
Programming Support for Blossoming

The Blossom Classes

by

Wayne Liu

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo� Ontario� Canada� ����

c� Wayne Liu ����

I hereby declare that I am the sole author of this thesis�

I authorize the University of Waterloo to lend this thesis to other institutions or
individuals for the purpose of scholarly research�

I further authorize the University of Waterloo to reproduce this thesis by photo�
copying or by other means� in total or in part� at the request of other institutions
or individuals for the purpose of scholarly research�

ii

The University of Waterloo requires the signatures of all persons using or photo�
copying this thesis� Please sign below and give address and date�

iii

Abstract

A C�� library has been created to facilitate prototyping of curve and surface
modeling techniques� The library provides general�purpose blossoming datatypes
to support creation of modeling techniques based on blossoming analysis� The
datatypes have e�cient operations which are generalizations of important CAGD
algorithms� and can be used to implement many algorithms� Most importantly�
the library is able to inter�operate with user�supplied datatypes or routines to
create complex modeling techniques�

iv

Acknowledgements

I thank NSERC and ITRC for their �nancial assistance�

I thank the following people� without whom this thesis would not have been pos�
sible� my supervisor� Stephen Mann� for his many good counsels� my readers�
Richard Bartels and Hans�Peter Seidel� the members of the Computer Graphics
Lab� especially Anne Jenson� Rob Kroeger� Greg Veres� Fabrice Jaubert� who
were always willing to help when I got stuck� my �family	 in the Laymen
s Fel�
lowship� for their prayers and encouragement� my parents� for their support and
motivation� my Lord and Saviour Jesus Christ� for His love and daily provision�

v

Contents

� Introduction �

� Background on Blossoming Analysis �
��� Geometric Spaces �
��� Polynomials and Blossoms �
�� Multi�indices and Triangular Arrays ��
��� Polynomial Spaces and Bases ��
��� B�bases �

����� B�ezier and Monomial Bases ��
��� Blossoming B�splines ��

� Datatype for Blossoming ��
�� Rationale for Blossom Datatypes ��
�� Previous Work ��
� New System� The Blossom Classes ��

��� Requirements for System ��
��� Overview of Design ��
�� Datatypes ��
��� Blossom Operations ��

� Algorithms for B�bases ��
��� Fundamental Recurrence of B�bases ��
��� Algorithms on Coe�cients and Coordinates � � � � � � � � � � � � � � � � � � ��
�� Evaluation and Getting Coordinates ��
��� Knot Swapping �
��� Run�time Analysis of Algorithms �
��� Round�o� Error Accumulation �

� Implementation ��

��� Templates vs� Inheritance �
��� Abstract Interface �

vi

�� Blossom Operations �
��� Blossoming Datatypes �

����� Blossom �
����� Knot Net �
���� Triangular Arrays and Multi�indices �

��� Geometric Datatypes ��
����� Domain ��
����� Range ��
���� Scalar ��

��� Classes ��

� Evaluation of the System ��
��� Simple Demonstration ��
��� B�spline Datatype ��
�� Basis Conversion ��
��� Polynomial Composition ��
��� Degree�raising B�splines ��
��� Chapter Summary ��

� Conclusions ��

A Datatype Requirements ��
A�� Geometry Datatypes ��

A���� Requirements for Scalars ��
A���� Requirements for Ranges ��
A��� Requirements for Domains ��

A�� Blossoming Datatypes ��
A���� Requirements for Blossoms ��
A���� Requirements for Triangular Arrays ��
A��� Requirements for Multi�Indices ��
A���� Requirements for Knot Nets ��

vii

List of Figures

��� Construction of linearized space �
��� Evaluating a blossom �
�� Evaluating a surface blossom �
��� Evaluation computations �
��� Getting the weights of blossom values �
��� Triangular array of dimension � and degree � � � � � � � � � � � � � � � � � � ��
��� Blossom of a segment of a B�spline ��

�� Operations for de�ning blossoms ��
�� Operations for evaluating blossoms �
� Operations for swapping knots of a blossom � � � � � � � � � � � � � � � � � � ��

��� Combine�coe�cients and weigh�coordinates algorithms� � � � � � � � � � � � � ��
��� Computing partial evaluation and getting partial coordinates� � � � � � � � � ��
�� Full evaluation and getting coordinates� �
��� Knot swapping for coe�cients �
��� Knot swapping for coordinates �

��� Results of simple example code� ��

viii

Chapter �

Introduction

Computer Aided Geometric Design �CAGD� is concerned with modeling curves and surfaces
on computers� Research focuses on �nding various techniques of representing curves and
surfaces in computer�compatible form� and algorithms for manipulating these representa�
tions� This research has applications in CAD�CAM� For a general introduction to CAGD�
see Farin
s book �����

The most successful techniques represent curves and surfaces with piecewise polynomial
functions� Some examples of these are B�ezier patches and NURBS� Many properties of
such techniques are most easily studied using blossoming analysis� Blossoming analysis was
introduced into CAGD in ���� ���� ��� Since that time� it has proven to be a simple and
powerful mathematical tool� It does not require advanced mathematical concepts� yet it
reveals the properties of important modeling techniques� Researchers continue to apply
blossoming analysis to �nd new modeling techniques that have useful properties�

In addition to analyzing new ideas mathematically� researchers must also implement
prototypes� computer programs that test the practicality of these ideas� Thus� programming
is an essential step in CAGD research�

The task of programming involves translating from the mathematical analysis into com�
puter code� This translation is often di�cult� The problem lies in translating mathematical
concepts� such as piecewise polynomials� into computer language concepts� such as �oating�
point arithmetic� It is unclear how to translate from one to the other� and in general� they
bear no resemblance to each other� Ideally� the programmer should be able to manipulate
the same concepts in the code as in the analysis� Then� the translation process would be
straight�forward� and the programming would be simple� The solution is to create datatypes
for blossoming�

A datatype is simply an abstract set of objects with operations that can be performed
on these objects� In this case� the objects correspond to concepts used in the blossoming
analysis� such as blossoms� tensors� bases� spaces or multi�indices� The operations perform
meaningful actions on the objects in terms of blossoming analysis� Thus� the programmer
can use the operations to manipulate the mathematical concepts in the code�

�

� CHAPTER �� INTRODUCTION

In this thesis� I have developed the Blossom Classes� a C�� library to support program�
ming with blossoming datatypes� The library is designed to be useful for many applications�
The library provides a set of general datatypes that can be used to code many modeling
techniques� In creating operations for the datatypes� I discovered generalizations of im�
portant CAGD algorithms� The resulting operations are e�cient building blocks for many
algorithms�

The outstanding feature of the library is its ability to work with other datatypes and
tools� This feature allows the library to be used for coding complex modeling techniques
that require combining datatypes and routines from other libraries�

Overview of Chapters

In Chapter �� I review the technique of blossoming analysis� Note that for reasons discussed
in that chapter� this thesis uses an alternative approach to blossoming� based on the tensor
construction�

In Chapter � I describe previous work on programming support for blossoming� list the
requirements for such systems to be e�ective� and describe the design of the Blossom Classes
in light of these requirements�

In Chapter �� I derive the algorithms that compute the datatypes
 operations� Then� I
analyze their run time requirements and their potential for accumulating round�o� errors�

In Chapter �� I discuss the implementation of the library� with particular reference to
how the library works with user�supplied datatypes�

In Chapter �� I evaluate the usefulness of the library by using it to implement di�erent
techniques and algorithms�

In Chapter �� I summarize the results of this work and list further work�

Chapter �

Background on Blossoming Analysis

This chapter reviews concepts of blossoming analysis� following the development given by
Ramshaw ����� I give less rigorous versions of Ramshaw
s de�nitions� and I omit the proofs�
Note that both Ramshaw and this thesis use a di�erent formulation of blossoming analysis
than in the general literature� See Section ��� for a discussion of the di�erence�

��� Geometric Spaces

The natural framework in which to analyze CAGD techniques is a�ne geometry� �DeRose ����
gives a thorough introduction to a�ne geometry�� An a�ne space is made up of a set of
points and an associated linear space of vectors� The points have the operation of vector
addition� Subtraction of two points is de�ned as x � y � �v� where �v is the unique vector
such that x � y � �v� An a�ne combination of points x�� � � � � xn� with scalars ��� � � � � �n�Pn

k�� �i � �� is the point

nX
k��

�ixi � x� �
nX

k��

�i�xi � x���

A basis of an a�ne space is a set of points fx�� � � � � xng such that fx� � x�� � � � � xn � x�g
is a basis of the associated linear space� This implies every point� x� can be expressed in a
unique way as an a�ne combination of x�� � � � � xn� that is� x �

Pn
k�� �ixi� The �i are called

the coordinates of x with respect to the basis fx�� � � � � xng� An a�ne space is n�dimensional
if its associated linear space is n�dimensional� This implies a basis of an a�ne space has
n� � elements�

Since the derivatives of curves and surfaces are vectors� the analysis of CAGD techniques
would be simpli�ed if points and vectors can be treated in the same way� The standard
technique is to embed both points and vectors in a n�� dimensional linear space� called the
linearized space of the a�ne space� The construction proceeds as follows� add a new element
�v� to the associated �n�dimensional� linear space� and identify a point x� with this element�

� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

� �
�y

O

�

�
�

� ���

��

vector in linearized space

�v�

original points

original vectors

Figure ���� Construction of linearized space

The n � � dimensional linear space is made of elements of the form ��v� � �v for some scalar
� and vector �v in the original linear space� Figure ��� shows this construction�

The � is called the �avor �or weight or mass� of the element� By construction� all points
x are represented as x � x� � �x � x�� � �v� � �x � x�� and all vectors are represented as
��v� � �v� thus a point has �avor � and a vector has �avor �� In this thesis� an arbitrary
element of the linearized space is written as x� that is� when it doesn
t matter whether the
element is a point or vector� When the element is known to be a vector� it is written as �v�
When the element is known to be a point� it is still written as x� but it will be called a point�

Two kinds of bases are commonly used for linearized spaces� The �rst is obtained from
a basis of the a�ne space �i�e� only points�� this kind of basis is called a simplex� The
second is obtained from a basis of the original linear space with �v� added to it� this kind of
basis is called a frame� Coordinates of vectors in a linearized space are called homogeneous
coordinates�

A projective space is obtained from a linearized space by taking all elements of �avor
� �� � and dividing by �� ��v� � �x� x����� This division is called a projection�

These geometric spaces are useful for analyzing polynomials� ordinary polynomials have
domains that are a�ne� homogeneous polynomials have domains that are linear� rational
polynomials have ranges that are projective spaces�

��� Polynomials and Blossoms

Blossoming

The standard approach to blossoming is based on the multi�a�ne blossom� which is a sym�
metric and multi�a�ne �a�ne in each argument� map of n arguments� The following theorem
states that polynomials and multi�a�ne blossoms are essentially the same�

���� POLYNOMIALS AND BLOSSOMS �

Theorem �	�	�
The Blossoming Principle� For every polynomial� F � X � Y � of
degree n� there is exactly one multi�a�ne blossom� �f � Xn � Y � such that

F �u� � �f�u� � � � � u� �z �
n

��

and vice versa�

If �f is a multi�a�ne blossom of three arguments� then the symmetric property implies
�f�x� y� z� � �f�y� x� z� � �f�any permutation of x� y� z�� The multi�a�ne property implies

�f ��w � �� � ��x� y� z� � � �f �w� y� z� � �� � �� �f�x� y� z��

The symmetric and multi�a�ne properties allow �f to be computed from known values of
�f at given arguments� For example� as illustrated in Figure ���� given the values of �f ��� �� ���
�f��� �� �� �f��� � ��� and �f�� �� ��� it is possible to compute �f����� ���� ���� First note that
by the symmetric property�

�f ��� �� �� � �f��� �� ���

Then� by the multi�a�ne property�

�f ��� �� ���� � �� �f��� �� �� � �� �f��� �� ��

Thus� from the �rst pair of values of �f � the new value �f ��� �� ���� can be computed� In
a similar manner� using the next pair and the last pair� �f ��� � ���� and �f�� �� ���� can be
computed� These three new values combine to give �f��� ���� ���� and �f�� ���� ����� which in
turn combine to give �f ����� ���� ����

��f ��� �� �� � �f ��� �� ��
� �f��� �� �

� �f ��� � ��

��f�� �� ��

�
�� �f��� �� �� � �� �f ��� �� � � �f��� �� ����

�
�f��� � ����

��f �� �� ����

� �f ��� ���� ����
�

�f �� ���� ����

�
�f����� ���� ���

Figure ���� Evaluating a blossom

This previous example evaluated the blossom of a curve� Since the concept of blossom
is independent of dimension� the same approach can evaluate surfaces� For example� as

� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

illustrated in Figure ��� given the planar points� a�� a�� b�� b�� c�� c�� x� and the blossom values
�f�a�� a��� �f�a�� b��� �f�b�� b��� �f �b�� c��� �f�c�� c��� �f �c�� a��� it is possible to compute �f�x� x��
First rewrite �f �c�� a�� as �f�a�� c�� using the symmetric property� Then use the multi�a�ne
property to write

�f�a�� x� � �� �f�a�� a�� � �� �f�a�� b�� � �� �f �a�� c���

where the �s are the barycentric coordinates of x in triangle a�� b�� c�� In the same way� the
values of �f�b�� x�� �f�c�� x�� and �nally �f�x� x� are computed�

c�

c�

a�
a�

f

b�

b�

�f �a�� b��

�f �a�� a��

�f �c�� c��

�f�b�� b��

�f�b�� c��

�f�a�� x�

�f �c�� a��

�f�b�� x�

�f �c�� x�

�f �x� x�
�

Figure ��� Evaluating a surface blossom

Figure ��� shows these two computations in another way� showing which blossom values
combine to calculate new values� These diagrams are known as �wonderful triangles	 �����

�f ����� ��� ����

�f ��� ���� ���

�

�f �� ���� ���

o

�f ��� �� ����

�

�f��� � ����

o �

�f�� �� ����

o

�f��� �� ��

�

�f��� �� �

o �

�f��� � ��

o �

�f�� �� ��

o

�f �x� x�

f�c�� c��
f�c�� a�� f�b�� c��

f�a�� a�� f�a�� b�� f�b�� b��

Figure ���� Evaluation computations

The arguments of the known values of the blossom must follow a pattern to allow new
blossom values to be computed� This pattern is de�ned in Section ����

���� POLYNOMIALS AND BLOSSOMS �

Tensoring

Another way to evaluate �f����� ��� ���� is to perform the previous computation �backwards	�
and �nd the �weight	 of each blossom value�

�f����� ��� ���� � � �f��� ���� ��� � �� �f�� ��� ����

� ���� �f��� �� ���� � ��� �f ��� � ���� � ��� �f�� �� ����

� ����� �f ��� �� �� � ��� �f ��� �� � � ����� �f ��� � �� � ����� �f �� �� ��

The data �ow is shown in Figure ����

�

� w
�

� w

��

� w
����

� w

���

� w

���

� w
����� ��� ����� ������

Figure ���� Getting the weights of blossom values

Note that the weights ������� ���� ������ ������ do not depend on the blossom �f � but only
on the arguments to the blossom� This observation suggest that it is worthwhile to study
arguments to a blossom� The tensor construction allows blossom arguments to be studied
as mathematical entities�

The construction for symmetric n�tensors �or tensor for short� proceeds recursively� A
point� x� is a ��tensor� An �n �m��tensor can be constructed from an m�tensor� u� and an
n�tensor� v� by tensor multiplication� to get the tensor u� v� Finally� a�ne combinations of
n�tensors�

P
i �iui� are n�tensors�

Tensor multiplication is associative� commutative and distributes over a�ne combina�
tions� �u� v��w � u� �v � w�� u� v � v � u� and v �

P
i �iui �

P
i �iv � ui�

Since the multiplication is commutative� the standard notation for symmetric tensors
omits the � symbol for tensor multiplication� Thus� u � v is simply uv� From now on�
this thesis uses the shorter notation� Another simpli�cation is to denote an n�tensor� u�
multiplied by itself k times as uk�

An n�tensor obtained by multiplying n ��tensors together is called a simple tensor � u �
x� � � � xn �i�e�� written without a summation sign� as opposed to ��x�x� � ��x�x��� Simple
tensors are equivalent to blossom arguments�

� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

By construction� n�tensors form an a�ne space� the points of this space are n�tensors�
while the vectors are combinations of n�tensors�

P
i �iui� where the scalars sum to �� This

space is the nth symmetric tensor space� denoted X�n�
The following theorem states that a�ne maps from the tensor space are equivalent to

multi�a�ne blossoms� Such an a�ne map is called an a�ne blossom�

Theorem �	�	�
The Tensoring Principle� For every multi�a�ne blossom� �f � Xn � Y
of degree n there is exactly one a�ne blossom� f � X�n � Y � such that �f �x�� � � � � xn� �
f�x� � � �xn�� and vice versa�

As a corollary� this theorem says a�ne blossoms are equivalent to polynomials� The a�ne
blossom f corresponding to a polynomial F is called the blossom of F �

Denote by vX�n�m the subset of the space of n�tensors obtained by multiplying the m�
tensor v by �n � m��tensors� This subset forms a subspace of X�n isomorphic to X�n�m�
A basis of this subspace can be obtained by multiplying v to a basis of X�n�m� Let f jv
denote the blossom f restricted to this subspace� Then f jv can be considered a blossom over
X�n�m� where f jv�u� � f�vu�� f jv is called the partial evaluation of f at v�

The computation of weights can now be restated using tensor notation� First� to distin�
guish between the point ��� in the ��D domain from the scalar ���� the point is written ����
Now� using the commutativity and distributivity of tensor multiplication� the simple tensor
��� ��� ��� can be written as an a�ne combination of the simple tensors � � �� � � �� � � ��
and � � ��

��� ��� ��� � �� � � �� �� ��� ��� � � � ��� ���� �� � ��� ���

� ���� � � ���� ��� � � ���� ��� � � ���

� ����� � � �� ��� � � �� ����� � � �� ����� � � ��

An a�ne blossom is simply an a�ne map over the tensors� Thus�

f� ��� ��� ���� � f������ � � � � ��� � � � � ����� � � �� ����� � � ��

� �����f� � � �� � ���f� � � �� � �����f� � � �� � �����f� � � ���

Linearizing

The concepts of blossoming can be extended to linearized spaces to make tensors from both
vectors and points� This extension allows derivatives of polynomials to be computed using
blossoms�

Similar to the a�ne case� multi�linear blossoms are de�ned as symmetric� multi�linear
maps� The only added restriction is that the multi�linear blossom must be �avor multiplica�
tive �mapping points with �avors �� to �n to a point with �avor �� � � ��n��

The construction of linearized tensor spaces proceeds as in the a�ne case� but using
linear combinations instead of a�ne combinations� The tensor space is a linearized space�

���� POLYNOMIALS AND BLOSSOMS �

The �avor of a tensor is de�ned as follows� the �avor of a simple tensor is de�ned to be the
product of the �avors of its components� the �avor of a sum of simple tensors is the sum of
the �avors of each simple tensor� A linear blossom is a linear map on X�n� The notation for
a linearized tensor is the same as for an a�ne tensor� except that ��tensors that are vectors
are written as �v rather than just x�

Linear blossoms are useful for obtaining derivative information�

Theorem �	�	� The directional derivative of F at x in the direction �v is �
��v
F �x� � nf�xn���v��

The theorem can be restated as �the blossom of �
��v
F is nf j�v	� The theorem can be recursively

applied to f j�v as a n� � blossom to get a general formula�

�k

��v� � � � ��vk
F �x� � n�n� �� � � � �n� k � ��f�xn�k�v� � � ��vk� �����

� n�n� �� � � � �n� k � ��f j
�v�����vk

�xn�k�

� n�n� �� � � � �n� k � ��f jxn�k��v� � � ��vk��

This theorem is important for piecewise�polynomial methods since it states that two poly�
nomials� F and G� join Ck at x if and only if f jxn�k � gjxn�k �

An example will clarify the concept of linear tensors� Suppose the following values of the
blossoms f and g are given� f� � � ��� f� � � �� � g� � � ��� f� � � �� � g� � � ��� f� � � �� �
g� � � ��� and g� � � ��� Equation ��� can be used to show that F �x� and G�x� meet C� at �

Let �� be the unit vector pointing in the direction of increasing x� For example� �� � �� ��
Then the theorem implies

d�

dx�
F �� � �f��� �� ��

d�

dx�
G�� � �g��� �� ���

Now� the weights of �� �� � for f are

�� �� � � �� �� ���� � � � ��� �� ��� �

�
�

�
� � � � � � ��

�

�
� � �

� � � � � �
�

�
� � ��

�

��
� � ��

�

�
� ��

Similarly� the weights of �� �� � for g are

�� �� � � � ��� �� ��� �

�
�

�
� � ��

�

�
� � ��

�

� � �

�
�

�
� � ��

�

��
� � ��

�

�
� � �� � � � ��

�� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

Thus�

d�

dx�
F �� � �f��� �� �� � �f� � � ��� ����f� � � �� � ���f� � � ��

� �g� � � �� � ����g� � � �� � ���g� � � ��

� �g��� �� �� �
d�

dx�
G���

It is no coincidence that F and G meet with C�� since they are adjacent segments of a
B�spline� as discussed in Section ����

Rationale for Linear Blossoms

Although the linear blossom is not as familiar as the multi�a�ne blossom� it is a very con�
venient concept for analysis� Because tensors form a linear space� all the concepts and
vocabulary of linear algebra become available� These concepts� such as a�ne combinations�
subspaces and bases� simplify de�nitions and theorems� Thus� this thesis will use linear blos�
soms for all theoretical discussions� especially in the derivation of the algorithms of Chapter ��
However� the actual implementation of the blossom datatype� discussed in Chapter � will
only be multi�a�ne or multi�linear�

The unfamiliarity of linear blossoms need not pose a problem� In actual practice� they are
evaluated only at simple tensors composed of only points and they behave exactly the same
as the multi�a�ne blossom� If linear blossoms are evaluated at simple tensors that include
vectors� then they behave exactly like multi�linear blossoms� From here on� �blossom	 refers
to a linear blossom�

Finally� note that �tensor	 in this context is di�erent from �tensor�product	� as in
�tensor�product B�splines	�

��� Multi�indices and Triangular Arrays

The coe�cients of multi�variate polynomials are commonly indexed with multi�indices� A
multi�index is a tuple of non�negative integers� A multi�index of dimension d and degree n is
written as�	 � �i�� � � � � id�� where i�� � � �� id � n� De�ne j�	j � i�� � � �� id� Let �ek denote the
multi�index that has a � in the kth spot and � everywhere else� The set of all multi�indices
of dimension d� degree n is denoted IInd � The size of this set is D�d� n� �

�
n�d

d

�
� and is equal

to the dimension of the space of d�variate� degree n homogeneous polynomials�

A triangular array of dimension d and degree n is a set whose elements are indexed by
multi�indices� fa�� ��	 	 IIndg� Figure ��� shows a triangular array of dimension � and degree �

���� POLYNOMIAL SPACES AND BASES ��

a������	
a������	 a������	

a������	 a������	 a������	
a������	 a������	 a������	 a������	

Figure ���� Triangular array of dimension � and degree

��� Polynomial Spaces and Bases

For the sake of brevity� the space of scalar�valued homogeneous polynomials will be simply
called the polynomial space� A basis of the polynomial space is called a polynomial basis�
A polynomial in a basis is called a basis polynomial� The blossom of a basis polynomial is
called a basis blossom� A basis of the tensor space is a tensor basis and an element of the
basis is a basis tensor�

A polynomial� F � is written as a combination of basis polynomials� F��� and coe�cients
in the range space� P��� where �	 	 IInd �

F �x� �
X
���IIn

d

F���x�P���

Intuitively� the basis polynomials are used as �weighting functions	� where F�� is the �weight	
of the point P���

The tensor space and the polynomial space are closely related� Theorem ����� states that
the blossom of a polynomial is a linear map from the tensor space� Thus� the blossom of a
scalar�valued polynomial is a linear functional from the tensor space� And since there is a
one�to�one correspondence between blossoms and polynomials� the polynomial space is the
dual space of the tensor space�

This duality implies relations between polynomial bases� tensor bases� polynomial coef�
�cients and tensor coordinates� A polynomial basis fF��g and its dual basis fu��g is related
through the blossom ff��g of fF��g by

f���u��� �

�
�� if �	 � �

�� if �	 �� �

�

Now� let F �t� �
P

�� F���t�P��� Then

f�u��� �
X
��

f���u���P�� � P���

This equation says that the coe�cients of a polynomial correspond to values of its blossom�
On the other hand� let u �

P
�� ���u�� �i�e� ��� are the coordinates of u�� Then

f���u� � f���
X
��

���u��� �
X
��

���f���u��� � ����

�� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

This equation says that the coordinates of a tensor correspond to the values of the basis
blossoms�

For example� the above observations can be used to compute the coe�cients of F and
coordinates of u over the cubic Hermite basis� The de�nition of the cubic Hermite basis
requires that the polynomials satisfy the following equations �����

H����	��� � ��
d

dx
H����	��� � ��

d

dx
H����	��� � �� H����	��� � �

H����	��� � ��
d

dx
H����	��� � ��

d

dx
H����	��� � �� H����	��� � �

H����	��� � ��
d

dx
H����	��� � ��

d

dx
H����	��� � �� H����	��� � �

H����	��� � ��
d

dx
H����	��� � ��

d

dx
H����	��� � �� H����	��� � �

These equations are uniquely satis�ed by the following polynomials�

H����	�x� � ��� x�� � x��� x��

H����	�x� � x��� x��

H����	�x� � �x��� � x�

H����	�x� � x���� x� � x��

Since F �x� � f�x�� and d
dx
F �x� � f���x��� it is easy to see that the dual basis tensors are

u����	 � � � �� u����	 �
�

�� � �� u����	 �

�

�� � �� u����	 � � � ��

In this case� all the tensors are simple� The coe�cients of F are obtained by computing

f� � � ��� f�
�

�� � ��� f�

�

�� � ��� f� � � ���

On the other hand� the coordinates of u over the basis u����	� u����	� u����	� u����	 can be
computed by evaluating h����	�u�� � � � � h����	�u�� For example� the formula for the multi�linear

blossom �h����	 is

�h����	�x�� x�� x�� �
�

�x���� x���� � x�� � x���� x���� � x�� � x��� � x����� x��� �

This is the formula for the linear blossom h����	 on simple tensors� The value of h����	 on all
other tensors is computed by taking linear combinations� Thus�

h����	� � � 	� � � �� � �h����	�� �� �� � �h����	��� �� �� �
���

� � �

���

���� B�BASES �

��� B�bases

By now it is obvious that the tensors � � �� � � �� � � �� and � � � used in the examples form
a basis� there are four of them and their linear combinations span all tensors� They are
an example of a B�basis� the most important class of polynomial bases for CAGD� B�bases
are the basis polynomials for B�patches ����� and are generalizations of segments of B�spline
bases and B�ezier bases �of any dimension��

B�bases are easier to analyze using the tensor space rather than the polynomial space�
As tensors� they have a simple formula� but as polynomials� they do not� Previously� the
polynomials have been de�ned by a recurrence relation� Using the tensor de�nition� the
recurrence relation becomes a theorem �see Section �����

B�basis tensors are de�ned using a knot net� A knot net is an array of n�d� �� domain
points ftk�l � k � ���d� l � ���n � �g� where d is the dimension of the domain and n is the
degree of the polynomial space� The points tk�l are called knots� The array looks like this��

BB�
t��� � � � t��n��
���

� � �
���

td�� � � � td�n��

	
CCA �

The�	th evaluation basis of the knot net is the set of d�� domain points ft��i�� t��i�� � � � � td�idg�
consisting of one point selected from each row of the array� These sets must form a basis of
the domain space for all j�	j
 n� �� otherwise the knot net does not de�ne a valid B�basis�

De�ne

t�� �
dY

k��

ik��Y
l��

tk�l � t��� � � � t��i��� � � � td�� � � � td�id���

For example� t��������	 � t��� t��� t��� t���� and t�� tk�ik � t����ek � The B�basis over the knot net
ftk�lg consists of the tensors ft�� � j�	j � ng� In other words� the �	th basis tensor of the basis
is t��� Note that for all m
 n� the subarray of the knot net� ftk�l � k � ���d� l � ���m� �g�
forms a basis for the space of m�tensors�

An example of a B�basis is the following� The knot net

� � �

� � �

�

produces the basis tensors

t����	 � t��� t��� t��� � � � �

t����	 � t��� t��� t��� � � � �

t����	 � t��� t��� t��� � � � �

t����	 � t��� t��� t��� � � � 	�

�� CHAPTER �� BACKGROUND ON BLOSSOMING ANALYSIS

Note that this knot net satis�es the condition that the �	th evaluation basis forms a basis for
all j�	j � � For example� the ��� ��th evaluation basis is ft����	� t����	g � f �� �g� In the one�
dimensional case� the condition implies that t��k �� t��l for k � l � � A su�cient condition
is that t��k � t��l for all k� l� This su�cient condition is satis�ed by the example and by
B�splines� as discussed in the Section ����

In the two�dimensional example of Figure ��� the knot net is

�
B� a� a�

b� b�
c� c�

	
CA �

In this case� the condition on evaluation bases requires that the points in the sets fa�� b�� c�g�
fa�� b�� c�g� fa�� b�� c�g� and fa�� b�� c�g are not collinear� A su�cient condition for the two�
dimensional case is that the knots fakg� fbkg� and fckg are contained in disjoint circles� as
in Figure ���

����� B�ezier and Monomial Bases

B�ezier bases are a special case of B�bases where knots tk�� � � � � � tk�n � tk� Thus the
elements of the B�ezier basis are ft�� � ti�� � � � t

id
d � j�	j � ng� In the usual de�nition of B�ezier

bases� the knots tk are required to be points� but it is convenient to remove this restriction
for this thesis� In this thesis� all such bases are regarded as B�ezier bases�

The monomial �or power� basis ��� x� x�� � � � � xn� is closely related to the B�ezier basis
where the tk are taken from a domain frame� fx�� �v�� � � � � �vdg� The dual basis tensors of

the monomial basis are ft�� �
�
n

��

�
xi�� �v

i�
� � � ��v id

d � j�	j � ng� where
�
n

��

�
is the multinomial

coe�cient� The coe�cients of polynomials over the monomial basis are

P�� �

n

�	

�
f�xi�� �v

i�
� � � ��v id

d � �

n

�	

�
n�n� �� � � � �n� j�	j� i� � ��

d

d�v i�
� � � ��v id

d

F �x���

This equation means that every coe�cient is a vector except one� f�xn���

��� Blossoming B�splines

In one dimension� B�bases are segments of B�spline bases� The relationship between B�splines
and blossoms was discovered independently by Ramshaw and de Casteljau ���� ���

Let F be a B�spline curve with knot sequence t�� � � � � tn��L�� and control vertices P�� � � � � Pn�L�
Let Fi be the segment of the B�spline over the interval �ti�n��� ti�n�� where ti�n�� � ti�n and
�
 i
 L� �� Then the blossom fi of Fi has the blossom values

fi�ti � � � ti�n��� � Pi� � � � � fi�ti�n � � � ti��n��� � Pi�n� �����

���� BLOSSOMING B�SPLINES ��

Thus� Pi� � � � � Pi�n correspond to the coe�cients of fi over the knot net

t��� � ti�n�� � � � t��n�� � ti
t��� � ti�n � � � t��n�� � ti��n��

�
�

For example� given a B�spline with knot sequence �� �� �� �� �� � �� �� �� � and control points
P�� P�� P�� P�� P�� P
� P�� the segment in the interval ��� � is a blossom that has knot net

