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Abstract

Many papers describe techniques for evaluating spline curves and surfaces� While each paper provides some
theoretical or empirical evidence with which to compare techniques� there exist few global comparisons �Peters��	�
Also� papers describing particular algorithms often provide few details� making implementation of the technique
presented di
cult or impossible� This report attempts to illuminate the performance relationships between� and
implementations of� various methods for rendering spline surfaces� Empirical results are given for bicubic tensor
product B�ezier surfaces� and for cubic and quartic triangular B�ezier surfaces�

� Introduction

Many techniques exist for evaluating spline surfaces� in particular� for evaluating m�simplex �eg� triangular� B�ezier
surfaces� tensor product B�ezier patches and tensor product B�spline surfaces� Such techniques include de Casteljau
evaluation �Farin�	� Mann�
�� forward di�erencing �Foley�
�� adaptive forward di�erencing �Lien��� and SV�nested
multiplication �Schumaker���� as well as several varieties of recursive subdivision �Foley�
� Peters���� Each technique
has associated implementation peculiarities as well as theoretical and empirical performance behaviour�

Examples of global comparisons of evaluation techniques include �Peters��� and �Williams���� Peters presents� via
pseudocode� several algorithms for the evaluation of B�ezier surfaces of arbitrary degree over simplices of arbitrary
dimension� The algorithms are compared on several metrics� including approximate number of lines of code for
implementation and theoretical time complexity� Some consideration is also given to storage complexity and stability�
A performance comparison is presented for surfaces of degree � to degree ���

Williams discusses only tensor product B�spline surfaces� evaluated so as to produce a wire frame representation�
The asymptotic behaviours of evaluation techniques are compared via an operation�counting metric� Williams also
considers how one may choose an appropriate evaluation technique based on the number of evaluations performed
for each B�spline segment�

This report will present an overview of the implementation of several evaluation techniques for m�simplex and
tensor product B�ezier patches� using C���like pseudocode� Emphases will be placed on empirical performance
behaviour and the description of di�cult implementation details� The approach taken will be oriented toward
producing tessellated �or polygonalized� surface representations suitable for rendering via a polygon pipeline� Thus�
methods for scanline rendering such as that described by Rockwood �Rockwood��� will not be considered� Surfaces
of low degree �bicubic for tensor product patches and cubic and quartic for m�simplex patches� will be used for
empirical testing as they are most commonly used in practice� although some discussion of asymptotic behaviour will
be included� Also� consideration will be given to computation of normals� if they are not produced automatically by
the evaluation technique� to allow the resulting surfaces to be shaded�

The remainder of the report will comprise� for tensor product and triangular surfaces� a description of the
techniques implemented� a discussion of the drawbacks and limitations of particular techniques� a comparison of the
performance of the techniques on particular surfaces and a brief discussion of the asymptotic behaviour of some of
the methods�

� Preliminaries

��� Pseudocode

The various techniques implemented will be described via detailed pseudocode� derived from C��� Along with
simple point� vector and matrix classes� two further classes support the pseudocode�

�
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TPBezier This class implements a representation of a tensor product B�ezier surface� Several member functions
provide the class interface� including�

void SetControlPoint� int i� int j� Point ptControl�point �

Point GetControlPoint� int i� int j �

GetControlPoints� Matrix mAx� Matrix mAy� Matrix mAz �

SetControlPoints� Matrix mAx� Matrix mAy� Matrix mAz �

int GetM��

int GetN��

MSimpBezier This class implements a representation of m�simplicial domain B�ezier patches� Member functions
include�

void SetControlPoint� int aI��� Point ptControl�point �

Point GetControlPoint� int aI�� �

int GetDegree��

int GetDimension��

Because the domain of the patch can theoretically be any dimension� control points must be referenced by
arbitrary dimension multiindices� However� as this paper is concerned explicitly with surfaces� only triangular
patches will be considered� and control points can be referenced via two �independent� integers�

Lastly� in the implementation of adaptive forward di�erencing� a template list class is used to record points
along curves�

��� Tessellation

Some of the techniques described below �for tensor product surfaces� bilinear interpolation� modi�ed de Casteljau
evaluation� for m�dimension simplex surfaces� de Castejau evaluation� SV�nested multiplication� evaluate surfaces at
individual domain points� As we desire a polygonal representation of the surface� we must tessellate the domain in
order to apply these methods� Tessellation can easily be accomplished by sampling the surface at particular rates in
the parametric directions and joining adjacent points to form triangles�

Dividing the domain into quadrilaterals is another option� assuming that the rendering engine can correctly render
non�planar polygons�

� Tensor Product Surfaces

A tensor product surface is given by

T �u� v� �
nX
i��

mX
j��

Pi�jB
n
i �u�Bm

j �v��

where Bn
i is the ith Bernstein polynomial of degree n� Pi�j is a control point in ��� and �u� v� is a point in a rectilinear

domain space�

��� Bilinear Interpolation

The straightforward approach to evaluation of a tensor product B�ezier surface is de Casteljau evaluation in both
parametric directions simultaneously� as shown in Figure � �Farin�	�� This �gure originally appeared in �Mann�
��

����� Pseudocode

Point Compute� TPBezier� tpbezSurface� double dU� dV� Vector� vecdFdU� Vector� vecdFdV � �

int i� j� iR	

int iDegree 
 tpbezSurface�GetDegree��	 �� assume m x m
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Figure �� Bilinear Interpolation

TPBezier
 ptpbezTemp 
 new TPBezier� tpbezSurface �	

�� for each degree down to � � bilinear patch

for� iR 
 �	 iR � iDegree	 iR�� � �

�� for each point

for� i
�	 i �
 iDegree�iR	 i�� � �

for� j
�	 j �
 iDegree�iR	 j�� � �

�� perform interpolation

ptpbezTemp��SetControlPoint� i� j�

�ptpbezTemp��GetControlPoint� i� j �
�����dU�

� �ptpbezTemp��GetControlPoint� i��� j �
dU��
�����dV� �

�ptpbezTemp��GetControlPoint� i� j�� �
�����dU�

� �ptpbezTemp��GetControlPoint� i��� j�� �
dU��
dV �	

�

�

�

�� bilinear patch

ptLp��� 
 ptpbezTemp��GetControlPoint� �� � �
���dU�

� ptpbezTemp��GetControlPoint� �� � �
dU	

ptLp��� 
 ptpbezTemp��GetControlPoint� �� � �
���dU�

� ptpbezTemp��GetControlPoint� �� � �
dU	

ptL��p� 
 ptpbezTemp��GetControlPoint� �� � �
���dV�

� ptpbezTemp��GetControlPoint� �� � �
dV	

ptL��p� 
 ptpbezTemp��GetControlPoint� �� � �
���dV�

� ptpbezTemp��GetControlPoint� �� � �
dV	

�� derivatives can just be read off

vecdFdU 
 �ptL��p� � ptL��p��
iDegree	

vecdFdV 
 �ptLp��� � ptLp����
iDegree	

delete ptpbezTemp	

�� compute the point on the surface

return� ptLp���
���dV� � ptLp���
dV �	
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m

n

Original mxn patch. After deCasteljau’s
algorithm on rows
of net (m-1 steps
each).  Now 1xn.

After n-1 deCasteljau
steps on two columns of
remaining net.  Now
a bilinear patch.

Figure �� Modi�ed deCasteljau evaluation�

�

We note that one improvement on this algorithm is precomputation of the control point weights� This requires
the following changes to the code�

� Four new variables�
double uv 
 dU
dV	

double uV 
 dU
���dV�	

double Uv 
 ���dU�
dV	

double UV 
 ���dU�
���dV�	

� The interpolation line is replaced with
ptpbezNew��SetControlPoint� i� j�

ptpbezTemp��GetControlPoint� i� j �
UV �

ptpbezTemp��GetControlPoint� i��� j �
uV �

ptpbezTemp��GetControlPoint� i� j�� �
Uv �

ptpbezTemp��GetControlPoint� i��� j�� �
uv�

This reduces the number of vector multiplications in the inner loop from � to ��

����� Limitations

The bilinear interpolation method� performance issues aside� has a limitation not addressed in the above pseudocode�
If the patch is m � n� rather than m � m� the algorithm must perform repeated bilinear interpolation min�m�n�
times and then perform de Casteljau�s algorithm max�m�n� � min�m�n� times on the remaining curve to �nd the
point on the surface�

��� Modi�ed de Casteljau

Mann and DeRose �Mann�
� presented a modi�ed version of de Casteljau�s algorithm that evaluates the surface
successively in each parametric direction� each time stopping evaluation one step short of completion� See Figure �
for a schematic diagram� The resulting bilinear patch is used to compute the derivatives and �nally to compute a
point on the surface�
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����� Pseudocode

Point Compute� TPBezier� tpbezSurface� double dU� dV� Vector� vecdFdU� Vector� vecdFdV � �

int i� j� k	

TPBezier
 ptpbezTemp 
 new TPBezier� tpbezSurface �	

�� control points of the bilinear patch

Point ptLp���� ptLp���� ptL��p�� ptL��p�	

�� perform de Casteljau on rows of the control net

for� i
�	 i �
 tpbezSurface�GetM��	 i�� � �

for� k
�	 k � tpbezSurface�GetN��	 k�� � �

for� j
�	 j �
 tpbezSurface�GetN���k	 j�� � �

ptpbezTemp��SetControlPoint� i� j�

ptpbezTemp��GetControlPoint� i� j �
���dV� �

ptpbezTemp��GetControlPoint� i� j�� �
dV �	

�

�

�

�� perform de Casteljau on the two columns of the

�� control net

for� j
�	 j �
 �	 j�� � �

for� k
�	 k � tpbezSurface�GetM��	 k�� � �

for� i
�	 i �
 tpbezSurface�GetM���k	 i�� � �

ptpbezTemp��SetControlPoint� i� j�

ptpbezTemp��GetControlPoint� i� j �
���dU� �

ptpbezTemp��GetControlPoint� i��� j �
dU �	

�

�

�

�� bilinear patch

ptLp��� 
 ptpbezTemp��GetControlPoint� �� � �
���dU�

� ptpbezTemp��GetControlPoint� �� � �
dU	

ptLp��� 
 ptpbezTemp��GetControlPoint� �� � �
���dU�

� ptpbezTemp��GetControlPoint� �� � �
dU	

ptL��p� 
 ptpbezTemp��GetControlPoint� �� � �
���dV�

� ptpbezTemp��GetControlPoint� �� � �
dV	

ptL��p� 
 ptpbezTemp��GetControlPoint� �� � �
���dV�

� ptpbezTemp��GetControlPoint� �� � �
dV	

�� derivatives can just be read off

vecdFdU 
 �ptL��p� � ptL��p��
tpbezSurface�GetM��	

vecdFdV 
 �ptLp��� � ptLp����
tpbezSurface�GetN��	

delete ptpbezTemp	

�� compute the point on the surface

return� ptLp���
���dV� � ptLp���
dV �	

�
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��� Recursive Subdivision

If we represent a bicubic B�ezier surface in matrix form� we have a matrix of control points�

P �

�
���
P��� P��� P��� P���
P��� P��� P��� P���
P��� P��� P��� P���
P��� P��� P��� P���

�
���

We can subdivide this surface into a �left� surface and a �right� surface �in one parametric direction� at the midpoint
of the domain� by applying the following matrices� respectively�

L �
�

�

�
���

� 
 
 

� � 
 

� � � 

� 	 	 �

�
���

R �
�

�

�
���

� 	 	 �

 � � �

 
 � �

 
 
 �

�
���

So� LP is the left surface and RP is the right� We then subdivide in the other parametric direction �again at the
midpoint� by applying L and R to �LP �T and �RP �T � So� L�LP �T is the �left� half of the left surface� R�LP �T is
the �right� half of the left surface� and so forth� In this way� we subdivide the � � � control net for a bicubic B�ezier
patch into four �� � control nets for � bicubic B�ezier patches� Continuing in this manner� the control nets approach
the surface in the limit�

We must now consider criteria for terminating the subdivision algorithm� The typical criterion is one of ��atness��
When each of the points of the control net are within some �xed tolerance of planar� subdivision for the patch halts
and the patch is drawn as a quadrilateral �with normals approximated using control points adjacent to the corners��
Determining �atness of a bicubic patch is simply a matter of computing� for each control point� the distance from
the point to the plane de�ned by three of the corner control points� If any of the points are further away than some
�xed tolerance� the patch is not ��at� within that tolerance�

����� Pseudocode

ComputeSurface� TPBezier� tpbezSurface� double dTolerance � �

TPBezier tpbezLL� �� � �	 �� four subpatches

TPBezier tpbezRR� �� � �	

TPBezier tpbezLR� �� � �	

TPBezier tpbezRL� �� � �	

if� Flat� tpbezSurface� dTolerance � �

tpbezSurface�DrawasQuadrilateral��	

� else �

Subdivide� tpbezSurface� tpbezLL� tpbezLR�

tpbezRL� tpbezRR �	

ComputeSurface� tpbezLL� dTolerance �	

ComputeSurface� tpbezLR� dTolerance �	

ComputeSurface� tpbezRL� dTolerance �	

ComputeSurface� tpbezRR� dTolerance �	

�

�

Subdivide� TPBezier� tpbezSurface�

TPBezier� tpbezLL� TPBezier� tpbezLR�

TPBezier� tpbezRL� TPBezier� tpbezRR � �

�� assume that mLeft and mRight are defined as above
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�� matrices to store control point coordinates

Matrix mAx� �� � �� mAy� �� � �� mAz� �� � �	

Matrix mAx�l� �� � �� mAy�l� �� � �� mAz�l� �� � �	

Matrix mAx�ll� �� � �� mAy�ll� �� � �� mAz�ll� �� � �	

Matrix mAx�lr� �� � �� mAy�lr� �� � �� mAz�lr� �� � �	

Matrix mAx�r� �� � �� mAy�r� �� � �� mAz�r� �� � �	

Matrix mAx�rl� �� � �� mAy�rl� �� � �� mAz�rl� �� � �	

Matrix mAx�rr� �� � �� mAy�rr� �� � �� mAz�rr� �� � �	

GetControlPoints� mAx� mAy� mAz �	

�� compute left and right surfaces� transposed in

�� preparation for subdivision in opposite direction

mAx�l 
 �mLeft
mAx��Transpose��	

mAy�l 
 �mLeft
mAy��Transpose��	

mAz�l 
 �mLeft
mAz��Transpose��	

mAx�r 
 �mRight
mAx��Transpose��	

mAy�r 
 �mRight
mAy��Transpose��	

mAz�r 
 �mRight
mAz��Transpose��	

�� other subdivision

mAx�ll 
 mLeft
mAx�l	

mAy�ll 
 mLeft
mAy�l	

mAz�ll 
 mLeft
mAz�l	

mAx�lr 
 mRight
mAx�l	

mAy�lr 
 mRight
mAy�l	

mAz�lr 
 mRight
mAz�l	

mAx�rl 
 mLeft
mAx�r	

mAy�rl 
 mLeft
mAy�r	

mAz�rl 
 mLeft
mAz�r	

mAx�rr 
 mRight
mAx�r	

mAy�rr 
 mRight
mAy�r	

mAz�rr 
 mRight
mAz�r	

�� construct the final surfaces

tpbezLL�SetControlPoints� mAx�ll� mAy�ll� mAz�ll �	

tpbezLR�SetControlPoints� mAx�lr� mAy�lr� mAz�lr �	

tpbezRR�SetControlPoints� mAx�rr� mAy�rr� mAz�rr �	

tpbezRL�SetControlPoints� mAx�rl� mAy�rl� mAz�rl �	

�

The DrawasQuadrilateral function can approximate derivatives and thereby normals based on control points
adjacent to the corner control points�

Also� it is worth noting that the matrix multiplications can be replaced by addition and multiplication operations
on the elements of the matrices� This will provide a speed increase�

����� Limitations

This method has several limitations� First� the above implementation is speci�c to bicubic surfaces� However� this
drawback is fairly easily overcome by more general subdivision code � using the intermediate points of de Casteljau
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evaluation to form the subpatches �as for triangular patches in Section ����� Second� when subdivision schemes are
used adaptively� as in this case� there is the opportunity for �cracks� to develop in the �nal surface� This is the result
of adjacent subpatches being subdivided to di�erent depths� destroying continuity along the joins �Foley�
�� This
can be overcome by subdividing to a �xed depth �a trivial modi�cation to the above algorithm which allows removal
of the �atness test� or by making the tolerance very small� Both of these options cause unnecessary subdivisions of
some patches� More intelligent subdivision schemes connect adjoining patches� removing these undesirable e�ects�
See �Barsky����

��� Forward Di�erencing

The forward di�erencing approach presented in �Foley�
� was examined� but testing did not clearly indicate that the
algorithm was correct� Instead� the adaptive forward di�erencing algorithm from �Lien��� was modi�ed to produce
simple forward di�erences� This modi�ed algorithm will be described here�

Lien et al� de�ne a parametric object in a space of curves or surfaces S as a function f � X � S� where X is the
parameter space� If X � �� then f � f�t� is a curve� If X � ��� then f � f�s� t� is a surface� They further de�ne
two operators for linear substitutions that transform f � the substitution t�� is denoted by L� and the substitution
t� � by E�

To compute a curve using forward di�erencing� one begins with a curve� say C� The L transformation is then
applied repeatedly to produce a curve of su�ciently �ne parametrization� D � LnC� Points on the curve can then
be generated by computing ED� EED� � � � � E�nD�

If the appropriate basis of representation is chosen for C then E and L become simple� easily computed transfor�
mations� Considering cubic curves� Lien et al� de�nes the forward di�erence basis�

B� �
�

�
�t� � 	t� � �t�

B� �
�

�
�t� � t�

B� � t

B� � �

Thus� the E matrix is�

E �

�
���

� 
 
 

� � 
 


 � � 


 
 � �

�
���

and the L matrix is�

L �

�
���

�
� 
 
 

��

�
�
� 
 


�
�� ��

�
�
� 



 
 
 �

�
���

Consider a one�dimensional parametric cubic B�ezier curve given by�

F �t� � aB�
� � bB�

� � cB�
� � dB�

�

As a column vector� we have�

F �

�
���
a
b
c
d

�
���

The forward di�erence representation is computed by multiplying by the matrix�

MB�FD �

�
���

�� �� ��� �

 � ��� �
�� 
 � �
� 
 
 


�
���
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Now� let FFD � MB�FDF � The curve is then reparametrized� F � � LnFFD� Points on the curve are then given by
the last entry in F i � EiF �� for i � 
� � � � � �n� As an example� consider the curve�

F �t� � B�
� � �B�

� � 	B�
� � �B�

�

then� for n � 	�

F �

�
���

�
�
	
�

�
��� � FFD �

�
���





	
�

�
��� � F � �

�
���





�
�
�

�
��� �

Now�

EF � �

�
���





�
�
��
�

�
��� � EEF � �

�
���





�
�
��
�

�
��� � E�F � �

�
���





�
�
�	
�

�
��� � � � � � E�F � �

�
���





�
�
�

�
���

We can see that the last entries in these column vectors trace out the linear curve�
In order to extend this method to bicubic B�ezier surfaces� one takes F �the � � � matrix of control points� and

computes FFD � MB�FD �MB�FDF �T � FFD is then reparametrized as F � � LnFFD � The last row of FFD now
describes a curve on the surface� that can be computed via the curve method above� To step to the next curve on
the surface� E is applied to F ��

����� Pseudocode

ComputeSurface� TPBezier� tpbezSurface�

int iNum�steps�u�

int iNum�steps�v � �

Matrix mAx� �� � �� mAy� �� � �� mAz� �� � �	

Point aaptComputed�points�iNum�steps�u����iNum�steps�v���	

int i� j	

�� assume mL� mE� and mBeztoFD are defined as described above

tpbezSurface�GetControlPoints� mAx� mAy� mAz �	

mAx 
 mBeztoFd
�mBeztoFd
mAx��Transpose��	

mAy 
 mBeztoFd
�mBeztoFd
mAy��Transpose��	

mAz 
 mBeztoFd
�mBeztoFd
mAz��Transpose��	

�� assume number of steps is a power of �

for� i
�	 i � �int��log� �double�iNum�steps�p� � � log� ��� ��	

i�� � �

mAx 
 mL
mAx	

mAy 
 mL
mAy	

mAz 
 mL
mAz	

�

�� for each curve

for� i
�	 i �
 iNum�steps�u	 i�� � �

�� storage for the curve

Matrix mCurve�x� �� � �	

Matrix mCurve�y� �� � �	

Matrix mCurve�z� �� � �	

�� copy the curve coefficients out of the matrix into

�� column vectors

for� j
�	 j � �	 j�� � �

mCurve�x�Set� j� �� mAx�Get� �� j � �	
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mCurve�y�Set� j� �� mAy�Get� �� j � �	

mCurve�z�Set� j� �� mAz�Get� �� j � �	

�

�� scale down the curve

for� j
�	 j � �int��log� �double�iNum�steps�p� � � log� ��� � �	

j�� � �

mCurve�x 
 mL
mCurve�x	

mCurve�y 
 mL
mCurve�y	

mCurve�z 
 mL
mCurve�z	

�

�� for each step along the curve

for� j
�	 j �
 iNum�steps�v	 j�� � �

�� point on the curve in the last entry

aaptComputed�points�i��j� 
 Point� mCurve�x�Get� �� � ��

mCurve�y�Get� �� � ��

mCurve�z�Get� �� � � �	

�� step forward

mCurve�x 
 mE
mCurve�x	

mCurve�y 
 mE
mCurve�y	

mCurve�z 
 mE
mCurve�z	

�

mAx 
 mE
mAx	

mAy 
 mE
mAy	

mAz 
 mE
mAz	

�

�

To complete the algorithm� one need only generate polygons by attaching adjacent points from aaptComputed points�
As for recursive subdivision� the matrix multiplications can be replaced by addition and multiplication operations

on the elements of the matrices� resulting in a speed increase�

����� Limitations

There are a few limitations to this method� First� it is most convenient if the number of steps in both parametric
directions is a power of two� Secondly� the development and algorithm presented above explicitly compute cubic
curves and bicubic tensor product surfaces� In order to extend this algorithm to higher degree patches one must
rederive the algorithm� which involves computing� for arbitrary degree� the E and L matrices �the cost of which is
discussed in Section 	���� Lastly� in order to compute normals for patches using this method� one must estimate
derivatives using adjacent points� or evaluate the two surfaces of one lower degree �in one parametric direction�
representing the partial derivatives�

��� Adaptive Forward Di�erencing

Adaptive forward di�erencing attempts to combine the strengths of forward di�erencing and recursive subdivision by
adjusting the parametrization of the curve at each forward di�erence step so that the step moves a �xed �distance�
along the curve� The algorithm presented here is an extension of the �xed forward di�erencing algorithm above� as
described in �Lien����

Where the above algorithm repeatedly applies the L transformation before beginning to take forward steps� the
adaptive algorithm attempts to take a forward step� examines the distance between the current point and the new
point on the curve� and adjusts the parametrization if the next point is too near or too distant� The process is then
repeated�
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In order to determine when to adjust the parametrization of the curve� the distance between the current point
and the next point on the curve �from EF � is compared against some threshold� If the distance is greater than the
threshold� the L matrix is applied to F � If the distance is less than half of the threshold� L�� is applied �Lien����
This process continues until the distance to the next point falls within the desired range� The forward step is then
taken and the process is repeated� However� one must be careful to avoid in�nite loops when the distance to the
next point cannot fall between half of the threshold and the threshold� no matter what the parametrization�

It is possible to perform adaptive forward di�erencing for surfaces by computing test curves in the parameter
orthogonal �say s� to the one in which curves are being computed �say t�� To compute the step size� �s� between one
curve f�si� t� and the next curve f�si � �s� t�� the minimum step size used by the test curves at s � si is used� The
implementation below does not include this functionality� instead� it takes �xed forward di�erence steps between
successive curves�

����� Pseudocode

ComputeSurface� TPBezier� tpbezSurface�

int iNum�steps�u�

double dTolerance � �

Matrix mAx� �� � �� mAy� �� � �� mAz� �� � �	

�� need a dynamic structure to record points along

�� individual curves� since there�ll be a variable

�� number of them

List�Point� alptComputed�points�iNum�steps�u���	

int i� j	

�� assume mL� mLinv� mE� and mBeztoFD are defined as

�� described above

tpbezSurface�GetControlPoints� mAx� mAy� mAz �	

mAx 
 mBeztoFd
�mBeztoFd
mAx��Transpose��	

mAy 
 mBeztoFd
�mBeztoFd
mAy��Transpose��	

mAz 
 mBeztoFd
�mBeztoFd
mAz��Transpose��	

�� assume number of steps is a power of �

for� i
�	 i � �int��log� �double�iNum�steps�p� � � log� ��� ��	

i�� � �

mAx 
 mL
mAx	

mAy 
 mL
mAy	

mAz 
 mL
mAz	

�

�� for each curve �fixed step size�

for� i
�	 i �
 iNum�steps�u	 i�� � �

�� storage for the curve

Matrix mCurve�x� �� � �	

Matrix mCurve�y� �� � �	

Matrix mCurve�z� �� � �	

�� copy the curve coefficients out of the matrix into

�� column vectors

for� j
�	 j � �	 j�� � �

mCurve�x�Set� j� �� mAx�Get� �� j � �	

mCurve�y�Set� j� �� mAy�Get� �� j � �	

mCurve�z�Set� j� �� mAz�Get� �� j � �	

�
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�� record the first point� it�s on the curve

alptComputed�points�i��attachr� Point� mCurve�x�Get� �� � ��

mCurve�y�Get� �� � ��

mCurve�z�Get� �� � � � �	

�� how many steps left�

int iNum�steps 
 �	

for� 	 iNum�steps � �	 � �

�� count ups and downs

int iNum�ups	

int iNum�downs	

�� need to record the old curve

Matrix mCurve�old�x 
 mCurve�x	

Matrix mCurve�old�y 
 mCurve�y	

Matrix mCurve�old�z 
 mCurve�z	

�� adjust up or down as necessary

iNum�ups 
 iNum�downs 
 �	

�� loop until we find a good step size

for� 		 � �

�� record the curve before the forward step

Matrix mCurve�x�prev 
 mCurve�x	

Matrix mCurve�y�prev 
 mCurve�y	

Matrix mCurve�z�prev 
 mCurve�z	

�� attempt to take a forward step

mCurve�x 
 mE
mCurve�x	

mCurve�y 
 mE
mCurve�y	

mCurve�z 
 mE
mCurve�z	

�� get the previous and next points on the curve

Point pOld� mCurve�old�x�Get� �� � ��

mCurve�old�y�Get� �� � ��

mCurve�old�z�Get� �� � � �	

Point pNew� mCurve�x�Get� �� � ��

mCurve�y�Get� �� � ��

mCurve�z�Get� �� � � �	

�� compute the distance between points and compare

�� to the tolerance

�� only step up if no downstep has been taken� and

�� vice versa

�� also can�t step up unless the number of steps

�� remaining is even

if� ��pOld�pNew��Magnitude�� � dTolerance�

�� �iNum�ups 

 �� � �

�� step is too big� adjust down

�� double the number of steps left

iNum�steps 

 �	
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mCurve�x 
 mL
mCurve�x�prev	

