
An Analysis of Polynomial Composition Algorithms
Computer Science Department

University of Waterloo

Research Report CS������

Stephen Mann and Wayne Liu

June ��� ����

Abstract

An analysis is made of the runtime of a previously published algorithm for polynomial

composition� Two new� more e�cient algorithms are presented� One of these algorithms is

optimal� while the other algorithm is numerically more stable than the optimal one�

Additionally� as a generalization of polynomial composition� we show how to compose a

multia�ne function with a set of polynomials as an extension to an earlier algorithm for com�

posing two polynomial functions� With this extension� we are able to perform degree raising

with composition�

� Introduction

Many CAGD operations can be implemented using polynomial composition� As discussed in ���� we
can implement evaluation� subdivision� freeform deformation� conversion between tensor product
and B�ezier simplex forms using polynomial composition� In that paper� an e�cient algorithm for
composing two polynomials in B�ezier simplex form was presented� No analysis was given for the
runtime of this algorithm� however�

In Section �� we analyze the runtime of this composition algorithm� In Section 	� we then present
a variation on this algorithm that is more e�cient� A second variation that is optimal is presented
in Section
� However� this optimal algorithm is numerically less stable than the non�optimal one�
motivating the presentation of both techniques�

Further� while we can recast many CAGD problems as polynomial composition� we have been
unable to implement degree raising using polynomial composition� That is� given the control points
for a degree n polynomial function F� �nd the control points for the degree n � representation of
this function� In Section �� we present a generalization of the composition algorithm for two B�ezier
simplices� and show how it can be used to degree raise a B�ezier simplex�

All the pseudo�code used by the algorithms appears in Appendix B�

� Notation and Background

In this section we brie�y summarize the basic concepts of blossoming and we introduce a number of
notational conventions that have been invented to simplify the manipulations needed in Section ��

�

� University of Waterloo� CS������

The notation used in this paper is a simple extension of the notation in the DeRose et al paper ���
and is summarized in Table ��

Multi�indices and Hyperindices

Most of our notation deals with the indexing of multivariate polynomials� While univariate Bern�
stein polynomials are commonly indexed with integers� multivariate Bernstein polynomials are most
easily indexed using tuples of non�negative integers such as �� � �i�� ���� ik�� i�� ���� ik � �� We shall
refer to such tuples as multi�indices�

We denote the norm of a multi�index �� by j��j� and de�ne it to be the sum of the components
of ��� We use the symbol IIdk to stand for the set of all multi�indices �� � �i�� ���� ik� with j��j � d�
For example� II�� � f��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��g� The symbol �ej will be used
to denote a multi�index that is � in the jth component and zero in the rest of the components� ��
denotes a multi�index whose components are all zero� Addition and subtraction of multi�indices is
de�ned componentwise�

We shall also have occasion to use tuples of multi�indices� such as I � ����� � � � ���m� � II
�d�m
k � where

II
�d�m
k denotes the m�fold Cartesian product IId�k � � � �� IIdmk �for notational convince� we ignore d���

We shall refer to such tuples as hyper�indices� When d� � � � � � dm � d� we denote II
�d�m
k as IId�mk �

Again we use the notation jI j to denote the sum of the components of I� Notice that whereas j��j is

an integer� jI j is a multi�index� Therefore� for I � II
�d�m
k � the expression jjI jj evaluates to the integer

j���j � � � j��mj� Note that for most of the paper� we will use the IId�mk notation� We will not use

the II
�d�m
k notation until Section ��

Bernsteins and B�eziers

Using this indexing notation� the k�variate Bernstein polynomials of degree d can be de�ned by

Bd
�� �b�� � � � � bk� �

�
d

��

�
bi�� b

i�
� � � �b

ik
k

where �� � �i�� ���� ik� � IIdk � b�� ���� bk � IR� and where

�
d

��

�
�

d�

i�� i�� � � � ik�

is the multinomial coe�cient� Notice that each of the Bernstein polynomials is a homogeneous

polynomial of degree d� It is known ��� that for every polynomial Q � X � Y of degree d� where X
is an a�ne space of dimension k and Y is an a�ne space of arbitrary dimension� there exist unique
points fV��g���IId

k
in Y such that

Q�u� �
X
���IId

k

V��B
d
�� �b�� ���� bk�� ���

An Analysis of Polynomial Composition Algorithms �

where b�� ���� bk are the barycentric coordinates of u � X relative to a simplex � � �x�� ����xk�
of points in X � �For a description of a�ne spaces� simplices� and barycentric coordinates see� for
instance� Farin�
� or DeRose�	���

A polynomial Q� when expressed as in Equation �� is called a B�ezier simplex� the points V��

are called the control net of Q with respect to the domain simplex �� Note that a degree d B�ezier
simplex with a domain of dimension k has jIIkd j �

�d�k
k

�
control points ����

We shall often writeBd
�� �u� with the understanding that u should be replaced with its barycentric

coordinates relative to the appropriate domain simplex� If I � ����� ������m� � II
�d�m
k � we de�ne B

�d�m
I �u�

to be the product Bd�
���
�u� � � � ��Bdm

��m
�u�� We shall make use of the following product relation satis�ed

by the Bernstein polynomials�

B
�d�m
I �u� � C�I�B

j�dj
jIj�u� ���

where C�I� is a combinatorial constant given by

C�I� �

�
j���j
���

�
� � �

�
j��mj
��m

�
�
jjI jj

jI j

�

This relation is easily proved using simple manipulation of the Bernstein polynomials �c�f� �����

Blossoms

Ramshaw ��� discovered how to exploit a connection between B�ezier simplices and symmetric multi�
a�ne maps� A map q�u�� ����ud� is said to be multi�a�ne if it is a�ne when all but one of its
arguments are held �xed� it is said to be symmetric if its value does not depend on the ordering of the
arguments� Associated with every polynomial Q � X � Y of degree d there is a unique� symmetric�
d�a�ne map� q � X d � Y � that agrees with Q on its diagonal �the diagonal of a multi�a�ne
map q�u�� ����ud� is the function obtained when all arguments are equal� Q�u� � q�u�u� ����u���
Ramshaw refers to this multi�a�ne map q as the blossom of Q�

Ramshaw has shown that the B�ezier control net for a polynomial relative to a domain simplex
can be obtained by evaluating the polynomial�s blossom at the vertices of the simplex� More
precisely� if X is an a�ne space of dimension k� Q � X � Y a polynomial of degree d whose blossom
is q� and � � �x�� ����xk� a simplex in X � then Ramshaw has shown that the B�ezier control net of
Q relative to � is given by

V�� � q�

dz �� �
x�� ����x�� �z �

i�

�x�� ����x�� �z �
i�

� � � � �xk� ����xk� �z �
ik

��

for all �� � �i�� ���� ik� � IIdk� Using Farin�s blossom notation �
�� this equation can be written as

V�� � q�x�i��� �x�i��� � � � � �x�ik�k ��

	 University of Waterloo� CS������

Polynomial Composition

The basic polynomial composition problem is the following�

Given� A�ne spaces X � Y � and Z �of dimensions KX � KY � and KZ respectively��
control points fG��g���II�

KX

de�ning a B�ezier simplex G � X � Y of degree � relative to

a domain simplex �X � X � and control points fF�pg�p�IImKY
de�ning a B�ezier simplex

F � Y � Z relative to a domain simplex �Y � Y �

Find� The control points fH��g���IIm�
KX

of the degreem� B�ezier simplexH � F �G relative

to �X �

Solution� If f denotes the blossom of F� then

H�� �
X

I�II��m
KX

jI j���

C�I�f�GI�� �� � IILKX
���

where GI with I � ����� ������m� is an abbreviation for �G��� � � � � �G��m��

A proof of this result can be found in the paper by DeRose et al ���� and a generalization of this
proof can be found in Section ��

In the following sections� we will make frequent use of the number of G�s control points� which
we will denote as �G� Note that �G �

���KX

KX

�
� with G� KX � and � de�ned above�

� Implementation and Analysis

DeRose et al ��� used symmetry and reuse of intermediate results to reduce the computation cost of
computing the control points ofH using Equation �� In this section� we discuss these two techniques
and analyze their runtime behavior� Note that the code in Figures ��� ��� and �� appeared in ����
Further note that unless otherwise stated� our algorithms will evaluate the blossom f�GI� one
argument at a time� in the order given by I �

de Casteljau�s Algorithm

B�ezier curves and surfaces are commonly evaluated using de Casteljau�s algorithm� This algorithm
uses repeated linear interpolation to evaluate B�ezier simplices� In addition to evaluating the B�ezier
simplex for position� the intermediate results can be used to compute derivatives� Further� the
algorithm can be extended to evaluate a single argument of the blossom� See Farin�s book �
� for
more details on de Casteljau�s algorithm�

Note that the intermediate values used in a de Casteljau evaluation of a degree d� dimension k
B�ezier simplex can be stored in simplex of one higher dimension �i�e�� with

�d�k��
k��

�
storage�� Further�

each point in this simplex �other than the initial control points� is computed using one linear
combination� Thus� a full de Casteljau evaluation requires

�
d�k
k��

�
linear combinations during its

computation�

An Analysis of Polynomial Composition Algorithms

Notation Description

IR The set of real numbers�

IRn n�dimensional real space�

a� ���� z Integers and real numbers�

X � Y � etc� A�ne spaces�

KX The dimension of the a�ne space X

a� ���� z A�ne points�

� Domain simplex�

�a� ���� �z Multi�indices�

j��j � i� � � � ik where �� � �i�� ���� ik��

IIdk The set of all multi�indices �� � �i�� ���� ik� with j��j � d�

I� J� I�� etc� Hyper�indices�

IId�mk The set of all hyper�indices I � ����� ������m� with ���� ������m � IIdk�

II
�d�m
k The set of all hyper�indices I � ����� ������m� with ��j � II

dj
k �

jI j ���� � � ���m where I � ����� ������m��

jjI jj � dm where I � IId�mk ��j��j
��

�
The multinomial coe�cient j��j

i�����ik�
� �� � �i�� ���� ik��

Bd
�� �u� The ���th Bernstein polynomial of degree d�

B
d�m
I � Bd

���
�u� � � �Bd

��m
�u�� I � ����� ������m��

C�I� A combinatorial constant given by
�j��� j���

�����j��m j
��m

�

�jjIjjjIj �
�

q�u�� ����ud� Blossom of a B�ezier simplex Q�u� of degree d�

f�GI� � f�G��� � � � � �G��d� with I � IId�mk �

�G �
���KX

KX

�
� the number of control points of G�

Table �� Summary of notation�

� University of Waterloo� CS������

In the initial analysis of runtime� we will count the number of linear combinations performed by
the composition algorithms� A more complete runtime analysis can be found in Section �� where
we show that the cost of the more sophisticated algorithms is proportional to the number of linear
combinations performed�

In Figure ��� we present some code for performing partial blossom evaluations� All the linear
combinations are performed in EvalBlossomArgument��� which evaluates one blossom argument
by performing a single step of de Casteljau�s algorithm�

��� Naive Algorithm

A naive implementation of the composition algorithm would compute each H�� by performing a full
evaluation of f for every possible hyperindex I � II��mKX

where jI j � ��� Note that this means we
will be evaluating f exactly once for each hyperindex I � As mentioned earlier� a full de Casteljau
evaluation requires

�m�KY

KY��

�
linear combinations� Since the number of multi�indices of dimension

KX and degree � is
���KX

KX

�
� �G� the number of hyper�indices will be �Gm� Thus� this algorithm

requires �
mKY

KY �

�
�Gm �	�

linear combinations� We shall refer to this algorithm as the Naive Algorithm�

��� One Permutation Algorithm

The �rst way to improve the Naive Algorithm is to use the symmetry property of blossoms� This
property allows us to evaluate f only at hyperindices that are unique up to permutations� Using
such hyperindices� we only care how many times each multi�index��j appears in I � not where each��j
appears� Thus� we can convert the hyperindex I to a multi�index ��� where ij is the number of times
��j appears in I � The dimension of�� is one less than the number ofG�s control points� and the degree
is the number of multi�indices in the hyperindex I �which� in the case we are considering� is m��
Thus� �� � IIm�G��� For example� if G has �ve control points� G��� � � � � � G���� and if F is fourth degree�

then the hyperindex I � ����������������� can be thought of as the multi�index �� � ��� �� �� �� ��� II���

Normally� we prefer to think of hyperindices and multi�indices as di�erent� since they are used
in di�erent ways and if we care about the order of the multi�indices within the hyperindex� then
the above correspondence fails to hold� However� such a correspondence is useful in counting the
number of hyperindices that are unique up to permutations� which is

jIIm�G��j �

�
�G� � m

�G� �

�
�

Thus� by evaluating at hyperindices that are unique up to permutations� the number of linear
evaluations required by the composition algorithm is reduced to�

mKY

KY �

��
�G� � m

�G� �

�
� �
�

An Analysis of Polynomial Composition Algorithms �

Note that to compute the H��� we will need to weight each f�GI� by the number of permutations
of the multi�indices within I ���� We shall refer to this algorithm that only evaluates f�GI� once
for all permutations of I but makes a full de Casteljau evaluation for each of these GIs as the One
Permutation Algorithm�

Comparison of Naive and One Permutation Algorithms

For a comparison of the runtime of the two algorithms� we need to compare Equation 	 to Equa�
tion
� Canceling the common factor of

�
m�KY

KY ��

�
� we have

�Gm vs

�
�G� � m

m

�

�Gm vs
��Gm� ���

m���G� ���

�Gm vs

Qm��
i�� ��G i�

m�

Alternatively� we could have chosen to cancel the m� term� giving us

�Gm vs

Q�G��
i�� �m i�

��G� ���

If we �x KY and m and allow �G to increase� then the former is the appropriate equation� and we
see that asymptotically we achieve a factor of m� speedup� If we �x KY and �G and allow m to
increase� then the latter is the appropriate formula� and we see that we asymptotically a speedup
of

