� ���

E
enclosing

body� ���
polygon� ���

I
inverse Ackermann function� �
iterated logarithm� �

M
membership problem

dynamic� ��
static� ��

model of computation
extended random access machine�

ERAM� ��

random access machine with bytes
overlapping� RAMBO� ��

N
node

lowest common� ���
splitting� ���
left� ���
lowest left� ���
lowest right� ���
right� ���

O
order notation� �

R
register

hyper	cubic� ��
hyper	cuboidal� ��
linear� ��

s� k�	sparse� ��
s	small� ��

rectangular� ��
s	column sparse� ��
s	row sparse� ��
column	stripe SCi�j � ��

row	stripe SRi�j � ��
square� ��

S
search region

multi dimensional� ���
two dimensional� ���

sphere
empty sphere� ���

���



��� GLOSSARY OF DEFINITIONS

of candidates� ���

T
tile

tiling body� ���
tiling polygon� ���

W
wedge

multi dimensional� ���
two dimensional� ���



B

Notation

In the thesis we use a consistent notation which is brie�y described in this list� Each
notation is accompanied by a short explanation and the page of its detail de
nition or of
its more illustrative usage�

Notation Explanation Page

� approximation with error in lower order terms ��

	
m�n� inverse Ackermann function �

log
�i�
� x iterated general logarithm �

O� o��� �� order notation �

Member name of a function in an algorithm ��

elt name of a variable in an algorithm ��

PROCEDURE reserved word in an algorithm ��

m size of a memory register or the width of a transportation
channel �

d dimensionality of a space or arithmetic register ��

b size of a tile� small universe� or arithmetic register at hand�
d �m ��

p number of bits in a register or points in a tile in one dimen	
sion� d

p
b ��

reg�b�j� jth bit in register reg ��

xl�b�i� ith bit in linear register xl ��

xr�b�i� j� bit in ith column and jth row of rectangular register xr ��

xc�b���� ��� � � � � �d� bit in multidimensional register xc ��

B appearance	set of a bit � in fact it is a bit ��

SCi�j column	stripe register ��

���



��� APPENDIX B� NOTATION

SRi�j row	stripe register ��

PX
r�� rectangular register with set bits in triangles 
X is � or �� ��

P special form of PX
r�� with value �

b � � ��

PX special rectangular form of PX
r�� ��

M universe set ��

M size of a universe set� jMj � �m ��

N subset ofM� N �M ��

N subset of all elements in universeM and not in N � M�N ��

N size of the subset N � jN j ��

r sparseness of the subset N � M
N

��

�f 
�� distance function ��

Lf norm of space with a distance function �f ��

T query point& from Slovene for point� �to�cka �totMka�� ��

Cx centre point of a tile Tx ���

Nx closest neighbour of point Cx ���

Ti tile T� and its direct neighbours T��T�� � � � ���

CX circle with a centre in point CX or point X ���

Px enclosing polygon with respect to tile Tx ���

A corner area ���

R search region or mask associated with it ���


