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1. Introduction. Recently, there has been considerable interest in implicit meth-
ods for the solution of the Euler equations [1, 2, 3, 4, 5, 6] and for the compressible
Navier Stokes equations [7, 8, 9, 10, 11, 3, 12, 13, 14]. Implicit methods allow use of
large timesteps and rapid convergence to steady-state solutions.

Generally, these methods use a pseudo-timestepping approach to obtain the steady
state solution. At each pseudo timestep, a backward Euler timestepping method is used,
which gives rise to system of nonlinear equations. These nonlinear equations are solved
by (usually) doing one iteration with an approximate Jacobian [7, 8,9, 3, 12, 14]. The
approximate Jacobian is typically based on first order upwinding, while the residual (i.e.
the right hand side) is computed using a second order upwind biased scheme [15, 16].
An extensive discussion of this defect-correction approach can be found in [17].

Comparatively few authors use full Newton iteration [10, 11, 13]. Some work com-
paring the full Newton approach and the defect-correction technique on some model
problems was reported in [11]. For problems with weak shocks, there did not seem to
be much advantage to using full Newton methods. However, for tests with very strong
shocks, the full Newton method was an order of magnitude faster than the quasi-Newton
method. For strong shocks [11], convergence difficulties were also observed for the lin-
ear solver (a PCG method). For the Euler equations, similar conclusions were reached
in [18, 19]. For problems with subsonic free stream conditions, the defect-correction
approach converged, but was generally slower than the full Newton method. How-
ever, for supersonic far field conditions, convergence problems were observed with the
defect-correction method [18, 19].

Preconditioned conjugate gradient (PCG) type methods are popular for solution
of the linearized equations [7, 9, 5, 11, 13, 12, 18, 19]. GMRES [20] and CGS [21]
acceleration methods have been used, but preconditioning has been restricted to mainly
incomplete LU factorizations of level zero (ILU(0)) [22].

Full Newton iteration converges quadratically if the initial guess is close enough to
the solution, in contrast to the linear convergence of defect-correction methods. Con-
sequently, full Newton iteration will be an effective strategy if small residual solutions
are desired.

The objective of this article is to carry out a study of full Newton methods for high
speed, laminar, viscous flow. The complete laminar Navier-Stokes equations will be
used. The full Jacobian matrix is constructed using numerical differentiation. Partic-
ular attention is directed towards methods for obtaining a good starting guess for the
Newton iteration, and for effective PCG methods for solving the full Newton Jacobian.
Comparisons will also be made with the usual defect-correction (first order Jacobian)
approach. The focus throughout will be on on developing robust methods for use in a
workstation environment.

Numerical tests are reported for the test cases used in the GAMM workshop [23].
These test cases are two dimensional external flows over an airfoil. Although we use a
semi-structured grid, none of our algorithms make use of this fact, and hence we believe
that our results should be valid for unstructured meshes as well.



2. Navier-Stokes Equations. In dimensionless form, the full Navier-Stokes equa-

tions are
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with the following variable definitions
p = density
= x-direction velocity
v = y-direction velocity
e = total energy per unit volume
p = pressure
@ = Viscosity
M, = free stream Mach number
Re., = free stream Reynolds number
P. = Prandtl number

~ = ratio of specific heats
(5) T = temperature.
The viscosity is given by Sutherland’s law [14], and the pressure and temperature
are given by:
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Fic. 1. Control volume and integration line segments
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where C* = 198.6/460.0, assuming the free stream temperature is 460°R.

3. Discretization. In the following, we will discretize the Navier-Stokes equations
using a finite volume method [4] with Van Leer flux splitting [15] of the first order
convective terms.

If the computational domain is tiled with triangles, with the primary variables
stored at the triangle vertices, then finite volumes can be constructed surrounding each
vertex (see Figure 1).

There are various ways to construct the finite volumes surrounding each node. A
common method is join the midpoints of the sides of each triangle to a point (£, Ym)
in the interior of the triangle. There are several possibilities for selection of the point
(T, Ym). A popular choice is to use the centroid of the triangle for (z,,,ym). However,
for the semi-structured grids used in this work, we have found that good results can
be obtained with the Euler equations [18] if (%, ¥, ) is selected as the intersection of
the perpendicular bisectors of each side of the triangle (assuming that the intersection
point is within the triangle). If the intersection point of the perpendicular bisectors is
outside the triangle, then (#,,,¥,,) is the midpoint of the edge nearest the intersection
point. We will use this method of selection of (#.,,¥,,) in the following (both choices
are options in our code).

If fully implicit timestepping is used, then the discrete finite volume Navier-Stokes
equations at node ¢ are:
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where

7 = inward pointing unit normal
¢ = finite volume contour
S; = source/sink term
At = timestep size
A; = area of ’th finite volume
(8) N = time level.

The source/sink term S will be used to enforce boundary conditions.
The convective and viscous flux terms in equation (7) are handled differently. The
convective flux terms are approximated by
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where
U = velocity component in direction (s, f,)
g th + Ty ¥
(fz,My) = average inward pointing unit normal to cell face

between node ¢ and node j
L;; = length of face between node ¢ and j

(10) n; = set of neighbor nodes of node 1.

The average normal (7, ,) and interface area L;; between node ¢ and node j is given
by integrating along the path a to b in Figure 1:

b
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Van Leer flux splitting [15] is used to evaluate the flux vector Fjj11/, at the interface
between node ¢ and node j. The flux vector is split into two contributions

(12) Fijia)2 = Fi—gl'—+1/2 + Fi;-|—1/27
such that the Jacobian of Fi"]'7_|_1/2 has nonnegative eigenvalues and the Jacobian of £, ,

has nonpositive eigenvalues.
Pure first order flux splitting (upwind weighting) uses:

Fi—gl'_+1/2 = F+(Qj)7

(13) Fi;-|—1/2 = F_(Qz)
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Higher resolution can be obtained near shocks if the upstream value is extrapolated
to the face using a MUSCL type method [15]. For example

(14) Fi;-|—1/2 = F_(Qi_j+1/2)7
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In equation (15), x; is the location vector of node ¢, and € is a small number which
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prevents zero divide.

Equation (15) effectively carries out an extrapolation to the face ij 4+ 1/2 using the
nodes ¢ and 72up. Node 72up is the second upstream point to the face 75 + 1/2 in the
direction j to ¢. There are various methods for determining node 2up for unstructured
grids as described in [16]. In this work, we simply choose node ¢2up as the neighbor node
of node 7 which is most nearly in the correct direction. The extrapolation of Qi_j+1/2 in
equation (15) is limited so that undershoot and overshoot are avoided. The definition
of s in equation (15) carries out this limiting in a smooth manner. We found that this
was very helpful in promoting smooth convergence of the Newton iteration. A value of
k = 1/3 was used in equation (15), which on a regular mesh is an upwind biased third
order scheme. Further details about MUSCL methods can be found in [15].

The viscous integral in equation (7) is approximated by

A ~ N+1 n n n N+1
(16) /(fv2+gvj) civds ~ Y (frak 4+ ghal)
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where
(ak, &’;) = inward pointing vector area in triangle k
(17) B; = set of triangles having node 7 as a vertex.
The inward pointing vector area (a~, &I@j) to node 7 in triangle k is computed using the

path from ¢ to d in Figure 1:

d
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The viscous fluxes in each triangle are estimated by
0 0
T, T,
19 k _ Tz kE_ Ty
( ) fv 7—_my Y gv 7—_yy Y
Tey¥ + Qe Tyt + Gy



where
L 2Mep (0w Ov) o Mup (Ou | Ov
Tow = 3Req Jxr Oy Toy = Re,, \Oy Oz
2M. (20v Ou M. T

(20)

In equations (19 - 20), @, v, i are the average values of w, v, u over the triangle. The
derivative terms are estimated using linear interpolation with each triangle. If N; are
the usual linear Lagrange polynomial C° basis functions where

N; = 1 at nodei
= 0 at all other nodes
(21) Y N; = 1 everywhere in the solution domain,
J

then, for example, the derivatives of the temperature T' are approximated by

T ON,
or z]: T Oz
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with similar expressions for the other derivatives.

4. Boundary Conditions. All boundary conditions are enforced by suitable def-
inition of the source/sink terms in equation (7). Physically, we can imagine that the
boundary conditions are imposed by injecting an appropriate amount of mass, energy
and momentum into nodes which are on the boundary (see Figure 2). In all cases, the
boundary conditions are handled fully implicitly.

In the far field, the free stream values for the primary variables are, in dimensionless

variables:
p=1 = My
1
v=10 p=—
Y
M? 1
(23) e = 4
2 q(vy-1)

The source term for a node on the far field boundary is then (assuming that the flow is
inviscid far away from the airfoil)

Si = LiF,
poUs
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7

(24) F, =



FiGg. 2. Boundary finite volume with interior and boundary flures
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where L is the length of the line segment common to the boundary finite volume
and the boundary, and (7, 7,) is the inward pointing normal to the boundary segment.
Uy, py, up, vp, € are the boundary values of the density, velocity components, and energy.

The boundary values of the normal velocity U, and other boundary variables which
appear in equation (24) are determined by taking appropriate combinations of the
Riemann invariants, as described in [14], which are generally a function of both free
stream values (23) and interior values.

On the airfoil surface, the boundary conditions are

u, = 0
v, = 0
— 1) M?
(25) T, = 1+ %

with no mass flow into the airfoil. The source term for nodes on the airfoil surface is
then

(26) SN = 4,

where € is a large number so that u; = v; ~ 0 and T; ~ T,. We have found that = 10°

1s sufficient to force v = v = 0 and T' = T to five figures on the boundary without

causing any problems for the nonlinear iteration. If € is selected too large, then poor

convergence of the nonlinear iteration may result [24, 18]. Note that the form of the

boundary condition (26) does not require any type of extrapolation from interior points,

as is commonly used [25], and is therefore easy to compute fully implicitly. Also, it is
8



easy to use expression (26) to compute auxiliary quantities such as the surface heat flux
and skin friction.

5. Nonlinear Strategies. At each timestep, the nonlinear iteration can be writ-

ten as
(27) AR (ghT — by = o,
where z* is the vector of unknowns, #* is the residual vector, superscript k is the

iteration number, and A is the linearized equation matrix. Typically, only one nonlinear
iteration is carried out per timestep, so that k = n in equation (27). Tests on the Euler
equations in [18, 19] confirmed that solving the nonlinear equations to convergence at
each timestep was unnecessary. Note that this is in contrast to incompressible flows
[26], where divergence sometimes occurred if only one nonlinear iteration per timestep
was used.

There are various possibilities for evaluating A and r*. Initially, if we are starting
from a poor guess for the solution, it is sometimes desirable to use first order upstream
evaluation of cell interface values, as in equation (13). In this case, the linearized matrix
A is the actual Jacobian of the first order discretization. The residual is also evaluated
using first order upstream weighing. In our experience, the steady state first order
solution can be rapidly obtained using any initial guess. The Jacobian of this system
is not difficult to solve, and there are no difficulties with the Newton iteration, since
the shocks are smeared due to the low order approximation. This first order solution
can then be used as the initial state for more accurate MUSCL type discretizations
(equation (15)). We shall refer to this method as ALLFO.

If a high order method is used for the cell interface values, then the Jacobian
matrix contains more nonzeros than the first order Jacobian, and, as will be seen in the
following, the high order Jacobian matrix is more difficult to solve than the first order
Jacobian. For this reason, a standard technique is to evaluate the residual using a high
order method, but use a low order method to evaluate the Jacobian. This method is
then not a full Newton iteration. We shall refer to this method as MUSRES.

Finally, the residual and Jacobian can be evaluated using a high order method.
This results in a full Newton iteration. Since we are using a MUSCL type method as
our high order technique, we shall refer to this method as ALLMUS.

In all cases, we use numerical differentiation to evaluate the linearized matrices
A. The convective and viscous residuals and contributions to the linearized matrix are
computed separately. The residual can be written as (see equation (7) ):

rk = rc—l'rv‘l’S

A \N+L
(rc)i:/' (fc'lf‘l’gc]) - ds
A NN+
(rv)i - _/ (fv'l' ‘I’gv]) - ds
(28) S = wvector of source terms

where 7, 1s the convective residual and r, is the viscous residual.
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TABLE 1
Nonlinear strategies

Method Jacobian Type | Residual Type
ALLFO 1st order 1st order
MUSRES 1st order 2nd order
ALLMUS 2nd order 2nd order

The first order convective contribution to the Jacobian can be evaluated very effi-
ciently using numerical differentiation. If the computational cost is measured in terms
of number of residual evaluations required to construct the Jacobian, then the first
order convective Jacobian can be constructed in a cost of four evaluations of r., regard-
less of the type of grid used. This method is described in [27, 28]. If we assume that
Qiz2up 0 equation (15) is evaluated using the nearest grid node, then the cost of numer-
ically determining the high order convective contribution to the MUSCL Jacobian is 16
evaluations of r. [29, 18, 19].

In all cases, a very straightforward approach is used to compute the viscous contri-
butions to the Jacobian. Each triangle in the list is scanned, and the primary variables
at each node are perturbed, and the result added into the Jacobian. This requires the
work of 12 evaluations of r,.

Consequently, the ALLFO and MUSRES linearized equations require 4 evaluations
of r. and 12 evaluations of r,, while the ALLMUS Jacobian requires 16 evaluations of
r. and 12 evaluations of r,.

To recapitulate the terminology introduced in this Section

o ALLFO: Jacobian and right hand side evaluated using first order upstream
weighting (13).

e MUSRES: Jacobian evaluated using first order upstream weighting, right
hand side evaluated using high order MUSCL scheme (14).

o ALLMUS: Jacobian and right hand side evaluated using high order MUSCL
scheme.

This is also summarized in Table 1.

6. Linear Solution Methods. The linearized equations (27) are solved using a
block incomplete LU factorization [30] with CGSTAB acceleration [31]. A level based
incomplete factorization (I LU(k)) [32] with various levels k was tested.

The incomplete factorization was carried out in a block sense, with the blocks being
of size 4 x 4. Pivoting was using when inverting the diagonal block to enhance stability.
The nodes in the mesh were ordered using RCM (Reverse Cuthill McKee) ordering [33].

The convergence tolerance was based on a reduction of the initial residual. If r¥ is
the linear residual, at the k’th inner iteration, then the convergence criteria was

k
(20) Irells ..,
L

Typically, tol,., = 1072, In principal, it is necessary to solve the inner iteration to
10



smaller tolerances as the Newton iteration converges in order to retain quadratic con-
vergence [34]. However, in finite precision arithmetic, it is only necessary to solve the
inner iteration sufficiently accurately, so that quadratic convergence is observed until
the desired precision (for the outer iteration) is obtained. Consequently, as long as resid-
ual reduction criteria is used for the inner iteration (as in equation (29)), with tol,s
sufficiently small, then the nonlinear convergence will be rapid. In practice, tol,., does
not have to be that small. In [18], various experiments were conducted with different
values of tol,., for the Euler equations. For example, use of tol,., = 107° compared to
tolyes = 1072 resulted in faster convergence (in terms of number of nonlinear iterations)
only at very small nonlinear residuals. However, in terms of CPU time, use of the
tighter tolerance was not beneficial.

7. Timestepping. The timestep selector was based on the changes observed in
the primary variables (p,u,v,e) over a timestep. If superscript n refers to time level,

and
_ +1
Appae = max|pi — pl,
K
_ n+1 n
Aumaﬂc - ma*x|ui _ui|7
K
AV, = max |l — ol
K
Aemae = m.aX|6?+1 _eﬂv
K

Aptarg A’ultarg A’Utarg Aetarg
’ ’ ’ ’
Apmam Aumam Avmam Aemam

(30) a = min(

where Apiorg, Atorg, AVtgrg, Aetqry are user specified timestep targets for the primary

variables, then the new timestep A" is given by

(31) A" = min(5, aAt"?).

Essentially, equations (30 - 31) will select timesteps so that the changes observed over
a timestep are approximately the target values. Initially, if large changes are observed
over a timestep, then the timesteps will be small. After a few timesteps, the observed
changes usually decrease, and then the timestep increases very rapidly.

Timesteps were cut only if a negative density or pressure was obtained as a result of
the latest nonlinear iteration, or if the inner iteration failed to converge in 100 iterations.
No underrelaxation was used.

8. Computational Details.

8.1. Test Problems. The test problems are the external flow over the NACA
0012 airfoil. The flow is considered to be laminar (no turbulence model), and would
thus correspond to flow in a rarefied gas. Seven cases were used in the GAMM workshop
[23] at various angles of attack (AOA), freestream Mach number (M) and Reynolds
number (Re). The viscosity and Prandtl numbers (taken to be constants) used in these

11



TABLE 2

Test cases, NACA 0012 airfoil, Mach Number (M ), angle of attack (AOA), Reynolds Number
(Re).

Case | M, | AOA Re
Al 0.80 | 10° 73
A2 0.80 | 10° 500
A3 2.00 | 10° 106
A4 2.00 | 10° 1000
Ab .85 0° 500
A6 .85 0° 2000
AT .85 0° 10000

Fic. 3. Grid used in computation. Left: overview, right: closeup. of trailing edge
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tests were:

p = 1.0
(32) P, = .72

The seven cases are listed in Table 2.

The grid system used in this work is a body-fitted orthogonal O-grid described in
[35]. Two meshes, 192 x 64 and 244 x 108, ( 192 and 244 nodes on the airfoil surface
respectively) have been used in computations. Each quadrilateral is divided into two
triangles in the obvious manner (see Figure 3). The dense grid thus has 26,352 nodes
and 105,408 total unknowns. The free stream boundary conditions are imposed at
distance of about 25 chord lengths from the airfoil. The average grid spacing normal to
the airfoil, at the airfoil surface (for the fine grid) is < 107* in units of chord length.

In [23], the results are given as Mach number contour plots, and plots of pres-
sure coefficient (C,), skin friction coeflicient (Cy), and heat flux coeflicient (C). The
pressure coefficient (at node ¢ on the airfoil surface) is defined as:

2(pi —1/7)
(33) Cpi = — I
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The total force acting on the fluid, from the airfoil wall, at node ¢ is given by (see
equation (26)):

Fm' == AlQ(O—uf\H—l)
(34) F, = AQ(0—oNt

If (n;,n?’;) 1s a unit vector tangent to airfoil surface, then the wall stress 7, at node ¢

on the surface is

35 wi —
(35) T I

where L,; is the length of the line segment common to the surface finite volume and
the airfoil surface. The skin friction at node ¢ is then defined as

2Twi

=7

(36) Cyi

The total heat flux from the airfoil to the fluid at a node ¢ on the airfoil surface is

AT, - TN

(37) qti L.
The heat flux coefficient is then

2qy;
(38) Chi = TR

The lift (C;) and drag (Cy)coeflicients are easily computed

__1€B — 1€EB
(39) =" Cy=tE

where L. is the chord length, and B is the set of nodes on the airfoil surface.

8.2. Nonlinear Solution Parameters. All the nonlinear iteration strategies
start with the initial guess of the free stream values for the primary variables. Next, the
ALLFO method (first order Jacobian and right hand side) is used, and continues until
|7V |2 < 1072, where r¥ is defined in equation (28). This usually only takes ~ 10 — 15
nonlinear iterations, and provides a good initial guess for the next stages of the nonlin-
ear iteration. Note that in the ALLFO stage the residual is evaluated using first order
upwinding. The initial timestep is set at 1073, and the timestep control parameters for
this stage are (see equation (30)).

(40) Aptarg = A'ultarg = A'Utarg = Aetarg = 2.0

After many experiments, and bearing mind our experience with the Euler equations
[18], we settled on the following two strategies
13



o ALLFO+MUSRES: After the ALLFO stage described above, the residual is
recomputed using the MUSCL residual. The MUSRES iteration (first order
Jacobian, MUSCL residual) then continues until convergence. The nonlinear
convergence criteria is

[Cad[P

~ 107°
I2

(41)

7

where |[7#| is the residual computed after the ALLFO stage. Typically, the
initial timestep in the MUSRES stage was set at At = 107, and the timestep
control parameters were as in equation (40).

o ALLFO+MUSRES+ALLMUS: The first two stages of this method were the
same as for ALLFO+MUSRES, except that the MUSRES stage was terminated

when

]2

= < 1071
I2

(42)

7

The iteration was then switched to ALLMUS (high order Jacobian and residual)
until convergence condition (41) is satisfied. Timestep parameters for all stages
were as in equation (40). The initial timestep for the ALLMUS step was
essentially infinite (At = 10129).

Note that the nonlinear convergence condition (41) is relative to the starting guess
from the ALLFO stage, which is quite a good initial estimate. Usually, the actual
nonlinear residual at convergence ~ 1078, The changes in the primary variables over
the last timestep ( where the maximum CFL number is often ~ 10'°) are typically
~ 1077, so that the primary variables (for the full Newton methods) are likely to be
correct to 5 — 6 figures.

In all cases, the inner iteration was terminated using criterion (29), with tol.., =

1073,

8.3. Linear Solution Parameters. Problems A2 and A6 (see Table 2) were used
to determine the best parameters for the linear solver, for both the ALLFO+MUSRES
and the ALLFO4+MUSRES+ALLMUS nonlinear methods. The 192 x 64 grid was used
for these tests. Table 3 shows the results using various levels of fill for the incomplete
factorization ( ILU(k)) [22].

On the basis of the results in Table 3, ILU(2) was selected for all tests in the
following. It is interesting to observe that for ALLMUS type nonlinear iterations for
the Euler equations [18], at least I LU (2) was required to obtain convergence of the inner
iteration, while Table 3 indicates that /LU (1) converges for the full Newton Jacobians
in ALLMUS iterations for the Navier-Stokes equations.

9. Numerical Experiments.

9.1. Nonlinear Iteration Tests. Table 4 shows the CPU time for the test prob-
lems using both nonlinear iteration methods. The 192 x 64 grid was used for these tests.
14



TABLE 3
Comparison of ILU methods, Cases A2, A6, 192 x 64 grid, CPU hrs, SUN Sparc-10.

Nonlinear Method | ILU(0) | ILU(1) | ILU(2) | ILU(3)
Case A2
ALLFO + MUSRES | 1.77 1.40 1.32 1.38
ALLFO 4+ MUSRES | *** .96 74 .80
+ALLMUS
Case A6
ALLFO + MUSRES | 2.43 2.07 2.01 2.08
ALLFO 4+ MUSRES | *** 71 74 .83
+ALLMUS

% Run aborted due to too many inner iteration failures

Note that in [23], none of the participants obtained a steady solution for case A7. This
will be discussed further in the next Section.

Table 4 shows that the ALLFO+MUSRES nonlinear iteration strategy fails to con-
verge for cases A3 and A4 using the timestepping and convergence tolerance parameters
discussed in Section 8.2. We attempted various different timestepping strategies, and
inner iteration tolerances, but we were unsuccessful in getting the MUSRES type meth-
ods to converge for cases A3 and A4. Similar problems with MUSRES type iteration
methods were observed for the Euler equations with supersonic freestream boundary
conditions [18]. In [11], MUSRES nonlinear iterations compared poorly to full Newton
iteration when used on a wedge problem with supersonic free stream flow (Navier-Stokes
solution). However, note that in references [23] and [25], problems A3 and A4 did not
appear to cause great difficulty. As discussed by [25], this may be because most of
the flowfield is supersonic, and hence an explicit time marching method can be effi-
cient at moving information from upstream to downstream nodes. Note that by using
x = 1/3 in equation (15), we are following one of the recommended strategies for defect
correction iteration as discussed in [17]. Because of the failure of the MUSRES step
in the ALLFO4+MUSRES+ALLMUS iteration, it was necessary to alter the nonlinear
iteration parameters discussed in Section 8.2. During the MUSRES step, the switch to
the ALLMUS step was triggered when

N
(43) @ <2x107*
1771
with ||r4]]; being the initial residual after the ALLFO step. However, if the ALLMUS
step was started with a large timestep, the Newton iteration failed to converge. It was
necessary to start the ALLMUS step (for problems A3 and A4) with At = 1073. The
timestep control parameters for this ALLMUS stage are (see equation (30))

(44) Aptarg = A'ultarg = A'Utarg — Aetarg = .05

Consequently, choice of these parameters resulted in significantly more CPU time for
problems A3 and A4 compared to the other test problems. This should be viewed as
15



TABLE 4
Comparison of nonlinear iteration methods, 192 x 64 grid, CPU hrs., SUN Sparc-10

CPU hrs
Test Case | ALLFO+MUSRES | ALLFO+MUSRES
+ALLMUS
Al .89 .64
A2 1.32 .74
A3 oAk 1.91f
A4 Hokok 1.701
A5 1.78 .74
AG 2.01 .74
AT 2.10 .89

*¥* Failed to converge in 500 timesteps
T Different timestepping strategy

a result of the fact the MUSRES step did not produce a good enough estimate for the
ALLMUS step (see Table 4).
Since the use of a full Newton iteration for the final nonlinear stage is always faster
and more reliable than the defect correction approach, we will use the ALLFO+MUSRES+ALLMUS
strategy for the fine grid tests.

9.2. Inner Iteration Tolerance. Figure 4 compares the use of different inner
iteration tolerances (tol,.s in equation (29)) during the ALLMUS stage for Test Case A6
(192 x 64 grid, ALLFO+MUSRES+ALLMUS iteration used). Values of tol.., = 107°
and tol,., = 1072 were tested. The use of tol,., = 107¢ does improve the rate of
convergence slightly (in terms of number of iterations) as the limit of double precision
accuracy is reached. However, in terms of CPU time, it is not beneficial to use the tighter
inner iteration tolerance. Consequently, the the inner iteration tolerance tol,., = 107>
will be used in the following.

9.3. Fine Grid Results. Figures 5 and 6 show the results for C,,, C¢, C} and the
Mach number contours for problems A4 and A6 (244 x 192 grid). These results, as well
as the results for the other test cases, are in good agreement with those in [25].

Table 5 shows the lift and drag coefficients for all the test cases, which are also in
good agreement with the results in [23].

Note that in [23] none of the participants obtained a steady state solution to Test
Case A7. However, no particular difficulty was seen in obtaining a small residual solution
for this problem on the fine grid (244 x 108) using full Newton iteration. Figure 7
shows C, and C}, for Case A7. Figures 8 and 9 show the skin friction and Mach number
contours for Case A7 in detail. In reference [25], unsteady solutions were found at
coarse grids, but on the densest grid used, the solution was steady. However, the Mach
number contours (on the finest grid in [25]) do not agree with the results computed in
this work (see Figure 9).

It is difficult to draw firm conclusions about the existence of a steady solution for
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TABLE 5
Lift coefficients Cy and drag coefficients Cq for the test cases (244 x 192 grid).

Case C Cy

Al .5580 .6506
A2 14692 2817
A3 .3297 .4850
A4 .3407 .2548

A5 5x107° | .2326
A6 2 x107* | .1319
AT 4 x107* | .0851

problem A7. Note that the grid used in this work is quite dense in the direction normal
to the airfoil (normal spacing ~ 10~* in units of chord length), and that we are using
the full Navier-Stokes equations, not the thin layer approximation that is commonly
used. On the other hand, it may be that the use of Newton iteration can produce a
steady solution which is difficult to obtain using more explicit timestepping approaches.

Table 6 shows the run statistics for the fine grid computations. As for the coarse
grid, it was necessary to use the modified timestepping parameters (see equation (43))
in order to get convergence for problems A3 and A4. Consequently, these two problems
required about double the CPU time compared to the other test cases.

Examination of Table 6 shows that for test cases A1, A2, A5, A6, A7 (subsonic free
stream conditions), the number of nonlinear iterations required to meet the convergence
criterion (41) is in the range 30 — 45. It is also interesting to observe that for these
transonic problems, the average number of inner iterations per outer iteration was < 10.
Since the number of unknowns here was ~ 100, 000, this indicates that these Jacobians
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F1G. 6. Results for problem A6: Cp, C;, Cy and Mach number contours (244 x 192 grid).
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F1c. 8. Results for problem A7: skin friction (244 x 192 grid).
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TABLE 6
Run statistics for the ALLFO+MUSRES+ALLMUS method, 244 x 192 grid (105,408 unknowns),
SUN Sparc-10.

Case | CPU time (hrs) Fraction of total Total Inner | Total Nonlinear
time in linear solver | iterations 1terations
Al 1.7 .61 257 31
A2 1.8 .63 295 35
A3 5.11 .55 277 91
A4 4 .41 .53 259 105
Ab 1.73 .63 275 33
AG 1.85 .64 297 36
AT 2.6 .66 403 45

T Different timestepping strategy

TABLE 7
Comparison of Storage (KWords in single precision) for various ILU Levels (244 x 108 grid).

ILU(0) [ ILU(1) | ILU(2) [ ILU(3)
ALLFO or MUSRES | 2,923 | 3.759 | 5,392 | 7,048
ALLMUS 5,383 | 10,315 | 16,768 | 23,192

are comparatively easy to solve. A more detailed perusal of the history of these runs
shows that the ALLMUS type Jacobians (second order) were somewhat harder for
the iterative solver compared to the MUSRES (first order) Jacobians. In general, the
ALLMUS Jacobians required ~ 15 — 20 inner iterations, but this is again quite good
considering the number of unknowns.

For problems A3 and A4 (supersonic free stream conditions), only 3 — 4 inner
iterations were required (on average) in order to meet the inner iteration tolerance
(tol,es = 1073, see equation (29)). Since the flow field is largely supersonic, then there
exists an ordering of the nodes which results in the Jacobian having a mostly lower
triangular structure. Although we made no attempt to determine such an ordering in
this study (RCM ordering was used), the Jacobian is obviously very easy to solve.

Table 7 shows the storage required to store the ILU factors for the first order and
second order Jacobians, for various levels of ILU (k). Clearly, the robustness of using
an ILU(2) with the ALLMUS type iteration comes at a price: the storage required for
this method is much greater than that required for an /LU (0) with the MUSRES (first

order Jacobian) method.

10. Conclusions. Full Newton iteration (second order Jacobian, second order
residual) was always faster and more reliable than the commonly used defect correction
approach (first order Jacobian, second order residual) for the test cases from the GAMM
workshop [23]. The use of an ALLFO method (first order Jacobian, first order residual),
followed by the defect correction approach (MUSRES) generally provided a good initial
guess for the full Newton iteration stage (ALLMUS).
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The test cases [23] can be divided into two categories: subsonic free stream condi-
tions and supersonic free stream conditions. For the subsonic free stream cases, both
the full Newton and defect correction methods converged, although the full Newton
approach was more efficient. For the supersonic free stream cases, we were unable to
get the defect correction method to converge (a similar situation was observed with the
Euler equations [18]). This meant that a good initial guess was not available for the
full Newton portion of the ALLFO+MUSRES+ALLMUS iteration. This problem was
overcome for the full Newton approach by simply using a small timestep at the start of
the ALLMUS iteration.

The first order Jacobians were easily solved using an ILU(k) preconditioner with
CGSTAB acceleration. For the first order Jacobians, even an ILU(0) preconditioner
converged, but level ILU(2) was slightly more efficient than other levels tested. For
the test cases with subsonic free stream conditions, the full Newton Jacobian required
at least ILU(1) preconditioner for convergence, but again, /LU (2) was generally more
efficient. Convergence of the inner iteration (for ILU(2))was achieved in 10 — 20 iter-
ations for problems with ~ 100,000 unknowns. For the test cases with supersonic free
stream conditions, the Jacobians were very easy to solve (3 — 4 iterations), although no
particular care was taken with the ordering of the unknowns,

To summarize, no particular difficulty was observed in solving all the Jacobian
matrices (even the full Newton Jacobian) using an incomplete factorization of at least
level (1).

The robustness of the ALLFO4+MUSRES-+ALLMUS nonlinear iteration method
(low order methods used to obtain an initial guess, followed by full Newton iteration)
comes at a price. The full Newton Jacobian and the ILU factors require considerably
more storage than the low order approximations to the Jacobian.

Finally, it is interesting to note that we have obtained a steady solution to test Case
A7 which was not obtained by any of the participants in the original GAMM workshop
[23]. A steady solution was obtained by [25] using a dense grid, but our solution does
no agree with that in [25]. Our other results for problems A1-A6 are in good agreement
with those in [23, 25].
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