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�� Introduction� Recently� there has been considerable interest in implicit meth�

ods for the solution of the Euler equations ��� �� �� �� �� 	
 and for the compressible
Navier Stokes equations ��� �� 
� ��� ��� �� ��� ��� ��
� Implicit methods allow use of
large timesteps and rapid convergence to steady�state solutions�

Generally� these methods use a pseudo�timestepping approach to obtain the steady

state solution� At each pseudo timestep� a backward Euler timestepping method is used�
which gives rise to system of nonlinear equations� These nonlinear equations are solved
by �usually� doing one iteration with an approximate Jacobian ��� �� 
� �� ��� ��
� The
approximate Jacobian is typically based on �rst order upwinding� while the residual �i�e�

the right hand side� is computed using a second order upwind biased scheme ���� �	
�
An extensive discussion of this defect�correction approach can be found in ���
�

Comparatively few authors use full Newton iteration ���� ��� ��
� Some work com�

paring the full Newton approach and the defect�correction technique on some model
problems was reported in ���
� For problems with weak shocks� there did not seem to
be much advantage to using full Newton methods� However� for tests with very strong
shocks� the full Newton method was an order of magnitude faster than the quasi�Newton

method� For strong shocks ���
� convergence di�culties were also observed for the lin�
ear solver �a PCG method�� For the Euler equations� similar conclusions were reached
in ���� �

� For problems with subsonic free stream conditions� the defect�correction
approach converged� but was generally slower than the full Newton method� How�

ever� for supersonic far �eld conditions� convergence problems were observed with the
defect�correction method ���� �

�

Preconditioned conjugate gradient �PCG� type methods are popular for solution
of the linearized equations ��� 
� �� ��� ��� ��� ��� �

� GMRES ���
 and CGS ���


acceleration methods have been used� but preconditioning has been restricted to mainly
incomplete LU factorizations of level zero �ILU���� ���
�

Full Newton iteration converges quadratically if the initial guess is close enough to

the solution� in contrast to the linear convergence of defect�correction methods� Con�
sequently� full Newton iteration will be an e�ective strategy if small residual solutions
are desired�

The objective of this article is to carry out a study of full Newton methods for high

speed� laminar� viscous �ow� The complete laminar Navier�Stokes equations will be
used� The full Jacobian matrix is constructed using numerical di�erentiation� Partic�
ular attention is directed towards methods for obtaining a good starting guess for the
Newton iteration� and for e�ective PCG methods for solving the full Newton Jacobian�

Comparisons will also be made with the usual defect�correction ��rst order Jacobian�
approach� The focus throughout will be on on developing robust methods for use in a
workstation environment�

Numerical tests are reported for the test cases used in the GAMM workshop ���
�

These test cases are two dimensional external �ows over an airfoil� Although we use a
semi�structured grid� none of our algorithms make use of this fact� and hence we believe
that our results should be valid for unstructured meshes as well�

	



�� Navier�Stokes Equations� In dimensionless form� the full Navier�Stokes equa�

tions are
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where the Q is the vector of conservative variables� and fc� gc are the convective �uxes�
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with the following variable de�nitions

� � density

u � x�direction velocity

v � y�direction velocity

e � total energy per unit volume

p � pressure

� � viscosity

M� � free stream Mach number

Re� � free stream Reynolds number

Pr � Prandtl number

� � ratio of speci�c heats

T � temperature����

The viscosity is given by Sutherland�s law ���
� and the pressure and temperature
are given by�

� �
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Fig� �� Control volume and integration line segments

Control Volume
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where C� � �
��	��	���� assuming the free stream temperature is �	��R�

�� Discretization� In the following� we will discretize the Navier�Stokes equations

using a �nite volume method ��
 with Van Leer �ux splitting ���
 of the �rst order
convective terms�

If the computational domain is tiled with triangles� with the primary variables

stored at the triangle vertices� then �nite volumes can be constructed surrounding each
vertex �see Figure ���

There are various ways to construct the �nite volumes surrounding each node� A
common method is join the midpoints of the sides of each triangle to a point �xm� ym�

in the interior of the triangle� There are several possibilities for selection of the point
�xm� ym�� A popular choice is to use the centroid of the triangle for �xm� ym�� However�
for the semi�structured grids used in this work� we have found that good results can
be obtained with the Euler equations ���
 if �xm� ym� is selected as the intersection of

the perpendicular bisectors of each side of the triangle �assuming that the intersection
point is within the triangle�� If the intersection point of the perpendicular bisectors is
outside the triangle� then �xm� ym� is the midpoint of the edge nearest the intersection
point� We will use this method of selection of �xm� ym� in the following �both choices

are options in our code��
If fully implicit timestepping is used� then the discrete �nite volume Navier�Stokes

equations at node i are�
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where

�n � inward pointing unit normal

c � �nite volume contour

Si � source�sink term

�t � timestep size

Ai � area of i�th �nite volume

N � time level����

The source�sink term SN��
i will be used to enforce boundary conditions�

The convective and viscous �ux terms in equation ��� are handled di�erently� The
convective �ux terms are approximated byZ
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where

U � velocity component in direction��nx� �ny�

� �nxu� �nyv

��nx� �ny� � average inward pointing unit normal to cell face

between node i and node j

Lij � length of face between node i and j

	i � set of neighbor nodes of node i�����

The average normal ��nx� �ny� and interface area Lij between node i and node j is given

by integrating along the path a to b in Figure ��Z b

a
�n ds � Lij ��nx � �ny� �����

Van Leer �ux splitting ���
 is used to evaluate the �ux vector Fij���� at the interface

between node i and node j� The �ux vector is split into two contributions

Fij���� � F�

ij���� � F�
ij���������

such that the Jacobian of F�

ij���� has nonnegative eigenvalues and the Jacobian of F
�
ij����

has nonpositive eigenvalues�
Pure �rst order �ux splitting �upwind weighting� uses�

F�

ij���� � F��Qj��

F�
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Higher resolution can be obtained near shocks if the upstream value is extrapolated

to the face using a MUSCL type method ���
� For example
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In equation ����� xi is the location vector of node i� and � is a small number which
prevents zero divide�

Equation ���� e�ectively carries out an extrapolation to the face ij���� using the
nodes i and i�up� Node i�up is the second upstream point to the face ij � ��� in the
direction j to i� There are various methods for determining node i�up for unstructured
grids as described in ��	
� In this work� we simply choose node i�up as the neighbor node

of node i which is most nearly in the correct direction� The extrapolation of Q�
ij���� in

equation ���� is limited so that undershoot and overshoot are avoided� The de�nition
of s in equation ���� carries out this limiting in a smooth manner� We found that this
was very helpful in promoting smooth convergence of the Newton iteration� A value of


 � ��� was used in equation ����� which on a regular mesh is an upwind biased third
order scheme� Further details about MUSCL methods can be found in ���
�

The viscous integral in equation ��� is approximated byZ
c

�
fv�i� gv�j


N��

� �n ds �
X
k��i

�
fkv �a

k
x � gkv�a

k
y


N��

��	�

where
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k
y� � inward pointing vector area in triangle k

�i � set of triangles having node i as a vertex�����

The inward pointing vector area ��akx� �a
k
y� to node i in triangle k is computed using the

path from c to d in Figure �� Z d
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In equations ��
 � ���� �u� �v� �� are the average values of u� v� � over the triangle� The
derivative terms are estimated using linear interpolation with each triangle� If Ni are

the usual linear Lagrange polynomial C� basis functions where

Ni � � at node i

� � at all other nodesX
j

Nj � � everywhere in the solution domain�����

then� for example� the derivatives of the temperature T are approximated by
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with similar expressions for the other derivatives�

�� Boundary Conditions� All boundary conditions are enforced by suitable def�

inition of the source�sink terms in equation ���� Physically� we can imagine that the
boundary conditions are imposed by injecting an appropriate amount of mass� energy
and momentum into nodes which are on the boundary �see Figure ��� In all cases� the
boundary conditions are handled fully implicitly�

In the far �eld� the free stream values for the primary variables are� in dimensionless
variables�
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The source term for a node on the far �eld boundary is then �assuming that the �ow is
inviscid far away from the airfoil�
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Fig� �� Boundary �nite volume with interior and boundary �uxes

boundary source flux

interior flux

control volume

Boundary Nodes

where Lb is the length of the line segment common to the boundary �nite volume
and the boundary� and ��nx� �ny� is the inward pointing normal to the boundary segment�

Ub� �b� ub� vb� eb are the boundary values of the density� velocity components� and energy�
The boundary values of the normal velocity Ub and other boundary variables which

appear in equation ���� are determined by taking appropriate combinations of the
Riemann invariants� as described in ���
� which are generally a function of both free

stream values ���� and interior values�
On the airfoil surface� the boundary conditions are
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����

with no mass �ow into the airfoil� The source term for nodes on the airfoil surface is
then
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where � is a large number so that ui � vi � � and Ti � Ts� We have found that � � ���

is su�cient to force u � v � � and T � Ts to �ve �gures on the boundary without
causing any problems for the nonlinear iteration� If � is selected too large� then poor
convergence of the nonlinear iteration may result ���� ��
� Note that the form of the

boundary condition ��	� does not require any type of extrapolation from interior points�
as is commonly used ���
� and is therefore easy to compute fully implicitly� Also� it is

�



easy to use expression ��	� to compute auxiliary quantities such as the surface heat �ux

and skin friction�

�� Nonlinear Strategies� At each timestep� the nonlinear iteration can be writ�

ten as

Ak�xk�� � xk� � �rk�����

where xk is the vector of unknowns� rk is the residual vector� superscript k is the
iteration number� and A is the linearized equation matrix� Typically� only one nonlinear

iteration is carried out per timestep� so that k � n in equation ����� Tests on the Euler
equations in ���� �

 con�rmed that solving the nonlinear equations to convergence at
each timestep was unnecessary� Note that this is in contrast to incompressible �ows
��	
� where divergence sometimes occurred if only one nonlinear iteration per timestep

was used�
There are various possibilities for evaluating A and rk� Initially� if we are starting

from a poor guess for the solution� it is sometimes desirable to use �rst order upstream
evaluation of cell interface values� as in equation ����� In this case� the linearized matrix

A is the actual Jacobian of the �rst order discretization� The residual is also evaluated
using �rst order upstream weighing� In our experience� the steady state �rst order
solution can be rapidly obtained using any initial guess� The Jacobian of this system
is not di�cult to solve� and there are no di�culties with the Newton iteration� since

the shocks are smeared due to the low order approximation� This �rst order solution
can then be used as the initial state for more accurate MUSCL type discretizations
�equation ������ We shall refer to this method as ALLFO�

If a high order method is used for the cell interface values� then the Jacobian
matrix contains more nonzeros than the �rst order Jacobian� and� as will be seen in the
following� the high order Jacobian matrix is more di�cult to solve than the �rst order
Jacobian� For this reason� a standard technique is to evaluate the residual using a high

order method� but use a low order method to evaluate the Jacobian� This method is
then not a full Newton iteration� We shall refer to this method as MUSRES�

Finally� the residual and Jacobian can be evaluated using a high order method�
This results in a full Newton iteration� Since we are using a MUSCL type method as

our high order technique� we shall refer to this method as ALLMUS�
In all cases� we use numerical di�erentiation to evaluate the linearized matrices

A� The convective and viscous residuals and contributions to the linearized matrix are
computed separately� The residual can be written as �see equation ��� ��

rk � rc � rv � S
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S � vector of source terms����

where rc is the convective residual and rv is the viscous residual�
�



Table �

Nonlinear strategies

Method Jacobian Type Residual Type

ALLFO �st order �st order
MUSRES �st order �nd order
ALLMUS �nd order �nd order

The �rst order convective contribution to the Jacobian can be evaluated very e��

ciently using numerical di�erentiation� If the computational cost is measured in terms
of number of residual evaluations required to construct the Jacobian� then the �rst
order convective Jacobian can be constructed in a cost of four evaluations of rc� regard�
less of the type of grid used� This method is described in ���� ��
� If we assume that

Qi�up in equation ���� is evaluated using the nearest grid node� then the cost of numer�
ically determining the high order convective contribution to the MUSCL Jacobian is �	
evaluations of rc ��
� ��� �

�

In all cases� a very straightforward approach is used to compute the viscous contri�

butions to the Jacobian� Each triangle in the list is scanned� and the primary variables
at each node are perturbed� and the result added into the Jacobian� This requires the
work of �� evaluations of rv�

Consequently� the ALLFO and MUSRES linearized equations require � evaluations
of rc and �� evaluations of rv� while the ALLMUS Jacobian requires �	 evaluations of
rc and �� evaluations of rv�

To recapitulate the terminology introduced in this Section

� ALLFO� Jacobian and right hand side evaluated using �rst order upstream
weighting �����

� MUSRES� Jacobian evaluated using �rst order upstream weighting� right
hand side evaluated using high order MUSCL scheme �����

� ALLMUS� Jacobian and right hand side evaluated using high order MUSCL
scheme�

This is also summarized in Table ��

�� Linear Solution Methods� The linearized equations ���� are solved using a
block incomplete LU factorization ���
 with CGSTAB acceleration ���
� A level based
incomplete factorization �ILU�k�� ���
 with various levels k was tested�

The incomplete factorization was carried out in a block sense� with the blocks being
of size ���� Pivoting was using when inverting the diagonal block to enhance stability�
The nodes in the mesh were ordered using RCM �Reverse Cuthill McKee� ordering ���
�

The convergence tolerance was based on a reduction of the initial residual� If rkL is

the linear residual� at the k�th inner iteration� then the convergence criteria was

krkLk�
kr�Lk�


 tolres���
�

Typically� tolres � ����� In principal� it is necessary to solve the inner iteration to

��



smaller tolerances as the Newton iteration converges in order to retain quadratic con�

vergence ���
� However� in �nite precision arithmetic� it is only necessary to solve the
inner iteration su�ciently accurately� so that quadratic convergence is observed until
the desired precision �for the outer iteration� is obtained� Consequently� as long as resid�
ual reduction criteria is used for the inner iteration �as in equation ��
��� with tolres
su�ciently small� then the nonlinear convergence will be rapid� In practice� tolres does
not have to be that small� In ���
� various experiments were conducted with di�erent
values of tolres for the Euler equations� For example� use of tolres � ���� compared to
tolres � ���� resulted in faster convergence �in terms of number of nonlinear iterations�

only at very small nonlinear residuals� However� in terms of CPU time� use of the
tighter tolerance was not bene�cial�

	� Timestepping� The timestep selector was based on the changes observed in
the primary variables ��� u� v� e� over a timestep� If superscript n refers to time level�
and

��max � max
i

j�n��i � �ni j�

�umax � max
i

jun��i � uni j�

�vmax � max
i

jvn��i � vni j�

�emax � max
i

jen��i � eni j�
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��targ
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�
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�
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�����

where ��targ��utarg��vtarg��etarg are user speci�ed timestep targets for the primary
variables� then the new timestep �tn�� is given by

�tn�� � min��� ��tn������

Essentially� equations ��� � ��� will select timesteps so that the changes observed over
a timestep are approximately the target values� Initially� if large changes are observed

over a timestep� then the timesteps will be small� After a few timesteps� the observed
changes usually decrease� and then the timestep increases very rapidly�

Timesteps were cut only if a negative density or pressure was obtained as a result of
the latest nonlinear iteration� or if the inner iteration failed to converge in ��� iterations�

No underrelaxation was used�


� Computational Details�


��� Test Problems� The test problems are the external �ow over the NACA
���� airfoil� The �ow is considered to be laminar �no turbulence model�� and would
thus correspond to �ow in a rare�ed gas� Seven cases were used in the GAMMworkshop

���
 at various angles of attack �AOA�� freestream Mach number �M�� and Reynolds
number �Re�� The viscosity and Prandtl numbers �taken to be constants� used in these

��



Table �

Test cases� NACA ���� airfoil� Mach Number �M��� angle of attack �AOA�� Reynolds Number
�Re�	

Case M� AOA Re

A� ���� ��o ��
A� ���� ��o ���

A� ���� ��o ��	
A� ���� ��o ����
A� ��� �o ���
A	 ��� �o ����

A� ��� �o �����

Fig� �� Grid used in computation	 Left
 overview� right
 closeup	 of trailing edge

-0.5 0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

0.930 0.940 0.950 0.960 0.970 0.980 0.990 1.000
-0.190

-0.180

-0.170

-0.160

-0.150

-0.140

tests were�

� � ���

Pr � �������

The seven cases are listed in Table ��

The grid system used in this work is a body��tted orthogonal O�grid described in
���
� Two meshes� �
� � 	� and ��� � ���� � �
� and ��� nodes on the airfoil surface
respectively� have been used in computations� Each quadrilateral is divided into two
triangles in the obvious manner �see Figure ��� The dense grid thus has �	� ��� nodes

and ���� ��� total unknowns� The free stream boundary conditions are imposed at
distance of about �� chord lengths from the airfoil� The average grid spacing normal to
the airfoil� at the airfoil surface �for the �ne grid� is 
 ���� in units of chord length�

In ���
� the results are given as Mach number contour plots� and plots of pres�

sure coe�cient �Cp�� skin friction coe�cient �Cf �� and heat �ux coe�cient �Ch�� The
pressure coe�cient �at node i on the airfoil surface� is de�ned as�

Cpi �
��pi � ����

M�
�

����

�	



The total force acting on the �uid� from the airfoil wall� at node i is given by �see

equation ��	���

Fxi � Ai���� uN��
i �

Fyi � Ai���� vN��
i �����

If �ntx� n
t
y� is a unit vector tangent to airfoil surface� then the wall stress �w at node i

on the surface is

�wi �
�
�
Fxin

t
x � Fyin

t
y



Lsi

����

where Lsi is the length of the line segment common to the surface �nite volume and

the airfoil surface� The skin friction at node i is then de�ned as

Cfi �
��wi
M�
�

���	�

The total heat �ux from the airfoil to the �uid at a node i on the airfoil surface is

qti �
Ai��Ts � TN��

i �

Lsi
����

The heat �ux coe�cient is then

Chi �
�qti
M�
�

�����

The lift �Cl� and drag �Cd�coe�cients are easily computed

Cl �

X
i�B

Fyi

Lc

Cd �

X
i�B

Fxi

Lc

��
�

where Lc is the chord length� and B is the set of nodes on the airfoil surface�


��� Nonlinear Solution Parameters� All the nonlinear iteration strategies
start with the initial guess of the free stream values for the primary variables� Next� the
ALLFO method ��rst order Jacobian and right hand side� is used� and continues until

krNk� 
 ����� where rN is de�ned in equation ����� This usually only takes � �� � ��
nonlinear iterations� and provides a good initial guess for the next stages of the nonlin�
ear iteration� Note that in the ALLFO stage the residual is evaluated using �rst order
upwinding� The initial timestep is set at ����� and the timestep control parameters for

this stage are �see equation ������

��targ � �utarg � �vtarg � �etarg � �������

After many experiments� and bearing mind our experience with the Euler equations
���
� we settled on the following two strategies

��



� ALLFO�MUSRES� After the ALLFO stage described above� the residual is

recomputed using the MUSCL residual� The MUSRES iteration ��rst order
Jacobian� MUSCL residual� then continues until convergence� The nonlinear
convergence criteria is

krNk�

krAk�

 ��������

where krAk� is the residual computed after the ALLFO stage� Typically� the
initial timestep in the MUSRES stage was set at �t � ����� and the timestep
control parameters were as in equation �����

� ALLFO�MUSRES�ALLMUS� The �rst two stages of this method were the

same as for ALLFO�MUSRES� except that the MUSRES stage was terminated
when

krNk�

krAk�

 ���������

The iteration was then switched to ALLMUS �high order Jacobian and residual�
until convergence condition ���� is satis�ed� Timestep parameters for all stages

were as in equation ����� The initial timestep for the ALLMUS step was
essentially in�nite ��t � �������

Note that the nonlinear convergence condition ���� is relative to the starting guess

from the ALLFO stage� which is quite a good initial estimate� Usually� the actual
nonlinear residual at convergence � ���	� The changes in the primary variables over
the last timestep � where the maximum CFL number is often � ����� are typically
� ���
� so that the primary variables �for the full Newton methods� are likely to be

correct to � � 	 �gures�
In all cases� the inner iteration was terminated using criterion ��
�� with tolres �

�����


��� Linear Solution Parameters� Problems A� and A	 �see Table �� were used
to determine the best parameters for the linear solver� for both the ALLFO�MUSRES
and the ALLFO�MUSRES�ALLMUS nonlinear methods� The �
�� 	� grid was used

for these tests� Table � shows the results using various levels of �ll for the incomplete
factorization � ILU�k�� ���
�

On the basis of the results in Table �� ILU��� was selected for all tests in the
following� It is interesting to observe that for ALLMUS type nonlinear iterations for

the Euler equations ���
� at least ILU��� was required to obtain convergence of the inner
iteration� while Table � indicates that ILU��� converges for the full Newton Jacobians
in ALLMUS iterations for the Navier�Stokes equations�

�� Numerical Experiments�

���� Nonlinear Iteration Tests� Table � shows the CPU time for the test prob�

lems using both nonlinear iteration methods� The �
��	� grid was used for these tests�

��



Table �

Comparison of ILU methods� Cases A�� A�� ��	� �� grid� CPU hrs� SUN Sparc���	

Nonlinear Method ILU��� ILU��� ILU��� ILU���

Case A�

ALLFO � MUSRES ���� ���� ���� ����
ALLFO � MUSRES ��� �
	 ��� ���
�ALLMUS

Case A	

ALLFO � MUSRES ���� ���� ���� ����
ALLFO � MUSRES ��� ��� ��� ���

�ALLMUS
���Run aborted due to too many inner iteration failures

Note that in ���
� none of the participants obtained a steady solution for case A�� This
will be discussed further in the next Section�

Table � shows that the ALLFO�MUSRES nonlinear iteration strategy fails to con�

verge for cases A� and A� using the timestepping and convergence tolerance parameters
discussed in Section ���� We attempted various di�erent timestepping strategies� and
inner iteration tolerances� but we were unsuccessful in getting the MUSRES type meth�
ods to converge for cases A� and A�� Similar problems with MUSRES type iteration

methods were observed for the Euler equations with supersonic freestream boundary
conditions ���
� In ���
� MUSRES nonlinear iterations compared poorly to full Newton
iteration when used on a wedge problem with supersonic free stream �ow �Navier�Stokes
solution�� However� note that in references ���
 and ���
� problems A� and A� did not

appear to cause great di�culty� As discussed by ���
� this may be because most of
the �ow�eld is supersonic� and hence an explicit time marching method can be e��
cient at moving information from upstream to downstream nodes� Note that by using

 � ��� in equation ����� we are following one of the recommended strategies for defect

correction iteration as discussed in ���
� Because of the failure of the MUSRES step
in the ALLFO�MUSRES�ALLMUS iteration� it was necessary to alter the nonlinear
iteration parameters discussed in Section ���� During the MUSRES step� the switch to

the ALLMUS step was triggered when

krNk�

krAk�

 �� ��������

with krAk� being the initial residual after the ALLFO step� However� if the ALLMUS

step was started with a large timestep� the Newton iteration failed to converge� It was
necessary to start the ALLMUS step �for problems A� and A�� with �t � ����� The
timestep control parameters for this ALLMUS stage are �see equation �����

��targ � �utarg � �vtarg � �etarg � ��� �����

Consequently� choice of these parameters resulted in signi�cantly more CPU time for
problems A� and A� compared to the other test problems� This should be viewed as

�




Table �

Comparison of nonlinear iteration methods� ��	� �� grid� CPU hrs	� SUN Sparc���

CPU hrs

Test Case ALLFO�MUSRES ALLFO�MUSRES
�ALLMUS

A� ��
 �	�
A� ���� ���

A� ��� ��
�y

A� ��� ����y

A� ���� ���
A	 ���� ���

A� ���� ��

���Failed to converge in ��� timesteps

y Di�erent timestepping strategy

a result of the fact the MUSRES step did not produce a good enough estimate for the
ALLMUS step �see Table ���

Since the use of a full Newton iteration for the �nal nonlinear stage is always faster
and more reliable than the defect correction approach� we will use the ALLFO�MUSRES�ALLMUS
strategy for the �ne grid tests�

���� Inner Iteration Tolerance� Figure � compares the use of di�erent inner
iteration tolerances �tolres in equation ��
�� during the ALLMUS stage for Test Case A	
��
� � 	� grid� ALLFO�MUSRES�ALLMUS iteration used�� Values of tolres � ����

and tolres � ���� were tested� The use of tolres � ���� does improve the rate of

convergence slightly �in terms of number of iterations� as the limit of double precision
accuracy is reached� However� in terms of CPU time� it is not bene�cial to use the tighter
inner iteration tolerance� Consequently� the the inner iteration tolerance tolres � ����

will be used in the following�

���� Fine Grid Results� Figures � and 	 show the results for Cp� Cf � Ch and the
Mach number contours for problems A� and A	 ����� �
� grid�� These results� as well

as the results for the other test cases� are in good agreement with those in ���
�
Table � shows the lift and drag coe�cients for all the test cases� which are also in

good agreement with the results in ���
�
Note that in ���
 none of the participants obtained a steady state solution to Test

Case A�� However� no particular di�culty was seen in obtaining a small residual solution
for this problem on the �ne grid ���� � ���� using full Newton iteration� Figure �
shows Cp and Ch for Case A�� Figures � and 
 show the skin friction and Mach number

contours for Case A� in detail� In reference ���
� unsteady solutions were found at
coarse grids� but on the densest grid used� the solution was steady� However� the Mach
number contours �on the �nest grid in ���
� do not agree with the results computed in
this work �see Figure 
��

It is di�cult to draw �rm conclusions about the existence of a steady solution for

��



Fig� �� Comparison of inner iteration tolerance� Test A�� ��	� �� grid	
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Table �

Lift coe
cients Cl and drag coe
cients Cd for the test cases �	��� ��	 grid�	

Case Cl Cd

A� ����� �	��	
A� ��	
� �����
A� ���
� �����

A� ����� �����
A� �� ���� ����	
A	 �� ���� ����


A� �� ���� �����

problem A�� Note that the grid used in this work is quite dense in the direction normal

to the airfoil �normal spacing � ���� in units of chord length�� and that we are using
the full Navier�Stokes equations� not the thin layer approximation that is commonly
used� On the other hand� it may be that the use of Newton iteration can produce a
steady solution which is di�cult to obtain using more explicit timestepping approaches�

Table 	 shows the run statistics for the �ne grid computations� As for the coarse
grid� it was necessary to use the modi�ed timestepping parameters �see equation �����
in order to get convergence for problems A� and A�� Consequently� these two problems

required about double the CPU time compared to the other test cases�
Examination of Table 	 shows that for test cases A�� A�� A�� A	� A� �subsonic free

stream conditions�� the number of nonlinear iterations required to meet the convergence
criterion ���� is in the range �� � ��� It is also interesting to observe that for these

transonic problems� the average number of inner iterations per outer iteration was 
 ���
Since the number of unknowns here was � ���� ���� this indicates that these Jacobians

��



Fig� �� Results for problem A�
 Cp� Cf � Ch and Mach number contours	
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Fig� �� Results for problem A�
 Cp� Cf � Ch and Mach number contours �	��� ��	 grid�	
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Fig� �� Results for problem A�
 Cp and Ch �	��� ��	 grid�	
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Fig� 	� Results for problem A�
 skin friction �	��� ��	 grid�	
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� Mach number contours for A� �	��� ��	 grid�	
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Table �

Run statistics for the ALLFO�MUSRES�ALLMUS method� 	��� ��	 grid �������� unknowns��
SUN Sparc���	

Case CPU time �hrs� Fraction of total Total Inner Total Nonlinear
time in linear solver iterations iterations

A� ��� �	� ��� ��
A� ��� �	� �
� ��

A� ���y ��� ��� 
�
A� ���y ��� ��
 ���
A� ���� �	� ��� ��
A	 ���� �	� �
� �	

A� ��	 �		 ��� ��
y Di�erent timestepping strategy

Table �

Comparison of Storage �KWords in single precision� for various ILU Levels �	��� ��� grid�	

ILU��� ILU��� ILU��� ILU���

ALLFO or MUSRES ��
�� ����
 ���
� �����

ALLMUS ����� ������ �	��	� ����
�

are comparatively easy to solve� A more detailed perusal of the history of these runs
shows that the ALLMUS type Jacobians �second order� were somewhat harder for
the iterative solver compared to the MUSRES ��rst order� Jacobians� In general� the
ALLMUS Jacobians required � �� � �� inner iterations� but this is again quite good

considering the number of unknowns�
For problems A� and A� �supersonic free stream conditions�� only � � � inner

iterations were required �on average� in order to meet the inner iteration tolerance

�tolres � ����� see equation ��
��� Since the �ow �eld is largely supersonic� then there
exists an ordering of the nodes which results in the Jacobian having a mostly lower
triangular structure� Although we made no attempt to determine such an ordering in
this study �RCM ordering was used�� the Jacobian is obviously very easy to solve�

Table � shows the storage required to store the ILU factors for the �rst order and
second order Jacobians� for various levels of ILU�k�� Clearly� the robustness of using
an ILU��� with the ALLMUS type iteration comes at a price� the storage required for
this method is much greater than that required for an ILU��� with the MUSRES ��rst

order Jacobian� method�

��� Conclusions� Full Newton iteration �second order Jacobian� second order

residual� was always faster and more reliable than the commonly used defect correction
approach ��rst order Jacobian� second order residual� for the test cases from the GAMM
workshop ���
� The use of an ALLFO method ��rst order Jacobian� �rst order residual��
followed by the defect correction approach �MUSRES� generally provided a good initial

guess for the full Newton iteration stage �ALLMUS��

	�



The test cases ���
 can be divided into two categories� subsonic free stream condi�

tions and supersonic free stream conditions� For the subsonic free stream cases� both
the full Newton and defect correction methods converged� although the full Newton
approach was more e�cient� For the supersonic free stream cases� we were unable to
get the defect correction method to converge �a similar situation was observed with the

Euler equations ���
�� This meant that a good initial guess was not available for the
full Newton portion of the ALLFO�MUSRES�ALLMUS iteration� This problem was
overcome for the full Newton approach by simply using a small timestep at the start of
the ALLMUS iteration�

The �rst order Jacobians were easily solved using an ILU�k� preconditioner with
CGSTAB acceleration� For the �rst order Jacobians� even an ILU��� preconditioner
converged� but level ILU��� was slightly more e�cient than other levels tested� For

the test cases with subsonic free stream conditions� the full Newton Jacobian required
at least ILU��� preconditioner for convergence� but again� ILU��� was generally more
e�cient� Convergence of the inner iteration �for ILU����was achieved in �� � �� iter�
ations for problems with � ���� ��� unknowns� For the test cases with supersonic free

stream conditions� the Jacobians were very easy to solve ��� � iterations�� although no
particular care was taken with the ordering of the unknowns�

To summarize� no particular di�culty was observed in solving all the Jacobian
matrices �even the full Newton Jacobian� using an incomplete factorization of at least

level ����
The robustness of the ALLFO�MUSRES�ALLMUS nonlinear iteration method

�low order methods used to obtain an initial guess� followed by full Newton iteration�
comes at a price� The full Newton Jacobian and the ILU factors require considerably

more storage than the low order approximations to the Jacobian�
Finally� it is interesting to note that we have obtained a steady solution to test Case

A� which was not obtained by any of the participants in the original GAMM workshop

���
� A steady solution was obtained by ���
 using a dense grid� but our solution does
no agree with that in ���
� Our other results for problems A��A	 are in good agreement
with those in ���� ��
�
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