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Abstract

A C++ library has been created to facilitate prototyping of curve and surface
modeling techniques. The library provides general-purpose blossoming datatypes
to support creation of modeling techniques based on blossoming analysis. The
datatypes have efficient operations which are generalizations of important CAGD
algorithms, and can be used to implement many algorithms. Most importantly,
the library is able to inter-operate with user-supplied datatypes or routines to
create complex modeling techniques.
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Chapter 1

Introduction

Computer Aided Geometric Design (CAGD) is concerned with modeling curves and surfaces
on computers. Research focuses on finding various techniques of representing curves and
surfaces in computer-compatible form, and algorithms for manipulating these representa-
tions. This research has applications in CAD/CAM. For a general introduction to CAGD,
see Farin’s book [11].

The most successtul techniques represent curves and surfaces with piecewise polynomial
functions. Some examples of these are Bézier patches and NURBS. Many properties of
such techniques are most easily studied using blossoming analysis. Blossoming analysis was
introduced into CAGD in 1987 [16, 7]. Since that time, it has proven to be a simple and
powerful mathematical tool. It does not require advanced mathematical concepts, yet it
reveals the properties of important modeling techniques. Researchers continue to apply
blossoming analysis to find new modeling techniques that have useful properties.

In addition to analyzing new ideas mathematically, researchers must also implement
prototypes, computer programs that test the practicality of these ideas. Thus, programming
is an essential step in CAGD research.

The task of programming involves translating from the mathematical analysis into com-
puter code. This translation is often difficult. The problem lies in translating mathematical
concepts, such as piecewise polynomials, into computer language concepts, such as floating-
point arithmetic. It is unclear how to translate from one to the other, and in general, they
bear no resemblance to each other. Ideally, the programmer should be able to manipulate
the same concepts in the code as in the analysis. Then, the translation process would be
straight-forward, and the programming would be simple. The solution is to create datatypes
for blossoming.

A datatype is simply an abstract set of objects with operations that can be performed
on these objects. In this case, the objects correspond to concepts used in the blossoming
analysis, such as blossoms, tensors, bases, spaces or multi-indices. The operations perform
meaningful actions on the objects in terms of blossoming analysis. Thus, the programmer
can use the operations to manipulate the mathematical concepts in the code.
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In this thesis, I have developed the Blossom Classes, a C++ library to support program-
ming with blossoming datatypes. The library is designed to be useful for many applications.
The library provides a set of general datatypes that can be used to code many modeling
techniques. In creating operations for the datatypes, I discovered generalizations of im-
portant CAGD algorithms. The resulting operations are efficient building blocks for many
algorithms.

The outstanding feature of the library is its ability to work with other datatypes and
tools. This feature allows the library to be used for coding complex modeling techniques
that require combining datatypes and routines from other libraries.

Overview of Chapters

In Chapter 2, I review the technique of blossoming analysis. Note that for reasons discussed
in that chapter, this thesis uses an alternative approach to blossoming, based on the tensor
construction.

In Chapter 3, I describe previous work on programming support for blossoming, list the
requirements for such systems to be effective, and describe the design of the Blossom Classes
in light of these requirements.

In Chapter 4, I derive the algorithms that compute the datatypes’ operations. Then, I
analyze their run time requirements and their potential for accumulating round-off errors.

In Chapter 5, I discuss the implementation of the library, with particular reference to
how the library works with user-supplied datatypes.

In Chapter 6, I evaluate the usefulness of the library by using it to implement different
techniques and algorithms.

In Chapter 7, I summarize the results of this work and list further work.



Chapter 2

Background on Blossoming Analysis

This chapter reviews concepts of blossoming analysis, following the development given by
Ramshaw [16]. I give less rigorous versions of Ramshaw’s definitions, and I omit the proofs.
Note that both Ramshaw and this thesis use a different formulation of blossoming analysis
than in the general literature. See Section 2.2 for a discussion of the difference.

2.1 Geometric Spaces

The natural framework in which to analyze CAGD techniques is affine geometry. (DeRose [10]
gives a thorough introduction to affine geometry.) An affine space is made up of a set of
points and an associated linear space of vectors. The points have the operation of vector
addition. Subtraction of two points is defined as © — y = ¢, where ¥ is the unique vector
such that © = y +v. An affine combination of points xg,...,z,, with scalars «ag, ..., a,,
Yoh—o @ = 1, is the point

n n
Z T = To + Z a;(®; — x0).
k=0 k=1

A basis of an affine space is a set of points {zg,...,%,} such that {#; — zo,..., 2, — o}
is a basis of the associated linear space. This implies every point, x, can be expressed in a
unique way as an affine combination of z,...,z,, that is, 2 = >°7_, a;2;. The «; are called
the coordinates of @ with respect to the basis {zg,...,z,}. An affine space is n-dimensional
if its associated linear space is m-dimensional. This implies a basis of an affine space has
n + 1 elements.

Since the derivatives of curves and surfaces are vectors, the analysis of CAGD techniques
would be simplified if points and vectors can be treated in the same way. The standard
technique is to embed both points and vectors in a n + 1 dimensional linear space, called the
linearized space of the affine space. The construction proceeds as follows: add a new element
Up to the associated (n-dimensional) linear space, and identify a point o with this element.
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vector in linearized space

original points \ : /
original vecto?ﬁé

Figure 2.1: Construction of linearized space

The n + 1 dimensional linear space is made of elements of the form avy + v for some scalar
a and vector U in the original linear space. Figure 2.1 shows this construction.

The « is called the flavor (or weight or mass) of the element. By construction, all points
x are represented as © = xo + (& — xg) = Vo + (¢ — o) and all vectors are represented as
0vp + v; thus a point has flavor 1 and a vector has flavor 0. In this thesis, an arbitrary
element of the linearized space is written as @, that is, when it doesn’t matter whether the
element is a point or vector. When the element is known to be a vector, it is written as v.
When the element is known to be a point, it is still written as x, but it will be called a point.

Two kinds of bases are commonly used for linearized spaces. The first is obtained from
a basis of the affine space (i.e. only points); this kind of basis is called a simplez. The
second is obtained from a basis of the original linear space with ¥y added to it; this kind of
basis is called a frame. Coordinates of vectors in a linearized space are called homogeneous
coordinates.

A projective space is obtained from a linearized space by taking all elements of flavor
a # 0 and dividing by a: 19y + (# — z¢)/a. This division is called a projection.

These geometric spaces are useful for analyzing polynomials: ordinary polynomials have
domains that are affine; homogeneous polynomials have domains that are linear; rational
polynomials have ranges that are projective spaces.

2.2 Polynomials and Blossoms

Blossoming

The standard approach to blossoming is based on the multi-affine blossom, which is a sym-
metric and multi-affine (affine in each argument) map of n arguments. The following theorem
states that polynomials and multi-affine blossoms are essentially the same.
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Theorem 2.2.1 (The Blossoming Principle) For every polynomial, F' : X — Y, of
degree n, there is exactly one multi-affine blossom, f : X™ — Y, such that

F(u) = f(u,...,u),

k3

and vice versa.

If f 1s a multi-affine blossom of three arguments, then the symmetric property implies
flz,y,2) = f(y,z,z) = f(any permutation of ,y, z). The multi-affine property implies

Flaw + (1 — @)z, y, 2) = af(w,y,2) + (1 — @) f(z,y, 2).

The symmetric and multi-affine properties allow f to be computed from known values of
at given arguments. For example, as illustrated in Figure 2.2, given the values of f (0,1,2),

f(1,2,3), f(2 3,4), and f(3 4,6), it is possible to compute f(2 7,1.8,3.4). First note that
by the symmetric property,

>\H>

f((), 1, 2) = f(lv 27Q)'
Then, by the multi-affine property,
F(1.2.27) = 17(1,2,0) + 9f(1.2.3).

2.7) can be computed. In
2.7) a df(3427) can be
and f (3 2.7,1.8), which in

Thus, from the first pair of values of f, the new value f (1,2,
a smular manner, using the next pair and the last pair, f(2,3
computed. These three new values combine to give f(2 2.7,1.8
turn combine to give f (2.7,1.8,3.4).

1£(1.2,0) + .9£(1.2.3) = £(1,2,2.7)
f0.1.2) = f1.2,0°

\_/\'

— f(1,2,3)

£(3,4,6)

Figure 2.2: Evaluating a blossom

This previous example evaluated the blossom of a curve. Since the concept of blossom
is independent of dimension, the same approach can evaluate surfaces. For example, as
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illustrated in Figure 2.3, given the planar points, ag, a1, bg, by, o, ¢1, &, and the blossom values

F(ao, 1), F(ao,bo), F(bo,by), F(bo,co), Flco,e), Flco,an), it is possible to compute f(z,a).

First rewrite f(co,a0) as f(ao, co) using the symmetric property. Then use the multi-affine
property to write

]E(aoai) = )‘Of(a@v ar) + )\1]3(@07 bo) + )\2]3(@07 co),

where the As are the barycentric coordinates of x in triangle ay, by, ¢p. In the same way, the
values of f(bo, z),f(co, ), and finally f(z,z) are computed.

ag

Figure 2.3: Evaluating a surface blossom

Figure 2.4 shows these two computations in another way, showing which blossom values
combine to calculate new values. These diagrams are known as “wonderful triangles” [12].

A

f(27,3.4,18) ;

(z,2)

. \/ \ f(eo, a0) f(bo, co)

F£0,1,2)  £(1,2,3)  £(2,3,4)  f(3,4,6) f(ao, a1) f(ao, bo) f(bo, b1)
Figure 2.4: Evaluation computations

The arguments of the known values of the blossom must follow a pattern to allow new
blossom values to be computed. This pattern is defined in Section 2.5.
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Tensoring

Another way to evaluate f(2.7, 3.4,1.8) is to perform the previous computation “backwards”,
and find the “weight” of each blossom value:

F(2.7.3.4,18) = .3f(2,2.7.3.4) — .7£(3,3.4,1.8)
= —.06f(1,2,2.7) + 57(2,3,2.7) + 49f(3 2.7)
= —.024£(0,1,2) + .382f(1,2,3) + .6665F(2, 3 ,4) 4 .0245F(3,4,6)

The data flow is shown in Figure 2.5.

1
/\
3 T
VANV
—.06 b7 .49
7\
—.024 .382 .6665 —.0245

Figure 2.5: Getting the weights of blossom values

Note that the weights (—.024,.382,.6665,.0245) do not depend on the blossom f, but only
on the arguments to the blossom. This observation suggest that it is worthwhile to study
arguments to a blossom. The tensor construction allows blossom arguments to be studied
as mathematical entities.

The construction for symmetric n-tensors (or tensor for short) proceeds recursively. A
point, z, is a 1-tensor. An (n + m)-tensor can be constructed from an m-tensor, u, and an
n-tensor, v, by tensor multiplication, to get the tensor v ® v. Finally, affine combinations of
n-tensors, >, ayu;, are n-tensors.

Tensor multiplication is associative, commutative and distributes over affine combina-
tions: (uV)Qw=u® (VOw), u®v=vQ u, and v @ ¥_; u; = ¥_; v @ u,;.

Since the multiplication is commutative, the standard notation for symmetric tensors
omits the ® symbol for tensor multiplication. Thus, v ® v is simply wv. From now on,
this thesis uses the shorter notation. Another simplification is to denote an n-tensor, u,
multiplied by itself k times as u*.

An n-tensor obtained by multiplying n 1-tensors together is called a simple tensor: u =
Ty ...%, (ie., written without a summation sign, as opposed to .2zizs + .8z3z4). Simple
tensors are equivalent to blossom arguments.
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By construction, n-tensors form an affine space; the points of this space are n-tensors,
while the vectors are combinations of n-tensors, >, a;u;, where the scalars sum to 0. This
space is the nth symmetric tensor space, denoted X®".

The following theorem states that affine maps from the tensor space are equivalent to
multi-affine blossoms. Such an affine map is called an affine blossom.

Theorem 2.2.2 (The Tensoring Principle) For every multi-affine blossom, f X" Y
of degree n there is exactly one affine blossom, f : X®* — Y such that f(zy,...,z,) =
f(z1---®,), and vice versa.

As a corollary, this theorem says affine blossoms are equivalent to polynomials. The affine
blossom f corresponding to a polynomial F' is called the blossom of F'.

Denote by vX®"~™ the subset of the space of n-tensors obtained by multiplying the m-
tensor v by (n — m)-tensors. This subset forms a subspace of X®" isomorphic to X®*~™.
A basis of this subspace can be obtained by multiplying v to a basis of X®*~. Let f|,
denote the blossom f restricted to this subspace. Then f|, can be considered a blossom over
X® ™ where f| (u) = f(vu). fl, is called the partial evaluation of f at v.

The computation of weights can now be restated using tensor notation. First, to distin-
guish between the point 2.7 in the 1-D domain from the scalar 2.7, the point is written 2.7.
Now, using the commutativity and distributivity of tensor multiplication, the simple tensor
2.73.41.8 can be written as an affine combination of the simple tensors 012, 123, 234,
and 346:

2.73.41.8

(.32+4.73)2.73.4=.322.73.4—.733.41.8
= —.06122.7+.57232.7+ .49342.7
= —.024012+ .382123 4 .6665234 + .02453 46.

An affine blossom is simply an affine map over the tensors. Thus,

f(2.73.41.8) = f(—.024012+ .382123 4 .6665234 +.0245346)
= —.024f(012)+ .382f(123) +.6665f(234)+ .0245f(3486).

Linearizing

The concepts of blossoming can be extended to linearized spaces to make tensors from both
vectors and points. This extension allows derivatives of polynomials to be computed using
blossoms.

Similar to the affine case, multi-linear blossoms are defined as symmetric, multi-linear
maps. The only added restriction is that the multi-linear blossom must be flavor multiplica-
tive (mapping points with flavors ay to a,, to a point with flavor oy --- ).

The construction of linearized tensor spaces proceeds as in the affine case, but using
linear combinations instead of affine combinations. The tensor space is a linearized space.
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The flavor of a tensor is defined as follows: the flavor of a simple tensor is defined to be the
product of the flavors of its components; the flavor of a sum of simple tensors is the sum of
the flavors of each simple tensor. A linear blossom is a linear map on X®". The notation for
a linearized tensor is the same as for an affine tensor, except that 1-tensors that are vectors
are written as v rather than just x.

Linear blossoms are useful for obtaining derivative information.

Theorem 2.2.3 The directional derivative of F' at x in the direction v is %F( ) = nf(z" 7).

The theorem can be restated as “the blossom of =Fisnf|;”. The theorem can be recursively
applied to f|; as a n — 1 blossom to get a general formula:

o" e )
mF(:B) = n(n— 1)...(71,— k+ l)f(;lj 'Ul“"Uk) (2‘1)
= nn—-1)---(n—Fk+ )f|v1 )

PG
= n(n = 1) (= E 4 1) f | (51 ).

This theorem is important for piecewise-polynomial methods since it states that two poly-
nomials, F and G, join C* at = if and only if f| ._x = g| s
An example will clarify the concept of linear tensors. Suppose the following values of the
blossoms f and g are given: f(012), f(123) = ¢g(123), f(234) = g(234), f(346) =
g(346), and g(466). Equation 2.1 can be used to show that F(z) and G(z) meet C? at 3.
Let & be the unit vector pointing in the direction of increasing . For example, §=3-2.
Then the theorem implies

5FB) = 6£(543)

& e

Now, the weights of 5§43 for f are

Sy

§3 = (—2+8)63=—-263+ 343

1 1
= =-123—-233+ -343
2 2

= 0012—|—1123 7234—|—146
N 6 24 8

Similarly, the weights of 5§43 for g are

Sy

63 = —303+463

1 5 1
= =-123—-233+4+-343
2 6 3
= 1123 7123—|—1234—|—0346
6 24 8 ‘
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Thus,
dd—;F(3)=6f(553) = 1f(123)—1.75f(234)+.75f(3486)
= 1g(123) — 1.75g(234) + .759(3486)
= 69(553)—;_:2@(3)

It is no coincidence that F and G meet with C2, since they are adjacent segments of a
B-spline, as discussed in Section 2.6.

Rationale for Linear Blossoms

Although the linear blossom is not as familiar as the multi-affine blossom, it is a very con-
venient concept for analysis. Because tensors form a linear space, all the concepts and
vocabulary of linear algebra become available. These concepts, such as affine combinations,
subspaces and bases, simplify definitions and theorems. Thus, this thesis will use linear blos-
soms for all theoretical discussions, especially in the derivation of the algorithms of Chapter 4.
However, the actual implementation of the blossom datatype, discussed in Chapter 3. will
only be multi-affine or multi-linear.

The unfamiliarity of linear blossoms need not pose a problem. In actual practice, they are
evaluated only at simple tensors composed of only points and they behave exactly the same
as the multi-affine blossom. If linear blossoms are evaluated at simple tensors that include
vectors, then they behave exactly like multi-linear blossoms. From here on, “blossom” refers
to a linear blossom.

Finally, note that “tensor” in this context is different from “tensor-product”, as in
“tensor-product B-splines”.

2.3 Multi-indices and Triangular Arrays

The coefficients of multi-variate polynomials are commonly indexed with multi-indices. A
multi-index 1s a tuple of non-negative integers. A multi-index of dimension d and degree n is
written as © = (fo,...,%q4), where ig+-- -+ 14 = n. Define |i] = ig+ - - - +i4. Let € denote the
multi-index that has a 1 in the kth spot and 0 everywhere else. The set of all multi-indices
of dimension d, degree n is denoted II;. The size of this set is D(d,n) = (nji'd
to the dimension of the space of d-variate, degree n homogeneous polynomials.

), and is equal

A triangular array of dimension d and degree n is a set whose elements are indexed by
multi-indices: {a;: ¢ € I}. Figure 2.6 shows a triangular array of dimension 2 and degree 3.
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a(3,0,0)
a(2,1,0) G
a(1,2,0) 9(1,1,1)
@(0,3,0) @4(0,2,1) G

Figure 2.6: Triangular array of dimension 2 and degree 3

2.4 Polynomial Spaces and Bases

For the sake of brevity, the space of scalar-valued homogeneous polynomials will be simply
called the polynomial space. A basis of the polynomial space is called a polynomial basis.
A polynomial in a basis is called a basis polynomial. The blossom of a basis polynomial is
called a basis blossom. A basis of the tensor space is a tensor basis and an element of the
basis is a basis tensor.

A polynomial, F', is written as a combination of basis polynomials, Fy, and coefficients
in the range space, P, where i € II}:

F(z) = Z Fi(z)P;.

7l

Intuitively, the basis polynomials are used as “weighting functions”, where F}is the “weight”
of the point P;.

The tensor space and the polynomial space are closely related. Theorem 2.2.2 states that
the blossom of a polynomial is a linear map from the tensor space. Thus, the blossom of a
scalar-valued polynomial is a linear functional from the tensor space. And since there is a
one-to-one correspondence between blossoms and polynomials, the polynomial space is the
dual space of the tensor space.

This duality implies relations between polynomial bases, tensor bases, polynomial coef-
ficients and tensor coordinates. A polynomial basis {F;} and its dual basis {uz} is related

through the blossom {fz} of {F;} by

filuz) = { 0
Now, let F(t) = >, Fx(t) Pr. Then

fluz) = fo(Ui)Pf = Py

This equation says that the coefficients of a polynomial correspond to values of its blossom.
On the other hand, let v = Y-; azuz (i.e. az are the coordinates of «). Then

filuw) = fi(Z: aguy) = Z apfi(ur) = ay.
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This equation says that the coordinates of a tensor correspond to the values of the basis
blossoms.

For example, the above observations can be used to compute the coefficients of F' and
coordinates of w over the cubic Hermite basis. The definition of the cubic Hermite basis
requires that the polynomials satisty the following equations [11]:

d d

H(370)(0) - ]_7 %H(370)(0) - 0, %H(370)(1) - 0, H(370)(1) - 0
d d

H(271)(0) - 0, %H(Zl)(()) - ]_7 %H@ 1)(1) - 0, H(2 1)(1) - 0
d d

H(LQ)(O) - 0, % (1 2)(0) - 0, %H(l 2)(1) - ]_7 H(l 2)(1) - 0
d d

H(073)(0) - 0, %H(Oﬁ)(o) - 0, %H(O 3)(1) - 0, H(O 3)(1) - ]_

These equations are uniquely satisfied by the following polynomials:

Higo)(z) = (1— z)® + 3z(1 — z)?
Hiqy(z) = =(1-— z)?

Hup(z) = —z*(1—x)

Hogz)(z) = 3z%(1 —z) + z°.

Since F(z) = f(z*) and %F(:B) =3f( g$2), it is easy to see that the dual basis tensors are

joo, u(172):§511, ug = 111.

1
'U'(370) = 0007 'U'(271) = 5

In this case, all the tensors are simple. The coefficients of F' are obtained by computing

- -

f(oo00), f(§500), f(§511), f(111).

On the other hand, the coordinates of u over the basis wsp), u(2,1), %(1,2), %03 can be
computed by evaluating hs o)(u), ..., hs)(u). For example, the formula for the multi-linear

blossom Az 1) is

(1(1 — 22)(1 — 23) + 22(1 — 1) (1 — @3) + @2(1 — 21)(1 — z3)).

A 1
h(2,1)(i1317513275133) = 5
This is the formula for the linear blossom h(21) on simple tensors. The value of k(s 1) on all
other tensors is computed by taking linear combinations. Thus,

158 158

h(271)(365 — 21 1) = ];,(271)(3,6,5) - ];,(271)(2, ]_7 ]_) = ? - 0 = ?
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2.5 B-bases

By now it is obvious that the tensors 012, 123, 234, and 346 used in the examples form
a basis: there are four of them and their linear combinations span all tensors. They are
an example of a B-basts, the most important class of polynomial bases for CAGD. B-bases
are the basis polynomials for B-patches [17], and are generalizations of segments of B-spline
bases and Bézier bases (of any dimension).

B-bases are easier to analyze using the tensor space rather than the polynomial space.
As tensors, they have a simple formula, but as polynomials, they do not. Previously, the
polynomials have been defined by a recurrence relation. Using the tensor definition, the
recurrence relation becomes a theorem (see Section 4.1).

B-basis tensors are defined using a knot net. A knot net is an array of n(d 4+ 1) domain
points {t;; : k = 0..d,l = 0..n — 1}, where d is the dimension of the domain and n is the
degree of the polynomial space. The points ¢;; are called knots. The array looks like this:

too *++ ton-1

tgo -+ tdn-1

The 7th evaluation basis of the knot net is the set of d+ 1 domain points {0y, t1.4,,- - -, tdig}s
consisting of one point selected from each row of the array. These sets must form a basis of
the domain space for all |i] < n — 1; otherwise the knot net does not define a valid B-basis.

Define
d ip—1
ty= H tkg = too- " toio—1""tdo " tdis—1-
k=0 =0
For example, t(20,1,1) = tooto1t20ts0, and tztr;, = tire,. The B-basis over the knot net
{tr1} consists of the tensors {t; : |t] = n}. In other words, the ith basis tensor of the basis
is tz. Note that for all m < n, the subarray of the knot net, {tx; : k = 0..d,l = 0..m — 1},
forms a basis for the space of m-tensors.
An example of a B-basis is the following. The knot net

2 1 0
3 4 6

produces the basis tensors

ts0) = tootoito2= 210
ti2z1) = tooloitio= 213
ta2) = tooliofi1= 234
t(0,3) = t10t11t120 = 345.
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Note that this knot net satisfies the condition that the 7th evaluation basis forms a basis for
all |7] < 3. For example, the (1,1)th evaluation basis is {f(0,1),t(1,1)} = {1, 4}. In the one-
dimensional case, the condition implies that £o; # t1; for k + 1 < 3. A sufficient condition
1s that top < t1; for all k,I. This sufficient condition is satisfied by the example and by
B-splines, as discussed in the Section 2.6.

In the two-dimensional example of Figure 2.3, the knot net is

Qg a1
by b
Cy G

In this case, the condition on evaluation bases requires that the points in the sets {ag, bg, ¢1},
{ag,b1,¢o}, {a1,bo,co}, and {ag, by, co} are not collinear. A sufficient condition for the two-
dimensional case is that the knots {ax}, {bx}, and {c;} are contained in disjoint circles, as
in Figure 2.3.

2.5.1 Bézier and Monomial Bases

Bézier bases are a special case of B-bases where knots ¢4 = -+ = #;, = ;. Thus the
elements of the Bézier basis are {t; = 2 ---t% : |i] = n}. In the usual definition of Bézier
bases, the knots t; are required to be points, but it is convenient to remove this restriction
for this thesis. In this thesis, all such bases are regarded as Bézier bases.

The monomial (or power) basis (1,z,z% ... ,2") is closely related to the Bézier basis
where the ¢, are taken from a domain frame, {xg,v;,...,0q}. The dual basis tensors of
the monomial basis are {t; = ’;) v il = n}, where (7;) is the multinomial

coefficient. The coefficients of polynomials over the monomial basis are

. . . d
P: = (ﬁ)f(xgoglll cee ) = (?)n(n — 1) (n—1|d] +40+ 1)ﬁF($0)-
7 7 dv,"™ ---v

d

This equation means that every coefficient is a vector except one, f(z().

2.6 Blossoming B-splines

In one dimension, B-bases are segments of B-spline bases. The relationship between B-splines
and blossoms was discovered independently by Ramshaw and de Casteljau [16, 7).

Let F' be a B-spline curve with knot sequence . ..., t,127_1 and control vertices Py, ..., Pyr.
Let F; be the segment of the B-spline over the interval [¢;1,—1,ti4n), Where t;4,—1 < t;4,, and
0 << L —1. Then the blossom f; of F; has the blossom values

filtiotivn-1) =P, ..., filtizn - tizon—1) = Pitn. (2.2)
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Thus, P;, ..., P, correspond to the coefficients of f; over the knot net

t0,0 — ti—l—n—l e tO,n—l =1
tl,O = ti—l—n t tl,n—l = ti—|—2n—1 ’
For example, given a B-spline with knot sequence 0,0,0,1,2,3.4,6,6,6 and control points
Py, Py, P», Ps, Py, Ps, Ps, the segment in the interval [2,3) is a blossom that has knot net

2 1 0
3 4 6/’

and coeflicients Ps, P3, Py, P5 (Figure 2.7).

P; = f5(123)

sz.o P, = fy(012)

P6 O..',...-" . "" ""’
P, @".‘\_f_‘:\

P = f2(346)¢

Figure 2.7: Blossom of a segment of a B-spline



Chapter 3

Datatype for Blossoming

This thesis aims to simplify the programming of curve and surface modeling paradigms. It
can aid research into new modeling paradigms by allowing researchers to implement them
more easily. The basic approach is to create a system that provides blossoming datatypes.

In this chapter, I motivate the use of blossoming datatypes. Then I give an overview of
previous work using this approach, and analyze their strengths and weaknesses. Finally I
give an overview of the new system that uses this approach, describing its design criteria,
and explaining how the design meets the criteria.

3.1 Rationale for Blossom Datatypes

To implement a modeling paradigm, one translates the mathematical derivation into code
that performs the required computations. The mathematical description for many piecewise
polynomial paradigms uses blossoming analysis.

The benefit of blossoming analysis is that it is simple yet powerful. It does not require
complex mathematics; it has one simple concept, the blossom. It i1s also geometrically
intuitive. It is powerful because it unifies many popular paradigms. Under the blossoming
approach, different paradigms are distinguished by three properties: the tensor basis, the
domain, and the range. Curves are obtained by one-dimensional domains, surfaces by two-
dimensional. B-splines, Bézier curves and surfaces are some examples of paradigms obtained
by different tensor bases. Rational polynomial paradigms are obtained by projective range
spaces.

Despite its simplicity, the blossoming description is difficult to translate to computer code.
The problem is that blossoming concepts must be translated to computer language concepts,
such as floating-point arithmetic. However, the datatype concept solves this difficulty. A
datatype is simply an abstract set of objects with operations that can be performed on the
objects. In this case, the objects correspond to concepts used in the blossoming analysis,
such as blossoms, tensors, bases, spaces or multi-indices. The operations perform meaningful

16
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actions on the objects in terms of blossoming analysis. Thus, the programmer can use the
operations to manipulate the mathematical concepts in the code.

Blossoming datatypes facilitate research by making modeling prototypes easier to write.
The datatypes also make programs easier to read. They make it easy to see whether a
program is correct by seeing whether the operations manipulate the concepts correctly. Thus,
programs become easier to maintain and change.

Blossoming concepts can be made into datatypes very naturally. First, blossoming gives
a unified representation of different paradigms: the representation of a curve or surface is
given by a set of basis tensors and a set of coefficients. How these two sets of parameters
are assigned depends on the application. For example, they may be set interactively or as a
result of filtering data.

Second, blossoming gives a unified view of the operations on different paradigms. Oper-
ations extract various kinds of information from the representation. For example, an appli-
cation may want to obtain the location of various points on a surface, or derivatives, or a
bounding box. Since a blossom is conceptually a function, obtaining any kind of information
corresponds to evaluating the blossom at certain tensors.

3.2 Previous Work

DeRose and Goldman [9] first proposed the approach of using blossoming datatypes. Their
proposed system extends the coordinate-free geometry programming package [8] with a blos-
som datatype. Their datatype supports the two fundamental operations of creation and
evaluation. Blossoms are defined by their coefficients over Bézier bases, and are evaluated
using an extension of the de Casteljau algorithm.

While DeRose and Goldman’s proposed system was not implemented, it would have
made it straight-forward to translate a blossoming analysis to an implementation: simply
use blossom evaluation to compute the desired blossom values. However, many algorithm
cannot be efficiently implemented with only evaluation. Also, being limited to Bézier bases
prevented the system from implementing many paradigms.

The major work implemented using the blossoming datatype approach was by Dahl.
He provided a blossom datatype in Weyl [5], a language for CAGD research. The Weyl
language provides datatypes that closely mimics the corresponding mathematical concepts.
Weyl also has an interactive, graphical environment. The goal of Weyl was to provide an
environment where researchers can manipulate mathematical objects in familiar ways and
receive graphical feedback.

In Weyl, a blossom is conceptually a function. Operations are provided that mimic
mathematical operations on function. For example, “high-level” operations like affine com-
bination, dot product, degree-raise and composition are provided. The basic operations of
blossom evaluation and partial evaluation can be used to create new algorithms. Partial
evaluation allows more efficient algorithms to be created than with evaluation alone.
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A blossom is defined by supplying coefficients and an arbitrary basis of simple tensors.
For convenience, special functions are provided to generate the bases for Lagrange, B-bases,
Bézier and power bases. Internally, however, all blossoms are stored over a standard Bézier
basis.

The Weyl system is sufficient for its intended purposes, but is not suitable for general
research use. Its biggest drawback is that the datatypes are tied to the Weyl language
environment; they cannot be used in another environment, or in conjunction with other
tools. This i1s a serious problem as the Weyl environment does not provide all the necessary
facilities that researchers need. For example, if a surface fitting scheme requires the use of
singular value decomposition, the function would have to be created in the Weyl language.
It 1s much more convenient to use one of the many existing packages for matrix manipulation
available in C or Fortran libraries.

Second, the system emphasizes mathematical purity but is not concerned with efficiency.
For example, there is no efficient way to get coefficients over a basis, or move a control
point. Also, the system may encounter numerical stability problems because it converts all
blossoms to a standard Bézier basis.

Finally, Weyl is a functional programming language (based on Scheme). The functional
style of programming is seldom used in CAGD, and is less familiar to researchers, who usually
use imperative languages like Fortran or C.

3.3 New System: The Blossom Classes

In this section, I present the Blossom Classes, a new system to support programming with
blossoming datatypes. First, I give the requirements for the system, and after that, I present
an overview of the system, and discuss the design decisions and trade-offs.

3.3.1 Requirements for System

A major goal of the Blossom Classes is to be generally useful, meaning it can support many
different applications of blossoms. This goal implies, firstly, that the system should handle
the most general case possible. Secondly, the system’s functionality should be, in some sense,
complete. Since completeness is difficult to achieve, the system should provide basic building
blocks that can be used to create more functionality. The system should also be able to work
with other tools to increase functionality. Thirdly, the system should be efficient, numerically
stable, and easy to use.

Some of these design criteria conflict with each other. Having to handle the general case
means special cases are not handled as efficiently. Also, the general case is more complex
than special cases, making the system more difficult to use. To resolve this conflict, the
system should allow the user to customize parts of the system for special cases.

These criteria hold implications for both the design of the datatype (what object and
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operations should be provided), and how the datatype should be packaged (how to make it
easy for programmers to use the datatype in actual programs).

A good datatype has operations that are easy to use, and perform meaningful computa-
tions. The computations should be performed by efficient and numerically stable algorithms.
A set of basic building-block operations should be provided, from which the user can derive
new computations easily. Finally, the operations should support the familiar procedural style
of programming.

To be widely used, the datatype should be packaged as a library that users can include
into their own systems. The library should be able to inter-operate with many systems and
tools. For example, it should work with data structures and routines created by the user or
taken from other libraries. Further, in special situations where an object or operation can
be implemented more efficiently, the user should be able to use a specialized implementation
with the rest of the library.

3.3.2 Overview of Design

I wrote the Blossom Classes as a C++ library for several reasons: C++ is a popular language
for CAGD applications, and is familiar to programmers. C++ works well with many system
and tools, and even other popular languages like Fortran or C.

Because it is a library, users can easily incorporate the Blossom Classes into their appli-
cations, and can use it with other tools, like matrix libraries. The Blossom Classes library
is part of the Computer Graphics Lab Splines project [2] at the University of Waterloo, and
works with the datatypes in the Splines library. In addition, the Blossom Classes library
is specifically designed to work with the Standard Template Library (STL) [21], which is a
library of generic algorithms designed to work with many different classes. STL is part of
the new C++ standard, and thus will be available to all C++ users.

The outstanding feature of the Blossom Classes library is that it works with user-supplied
classes. Like STL, it is designed so that a datatype can have many implementations by
different classes. The idea is to specify a datatype by an abstract interface, i.e., as a set of
functions that a class must provide in order to implement that datatype. The library code
manipulates the datatype using only the functions defined in the abstract interface. Thus,
users can integrate their own classes with the library simply by providing the functions
required in the abstract interface. Users can also use this facility to create specialized
implementations that are more efficient for certain applications.

The library has three components: the blossom datatypes, the geometric datatypes,
and the operations on blossoms. The heart of the library is the blossom operations. These
operations operate on the blossoming datatypes through abstract interfaces. The blossoming
datatypes, in turn, use the geometry datatypes through abstract interfaces.
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3.3.3 Datatypes

Blossoming Datatypes

The design of the blossom datatype has several important features. Firstly, I decided to
support only B-bases in the library. This decision means other useful bases, like Lagrange
bases, are not directly supported. I made this choice because B-bases have the only known
efficient and numerically stable algorithms to evaluate blossoms and perform other useful
operations (see Section 4). The only way to handle arbitrary bases is to implicitly convert all
blossoms to B-bases to do operations; this is inefficient and may be numerical unstable. The
user can still choose to convert bases explicitly, so the library supports other bases indirectly.

On the other hand, arbitrary B-bases are supported. Thus, many useful paradigms can be
implemented: Bézier curves or surfaces, B-splines, B-patches, monomials. This also means
blossoms are not converted to a standard basis, avoiding numerical instability problems.

Secondly, multi-affine or multi-linear blossoms are directly supported, but not affine or
linear blossoms: blossoms can be directly evaluated at simple tensors, not arbitrary tensors.
Again, this decision was made because of what algorithms are available. This decision does
not limit the usefulness of the library since most blossoming analysis uses the multi-affine
version. These blossoms are also more familiar to people and are easier to work with. Users
can still evaluate at arbitrary tensors by converting to a standard basis.

Thirdly, I decided to view the blossom as an array of coefficient over a knot net, rather
than following the Weyl idea of a blossom as a function. In a procedural language, it is more
natural to work with blossoms by setting the knots and the coefficients directly.

As a result of this view of blossoms, the library defines datatypes for triangular arrays,
multi-indices and knot nets. Triangular array datatypes are required to satisfy STL container
datatype requirements. The library actually provides two datatypes for knot nets, one for
arbitrary B-bases and one for the special case of Bézier bases. The Bézier datatype is
provided because it is more efficient for some operations. However, Bézier knot nets do not
support certain other operations.

The library provides classes that implement these datatypes. Class Blossom<domain,range>
1s a templated blossom class that works with any kind of domain and range classes. It uses the
classes TriArray, MultiIndex, and KnotNet which provide triangular arrays, multi-indices,
and knot nets of arbitrary dimension and degree. Class TriArray<T> can store objects of any
type T. Class MultiIndex stores a variable-length array of integers. Class KnotNet<domain>
stores a two-dimensional array of knots of any domain type. Class BezKnotNet<domain>
implements a Bézier knot net and stores a domain basis. No blossom class is provided for
BezKnotNet.

User-supplied types can be used instead of any of these classes (so long as certain functions
and operators are provided). This is useful, for example, when the application only deals
with curves. In that case, more efficient implementations of these classes can be used.
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Geometry Datatypes

The library provides datatypes for working with domain and range spaces and scalars. I made
these datatypes separate from the blossoming datatypes that use them. This separation
provides transparency of operation: the actual implementation of geometric datatypes can
change without any change in the blossoming datatypes.

The flexibility of using different types for the geometry component means many different
paradigms can be obtained: one-dimensional domains for curves, two-dimensional for sur-
faces; affine domains for polynomials, linear domain for homogeneous polynomials; projective
range for rational polynomials. Even more exotic spaces can be used. For example, Shoe-
make used Bézier curves that map to the unit quaternions to control rotation [19]. Finally,
while real numbers are usually used for scalars, it is possible to use complex numbers.

The library provides the PtDomain class, which implements linearized spaces of arbitrary
dimension. The class can also be used as a projective range space. The library also supports
the built-in type double as an efficient one-dimensional affine space. Both classes use double
as the scalar type.

3.3.4 Blossom Operations

The blossom operations operate on blossoming datatypes through their abstract interfaces.
Thus, these operations can work with different classes. The operations are useful basic
building-block operations and can be used to implement different algorithms (see Chapter 6).
The operations are based on efficient algorithms for B-bases, discussed in Section 4.

Defining Blossoms

As discussed in Section 3.1, to get a representation of a curve or surface means assigning the
basis tensors and the coefficients. The blossom datatype provides functions to set the knots
and coefficients.

The operation

f .setCoeff(i,P);

will set the ith coefficient of the blossom f to the range point P, where i is a multi-index
object. The operation

f.setKnot(k,1,x);
sets the (k,1) knot of £ to the domain point x, where k and 1 are ints. The operation
f.setDomainElement (k,x) ;

sets all the knots (k,0),(k,1),... to x.
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f.coeffs = { Py, Py, P>, Ps} r=(2,1) f.setKnot(1,0,4)
2 1 0 f.setCoeff(i,P)
f.knots = ( 3 4 6
P = f(123)

P, = f(234)

Figure 3.1: Operations for defining blossoms

Bézier knot nets do not support the setKnot () operation, but do support setDomain-
Element ().

Figure 3.1 shows the effect of these operations on a curve segment. By convention, the
segment is defined to be over the interval [tg¢,%1,0). This convention reflects the relationship
to B-splines (Section 2.6). Thus, in the left two pictures, the segment is over [2,3), but in
the right-hand picture, the segment is over [2,4).

Evaluating Blossoms

Evaluating the blossom extracts information from the representation. Partial evaluation is
also provided for reusing intermediate results of an evaluation.
The operations

P
P

eval(f,args);
eval(kn,a,args);

will evaluate a blossom at the list of range points stored in args and return a point in the

range. The first version evaluates the blossom object £, while the second version evaluates

the blossom implicitly defined by the array of coefficients a, over the knot net kn. The args

parameter is any STL forward iterator object that returns points in the domain. Thus, the

library takes advantage of datatypes already defined by STL instead of defining new ones.
The operations

P = diagonalEval(f,x);
P = diagonalEval(kn,a,x);
evaluate a blossom at the same argument, x, n times.
The operations

f2 = partialEval(f,argsbegin,argsend, (blossom*)0);
partialEval(kn,a,a2,args);
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args = {2.7,3.4,2.2} f2 = partialEval( £3 = partialEval(
P = eval( £,2.7,(blossom*)0) ; £2,3.4,(blossom*)0) ;
f,args.begin());

f(122.7) = f2(12)

P = f(2.73.42.2)

O\

— Otz O o/'vf2(43.4) = f3(4)

Figure 3.2: Operations for evaluating blossoms

returns a new blossom that is the partial evaluation of a blossom. The first version takes
a blossom object £ and returns an object of type blossom, where the type is indicated by
the (blossom*)0 parameter. The return type can be different from the type of £. The
argsbegin parameter is an iterator that marks the beginning of the list of arguments, while
argsend marks the end. The second version puts the coefficients of the partial evaluation
into the array a2. This version doesn’t need to know argsend because the size of a2 tells it
how many arguments it must evaluate. Also a and a2 can be different types.

As noted in Section 3.3.3, these operations evaluate blossoms at simple tensors only.
Also, Bézier bases compute these operations more efficiently than arbitrary B-bases.

Figure 3.2 shows the evaluation of a one-dimensional blossom.

Swapping Knots

Finally, knot swapping operations are provided. These operations compute the coefficients
of a blossom over an altered knot net. They are also useful because they perform their
calculations “in place”, and do not need to allocate extra memory, unlike the evaluation
operations.

Note that while these operations change both the coefficients and the knots of the blossom,
they do not change the function that the blossom represents. That is, evaluating a blossom
at the same arguments before and after swapping will yield the same results.

The operations

knotReplaceCoeffs(f,k,x);
knotReplaceCoeffs(kn,a,k,x);

compute the coefficients of the blossom over a new knot net that has x at position (k,n-1),
where n is the degree of the blossom.
The operations
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knotSwapCoeffs(f,k,from,to);
knotSwapCoeffs(kn,a,k,from,to);

compute the coefficients of the blossom over the new knot net, where
1. the knot at (k,from) is moved to position (k,to), and

2. if from<to, the knots (k,from+1)..(k,to) are moved forward one position to
(k,from)..(k,to-1), otherwise, they are moved backward one position.

The operations

knotSwapCoeffs(f,k,from,to,num);
knotSwapCoeffs(kn,a,k,from,to,num) ;

swap multiple knots efficiently. The first version is equivalent to

knotSwapCoeffs(f,k,from,to);
knotSwapCoeffs(f,k,from+1l,to+1);

knotSwapCoeffs(f,k,from+num-1,to+num-1);

The user must be careful in using these operations as they may cause a knot net to
become invalid (i.e. some evaluation basis may become degenerate).

Bézier knot nets do not support these operations.

Figure 3.3 shows the effect of these operations on a curve segment. Note that in the left-
hand picture, the knot net corresponds to a B-spline with knot sequence (0,1,2,4,4,2.7). This
sequence is not legal since B-spline knot sequences must be in increasing order. One result
of this violation is that the curve segment no longer fits inside the convex hull of the control
points. The middle picture corresponds to the legal knot sequence (0,1,2,2.7,4,4). Note that
the two operations of knotReplaceCoeffs and knotSwapCoeffs has effectively computed
a knot insertion of the B-spline. The right-hand picture shows the reverse operation, knot
deletion.

In the one-dimensional case, the two operations knotReplaceCoeffs and knotSwapCoeffs
are usually used together because of the relationship to B-splines. However, these operations
extend to higher dimensions, and in that case, there may be occasion to use them separately.

Tensor Operations

The following operations are provided to manipulate tensors. They manipulate the array of
coordinates of the tensor over a knot net. The operation
getCoords(a,kn,args) ;

computes the coordinates over knot net kn of the simple tensor stored in args. It places the
coordinates in a, which is a triangular array storing scalars. The operation
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knotReplaceCoeffs( knotSwapCoeffs( knotSwapCoeffs(f,1,0,2);
£,1,2.7); £,1,2,0); knotReplaceCoeffs(f,1,6.0);

f(124) f(124)

f(442.7)  f(244) f(442—.-;) i f(24é)

Figure 3.3: Operations for swapping knots of a blossom

getPartialCoords(a,a2,kn,args) ;

takes a tensor whose coordinates are stored in a and multiplies that tensor by the simple
tensor stored in args, and places the resulting coordinates in a2. The operations

knotSwapCoords(a,kn,from,to);
knotSwapCoords(a,kn,from,to,num);
knotReplaceCoords (kn,a,k,x);

compute the new coordinates of the tensor over a modified knot net. See the corresponding
operations knotSwapCoeffs and knotReplaceCoeffs for the effect on the knot net. Bézier
knot nets do not support these operations.

Other operations on tensors, like computing combinations of tensors, can be performed
using STL algorithms on the triangular arrays of coordinates. Thus, the library does not
provide these operations.



Chapter 4

Algorithms for B-bases

One reason B-splines and Bézier bases are so important in CAGD is that they have efficient
and numerically stable algorithms that perform useful computations. Work has been done to
extend these algorithms to multi-affine blossoms of curves and surfaces [9, 1, 12]. In creating
the operations for the blossom datatype, I discovered these algorithms naturally generalize to
operations on arbitrary B-bases. All the algorithms are based on a fundamental recurrence
relation that B-bases satisfy. In this chapter I derive several algorithms using this recurrence.

4.1 Fundamental Recurrence of B-bases

The fundamental recurrence relation of B-basis polynomials has been known in various forms,
and has been used as the definition of B-bases (see for example Lodha and Goldman’s
paper [14]). This section generalizes the recurrence to B-basis tensors.

Given a knot net {tz; : k = 0..d,l = 0..n — 1}, ¥ € I}*, and a domain point z, there
exists a relation between t;z and {tz s : k = 0..d}. Let AL be the coordinates of z relative
to the ith evaluation basis of the knot net. Then,

d d d
trz =ty (Z A;tk,ik) =) Notrite = O Nitore, (4.1)
k=0 k=0 k=0

This recurrence is known as the up-recurrence.

The recurrence can be reversed, to get a relation between the dual basis polynomials.

26
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Let f; be the dual basis blossoms of t;.

flwu) = file X0 fu)ty)

o -1
JeT;

= Y, filw)filat

- —qgn—1
JeL

d -
= > fAw) D Nitma,)
k=0

fEIn_l

= Z Z )‘kfj .7‘|‘€k)

Fem;~! k=0
d -
fi(zu) = ;Aif;_gk(u) (4.2)

This recurrence is a generalization of the Cox—de Boor-Mansfield recurrence for B-splines,
and 1s known as the down recurrence.

4.2 Algorithms on Coefficients and Coordinates

Equation 4.1 can be used to compute a new blossom value f(xt;) from given blossom values

fteva,):

Z )‘ f l‘|‘ek

This relation leads to the following algorithm:

The combine-coefficients algorithm takes an evaluation point x and a multi-index
7 € 2. The computation proceeds by first computing the coordinates, AL, of x
over the 7th evaluation basis, and then returning the combination Y¢_, AY f(z.¢, ).

The de Casteljau algorithm works by performing combine-coefficients repeatedly.

Since the coeflicients of f are P; = f(t;) and the coeflicients of f| are Q7 = f(zt;),
this relation can be used to compute the coefficients of f|_ from coefficients of f. The set
{Ppe, : k = 0..d} is called the #th evaluation subarray of the coefficient array. Thus, the
combme—coefﬁcients algorithm takes the combination of the ith evaluation subarray with the
coordinates of x.

The left side of Figure 4.1 shows the combine-coefficients algorithm in two-dimensions.
In the figure, the (1,0, 1)th evaluation subarray is being combined to compute f(2t(10.1)).
An arrow indicates that the algorithm multiplies the value at the tail of the arrow by the
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faon(u fa0)(u
fztao) oa)(®) f(o,l,l)(U)( )(w)

Figure 4.1: Combine-coefficients and weigh-coordinates algorithms.
coordinate of = over the evaluation array ()\21’0’1)) and adds the result to the value at the
head of the arrow.
Similarly, Equation 4.2 can be used to compute fi(uz) from given values of fi_z (u). The
equation implies that the “contribution” of fi s (u) to fi(uz) is fre, (v)AL. This relation
leads to the following algorithm:

The wetgh-coordinates algorithm takes an evaluation point z and a multi-index
7 € "% and a scalar . The computation proceeds by first getting the coor-
dinates of z over the 7th evaluation basis: .. Then the algorithm adds the
contribution of « to friz (u):

fi'-l-é'k (u) — fi'-l-é'k + 0‘)‘2

Since the coordinates of u are a; = fy(u), this relation can be used to compute the
Jth coordinate of uz, a} from coordinates of u: start with o; = 0 and accumulate the
contributions of each aj¢,, k = 0..d. The set {az1s, : k = 0..d} is called the #th evaluation
subarray of the coordinate array. Thus, the weigh-coordinates algorithm weighs the th
evaluation subarray by the coordinates of  times a.

The right side of Figure 4.1 shows three weigh-coordinates computations. In the figure,
a is set to fo11)(%), fa01)(w), and fi10)(w) in turn. An arrow indicates the algorithm
multiplies the value at the tail of the arrow () by the coordinate of # over the evaluation
array ()\21,0,1)7 )\20’1’1) or )\21’1’0)) and adds the result to the value at the head of the arrow.

4.3 Evaluation and Getting Coordinates

Partial Evaluation and Getting Partial Coordinates

As was noted, the combine-coefficients algorithm can be used to compute the partial evalu-
ation f|_:

The partial evaluation algorithm takes the coefficients of f and runs the combine-
coeflicients algorithm for all |z] = n — 1. The resulting points, f(xt;), are the
coefficients of f|_over the knot net {t3; : k =0..d,l = 0..n — 2}.
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coefficients of f|_ coordinates of tensor u

o AW AW
coefficients of coordinates of tensor ux

Figure 4.2: Computing partial evaluation and getting partial coordinates.
Similarly, the weigh-coordinates algorithm can be used to compute giving the coordinates of
zu from the coordinates of w:

The get partial coordinates algorithm takes the coordinates oy of w over {tz; : k =
0..d,l = 0.n — 2} and runs weigh-coordinates for all |j] = n — 2. The resulting
points ol are the coordinates of zu over {t;;: k = 0..d,l = 0.n — 1}.

Examples of these algorithms are shown in Figure 4.2.

Full Evaluation and Getting Coordinates
The following algorithm is a generalization of the de Casteljau and de Boor algorithms:

The (full) evaluation algorithm runs partial evaluation successively, to compute
the partial evaluations f[_ ., f|, . , and so on, to f| . . The single coefficient
of fl,, .5 18 the value of f(z1---z,).

Running the de Casteljau algorithm “backwards” yields the algorithm to get the coordinates
of a simple tensor:

The get (full) coordinates algorithm runs the get partial coordinates algorithm
successively, to compute the the coordinates of #; and then x;z, and so on until
L1 Ly

Examples are shown in Figure 4.3.

Polynomial Evaluation and Basis Polynomial Evaluation

The previous algorithms evaluate arbitrary tensors. To evaluate points on polynomials means
to evaluate at the tensor z™:

The diagonal evaluation algorithm performs a full evaluation at ™ to compute
f(z™) = F(z), thus evaluating a point on the polynomial. On the other hand,
the get diagonal coordinates algorithm gets the coordinates of z™ to compute
fz(@"™) = Fy(z), thus evaluating basis polynomials.
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f($1$2$3)

coefficients of

Figure 4.3: Full evaluation and getting coordinates.

Getting diagonal coordinates is an efficient way to evaluate all D(d,n) basis polynomials at
z at once.

4.4 Knot Swapping

Knot Swapping

In this section, I derive the relationship between a basis, B, and the basis where two knots
of B, t,, and %, ,.1, are swapped. This relationship is used to derive efficient algorithms to
compute basis conversions and to insert knots into B-splines (see Chapter 6).

Stated formally, the problem is as follows. Given B with knot net {t;; : k = 0..d,] =
0..n—1}, define B’ with knot net {t},; : k = 0..d,l = 0.n—1} where t|,  =t, 411, t, 1 = tp,
and ¢} ; =ty for k # p or I # q or ¢+ 1. Then, the 1th basis tensors of B’ is

t0,0° " tp—1,ip_y—1tp0 " Tpip—1lpr10°  tdig—1, ifi, <qg+1

, o
te=1 too  tpri,-1tpo bpgritpg tpip-1tpr10taig-1, iy >q+1

to0° tptipy—1tpotpg1tpgritpriotaig1, i, =q+1

Thus,

tz, if ’l:p <qg+1
tp=1 tn fi,>q+1 N (4.3)
b tpats = Lk Abi—gpra, i =q+1

where AL are the coordinates of t, .1 over the 7th evaluation basis of B.
Next, I derive the relation between the basis polynomials of B and B’. Recall from
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Section 2.4 that u = Y; fiu)t}. Now,
filw) = S fi{w)t)
= Z;}(u)fz(t})
- JZ ) ft) + >0 Filu) fi(ts)

Jp#a+l sp=q+1
= Y flwft) + D0 D fluw) N feltima,4a,)-
JpFa+l Jp=aq+1 k

Expanding the sum and collecting the terms for ¢z yields this relation for fi(u):

fé(u))\ga ifi, =q+1
ff(u) = fli(u) + 2k fzi+é‘p—é‘k (u))‘?—ep_%v if i, = q (4'4)

fi(u), otherwise

Note that this formula gives basis polynomials of B in terms of basis polynomials of B’,
whereas the previous formula (Equation 4.3) gives the basis tensors of B’ in terms of the
basis tensors of B.

Equation 4.3 can be used to compute coefficients of a blossom, f, over B’ from its
coefficients over B.

The knot swapping algorithm sets f(t;) = f(t7) for all ¥ such that i, # ¢ + 1.

1

Then, the algorithm runs the combine-coefficients algorithm over the (7 — €,)th
!

evaluation subarray, for all ¢ such that 7, = ¢+ 1. This computes f(t.) =
2 Aktr-g,ve-
Similarly, Equation 4.4 can be used to compute the coordinates of a tensor w over B from

its coordinates over B’.

The knot swapping for coordinates algorithm starts with fiu) = fi(u) if ¢, #
g+ 1, and fi(u) =0if ¢, = q. Then for all 7, = ¢, it runs the weigh-coordinates
algorithm on the (7 — &,)th evaluation subarray, {fi_e,+e,(u) : & = 0..d}. The
algorithm accumulates the contributions of fi(u) to each value,

T+Ep -2

froe,va, (u) & frg,ye, (u) + fr(u) Xy

yielding the desired values of fi(u) in Equation 4.4.

Knot Replacement

Next, I present the relation between the basis B and the basis where the knot ¢,,,_1 of B is
replaced by a new point z. This relation is obtained by exactly the same arguments as for
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knot swapping.

b tr_g,x, if 77": (n—1)é,
g tz, otherwise

The only difference between this equation and Equation 4.3 is that there are no i where
ip >n— L

The knot replacement algorithms compute new coefficients and coordinates over
the new basis. They operate in a completely analogous way to the knot swapping
algorithms.

Swapping and Replacing Successively

The knot swap and knot replacement algorithms can be run successively to move a knot
several positions, or to introduce a new knot into an arbitrary position (p, q).

If knot swapping is run first for ¢, = ¢, then 7, = ¢+ 1, until ¢4, = ¢ + k — 1, 1t will
move knot t, , to (p, ¢+ k) and move all the knots ¢, 441, .., t, 411 backward one position to
(p,q),-..,(p,g+k—1). Conversely, running knot swapping for ¢ — 1, ¢ — 2, until g — k, will
move the knot ¢, , to (p, ¢ — k) and move the the knots ¢, ,_1,...,t, 41 forward one position.

Running knot replacement puts the new knot @ at (p,n — 1). This operation can be
thought of as swapping the knot “the nth knot” ¢,, = « to (p,n — 1). If this operation is
followed by several knot swaps, the new knot & can be put in any position (p, q). The resulting
algorithm is a generalization of Boehm’s knot insertion algorithm [3, 4] for B-splines.

Figures 4.4 and 4.5 show examples of replacing and swapping knots. In Figure 4.4, the
bottom triangular arrays holds the original coefficients. The middle left array holds the
coefficients of the knot net where ¢, 5 1s replaced with z. All the coefficients are the same
as the bottom array except the one indicated (at the lower left corner); that coefficient is
computed by a combine-coefficients operation. The top left array shows the knots = and ¢, 4
being swapped. Again, all coefficient are the same, except two. On the right, the operations
are performed in reverse order: first swap, then replace. Notice that on the left, the second
operation uses only original coefficient, whereas on the right, the second operation uses
coefficients that result from the first operation. Thus, on the right, there is potential for
round-off errors to build up.

In Figure 4.5, the top arrays hold the original coordinates. Again, each new array keeps
the same coordinates as the previous, except for the ones indicated; those coordinates are
computed with a weigh-coordinates operation. Again, the left side shows a knot replace
followed by a knot swap, while the right side shows a knot swap followed by a knot replace.
In this figure, there is potential for round-oft errors to build up on the left side.
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Figure 4.4: Knot swapping for coefficients

Figure 4.5: Knot swapping for coordinates

4.5 Run-time Analysis of Algorithms

Combining and Weighing

Let the domain be dimension d, the range be dimension d’, and the polynomial be degree n.

The cost of combine-coefficients is the cost of getting coordinates plus combining plus
indexing. Getting the coordinates of a domain point requires solving a system of linear
equations, and requires normally O(d®) operations. Taking linear combination of d+ 1 ranges
points, if done coordinate-wise, costs O(dd') operations. Thus a single combine-coeflicients
costs O(d® + dd') in total. Weigh-coordinates multiplies and adds to d’ scalars, which costs
O(d'). Thus a single weigh-coordinates costs O(d®> + d’) in total.

Note that for Bézier bases, the ith evaluation basis is the same for all #. Thus, they
only require getting the coordinates once, and those coordinates can be used for all calls to
combine-coefficients or weigh-coordinates. For Bézier bases, the cost of combine-coefficients
or weigh-coordinates are only O(dd + d?) and O(d' + d*). (The d* comes from the cost

of indexing with multi-indices: to convert a multi-index to a linear index requires O(d)
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operations, and this conversion is done d times. In the general case, this term is dominated
by the cost of getting evaluation basis coordinates.)

Because the operation count depends on the basis, the run-time analysis of the remaining
algorithms determine how many combine-coefficients or weigh-coordinates the algorithm
requires rather than how many arithmetic operations.

Evaluation and Getting Coordinates

One level of partial evaluation performs combine-coefficients for all 7 € I}™', so it costs
D(d,n — 1) combine-coefficients. For k levels, it costs

D(d,n—-1)+---+D(d,n—k)=D(d+1,n)—D(d+1,n—k)

combine-coefficients. Thus, a full evaluation costs D(d+ 1,n — 1) combine-coefficients. Get-
ting coordinates requires the same number of weigh-coordinates.

Knot Swapping

To swap one knot, the algorithm performs combine-coefficients or weigh-coordinates for all
multi-indices 7 such that 7, = ¢. There are D(d — 1,n — q) of these multi-indices. To move
a knot from ¢ to ¢ + k, then, requires

D(d_17n_Q)+"'+D(d_17n_q_k):D(dvn_Q)_D(dvn_q_k)—l_D(dvq—l_k)

combine-coefficients or weigh-coordinates.

4.6 Round-off Error Accumulation

In a sequence of computations, when the results of one blossom operation is used in the next
operation, there is a potential for round-off errors to accumulate. A useful measure of this
potential is how many combine-coefficients or weigh-coordinates operations are successively
applied to a value to obtain the result. Thus, the depth of a computation is defined to
be maximum number of combine-coefficients or weigh-coordinates operations separating a
resulting value of the computation from the original values.

For one level of partial evaluation or getting partial coordinates, all computations use
original values. Thus, the depth is one. The next level would use the new values. Thus for
k levels, the depth is k. For a full evaluation or getting full coordinates, the depth is n. For
knot swap or knot replacement, the depth is one.

When successively swapping a knot several positions, the depth depends on which direc-
tion the knot is moved:

o for coefficients, swapping a knot forward from g to ¢ — k has depth k, while swapping
a knot backward from ¢ to g + k has depth 1.
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o for coordinates, swapping a knot forward from g to ¢ — k has depth 1, while swapping
a knot backward from ¢ to g + k has depth k.

This behaviour is shown in Figures 4.4 and 4.5. The left side of Figure 4.4 shows that
when swapping the new knot x to forward position (1, 1), the algorithm always uses original
values, so the depth is one. On the other hand, the right side shows that when swapping
the knot t;; backward, each step uses the results of the previous step, so the depth is
two. Figure 4.5 shows the opposite happens when swapping a knot for coordinates. When
swapping x forward to (1,1), the later steps use results from the earlier steps, while when
swapping t; 1 backward, each step uses original values.



Chapter 5

Implementation

The biggest challenge in the implementation was to make the library work with many dif-
ferent types. To work with different types means the library accesses all objects through
an abstract interface. The first issue is how to implement abstract interfaces in C++. The
second issue is what functions should be included in the abstract interface for each datatype.

5.1 Templates vs. Inheritance

I decided to use the C++ template facility to implement the abstract interfaces of datatypes.
The alternative of using inheritance was ruled out based on three criteria: the ease of in-
tegrating a type with the library, the ease of specializing operations and datatypes of the
library, and efficiency of the compiled code.

With the template approach, arbitrary types can be used in a class or function. The code
of the class or function accesses objects of the datatype through the functions listed in the
abstract interface. Any attempt to use a type that does not provide the necessary functions
results in a compiler error. With the inheritance approach, an abstract interface is defined as
a set of virtual member functions of a superclass. The datatype is actually implemented by
subclasses which override the virtual functions. A subclass may choose to “inherit” certain
virtual functions form the superclass rather than overriding them.

Integrating a type into the library is easier when non-member functions are required than
when member functions are required, because non-member functions can be created for built-
in types or library classes whose source code is unavailable. Templates allow either member
functions or non-member functions to be part of the abstract interface, while inheritance
only supports abstract member functions.

Specializing a function under the inheritance approach is accomplished by by overriding
virtual functions in subclasses. The overriding facility allows the programmer to specialize a
function based on the type of one object. However, inheritance has no support for specializing
based on the types of two or more arguments, so-called multi-methods. Templates can be

36
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specialized for any number of arguments. Multi-methods are useful, for example, when
evaluating Bézier curves. These blossoms have one-dimensional triangular arrays and Bézier
knot nets.

Finally, since the library provides low-level computational objects, the objects need to be
highly efficient for some applications. Templates introduce no overhead at run-time, while
virtual functions do. More importantly, templates allow inlining, while virtual functions do
not. With templates, the compiler decides at compile-time which implementation to use,
while with virtual functions, the decision is made at run-time. Since the library uses abstract
functions, it requires a lot of function calls. Thus inlining of functions is very important.

5.2 Abstract Interface

The second issue involves choosing what functions to require in the abstract interface of
each datatype. The choice is driven by what is needed to implement the blossom opera-
tions. When there is a choice between two ways to implement the operations, the following
guidelines are followed.

Since the library must be general, the abstract interface should include as few require-
ments as possible. The requirement should be based on fundamental mathematical properties
of the objects—the lowest common denominator.

Certain steps in operations can be more efficiently implemented for some special cases
than in general. For such steps, the operation leaves the actual implementation of that step
for the datatype. That is, a function is required of the datatype that performs that step.
As a result of this approach, the blossom operations are very simple and contain only a few
lines of code. They make calls to the abstract functions to do most of the work.

Finally, the abstract interface should avoid requiring member functions in favor of non-
member functions. Where applicable, the abstract interface should use STL iterators and
containers.

5.3 Blossom Operations

The implementation involves three parts. The first involves coding the blossom operations.
The operations determine what functions need to be defined in the abstract interface of
the blossom datatypes. The second part is to code the blossom datatypes. The datatypes,
in turn, determine what to require of the geometry datatypes. The last part is to code
geometry datatypes. This section discusses the coding of the blossom operations, which
drives the whole of the implementation.

All blossom operations are built on the two core operations, combine-coefficients and
weigh-coordinates. The pseudo-code for combine-coefficients is obtained by expanding the
algorithm given in Section 4:
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Given a knot net, {tx; : k = 0..d,l = 0.n — 1}, a triangular array of coefficients,
P;, a multi-index, # € 7', and a domain point =,

1. extract the ith evaluation basis of the knot net, {to),...,ta:,}-

2. compute the coordinates A% of z over the basis.

3. extract the #th evaluation subarray of the triangular array, {Ppz,, k = 0..d}.
4. return the combination of the coordinates and the coefficients, 3°;, AL Pry s, .

The pseudo-code for weigh-coordinates is as follows:

Given a knot net, {t;; : k = 0..d,] = 0..n — 1}, a triangular array of coordinates,
az, a multi-index, 7€ I}, a domain point z, and a coordinate a,

extract the #th evaluation basis of the knot net, {f0;,,...,tdi,}-

compute the coordinates AL of z over the basis.

extract the #th evaluation subarray of the triangular array, {aze,, k = 0..d}.
adds « times the coordinate to the weight of the new coordinates,

Ll e

a;_l_gk — a%+§k + 04)\2.

The other blossom operations call these two operations with the appropriate multi-
indices. The evaluation and getting coordinate operations call them for every multi-index
7 € II;, while the knot swapping operations call them for all ¥ € I; such that 7, = q.

The next sections discuss what functions and types are required to implement these
operations. Ounly the interesting functions are discussed here. The full requirements are

listed in Appendix A.

5.4 Blossoming Datatypes

5.4.1 Blossom

Although the operations work naturally with knot nets and coefficient arrays, for the con-
venience of the user the library provides a blossom datatype. A blossom type simply needs
to provide functions to return the knot net and the coefficient array. In addition, since the
partial evaluation operations return a blossom object, a blossom type needs to provide a
function that can create blossoms of that type from arbitrary knot nets and coefficients.

5.4.2 Knot Net

The main requirement of a knot net is to supply an evaluation basis given a multi-index.
Note that for Bézier knot nets, the evaluation bases—and the coordinates—are the same
for all multi-indices 7. Thus, when the combine-coefficients or weigh-coordinates operations
are called many times, it is more efficient to compute the coordinates once, save them, and
use them in all combinations. It is the responsibility of the knot net class to decide how
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it computes the coordinates. The class provides two types, combiner and weigher, and
two functions, combineCoeffs and weighCoords. The combiner and weigher objects for
a Bézier knot net compute and store the coordinates when they are created, whereas for a
general knot net, they only allocate memory to store the coordinates. The combineCoeffs
and weighCoords use the combiner and weigher objects to either get the coordinates or
store the coordinates.

In addition, non-Bézier knot nets implement swapKnot and setKnot functions.

5.4.3 Triangular Arrays and Multi-indices

The main requirement of triangular arrays is to return the #th element and the #th evaluation
subarray. I decided to keep the triangular array datatype simple and put the complexity into
the multi-index datatype. The triangular array datatype simply acts like a linear array, that
18, 1t can return an element given an integer. The multi-index datatype has to compute which
integer corresponds to a multi-index 7, and which integers correspond to the #th evaluation
subarray. However, the triangular array still needs to provide its dimension and degree, since
blossom operations need that information.

The operations of evaluation and getting coordinates need some way to iterate over all
multi-indices ¢ € II;, Thus the multi-index type must provide functions to return the first
multi-index in the set, increment to the next multi-index, and test if the last multi-index has
been reached. The ordering for the multi-indices is unspecified, although the most popular
ordering is the reverse lexicographical. Similarly, knot swapping operations requires iterating
over all multi-indices 7 € II'; such that ¢, = ¢. This is called a slice of a triangular array. The
same kind of functions must be provided to iterate over a slice.

Finally, a blossom operation must decide which multi-index type to use, based on its
parameters of a knot net and an input triangular array and possibly an output array. For
example, if the array class is of fixed dimension, it is more efficient to use a fixed-size multi-
index class instead of a general multi-index class. It is inefficient to use three multi-index
objects and increment them in-step; moreover, the orderings used by all three multi-index
types must be the same.

I decided to have the input array specify the multi-index type (triarray: :multiindex).
This decision was made because the input array has to compute the evaluation subarrays,
which is a procedure that can be optimized [20]. The output triangular array and the knot
net access the multi-index type through functions that return the multi-index’s components
and position in the ordering.
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5.5 Geometric Datatypes

5.5.1 Domain

A domain space is required to provide coordinates of a point over a basis. Thus, it requires
a basis and a point type. The basis class should provide a way to create a basis (for
creating evaluation bases) and to modify elements in a basis (for Bézier bases).

In addition, the blossom operation must store the coordinates somewhere. If the do-
main space has variable dimensions, a dynamically allocated array is required to hold the
coordinates, but if it is fixed dimensional, a fixed size array can hold the coordinates, and
dynamically allocating an array is inefficient. Thus, a domain class is required to specify
a domain: :coordarray type to hold the coordinates. The coordarray information is not
specified by point or basis because those may be existing types and the user may be unable
to modify them.

Blossoms and knot nets classes need to know how big an array to create, so the dimension
of the domain space must be accessible. Further, knot nets require some initial knots, and a
standard basis is a good choice. These items can be packaged in a space type.

5.5.2 Range

A range space is required to take combinations of points. Thus, only a rangept class is
required. The range space is required to handle affine combinations, and may handle linear
combinations; if the range type does not handle linear combinations, it is up to the user of
the operations to call the operations with arguments that are only points.

The range’s combination function must take arbitrary iterators returning scalars and
range points. Thus, the operation must have an extra parameter to specify which combi-
nation function to call. The combination operation uses the STL approach of using the
value_type() function of the iterator, which returns a rangept*. Thus, the declaration of
the combination function must be

template<scalarIterator, ptIterator>

rangept combination(scalarIterator begin, scalarIterator end,
ptIterator ptbegin,
rangeptx*) ;

The function must use the same scalar type as the domain.

5.5.3 Scalar

The weighCoords function requires scalars to be multiplied together and added to another
scalar. Also, getting coordinates initializes the coordinates to zero or one, so the scalar type
should be constructible from 0 and 1: scalar(0), scalar(1).
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5.6 Classes

The implementation of the actual classes is straight-forward. The emphasis is on generality
rather than efficiency. Thus, the classes PtDomain, TriArray, MultiIndex and KnotNet
all use dynamically allocated arrays. This allows them to handle arbitrary dimensions and
degrees.

In contrast, the DoubleDomain class handles the special case of one-dimensional affine
domain spaces. It uses the built-in type double as the point type, and it is very efficient.
The class i1s intended as a test of how simple it 1s to integrate specialized datatypes into the
library.

The actual classes provide more functionality than just the requirements in the datatype
interface. These additional functions make the classes more useful to the user. For example,
there are useful constructor functions, and arithmetic operator for MultiIndex and Pt.

The next chapter provides examples of the use of these classes.



Chapter 6

Evaluation of the System

This chapter aims to evaluate the Blossom Classes library’s performance in practice. It
demonstrates the use of the Blossom Classes in a variety of situations. The first example
uses the Blossom Classes for commonly performed computations, showing that the library is
easy to use. The second example creates specialized data structures, showing how well they
integrate with the Blossom Classes. The last three examples implement algorithms for new
operations, demonstrating that the library is useful for research. Each example examines
the ease of translation from analysis to code, and evaluates the resulting code for efficiency
and potential to accumulate round-off error.

6.1 Simple Demonstration

Shaping and Tesselating a B-patch

These first examples use Blossom Classes to do common operations. This example below uses
the library to make a B-patches with different knots and coefficients. It demonstrates the
three common operations of creating a blossom, setting knots and coefficients, and evaluating.

1 #include <iostream.h>
#include <stl.h>
#include "Blossom/Blossom.h"
#include "Blossom/BlossomOps.h"
5 #include "Blossom/PtDomain.h"

void tesselate(const Blossom<PtDomain, Pt> &f) {
int n = f.getDegree();
for (double x=0;x<=1.0;x+=.1) {
10 for (double y=0;y<=1.0-x;y+=.1) {
cout << diagonalEval(f,Pt(x,y,1)) << endl;
}

42
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}
for (MultiIndex i=firstTrilndex(2,n);;) {
15 cout << f.getCoeff(i) << endl;
if (isLastTriIndex(i,2,n)) break;
nextTriIndex(i);
}
}
20
void main()
{
Blossom<PtDomain, Pt> f(getStdSimplex(PtSpace(2)),2);
Pt coeffs[] = { Pt(0,0,0,1), Pt(1,0,0.5,1), Pt(2,0,0,1),
25 Pt(0,1,0.5,1), Pt(1,1,1,1), Pt(0,2,0,1)};
copy(coeffs, coeffs+6, f.getCoeffs().begin());
tesselate(f);
f.setCoeff(E(0)+E(2),Pt(.5,1.5,.5,1));
tesselate(f);
30 f.setKnot(0,1,Pt(1,.5,1));
tesselate(f);
}

The main routine first creates a blossom in line 23: the first argument to the constructor
specifies the blossom should initially use a Bézier knot net over the standard simplex in
2-space, {(1,0,1),(0,1,1),(0,0,1)}, and the second argument specifies the degree of the
blossom, quadratic. Lines 24-26 set up the initial coefficients (points in 3-space), and line 27
calls the tesselate function. Lines 28-31 demonstrate moving a coefficient and a knot. The
expression E(0)+E(2) creates a MultiIndex object corresponding to the multi-index €5+€> =
(1,0,1).

The tesselate function (lines 7-19) iterates over a tesselation of the standard simplex
(in increments of .1). It prints out the computed value of the function at each point (line 11).
Finally, it uses the MultiIndex class to iterate over all elements of the coefficient array, and
prints them (lines 14-18).

Compute Position and Normal

The example below extends the tesselate function of the previous example to compute
both the positions and normals of the surface. Evaluating a normal involves taking the cross
product of two directional derivatives. From Equation 2.1, the derivative is proportional to
f(2"7'7). Evaluating at the point = is f(2"). Thus, the partial evaluation f|_,._, can be
reused in the computation of the point and both directional derivatives.

1 void tesselate(const Blossom<PtDomain, Pt> &f) {
int n = f.getDegree();
Pt u(1,0,0), v(0,1,0);
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for (double x=0;x<=1;x+=.1) {
5 for (double y=0;y<=1-x;y+=.1) {
vector<Pt> arg(n-1,Pt(x,y,1));
Blossom<PtDomain,Pt> f2 = partialEval(f, arg.begin(), arg.end(),
(Blossom<PtDomain,Pt>*)0 );
Pt pos = diagonalEval(f2,arg[0]);
10 Pt norm = cross(diagonalEval(f2,u), diagonalEval(f2,v));
cout << pos << pos+norm << endl;
}
}
}

The following lines were changed from the previous function: line 3 defines the two vectors
to evaluate directional derivatives; line 6 puts n-1 copies of the evaluation point in an array;
line 7 creates a blossom, £2, that is the partial evaluation of f; lines 9-11 uses the partial
evaluation to evaluate the normal and the position.

The example programs output a list of points (and normals) on the surface. Figure 6.1
displays these points. In the three diagrams on the left, I joined adjacent points of the
tesselation to make the shape of the patch easier to see.

Monomials

This example shows how to use the library for manipulating polynomials in the familiar
monomial basis. It prints out values of the polynomial z3 — 222 + 4z + 3.

1 void main()
{
Blossom<PtDomain, Pt> f(getStdFrame(PtSpace(1)),3);
Pt coeffs[] = { Pt(1,0), Pt(-2.0/3.0,0), Pt(4.0/3.0,0), Pt(3,1)};
5 copy(coeffs, coeffs+4, f.getCoeffs().begin());
for (double x = 0;x<=1;x+=.1) {
cout << diagonalEval(f,Pt(x,1)) << endl;
}
}

Line 3 creates a blossom whose knot net is the Bézier basis over the standard frame in one
dimension, {g, 0}. Lines 4 and 5 set the coefficients over this Bézier basis. By the relation
given in Section 2.5.1, the coefficients are {g, —%g,gg, 3}. As discussed in that section,
every coefficient except the last is a vector.

Evaluation

As these three examples demonstrate, common operations can be performed easily, in the
obvious way, and using an imperative coding style. The operations have the same run-time
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Figure 6.1: Results of simple example code.
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and stability characteristics as the standard de Casteljau algorithm. Since the algorithms
are for B-patches, they are a little less efficient than the de Casteljau algorithm for Bézier
patches.

6.2 B-spline Datatype

Many modeling applications use piecewise polynomials, where each piece shares many coeffi-
cients and knots with its neighbor. Thus, it is inefficient to store a separate coefficient array
and knot net for each piece. This examples shows how to extend the the Blossom Classes to
handle piecewise polynomials. It demonstrates the creation of a B-spline curve datatype. It
also shows how to specialize datatypes and algorithms for greater efficiency. Note that the
same ideas can be used to implement a tensor-product patch datatype.

New Classes

The idea of the B-spline datatype is to create a new blossom datatype that corresponds to
a segment of the B-spline. The segment datatype allows all the library’s blossom operations
to be used for B-splines. However, each segment does not store any of the coefficients or
knots on it own. Rather the segment stores a pointer to the B-spline, and gets the knots
and coefficients from the B-spline’s knot vector and control vertices.

To keep the examples short, many of the functions for the classes are left out. The classes
must provide all the functions required for the appropriate datatype listed in Appendix A.

The first class shown is the Bspline class, which stores a vector of knots and a vector of
control vertices. The important function in the class is getSegment, which returns the ith
segment of the B-spline.

1 class Bspline {
private:
vector<double> knots;
vector<Pt> cvs;
5 int degree;
public:

inline Segment getSegment(int i) { return Segment(this,i); }
10 3

Note that, since its domain is one-dimensional, Bspline uses the built-in type double as the
domain type.

The class Segment implements a new blossom datatype. The important functions for
a blossom datatype are getCoeffs and getKnotNet. The special classes OffsetArray and
FoldKnots get the segment’s coefficients and knots from the B-spline.



6.2. B-SPLINE DATATYPE 47

1 class Segment {
private:
Bspline *f;
int segment;
5 public;
inline Segment(Bspline *f, int segment) : f(f),segment(segment) {}

inline OffsetArray getCoeffs() { return OffsetArray(f,segment); }
inline FoldKnots getKnotNet() { return FoldKnots(f,segment); }
0 ...
};

From Section 2.6, the knot net of segment ¢ is

t0,0 — ti—l—n—l e tO,n—l =1

tl,O = ti—l—n t tl,n—l = ti—|—2n—1 '
The functions in class FoldKnots return the knots from the B-spline knot sequence. For
example, the getEvalBasis function below returns the #th evaluation basis

{toﬂ'o ) tl,il} — {ti-l—n—l—io ) ti—l—n-l—il }

1 class FoldKnots {
private:
Bspline *f;
int segment;
5 public;
inline FoldKnots(Bspline *f, int segment) : f(f),segment(segment) {}

inline friend DoubleBasis getEvalBasis(SingleIndex i) {
return DoubleBasis(f.knots[segment+f.degree()-1-i[0]],
10 f . knots[segment+f.degree()+i[11]);

3
The coefficients of segment i are P;, ..., P;y,,. The operator[] function of the 0ffsetArray
class returns these coefficients.

1 class OffsetArray {
private:
Bspline *f;
int segment;
5 public;
typedef SingleIndex multiindex;
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typedef vector<Pt>::iterator iterator;
inline OffsetArray(Bspline *f, int segment) : f(f),segment(segment) {}

10 inline Pt &operator[](int k) { return f->cvs[k+segment]; }
};

Finally, since all arrays in the application are one dimensional, it is more efficient to use
a fixed-size multi-index class. The multi-index can be implemented as a pair of ints.

1 class SingleIndex {
int one,two;
public;
inline SingleIndex(int i0,int i1) :one(iO0),two(il) {3}
5 inline int operator[](int k) {
if (k==0) return one;
else if (k==1) return two;
else return O;
}
10 3};

inline SingleIndex firstTriIndex(int 4, int n) {
return SingleIndex(n,0);

}
15

B-spline Operations

With the segment datatype, implementation of B-spline operations becomes simple: first,
find which segment to operate on; then, extract the Segment object; finally, apply blossom
operations on it.

The following code for evaluating the B-spline performs the de Boor algorithm.

1 Pt evaluate(const Bspline &f, double x) {
Segment g = f.getSegment (f.whichSegment(x));
return diagonalEval(g,x);

}

The following code for inserting knots into the B-spline performs the Boehm knot inser-
tion algorithm.

1 void knotInsert(Bspline &f, double x) {
int i = f.whichSegment (x) ;
int n = f.getDegree();
int mult = f.multiplicity(x);
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5 insert(f .knots.begin()+i+2*n-1,1,f .knots[i+2*n-1]);
insert(f.cvs.begin()+i+n,1,f.cvs[i+n]);
Segment g = getSegment (i) ;
knotReplaceCoeffs(g,1,x);
knotSwapCoeffs(g,1,n-1,mult-1);

10 }

Lines 5 and 6 duplicate the last knot and control vertex of the ith segment. Then, lines 7-9
extract the ith segment and run knot swapping on it. These two operations have the effect
of inserting knot x into position i+n-mult of the knot vector.

Evaluation

New datatypes integrate into the library fairly easily. The number of functions each datatype
has to provide is only about 10 (see requirement in Appendix A), and each function tends
to be very short.

Because I tried to make the requirements general, the built-in int type could not be used
as the multi-index type for segments, even though it would be more efficient and convenient.
The multi-index type must provide functions to return the components of the multi-index
since it must work with other kinds of knot nets besides FoldKnots; ints cannot provide
that.

The new classes are very efficient; they have almost no overhead in terms of extra storage
required (only an extra pointer and integer), or processing (all the objects are fixed size and
all the functions are inlined). Yet, they allow B-spline operations to be easily implemented
using blossom operations on the segments. The resulting operations use the same algorithms
as a hand-coded B-spline class would use, such as the de Boor algorithm or Boehm knot
insertion.

6.3 Basis Conversion

This section demonstrates the use of the Blossom Classes to implement algorithms for new
operations. This example implements an important operation: basis conversion. Basis
conversion can be used to convert from a B-spline segment to a Bézier curve and vice versa.
Other algorithms also use basis conversion, such as polynomial composition.

The basic problem is to compute the coefficients of f over the knot net {#; ;} given its
coeflicients over the knot net {tz,}.

There are many ways to solve this problem which are mathematically equivalent, but
result in algorithms that have different characteristics with respect to simplicity of code, run
time and potential to accumulate round-off error. In the following sections, I compare two
different solutions.
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Basis-Conversion One: Change-of-Basis Matrix

One solution makes use of the get coordinates operation to compute the change of basis
matrix between the two knot nets. For each t,, compute its coordinates in the old basis:
v =Y saziy Then the new coefficients are f(t;) = Y ;0z7f (7).

1 void basisConvertl(Blossom<PtDomain,Pt> &f,
const KnotNet<PtDomain> &knots) {
int d = getDimension(f.getSpace());
int n = f.getDegree();
5 TrilArray< TriArray<double> > coords(d,n,TriArray<double>(d,n,Pt(d)) );
vector<Pt> basiselem(n,Pt(d));
for (MultiIndex i=firstTrilndex(d,n);;) {
getBasisElement (knots,i,basiselem.begin()) ;
getCoords (f.getKnotNet () ,coords[i],basiselem) ;
10 if (isLastTriIndex(i,d,n)) break;
nextTriIndex(i);

}
TriArray<Pt> newcoeffs(d,n,Pt(d));
for (i=firstTrilndex(d,n);;) {
15 for (j=firstTriIndex(d,n);;) {
newcoeffs[i] += coords[i][j] * f.getCoeff(j);
if (isLastTriIndex(j,d,n)) break;
nextTriIndex(j);
}
20 if (isLastTriIndex(i,d,n)) break;
nextTriIndex(i);
}
f

= Blossom<PtDomain,Pt>(knots,newcoeffs);

The code consists of two loops: the first loop (lines 7-12) computes the change-of-basis
matrix, and the second loop (lines 13-22) uses the matrix to compute the new coefficients.
Line 5 sets up a triangular array of D(d,n) triangular arrays to store the change-of-basis
coordinates. Line 6 sets up a vector to store the basis tensors. Line 8 puts the ith basis
tensor into the vector. Line 9 stores the coordinates of the basis tensor in the ith coordinate
array. Line 13 sets up an array of new coeflicients. Line 16 multiplies the coordinates and the
coefficients of £ and adds them to the new coefficients. Line 23 sets £’s knots and coefficients.

As this code requires a full get-coordinate operation for each basis element, its run-time is
O(D(d+1,n—1)D(d,n)). In terms of round-off error accumulation, the code behaves fairly
well: the coordinates require n weigh-coordinates and each new coefficient i1s computed from
one linear combination of those coordinates. Thus, the total depth of the new coefficients is

n -+ 1.
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Basis-Conversion Two: Knot Swapping

Another solution uses knot swapping. The idea is simply to replace #;; with #; ; for all k
and [. This following code is a generalization of Goldman’s basis conversion algorithm for
local B-spline bases [12]. If the knot nets are Bézier, the code is simply performing repeated
subdivision.

1 void basisConvert2(Blossom<PtDomain,Pt> &f,
const KnotNet<PtDomain> &knots) {
int d = getDimension(f.getSpace());
int n = f.getDegree();
5 for (k=0;k<d;k++)
for (1=0;1<n;1++) {
knotReplaceCoeffs(f,k,knots.getKnot(k,1));
knotSwapCoeffs(f,k,n-1,1);
}

10 3}

This code is much simpler than the previous one. The code in lines 7 and 8 puts the knot
(k,1) of the new knot net into the (k,1) position of £’s knot net, and remove the old knot
from (k,n-1). This is done for all (k,1).

This code is also much faster than the previous. The cost of knotReplaceCoeffs is one
combination, while the cost of swapping the knot to position (k,1) is D(d,l) — D(d,0).
Adding up this cost for all 1, it becomes

n—1
n+ > D(d,1)—nD(d,0) = D(d+1,n — 1),

=0

or equivalent to the cost of a full evaluation. Thus, in total, the cost is O((d+1)D(d+1,n—1)),
compared to O(D(d 4+ 1,n — 1)D(d, n)).

However, the code i1s more likely to suffer from accumulation of round-off errors. Since
results of earlier knot swaps are used for later ones, the depth of resulting coefficients gets as
high as (d+1)(n—1). Moreover, the code as presented will not always work. It may happen,
as the knots get replaced, that swapping or replacing some knot (d,k) causes an evaluation
basis to become degenerate. Then the knot net is no longer valid, and any attempt to use
it will likely cause division-by-zero errors. A smarter implementation would need to check
for this condition. However, if it is known that the knots {¢;; : { = 0..n — 1} and the knots
{ti; : 1 = 0..n — 1} are enclosed in disjoint circles for all £ and k', then this problem will
not occur.

Finally, note that the code could have been written in several different ways. For example,
lines 6-9 can be rewritten

for (1l=n-1;1>=0;1--) {
knotReplaceCoeffs(f,k,knots.getKnot(k,1));
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knotSwapCoeffs(f,k,n-1,0);
}

This code puts the first new knot into position (k,0) of f’s knot net. Then, it puts the
next new knot into position (k,0), which moves the previously inserted knot into (k,1),
and so on. This code is less efficient because the knot manipulation operations require more
computation for knots at low positions than for knots at higher positions. Also, this code is
more likely to accumulate round-off errors because new values computed for the coefficients
for the first substitution (k,n-1) are used to compute the the second substitution (k,n-2),
and so on. This increases the depth of resulting coefficients.

Evaluation

This example shows that it is easy to translate from analysis into code. It also shows that
while there are many mathematically equivalent ways to achieve the same result, each way
leads to a different implementation. Knowledge of how the operations work helps to create
efficient algorithms that keep round-off errors under control.

6.4 Polynomial Composition

This section provides another example of implementing a new algorithm, the composition of
Bézier simplices. DeRose et al [8] derived a formula for computing the Bézier control points
of the composition polynomial H(z) = F(G(z)).

Let the degree of F' be m and degree of G be £. Let I be a vector of m multi-indices,
I =(#,... %), where each 7, has degree £ and dimension d. [ is called a hyperindez. Let
|I| =% + -+ + ;. Then the control points of H are related to the control points of G by
the following equation:

By ... (]
H; = Z C(I)f(Gx, -+ Gs,) where C(I) = W (6.1)
|I|=% (II I)
In the following sections, I give several algorithms for computing the Hj, starting with
a direct translation, and then successively refining the algorithm to improve its efficiency.
These algorithms are analyzed in Mann and Liu’s paper [15]. I show how the library sup-

ports research into algorithms by providing a direct translation from efficient algorithms into
efficient C++ code.

Composition One: Direct Translation

Equation 6.1 can be directly translated to code: iterate over all 7 and all I, evaluating

C(Df(Gx,-..,Gz,):
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1 #include "HyperIndex.h"
long C(const HyperIndex &I);

Blossom<PtDomain,Pt>
5% compositionl(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g)

{
int d = getDimension(g.getSpace());
Blossom<PtDomain,Pt> h(g.getDomainBasis(),
10 f.getDegree()*g.getDegree());
vector<Pt> args(d,Pt(d));
for (MultiIndex i = firstTrilIndex(d,h.getDegree());;) {
for (HyperIndex I = firstHyperIndex(i);;) {
for (int k=0;k<d;k++)
15 args[k] = g.getCoeff(I[k]);
h.getCoeff (i) += C(I) * eval(f,args.begin());
if (isLastHyperIndex(I,i)) break;
nextHyperIndex(I);

}
20 if (isLastTriIndex(i,d,h.getDegree())) break;

nextTriIndex(i);
}
}

The code for the HyperIndex class and the function C(I) are assumed to exist.

Composition Two: Using Symmetry

The above code is inefficient because f is symmetric. Thus, the order of the 1 in I does not
matter; it only how many times a multi-index 7" appears in I matters. The new algorithm
evaluates f only once for all hyperindices that contain the same multi-indices appearing the
same number of times. The computed value must be multiplied by a factor, P(I), that
indicates how many of these hyperindices there are.

Choose some ordering on II;. Let 6, f,lg be the first, second, kth multi-indices in this
ordering. Then, the algorithm evaluates the values

P@C@F(GY.CY,....Chaa™t)

b}

for v € ]I’B(dx). That 1s, the algorithm computes the value of f once for all hyperindices in

which 0 appears 7o times, 1 appears 7; times and so on. The following code iterates over
multi-indices in I 4, _; and computes the values of f.

1 long C(const MultiIndex &i);
long P(const MultiIndex &i);
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Blossom<PtDomain,Pt>
5% composition2(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g)
{
int d = getDimension(g.getSpace());
Blossom<PtDomain,Pt> h(g.getDomainBasis(),
10 f.getDegree () *g.getDegree());
int D = triSize(d,g.getDegree());
vector<Pt> args(d,Pt(d));
for (MultiIndex i = firstTriIndex(D-1,f.getDegree());;) {
vector<Pt>::iterator p = args.begin();
15 MultiIndex sum;
for (int k=0;k<D;k++) {
for (int 1=0;1<i[k];1++) {
MultiIndex ik = OrdToIndex(i[k]);
sum += ik;
20 *xp++ = g.getCoeff (ik);
}
}
h.getCoeff(sum) += P(i) * C(i) * eval(f, args.begin());
if (isLastTriIndex(i,D-1,h.getDegree())) break;
25 nextTriIndex(i);
}
}

The loop in lines 15-22 converts the multi-index i into the corresponding argument for the
blossom:

10 i1 LD (d,0)—1
(;G’C;T""’(;EREZTZT'
The multi-index sum stores the position of corresponding coefficient of H.

Composition Three: Reusing Intermediate Calculations

The previous code is still inefficient because to compute f(Gz, ..., Gz, ), the partial evalu-
ations for flg, to f
for different I.
DeRose et al presented an algorithm that reuses the partial evaluations. The algorithm
proceeds by partially evaluating at some Gz. Then for all j > 7, recursively evaluate at G.
Continue this process until f is fully evaluated. Then go back and select the next multi-index
following 7. The library allows their pseudocode to be directly translated into C++:

Gy, - must be computed. These partial evaluations can be reused

1 G Im

—1

1 void
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20
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30

35

40

PostProcessH(Blossom<PtDomain,Pt> &h)
{
int 4 = getDimension(h.getSpace());
int n = h.getDegree();
for (MultiIndex j=firstTriIndex(d,n);;) {
h.getCoeff(j) /= multinomial(j);
if (isLastTriIndex(j,d,n) break;
nextTriIndex(j);
}

void
RecursiveCompose3(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g,

Blossom<PtDomain,Pt>& h,
const MultiIndex& min,
const MultiIndex& sum,
long c,
long mu)
{
if (f.getDegree() == 0) {
h.getCoeff(sum) += c * *f.getCoeffs() .begin();
} else {
MultiIndex i = min;
Blossom<PtDomain,Pt> tmp = partialEval(f,g.getCoeff(i));
RecursiveCompose3(tmp,g,h,i,sum+i,c*multinomial(i)/(mu+1) ,mu+1) ;
while (!isLastTriIndex(i,getDimension(g.getSpace()),g.getDegree())) {
nextTriIndex(i);
tmp = partialEval(f,g.getCoeff(i));
RecursiveCompose3(tmp,g,h,i,sum+i,c*multinomial(i), (long)1);
}
}
}
Blossom<PtDomain,Pt>

composition3(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g)
{
int d = getDimension(g.getSpace());
Blossom<PtDomain,Pt> h(g.getDomainBasis(),
f.getDegree()*g.getDegree());
MultiIndex zero,first = g.getDegree()*E(0);
RecursiveCompose3(f,g,h,first,zero,factorial (f.getDegree()), (long)0);

99
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45 PostProcessH(h) ;
return h;

}

Note that the algorithm was also optimized to reuse intermediate results to compute C(I)
(through the parameters ¢ and mu of function RecursiveCompose3).

Composition Four: Changing Bases

The previous algorithm can be further refined to remove the remaining inefficiencies. The
previous algorithm reuses the intermediate partial evaluations of f, but finally, those also
get discarded. Mann and Liu [15] presented an algorithm that avoids discarding these eval-
uations. The algorithm is asymptotically optimal.

The new algorithm first converts the basis of F' to a domain simplex that is a subset of G’s
coefficients, say Gy, . .. , Gz,. Then, the new coefficients of F are of the form {f(G} --- G},
which are values of f needed to compute H’s coefficients. Starting with these coefficient of
F| the rest of the algorithm runs in a similar manner to the algorithm of DeRose et al, with
the difference that all the intermediate points calculated contribute to the final result, and
no calculations are thrown away (except the initial basis conversion). The following code is
a direct translation of their pseudo-code:

1 void
RecursiveCompose4(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g,

Blossom<PtDomain,Pt>& h,
5% const MultiIndex& min,
const MultiIndex& sum,
long c,
long mu)
{
10 ExtractCPs(f,h,min,sum,c);
if (f.getDegree() == 0) {
return;
} else {
MultiIndex i = min;

15 BlossomArg<PtDomain> u(g.getCoeff(i));
Blossom<PtDomain,range> tmp = partialEval(f,u);
RecursiveCompose2(tmp,g,h,i,sum+i,c*multinomial (i)/(mu+1) ,mu+1) ;
while (i[getDimension(g.getSpace())] !'= g.getDegree()) {

nextTriIndex(i);

20 u.setArgument (0,g.getCoeff(i));

tmp = partialEval(f,u);
RecursiveCompose2(tmp,g,h,i,sum+i,c*multinomial (i), (long)1);
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25}

Blossom<PtDomain,Pt>
composition4(const Blossom<PtDomain,Pt>& f,
const Blossom<PtDomain,Pt>& g)
30 {
int d = getDimension(g.getSpace());
Blossom<PtDomain,Pt> h(g.getDomainBasis(),
f.getDegree()*g.getDegree());
Blossom<PtDomain,range> £2 = f;
35 KnotNet<PtDomain> knots(makeBasis(g.getCoeffs() .begin(),g.getSpace()));
basisConvert (£f2,knots) ;
MultiIndex zero, first = OrdToIndex(d);
RecursiveCompose4(f2,g,h,first,zero,factorial(f2.getDegree()), (long)0);
PostProcessH(h) ;
40 return h;

The ExtractCP code is omitted to save space.

This code does not always work since it uses the first d coefficients of g as the new basis
of £2 and these coeflicients may not form a basis of the domain. A more sophisticated
implementation would need to handle this case.

The run time behavior of this algorithm depends on the algorithm used for basisConvert
routine.

6.5 Degree-raising B-splines

Finally, I present a new algorithm to compute the degree-raised form of a B-spline efficiently.
An efficient degree-raising algorithm has been known for Bézier curves, but not for B-splines.

The problem is to find the control points and knot sequence of the degree n version, G,
of the degree n — 1 B-spline F. These are obtained by noting that G and F have the same
number of segments and the segments of G are degree-raised versions of the corresponding
segments of F.

First, this relation gives G’s knot sequence. It implies G must have the same breakpoints
as F. (Breakpoints are knots that are the endpoints of an interval for some segment: ¢,_;
to t,41). Since G is one degree higher than F', but still has the same continuity, the multi-
plicity of each breakpoint in G’s knot sequence must be one greater than the corresponding
breakpoint in F'’s knots.

Next, I use the relation to derive G’s control points. Let {#o,...,ts,—11} be G’s knot
sequence and Iy, ..., Pyyp its control points. Let g ) and f be the blossoms of G

titit1 titit1)
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and F respectively over the interval [t;1,—1,ti4n), Where t;41,1 < tifp,. Let ta) =t tign1,
and let t(i)/tj =t;-+tj_1tjr1 - tiyn_1. The degree-raising formula for blossoms states

1+n—1

1
Featir (b0) = ~ D Sy (b /13)-
7=
Equation 2.2 can be rewritten to yield a formula for P;:

P = guiin(t6) = = Gt tin) ()

This formula states that the blossoms of n + 1 consecutive segments all have the same value
at t(;). For knots that have multiplicity greater than 1, the corresponding segments do not
exist. However, since the multiplicity of knots are less than n 4+ 1, there is always some
segment gy, , +,) Whose value at ;) is P, where k is any number between ¢ and ¢ + n such
that t_; <t and k <n+ L.

Combining this formula with the previous one yields a formula for the G’s control points
in terms of blossom values of F’s segments:

1+n—1

1
Pi=— 3 Jim(t)/1); (6.2)
7=
where kj; are numbers between i and i + n — 1 such that #;,_; <#3;, and k; <n + L.

Algorithm

From Equation 6.2, one can compute the degree-raised control points simply by computing

the required values of the blossom fj, for each P;. However, since successive control

_1,tk)
points will require many of the same blossom values, a more efficient algorithm would be
to store each value computed and use it again for later control points. Even this approach
is not as efficient as possible, since parts of the computation for one blossom value can be
reused for subsequent blossom values.

The following algorithm is arranged in such a way as to maximize reuse of computations.
Moreover, the algorithm is easy to understand because it is made up of knot insertions and
knot deletions. I first deal with the case when F has no knots of full multiplicity, n — 1.
Later I will consider the case of knots of full multiplicity.

The algorithm proceeds as follows:

1. Insert knots into F' so that the multiplicity of each break point is increased by one.
Let {to,...,tan_1+1} be the resulting knot sequence. Let @); be the new control points
of F. By Equation 6.2,

Qi = f[ti—hti)(t(i)/ti-l-n—l) == f[ti+n—27ti+n—1)(ti/ti-l-n—l)‘
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2. Set the knots of G to be same as the new knot sequence of F'. Set G’s control points
initially to zero: Py =---= P, = 0.

3. For each j =0..2n — 1 4 L:
(a) create new B-spline F? by deleting knot ¢; from F. Thus, the knots of FV are

{to,.. ] 1,t]+1,...,t2n_1_|_L}.

Define

QZ = tz 1.t ( /t ) f[ti+n—27ti+n—1)(ti/tj)' @ = .7 —n+ 1.7
QF = fitiii ety tign- 1) = = fitronatigno) (tiftizn—1) = Qi of/w

Note that Q; = },,. By construction, QJ are just the control points of F7, with
one point duplicated.

(b) For each i = j —n+ 1..5, add Q! /n to P;:
j
Py +— P + Q—

This step will compute

1i—l—n—1
P o= - i
" 12:: Qi
1i—l—n—1
= — 2 fuuptalts)
J=1

where k; 1s the number of some segment, ¢ — 1 < k; <+ n — 1.

Note that in Step 3(a), if t; = ¢;_1, the knot ¢; does not have to be deleted again: the control
points of 77! will be the same as those of F7 and can be reused.

Now consider the case where some breakpoint ¢; of F' has multiplicity n—1. Theoretically,
the algorithm cannot insert that knot again, as B-splines cannot have knots of multiplicity
greater than the degree; that would mean a discontinuity in the B-spline. However, this
i1s not a problem in practice as long as the control points ); and );y; are never different,
which is the case for this algorithm. The knot insertion operation would simply duplicate
the control point );, and the knot deletion algorithm would remove a duplicate. Another
approach is to flag the knot but do not insert it. Later, in Step 3(a), any knots that are
flagged are not deleted.
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Implementation

This code uses the class Bspline. The class is assumed to have the operation deleteKnot.

1 Bspline degreeRaise(Bspline F) {
int n=F.getDegree() ;
int L=F.knots.size()-2x*n;
int last = L+n-2;
5 for (int k=n; k<=last; k++) {
if (F.knots[k] !'= F.knots[k-1]) < n-1) {
insertKnot (F,F.knots[k]);
last++;
}
10 }
int d=getDimension(getSpace(F.cvs[0]));
Bspline G(n+1, F.knots);

n = n+l;
L=G.knots.size()-2*n;
15 Bspline Fj = F;

for (j=0; j<=2*n-1+L; j++) {
if (j=0 || F.knot[j] < F.knot[j-11) {
Fj =F;
deleteKnot(Fj,j);
20 }
for (int i=max(j-n+1,0); i<=min(j,2*n+L-2); i++) {
G.cvs[j] += Fj.coeffs[il/n;
}
}

25 return G;

}

Lines 2-10 implement Step 1, inserting knots into F’s knot sequence. Line 11 implements
Step 2, creating the B-spline G with the right knot sequence. Lines 15-18 implement
Step 3(a), deleting a knot from F if the knot is different from the previous knot; other-
wise, it reuses the B-spline Fj from the last iteration. Lines 20-23 implement step 3(b),
adding the value of the control points of Fj to those of G.

Evaluation

The code is very short, and is a direct translation from the analysis.

The best case for run time occurs when all knots have full multiplicity. Then, no knots
need to be inserted or deleted, and the algorithm simply becomes a less efficient version of
Bézier degree raising: the algorithm uses n(L 4 2n — 1) additions of points to compute the

P;.
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The worst case occurs when each knot has multiplicity one. In this case, increasing
the multiplicity of each breakpoint requires inserting L/2 knots, and the cost of each knot
insertion is n combinations. Deleting a knot also costs n combinations, and L/2 4 2n — 2
knots must be deleted. Thus, in total, the algorithm runs in O(nL + n?).

In comparison, the naive method of computing each blossom value of Equation 6.2 indi-
vidually requires n blossom values for each of n + L new control point, for a total of nL + n?
full evaluations. A full evaluation requires n(n — 1)/2 combinations, so the naive method
runs in O(n®L +n*). The other approach is to compute each blossom value only once. This
approach requires O(n?L + n®) combinations, since on average each blossom value is used
for n consecutive control points. Thus, the new algorithm saves a factor of n or n? in the
run time.

The algorithm uses the control points resulting from earlier knot insertions for later knot
insertions. Thus, a concern is that round-off errors may accumulate so that by the time the
last knot is inserted, the result is no longer accurate. Fortunately, round-off errors do not
accumulate excessively. To see this is the case, observe what happens as knots are added.
To increase the multiplicity of knot ¢,, the knot insertion algorithm (Boehm’s algorithm)
computes the new control point as follows [1]:

tg —t;

tivn —t ,
Q;+— —12Q; 1+ ——2Q;, j=q-n+1,....q
tign —1t; tign —1t;

The next step would be to insert knot ¢,4» (assuming multiplicities of 1). Thus, a control
point gets modified by at most [n/2] successive knot insertions. In other words, it has a
depth of n/2, half the depth of a full evaluation.

6.6 Chapter Summary

This chapter showed that simple, commonly performed tasks are simple to implement with
the library. The library works well with other datatypes and routines, for example, user-
created datatypes for B-spline blossoms, and STL routines. The library’s datatypes and
operations are general, and can be used to code non-trivial algorithms, such as basis con-
version, polynomial composition and B-spline degree raising. The datatypes and operations
allow direct translation from blossoming analysis to C++ code, and the resulting code is
simple and meaningful in terms of blossoming analysis.
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Conclusions

The Blossom Classes library is a general programming tool that is useful for prototyping
CAGD modeling techniques. Its main features are that it is general and it 1s useful for
implementing many different techniques.

It provides blossoming datatypes that simplify translation from analysis to code. The
datatypes and operations are general and easy to use. They allow direct translation from
blossoming analysis to C++ code. The resulting code is simple and meaningful in terms of
blossoming analysis.

The datatypes handle many techniques, including important ones such as Bézier curves
and surfaces, and B-splines curves, and rational polynomial versions of these techniques,
among others.

The operations are computed by efficient algorithms that are generalizations of impor-
tant algorithms for B-splines and Bézier curves and surfaces. They can handle non-trivial
algorithms.

The library works well with other libraries and datatypes. More importantly, users can
replace the library’s own datatypes with user-supplied datatypes. This ability to integrate
user’s datatypes into the library is important for two reasons: it means users can fit the
library into existing applications, and users can specialize the datatypes for greater efficiency
or extend them for greater functionality.

Thus, the library is suitable for many situations. The library provides datatypes that
handle common modeling operations for simple applications. On the other hand, the library
can be used with other tools, such as optimization routines, to create complex modeling
techniques.

Future Work

The library currently only supports B-bases directly. It is desirable to extend the basic
framework of the library to allow other bases to be used. Some work has been done that
relates B-bases to other bases, such as convolution bases, Pélya bases, and L-bases [14, 13].
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A datatype for geometrically continuous curves (universal splines [18]) should be sup-
ported, in the same way as the B-spline datatype in Chapter 6.

A datatype for tensor-product surfaces need to be supported in order for the library to
be generally useful. They can be implemented in a way similar to the B-spline class.

Finally, while a simple relationship is known between a B-spline and the blossoms of its
segments, no similar relationship is known for a multivariate B-spline [6] and its individual
patches; currently it is known that the multivariate B-spline agrees with a B-patch in a
special region. If such a relationship is found, the library should be extended to support a
multivariate B-spline datatype. I hope that the functionality provided by this library can
assist in such research.



Appendix A

Datatype Requirements

The following description of requirements for datatypes use the same terminology as STL.
These requirement are given as a set of valid expressions in C++. Any operation that modifies
its parameters are noted.

In addition to the operation listed in the table, all types must provide default constructors,
copy constructors, and assignment operators.

A.1 Geometry Datatypes

A.1.1 Requirements for Scalars

In the following table, s and t are scalars.

expression | return type notes
e s+t scalar
e s+=t
e skt scalar
o sk=¢
e scalar(0) | scalar constructs zero scalar
e scalar(1) | scalar constructs one scalar

A.1.2 Requirements for Ranges

In the following table,
e sbegin and send are iterators returning scalars
e sbegin is an iterator returning rangept.

64



A.2. BLOSSOMING DATATYPES
expression return type notes
e combination(sbegin, rangept returns the (affine or linear) combi-
send, nation of the scalars in sbegin to
pbegin, send with the points in pbegin.
(rangept*)0)

A.1.3 Requirements for Domains

In the following table,
® x is a space object
e b is a basis object
e c is a coordarray
e p is a (domain) point
e k is an int

e pbegin is a forward iterator returning points
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expression

return type

notes

e domain: : space

e domain: :basis

e domain: :point

e domain: : coords

e domain: :scalar

e getDimension(x)

e getStdBasis (x)

e getCoordsFromBasis(b,p,c)
e getSpace(x)

e getSpace(b)

e getBasisElement (b,k)

¢ setBasisElement (b,k,p)

e makeBasis(pbegin, (basis*)O0)
e coordarray(k,0)

o clk]

space
basis
point
coords
scalar
int
basis
space
space

point

basis
coordarray

reference to scalar

¢ is modified

b is modified

construct an array of size Kk,
initialized with zeros
the kth coordinate in the

array.

A.2 Blossoming Datatypes

A.2.1 Requirements for Blossoms

In the following table,
e £ is a blossom
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e kn is a knotnet object
e ais a triarray object (storing objects of type blossom: :rangept)

expression return type notes
eblossom: :knotnet knotnet
eblossom: :triarray triarray
eblossom: :domain domain
eblossom: :rangept rangept
e getDegree(f) int
e getSpace(f) space
o f.coeffArray() reference to triarray
o f . knotlNet () reference to knotnet
emakeBlossom(kn,a, (blossom*)0) | blossom

A.2.2 Requirements for Triangular Arrays

A triarray satisfies all the requirements of an STL container. The following table lists
additional requirement of a triarray.

In the following table,
® ais a triarray object
e kis an int
e ¢ is an evalordarray

expression return type notes

etriarray: :multiindex multiindex
etriarray::evalordarray | evalordarray
e alk] triarray: :reference | return the element at the po-
sition k. The return type is
triarray: :const_reference if
a 1s constant.

e getDimension(a) int dimension and degree of a
getDegree(a)
e evalordarray (k,0) evalordarray construct an array of size k, ini-
tialized with zeros
e e[k] reference to int the kth position in the evaluation
subarray.

A.2.3 Requirements for Multi-Indices

In the following table,
e iis a multiindex object



isLastSliceIndex(i,k,1,d,n)

mension d, degree n slice such that
i [k] ==
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ek 1 d,n are ints
e ¢ is an evalordarray
expression return type notes
oilk] int kth component of multi-index
eord(i,d,n) int position of multi-index i in
triarray of dimension d, degree n
e evalord(i,d,n,e) compute positions of ith evaluation
subarray in triarray of dimension
d, degree n. e is modified.
o firstTriIndex(d,n) multiindex | first and last indices for dimension
lastTriIndex(d,n) d, degree n
enextTriIndex (i) increment/decrement index. 1 is
prevIriIndex(i) modified.
e isFirstIndex(i,d,n) int check if is first or last index for di-
isLastIndex(i,d,n) mension d, degree n
efirstSliceIndex(k,1,d,n) multiindex | first and last indices for dimension
lastSliceIndex(k,1,d,n) d, degree n slice such that i[k]==
enextSliceIndex(i,k,1) increment/decrement index while
prevSliceIndex(i,k,1) keeping i[k]=1. i is modified
e isFirstSliceIndex(i,k,1,d,n) | int check if 1s first or last index for di-

A.2.4 Requirements for Knot Nets

In the following table,

e kn is a knot net object
e i is amultiindex object
k, 1 are ints

c 18 a combiner

W 1s a weigher

s 1s a scalar
p is a domain point
e bis a basis

coeffs is an iterator returning rangept
coords 18 an iterator returning scalar



68

APPENDIX A. DATATYPE REQUIREMENTS

expression

return type

notes

e knotnet: :combiner
eknotnet: :weigher

e getCombiner (kn,p)

e getWeigher(kn,p)

e combineCoeffs(c,i,coeffs)
eweighCoords(w,i,s,coords)
e getKnot (kn,k,1)

e getDomainBasis (kn)

¢ getDomainElement (kn,k)

e getEvalBasis(kn,i)

o setKnot (kn,k,1,p)

e swapKnot (kn,k,1)

e setDomainBasis (kn,b)

¢ setDomainElement (kn,k,p)

combiner
weigher
combiner
weigher
rangept

point
basis

basis
basis

basis

basis

the combine-coefficients algorithm.
the weigh-coordinates algorithm.

{too, .- tao}

kth domain element, t .

return the ith evaluation basis.

kn is modified. Bézier knot nets do
not support this operation.

swap the knots (k,1) and (k,1+1).
kn is modified. Bézier knot nets do
not support this operation.

sets all domain elements to basis b’s
elements.

sets all knots (k,1) to p.
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