�Gm��G� ���

m�G

which is exponential in m�
Note that KY appears in neither the left or right side of our equation� so we have a �constant�

speed�up factor of
�Gm��G���m
m

�
as KY increases while m and �G remain constant�

��� The ���� Algorithm

Now suppose we use the algorithm of DeRose et al �i�e�� reusing partial blossom calculations��
This code appears in Figure ��� with some supporting code �to initialize H� in Figure ��� By

construction� this algorithm iterates over hyperindices I � II��mKX
in lexicographical order by �rst

selecting a multi�index �� and partially evaluating f at G��� This partial evaluation is used to
compute f�GI� for all hyperindices beginning with ��� The algorithm selects �and evaluates at� the
remaining multi�indices recursively �each of which must be lexicographically equal to or larger than
���� until we have fully evaluated f � We shall refer to this algorithm as the ���� Algorithm�

� University of Waterloo� CS������

We will now derive the runtime of the � � Algorithm� Suppose the algorithm has continued for
k steps and it has selected multi�indices ���� � � � ���k where ��� 	 � � � 	 ��k� At this point the algorithm
will have evaluated f at G��� � � � � �G��k and the calls to EvalBlossomArgument�� will have computed
the blossom values

f�G��� � � � � �G��k �y
�j��
� � � � � �y

�jKY
�

KY
�� ���

for all �� � IIm�kKY
� Note that EvalBlossomArgument�� computes each of these blossom values with

a single linear combination� If we relabel G�s control points from � to �G� �� then we can rewrite
the blossom values of Equation � in the form

f�G�i��
� � � � � �G

�i�G���

�G�� �y
�i�G�

� � � � � �y
�i�G�KY

�

KY
�� ���

where �� � �i�� � � � � i�G�KY
� � IIm�G�KY

� Further� the process of the � � Algorithm described in
the previous paragraph ensures that all ���� � � � ���k for k � ���m where ��� 	 � � � 	 ��k are selected
exactly once� Therefore� the algorithm will compute the blossom values of Equation � exactly once
for each �� in IIm�G�KY

�
Thus� we can think of the blossom values of Equation � to be embedded in a simplicial array of

dimension �GKY and degree m� For each point in this simplicial array �except for the control
points of F�� we perform one linear evaluation� and so the � � Algorithm performs�

m�GKY

m

�
�

�
mKY

m

�
� ���

linear combinations�
An example appears in Figure �� In this �gure� m � �� KY � �� and G has three control

points �which we will subscript �� �� and ��� We embed the composition algorithm in a degree ��
dimension 	 simplicial array� Along one edge� we place F�s control points �drawn as black dots��
Each time we evaluate f at G�� we move �up� one simplex� For each argument we evaluate at G��
we move up one level within the current simplex� And for the remaining arguments �which are all
G��� we �nish evaluating the blossom in the remaining dimension� giving one of the contributing
points to H�s control points �drawn as a hollow circle in the �gure�� Note that the results we care
about lie along one �face� of this high dimensional simplicial array�

Comparison of the One Permutation and ���� Algorithms

We will now compare the number of linear combinations used by the One Permutation Algorithm
�given by Equation
� to the number of linear combinations used by the � � Algorithm �Equa�
tion ��� �

mKY

KY �

��
�G� � m

m

�
vs

�
m�GKY

m

�
�

�
mKY

m

�
�
mKY

KY �

�
�m �G� ���

m���G� ���
vs

�m �G� ���
QKY
i���m�G i�

m���G� ���
QKY
i����G i�

�

�
mKY

m

�
�
mKY

KY �

�
�

�mKY ��

�m� ����KY ���
vs

QKY
i���m�G i�QKY

i����G i�
�

�m�KY

m

�
��G���m

m

� � �

An Analysis of Polynomial Composition Algorithms

f(y ,y ,y)

0

0

0

1

2

1

2

1

2

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 1

0
f(G ,G ,G)

1

f(G ,G ,G)
0 2

f(G ,G ,G)
11

f(G ,G ,G)
11

f(G ,G ,G)
21

0

1

2

1

2

2

1

2

2

2
f(G ,G ,G)

22

0F = 0

F = f(y ,y ,y)12

F = f(y ,y ,y)11

F = f(y ,y ,y)

0

0

0

1

0

1

1

1 13

Figure �� Evaluations performed by � � Algorithm

In a similar fashion� we can instead cancel a factor of
�m�KY

KY ��

�
from both sides� leaving

�
�G� � m

m

�
�

��G� � m��

m���G� ���
vs

Q�G
i���mKY i�

m
Q�G

i���KY i�
�
KY �

m
����

We now consider the following three cases�

 �G grows while KY and m are �xed� In this case� we see that the limit of the right hand
term of Equation is �� Thus� the � � Algorithm performs better than the One Permutation
Algorithm by a factor of �

mKY

m� �

�
�

This can be seen in the graph on the left in Figure �� The theoretical asymptote is �
 for
KY � � and m � �� While the apparent asymptote in this �gure appears to be about �	�
note that the term on the right of Equation is about ����� As �G increases further� the
ratio of the runtimes becomes closer to �
�

 m grows while KY and �G are �xed� For large m� Equation reduces to

mKY��

�KY ���
vs

mKY��QKY
i����G i�

�
�mKY ����G� ���

KY ���G� � m��

�� University of Waterloo� CS������

0 50 100 1500

5

10

15

#G 0 50 100 1500

5

10

15

m 0 50 100 1500

5

10

15

Y

Figure �� Comparison of the One Permutation Algorithm and the � � Algorithm� Graphs showing
the ratio of the runtime of the One Permutation Algorithm to the runtime of the � � Algorithm�
The graph on the left shows the ratio as we increase �G for KY � � and m � �� The graph in the
middle shows the ratio as we increase m for �G � � and KY � �� The graph on the right shows
the ratio as we increase KY for �G � 	 and m � ��

Note that the subtrahend on the left side of the equation is never larger �in terms of m� than
O�mKY��G���� so this equation simpli�es to

mKY��

�KY ���
vs

mKY��QKY

i����G i�

Thus� the � � Algorithm is faster by a factor ofQKY
i����G i�

�KY ���
�

�
�GKY

KY �

�

This e�ect can be seen in the middle graph of Figure �� Again� our theoretical asymptote
is �
� although m would have to be much larger for the graph to approach this asymptote�
Note that this result can also be derived from Equation ���

 KY grows while m and �G remain �xed� Here we work with Equation ��� To reduce this
equation� we have to determine the limit of the right hand side of the equation as KY goes
to in�nity�

lim
KY��

Q�G
i���mKY i�

m
Q�G
i���KY i�

�
KY �

m

� lim
KY��

Q�G
i���mKY i��

Q�G
i���KY i�

m
Q�G

i���KY i�

�

h
K�G

Y ��Gm
P�G

i�� i�K
�G��
Y

i
�
h
K�G

Y �
P�G

i�� i�K
�G��
Y

i
mK�G��

Y

� �G

Thus� � � Algorithm is faster than the One Permutation Algorithm by a factor of�m��G��
m

�
�G

An Analysis of Polynomial Composition Algorithms ��

An example is seen in the graph on the right in Figure � where our asymptote is
�

Note that the above derivation means that as KY increases to in�nity� the runtime of the
� � Algorithm simpli�es to

�G �

�
mKY

KY �

�

� Improved Algorithm

In this section� we give an improvement on the � � Algorithm� Basically� we �nd an ordering of
the multi�indices that makes better use of the partial blossom evaluations�

We begin by noting that any algorithm based on Equation � must compute f�G�m�
�� � for all

��� Thus� we should try to maximize the use of these evaluations� If we consider de Casteljau�s
algorithm� the highest cost evaluations of the blossom arguments are the �rst ones� To optimize
our computation� we should try to use these as much as possible� Therefore� we will order the
evaluation of the blossom in nonincreasing order of the multiplicity of each argument� I�e� we only
evaluate f at

f�G�i��
���

� � � � � G�ik�
��k

��

where i� � i� � � � � � ik and i� � � � ik � n� Further� to ensure that we only evaluate once for all
permutations of a set of arguments� we will require that if ij � ij�� then ��j ���j��� We shall refer
to this algorithm as the Improved Algorithm�

Pseudo�code for this algorithm appears in Figure ��� We have to be careful with the minimum
number of times we evaluate at an argument� otherwise we might perform extra evaluations� Also�
left unspeci�ed in our pseudo�code is how to compute !ngt��� and !nlt��� �which count the number
of unmarked multi�indices in a set greater than and less than the given multi�index�� We have to
be careful how we compute these values or we will add to the Big�O runtime of the algorithm�

An example of the operation of this algorithm appears in Figure �� Again� the initial control
points of F are drawn in black� The control points needed by the composition algorithm are drawn
as hollow dots� All of the lines appearing in Figure � are drawn in this �gure� but ones in regions
where no linear combinations were computed are drawn as dotted lines� Further� some additional
lines between the simplices have been drawn to indicate linear combinations used by the Improved
Algorithm that are not used by the � � Algorithm� Also note that the order of some of the
arguments of these blossom values has changed to re�ect the new order of evaluation� Finally�
note that the Improved Algorithm does not compute four blossom values computed by the � �
Algorithm �f�G��G��y��� f�G��G��y��� f�G��G��y��� and f�G��G��y����

It is unclear what the run�time of this algorithm is� However� note that it has the same run
time as the � � Algorithm if the degree of F is two or less� Empirical testing shows that while
the Improved Algorithm is faster than the � � Algorithm� it is not signi�cantly faster until m
becomes large �Figures �� �� It should be noted� though� that if KY � �G and m is large� then
the Improved Algorithm performs much better than the � � Algorithm� and almost as good as
the Optimal Algorithm described in the next section �see Figure ��

�� University of Waterloo� CS������

f(G ,G ,G)

f(y ,y ,y)

0

0

0

1

2

1

2

1

2

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
1

0
f(G ,G ,G)

1

f(G ,G ,G)
2

f(G ,G ,G)
11

f(G ,G ,G)
11

2

0

1

2

2

1

2

2
f(G ,G ,G)

22

0F = 000

F = f(y ,y ,y)0 112

F = f(y ,y ,y)1101

F = f(y ,y ,y)1 1 13

2 1

1 0

2 0

Figure �� Evaluations performed by the Improved Algorithm

� An Optimal Algorithm

In this section we present a composition algorithm that is optimal in a Big�O sense in that for
each I at which Equation � requires us to evaluate f�GI�� this new algorithm performs one linear
evaluation �with some additional linear evaluations required for an initial change of basis�� The key
observation is the following� If we reparameterize F over a simplex consisting ofG�s control points�
then all of the control points of F are values of the form f�GI� and can be used in computing H�s
control points� Working with a representation of F in this basis� every intermediate point computed
by de Casteljau�s algorithm when evaluating at a set ofG�s control points gives us one of the f�GI�
we need to compute the control points of H�

Before presenting the algorithm� we �rst note that no algorithm based on Equation � can
perform fewer than �

�Gm� �

m

�

linear combinations� as this is the number of I � II��mKX
that are unique up to permutations �i�e�� the

number of times we must evaluate f when computing the control points of H��

We can very nearly achieve this runtime by �rst converting F to a representation relative to
a subset of G�s control points �that lie in general position�� Then� we iterate over G�s remaining
control points with an algorithm similar to the original composition algorithm� At each partial
evaluation� every point in the de Casteljau diagram is used in the computation of H�s control
points �Figure
� when evaluating at G��� Further� each such point appears exactly once in the

An Analysis of Polynomial Composition Algorithms ��

F

G

G

F

FG

Figure 	� If G only spans a subdomain of F�s domain� we perform composition with the restriction
of F to G�s range�

computation� The only points we compute that are not needed for computing H are those in the
initial basis conversion� Pseudo�code for this algorithm appears in Figures �	� �
� and ��� Note
that the changes to � � version of RecursiveCompose�� are minor� A call to ExtractCPs�� is
inserted before the if statement� and the code inside the if statement is reduced to a return

statement� We shall refer to this algorithm as the Optimal Algorithm�

As written� the routine ConvertBasis�� is not always correct� Potentially� the subset of G�s
control points selected by the routine might not form a proper simplex� A correct version must
select KY � of G�s control points that form a proper simplex in Y � evaluate at these points� and
continue processing from there� This adds a slight complication� The remainder of the composition
algorithm needs to iterate over G�s remaining control points �i�e�� those not used in the basis
conversion��

There are a couple of approaches for handling this problem� One approach is to mark the
control points selected for the new basis of F and skip them in the loop in RecursiveCompose��

of Figure �	� with ��min starting at G�s �rst control point� A second approach is to create a linear
list of multi�indices into G�s control points� Then� before converting basis� a subset of G�s control
points would be selected and moved to the beginning of the array� With this latter approach� the
loop control of the for loop of RecursiveCompose�� would change to be linear o�sets into this list
of multi�indices�

Also� note that if the control points of G do not span the domain of F� then we should partially
reparameterize F over a subdomain spanned by G�s control points� extract the control points of F
over this subdomain� and proceed with the algorithm from this point �Figure 	��

An example of the operation of the Optimal Algorithm appears in Figure
� To maintain
similarity to Figures � and �� we have select G� and G� as our basis for F� and after converting to

�	 University of Waterloo� CS������

f(y ,y ,y)

0

1

2

f(G ,G ,G)
11

f(G ,G ,G)
11

f(G ,G ,G)
21

0

1

2

1

2

21

2

2

2
f(G ,G ,G)

22

0F = 000

F = f(y ,y ,y)0 112

F = f(y ,y ,y)1101

F = f(y ,y ,y)1 1 13

0

0 f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 0

f(G ,G ,G)
0 1

0
f(G ,G ,G)

1

f(G ,G ,G)
0 2

Figure
� Evaluations performed by the Optimal Algorithm

this basis� we evaluate at G�� Again� the initial control points are drawn in black� In this �gure
the algorithm begins by fully evaluating F at G�� Then� starting from the points f�y��y��y���
f�y��y��G��� f�y��G��G��� f�G��G��G��� we fully evaluate at G�� This completes the basis
conversion� Note that the linear combinations used for the basis convertion are indicated with
solid lines� The Optimal Algorithm then performs the � � Algorithm with the remaining control
point� In this case� we only have one more control points� so we get a third complete de Casteljau
evaluation� Note� however� that every point computed in this de Casteljau evaluation is a point
needed by the composition algorithm �drawn as hollow dots in the �gure�� The linear combinations
used by the rest of the algorithm are drawn as dotted lines in the �gure�

It should be cautioned that the example appearing in Figure
 is a bit simplistic� If �G is
larger than three� then the dotted line portion of the �gure increases in dimension� For example�
if �G � 	� then while the solid line portion of the �gure remains unchanged� the dotted portion
becomes a degree three tetrahedral array� Note that the corresponding simplices for the � � and
Improved algorithms also increase by one dimension� so the computation of the Optimal algorithm
still �ts in a smaller space than the other two algorithms�

The number of linear evaluations of the Optimal Algorithm is given by the number of locations
at which we need to evaluate f plus the cost of the initial basis conversion��

�Gm� �

m

�
 �KY ��

�
mKY

KY �

�
�

�
mKY

KY

�
� ����

The last term accounts for the representation of F in a basis of G�s control points� a quantity that
has been counted in both the other two terms� Note that if the number of G�s control points is less

An Analysis of Polynomial Composition Algorithms �

than or equal to the dimension of Y � then the runtime simpli�es to

�G �

�
mKY

KY �

�
�

since we will obtain all the values of f we need during the basis conversion of F� In this case� the
algorithm is no longer optimal� although it still has better runtime performance than the other
algorithms�

Comparison of ���� and Optimal Algorithms

To compare the runtime of the Optimal Algorithm to the � � Algorithm� we will look at what
happens when �G � KY �in which case the �rst term of Equation �� will dominate� and when
KY � �G �in which case� the cost is entirely due to the basis conversion��

We begin by deriving an expression for the ratio of runtimes when �G � KY �which we normally
expect�� In this situation� the subtrahend of both equations for the runtime does not contribute
to the asymptotic behavior for reasons given in Section �� Thus� we compare

�
m��G�KY

m

�
�the

minuend of the runtime of the � � Algorithm� to
��G�m��

m

�
�the �rst term of the runtime of the

Optimal Algorithm��

�
m �GKY

m

�
�

�m�GKY ��

m���GKY ��

�
��Gm� ���

QKY
i���m�G i�

m���G� ���
QKY
i����G i�

�

�
�Gm� �

m

�QKY
i���m �G i�QKY

i����G i�
�

Thus we see that the runtime of the � � Algorithm is a factor of

QKY
i���m �G i�QKY

i����G i�
����

slower than the Optimal Algorithm�

To do a complete comparison of the runtimes� we consider four cases�

 If we �x �G and KY with �G � KY and let m vary� then the denominator of Equation ��
is constant and the dominant term in the numerator is mKY �i�e�� the Optimal Algorithm is
a polynomial factor better than the � � Algorithm as we increase m�� Graphs showing this
behavior appear in Figure ��

 If we �x KY and m and allow �G to vary� then again working with Equation �� we see that
asymptotically the two algorithms have the same runtime behavior� This behavior is visible
in Figure �� although we have to let �G become large before it is apparent in the graph�

�� University of Waterloo� CS������

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

m

LC

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

m

LC

Figure �� Comparison of Optimal �solid�� Improved �dashed�� and � � �dotted� Algorithms� In
this �gure� �G � �� and KY � ��

 Looking at Equation ��� it would appear that the Optimal Algorithm is exponentially better
than the � � Algorithm as we increase KY � Note� however� that as we increase KY above
�G� the runtime of the Optimal Algorithm is solely the cost of the basis conversion which is
�G �

�m�KY

KY��

�
� But as KY goes to in�nity� the runtime of the � � Algorithm also converges

to �G �
�m�KY

KY ��

�
� Thus� the two algorithms have the same behavior as KY goes to in�nity

with m and �G held �xed�

This e�ect can be seen in Figure �� When KY is less than �G� the Optimal Algorithm
has better performance than the � � Algorithm� But as KY increases beyond �G� the two
algorithms have the same runtime behavior� In the graph on the right of this �gure� we see
that as KY increases� the ratio of the runtimes tends to ��

 Our �nal case is to consider the relative performance of the two algorithms as m increases
when KY � �G� Thus� we compare

�
m��G�KY

m

�
�
�
m�KY

m

�
to �G �

�
m�KY

KY��

�
�

�
m�GKY

m

�
�

�
mKY

m

�
vs �G �

�
mKY

KY �

�
Q�G

i���mKY i�

m
Q�G

i���KY i�
�

KY �

m
vs �G

In this case� we see that the Optimal Algorithm is asymptotically better than the � �
Algorithm by a factor of

O�m�G����

Graphs showing this behavior appear in Figure �

An Analysis of Polynomial Composition Algorithms ��

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

#G

LC

0 10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

#G

19
93

 /
O

pt
im

al

Figure �� On the left� a comparison of Optimal �solid�� and � � �dotted� Algorithms� In this
�gure� KY � � and m � �� Note that the graph of the Improved Algorithm would fall between
these two lines� On the right is a graph of the ratio of the runtime of the � � Algorithm to that
of the Optimal Algorithm for this data�

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

Y

LC

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

Y

19
93

 /
O

pt
im

al

Figure �� On the left� a comparison of Optimal �solid�� Improved �dashed�� and � � �dotted�
Algorithms� In this �gure� �G � �� and m � �� On the right is a graph of the ratio of the runtime
of the � � Algorithm to that of the Optimal Algorithm for this data over a larger range of KY �

�� University of Waterloo� CS������

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18
x 10

4

m

LC

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
x 10

8

m

LC

Figure � Comparison of Optimal �solid�� Improved �dashed�� and � � �dotted� Algorithms� In
this �gure� �G � 	 and KY � �

� Runtime Analysis

In the previous sections� we have analyzed the runtime of the various composition algorithms by
counting the number of linear combinations made by the de Casteljau evaluations� However� this
is only part of the total runtime cost of these algorithms� In this section we give a more complete
analysis of the runtimes� and show how these costs can be reduced�

We begin by noting that each linear combination used by de Casteljau�s algorithm to evaluate
f requires O�KYKZ� operations� for a total operation count of

O

�
KYKZ

�
mKY

KY �

��
�

However� you can also run de Casteljau�s algorithm backwards to compute scalar weights for the
control points� This variation of de Casteljau�s algorithm takes O�KY

�m�KY

m��

�
� time to compute

the weights� and O�KZ

�m�KY

m

�
� to combine the control points with these weights�

While we can use this technique to in the Naive and One Permutation Algorithms� note that it
is computationally more expensive to use this method with the � � and the Improved Algorithms�
Since we reuse the partially computed blossom values with these two algorithms� it is more e�cient
to run the forward de Casteljau algorithm as we will be reusing the evaluations that are expensive
to compute �while with the backwards de Casteljau algorithm� we would be reusing the evaluations
that are inexpensive to compute��

A second potential addition to our runtime cost is the conversion from a multi�index to a linear
index� The conversion algorithm takesO�KY � time� and we have to use it for O�KY � domain points�
Thus� for each linear combination in de Casteljau�s algorithm� this would increase the runtime from

An Analysis of Polynomial Composition Algorithms �

O�KYKZ� by an additive term of O�K�
Y � to O�KYKZ K�

Y � for a total of

O

�
�KYKZ K�

Y �

�
mKY

KY �

��

However� Shoemake developed a version of de Casteljau�s algorithm that computes the linear
o�sets incrementally� increasing the cost of each linear combination by an additive factor of only
O�KY � ����

The more sophisticated composition algorithms also iterate through G�s control points� which
requires iterating through G�s multi�indices� comparing these multi�indices� and converting these
multi�indices into linear indexes into G�s control points� This would at most add an additive factor
of O�KX� to runtime� which is easily dominated by the cost of a de Casteljau evaluation� Note
however� that this extra cost can be reduced by precomputing an array of G�s multi�indices� each
having an extra �eld that is the linear index corresponding to the multi�index�

Finally� there is an additive cost associated with the pre� and post�processing of H�s control
points �Figure ���� However� this cost is proportional to the number of control points of H �times
KZ� and is dominated by other terms of the computation�

Thus� for the two naive algorithms� the full runtime cost is given by multiplying the number of
linear combinations by a factor of O�KY �� while for the three sophisticated algorithms� we get an
additional multiplicative cost of O�KYKZ��

� Comparison of Algorithms

We have seen �ve algorithms for computing the composition of two polynomials� Three issues
must be considered to decide which algorithm is appropriate for a particular application� Speed�
numerical stability� and code complexity� We dismiss the Naive Algorithm and the One Permu�
tation Algorithm since while they have the same numerical properties and roughly the same code
complexity as the � � Algorithm� they are both signi�cantly slower than the � � Algorithm�
Therefore� you will always be better o� implementing the � � Algorithm than either the Naive or
One Permutation Algorithm�

This leaves us with three algorithms to compare� the � � Algorithm� the Improved Algorithm�
and the Optimal Algorithm� We begin by considering code complexity� The � � Algorithm is far
simpler than the Improved or Optimal Algorithms� While it is true that the Optimal Algorithm
is essentially the � � Algorithm plus a change of basis and some code for ExtractCPs� a proper
implementation of the change of basis code is di�cult� The change of basis code given in Figure ��
is inadequate as the initial control points of G may not span the domain of F�

Di�culties arise when trying extend the change of basis code to select a �good� subsect of G�s
control points to use for the basis� Further� if you select any subset other than the initial control
points of G� then you have to keep track of which points you need to iterate over in the loop of
RecursiveCompose���

The code for the Improved Algorithm is clearly more complicated than the � � Algorithm� In
addition to the complexities that are apparent in Figure ��� care must be taken when implementing
ngt�� and nlt�� or you may lose the e�ciency advantages over the � � Algorithm�

�� University of Waterloo� CS������

Moving to numerical stability� we begin by noting that the easist way to measure stability is
by the maximum number of linear combinations separating the input data and any control point
of H� For the � � and the Improved Algorithms� it is easy to see that m linear combinations
are used� Further� for many applications of composition� we would expect these all to be convex
combinations �i�e�� for the control points of G to lie inside the domain simplex of F�� This is the
case� for example� for the problems of freeform deformation and triangular to tensor product basis
conversion�

For the Optimal Algorithm� however� our longest path will be m�KY �� a�ne combinations�
The �rst mKY a�ne combinations are required for the basis conversion� While we would expect
all of these to be convex combinations� the �nal m a�ne combinations will probably not be convex�
Further� if the control points of G nearly lie in a subsimplex of F�s domain simplex� we will have
additional numerical di�culties� It should be noted� though� that not all of the paths from the
input to control points of H will be of length m�KY ��� Some will be as short as m� Still�
the numerical behavior of the Optimal Algorithm is potentially quite poor �although it should be
acceptable in many situations��

Finally� we will consider e�ciency� Although there is a proper ordering of the algorithms in terms
of their runtime �i�e�� the Optimal Algorithm is always the fastest� while the Improved Algorithm
is faster than the � � Algorithm for m � � and equal otherwise�� it is important to consider how
much faster one algorithm is than another� While the Improved Algorithm is faster than the � �
Algorithm� looking at Figures �� � the advantage is relatively small unless m is large� For example�
with m � �� the Improved Algorithm is only �
" to ��" faster than the � � Algorithm�

Likewise� the Optimal Algorithm�s e�ciency advantage is most apparent as m increases� While
these advantages occur at lower values of m than they occur for the Improved Algorithm �giving�
for example� a factor of � speed increase for m � � or 	�� note that the numerical stability of
the Optimal Algorithm decreases for larger values m� And as we increase �G or KY � the three
algorithms asymptotically have the same runtime behaviour�

Thus� considering all three factors together �code complexity� e�ciency� and numerical stability�
you are probably best o� implementing the � � Algorithm� There will be exceptions� of course� If
speed is the primary concern� then the Optimal Algorithm is ideal� Likewise� if you plan to work
with degrees of � or 	 and know that the initial control points of G span the domain of F� then
again the Optimal Algorithm is best� However� the only situation in which we can see the Improved
Algorithm being the best choice is when stability is a concern and you expect m to be large�

� Composition of a Blossom with a Set of Polynomials

In this section� we extend the notation of polynomial composition to the composition of a blossom
with a set of polynomials� Mathematically� this introduces no problems # the proof of the theorem
below is almost identical to the proof of the same theorem for the polynomial composition� Un�
fortunately� we will be unable to use most of the sophisticated algorithms developed in this paper�
However� we will be able to use this generalization of composition to perform degree raising� and
for this problem� we can use modi�ed versions of the algorithms presented in this paper�

An Analysis of Polynomial Composition Algorithms ��

Given� A�ne spaces X �of dimensionKX�� Y �of dimensionKY �� and Z �of dimension
KZ�� control points fG

j
��g���II

�j

KX

� � 	 j 	 m de�ning m B�ezier simplices Gj � X � Y of

degree �j relative to a domain simplex �X � X � and control points fF�pg�p�IImKY
de�ning

an m�a�ne B�ezier simplex f � Ym � Z relative to a domain simplex �Y � Y �

Find� The control points fH��g���IILKX

of the degree L �
Pm

i�� �i B�ezier simplex H �

f �G � f�G�� � � � �Gm� relative to �X �

Solution� If f denotes the blossom of F� then

H�� �
X

I�II
���m
KX

jIj���

C�I�f�GI�� �� � IILKX
����

where GI with I � ����� ������m� is an abbreviation for �G�
���
� � � � �Gm

��m
��

Proof� The proof is essentially the one appearing in DeRose et al ����

H�t� � f�G��t�� � � � �Gn�t��

� f

�
BB	 X
����II

��
KX

G�
���
B��
���
�t�� � � � �

X
��m�II

�m
KX

Gm
��mB

�m
��m

�t�

CCA

�
X

I�II
���m
KX

f
�
G�
���
�G�

���
� � � � �Gm

��m

� mY
j��

B
�j
��j
�t�

�
X

I�II
���m

KX

f�GI�B
L
I �t�

�
X

I�II
���m
KX

f�GI�C�I�B
L
jIj�t�� ��	�

We can �nd the control points ofH by grouping together terms in Equation �	 such that jI j � ���
yielding

H�� �
X

I�II
���m

KX

jIj���

f�GI�C�I�� ��
�

Unfortunately� while the Naive Algorithm discussed in Section � can be used to compute the
control points for this generalization of polynomial composition� in general� we can not use any of
the speedups discusses in this paper since each Gi might have di�erent control points� We can�
however� run de Castlejau�s algorithm backwards� and reduce the runtime cost by a factor of KZ �

�� University of Waterloo� CS������

��� Special Cases

There are two special cases of particular interest� The �rst is when the functions Gi are all equal�
G��t� � � � � � Gm�t� � G�t�� This gives us

f�G��t�� � � � �Gm�t�� � f�G�t�� � � � �G�t��

� F�G�t���

where F �t� � f�t� � � � � t� is the degree m polynomial agreeing with f on f �s diagonal� Thus� we
have the composition of polynomial functions�

The second special case is when each Gi is the identity function� Let In�t� be the nth degree
representation of the identity function� Now consider

H�t� � f�In�t�� I��t�� I��t�� � � � � I��t���

where f is an m�a�ne function� The result H is a degree m n� � representation of F� Thus� we
have degree raising� Since most of f �s arguments are linear representations of the identity function�
we can simplify our equations somewhat� and in particular� we can simplify the combinatorial
constant�

H�t� � f�In�t�� I��t�� I��t�� � � � � I��t��

�
X

I�II
���m

KX

f�II�C�I�B
m��
jIj �t�

�
X

I�II
���m

KX

f�II�

�j���j
���

�
�m��
jI j

�Bm��
jIj �t�

Solving for H���

H�� �
X

I�II�n�������� ����m
KX

jIj���

f�II�

�j���j
���

�
�
m��
��

�

�
X

I�II�n�������� ����m
KX

jIj���

f�In��� � I
�
���
� I���	� � � � � I

�
��m

�

�j���j
���

�
�m��

��

� ����

We can either use this formula directly to compute control points when raising the degree by
an arbitrary amount n and k� or we can use it to derive more e�cient formulae for any special
cases of interest� As an example of this latter approach� in Appendix A the above formula is used
to rederive the standard formula for degree raising a curve�

Note that we can use a modi�ed form of any of the faster algorithms to compute the degree
raised polynomial� Essentially� we evaluate all the control points from the degree one identity
functions �rst �i�e�� the I�s�� and then evaluate at the Ins�

An Analysis of Polynomial Composition Algorithms ��

References

��� C� de Boor� B�form basics� In G� Farin� editor� Geometric Modeling� Algorithms and New

Trends� pages ���#�	�� SIAM� � ���

��� Tony DeRose� Ronald Goldman� Hans Hagen� and Stephen Mann� Composition again� ACM

Transactions on Graphics� ���������#��
� � ��

��� Tony D� DeRose� Composing B�ezier simplexes� ACM Transactions on Graphics� ������ �#����
July � ���

�	� Tony D� DeRose� A coordinate�free approach to geometric programming� In Math for Siggraph�
Siggraph Course Notes ���� � � � Also available as Technical Report No� � �� ���� Department
of Computer Science and Engineering� University of Washington� Seattle� WA �September�
� � ��

�
� G� Farin� Curves and Surfaces for Computer Aided Geometric Design� Academic Press� second
edition� � ��

��� Lyle Ramshaw� Blossoming� A connect�the�dots approach to splines� Technical Report � �
Digital Systems Research Center� Palo Alto� Ca� � ���

��� Ken Shoemake� E�cient de Casteljau indexing� In preparation� �
�

A Derivation of curve degree raising via composition

We could perform degree raising by evaluating Equation �� for the controls points of the degree
raised curve� However� if we only want to degree raise for speci�c cases �e�g�� curves by degree �� or
surfaces by degree �� then it is more e�cient to solve the equation analytically� In this appendix�
we rederive the equations for degree raising curves by � degree�

We begin from working from Equation ��� with the additional knowledge that n � �� KX � ��
�� � ��� �� �� � � � � ��� ��� � f��� ��� ��� ��� ��� ��g� and for � � j 	 m� ��j � f��� ��� ��� ��g�

H	j�m���j
 �
X

I�II
���������� ����m
�

jIj�	j�m���j

f�GI�

��
���

�
� m��
	j�m���j

�

�

�
m� �

j � �

�
f���� ��� ��� ���m���j�� ��� ���j����

� �
	���

�
� m��
	j�m���j

�
�
m� �

j � �

�
f���� ��� ��� ���m�j�� ��� ���j����

� �
	���

�
� m��
	j�m���j

�
�
m� �

j

�
f���� ��� ��� ���m���j�� ��� ���j��

� �
	���

�
� m��
	j�m���j

�

�	 University of Waterloo� CS������

�

�
m� �

j � �

�
f���� ��� ��� ���m���j�� ��� ���j����

�� m��
	j�m���j

�
�
m� �

j � �

�
f���� ��� ��� ���m�j�� ��� ���j����

�� m��
	j�m���j

�
�
m� �

j

�
f���� ��� ��� ���m���j�� ��� ���j��

�� m��
	j�m���j

�
�

j�j � ��

m�m ��
f���� ��� ��� ���m���j�� ��� ���j����

�j�m �� j�

m�m ��
f���� ��� ��� ���m�j�� ��� ���j����

�m� j��m� j ��

m�m ��
f���� ��� ��� ���m���j�� ��� ���j��

�
j�j � ��

m�m ��
f���� ��� ��� ���m���j�� ��� ���j����

�j�m �� j�

m�m ��

�
f���� ��� ��� ���m���j�� ��� ���j����

f���� ��� ��� ���m���j�� ��� ���j��
�
	�

�m� j��m� j ��

m�m ��
f���� ��� ��� ���m���j�� ��� ���j��

�
j

m �
f���� ��� ��� ���m���j�� ��� ���j����

m� j �

m �
f���� ��� ��� ���m���j�� ��� ���j��

�
j

m �
f���� ���m���j�� ��� ���j����

m� j �

m �
f���� ���m�j�� ��� ���j���

which is the standard degree raising formula for curves�

B Code

Pseudo�code for the algorithms presented in the paper appears on the following pages� We have not
given code for the Naive or One Permutation Algorithms� Code for converting from multi�indices
to linear indices appears in ����

An Analysis of Polynomial Composition Algorithms �

EvalBlossom�V � u�� � � � �ud�
f V is the control net for a B�ezier simplex characterizing a blossom q
returned is the point q�u�� ����ud�g

begin
$V � Prepare�V �
for � � � to d

EvalBlossomArgument� $V � �� u��
endfor

return $V �cp
�d�
��

end

EvalBlossomArgument� $V � �� u�
begin

d� $V �degree
�b�� � � � � bk�� Barycentric coordinates of u relative to $V �domain

for all �� � IId��k

$V �cp
���
�� � b� $V �cp

�����
����e�

 � � � bk $V �cp
�����
����ek

endfor
end

Prepare�V �
f Initialize and return a structure into which the partial results of the
blossom evaluation algorithm can be stored�g

begin
d� $V �degree � V �degree

for all �� � IIdk
$V �cp

���
�� � V�cp��

endfor
return $V

end

Figure ��� Evaluation of an arbitrary blossom value� If V is a control net for a B�ezier simplex
Q� V �degree is the degree of Q� V �domain denotes the domain simplex� and V�cp are the control
points of Q relative to V �domain�

�� University of Waterloo� CS������

InitializeH�F� G� H�
begin

k � Dimension�G�domain�� �� G�degree� m� F�degree
H�degree � � �m
H�domain � G�domain

for all �� � II�mk
H�cp�� � �

endfor
end

PostProcessH�H�
begin

for all �� � II�mk
H�cp�� � H�cp��	

��m
��

�
endfor

end

Figure ��� Preparation and postprocessing of H�

An Analysis of Polynomial Composition Algorithms ��

Compose�F� G� H�
begin

InitializeH�F� G� H� f See Figure ��g
$F � Prepare�F� f See Figure �� g
��min � ��� ���� �� G�degree�

RecursiveCompose� $F � G� H� �� ��min� ��� F�degree�� ��
PostProcessH�H� f See Figure ��g

end

RecursiveCompose� $F � G� H� n� �m� �s� c�
�
f n � recursion control variable g
f �m � minimum multi�index value allowed for ��n�� g
f �s � sum of multi�indices computed in I thus far g
f c � scalar to use as weight at bottom of recursion g
f
 � multiplicity of �m in I thus far g
begin

if n � $F �degree then

H�cp�s � H�cp�s c � $F �cp
�n�
��

return�
endif

for all ��n�� � II�k with ��n�� � �m in increasing order

EvalBlossomArgument� $F � n �� G�cp��n��� f compute $F �n��� from $F �n�g

if ��n�� � �m then
� �
 � else
� � �

RecursiveCompose� $F � G� H� n �� ��n��� �s ��n��� c �
�j��n��j
��n��

�
	
��
��

endfor
end

Figure ��� The B�ezier composition algorithm�

�� University of Waterloo� CS������

Compose�F� G� H�
begin

InitializeH�F� G� H�� f See Figure �� g
$F � Prepare�F�� f See Figure �� g

Rec�F�Deg� F� G�cp� H� F�deg� G�first� ����
PostProcessH�H�� f See Figure �� g

end

Rec�n� F� G� H� Mmax� prev� sum� c�
begin

if �n � �� then H�cpsum � c � F
�n�
� �

Mmin � ceil�jGj	n�� f compute the number of times to evalg
if �Mmin � Mmax� then return� f May occur when e�� at previous levelg
for p�G��rst to G�last do f iterate through G�s remaining CPsg

if � Marked�p� � next�
if � p � prev � then e � �� else e � �� f If out of order� %must% evaluate � less timeg
f We may not be able to complete the evaluation for some points g
if � n � ngt�p�G� � �Mmax � e� nlt�p�G� � �Mmax � e� �� � Mmax � e � then next�
f And some points may require a new minimum g

Lmin � ceil�Mmin� �n nlt�p�G��	�ngt�p�G� � nlt�p�G���
if � Lmin � min�Mmax� e� n� � then next� f can this happen& g

F � �Eval�F� p� Lmin� ���
�s � �Lmin� �� � p�mi�

$c � c �
�j��j
��j

�Lmin��
	�Lmin� ����

Mark�p�
for i � Lmin to Mmax � e do

F ��Eval�F �� p��

$c � $c �
�j��j
��

�
	i�

Rec�n � i� F �� G� p� H� min�i� n� i�� p� sum �s� $c��
end
Unmark�p�

end
end

Figure ��� Improved Algorithm

An Analysis of Polynomial Composition Algorithms �

Compose�F� G� H�
begin

InitializeH�F� G� H�� f See Figure �� g
��min � ConvertBasis�F�G�� f Convert F to be w�r�t G�s �rst control points� Figure �� g
$F � Prepare�F�� f See Figure �� g

RecursiveCompose� $F � G� H� �� ��min� ��� F�degree�� ���
PostProcessH�H�� f See Figure �� g

end

RecursiveCompose� $F � G� H� n� �m� �s� c�
�
f n � recursion control variable g
f �m � minimum multi�index value allowed for ��n�� g
f �s � sum of multi�indices computed in I thus far g
f c � scalar to use as weight at bottom of recursion g
f
 � multiplicity of �m in I thus far g
begin

ExtractCPs� $F� H� n� �s� c�
if n � $F �degree then return�

for all ��n�� � II�k with ��n�� � �m in increasing order

EvalBlossomArgument� $F � n �� G�cp��n��� f compute $F �n��� from $F �n�g

if ��n�� � �m then
� �
 � else
� � �

RecursiveCompose� $F � G� H� n �� ��n��� �s ��n��� c �
�j��n��j
��n��

�
	
��
��

endfor
end

Figure �	� The optimal B�ezier composition algorithm�

ExtractCPs� $F� H� n� �s� c�
begin

for �� � IInKY
do

for j � � to KY do

�s� �s ij � F� �simpj �

c� c �
�jF� �simpjj

F� �simpj

�ij
	ij��

end

H�cp�s � H�cp�s c � $F
�n�
��

end
end

Figure �
� Code to extract evaluations of f from the simplicial array�

�� University of Waterloo� CS������

ConvertBasis�F� G�
begin

��� ��� ���� ��G�degree�
for i � � to F�domain�dimension

F�cp� Subdivide�F� G�cp��� i�
������next

endfor
return ��

end

Figure ��� Basis conversion