� � �

� � �

�
�

and coe�cients P�� P�� P�� P
 �Figure �����

�P�

�P�

�
P� � f�� � � �� �P� � f�� � � ��

�P� � f�� � � ��

�P
 � f�� � � ��

�P�

�P�

Figure ���� Blossom of a segment of a B�spline

Chapter �

Datatype for Blossoming

This thesis aims to simplify the programming of curve and surface modeling paradigms� It
can aid research into new modeling paradigms by allowing researchers to implement them
more easily� The basic approach is to create a system that provides blossoming datatypes�

In this chapter� I motivate the use of blossoming datatypes� Then I give an overview of
previous work using this approach� and analyze their strengths and weaknesses� Finally I
give an overview of the new system that uses this approach� describing its design criteria�
and explaining how the design meets the criteria�

��� Rationale for Blossom Datatypes

To implement a modeling paradigm� one translates the mathematical derivation into code
that performs the required computations� The mathematical description for many piecewise
polynomial paradigms uses blossoming analysis�

The bene�t of blossoming analysis is that it is simple yet powerful� It does not require
complex mathematics� it has one simple concept� the blossom� It is also geometrically
intuitive� It is powerful because it uni�es many popular paradigms� Under the blossoming
approach� di�erent paradigms are distinguished by three properties� the tensor basis� the
domain� and the range� Curves are obtained by one�dimensional domains� surfaces by two�
dimensional� B�splines� B�ezier curves and surfaces are some examples of paradigms obtained
by di�erent tensor bases� Rational polynomial paradigms are obtained by projective range
spaces�

Despite its simplicity� the blossoming description is di�cult to translate to computer code�
The problem is that blossoming concepts must be translated to computer language concepts�
such as �oating�point arithmetic� However� the datatype concept solves this di�culty� A
datatype is simply an abstract set of objects with operations that can be performed on the
objects� In this case� the objects correspond to concepts used in the blossoming analysis�
such as blossoms� tensors� bases� spaces or multi�indices� The operations perform meaningful

��

���� PREVIOUS WORK ��

actions on the objects in terms of blossoming analysis� Thus� the programmer can use the
operations to manipulate the mathematical concepts in the code�

Blossoming datatypes facilitate research by making modeling prototypes easier to write�
The datatypes also make programs easier to read� They make it easy to see whether a
program is correct by seeing whether the operations manipulate the concepts correctly� Thus�
programs become easier to maintain and change�

Blossoming concepts can be made into datatypes very naturally� First� blossoming gives
a uni�ed representation of di�erent paradigms� the representation of a curve or surface is
given by a set of basis tensors and a set of coe�cients� How these two sets of parameters
are assigned depends on the application� For example� they may be set interactively or as a
result of �ltering data�

Second� blossoming gives a uni�ed view of the operations on di�erent paradigms� Oper�
ations extract various kinds of information from the representation� For example� an appli�
cation may want to obtain the location of various points on a surface� or derivatives� or a
bounding box� Since a blossom is conceptually a function� obtaining any kind of information
corresponds to evaluating the blossom at certain tensors�

��� Previous Work

DeRose and Goldman ��� �rst proposed the approach of using blossoming datatypes� Their
proposed system extends the coordinate�free geometry programming package ��� with a blos�
som datatype� Their datatype supports the two fundamental operations of creation and
evaluation� Blossoms are de�ned by their coe�cients over B�ezier bases� and are evaluated
using an extension of the de Casteljau algorithm�

While DeRose and Goldman
s proposed system was not implemented� it would have
made it straight�forward to translate a blossoming analysis to an implementation� simply
use blossom evaluation to compute the desired blossom values� However� many algorithm
cannot be e�ciently implemented with only evaluation� Also� being limited to B�ezier bases
prevented the system from implementing many paradigms�

The major work implemented using the blossoming datatype approach was by Dahl�
He provided a blossom datatype in Weyl ���� a language for CAGD research� The Weyl
language provides datatypes that closely mimics the corresponding mathematical concepts�
Weyl also has an interactive� graphical environment� The goal of Weyl was to provide an
environment where researchers can manipulate mathematical objects in familiar ways and
receive graphical feedback�

In Weyl� a blossom is conceptually a function� Operations are provided that mimic
mathematical operations on function� For example� �high�level	 operations like a�ne com�
bination� dot product� degree�raise and composition are provided� The basic operations of
blossom evaluation and partial evaluation can be used to create new algorithms� Partial
evaluation allows more e�cient algorithms to be created than with evaluation alone�

�� CHAPTER �� DATATYPE FOR BLOSSOMING

A blossom is de�ned by supplying coe�cients and an arbitrary basis of simple tensors�
For convenience� special functions are provided to generate the bases for Lagrange� B�bases�
B�ezier and power bases� Internally� however� all blossoms are stored over a standard B�ezier
basis�

The Weyl system is su�cient for its intended purposes� but is not suitable for general
research use� Its biggest drawback is that the datatypes are tied to the Weyl language
environment� they cannot be used in another environment� or in conjunction with other
tools� This is a serious problem as the Weyl environment does not provide all the necessary
facilities that researchers need� For example� if a surface �tting scheme requires the use of
singular value decomposition� the function would have to be created in the Weyl language�
It is much more convenient to use one of the many existing packages for matrix manipulation
available in C or Fortran libraries�

Second� the system emphasizes mathematical purity but is not concerned with e�ciency�
For example� there is no e�cient way to get coe�cients over a basis� or move a control
point� Also� the system may encounter numerical stability problems because it converts all
blossoms to a standard B�ezier basis�

Finally� Weyl is a functional programming language �based on Scheme�� The functional
style of programming is seldom used in CAGD� and is less familiar to researchers� who usually
use imperative languages like Fortran or C�

��� New System	 The Blossom Classes

In this section� I present the Blossom Classes� a new system to support programming with
blossoming datatypes� First� I give the requirements for the system� and after that� I present
an overview of the system� and discuss the design decisions and trade�o�s�

����� Requirements for System

A major goal of the Blossom Classes is to be generally useful� meaning it can support many
di�erent applications of blossoms� This goal implies� �rstly� that the system should handle
the most general case possible� Secondly� the system
s functionality should be� in some sense�
complete� Since completeness is di�cult to achieve� the system should provide basic building
blocks that can be used to create more functionality� The system should also be able to work
with other tools to increase functionality� Thirdly� the system should be e�cient� numerically
stable� and easy to use�

Some of these design criteria con�ict with each other� Having to handle the general case
means special cases are not handled as e�ciently� Also� the general case is more complex
than special cases� making the system more di�cult to use� To resolve this con�ict� the
system should allow the user to customize parts of the system for special cases�

These criteria hold implications for both the design of the datatype �what object and

���� NEW SYSTEM	 THE BLOSSOM CLASSES ��

operations should be provided�� and how the datatype should be packaged �how to make it
easy for programmers to use the datatype in actual programs��

A good datatype has operations that are easy to use� and perform meaningful computa�
tions� The computations should be performed by e�cient and numerically stable algorithms�
A set of basic building�block operations should be provided� from which the user can derive
new computations easily� Finally� the operations should support the familiar procedural style
of programming�

To be widely used� the datatype should be packaged as a library that users can include
into their own systems� The library should be able to inter�operate with many systems and
tools� For example� it should work with data structures and routines created by the user or
taken from other libraries� Further� in special situations where an object or operation can
be implemented more e�ciently� the user should be able to use a specialized implementation
with the rest of the library�

����� Overview of Design

I wrote the Blossom Classes as a C�� library for several reasons� C�� is a popular language
for CAGD applications� and is familiar to programmers� C�� works well with many system
and tools� and even other popular languages like Fortran or C�

Because it is a library� users can easily incorporate the Blossom Classes into their appli�
cations� and can use it with other tools� like matrix libraries� The Blossom Classes library
is part of the Computer Graphics Lab Splines project ��� at the University of Waterloo� and
works with the datatypes in the Splines library� In addition� the Blossom Classes library
is speci�cally designed to work with the Standard Template Library �STL� ����� which is a
library of generic algorithms designed to work with many di�erent classes� STL is part of
the new C�� standard� and thus will be available to all C�� users�

The outstanding feature of the Blossom Classes library is that it works with user�supplied
classes� Like STL� it is designed so that a datatype can have many implementations by
di�erent classes� The idea is to specify a datatype by an abstract interface� i�e�� as a set of
functions that a class must provide in order to implement that datatype� The library code
manipulates the datatype using only the functions de�ned in the abstract interface� Thus�
users can integrate their own classes with the library simply by providing the functions
required in the abstract interface� Users can also use this facility to create specialized
implementations that are more e�cient for certain applications�

The library has three components� the blossom datatypes� the geometric datatypes�
and the operations on blossoms� The heart of the library is the blossom operations� These
operations operate on the blossoming datatypes through abstract interfaces� The blossoming
datatypes� in turn� use the geometry datatypes through abstract interfaces�

�� CHAPTER �� DATATYPE FOR BLOSSOMING

����� Datatypes

Blossoming Datatypes

The design of the blossom datatype has several important features� Firstly� I decided to
support only B�bases in the library� This decision means other useful bases� like Lagrange
bases� are not directly supported� I made this choice because B�bases have the only known
e�cient and numerically stable algorithms to evaluate blossoms and perform other useful
operations �see Section ��� The only way to handle arbitrary bases is to implicitly convert all
blossoms to B�bases to do operations� this is ine�cient and may be numerical unstable� The
user can still choose to convert bases explicitly� so the library supports other bases indirectly�

On the other hand� arbitrary B�bases are supported� Thus� many useful paradigms can be
implemented� B�ezier curves or surfaces� B�splines� B�patches� monomials� This also means
blossoms are not converted to a standard basis� avoiding numerical instability problems�

Secondly� multi�a�ne or multi�linear blossoms are directly supported� but not a�ne or
linear blossoms� blossoms can be directly evaluated at simple tensors� not arbitrary tensors�
Again� this decision was made because of what algorithms are available� This decision does
not limit the usefulness of the library since most blossoming analysis uses the multi�a�ne
version� These blossoms are also more familiar to people and are easier to work with� Users
can still evaluate at arbitrary tensors by converting to a standard basis�

Thirdly� I decided to view the blossom as an array of coe�cient over a knot net� rather
than following the Weyl idea of a blossom as a function� In a procedural language� it is more
natural to work with blossoms by setting the knots and the coe�cients directly�

As a result of this view of blossoms� the library de�nes datatypes for triangular arrays�
multi�indices and knot nets� Triangular array datatypes are required to satisfy STL container
datatype requirements� The library actually provides two datatypes for knot nets� one for
arbitrary B�bases and one for the special case of B�ezier bases� The B�ezier datatype is
provided because it is more e�cient for some operations� However� B�ezier knot nets do not
support certain other operations�

The library provides classes that implement these datatypes� Class Blossom�domain�range�
is a templated blossom class that works with any kind of domain and range classes� It uses the
classes TriArray� MultiIndex� and KnotNet which provide triangular arrays� multi�indices�
and knot nets of arbitrary dimension and degree� Class TriArray�T� can store objects of any
type T� Class MultiIndex stores a variable�length array of integers� Class KnotNet�domain�
stores a two�dimensional array of knots of any domain type� Class BezKnotNet�domain�

implements a B�ezier knot net and stores a domain basis� No blossom class is provided for
BezKnotNet�

User�supplied types can be used instead of any of these classes �so long as certain functions
and operators are provided�� This is useful� for example� when the application only deals
with curves� In that case� more e�cient implementations of these classes can be used�

���� NEW SYSTEM	 THE BLOSSOM CLASSES ��

Geometry Datatypes

The library provides datatypes for working with domain and range spaces and scalars� I made
these datatypes separate from the blossoming datatypes that use them� This separation
provides transparency of operation� the actual implementation of geometric datatypes can
change without any change in the blossoming datatypes�

The �exibility of using di�erent types for the geometry component means many di�erent
paradigms can be obtained� one�dimensional domains for curves� two�dimensional for sur�
faces� a�ne domains for polynomials� linear domain for homogeneous polynomials� projective
range for rational polynomials� Even more exotic spaces can be used� For example� Shoe�
make used B�ezier curves that map to the unit quaternions to control rotation ����� Finally�
while real numbers are usually used for scalars� it is possible to use complex numbers�

The library provides the PtDomain class� which implements linearized spaces of arbitrary
dimension� The class can also be used as a projective range space� The library also supports
the built�in type double as an e�cient one�dimensional a�ne space� Both classes use double
as the scalar type�

����� Blossom Operations

The blossom operations operate on blossoming datatypes through their abstract interfaces�
Thus� these operations can work with di�erent classes� The operations are useful basic
building�block operations and can be used to implement di�erent algorithms �see Chapter ���
The operations are based on e�cient algorithms for B�bases� discussed in Section ��

De�ning Blossoms

As discussed in Section ��� to get a representation of a curve or surface means assigning the
basis tensors and the coe�cients� The blossom datatype provides functions to set the knots
and coe�cients�

The operation

f�setCoeff�i�P��

will set the ith coe�cient of the blossom f to the range point P� where i is a multi�index
object� The operation

f�setKnot�k�l�x��

sets the �k�l� knot of f to the domain point x� where k and l are ints� The operation

f�setDomainElement�k�x��

sets all the knots �k�����k�	�� � � � to x�

�� CHAPTER �� DATATYPE FOR BLOSSOMING

f �coe�s � fP�� P�� P�� P�g

f �knots �

� � �

� � �

� �	 � ��� ��
f�setCoeff�i�P�

f�setKnot�	���
�

�
P� � f� � � ��

�
P� � f� � � ��

�
P� � f� � � ��

�P� � f� � � ��

� �

�

�
�

P � f� � � ��

�
�

�
P� � f� � � ��

�
P � f� � � ��

�
P� � f� � � ��

�P� � f� � � ��

Figure ��� Operations for de�ning blossoms

B�ezier knot nets do not support the setKnot�� operation� but do support setDomain�

Element���
Figure �� shows the e�ect of these operations on a curve segment� By convention� the

segment is de�ned to be over the interval �t���� t����� This convention re�ects the relationship
to B�splines �Section ����� Thus� in the left two pictures� the segment is over ��� �� but in
the right�hand picture� the segment is over ��� ���

Evaluating Blossoms

Evaluating the blossom extracts information from the representation� Partial evaluation is
also provided for reusing intermediate results of an evaluation�

The operations

P � eval�f�args��

P � eval�kn�a�args��

will evaluate a blossom at the list of range points stored in args and return a point in the
range� The �rst version evaluates the blossom object f� while the second version evaluates
the blossom implicitly de�ned by the array of coe�cients a� over the knot net kn� The args
parameter is any STL forward iterator object that returns points in the domain� Thus� the
library takes advantage of datatypes already de�ned by STL instead of de�ning new ones�

The operations

P � diagonalEval�f�x��

P � diagonalEval�kn�a�x��

evaluate a blossom at the same argument� x� n times�
The operations

f� � partialEval�f�argsbegin�argsend��blossom�����

partialEval�kn�a�a��args��

���� NEW SYSTEM	 THE BLOSSOM CLASSES �

args � f���� ��� ���g
P � eval�

f�args�begin����

f � partialEval�

f�����blossom�����

f� � partialEval�

f���
��blossom�����

�
�

�
�

�

�

�

�

�

�P � f� ��� ��� ����

�
�

�
�

�
f� � � ���� � f�� � ��

�f� � � ���� � f�� � ��

�
f� � � ���� � f�� � ��

�

�

�

�f�� � ���� � f�� ��

�
f�� � ���� � f�� ��

Figure ��� Operations for evaluating blossoms

returns a new blossom that is the partial evaluation of a blossom� The �rst version takes
a blossom object f and returns an object of type blossom� where the type is indicated by
the �blossom��� parameter� The return type can be di�erent from the type of f� The
argsbegin parameter is an iterator that marks the beginning of the list of arguments� while
argsend marks the end� The second version puts the coe�cients of the partial evaluation
into the array a� This version doesn
t need to know argsend because the size of a tells it
how many arguments it must evaluate� Also a and a can be di�erent types�

As noted in Section ��� these operations evaluate blossoms at simple tensors only�
Also� B�ezier bases compute these operations more e�ciently than arbitrary B�bases�

Figure �� shows the evaluation of a one�dimensional blossom�

Swapping Knots

Finally� knot swapping operations are provided� These operations compute the coe�cients
of a blossom over an altered knot net� They are also useful because they perform their
calculations �in place	� and do not need to allocate extra memory� unlike the evaluation
operations�

Note that while these operations change both the coe�cients and the knots of the blossom�
they do not change the function that the blossom represents� That is� evaluating a blossom
at the same arguments before and after swapping will yield the same results�

The operations

knotReplaceCoeffs�f�k�x��

knotReplaceCoeffs�kn�a�k�x��

compute the coe�cients of the blossom over a new knot net that has x at position �k�n�	��
where n is the degree of the blossom�

The operations

�� CHAPTER �� DATATYPE FOR BLOSSOMING

knotSwapCoeffs�f�k�from�to��

knotSwapCoeffs�kn�a�k�from�to��

compute the coe�cients of the blossom over the new knot net� where

�� the knot at �k�from� is moved to position �k�to�� and

�� if from�to� the knots �k�from�	����k�to� are moved forward one position to
�k�from����k�to�	�� otherwise� they are moved backward one position�

The operations

knotSwapCoeffs�f�k�from�to�num��

knotSwapCoeffs�kn�a�k�from�to�num��

swap multiple knots e�ciently� The �rst version is equivalent to

knotSwapCoeffs�f�k�from�to��

knotSwapCoeffs�f�k�from	
�to	
��

���

knotSwapCoeffs�f�k�from	num�
�to	num�
��

The user must be careful in using these operations as they may cause a knot net to
become invalid �i�e� some evaluation basis may become degenerate��

B�ezier knot nets do not support these operations�
Figure � shows the e�ect of these operations on a curve segment� Note that in the left�

hand picture� the knot net corresponds to a B�spline with knot sequence ���������������� This
sequence is not legal since B�spline knot sequences must be in increasing order� One result
of this violation is that the curve segment no longer �ts inside the convex hull of the control
points� The middle picture corresponds to the legal knot sequence ���������������� Note that
the two operations of knotReplaceCoeffs and knotSwapCoeffs has e�ectively computed
a knot insertion of the B�spline� The right�hand picture shows the reverse operation� knot
deletion�

In the one�dimensional case� the two operations knotReplaceCoeffsand knotSwapCoeffs
are usually used together because of the relationship to B�splines� However� these operations
extend to higher dimensions� and in that case� there may be occasion to use them separately�

Tensor Operations

The following operations are provided to manipulate tensors� They manipulate the array of
coordinates of the tensor over a knot net� The operation

getCoords�a�kn�args��

computes the coordinates over knot net kn of the simple tensor stored in args� It places the
coordinates in a� which is a triangular array storing scalars� The operation

���� NEW SYSTEM	 THE BLOSSOM CLASSES ��

knotReplaceCoeffs�

f�	�����

knotSwapCoeffs�

f�	�����

knotSwapCoeffs�f�	�����

knotReplaceCoeffs�f�	������

�

�
f� � � ��

�f� � � ��

�
f� � � ��

�
f� � � ����

�
�

��

�
f� � � ��

�
f� � � ����

�f� � � ����

�
f� � � ����

� �

�

�

�
f� � � ��

�f� � � ��

�
f� � � ��

�f� � � ��

Figure �� Operations for swapping knots of a blossom

getPartialCoords�a�a�kn�args��

takes a tensor whose coordinates are stored in a and multiplies that tensor by the simple
tensor stored in args� and places the resulting coordinates in a� The operations

knotSwapCoords�a�kn�from�to��

knotSwapCoords�a�kn�from�to�num��

knotReplaceCoords�kn�a�k�x��

compute the new coordinates of the tensor over a modi�ed knot net� See the corresponding
operations knotSwapCoeffs and knotReplaceCoeffs for the e�ect on the knot net� B�ezier
knot nets do not support these operations�

Other operations on tensors� like computing combinations of tensors� can be performed
using STL algorithms on the triangular arrays of coordinates� Thus� the library does not
provide these operations�

Chapter �

Algorithms for B�bases

One reason B�splines and B�ezier bases are so important in CAGD is that they have e�cient
and numerically stable algorithms that perform useful computations� Work has been done to
extend these algorithms to multi�a�ne blossoms of curves and surfaces ��� �� ���� In creating
the operations for the blossom datatype� I discovered these algorithms naturally generalize to
operations on arbitrary B�bases� All the algorithms are based on a fundamental recurrence
relation that B�bases satisfy� In this chapter I derive several algorithms using this recurrence�

��� Fundamental Recurrence of B�bases

The fundamental recurrence relation of B�basis polynomials has been known in various forms�
and has been used as the de�nition of B�bases �see for example Lodha and Goldman
s
paper ������ This section generalizes the recurrence to B�basis tensors�

Given a knot net ftk�l � k � ���d� l � ���n � �g� �	 	 IIn��d � and a domain point x� there
exists a relation between t��x and ft����ek � k � ���dg� Let ���k be the coordinates of x relative
to the �	th evaluation basis of the knot net� Then�

t�� x � t��

dX

k��

���ktk�ik

�
�

dX
k��

���ktk�ikt�� �
dX

k��

���kt����ek �����

This recurrence is known as the up�recurrence�

The recurrence can be reversed� to get a relation between the dual basis polynomials�

��

���� ALGORITHMS ON COEFFICIENTS AND COORDINATES ��

Let f�� be the dual basis blossoms of t���

f���xu� � f���x
X

���IIn��
d

f���u�t���

�
X

���IIn��
d

f���u�f���xt���

�
X

���IIn��
d

f���u�f���
dX

k��

���kt����ek �

�
X

���IIn��
d

dX
k��

���kf���u�f���t����ek �

f���xu� �
dX

k��

���kf����ek �u� �����

This recurrence is a generalization of the Cox de Boor Mans�eld recurrence for B�splines�
and is known as the down recurrence�

��� Algorithms on Coe
cients and Coordinates

Equation ��� can be used to compute a new blossom value f�xt��� from given blossom values
f�t����ek ��

f�t��x� �
dX

k��

���kf�t����ek ��

This relation leads to the following algorithm�

The combine�coe�cients algorithm takes an evaluation point x and a multi�index
�	 	 IIn��d � The computation proceeds by �rst computing the coordinates� ���k� of x
over the�	th evaluation basis� and then returning the combination

Pd
k�� �

��
kf�t����ek ��

The de Casteljau algorithm works by performing combine�coe�cients repeatedly�
Since the coe�cients of f are P�� � f�t��� and the coe�cients of f jx are Q�� � f�xt����

this relation can be used to compute the coe�cients of f jx from coe�cients of f � The set
fP����ek � k � ���dg is called the �	th evaluation subarray of the coe�cient array� Thus� the
combine�coe�cients algorithm takes the combination of the�	th evaluation subarray with the
coordinates of x�

The left side of Figure ��� shows the combine�coe�cients algorithm in two�dimensions�
In the �gure� the ��� �� ��th evaluation subarray is being combined to compute f�xt������	��
An arrow indicates that the algorithm multiplies the value at the tail of the arrow by the

�� CHAPTER �� ALGORITHMS FOR B�BASES

x

f�xt������	�

f�t������	�

�
f�t������	� f�t������	�

x
x x

�
f������	�ux�

f������	�u�
f������	�u� f������	�u�

Figure ���� Combine�coe�cients and weigh�coordinates algorithms�

coordinate of x over the evaluation array ��������	k � and adds the result to the value at the
head of the arrow�

Similarly� Equation ��� can be used to compute f���ux� from given values of f����ek �u�� The
equation implies that the �contribution	 of f����ek �u� to f���ux� is f����ek �u��

��
k� This relation

leads to the following algorithm�

The weigh�coordinates algorithm takes an evaluation point x and a multi�index
�	 	 IIn��d and a scalar �� The computation proceeds by �rst getting the coor�
dinates of x over the �	th evaluation basis� ���k� Then the algorithm adds the
contribution of � to f����ek �u��

f����ek �u��� f����ek � ����k

Since the coordinates of u are ��� � f���u�� this relation can be used to compute the
�
th coordinate of ux� ���� from coordinates of u� start with ���� � � and accumulate the
contributions of each �����ek � k � ���d� The set f�����ek � k � ���dg is called the �	th evaluation
subarray of the coordinate array� Thus� the weigh�coordinates algorithm weighs the �	th
evaluation subarray by the coordinates of x times ��

The right side of Figure ��� shows three weigh�coordinates computations� In the �gure�
� is set to f������	�u�� f������	�u�� and f������	�u� in turn� An arrow indicates the algorithm
multiplies the value at the tail of the arrow ��� by the coordinate of x over the evaluation

array ��
������	
k � �

������	
k or �

������	
k � and adds the result to the value at the head of the arrow�

��� Evaluation and Getting Coordinates

Partial Evaluation and Getting Partial Coordinates

As was noted� the combine�coe�cients algorithm can be used to compute the partial evalu�
ation f jx�

The partial evaluation algorithm takes the coe�cients of f and runs the combine�
coe�cients algorithm for all j�	j � n � �� The resulting points� f�xt���� are the
coe�cients of f jx over the knot net ftk�l � k � ���d� l � ���n� �g�

���� EVALUATION AND GETTING COORDINATES ��

x

coe�cients of f

coe�cients of f jx

x

coordinates of tensor ux

coordinates of tensor u

Figure ���� Computing partial evaluation and getting partial coordinates�

Similarly� the weigh�coordinates algorithm can be used to compute giving the coordinates of
xu from the coordinates of u�

The get partial coordinates algorithm takes the coordinates ��� of u over ftk�l � k �
���d� l � ���n � �g and runs weigh�coordinates for all j�
j � n � �� The resulting
points ���� are the coordinates of xu over ftk�l � k � ���d� l � ���n� �g�

Examples of these algorithms are shown in Figure ����

Full Evaluation and Getting Coordinates

The following algorithm is a generalization of the de Casteljau and de Boor algorithms�

The �full� evaluation algorithm runs partial evaluation successively� to compute
the partial evaluations f jx�� f jx�x� � and so on� to f jx����xn� The single coe�cient
of f jx����xn is the value of f�x� � � � xn��

Running the de Casteljau algorithm �backwards	 yields the algorithm to get the coordinates
of a simple tensor�

The get �full� coordinates algorithm runs the get partial coordinates algorithm
successively� to compute the the coordinates of x� and then x�x� and so on until
x� � � �xn�

Examples are shown in Figure ���

Polynomial Evaluation and Basis Polynomial Evaluation

The previous algorithms evaluate arbitrary tensors� To evaluate points on polynomials means
to evaluate at the tensor xn�

The diagonal evaluation algorithm performs a full evaluation at xn to compute
f�xn� � F �x�� thus evaluating a point on the polynomial� On the other hand�
the get diagonal coordinates algorithm gets the coordinates of xn to compute
f���xn� � F���x�� thus evaluating basis polynomials�

� CHAPTER �� ALGORITHMS FOR B�BASES

x�

x�

x�

f�x�x�x��

coe�cients of f

x�

x�

x�

�

coordinates of x�x�x�

Figure ��� Full evaluation and getting coordinates�

Getting diagonal coordinates is an e�cient way to evaluate all D�d� n� basis polynomials at
x at once�

��� Knot Swapping

Knot Swapping

In this section� I derive the relationship between a basis� B� and the basis where two knots
of B� tp�q and tp�q��� are swapped� This relationship is used to derive e�cient algorithms to
compute basis conversions and to insert knots into B�splines �see Chapter ���

Stated formally� the problem is as follows� Given B with knot net ftk�l � k � ���d� l �
���n��g� de�ne B � with knot net ft�k�l � k � ���d� l � ���n��g where t�p�q � tp�q��� t�p�q�� � tp�q
and t�k�l � tk�l for k �� p or l �� q or q � �� Then� the �	th basis tensors of B � is

t��� �

��
�

t��� � � � tp���ip����tp�� � � � tp�ip��tp���� � � � td�id��� if ip � q � �

t��� � � � tp���ip����tp�� � � � tp�q��tp�q � � � tp�ip��tp���� � � � td�id��� if ip � q � �

t��� � � � tp���ip����tp�� � � � tp�q��tp�q��tp���� � � � td�id��� if ip � q � �

Thus�

t��� �

��
�

t��� if ip � q � �
t��� if ip � q � �
t����eptp�q�� �

P
k �

��
kt����ep��ek � if ip � q � �

����

where ���k are the coordinates of tp�q�� over the �	th evaluation basis of B�

Next� I derive the relation between the basis polynomials of B and B �� Recall from

���� KNOT SWAPPING �

Section ��� that u �
P

�� f
�
���u�t

�
��� Now�

f���u� � f���
X
��

f ����u�t
�
���

�
X
��

f ����u�f���t
�
���

�
X

jp ��q��

f ����u�f���t
�
��� �

X
jp�q��

f ����u�f���t
�
���

�
X

jp ��q��

f ����u�f���t��� �
X

jp�q��

X
k

f ����u��
��
kf���t����ep��ek ��

Expanding the sum and collecting the terms for t�� yields this relation for f���u��

f���u� �

��
�

f ����u��
��
p� if ip � q � �

f ����u� �
P

k f
�
����ep��ek

�u��
����ep��ek
k � if ip � q

f ����u�� otherwise

�����

Note that this formula gives basis polynomials of B in terms of basis polynomials of B��
whereas the previous formula �Equation ��� gives the basis tensors of B� in terms of the
basis tensors of B�

Equation �� can be used to compute coe�cients of a blossom� f � over B� from its
coe�cients over B�

The knot swapping algorithm sets f�t���� � f�t��� for all �	 such that ip �� q � ��
Then� the algorithm runs the combine�coe�cients algorithm over the ��	 � �ep�th
evaluation subarray� for all �	 such that ip � q � �� This computes f�t���� �P

k �
��
kt����ep��ek �

Similarly� Equation ��� can be used to compute the coordinates of a tensor u over B from
its coordinates over B��

The knot swapping for coordinates algorithm starts with f���u� � f ����u� if ip ��
q � �� and f���u� � � if ip � q� Then for all ip � q� it runs the weigh�coordinates
algorithm on the ��	 � �ep�th evaluation subarray� ff����ep��ek �u� � k � ���dg� The
algorithm accumulates the contributions of f ����u� to each value�

f����ep��ek �u��� f����ep��ek �u� � f ����u��
����ep��ek
k

yielding the desired values of f���u� in Equation ����

Knot Replacement

Next� I present the relation between the basis B and the basis where the knot tp�n�� of B is
replaced by a new point x� This relation is obtained by exactly the same arguments as for

� CHAPTER �� ALGORITHMS FOR B�BASES

knot swapping�

t��� �

�
t����epx� if �	 � �n� ���ep
t��� otherwise

The only di�erence between this equation and Equation �� is that there are no �	 where
ip � n� ��

The knot replacement algorithms compute new coe�cients and coordinates over
the new basis� They operate in a completely analogous way to the knot swapping
algorithms�

Swapping and Replacing Successively

The knot swap and knot replacement algorithms can be run successively to move a knot
several positions� or to introduce a new knot into an arbitrary position �p� q��

If knot swapping is run �rst for ip � q� then ip � q � �� until ip � q � k � �� it will
move knot tp�q to �p� q� k� and move all the knots tp�q��� � � � � tp�q�k backward one position to
�p� q�� � � � � �p� q� k� ��� Conversely� running knot swapping for q� �� q� �� until q� k� will
move the knot tp�q to �p� q�k� and move the the knots tp�q��� � � � � tp�q�k forward one position�

Running knot replacement puts the new knot x at �p� n � ��� This operation can be
thought of as swapping the knot �the nth knot	 tp�n � x to �p� n � ��� If this operation is
followed by several knot swaps� the new knot x can be put in any position �p� q�� The resulting
algorithm is a generalization of Boehm
s knot insertion algorithm �� �� for B�splines�

Figures ��� and ��� show examples of replacing and swapping knots� In Figure ���� the
bottom triangular arrays holds the original coe�cients� The middle left array holds the
coe�cients of the knot net where t��� is replaced with x� All the coe�cients are the same
as the bottom array except the one indicated �at the lower left corner�� that coe�cient is
computed by a combine�coe�cients operation� The top left array shows the knots x and t���
being swapped� Again� all coe�cient are the same� except two� On the right� the operations
are performed in reverse order� �rst swap� then replace� Notice that on the left� the second
operation uses only original coe�cient� whereas on the right� the second operation uses
coe�cients that result from the �rst operation� Thus� on the right� there is potential for
round�o� errors to build up�

In Figure ���� the top arrays hold the original coordinates� Again� each new array keeps
the same coordinates as the previous� except for the ones indicated� those coordinates are
computed with a weigh�coordinates operation� Again� the left side shows a knot replace
followed by a knot swap� while the right side shows a knot swap followed by a knot replace�
In this �gure� there is potential for round�o� errors to build up on the left side�

���� RUN�TIME ANALYSIS OF ALGORITHMS

x
t��� �� x

x t��� �� x

t��� t��� �� t���

x
t��� �� x

Figure ���� Knot swapping for coe�cients

t���
t��� �� x

t��� t��� �� x

t��� t��� �� t���

t���
t��� �� x

Figure ���� Knot swapping for coordinates

��� Run�time Analysis of Algorithms

Combining and Weighing

Let the domain be dimension d� the range be dimension d�� and the polynomial be degree n�
The cost of combine�coe�cients is the cost of getting coordinates plus combining plus

indexing� Getting the coordinates of a domain point requires solving a system of linear
equations� and requires normally O�d�� operations� Taking linear combination of d�� ranges
points� if done coordinate�wise� costs O�dd�� operations� Thus a single combine�coe�cients
costs O�d� � dd�� in total� Weigh�coordinates multiplies and adds to d� scalars� which costs
O�d��� Thus a single weigh�coordinates costs O�d� � d�� in total�

Note that for B�ezier bases� the �	th evaluation basis is the same for all �	� Thus� they
only require getting the coordinates once� and those coordinates can be used for all calls to
combine�coe�cients or weigh�coordinates� For B�ezier bases� the cost of combine�coe�cients
or weigh�coordinates are only O�dd� � d�� and O�d� � d��� �The d� comes from the cost
of indexing with multi�indices� to convert a multi�index to a linear index requires O�d�

� CHAPTER �� ALGORITHMS FOR B�BASES

operations� and this conversion is done d times� In the general case� this term is dominated
by the cost of getting evaluation basis coordinates��

Because the operation count depends on the basis� the run�time analysis of the remaining
algorithms determine how many combine�coe�cients or weigh�coordinates the algorithm
requires rather than how many arithmetic operations�

Evaluation and Getting Coordinates

One level of partial evaluation performs combine�coe�cients for all �	 	 IIn��d � so it costs
D�d� n � �� combine�coe�cients� For k levels� it costs

D�d� n � �� � � � ��D�d� n � k� � D�d � �� n��D�d � �� n � k�

combine�coe�cients� Thus� a full evaluation costs D�d��� n� �� combine�coe�cients� Get�
ting coordinates requires the same number of weigh�coordinates�

Knot Swapping

To swap one knot� the algorithm performs combine�coe�cients or weigh�coordinates for all
multi�indices �	 such that ip � q� There are D�d � �� n � q� of these multi�indices� To move
a knot from q to q � k� then� requires

D�d � �� n� q� � � � ��D�d � �� n� q � k� � D�d� n � q��D�d� n � q � k� �D�d� q � k�

combine�coe�cients or weigh�coordinates�

��� Round�o� Error Accumulation

In a sequence of computations� when the results of one blossom operation is used in the next
operation� there is a potential for round�o� errors to accumulate� A useful measure of this
potential is how many combine�coe�cients or weigh�coordinates operations are successively
applied to a value to obtain the result� Thus� the depth of a computation is de�ned to
be maximum number of combine�coe�cients or weigh�coordinates operations separating a
resulting value of the computation from the original values�

For one level of partial evaluation or getting partial coordinates� all computations use
original values� Thus� the depth is one� The next level would use the new values� Thus for
k levels� the depth is k� For a full evaluation or getting full coordinates� the depth is n� For
knot swap or knot replacement� the depth is one�

When successively swapping a knot several positions� the depth depends on which direc�
tion the knot is moved�

� for coe�cients� swapping a knot forward from q to q � k has depth k� while swapping
a knot backward from q to q � k has depth ��

���� ROUND�OFF ERROR ACCUMULATION �

� for coordinates� swapping a knot forward from q to q� k has depth �� while swapping
a knot backward from q to q � k has depth k�

This behaviour is shown in Figures ��� and ���� The left side of Figure ��� shows that
when swapping the new knot x to forward position ��� ��� the algorithm always uses original
values� so the depth is one� On the other hand� the right side shows that when swapping
the knot t��� backward� each step uses the results of the previous step� so the depth is
two� Figure ��� shows the opposite happens when swapping a knot for coordinates� When
swapping x forward to ��� ��� the later steps use results from the earlier steps� while when
swapping t��� backward� each step uses original values�

Chapter �

Implementation

The biggest challenge in the implementation was to make the library work with many dif�
ferent types� To work with di�erent types means the library accesses all objects through
an abstract interface� The �rst issue is how to implement abstract interfaces in C��� The
second issue is what functions should be included in the abstract interface for each datatype�

��� Templates vs� Inheritance

I decided to use the C�� template facility to implement the abstract interfaces of datatypes�
The alternative of using inheritance was ruled out based on three criteria� the ease of in�
tegrating a type with the library� the ease of specializing operations and datatypes of the
library� and e�ciency of the compiled code�

With the template approach� arbitrary types can be used in a class or function� The code
of the class or function accesses objects of the datatype through the functions listed in the
abstract interface� Any attempt to use a type that does not provide the necessary functions
results in a compiler error� With the inheritance approach� an abstract interface is de�ned as
a set of virtual member functions of a superclass� The datatype is actually implemented by
subclasses which override the virtual functions� A subclass may choose to �inherit	 certain
virtual functions form the superclass rather than overriding them�

Integrating a type into the library is easier when non�member functions are required than
when member functions are required� because non�member functions can be created for built�
in types or library classes whose source code is unavailable� Templates allow either member
functions or non�member functions to be part of the abstract interface� while inheritance
only supports abstract member functions�

Specializing a function under the inheritance approach is accomplished by by overriding
virtual functions in subclasses� The overriding facility allows the programmer to specialize a
function based on the type of one object� However� inheritance has no support for specializing
based on the types of two or more arguments� so�called multi�methods� Templates can be

�

���� ABSTRACT INTERFACE �

specialized for any number of arguments� Multi�methods are useful� for example� when
evaluating B�ezier curves� These blossoms have one�dimensional triangular arrays and B�ezier
knot nets�

Finally� since the library provides low�level computational objects� the objects need to be
highly e�cient for some applications� Templates introduce no overhead at run�time� while
virtual functions do� More importantly� templates allow inlining� while virtual functions do
not� With templates� the compiler decides at compile�time which implementation to use�
while with virtual functions� the decision is made at run�time� Since the library uses abstract
functions� it requires a lot of function calls� Thus inlining of functions is very important�

��� Abstract Interface

The second issue involves choosing what functions to require in the abstract interface of
each datatype� The choice is driven by what is needed to implement the blossom opera�
tions� When there is a choice between two ways to implement the operations� the following
guidelines are followed�

Since the library must be general� the abstract interface should include as few require�
ments as possible� The requirement should be based on fundamental mathematical properties
of the objects!the lowest common denominator�

Certain steps in operations can be more e�ciently implemented for some special cases
than in general� For such steps� the operation leaves the actual implementation of that step
for the datatype� That is� a function is required of the datatype that performs that step�
As a result of this approach� the blossom operations are very simple and contain only a few
lines of code� They make calls to the abstract functions to do most of the work�

Finally� the abstract interface should avoid requiring member functions in favor of non�
member functions� Where applicable� the abstract interface should use STL iterators and
containers�

��� Blossom Operations

The implementation involves three parts� The �rst involves coding the blossom operations�
The operations determine what functions need to be de�ned in the abstract interface of
the blossom datatypes� The second part is to code the blossom datatypes� The datatypes�
in turn� determine what to require of the geometry datatypes� The last part is to code
geometry datatypes� This section discusses the coding of the blossom operations� which
drives the whole of the implementation�

All blossom operations are built on the two core operations� combine�coe�cients and
weigh�coordinates� The pseudo�code for combine�coe�cients is obtained by expanding the
algorithm given in Section ��

� CHAPTER �� IMPLEMENTATION

Given a knot net� ftk�l � k � ���d� l � ���n� �g� a triangular array of coe�cients�
P��� a multi�index� �	 	 IIn��d � and a domain point x�
�� extract the �	th evaluation basis of the knot net� ft��i�� � � � � td�idg�
�� compute the coordinates ���k of x over the basis�
� extract the �	th evaluation subarray of the triangular array� fP����ek � k � ���dg�
�� return the combination of the coordinates and the coe�cients�

P
k �

��
kP����ek �

The pseudo�code for weigh�coordinates is as follows�

Given a knot net� ftk�l � k � ���d� l � ���n� �g� a triangular array of coordinates�
���� a multi�index� �	 	 IIn��d � a domain point x� and a coordinate ��
�� extract the �	th evaluation basis of the knot net� ft��i�� � � � � td�idg�
�� compute the coordinates ���k of x over the basis�
� extract the �	th evaluation subarray of the triangular array� f�����ek � k � ���dg�
�� adds � times the coordinate to the weight of the new coordinates�

������ek �� ������ek � ����k�

The other blossom operations call these two operations with the appropriate multi�
indices� The evaluation and getting coordinate operations call them for every multi�index
�	 	 IInd � while the knot swapping operations call them for all �	 	 IInd such that ip � q�

The next sections discuss what functions and types are required to implement these
operations� Only the interesting functions are discussed here� The full requirements are
listed in Appendix A�

��� Blossoming Datatypes

����� Blossom

Although the operations work naturally with knot nets and coe�cient arrays� for the con�
venience of the user the library provides a blossom datatype� A blossom type simply needs
to provide functions to return the knot net and the coe�cient array� In addition� since the
partial evaluation operations return a blossom object� a blossom type needs to provide a
function that can create blossoms of that type from arbitrary knot nets and coe�cients�

����� Knot Net

The main requirement of a knot net is to supply an evaluation basis given a multi�index�
Note that for B�ezier knot nets� the evaluation bases!and the coordinates!are the same
for all multi�indices �	� Thus� when the combine�coe�cients or weigh�coordinates operations
are called many times� it is more e�cient to compute the coordinates once� save them� and
use them in all combinations� It is the responsibility of the knot net class to decide how

���� BLOSSOMING DATATYPES �

it computes the coordinates� The class provides two types� combiner and weigher� and
two functions� combineCoeffs and weighCoords� The combiner and weigher objects for
a B�ezier knot net compute and store the coordinates when they are created� whereas for a
general knot net� they only allocate memory to store the coordinates� The combineCoeffs

and weighCoords use the combiner and weigher objects to either get the coordinates or
store the coordinates�

In addition� non�B�ezier knot nets implement swapKnot and setKnot functions�

����� Triangular Arrays and Multi�indices

The main requirement of triangular arrays is to return the�	th element and the�	th evaluation
subarray� I decided to keep the triangular array datatype simple and put the complexity into
the multi�index datatype� The triangular array datatype simply acts like a linear array� that
is� it can return an element given an integer� The multi�index datatype has to compute which
integer corresponds to a multi�index �	� and which integers correspond to the �	th evaluation
subarray� However� the triangular array still needs to provide its dimension and degree� since
blossom operations need that information�

The operations of evaluation and getting coordinates need some way to iterate over all
multi�indices �	 	 IInd � Thus the multi�index type must provide functions to return the �rst
multi�index in the set� increment to the next multi�index� and test if the last multi�index has
been reached� The ordering for the multi�indices is unspeci�ed� although the most popular
ordering is the reverse lexicographical� Similarly� knot swapping operations requires iterating
over all multi�indices�	 	 IInd such that ip � q� This is called a slice of a triangular array� The
same kind of functions must be provided to iterate over a slice�

Finally� a blossom operation must decide which multi�index type to use� based on its
parameters of a knot net and an input triangular array and possibly an output array� For
example� if the array class is of �xed dimension� it is more e�cient to use a �xed�size multi�
index class instead of a general multi�index class� It is ine�cient to use three multi�index
objects and increment them in�step� moreover� the orderings used by all three multi�index
types must be the same�

I decided to have the input array specify the multi�index type �triarray��multiindex��
This decision was made because the input array has to compute the evaluation subarrays�
which is a procedure that can be optimized ����� The output triangular array and the knot
net access the multi�index type through functions that return the multi�index
s components
and position in the ordering�

�� CHAPTER �� IMPLEMENTATION

��� Geometric Datatypes

����� Domain

A domain space is required to provide coordinates of a point over a basis� Thus� it requires
a basis and a point type� The basis class should provide a way to create a basis �for
creating evaluation bases� and to modify elements in a basis �for B�ezier bases��

In addition� the blossom operation must store the coordinates somewhere� If the do�
main space has variable dimensions� a dynamically allocated array is required to hold the
coordinates� but if it is �xed dimensional� a �xed size array can hold the coordinates� and
dynamically allocating an array is ine�cient� Thus� a domain class is required to specify
a domain��coordarray type to hold the coordinates� The coordarray information is not
speci�ed by point or basis because those may be existing types and the user may be unable
to modify them�

Blossoms and knot nets classes need to know how big an array to create� so the dimension
of the domain space must be accessible� Further� knot nets require some initial knots� and a
standard basis is a good choice� These items can be packaged in a space type�

����� Range

A range space is required to take combinations of points� Thus� only a rangept class is
required� The range space is required to handle a�ne combinations� and may handle linear
combinations� if the range type does not handle linear combinations� it is up to the user of
the operations to call the operations with arguments that are only points�

The range
s combination function must take arbitrary iterators returning scalars and
range points� Thus� the operation must have an extra parameter to specify which combi�
nation function to call� The combination operation uses the STL approach of using the
value�type�� function of the iterator� which returns a rangept�� Thus� the declaration of
the combination function must be

templatescalarIterator� ptIterator�

rangept combination�scalarIterator begin� scalarIterator end�

ptIterator ptbegin�

rangept���

The function must use the same scalar type as the domain�

����� Scalar

The weighCoords function requires scalars to be multiplied together and added to another
scalar� Also� getting coordinates initializes the coordinates to zero or one� so the scalar type
should be constructible from � and �� scalar���� scalar�	��

���� CLASSES ��

��� Classes

The implementation of the actual classes is straight�forward� The emphasis is on generality
rather than e�ciency� Thus� the classes PtDomain� TriArray� MultiIndex and KnotNet

all use dynamically allocated arrays� This allows them to handle arbitrary dimensions and
degrees�

In contrast� the DoubleDomain class handles the special case of one�dimensional a�ne
domain spaces� It uses the built�in type double as the point type� and it is very e�cient�
The class is intended as a test of how simple it is to integrate specialized datatypes into the
library�

The actual classes provide more functionality than just the requirements in the datatype
interface� These additional functions make the classes more useful to the user� For example�
there are useful constructor functions� and arithmetic operator for MultiIndex and Pt�

The next chapter provides examples of the use of these classes�

Chapter �

Evaluation of the System

This chapter aims to evaluate the Blossom Classes library
s performance in practice� It
demonstrates the use of the Blossom Classes in a variety of situations� The �rst example
uses the Blossom Classes for commonly performed computations� showing that the library is
easy to use� The second example creates specialized data structures� showing how well they
integrate with the Blossom Classes� The last three examples implement algorithms for new
operations� demonstrating that the library is useful for research� Each example examines
the ease of translation from analysis to code� and evaluates the resulting code for e�ciency
and potential to accumulate round�o� error�

��� Simple Demonstration

Shaping and Tesselating a B�patch

These �rst examples use Blossom Classes to do common operations� This example below uses
the library to make a B�patches with di�erent knots and coe�cients� It demonstrates the
three common operations of creating a blossom� setting knots and coe�cients� and evaluating�

� �include iostream�h�

�include stl�h�

�include �Blossom�Blossom�h�

�include �Blossom�BlossomOps�h�

� �include �Blossom�PtDomain�h�

void tesselate�const BlossomPtDomain� Pt� �f� �

int n � f�getDegree���

for �double x���x�
���x	��
� �

�� for �double y���y�
���x�y	��
� �

cout diagonalEval�f�Pt�x�y�
�� endl�

�

��

���� SIMPLE DEMONSTRATION �

�

for �MultiIndex i�firstTriIndex���n���� �

�� cout f�getCoeff�i� endl�

if �isLastTriIndex�i���n�� break�

nextTriIndex�i��

�

�

��

void main��

�

BlossomPtDomain� Pt� f�getStdSimplex�PtSpace��������

Pt coeffs�� � � Pt�������
�� Pt�
�������
�� Pt�������
��

�� Pt���
�����
�� Pt�
�
�
�
�� Pt�������
���

copy�coeffs� coeffs	�� f�getCoeffs���begin����

tesselate�f��

f�setCoeff�E���	E����Pt����
������
���

tesselate�f��

�� f�setKnot���
�Pt�
����
���

tesselate�f��

�

The main routine �rst creates a blossom in line �� the �rst argument to the constructor
speci�es the blossom should initially use a B�ezier knot net over the standard simplex in
��space� f��� �� ��� ��� �� ��� ��� �� ��g� and the second argument speci�es the degree of the
blossom� quadratic� Lines �� �� set up the initial coe�cients �points in �space�� and line ��
calls the tesselate function� Lines �� � demonstrate moving a coe�cient and a knot� The
expression E����E�� creates a MultiIndexobject corresponding to the multi�index �e���e� �
��� �� ���

The tesselate function �lines � ��� iterates over a tesselation of the standard simplex
�in increments of ���� It prints out the computed value of the function at each point �line ����
Finally� it uses the MultiIndex class to iterate over all elements of the coe�cient array� and
prints them �lines �� ����

Compute Position and Normal

The example below extends the tesselate function of the previous example to compute
both the positions and normals of the surface� Evaluating a normal involves taking the cross
product of two directional derivatives� From Equation ���� the derivative is proportional to
f�xn���v�� Evaluating at the point x is f�xn�� Thus� the partial evaluation f j

xn�� can be
reused in the computation of the point and both directional derivatives�

� void tesselate�const BlossomPtDomain� Pt� �f� �

int n � f�getDegree���

Pt u�
������ v���
����

�� CHAPTER �� EVALUATION OF THE SYSTEM

for �double x���x�
�x	��
� �

� for �double y���y�
�x�y	��
� �

vectorPt� arg�n�
�Pt�x�y�
���

BlossomPtDomain�Pt� f� � partialEval�f� arg�begin��� arg�end���

�BlossomPtDomain�Pt���� ��

Pt pos � diagonalEval�f��arg�����

�� Pt norm � cross�diagonalEval�f��u�� diagonalEval�f��v���

cout pos pos	norm endl�

�

�

�

The following lines were changed from the previous function� line de�nes the two vectors
to evaluate directional derivatives� line � puts n�	 copies of the evaluation point in an array�
line � creates a blossom� f� that is the partial evaluation of f� lines � �� uses the partial
evaluation to evaluate the normal and the position�

The example programs output a list of points �and normals� on the surface� Figure ���
displays these points� In the three diagrams on the left� I joined adjacent points of the
tesselation to make the shape of the patch easier to see�

Monomials

This example shows how to use the library for manipulating polynomials in the familiar
monomial basis� It prints out values of the polynomial x� � �x� � �x� �

� void main��

�

BlossomPtDomain� Pt� f�getStdFrame�PtSpace�
������

Pt coeffs�� � � Pt�
���� Pt������������� Pt������������ Pt���
���

� copy�coeffs� coeffs	�� f�getCoeffs���begin����

for �double x � ��x�
�x	��
� �

cout diagonalEval�f�Pt�x�
�� endl�

�

�

Line creates a blossom whose knot net is the B�ezier basis over the standard frame in one
dimension� f��� �g� Lines � and � set the coe�cients over this B�ezier basis� By the relation

given in Section ������ the coe�cients are f�����
�
��� ��

��� �g� As discussed in that section�
every coe�cient except the last is a vector�

Evaluation

As these three examples demonstrate� common operations can be performed easily� in the
obvious way� and using an imperative coding style� The operations have the same run�time

���� SIMPLE DEMONSTRATION ��

Figure ���� Results of simple example code�

�� CHAPTER �� EVALUATION OF THE SYSTEM

and stability characteristics as the standard de Casteljau algorithm� Since the algorithms
are for B�patches� they are a little less e�cient than the de Casteljau algorithm for B�ezier
patches�

��� B�spline Datatype

Many modeling applications use piecewise polynomials� where each piece shares many coe��
cients and knots with its neighbor� Thus� it is ine�cient to store a separate coe�cient array
and knot net for each piece� This examples shows how to extend the the Blossom Classes to
handle piecewise polynomials� It demonstrates the creation of a B�spline curve datatype� It
also shows how to specialize datatypes and algorithms for greater e�ciency� Note that the
same ideas can be used to implement a tensor�product patch datatype�

New Classes

The idea of the B�spline datatype is to create a new blossom datatype that corresponds to
a segment of the B�spline� The segment datatype allows all the library
s blossom operations
to be used for B�splines� However� each segment does not store any of the coe�cients or
knots on it own� Rather the segment stores a pointer to the B�spline� and gets the knots
and coe�cients from the B�spline
s knot vector and control vertices�

To keep the examples short� many of the functions for the classes are left out� The classes
must provide all the functions required for the appropriate datatype listed in Appendix A�

The �rst class shown is the Bspline class� which stores a vector of knots and a vector of
control vertices� The important function in the class is getSegment� which returns the ith
segment of the B�spline�

� class Bspline �

private�

vectordouble� knots�

vectorPt� cvs�

� int degree�

public�

���

inline Segment getSegment�int i� � return Segment�this�i�� �

���

�� ��

Note that� since its domain is one�dimensional� Bspline uses the built�in type double as the
domain type�

The class Segment implements a new blossom datatype� The important functions for
a blossom datatype are getCoeffs and getKnotNet� The special classes OffsetArray and
FoldKnots get the segment
s coe�cients and knots from the B�spline�

���� B�SPLINE DATATYPE ��

� class Segment �

private�

Bspline �f�

int segment�

� public�

inline Segment�Bspline �f� int segment� � f�f��segment�segment� ��

���

inline OffsetArray getCoeffs�� � return OffsetArray�f�segment�� �

inline FoldKnots getKnotNet�� � return FoldKnots�f�segment�� �

�� ���

��

From Section ���� the knot net of segment i is

t��� � ti�n�� � � � t��n�� � ti
t��� � ti�n � � � t��n�� � ti��n��

�
�

The functions in class FoldKnots return the knots from the B�spline knot sequence� For
example� the getEvalBasis function below returns the �	th evaluation basis

ft��i�� t��i�g � fti�n���i� � ti�n�i�g

� class FoldKnots �

private�

Bspline �f�

int segment�

� public�

inline FoldKnots�Bspline �f� int segment� � f�f��segment�segment� ��

���

inline friend DoubleBasis getEvalBasis�SingleIndex i� �

return DoubleBasis�f�knots�segment	f�degree���
�i�����

�� f�knots�segment	f�degree��	i�
����

�

���

��

The coe�cients of segment i are Pi� � � � � Pi�n� The operator�� function of the OffsetArray
class returns these coe�cients�

� class OffsetArray �

private�

Bspline �f�

int segment�

� public�

typedef SingleIndex multiindex�

�� CHAPTER �� EVALUATION OF THE SYSTEM

typedef vectorPt���iterator iterator�

inline OffsetArray�Bspline �f� int segment� � f�f��segment�segment� ��

���

�� inline Pt �operator���int k� � return f��cvs�k	segment�� �

���

��

Finally� since all arrays in the application are one dimensional� it is more e�cient to use
a �xed�size multi�index class� The multi�index can be implemented as a pair of ints�

� class SingleIndex �

int one�two�

public�

inline SingleIndex�int i��int i
� �one�i���two�i
� ��

� inline int operator���int k� �

if �k���� return one�

else if �k��
� return two�

else return ��

�

�� ��

inline SingleIndex firstTriIndex�int d� int n� �

return SingleIndex�n����

�

�� ���

B�spline Operations

With the segment datatype� implementation of B�spline operations becomes simple� �rst�
�nd which segment to operate on� then� extract the Segment object� �nally� apply blossom
operations on it�

The following code for evaluating the B�spline performs the de Boor algorithm�

� Pt evaluate�const Bspline �f� double x� �

Segment g � f�getSegment�f�whichSegment�x���

return diagonalEval�g�x��

�

The following code for inserting knots into the B�spline performs the Boehm knot inser�
tion algorithm�

� void knotInsert�Bspline �f� double x� �

int i � f�whichSegment�x��

int n � f�getDegree���

int mult � f�multiplicity�x��

���� BASIS CONVERSION ��

� insert�f�knots�begin��	i	��n�
�
�f�knots�i	��n�
���

insert�f�cvs�begin��	i	n�
�f�cvs�i	n���

Segment g � getSegment�i��

knotReplaceCoeffs�g�
�x��

knotSwapCoeffs�g�
�n�
�mult�
��

�� �

Lines � and � duplicate the last knot and control vertex of the ith segment� Then� lines � �
extract the ith segment and run knot swapping on it� These two operations have the e�ect
of inserting knot x into position i�n�mult of the knot vector�

Evaluation

New datatypes integrate into the library fairly easily� The number of functions each datatype
has to provide is only about �� �see requirement in Appendix A�� and each function tends
to be very short�

Because I tried to make the requirements general� the built�in int type could not be used
as the multi�index type for segments� even though it would be more e�cient and convenient�
The multi�index type must provide functions to return the components of the multi�index
since it must work with other kinds of knot nets besides FoldKnots� ints cannot provide
that�

The new classes are very e�cient� they have almost no overhead in terms of extra storage
required �only an extra pointer and integer�� or processing �all the objects are �xed size and
all the functions are inlined�� Yet� they allow B�spline operations to be easily implemented
using blossom operations on the segments� The resulting operations use the same algorithms
as a hand�coded B�spline class would use� such as the de Boor algorithm or Boehm knot
insertion�

��� Basis Conversion

This section demonstrates the use of the Blossom Classes to implement algorithms for new
operations� This example implements an important operation� basis conversion� Basis
conversion can be used to convert from a B�spline segment to a B�ezier curve and vice versa�
Other algorithms also use basis conversion� such as polynomial composition�

The basic problem is to compute the coe�cients of f over the knot net ft�k�lg given its
coe�cients over the knot net ftk�lg�

There are many ways to solve this problem which are mathematically equivalent� but
result in algorithms that have di�erent characteristics with respect to simplicity of code� run
time and potential to accumulate round�o� error� In the following sections� I compare two
di�erent solutions�

�� CHAPTER �� EVALUATION OF THE SYSTEM

Basis�Conversion One Change�of�Basis Matrix

One solution makes use of the get coordinates operation to compute the change of basis
matrix between the two knot nets� For each t���� compute its coordinates in the old basis�
t��� �

P
�� ������t��� Then the new coe�cients are f�t���� �

P
�� ������f�t����

� void basisConvert
�BlossomPtDomain�Pt� �f�

const KnotNetPtDomain� �knots� �

int d � getDimension�f�getSpace����

int n � f�getDegree���

� TriArray TriArraydouble� � coords�d�n�TriArraydouble��d�n�Pt�d�� ��

vectorPt� basiselem�n�Pt�d���

for �MultiIndex i�firstTriIndex�d�n���� �

getBasisElement�knots�i�basiselem�begin����

getCoords�f�getKnotNet���coords�i��basiselem��

�� if �isLastTriIndex�i�d�n�� break�

nextTriIndex�i��

�

TriArrayPt� newcoeffs�d�n�Pt�d���

for �i�firstTriIndex�d�n���� �

�� for �j�firstTriIndex�d�n���� �

newcoeffs�i� 	� coords�i��j� � f�getCoeff�j��

if �isLastTriIndex�j�d�n�� break�

nextTriIndex�j��

�

�� if �isLastTriIndex�i�d�n�� break�

nextTriIndex�i��

�

f � BlossomPtDomain�Pt��knots�newcoeffs��

�

The code consists of two loops� the �rst loop �lines � ��� computes the change�of�basis
matrix� and the second loop �lines � ��� uses the matrix to compute the new coe�cients�
Line � sets up a triangular array of D�d� n� triangular arrays to store the change�of�basis
coordinates� Line � sets up a vector to store the basis tensors� Line � puts the ith basis
tensor into the vector� Line � stores the coordinates of the basis tensor in the ith coordinate
array� Line � sets up an array of new coe�cients� Line �� multiplies the coordinates and the
coe�cients of f and adds them to the new coe�cients� Line � sets f
s knots and coe�cients�

As this code requires a full get�coordinate operation for each basis element� its run�time is
O�D�d��� n� ��D�d� n��� In terms of round�o� error accumulation� the code behaves fairly
well� the coordinates require n weigh�coordinates and each new coe�cient is computed from
one linear combination of those coordinates� Thus� the total depth of the new coe�cients is
n� ��

���� BASIS CONVERSION ��

Basis�Conversion Two Knot Swapping

Another solution uses knot swapping� The idea is simply to replace tk�l with t�k�l for all k
and l� This following code is a generalization of Goldman
s basis conversion algorithm for
local B�spline bases ����� If the knot nets are B�ezier� the code is simply performing repeated
subdivision�

� void basisConvert��BlossomPtDomain�Pt� �f�

const KnotNetPtDomain� �knots� �

int d � getDimension�f�getSpace����

int n � f�getDegree���

� for �k���kd�k		�

for �l���ln�l		� �

knotReplaceCoeffs�f�k�knots�getKnot�k�l���

knotSwapCoeffs�f�k�n�
�l��

�

�� �

This code is much simpler than the previous one� The code in lines � and � puts the knot
�k�l� of the new knot net into the �k�l� position of f
s knot net� and remove the old knot
from �k�n�	�� This is done for all �k�l��

This code is also much faster than the previous� The cost of knotReplaceCoeffs is one
combination� while the cost of swapping the knot to position �k�l� is D�d� l� � D�d� ���
Adding up this cost for all l� it becomes

n�
n��X
l��

D�d� l�� nD�d� �� � D�d � �� n � ���

or equivalent to the cost of a full evaluation� Thus� in total� the cost is O��d���D�d��� n�����
compared to O�D�d � �� n� ��D�d� n���

However� the code is more likely to su�er from accumulation of round�o� errors� Since
results of earlier knot swaps are used for later ones� the depth of resulting coe�cients gets as
high as �d����n���� Moreover� the code as presented will not always work� It may happen�
as the knots get replaced� that swapping or replacing some knot �d�k� causes an evaluation
basis to become degenerate� Then the knot net is no longer valid� and any attempt to use
it will likely cause division�by�zero errors� A smarter implementation would need to check
for this condition� However� if it is known that the knots ftk�l � l � ���n� �g and the knots
ft�k��l � l � ���n � �g are enclosed in disjoint circles for all k and k�� then this problem will
not occur�

Finally� note that the code could have been written in several di�erent ways� For example�
lines � � can be rewritten

for �l�n�
�l����l��� �

knotReplaceCoeffs�f�k�knots�getKnot�k�l���

�� CHAPTER �� EVALUATION OF THE SYSTEM

knotSwapCoeffs�f�k�n�
����

�

This code puts the �rst new knot into position �k��� of f
s knot net� Then� it puts the
next new knot into position �k���� which moves the previously inserted knot into �k�	��
and so on� This code is less e�cient because the knot manipulation operations require more
computation for knots at low positions than for knots at higher positions� Also� this code is
more likely to accumulate round�o� errors because new values computed for the coe�cients
for the �rst substitution �k�n�	� are used to compute the the second substitution �k�n���
and so on� This increases the depth of resulting coe�cients�

Evaluation

This example shows that it is easy to translate from analysis into code� It also shows that
while there are many mathematically equivalent ways to achieve the same result� each way
leads to a di�erent implementation� Knowledge of how the operations work helps to create
e�cient algorithms that keep round�o� errors under control�

��� Polynomial Composition

This section provides another example of implementing a new algorithm� the composition of
B�ezier simplices� DeRose et al ��� derived a formula for computing the B�ezier control points
of the composition polynomial H�x� � F �G�x���

Let the degree of F be m and degree of G be � Let I be a vector of m multi�indices�
I � ��	�� � � � ��	m�� where each �	k has degree and dimension d� I is called a hyperindex� Let
jIj � �	� � � � � ��	m� Then the control points of H are related to the control points of G by
the following equation�

H�� �
X
jIj���

C�I�f�G��� � � �G��m� where C�I� �

�
j���j
���

�
� � �
�
j��mj
��m

�
�
jjI jj
jIj

� � �����

In the following sections� I give several algorithms for computing the H��� starting with
a direct translation� and then successively re�ning the algorithm to improve its e�ciency�
These algorithms are analyzed in Mann and Liu
s paper ����� I show how the library sup�
ports research into algorithms by providing a direct translation from e�cient algorithms into
e�cient C�� code�

Composition One Direct Translation

Equation ��� can be directly translated to code� iterate over all �	 and all I� evaluating
C�I�f�G���� � � � � G��m��

���� POLYNOMIAL COMPOSITION �

� �include �HyperIndex�h�

long C�const HyperIndex �I��

BlossomPtDomain�Pt�

� composition
�const BlossomPtDomain�Pt�� f�

const BlossomPtDomain�Pt�� g�

�

int d � getDimension�g�getSpace����

BlossomPtDomain�Pt� h�g�getDomainBasis���

�� f�getDegree���g�getDegree����

vectorPt� args�d�Pt�d���

for �MultiIndex i � firstTriIndex�d�h�getDegree������ �

for �HyperIndex I � firstHyperIndex�i���� �

for �int k���kd�k		�

�� args�k� � g�getCoeff�I�k���

h�getCoeff�i� 	� C�I� � eval�f�args�begin����

if �isLastHyperIndex�I�i�� break�

nextHyperIndex�I��

�

�� if �isLastTriIndex�i�d�h�getDegree���� break�

nextTriIndex�i��

�

�

The code for the HyperIndex class and the function C�I� are assumed to exist�

Composition Two Using Symmetry

The above code is ine�cient because f is symmetric� Thus� the order of the �	k in I does not
matter� it only how many times a multi�index �	 appears in I matters� The new algorithm
evaluates f only once for all hyperindices that contain the same multi�indices appearing the
same number of times� The computed value must be multiplied by a factor� P �I�� that
indicates how many of these hyperindices there are�

Choose some ordering on IInd � Let ������ �k be the �rst� second� kth multi�indices in this
ordering� Then� the algorithm evaluates the values

P ��	�C��	�f�Gi�
��
� Gi�

��
� � � � � G

iD�d�����
�������
D�d��	��

�

for �	 	 IImD�d��	� That is� the algorithm computes the value of f once for all hyperindices in

which �� appears i� times� �� appears i� times and so on� The following code iterates over
multi�indices in IImD�d��	�� and computes the values of f �

� long C�const MultiIndex �i��

long P�const MultiIndex �i��

�� CHAPTER �� EVALUATION OF THE SYSTEM

BlossomPtDomain�Pt�

� composition��const BlossomPtDomain�Pt�� f�

const BlossomPtDomain�Pt�� g�

�

int d � getDimension�g�getSpace����

BlossomPtDomain�Pt� h�g�getDomainBasis���

�� f�getDegree���g�getDegree����

int D � triSize�d�g�getDegree����

vectorPt� args�d�Pt�d���

for �MultiIndex i � firstTriIndex�D�
�f�getDegree������ �

vectorPt���iterator p � args�begin���

�� MultiIndex sum�

for �int k���kD�k		� �

for �int l���li�k��l		� �

MultiIndex ik � OrdToIndex�i�k���

sum 	� ik�

�� �p		 � g�getCoeff�ik��

�

�

h�getCoeff�sum� 	� P�i� � C�i� � eval�f� args�begin����

if �isLastTriIndex�i�D�
�h�getDegree���� break�

�� nextTriIndex�i��

�

�

The loop in lines �� �� converts the multi�index i into the corresponding argument for the
blossom�

Gi�
��
� Gi�

��
� � � � � G

iD�d�����
�������
D�d��	��

�

The multi�index sum stores the position of corresponding coe�cient of H�

Composition Three Reusing Intermediate Calculations

The previous code is still ine�cient because to compute f�G��� � � � � � G��m�� the partial evalu�
ations for f jG��� to f jG��� ���G��m��

must be computed� These partial evaluations can be reused
for di�erent I�

DeRose et al presented an algorithm that reuses the partial evaluations� The algorithm
proceeds by partially evaluating at some G��� Then for all �
 � �	� recursively evaluate at G���
Continue this process until f is fully evaluated� Then go back and select the next multi�index
following �	� The library allows their pseudocode to be directly translated into C���

� void

���� POLYNOMIAL COMPOSITION ��

PostProcessH�BlossomPtDomain�Pt� �h�

�

int d � getDimension�h�getSpace����

� int n � h�getDegree���

for �MultiIndex j�firstTriIndex�d�n���� �

h�getCoeff�j� �� multinomial�j��

if �isLastTriIndex�j�d�n� break�

nextTriIndex�j��

�� �

�

void

RecursiveCompose��const BlossomPtDomain�Pt�� f�

�� const BlossomPtDomain�Pt�� g�

BlossomPtDomain�Pt�� h�

const MultiIndex� min�

const MultiIndex� sum�

long c�

�� long mu�

�

if �f�getDegree�� �� �� �

h�getCoeff�sum� 	� c � �f�getCoeffs���begin���

� else �

�� MultiIndex i � min�

BlossomPtDomain�Pt� tmp � partialEval�f�g�getCoeff�i���

RecursiveCompose��tmp�g�h�i�sum	i�c�multinomial�i���mu	
��mu	
��

while ��isLastTriIndex�i�getDimension�g�getSpace����g�getDegree���� �

nextTriIndex�i��

�� tmp � partialEval�f�g�getCoeff�i���

RecursiveCompose��tmp�g�h�i�sum	i�c�multinomial�i���long�
��

�

�

�

��

BlossomPtDomain�Pt�

composition��const BlossomPtDomain�Pt�� f�

const BlossomPtDomain�Pt�� g�

�

�� int d � getDimension�g�getSpace����

BlossomPtDomain�Pt� h�g�getDomainBasis���

f�getDegree���g�getDegree����

MultiIndex zero�first � g�getDegree���E����

RecursiveCompose��f�g�h�first�zero�factorial�f�getDegree�����long����

�� CHAPTER �� EVALUATION OF THE SYSTEM

�� PostProcessH�h��

return h�

�

Note that the algorithm was also optimized to reuse intermediate results to compute C�I�
�through the parameters c and mu of function RecursiveCompose���

Composition Four Changing Bases

The previous algorithm can be further re�ned to remove the remaining ine�ciencies� The
previous algorithm reuses the intermediate partial evaluations of f � but �nally� those also
get discarded� Mann and Liu ���� presented an algorithm that avoids discarding these eval�
uations� The algorithm is asymptotically optimal�

The new algorithm �rst converts the basis of F to a domain simplex that is a subset of G
s
coe�cients� sayG��� � � � � � G��d� Then� the new coe�cients of F are of the form ff�Gj�

���
� � �Gjd

��d
�g�

which are values of f needed to compute H
s coe�cients� Starting with these coe�cient of
F � the rest of the algorithm runs in a similar manner to the algorithm of DeRose et al� with
the di�erence that all the intermediate points calculated contribute to the �nal result� and
no calculations are thrown away �except the initial basis conversion�� The following code is
a direct translation of their pseudo�code�

� void

RecursiveCompose��const BlossomPtDomain�Pt�� f�

const BlossomPtDomain�Pt�� g�

BlossomPtDomain�Pt�� h�

� const MultiIndex� min�

const MultiIndex� sum�

long c�

long mu�

�

�� ExtractCPs�f�h�min�sum�c��

if �f�getDegree�� �� �� �

return�

� else �

MultiIndex i � min�

�� BlossomArgPtDomain� u�g�getCoeff�i���

BlossomPtDomain�range� tmp � partialEval�f�u��

RecursiveCompose��tmp�g�h�i�sum	i�c�multinomial�i���mu	
��mu	
��

while �i�getDimension�g�getSpace���� �� g�getDegree��� �

nextTriIndex�i��

�� u�setArgument���g�getCoeff�i���

tmp � partialEval�f�u��

RecursiveCompose��tmp�g�h�i�sum	i�c�multinomial�i���long�
��

�

���� DEGREE�RAISING B�SPLINES ��

�

�� �

BlossomPtDomain�Pt�

composition��const BlossomPtDomain�Pt�� f�

const BlossomPtDomain�Pt�� g�

�� �

int d � getDimension�g�getSpace����

BlossomPtDomain�Pt� h�g�getDomainBasis���

f�getDegree���g�getDegree����

BlossomPtDomain�range� f� � f�

�� KnotNetPtDomain� knots�makeBasis�g�getCoeffs���begin���g�getSpace�����

basisConvert�f��knots��

MultiIndex zero� first � OrdToIndex�d��

RecursiveCompose��f��g�h�first�zero�factorial�f��getDegree�����long����

PostProcessH�h��

�� return h�

�

The ExtractCP code is omitted to save space�

This code does not always work since it uses the �rst d coe�cients of g as the new basis
of f and these coe�cients may not form a basis of the domain� A more sophisticated
implementation would need to handle this case�

The run time behavior of this algorithm depends on the algorithm used for basisConvert
routine�

��� Degree�raising B�splines

Finally� I present a new algorithm to compute the degree�raised form of a B�spline e�ciently�
An e�cient degree�raising algorithm has been known for B�ezier curves� but not for B�splines�

The problem is to �nd the control points and knot sequence of the degree n version� G�
of the degree n� � B�spline F � These are obtained by noting that G and F have the same
number of segments and the segments of G are degree�raised versions of the corresponding
segments of F �

First� this relation gives G
s knot sequence� It implies G must have the same breakpoints
as F � �Breakpoints are knots that are the endpoints of an interval for some segment� tn��
to tn�L�� Since G is one degree higher than F � but still has the same continuity� the multi�
plicity of each breakpoint in G
s knot sequence must be one greater than the corresponding
breakpoint in F
s knots�

Next� I use the relation to derive G
s control points� Let ft�� � � � � t�n���Lg be G
s knot
sequence and P�� � � � � Pn�L its control points� Let gti�ti��	 and fti�ti��	 be the blossoms of G

�� CHAPTER �� EVALUATION OF THE SYSTEM

and F respectively over the interval �ti�n��� ti�n�� where ti�n�� � ti�n� Let t�i	 � ti � � � ti�n���
and let t�i	�tj � ti � � � tj��tj�� � � � ti�n��� The degree�raising formula for blossoms states

gti�ti��	�t�i	� �
�

n

i�n��X
j�i

fti�ti��	�t�i	�tj��

Equation ��� can be rewritten to yield a formula for Pi�

Pi � gti���ti	�t�i	� � � � � � gti�n���ti�n	�t�i	�

This formula states that the blossoms of n�� consecutive segments all have the same value
at t�i	� For knots that have multiplicity greater than �� the corresponding segments do not
exist� However� since the multiplicity of knots are less than n � �� there is always some
segment gtk���tk	 whose value at t�i	 is Pi� where k is any number between i and i� n such
that tk�� � tk and k � n� L�

Combining this formula with the previous one yields a formula for the G
s control points
in terms of blossom values of F
s segments�

Pi �
�

n

i�n��X
j�i

ftkj���tkj 	
�t�i	�tj�� �����

where kj are numbers between i and i� n� � such that tkj�� � tkj and kj � n� L�

Algorithm

From Equation ���� one can compute the degree�raised control points simply by computing
the required values of the blossom ftkj���tkj 	

for each Pi� However� since successive control

points will require many of the same blossom values� a more e�cient algorithm would be
to store each value computed and use it again for later control points� Even this approach
is not as e�cient as possible� since parts of the computation for one blossom value can be
reused for subsequent blossom values�

The following algorithm is arranged in such a way as to maximize reuse of computations�
Moreover� the algorithm is easy to understand because it is made up of knot insertions and
knot deletions� I �rst deal with the case when F has no knots of full multiplicity� n � ��
Later I will consider the case of knots of full multiplicity�

The algorithm proceeds as follows�

�� Insert knots into F so that the multiplicity of each break point is increased by one�
Let ft�� � � � � t�n���Lg be the resulting knot sequence� Let Qi be the new control points
of F � By Equation ����

Qi � fti���ti	�t�i	�ti�n��� � � � � � fti�n���ti�n��	�ti�ti�n����

���� DEGREE�RAISING B�SPLINES ��

�� Set the knots of G to be same as the new knot sequence of F � Set G
s control points
initially to zero� P� � � � � � Pn�L � ��

� For each j � ����n� � � L�

�a� create new B�spline F j by deleting knot tj from F � Thus� the knots of F j are

ft�� � � � � tj��� tj��� � � � � t�n���Lg�

De�ne

Qj
i � fti���ti	�t�i	�tj� � � � � � fti�n���ti�n��	�ti�tj�� i � j � n � ���j

Qj
i � fti���ti	�t�i	�ti�n��� � � � � � fti�n�� �ti�n��	�ti�ti�n��� � Qi� o�w

Note that Qj
j � Qj

j��� By construction� Qj
i are just the control points of F j� with

one point duplicated�

�b� For each i � j � n� ���j� add Qj
i�n to Pi�

Pi �� Pi �
Qj

i

n
�

This step will compute

Pi �
�

n

i�n��X
j�i

Qj
i

�
�

n

i�n��X
j�i

ftkj���tkj 	
�t�i	�tj�

where kj is the number of some segment� i� �
 kj
 i� n� ��

Note that in Step �a�� if tj � tj��� the knot tj does not have to be deleted again� the control
points of F j�� will be the same as those of F j and can be reused�

Now consider the case where some breakpoint ti of F has multiplicity n��� Theoretically�
the algorithm cannot insert that knot again� as B�splines cannot have knots of multiplicity
greater than the degree� that would mean a discontinuity in the B�spline� However� this
is not a problem in practice as long as the control points Qi and Qi�� are never di�erent�
which is the case for this algorithm� The knot insertion operation would simply duplicate
the control point Qi� and the knot deletion algorithm would remove a duplicate� Another
approach is to �ag the knot but do not insert it� Later� in Step �a�� any knots that are
�agged are not deleted�

�� CHAPTER �� EVALUATION OF THE SYSTEM

Implementation

This code uses the class Bspline� The class is assumed to have the operation deleteKnot�

� Bspline degreeRaise�Bspline F� �

int n�F�getDegree���

int L�F�knots�size�����n�

int last � L	n���

� for �int k�n� k�last� k		� �

if �F�knots�k� �� F�knots�k�
�� n�
� �

insertKnot�F�F�knots�k���

last		�

�

�� �

int d�getDimension�getSpace�F�cvs������

Bspline G�n	
� F�knots��

n � n	
�

L�G�knots�size�����n�

�� Bspline Fj � F�

for �j��� j���n�
	L� j		� �

if �j�� �� F�knot�j� F�knot�j�
�� �

Fj � F�

deleteKnot�Fj�j��

�� �

for �int i�max�j�n	
���� i�min�j���n	L���� i		� �

G�cvs�j� 	� Fj�coeffs�i��n�

�

�

�� return G�

�

Lines � �� implement Step �� inserting knots into F
s knot sequence� Line �� implements
Step �� creating the B�spline G with the right knot sequence� Lines �� �� implement
Step �a�� deleting a knot from F if the knot is di�erent from the previous knot� other�
wise� it reuses the B�spline Fj from the last iteration� Lines �� � implement step �b��
adding the value of the control points of Fj to those of G�

Evaluation

The code is very short� and is a direct translation from the analysis�
The best case for run time occurs when all knots have full multiplicity� Then� no knots

need to be inserted or deleted� and the algorithm simply becomes a less e�cient version of
B�ezier degree raising� the algorithm uses n�L � �n � �� additions of points to compute the
Pi�

���� CHAPTER SUMMARY ��

The worst case occurs when each knot has multiplicity one� In this case� increasing
the multiplicity of each breakpoint requires inserting L�� knots� and the cost of each knot
insertion is n combinations� Deleting a knot also costs n combinations� and L�� � �n � �
knots must be deleted� Thus� in total� the algorithm runs in O�nL � n���

In comparison� the naive method of computing each blossom value of Equation ��� indi�
vidually requires n blossom values for each of n�L new control point� for a total of nL�n�

full evaluations� A full evaluation requires n�n � ���� combinations� so the naive method
runs in O�n�L� n��� The other approach is to compute each blossom value only once� This
approach requires O�n�L � n�� combinations� since on average each blossom value is used
for n consecutive control points� Thus� the new algorithm saves a factor of n or n� in the
run time�

The algorithm uses the control points resulting from earlier knot insertions for later knot
insertions� Thus� a concern is that round�o� errors may accumulate so that by the time the
last knot is inserted� the result is no longer accurate� Fortunately� round�o� errors do not
accumulate excessively� To see this is the case� observe what happens as knots are added�
To increase the multiplicity of knot tq� the knot insertion algorithm �Boehm
s algorithm�
computes the new control point as follows ����

Qj ��
tj�n � tq
tj�n � tj

Qj�� �
tq � tj
tj�n � tj

Qj� j � q � n� �� � � � � q�

The next step would be to insert knot tq�� �assuming multiplicities of ��� Thus� a control
point gets modi�ed by at most dn��e successive knot insertions� In other words� it has a
depth of n��� half the depth of a full evaluation�

��� Chapter Summary

This chapter showed that simple� commonly performed tasks are simple to implement with
the library� The library works well with other datatypes and routines� for example� user�
created datatypes for B�spline blossoms� and STL routines� The library
s datatypes and
operations are general� and can be used to code non�trivial algorithms� such as basis con�
version� polynomial composition and B�spline degree raising� The datatypes and operations
allow direct translation from blossoming analysis to C�� code� and the resulting code is
simple and meaningful in terms of blossoming analysis�

Chapter �

Conclusions

The Blossom Classes library is a general programming tool that is useful for prototyping
CAGD modeling techniques� Its main features are that it is general and it is useful for
implementing many di�erent techniques�

It provides blossoming datatypes that simplify translation from analysis to code� The
datatypes and operations are general and easy to use� They allow direct translation from
blossoming analysis to C�� code� The resulting code is simple and meaningful in terms of
blossoming analysis�

The datatypes handle many techniques� including important ones such as B�ezier curves
and surfaces� and B�splines curves� and rational polynomial versions of these techniques�
among others�

The operations are computed by e�cient algorithms that are generalizations of impor�
tant algorithms for B�splines and B�ezier curves and surfaces� They can handle non�trivial
algorithms�

The library works well with other libraries and datatypes� More importantly� users can
replace the library
s own datatypes with user�supplied datatypes� This ability to integrate
user
s datatypes into the library is important for two reasons� it means users can �t the
library into existing applications� and users can specialize the datatypes for greater e�ciency
or extend them for greater functionality�

Thus� the library is suitable for many situations� The library provides datatypes that
handle common modeling operations for simple applications� On the other hand� the library
can be used with other tools� such as optimization routines� to create complex modeling
techniques�

Future Work

The library currently only supports B�bases directly� It is desirable to extend the basic
framework of the library to allow other bases to be used� Some work has been done that
relates B�bases to other bases� such as convolution bases� P�olya bases� and L�bases ���� ���

��

�

A datatype for geometrically continuous curves �universal splines ����� should be sup�
ported� in the same way as the B�spline datatype in Chapter ��

A datatype for tensor�product surfaces need to be supported in order for the library to
be generally useful� They can be implemented in a way similar to the B�spline class�

Finally� while a simple relationship is known between a B�spline and the blossoms of its
segments� no similar relationship is known for a multivariate B�spline ��� and its individual
patches� currently it is known that the multivariate B�spline agrees with a B�patch in a
special region� If such a relationship is found� the library should be extended to support a
multivariate B�spline datatype� I hope that the functionality provided by this library can
assist in such research�

Appendix A

Datatype Requirements

The following description of requirements for datatypes use the same terminology as STL�
These requirement are given as a set of valid expressions in C��� Any operation that modi�es
its parameters are noted�

In addition to the operation listed in the table� all types must provide default constructors�
copy constructors� and assignment operators�

A�� Geometry Datatypes

A���� Requirements for Scalars

In the following table� s and t are scalars�

expression return type notes
� s�t scalar

� s��t
� s�t scalar

� s��t
� scalar��� scalar constructs zero scalar
� scalar�	� scalar constructs one scalar

A���� Requirements for Ranges

In the following table�
� sbegin and send are iterators returning scalars
� sbegin is an iterator returning rangept�

��

A��� BLOSSOMING DATATYPES ��

expression return type notes
� combination�sbegin�

send�

pbegin�

�rangept����

rangept returns the �a�ne or linear� combi�
nation of the scalars in sbegin to
send with the points in pbegin�

A���� Requirements for Domains

In the following table�
� x is a space object
� b is a basis object
� c is a coordarray

� p is a �domain� point
� k is an int

� pbegin is a forward iterator returning points

expression return type notes
� domain��space space

� domain��basis basis

� domain��point point

� domain��coords coords

� domain��scalar scalar

� getDimension�x� int

� getStdBasis�x� basis

� getCoordsFromBasis�b�p�c� c is modi�ed
� getSpace�x� space

� getSpace�b� space

� getBasisElement�b�k� point

� setBasisElement�b�k�p� b is modi�ed
� makeBasis�pbegin��basis���� basis

� coordarray�k��� coordarray construct an array of size k�
initialized with zeros

� c�k� reference to scalar the kth coordinate in the
array�

A�� Blossoming Datatypes

A���� Requirements for Blossoms

In the following table�
� f is a blossom

�� APPENDIX A� DATATYPE REQUIREMENTS

� kn is a knotnet object
� a is a triarray object �storing objects of type blossom��rangept�

expression return type notes
� blossom��knotnet knotnet
� blossom��triarray triarray
� blossom��domain domain
� blossom��rangept rangept
� getDegree�f� int
� getSpace�f� space
� f�coeffArray�� reference to triarray

� f�knotNet�� reference to knotnet

� makeBlossom�kn�a��blossom���� blossom

A���� Requirements for Triangular Arrays

A triarray satis�es all the requirements of an STL container� The following table lists
additional requirement of a triarray�

In the following table�
� a is a triarray object
� k is an int

� e is an evalordarray

expression return type notes
� triarray��multiindex multiindex
� triarray��evalordarray evalordarray
� a�k� triarray��reference return the element at the po�

sition k� The return type is
triarray��const�reference if
a is constant�

� getDimension�a�
getDegree�a�

int dimension and degree of a

� evalordarray�k��� evalordarray construct an array of size k� ini�
tialized with zeros

� e�k� reference to int the kth position in the evaluation
subarray�

A���� Requirements for Multi�Indices

In the following table�
� i is a multiindex object

A��� BLOSSOMING DATATYPES ��

� k� l� d� n are ints
� e is an evalordarray

expression return type notes
� i�k� int kth component of multi�index
� ord�i�d�n� int position of multi�index i in

triarray of dimension d� degree n
� evalord�i�d�n�e� compute positions of ith evaluation

subarray in triarray of dimension
d� degree n� e is modi�ed�

� firstTriIndex�d�n�
lastTriIndex�d�n�

multiindex �rst and last indices for dimension
d� degree n

� nextTriIndex�i�
prevTriIndex�i�

increment�decrement index� i is
modi�ed�

� isFirstIndex�i�d�n�
isLastIndex�i�d�n�

int check if is �rst or last index for di�
mension d� degree n

� firstSliceIndex�k�l�d�n�
lastSliceIndex�k�l�d�n�

multiindex �rst and last indices for dimension
d� degree n slice such that i�k���l

� nextSliceIndex�i�k�l�
prevSliceIndex�i�k�l�

increment�decrement index while
keeping i�k��l� i is modi�ed

� isFirstSliceIndex�i�k�l�d�n�
isLastSliceIndex�i�k�l�d�n�

int check if is �rst or last index for di�
mension d� degree n slice such that
i�k���l

A���� Requirements for Knot Nets

In the following table�
� kn is a knot net object
� i is a multiindex object
� k� l are ints
� c is a combiner

� w is a weigher

� coeffs is an iterator returning rangept

� coords is an iterator returning scalar

� s is a scalar

� p is a domain point

� b is a basis

�� APPENDIX A� DATATYPE REQUIREMENTS

expression return type notes
� knotnet��combiner combiner

� knotnet��weigher weigher

� getCombiner�kn�p� combiner

� getWeigher�kn�p� weigher

� combineCoeffs�c�i�coeffs� rangept the combine�coe�cients algorithm�
� weighCoords�w�i�s�coords� the weigh�coordinates algorithm�
� getKnot�kn�k�l� point

� getDomainBasis�kn� basis ft���� � � � � td��g�
� getDomainElement�kn�k� basis kth domain element� tk���
� getEvalBasis�kn�i� basis return the ith evaluation basis�
� setKnot�kn�k�l�p� kn is modi�ed� B�ezier knot nets do

not support this operation�
� swapKnot�kn�k�l� swap the knots �k�l� and �k�l�	��

kn is modi�ed� B�ezier knot nets do
not support this operation�

� setDomainBasis�kn�b� basis sets all domain elements to basis b
s
elements�

� setDomainElement�kn�k�p� basis sets all knots �k�l� to p�

Bibliography

��� Phillip J� Barry and Ronald N� Goldman� Knot insertion algorithms via blossoming� In
Hans�Peter Seidel� editor� Blossoming	 The new polar�form approach to spline curves
and surfaces� SIGGRAPH Course Notes "�� �����

��� R� Bartels� Object oriented spline software� In Pierre�Jean Laurent� Alain Le M�ehaut�e�
and Larry L� Schumaker� editors� Curves and Surfaces in gemetric design� pages �� ��
A K Peters Ltd� �����

�� W� Boehm� Inserting new knots into B�spline curves� Computer�Aided Design� ������
���� �����

��� W� Boehm and H� Prautzsch� The insertion algorithm� Computer�Aided Design� �����
��� �����

��� A� Dahl� Weyl� A language for computer graphics and computer aided geometric design�
Technical Report TR ��������� University of Washington� June �����

��� W� Dahmen� C� A� Micchelli� and H� P� Seidel� Blossoming begets B�splines built better
by B�patches� Mathematics of Computation� ������ ��� �����

��� Paul de Faget de Casteljau� Formes
a P�oles� volume � of Math�ematiques et CAO�
Hermes� �� rue Rennequin� ����� Paris� �����

��� Derose� Goldman� Haen� and Mann� Composition algorithm via blossoming� Theory�
applications and implementation� Technical Report ��������� University of Washington�
�����

��� T� DeRose and R� Goldman� A tutorial introduction to blossoming� In H� Hagen and
D� Roller� editors� Geometric Modeling� Springer� �����

���� Tony D� DeRose� A coordinate�free approach to geometric programming� In Math
for SIGGRAPH� SIGGRAPH Course Notes "�� ����� Also available as Technical
Report No� ��������� Department of Computer Science and Engineering� University of
Washington� Seattle� WA �September� ������

��

�� BIBLIOGRAPHY

���� G� Farin� Curves and Surfaces for Computer Aided Geometric Design� Academic Press�
third edition� �����

���� Goldman and Barry� Wonderful triangle� A simple� uni�ed algorithmic approach to
change of basis procedures in CAGD� In Tom Lyche and Larry L� Schumaker� editors�
Mathematical Methods in CAGD II� Academic Press� Inc� �����

��� R� N� Goldman� Recursive triangles� In Wolfgang Dahmen� Mariano Gasca� and
Charles A� Micchelli� editors� Computation of curves and surfaces� volume �� of NATO
ASI Series C	 Mathematical and Physical Sciences� pages �� ��� Kluwer Academic Pub�
lishers� �����

���� S� Lodha and R� Goldman� A multi�variate de Boor��x formula� In Pierre�Jean Laurent�
Alain Le M�ehaut�e� and Larry L� Schumaker� editors� Curves and Surfaces in Geometric
Design� pages �� ��� A K Peters Ltd� �����

���� Stephen Mann and Wayne Liu� An analysis of polynomial composition algorithms� Tech�
nical Report CS������� University of Waterloo� Waterloo� Ontario� N�L G� CANADA�
�����

���� Lyle Ramshaw� Blossoming� A connect�the�dots approach to splines� Technical Re�
port ��� Digital Equipment Corporation� Systems Research Centre� �� June �����

���� H� P� Seidel� Symmetric recursive algorithms for surfaces� B�patches and the de Boor
algorithm for polynomials over triangles� Constructive Approximation� ����� ���� �����

���� Hans�Peter Seidel� Polar forms for geometrically continuous spline curves of arbitrary
degree� ACM Transcations on Graphics� ������ January ����

���� K� Shoemake� Animating rotation with quaternion curves� In Computer Graphics �Proc�
of SIGGRAPH ���� pages ��� ���� �����

���� Ken Shoemake� E�cient de Casteljau indexing� In preparation� �����

���� Alexander Stepanov and Meng Lee� The standard template library� Technical Report
HPL������ Hewlett�Packard Labroatories� April �����

