An Analysis of Polynomial Composition Algorithms
Computer Science Department
University of Waterloo
Research Report CS-95-24

Stephen Mann and Wayne Liu

June 27, 1995

Abstract

An analysis is made of the runtime of a previously published algorithm for polynomial
composition. Two new, more efficient algorithms are presented. One of these algorithms is
optimal, while the other algorithm is numerically more stable than the optimal one.

Additionally, as a generalization of polynomial composition, we show how to compose a
multiaffine function with a set of polynomials as an extension to an earlier algorithm for com-
posing two polynomial functions. With this extension, we are able to perform degree raising
with composition.

1 Introduction

Many CAGD operations can be implemented using polynomial composition. As discussed in [2], we
can implement evaluation, subdivision, freeform deformation, conversion between tensor product
and Bézier simplex forms using polynomial composition. In that paper, an efficient algorithm for
composing two polynomials in Bézier simplex form was presented. No analysis was given for the
runtime of this algorithm, however.

In Section 3, we analyze the runtime of this composition algorithm. In Section 4, we then present
a variation on this algorithm that is more efficient. A second variation that is optimal is presented
in Section 5. However, this optimal algorithm is numerically less stable than the non-optimal one,
motivating the presentation of both techniques.

Further, while we can recast many CAGD problems as polynomial composition, we have been
unable to implement degree raising using polynomial composition. That is, given the control points
for a degree n polynomial function F, find the control points for the degree n 4 1 representation of
this function. In Section 8, we present a generalization of the composition algorithm for two Bézier
simplices, and show how it can be used to degree raise a Bézier simplex.

All the pseudo-code used by the algorithms appears in Appendix B.

2 Notation and Background

In this section we briefly summarize the basic concepts of blossoming and we introduce a number of
notational conventions that have been invented to simplify the manipulations needed in Section 8.

2 University of Waterloo, CS-95-24

The notation used in this paper is a simple extension of the notation in the DeRose et al paper [2]
and is summarized in Table 1.

Multi-indices and Hyperindices

Most of our notation deals with the indexing of multivariate polynomials. While univariate Bern-
stein polynomials are commonly indexed with integers, multivariate Bernstein polynomials are most
easily indexed using tuples of non-negative integers such as 7= (4o, ..., %), %0, ---, 4 > 0. We shall
refer to such tuples as multi-indices.

We denote the norm of a multi-index 7’ by |7], and define it to be the sum of the components
of 2. We use the symbol ¢ to stand for the set of all multi-indices 7 = (i, ..., 4) with |2] = d.
For example, I = {(0,0,2),(0,1,1),(0,2,0),(1,0,1),(1,1,0),(2,0,0)}. The symbol &; will be used
to denote a multi-index that is 1 in the jth component and zero in the rest of the components; 0
denotes a multi-index whose components are all zero. Addition and subtraction of multi-indices is
defined componentwise.

We shall also have occasion to use tuples of multi-indices, such as I = (71, ...,%,) €]Ii’m, where
]Iz’m denotes the m-fold Cartesian product]IZ1 X oo X]IZ'" (for notational convince, we ignore dy).
We shall refer to such tuples as hyper-indices. When d; = ... = d,,, = d, we denote]Iz’m as]Ii’m.
Again we use the notation |I| to denote the sum of the components of I. Notice that whereas |7] is
an integer, |I| is a multi-index. Therefore, for I €]Ii’m, the expression ||I|| evaluates to the integer
|71] + - - - + |#n|. Note that for most of the paper, we will use the]Iz’m notation. We will not use

the]Iz’m notation until Section 8.

Bernsteins and Béziers

Using this indexing notation, the k-variate Bernstein polynomials of degree d can be defined by

AN)
Bé(bo, ..., b) = (4) YA

1

where 7 = (ig, ..., i) € I, b, ..., by € IR, and where

A
of BRI

is the multinomial coefficient. Notice that each of the Bernstein polynomials is a homogeneous
polynomial of degree d. It is known [1] that for every polynomial Q : X — Y of degree d, where X
is an affine space of dimension k and Y is an affine space of arbitrary dimension, there exist unique
points {Vf}?e][g in Y such that

Q(u) = Y V;iBi(bo, ..., br), (1)

7€l

An Analysis of Polynomial Composition Algorithms 3

where by, ..., b, are the barycentric coordinates of u € X relative to a simplex A = (xo, ..., X)
of points in X'. (For a description of affine spaces, simplices, and barycentric coordinates see, for
instance, Farin[5] or DeRose[4].)

A polynomial @), when expressed as in Equation 1, is called a Bézier simplex; the points V;
are called the control net of @ with respect to the domain simplex A. Note that a degree d Bézier
simplex with a domain of dimension k has [I%| = (d"};k) control points [2].

We shall often write BZ(u) with the understanding that u should be replaced with its barycentric

coordinates relative to the appropriate domain simplex. If I = (71, ..., %y) €]Ii’m, we define B}'l’m(u)

to be the product B?ll (w)-...- B?':’(u). We shall make use of the following product relation satisfied
by the Bernstein polynomials:

BI™ (w) = ¢(1) Bl (u) 2)

where C([) is a combinatorial constant given by
Bl |m]
o)\
c(I) =
[1]]
7|

This relation is easily proved using simple manipulation of the Bernstein polynomials (c.f. [3]).

Blossoms

Ramshaw [6] discovered how to exploit a connection between Bézier simplices and symmetric multi-
affine maps. A map ¢(uy, ..., uy) is said to be multi-affine if it is affine when all but one of its
arguments are held fixed; it is said to be symmetric if its value does not depend on the ordering of the
arguments. Associated with every polynomial @ : ¥ — Y of degree d there is a unique, symmetric,
d-affine map, ¢ : X9 —), that agrees with Q on its diagonal (the diagonal of a multi-affine
map g¢(uy, ..., uy) is the function obtained when all arguments are equal: Q(u) = ¢(u,u, ..., u)).
Ramshaw refers to this multi-affine map ¢ as the blossom of Q.

Ramshaw has shown that the Bézier control net for a polynomial relative to a domain simplex
can be obtained by evaluating the polynomial’s blossom at the vertices of the simplex. More
precisely, if X" is an affine space of dimension k, @ : ¥ — Y a polynomial of degree d whose blossom
is ¢, and A = (%o, ..., X;) a simplex in X, then Ramshaw has shown that the Bézier control net of
Q relative to A is given by

d
Vi=q(Xo, e, X0y X1y eery X1y * 7y Kby ooy Xfp) -
N e’ N’
’io il ,Lk
for all 7= (4o, ..., i) € I4. Using Farin’s blossom notation [5], this equation can be written as

_ <ip> <i1> <ip>
V;—Q(XO » X)y Xy)

4 University of Waterloo, CS-95-24

Polynomial Composition

The basic polynomial composition problem is the following:

Given: Affine spaces X, Y, and Z (of dimensions Kx, Ky, and Kz respectively),
control points {Gf}?e][ﬁ(defining a Bézier simplex G : X — Y of degree £ relative to
X
a domain simplex Ay C &', and control points {Fﬁ}ﬁe][}? defining a Bézier simplex
Y

F :Y — Z relative to a domain simplex Ay C).

Find: The control points {Hj}jellrgz of the degree m¢ Bézier simplex H = F oG relative
X
to Ay.

Solution: If f denotes the blossom of F, then

Hy= >, C(Df(G1), Jelg, ®)
Tex”,
HE
where G with I = (71, ..., %) is an abbreviation for (Gz,,...,Gz,)-

A proof of this result can be found in the paper by DeRose et al [2], and a generalization of this
proof can be found in Section 8.

In the following sections, we will make frequent use of the number of G’s control points, which
we will denote as #G. Note that #G = (l}KX), with G, Kx, and £ defined above.

X

3 Implementation and Analysis

DeRose et al [2] used symmetry and reuse of intermediate results to reduce the computation cost of
computing the control points of H using Equation 3. In this section, we discuss these two techniques
and analyze their runtime behavior. Note that the code in Figures 10, 11, and 12 appeared in [2].
Further note that unless otherwise stated, our algorithms will evaluate the blossom f(Gj) one
argument at a time, in the order given by I.

de Casteljau’s Algorithm

Bézier curves and surfaces are commonly evaluated using de Casteljau’s algorithm. This algorithm
uses repeated linear interpolation to evaluate Bézier simplices. In addition to evaluating the Bézier
simplex for position, the intermediate results can be used to compute derivatives. Further, the
algorithm can be extended to evaluate a single argument of the blossom. See Farin’s book [5] for
more details on de Casteljau’s algorithm.

Note that the intermediate values used in a de Casteljau evaluation of a degree d, dimension k
Bézier simplex can be stored in simplex of one higher dimension (i.e., with (d",';_lr_i'l) storage). Further,
each point in this simplex (other than the initial control points) is computed using one linear
combination. Thus, a full de Casteljau evaluation requires (d+k) linear combinations during its

) k+1
computation.

An Analysis of Polynomial Composition Algorithms

Notation | Description
IR | The set of real numbers.
IR™ | n-dimensional real space.
a, ...,z | Integers and real numbers.
X, Y, etc. | Affine spaces.
Kx | The dimension of the affine space X’
a, ...,z | Affine points.
A | Domain simplex.
@, ...,z | Multi-indices.
|2l | =40+ - -+ i where 7= (do, ..., ik).
I¢ | The set of all multi-indices 7= (io, ..., &) with |7 = d.
I,J, I, etc. | Hyper-indices.
]Iz’m The set of all hyper-indices I = (%, ...,) with 21, ..., %, € I{.
]Ii:m The set of all hyper-indices I = (71, ..., %) with 7; €]Izj.
[I| | =%+ -+ & where I = (71, ..., %m)-
[II]] | = dm where I €]Ii’m.
(@) The multinomial coefficient io!!i'k!’ 7= (o .-, Bk)-
Bg(u) | The #th Bernstein polynomial of degree d.
BY™ | = Bd(u)---BE (u), I = (&, ..., 7).
o : () (5l
C(I) | A combinatorial constant given by W
g(uay,...,uy) | Blossom of a Bézier simplex Q(u) of degree d.
F(G1) | = f(Gy,...,Gy,) with T € T&™.
#G | = (l}ix), the number of control points of G.

Table 1: Summary of notation.

6 University of Waterloo, CS-95-24

In the initial analysis of runtime, we will count the number of linear combinations performed by
the composition algorithms. A more complete runtime analysis can be found in Section 6, where
we show that the cost of the more sophisticated algorithms is proportional to the number of linear
combinations performed.

In Figure 10, we present some code for performing partial blossom evaluations. All the linear
combinations are performed in EvalBlossomArgument (), which evaluates one blossom argument
by performing a single step of de Casteljau’s algorithm.

3.1 Naive Algorithm

A naive implementation of the composition algorithm would compute each H; by performing a full
evaluation of f for every possible hyperindex I €]I_l;’g; where |I| = 7. Note that this means we
will be evaluating f exactly once for each hyperindex /. As mentioned earlier, a full de Casteljau

”%;Iif) linear combinations. Since the number of multi-indices of dimension

Kx f:md degree £ is (Z}I){(X) = #G, the number of hyper-indices will be ##G™. Thus, this algorithm
requires

evaluation requires (

(m—I—KY

N 1)#Gm)

linear combinations. We shall refer to this algorithm as the Naive Algorithm.

3.2 One Permutation Algorithm

The first way to improve the Naive Algorithm is to use the symmetry property of blossoms. This
property allows us to evaluate f only at hyperindices that are unique up to permutations. Using
such hyperindices, we only care how many times each multi-index z; appears in I, not where each 7;
appears. Thus, we can convert the hyperindex I to a multi-index 7, where 7; is the number of times
7; appears in I. The dimension of 7is one less than the number of G’s control points, and the degree
is the number of multi-indices in the hyperindex I (which, in the case we are considering, is m).
Thus, 7€ I4¢_,. For example, if G has five control points, Gy, ..., Gz, and if F is fourth degree,
then the hyperindex I = (%, %, %, 72) can be thought of as the multi-index 7= (3,0,1,0,0) € I3.

Normally, we prefer to think of hyperindices and multi-indices as different, since they are used
in different ways and if we care about the order of the multi-indices within the hyperindex, then
the above correspondence fails to hold. However, such a correspondence is useful in counting the
number of hyperindices that are unique up to permutations, which is

. | = #G —-14+m
#EUIT L #G -1)

Thus, by evaluating at hyperindices that are unique up to permutations, the number of linear
evaluations required by the composition algorithm is reduced to

m+ Ky [#G—-1+m 5
Ky +1 #G -1 ’ (

~—

An Analysis of Polynomial Composition Algorithms 7

Note that to compute the Hy, we will need to weight each f(Gr) by the number of permutations
of the multi-indices within I [2]. We shall refer to this algorithm that only evaluates f(G) once
for all permutations of I but makes a full de Casteljau evaluation for each of these Grs as the One
Permutation Algorithm.

Comparison of Naive and One Permutation Algorithms

For a comparison of the runtime of the two algorithms, we need to compare Equation 4 to Equa-

tion 5. Canceling the common factor of ("Iﬁg‘ri’f), we have
" #G —1+m
#G™ wvs (m
m [#G + m — 1]!
#G m!(#G — 1)!
m!

Alternatively, we could have chosen to cancel the m! term, giving us

. 55" m+ 4]
#G" wvs (7#1EG 1)1

If we fix Ky and m and allow #G to increase, then the former is the appropriate equation, and we
see that asymptotically we achieve a factor of m! speedup. If we fix Ky and #G and allow m to
increase, then the latter is the appropriate formula, and we see that we asymptotically a speedup

of
HG™(HE 1))
m#G

which is exponential in m.
Note that Ky appears in neither the left or right side of our equation, so we have a “constant”
speed-up factor of
#G™
(#G—l-l—m)

m

as Ky increases while m and #G remain constant.

3.3 The 1993 Algorithm

Now suppose we use the algorithm of DeRose et al (i.e., reusing partial blossom calculations).
This code appears in Figure 12, with some supporting code (to initialize H) in Figure 11. By
construction, this algorithm iterates over hyperindices I €]I_l;’g; in lexicographical order by first
selecting a multi-index 7" and partially evaluating f at Gj. This partial evaluation is used to
compute f(Gy) for all hyperindices beginning with 7. The algorithm selects (and evaluates at) the
remaining multi-indices recursively (each of which must be lexicographically equal to or larger than
7), until we have fully evaluated f. We shall refer to this algorithm as the 1993 Algorithm.

8 University of Waterloo, CS-95-24

We will now derive the runtime of the 1993 Algorithm. Suppose the algorithm has continued for
k steps and it has selected multi-indices 71, ..., 7, where 77 < ... < 7}. At this point the algorithm
will have evaluated f at Gy, ..., Gz, and the calls to EvalBlossomArgument () will have computed
the blossom values

i <JKy >
f(Gi'la"'aGfkay(§]0>a"'ayK;(Y)a (6)

for all 7 ¢]I%;k Note that EvalBlossomArgument () computes each of these blossom values with
a single linear combination. If we relabel G’s control points from 0 to #G — 1, then we can rewrite
the blossom values of Equation 6 in the form
; <dgao1> <ige> < >
HGE™ o G yo ¥yt), (7)

where 7' = (i, ...,i461Ky) € Ig K, - Further, the process of the 1993 Algorithm described in
the previous paragraph ensures that all 23,...,%; for k = 1..m where 77 < ... < 7} are selected
exactly once. Therefore, the algorithm will compute the blossom values of Equation 7 exactly once
for each 7'in Wy, k. -

Thus, we can think of the blossom values of Equation 6 to be embedded in a simplicial array of
dimension #G + Ky and degree m. For each point in this simplicial array (except for the control
points of F'), we perform one linear evaluation, and so the 1993 Algorithm performs

(m+#G+KY) - (m‘|‘KY)‘ ®)

m m

linear combinations.

An example appears in Figure 1. In this figure, m = 3, Ky = 1, and G has three control
points (which we will subscript 0, 1, and 2). We embed the composition algorithm in a degree 3,
dimension 4 simplicial array. Along one edge, we place F’s control points (drawn as black dots).
Each time we evaluate f at Gg, we move “up” one simplex. For each argument we evaluate at G,
we move up one level within the current simplex. And for the remaining arguments (which are all
G.), we finish evaluating the blossom in the remaining dimension, giving one of the contributing
points to H’s control points (drawn as a hollow circle in the figure). Note that the results we care
about lie along one “face” of this high dimensional simplicial array.

Comparison of the One Permutation and 1993 Algorithms

We will now compare the number of linear combinations used by the One Permutation Algorithm
(given by Equation 5) to the number of linear combinations used by the 1993 Algorithm (Equa-

tion 8):
m+ Ky [#G—-1+m m+ #G + Ky B m+ Ky
Ky +1 m vs m m
(m—l— Ky) (m+#G -1 (mt #G - DI (m+ #G+i) (m—l—Ky)
Ky +1) mi(#G - 1)! mi(#G — DI (#G + 1) m
(m + Ky) _ (m+ Ky)! s Hfi%(m +#G +1) (m-;le) (9)
Ky+1) (m-1){(Ky +1)! M@e+i (Fom)

An Analysis of Polynomial Composition Algorithms 9

0 (GyG,Gy)

(G Gy G,)

f(GyGyGy)

f(G4G,.G,) 2

f(GyG,G,)

f(GyG,G,)

f(G,G,.G,)

f(G,.6,G,)

f(G,.G,G,)

f(G,G,G,)

Fo=f(y Yo Yo)
F1=f0o¥1 Y1)
Fa=1(Yy¥1.¥1)

Fa=f(y;.y1.¥,)

Figure 1: Evaluations performed by 1993 Algorithm

m-l—Ky

KY+1) from both sides, leaving

In a similar fashion, we can instead cancel a factor of (

m

(#G—l—l—m)_(#G—l—l—m)! os ME5(m+ Ky +i) Ky+1
 ml(#G - 1)! me&:(;(Ky—l—z) m

We now consider the following three cases:

e #(G grows while Ky and m are fixed. In this case, we see that the limit of the right hand
term of Equation 9 is 1. Thus, the 1993 Algorithm performs better than the One Permutation

Algorithm by a factor of
m+ Ky
m—1]

This can be seen in the graph on the left in Figure 2. The theoretical asymptote is 15 for
Ky = 3 and m = 3. While the apparent asymptote in this figure appears to be about 14,
note that the term on the right of Equation 9 is about 1.08. As #(increases further, the
ratio of the runtimes becomes closer to 15.

e m grows while Ky and #G are fixed. For large m, Equation 9 reduces to

mEy+1 mEy+l (m+ Ky)(#G - 1)!

(Ky + 1)! ve [TEY(#G +14) EKy'(#G -1+ m)!

10 University of Waterloo, CS-95-24

10| 10 10

L

50 100 150 50 100 150 50 100 150
#G m Y

Figure 2: Comparison of the One Permutation Algorithm and the 1993 Algorithm. Graphs showing
the ratio of the runtime of the One Permutation Algorithm to the runtime of the 1993 Algorithm.
The graph on the left shows the ratio as we increase #G for Ky = 3 and m = 3. The graph in the
middle shows the ratio as we increase m for #G = 3 and Ky = 3. The graph on the right shows
the ratio as we increase Ky for #G = 4 and m = 3.

Note that the subtrahend on the left side of the equation is never larger (in terms of m) than
O(mEy=#G+1) 50 this equation simplifies to

mEv+1 mEv+1
(Ky +1)! 155 (#G +9)
Thus, the 1993 Algorithm is faster by a factor of
[(#G+4) (#G+ Ky
(KY + 1)' Ky +1

This effect can be seen in the middle graph of Figure 2. Again, our theoretical asymptote
is 15, although m would have to be much larger for the graph to approach this asymptote.
Note that this result can also be derived from Equation 10.

e Ky grows while m and #G remain fixed. Here we work with Equation 10. To reduce this
equation, we have to determine the limit of the right hand side of the equation as Ky goes
to infinity:

#G .
oy Hici(m+ Ky +4) Ky +1
Ky—oo m[[2S(Ky + 1) m
_ g TEOnt Ky) - T (Ky +)

Ky=roo m IS5 (Ky +1)

G G . G-1 G G . G-1

[KEC + (#Gm+ TES KT - [KEC + (SHS ok EC

777,K;'EEG_1

— 4G
Thus, 1993 Algorithm is faster than the One Permutation Algorithm by a factor of
(m-l—#G—l)

m

4G

An Analysis of Polynomial Composition Algorithms 11

An example is seen in the graph on the right in Figure 2 where our asymptote is 5.

Note that the above derivation means that as Ky increases to infinity, the runtime of the

1993 Algorithm simplifies to
K
4G (m + Y)

Ky +1

4 Improved Algorithm

In this section, we give an improvement on the 1993 Algorithm. Basically, we find an ordering of
the multi-indices that makes better use of the partial blossom evaluations.

We begin by noting that any algorithm based on Equation 3 must compute f(G=™") for all
7. Thus, we should try to maximize the use of these evaluations. If we consider de Casteljau’s
algorithm, the highest cost evaluations of the blossom arguments are the first ones. To optimize
our computation, we should try to use these as much as possible. Therefore, we will order the
evaluation of the blossom in nonincreasing order of the multiplicity of each argument. I.e, we only
evaluate f at

¢ <ip>
FGE>, ., G5,

where ¢; > 45 > ... > i and 2 + ...+ i = n. Further, to ensure that we only evaluate once for all
permutations of a set of arguments, we will require that if ¢; = 4,1 then 2 < 7;11. We shall refer
to this algorithm as the Improved Algorithm.

Pseudo-code for this algorithm appears in Figure 13. We have to be careful with the minimum
number of times we evaluate at an argument, otherwise we might perform extra evaluations. Also,
left unspecified in our pseudo-code is how to compute ‘ngt()’ and ‘nlt()’ (which count the number
of unmarked multi-indices in a set greater than and less than the given multi-index). We have to
be careful how we compute these values or we will add to the Big-O runtime of the algorithm.

An example of the operation of this algorithm appears in Figure 3. Again, the initial control
points of F are drawn in black. The control points needed by the composition algorithm are drawn
as hollow dots. All of the lines appearing in Figure 1 are drawn in this figure, but ones in regions
where no linear combinations were computed are drawn as dotted lines. Further, some additional
lines between the simplices have been drawn to indicate linear combinations used by the Improved
Algorithm that are not used by the 1993 Algorithm. Also note that the order of some of the
arguments of these blossom values has changed to reflect the new order of evaluation. Finally,
note that the Improved Algorithm does not compute four blossom values computed by the 1993
Algorlthm (f(Gl, G2, yo), f(Gl, G2, yl), f(Go, G2, yo), and f(Go, G2, yo))

It is unclear what the run-time of this algorithm is. However, note that it has the same run
time as the 1993 Algorithm if the degree of F is two or less. Empirical testing shows that while
the Improved Algorithm is faster than the 1993 Algorithm, it is not significantly faster until m
becomes large (Figures 6-9). It should be noted, though, that if Ky > #G and m is large, then
the Improved Algorithm performs much better than the 1993 Algorithm, and almost as good as
the Optimal Algorithm described in the next section (see Figure 9).

12 University of Waterloo, CS-95-24

0 0 f(GyG,G,)
(GGG)

001
.|
f(Gy Gy Gy)

f(G,.G,.G,) 2

(GG, G,)

Fo=f(y o¥ oY)
Fi=fly o¥ 1¥4)
Fo=f(y oy 1¥1)

Fa=fly 1y 1Y)

Figure 3: Evaluations performed by the Improved Algorithm

5 An Optimal Algorithm

In this section we present a composition algorithm that is optimal in a Big-O sense in that for
each I at which Equation 3 requires us to evaluate f(Gy), this new algorithm performs one linear
evaluation (with some additional linear evaluations required for an initial change of basis). The key
observation is the following: If we reparameterize F over a simplex consisting of G’s control points,
then all of the control points of F are values of the form f(G;) and can be used in computing H’s
control points. Working with a representation of F in this basis, every intermediate point computed
by de Casteljau’s algorithm when evaluating at a set of G’s control points gives us one of the f(G)
we need to compute the control points of H.

Before presenting the algorithm, we first note that no algorithm based on Equation 3 can

perform fewer than
#G+m -1
m

linear combinations, as this is the number of I €]Iﬁ’g; that are unique up to permutations (i.e., the
number of times we must evaluate f when computing the control points of H).

We can very nearly achieve this runtime by first converting F to a representation relative to
a subset of G’s control points (that lie in general position). Then, we iterate over G’s remaining
control points with an algorithm similar to the original composition algorithm. At each partial
evaluation, every point in the de Casteljau diagram is used in the computation of H’s control
points (Figure 5, when evaluating at Gg). Further, each such point appears exactly once in the

An Analysis of Polynomial Composition Algorithms 13

Figure 4: If G only spans a subdomain of F’s domain, we perform composition with the restriction
of F to G’s range.

computation. The only points we compute that are not needed for computing H are those in the
initial basis conversion. Pseudo-code for this algorithm appears in Figures 14, 15, and 16. Note
that the changes to 1993 version of RecursiveCompose() are minor: A call to ExtractCPs() is
inserted before the if statement, and the code inside the if statement is reduced to a return
statement. We shall refer to this algorithm as the Optimal Algorithm.

As written, the routine ConvertBasis() is not always correct. Potentially, the subset of G’s
control points selected by the routine might not form a proper simplex. A correct version must
select Ky + 1 of G’s control points that form a proper simplex in Y, evaluate at these points, and
continue processing from there. This adds a slight complication: The remainder of the composition
algorithm needs to iterate over G’s remaining control points (i.e., those not used in the basis
conversion).

There are a couple of approaches for handling this problem. One approach is to mark the
control points selected for the new basis of F and skip them in the loop in RecursiveCompose()
of Figure 14, with j,;, starting at G’s first control point. A second approach is to create a linear
list of multi-indices into G’s control points. Then, before converting basis, a subset of G’s control
points would be selected and moved to the beginning of the array. With this latter approach, the
loop control of the for loop of RecursiveCompose () would change to be linear offsets into this list
of multi-indices.

Also, note that if the control points of G do not span the domain of F', then we should partially
reparameterize F over a subdomain spanned by G’s control points, extract the control points of F
over this subdomain, and proceed with the algorithm from this point (Figure 4).

An example of the operation of the Optimal Algorithm appears in Figure 5. To maintain
similarity to Figures 1 and 3, we have select G, and G as our basis for F, and after converting to

14 University of Waterloo, CS-95-24

0 0 (GG, Gy)

0 o 16454G))

o f(64GyG,)
0 o 1(G4GL6)
o 1(646,6,)

L 1(6,6,.6)) o 1(6¢5,G,)

f(G,.G,.G,)

1'"172

£(G..G,.G,)

172772

#(G,G,G,)
FO:f(y oiyOryO)
Flzf(y oY 1vy1)
Fo=f(y g¥ 1¥1)

Fa=f(y 1y 1¥q)

Figure 5: Evaluations performed by the Optimal Algorithm

this basis, we evaluate at Gg. Again, the initial control points are drawn in black. In this figure
the algorithm begins by fully evaluating F at G,. Then, starting from the points f(yo,¥yo, ¥o),
f(¥o,¥0,G2), f(yo0, Gz, G2), f(Gz, Gz, G32), we fully evaluate at G;. This completes the basis
conversion. Note that the linear combinations used for the basis convertion are indicated with
solid lines. The Optimal Algorithm then performs the 1993 Algorithm with the remaining control
point. In this case, we only have one more control points, so we get a third complete de Casteljau
evaluation. Note, however, that every point computed in this de Casteljau evaluation is a point
needed by the composition algorithm (drawn as hollow dots in the figure). The linear combinations
used by the rest of the algorithm are drawn as dotted lines in the figure.

It should be cautioned that the example appearing in Figure 5 is a bit simplistic. If #G is
larger than three, then the dotted line portion of the figure increases in dimension. For example,
if #G = 4, then while the solid line portion of the figure remains unchanged, the dotted portion
becomes a degree three tetrahedral array. Note that the corresponding simplices for the 1993 and
Improved algorithms also increase by one dimension, so the computation of the Optimal algorithm
still fits in a smaller space than the other two algorithms.

The number of linear evaluations of the Optimal Algorithm is given by the number of locations
at which we need to evaluate f plus the cost of the initial basis conversion:

m—1 m+ K m+ K
(#G +m) + (Ky +1) (K;I'—-F f) - (;;Y Y). (11)
The last term accounts for the representation of F in a basis of G’s control points, a quantity that
has been counted in both the other two terms. Note that if the number of G’s control points is less

An Analysis of Polynomial Composition Algorithms 15

than or equal to the dimension of), then the runtime simplifies to

m+ Ky
#6- (T 1)

since we will obtain all the values of f we need during the basis conversion of F. In this case, the
algorithm is no longer optimal, although it still has better runtime performance than the other
algorithms.

Comparison of 1993 and Optimal Algorithimns

To compare the runtime of the Optimal Algorithm to the 1993 Algorithm, we will look at what
happens when #G > Ky (in which case the first term of Equation 11 will dominate) and when
Ky > #G (in which case, the cost is entirely due to the basis conversion).

We begin by deriving an expression for the ratio of runtimes when #G > Ky (which we normally
expect). In this situation, the subtrahend of both equations for the runtime does not contribute
to the asymptotic behavior for reasons given in Section 3. Thus, we compare (m+#g+KY) (the
minuend of the runtime of the 1993 Algorithm) to (#G;m_l) (the first term of the runtime of the
Optimal Algorithm):

(m—l—#G—l—Ky) _ (m+#G + Ky)!
m m!(#G + Ky)!
(#G + m — DI (m + #G + 4)
mI(#G — D! THZ(#G + 1)
B (#G+m_1)nﬁg(m+#G+i)
m S0 (#G +4)

Thus we see that the runtime of the 1993 Algorithm is a factor of

15 (m + #G + i)
155 (#G +9)

(12)

slower than the Optimal Algorithm.
To do a complete comparison of the runtimes, we consider four cases:

o If we fix #G and Ky with #G > Ky and let m vary, then the denominator of Equation 12
is constant and the dominant term in the numerator is m¥v (i.e., the Optimal Algorithm is
a polynomial factor better than the 1993 Algorithm as we increase m). Graphs showing this
behavior appear in Figure 6.

o If we fix Ky and m and allow #G to vary, then again working with Equation 12 we see that
asymptotically the two algorithms have the same runtime behavior. This behavior is visible
in Figure 7, although we have to let #£G become large before it is apparent in the graph.

16 University of Waterloo, CS-95-24

3000 3.5
sk
2500
2.5¢
2000+
oL
(@] (@]
L .}
3 1500 5
1.5¢
1000F
P 1+
5001 - 0.5F
o B ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ S L]
1 2 3 4 5 6 0 2 4 6 8 10 12 14 16 18 20
m m

Figure 6: Comparison of Optimal (solid), Improved (dashed), and 1993 (dotted) Algorithms. In
this figure, #G = 6, and Ky = 2.

e Looking at Equation 12, it would appear that the Optimal Algorithm is exponentially better
than the 1993 Algorithm as we increase Ky. Note, however, that as we increase Ky above
#G, the runtime of the Optimal Algorithm is solely the cost of the basis conversion which is

#G - (";;f‘f) But as Ky goes to infinity, the runtime of the 1993 Algorithm also converges

to #G - (”;{-;fil”) Thus, the two algorithms have the same behavior as Ky goes to infinity
with m and #G held fixed.

This effect can be seen in Figure 8. When Ky is less than #G, the Optimal Algorithm
has better performance than the 1993 Algorithm. But as Ky increases beyond #G, the two
algorithms have the same runtime behavior. In the graph on the right of this figure, we see

that as Ky increases, the ratio of the runtimes tends to 1.

e Our final case is to consider the relative performance of the two algorithms as m increases
when Ky > #G. Thus, we compare (m+#g+KY) — (m";lKY) to #G - (Y)Y,

Ky+1
m—l—#G—I—KY _ m+ Ky vs #G m+ Ky
m m Ky +1

MEi(m+ Ky +i) Ky +1
m 55 (Ky + i) m

vs #HG

In this case, we see that the Optimal Algorithm is asymptotically better than the 1993
Algorithm by a factor of

O(m#G_l).

Graphs showing this behavior appear in Figure 9.

An Analysis of Polynomial Composition Algorithms 17

x 10

2
1.8f
1.6f
1.4
1.2

O
3 1F
#*

1993 / Optimal

0.8

0.6

0.4r

0.2

L I L I I I I I 1 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
#G #G

0

Figure 7: On the left, a comparison of Optimal (solid), and 1993 (dotted) Algorithms. In this
figure, Ky = 3 and m = 3. Note that the graph of the Improved Algorithm would fall between
these two lines. On the right is a graph of the ratio of the runtime of the 1993 Algorithm to that
of the Optimal Algorithm for this data.

4000
3500+
30001
2500

[e]
— 2000
#*

1993/ Optimal

1500F 15l
1000F

500

0 I I I I I I I I I 1 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 920 100

Y Y

Figure 8: On the left, a comparison of Optimal (solid), Improved (dashed), and 1993 (dotted)
Algorithms. In this figure, #G = 10 and m = 3. On the right is a graph of the ratio of the runtime
of the 1993 Algorithm to that of the Optimal Algorithm for this data over a larger range of Ky .

18 University of Waterloo, CS-95-24

x 10 x 10
18 ! ! ! ! ! ! 6
16
5L
14F
12 1 4
10+
9 , o
s} a3
** / £
8 /
/
/
/
6 / 2
/
/
/
ab
p
. 1ir
2t . p
- //
0 0 : =
1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16 18 20
m m

Figure 9: Comparison of Optimal (solid), Improved (dashed), and 1993 (dotted) Algorithms. In
this figure, #G = 4 and Ky = 9.

6 Runtime Analysis

In the previous sections, we have analyzed the runtime of the various composition algorithms by
counting the number of linear combinations made by the de Casteljau evaluations. However, this
is only part of the total runtime cost of these algorithms. In this section we give a more complete
analysis of the runtimes, and show how these costs can be reduced.

We begin by noting that each linear combination used by de Casteljau’s algorithm to evaluate
f requires O(Ky K z) operations, for a total operation count of

m+ Ky
O(KyKZ(Ky_I_l)).

However, you can also run de Casteljau’s algorithm backwards to compute scalar weights for the
control points. This variation of de Casteljau’s algorithm takes O(Ky (mni'f{ly
the weights, and O(Kz (m";lKY)) to combine the control points with these weights.

While we can use this technique to in the Naive and One Permutation Algorithms, note that it
is computationally more expensive to use this method with the 1993 and the Improved Algorithms.

Since we reuse the partially computed blossom values with these two algorithms, it is more efficient

)) time to compute

to run the forward de Casteljau algorithm as we will be reusing the evaluations that are expensive
to compute (while with the backwards de Casteljau algorithm, we would be reusing the evaluations
that are inexpensive to compute).

A second potential addition to our runtime cost is the conversion from a multi-index to a linear
index. The conversion algorithm takes O(Ky) time, and we have to use it for O(Ky) domain points.
Thus, for each linear combination in de Casteljau’s algorithm, this would increase the runtime from

An Analysis of Polynomial Composition Algorithms 19

O(Ky Kz) by an additive term of O(K%) to O(Ky Kz + K%) for a total of

o) ((KyKZ + K2) (’?{:f’l’))

However, Shoemake developed a version of de Casteljau’s algorithm that computes the linear
offsets incrementally, increasing the cost of each linear combination by an additive factor of only
O(Ky) [7].

The more sophisticated composition algorithms also iterate through G’s control points, which
requires iterating through G’s multi-indices, comparing these multi-indices, and converting these
multi-indices into linear indexes into G’s control points. This would at most add an additive factor
of O(Kx) to runtime, which is easily dominated by the cost of a de Casteljau evaluation. Note
however, that this extra cost can be reduced by precomputing an array of G’s multi-indices, each
having an extra field that is the linear index corresponding to the multi-index.

Finally, there is an additive cost associated with the pre- and post-processing of H’s control
points (Figure 11). However, this cost is proportional to the number of control points of H (times
Kz) and is dominated by other terms of the computation.

Thus, for the two naive algorithms, the full runtime cost is given by multiplying the number of
linear combinations by a factor of O(Ky), while for the three sophisticated algorithms, we get an
additional multiplicative cost of O(Ky Kz).

7 Comparison of Algorithms

We have seen five algorithms for computing the composition of two polynomials. Three issues
must be considered to decide which algorithm is appropriate for a particular application: Speed,
numerical stability, and code complexity. We dismiss the Naive Algorithm and the One Permu-
tation Algorithm since while they have the same numerical properties and roughly the same code
complexity as the 1993 Algorithm, they are both significantly slower than the 1993 Algorithm.
Therefore, you will always be better off implementing the 1993 Algorithm than either the Naive or
One Permutation Algorithm.

This leaves us with three algorithms to compare: the 1993 Algorithm, the Improved Algorithm,
and the Optimal Algorithm. We begin by considering code complexity. The 1993 Algorithm is far
simpler than the Improved or Optimal Algorithms. While it is true that the Optimal Algorithm
is essentially the 1993 Algorithm plus a change of basis and some code for ExtractCPs, a proper
implementation of the change of basis code is difficult. The change of basis code given in Figure 16
is inadequate as the initial control points of G may not span the domain of F.

Difficulties arise when trying extend the change of basis code to select a “good” subsect of G’s
control points to use for the basis. Further, if you select any subset other than the initial control
points of G, then you have to keep track of which points you need to iterate over in the loop of
RecursiveCompose().

The code for the Improved Algorithm is clearly more complicated than the 1993 Algorithm. In
addition to the complexities that are apparent in Figure 13, care must be taken when implementing
ngt () and nlt() or you may lose the efficiency advantages over the 1993 Algorithm.

20 University of Waterloo, CS-95-24

Moving to numerical stability, we begin by noting that the easist way to measure stability is
by the maximum number of linear combinations separating the input data and any control point
of H. For the 1993 and the Improved Algorithms, it is easy to see that m linear combinations
are used. Further, for many applications of composition, we would expect these all to be convex
combinations (i.e., for the control points of G to lie inside the domain simplex of F). This is the
case, for example, for the problems of freeform deformation and triangular to tensor product basis
conversion.

For the Optimal Algorithm, however, our longest path will be m(Ky + 1) affine combinations.
The first mKy affine combinations are required for the basis conversion. While we would expect
all of these to be convex combinations, the final m affine combinations will probably not be convex.
Further, if the control points of G nearly lie in a subsimplex of F’s domain simplex, we will have
additional numerical difficulties. It should be noted, though, that not all of the paths from the
input to control points of H will be of length m(Ky + 1). Some will be as short as m. Still,
the numerical behavior of the Optimal Algorithm is potentially quite poor (although it should be
acceptable in many situations).

Finally, we will consider efficiency. Although there is a proper ordering of the algorithmsin terms
of their runtime (i.e., the Optimal Algorithm is always the fastest, while the Improved Algorithm
is faster than the 1993 Algorithm for m > 2 and equal otherwise), it is important to consider how
much faster one algorithm is than another. While the Improved Algorithm is faster than the 1993
Algorithm, looking at Figures 6-9, the advantage is relatively small unless m is large. For example,
with m = 6, the Improved Algorithm is only 25% to 33% faster than the 1993 Algorithm.

Likewise, the Optimal Algorithm’s efficiency advantage is most apparent as m increases. While
these advantages occur at lower values of m than they occur for the Improved Algorithm (giving,
for example, a factor of 2 speed increase for m = 3 or 4), note that the numerical stability of
the Optimal Algorithm decreases for larger values m. And as we increase #G or Ky, the three
algorithms asymptotically have the same runtime behaviour.

Thus, considering all three factors together (code complexity, efficiency, and numerical stability)
you are probably best off implementing the 1993 Algorithm. There will be exceptions, of course. If
speed is the primary concern, then the Optimal Algorithm is ideal. Likewise, if you plan to work
with degrees of 3 or 4 and know that the initial control points of G span the domain of F, then
again the Optimal Algorithm is best. However, the only situation in which we can see the Improved
Algorithm being the best choice is when stability is a concern and you expect m to be large.

8 Composition of a Blossom with a Set of Polynomials

In this section, we extend the notation of polynomial composition to the composition of a blossom
with a set of polynomials. Mathematically, this introduces no problems — the proof of the theorem
below is almost identical to the proof of the same theorem for the polynomial composition. Un-
fortunately, we will be unable to use most of the sophisticated algorithms developed in this paper.
However, we will be able to use this generalization of composition to perform degree raising, and
for this problem, we can use modified versions of the algorithms presented in this paper.

An Analysis of Polynomial Composition Algorithms 21

Given: Affine spaces X' (of dimension Kx), Y (of dimension Ky), and Z (of dimension

K z), control points {GJ} - , 1 < j < m defining m Bézier simplices G’ : X —) of

KX

degree £; relative to a domain simplex Ay C X, and control points {Fﬁ}ﬁe][}? defining
Y

an m-affine Bézier simplex f : V" — Z relative to a domain simplex Ay C Y.

Find: The control points {Hf}ie][ﬁ of the degree L = >, ¢, Bézier simplex H =
X
foG = f(G!,...,G™) relative to Ay.

Solution: If f denotes the blossom of F, then

Hy= >, C(Df(Gr), Jel, (13)
Ie][fg;
=7
where Gy with I = (7, ..., %) is an abbreviation for (G},..., G}).

Proof: The proof is essentially the one appearing in DeRose et al [2]:

H(t) = Ff(GYt),...,G"(t))

— f Z Gl Bll Z Gm Blm)

1,1 E][I{X lmG][K»

= Y f(eh,GE, ... Gm)HBq

Z,
Ie][K'r;

= Y f(G)BF ()

fim
Ie][I(X

= Y. F(GnC(I)B{y(®). (14)
Ie][fg;
We can find the control points of H by grouping together terms in Equation 14 such that |I| = J,
yielding

H;=) Ff(Gnc). (15)

Unfortunately, while the Naive Algorithm discussed in Section 3 can be used to compute the
control points for this generalization of polynomial composition, in general, we can not use any of
the speedups discusses in this paper since each G* might have different control points. We can,
however, run de Castlejau’s algorithm backwards, and reduce the runtime cost by a factor of Kz.

22 University of Waterloo, CS-95-24

8.1 Special Cases

There are two special cases of particular interest. The first is when the functions G* are all equal:
Gl(t) = ... = G™(t) = G(t). This gives us

f(Gl(t)’ o GT() = f(G(Y),...,G(1))
= F(G()),

where F(t) = f(¢,...,t) is the degree m polynomial agreeing with f on f’s diagonal. Thus, we
have the composition of polynomial functions.

The second special case is when each G' is the identity function. Let I™(t) be the nth degree
representation of the identity function. Now consider

H(t) = f(I"(t), I*(t), I*(t),..., I'(t)),

where f is an m-affine function. The result H is a degree m + n — 1 representation of F. Thus, we
have degree raising. Since most of f’s arguments are linear representations of the identity function,
we can simplify our equations somewhat, and in particular, we can simplify the combinatorial
constant:

H() = "0, 1), 1), (1))
= Y funem B
Ie][l,m

7
S) (f;;f) B

Solving for Hj,

1St

(%
(")

= Z f(Ig,I%,IZ}?),...,Il}m) (16)

IGI(I?;,I,...,I),m

=7

s 3

We can either use this formula directly to compute control points when raising the degree by
an arbitrary amount n and k, or we can use it to derive more efficient formulae for any special
cases of interest. As an example of this latter approach, in Appendix A the above formula is used
to rederive the standard formula for degree raising a curve.

Note that we can use a modified form of any of the faster algorithms to compute the degree
raised polynomial. Essentially, we evaluate all the control points from the degree one identity
functions first (i.e., the I's), and then evaluate at the I"s.

An Analysis of Polynomial Composition Algorithms 23

References

[1] C. de Boor. B-form basics. In G. Farin, editor, Geometric Modeling: Algorithms and New
Trends, pages 131-148. SIAM, 1987.

[2] Tony DeRose, Ronald Goldman, Hans Hagen, and Stephen Mann. Composition again. ACM
Transactions on Graphics, 12(2):113-135, 1993.

[3] Tony D. DeRose. Composing Bézier simplexes. ACM Transactions on Graphics, 7(3):198-221,
July 1988.

[4] Tony D. DeRose. A coordinate-free approach to geometric programming. In Math for Siggraph.
Siggraph Course Notes #23, 1989. Also available as Technical Report No. 89-09-16, Department
of Computer Science and Engineering, University of Washington, Seattle, WA (September,
1989).

[6] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, second
edition, 1990.

[6] Lyle Ramshaw. Blossoming: A connect-the-dots approach to splines. Technical Report 19,
Digital Systems Research Center, Palo Alto, Ca, 1987.

[7] Ken Shoemake. Efficient de Casteljau indexing. In preparation, 1995.

A Derivation of curve degree raising via composition

We could perform degree raising by evaluating Equation 16 for the controls points of the degree
raised curve. However, if we only want to degree raise for specific cases (e.g., curves by degree 1, or
surfaces by degree 2) then it is more efficient to solve the equation analytically. In this appendix,
we rederive the equations for degree raising curves by 1 degree.

We begin from working from Equation 16, with the additional knowledge that n =2, Kx =1,
= (2,1,1,...,1), 71 € {(2,0),(1,1),(0,2)},and for 1 < j <m, 7; € {(1,0),(0,1)}:

()

Himi—y) = > f(G1) (o
1'61[52’1’1"”’1)"" (7;m+1—3)
|I|=(j,m+1-j)
m—1 <mAl—j> <j—2> ((2?0))
= . f((2a0)a(0’1) / ’(1’0) !)71+
j—2 (G A)
(4m+1-3)
2
™ D) A1), (0,)<, 1, 0)“‘“)% +
j—1 (.m0
(4m+1-3)
((0)

(m - 1) £((0,2), (0, 1)<, (1,0)<9>)

m+1
((j,m-l—l—j))

24 University of Waterloo, CS-95-24
= ("’)_f (0,1)<m 17> (1,0)<j—2>)——7%§1———-+
J ((j,m-l—l—j))
("l)f), (0, 1)<, (1,0)<971>) mil T
J ((j,m-l—l—j))
(m 1)f 0 1 <m—-1-j> (1,0)<J>) 1
J ((j,n?—l-—l—ll—j))
= I H@0,0.)7 (1,09 ¢
2](Tz;:j;15]zf((1,1),(0,1)<"T+j>,(1,0)<j_1>)'+
P = 0.2, 00, 1,097)
= ;E] =))f((2, 0), (0,1)<™H179, (1,0)7>) +
2 (20, 0, (0,0

£((0,2), (0,1)< 7179 (1,0)59)) /2 +

=0T 10,2, 0,0, (1,05)

m(m+1)

_ —f((2 0) (0, 1)<m—|—1—j>, (1, 0)<j—2>) +

m-+1
m—j+1
m-+1

£((0,2), (0, 1)< 7179 (1,0)<7%)

= L f((0, 1) (1,009971) 4

m-+1

m—-—j3+1

1 f((O, 1)<m—j>’ (1, 0)<j>),

which is the standard degree raising formula for curves.

B Code

Pseudo-code for the algorithms presented in the paper appears on the following pages. We have not
given code for the Naive or One Permutation Algorithms. Code for converting from multi-indices

to linear indices appears in [2].

An Analysis of Polynomial Composition Algorithms 25

EvalBlossom(V, uy, ..., uy)
{ V is the control net for a Bézier simplex characterizing a blossom ¢
returned is the point ¢(uy, ..., ug)}

begin

V « Prepare(V)

for{=1tod

EvalBlossomArgument(V, ¢, u,)
endfor

[d]

return V.cp6

end

EvalBlossomArgument(V, £, u)

begin
d + V .degree
(bo, - .., bx) + Barycentric coordinates of u relative to V.domain
for all 7 €]IZ_Z
V.cpg] — bOV.cpy_I__e%] 4o ka‘CPE*Z-I-_é‘i]
endfor
end
Prepare(V)

{ Initialize and return a structure into which the partial results of the
blossom evaluation algorithm can be stored.}
begin
d + V.degree + V.degree

for all 7 € I
(0]

V.cp;
endfor
return V

end

— V.cp;

Figure 10: Evaluation of an arbitrary blossom value. If V is a control net for a Bézier simplex
@, V.degree is the degree of @@, V.domain denotes the domain simplex, and V.cp are the control
points of @ relative to V.domain.

26 University of Waterloo, CS-95-24

InitializeH(F, G, H)
begin
k <+ Dimension(G.domain), £ < G.degree, m < F.degree
H.degree = £ xm
H.domain = G.domain
for all 7€ ™
H.cpy< 0
endfor
end

PostProcessH(H)
begin
for all 7€ ™
H.cp; + H.cpy/ (&Jf‘)
endfor
end

Figure 11: Preparation and postprocessing of H.

An Analysis of Polynomial Composition Algorithms 27

Compose(F, G, H)

begin
InitializeH(F, G, H) { See Figure 11}
F + Prepare(F) { See Figure 10 }

Jmin < (0, ...,0,G.degree)

RecursweCompose(F, G, H, 0, Jiin, 0, F.degree!, 0)

PostProcessH(H) { See Figure 11}
end

RecursiveCompose(F, G, H, n, m, 5, c, y)
{ n : recursion control variable }
{ M : minimum multi-index value allowed for 7,11 }
§ : sum of multi-indices computed in [thus far }
{¢ scalar to use as weight at bottom of recursion }
{ ¢ : multiplicity of 7 in I thus far }
begin
if n = F.degree then
H.cpy <+ H.cpy+cx F’.cpgb]
return;
endif
for all 7,41 €]If; with 7,41 > M in increasing order
EvalBlossomArgument(F, n + 1, G.cp;nH) { compute FI"*1] from F["}
if 7,01 = m then p/ + p+ Lelse g/ + 1
RecursiveCompose(F, G, H, n+ 1, 5,41, §+ 7,1, € (1"11 Y/, 1)
endfor
end

Figure 12: The Bézier composition algorithm.

28

University of Waterloo, CS-95-24

Compose(F, G, H)

begin
InitializeH(F, G, H); { See Figure 11 }
F + Prepare(F); { See Figure 10 }
Rec(F.Deg, F, G.cp, H, F.deg, G.first, 6),
PostProcessH(H); { See Figure 11 }
end

Rec(na Fa Ga Ha Mmaxa prev, sum, C)

begin
if (n = 0) then H.cpgyum+ = c * F(En];
Min = ceil(|G|/n); { compute the number of times to eval}
if (Mmin > Mmax) then return; { May occur when e=1 at previous level}
for p=G first to G.last do { iterate through G’s remaining CPs}
if (Marked(p)) next;
if (p < prev) then e = 1; else e = 0; { If out of order, *must* evaluate 1 less time}
{ We may not be able to complete the evaluation for some points }
if (n —ngt(p,G) * (Mmax — €) + nlt(p, G) * (Mmax — € — 1) > Myax — €) then next;
{ And some points may require a new minimum }
Liin = cetl(Muyin, (n+ nlt(p, G))/(ngt(p, G) + 1 + nlt(p, G));
if (Liin > min(Mpax — €,n)) then next; { can this happen? }
F" =Eval(F, p, Lpyin — 1);
§ = (Lyin — 1) * p.mi;
e=cx (™7 (L — DY
Mark(p)
for i = Lin to Mpax — € do
F'=Eval(F', p);
e=cx(1)/3;
Rec(n — 4, F', G —p, H, min(i,n — i), p, sum+ 3, ¢);
end
Unmark(p)
end
end

Figure 13: Improved Algorithm

An Analysis of Polynomial Composition Algorithms 29

Compose(F, G, H)

begin
InitializeH(F, G, H); { See Figure 11 }
Jmin < ConvertBasis(F, G); { Convert F to be w.r.t G’s first control points; Figure 16 }
F + Prepare(F); { See Figure 10 }
RecursiveCompose(F, G, H, 0, 7iin, 0, F.degree!, 0);
PostProcessH(H); { See Figure 11 }
end

RecursiveCompose(F, G, H, n, m, 5, c, y)
{ n : recursion control variable }
{ M : minimum multi-index value allowed for 7,11 }
§ : sum of multi-indices computed in [thus far }
{¢ scalar to use as weight at bottom of recursion }
{ ¢ : multiplicity of 7 in I thus far }
begln
ExtractCPs(F, H, n, 5, c)
if n = F.degree then return;
for all 7,41 €]If; with 7,41 > M in increasing order
EvalBlossomArgument(F, n + 1, G.cp;nH) { compute FI"*1] from Fl"}
if 2,11 =m then g/ + p+1else p/ + 1
RecursiveCompose(F, G, H, n+ 1, 5,11, §+ 741, € (l"j: Y/, 1)
endfor
end

Figure 14: The optimal Bézier composition algorithm.

ExtractCPs(F, H, n, §, c)
begin
for 7€ Ix do
for j =0 to Ky do
S 5+1;% F.siﬁzpj;
C 4 Cx* (|F'8iﬁwj|)”/i~"
F.siﬁzpj N
end
H.cpy < H.cpz+c F’;[n]
end
end

Figure 15: Code to extract evaluations of f from the simplicial array.

30 University of Waterloo, CS-95-24

ConvertBasis(F, G)
begin
7+ (0, ...,0,G.degree)
for ¢ = 0 to F.domain.dimension
F.cp « Subdivide(F, G.cpy, 1)
7 < T.nexrt
endfor
return 7’
end

Figure 16: Basis conversion