mCurve�y 
 mL
mCurve�y�prev	

mCurve�z 
 mL
mCurve�z�prev	

iNum�downs��	

� else if� ��pOld�pNew��Magnitude�� � dTolerance�����

�� �iNum�downs 

 ��

�� ��iNum�steps � �� 

 �� � �

�� step is too small� adjust up

iNum�steps �
 �	

mCurve�x 
 mLinv
mCurve�x�prev	

mCurve�y 
 mLinv
mCurve�y�prev	

mCurve�z 
 mLinv
mCurve�z�prev	

iNum�ups��	

� else �

�� good

iNum�steps��	

alptComputed�points�i��attachr� pNew �	

�� done this step

break	

�

�

�

�� next curve

mAx 
 mE
mAx	

mAy 
 mE
mAy	

mAz 
 mE
mAz	

�

Because there are potentially a di�erent number of points on adjacent curves� it is important to consider how
these points can be joined to form polygons to represent the surface� The approach used here is simple� but produces
fairly good polygonalizations in most cases�

Assume we have two adjacent curves� C� with r samples� and C� with s samples� Further assume� without
loss of generality� that r � s� Let k � s

r
� Then� for i � 
� � � � � r� polygons can be constructed by joining points

fC��i�� C��i� ��� C��b�i� ��kc�� C��bikc�g if b�i� ��kc � bikc and b�i� ��kc � s� and points fC��i�� C��i� ��� C��bikc�g
otherwise�

Figures 	 �a� and �b� show examples of this approach� From Figure 	 �b� we can see that there will be occasions
where non�planar quadrilaterals and long� thin triangles will be produced� These cases will occur when two adjacent
curves have very di�erent curvatures� which indicates that the curve�to�curve spacing is too great� Also� it is important
to note that one must be careful to maintain consistent polygon orientations when using this scheme�

����� Limitations

As mentioned above� performing adaptive di�erencing across the surface is di�cult from an implementation perspec�
tive� Also� as for forward di�erencing� normals must be computed by estimating derivatives using adjacent points on
the surface or using the partial derivative surfaces�
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C1 C2

r=7 s=4

C1 C2

r=7 s=4

(a) (b)

Figure 	� An approach to joining adjacent curves�

Figure �� Various evaluations of the Utah teapot�
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Evaluation Parameters Tessellation Image Time
Technique Required� �s�
modi�ed iNum steps u � �
 yes �a� ���
de Casteljau iNum steps v � �

forward iNum steps u � � no �b� ���
di�erencingy iNum steps v � �
forward iNum steps u � � no � ��

di�erencingz iNum steps v � �
recursive dTolerance � �

� no �c� ���
subdivision
adaptive forward iNum steps u � � no �d� ��

di�erencingyy dTolerance � �
�
adaptive forward iNum steps u � � no � 	��
di�erencingz dTolerance � �
�
bilinear iNum steps u � �
 yes �a� ��	
interpolation iNum steps v � �

bilinear iNum steps u � �
 yes �a� ��

interpolation II� iNum steps v � �


Table �� Comparison of evaluation techniques for tensor product surfaces� �yestimated normals� yyno normals� zexact
normals� �precomputed weights�

��	 Comparison

In order to compare the techniques described above� each was used to evaluate the Utah teapot� which is made up
of bicubic patches� Figure � shows the �at shaded results and Table � describes the parameters used for evaluation
along with the time �to the nearest tenth of a second� taken by each technique�

The times shown in the above table include only tessellation �if required� and evaluation� They do not include
time for computing normals from derivative vectors� The recursive subdivision time measures only the cumulative
time of the subdivision operations themselves� The modi�ed de Casteljau algorithm and the two versions of bilinear
interpolation compute the same values and construct identical tessellations�

Comparing times for the various evaluation techniques is di�cult� as an accurate comparison would require
determining a metric by which the images produced could be compared�

The teapot evaluated using adaptive forward di�erencing exhibits a few �aws� such as a misshapen lid� Flaws
such as this occur due to the use of Euclidean distance between successive curve points as the metric for determining
whether the curve should be reparametrized� The original adaptive forward di�erence algorithm� presented by Lien
et al�� used pixel distance as the metric� with a threshold of approximately one pixel� In this case� the �aws would
not appear�

Examining the relative evaluation times� we see that forward di�erencing with estimated normals is the fastest�
However� if we compute exact normals with this method� using partial derivative �surfaces�� we �nd that the time
increases by a factor of approximately ���
 to ��
 seconds� Similarly� adaptive forward di�erencing with no normals
is second fastest at ��
 seconds� but computing normals increases the time by a factor of approximately ��	 to
	�� seconds� We see di�erent time factors for computing exact normals with these two methods since the partial
derivative surfaces can be computed at lower cost than the actual surface with adaptive forward di�erencing� This
is the case as the forward steps attempted with intermediate parametrizations need not be applied to the derivative
surfaces� With normal forward di�erencing� we see an approximate tripling in execution time� as all computation
performed for the actual surface must be performed for both derivative surfaces�

Therefore� forward di�erencing is the fastest evaluation technique if estimated derivatives are satisfactory and the
surface being evaluated is a bicubic patch� In order to evaluate surfaces of arbitrary degree� time for computation
of the transformation matrices must be included� As discussed in the next section� if exact normals are required
and �xed sampling is acceptable� de Casteljau�s algorithm is probably best for arbitrary degree patches� Bilinear
interpolation with precomputed weights is slightly faster for bicubic patches� If one desires an adaptive algorithm�
recursive subdivision is the best choice if normals are required �assuming cracks are either acceptable or repaired�
and adaptive forward di�erencing is best otherwise�
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��
 Higher Degree

Even though low degree patches are most commonly used in practice� it is interesting to consider the asymptotic
behaviour of the algorithms presented above� The number of multiplications required by an algorithm will be used as
a metric for comparison� While additions� function call overhead and loop control may contribute signi�cantly to the
actual time required by an algorithm� the number of multiplications will provide a rough estimate of performance�
as it has the largest contribution to execution time� It is important to note that if the analysis below shows two
algorithms performing similarly� it may not be clear which is in fact the more e�cient� Also� while the analysis
correctly predicts the ordering of the empirical results in Table � from most e�cient to least e�cient for bicubics� it
does not correctly predict the relative times� This is likely due to overhead that plays a continually smaller role as
degree increases�

Bilinear interpolation without precomputed weights requires n�n�����n��� multiplications for each evaluation of
an n�n tensor product patch� precomputation of weights reduces the number of multiplications to �

�n�n�����n����
The modi�ed de Casteljau technique requires �n�	���n� ��n���� � multiplications� While each of this algorithms
is O�n��� modi�ed de Casteljau evaluation is asymptotically twice as fast as bilinear interpolation and ��
 times
faster than bilinear interpolation with precomputed weights �Mann�
�� In order to compare these techniques to the
forward di�erencing and recursive subdivision algorithms� the costs must be scaled by the product of the number of
tessellation steps in the u and v parameter directions�

Recursive subdivision of an n�n tensor product patch requires � matrix multiplications per subdivision operation�
each of which requires �n � ��� multiplications� Subdividing a surface to a �xed depth d thus uses�

�d����n� ���

multiplications� Evaluating recursive subdivision with an adaptive termination condition �ie� �atness� is dependent
on the surface being considered�

The non�adaptive forward di�erencing algorithm presented above requires

��n� � ��log��Su�n� � Su
�
	n� � log��Sv�n� � Svn

�
�

multiplications to evaluate a complete n� n patch where Su and Sv are the number of steps performed in the u and
v parameter directions� respectively� This cost includes the expense of�

�� computing a forward di�erence basis matrix of the appropriate degree�

�� computing the B�ezier to forward di�erence conversion matrix �MB�FD��

	� computing the step down matrix �L��

�� converting the surface to the forward di�erence basis�


� reparametrizing the surface so that Su curve to curve steps may be taken�

�� reparametrizing each individual curve so that Sv curve steps may be taken�

�� taking Sv forward steps along each of Su curves� and

�� taking Su curve to curve forward steps�

Again� consideration of the adaptive version of forward di�erencing is di�cult� as it depends on the particular patch
being evaluated� A presentation of the computation of the various matrices for arbitrary degree as used in this
technique �and its adaptive counterpart� can be found in �Shantz����

����� de Casteljau Methods vs Recursive Subdivision

To compare de Casteljau methods �bilinear interpolation and modi�ed de Casteljau� with recursive subdivision� we
choose a particular sampling rate� say Su � Sv� for the former� Then we have�

Tbilinear � SuSvn�n� ����n� ��

and
Tsubdivision � �d����n � ���
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Equating these two quantities� we can solve for d� determining the subdivision depth at which the bilinear interpolation
and subdivision techniques perform similarly� We have�

�d����n� ��� � SuSvn�n� ����n� ��

�d�� � SuSv
n�n� ����n� ��

��n� ���

�d�� � SuSv
n��n� ��

��n� ���

so

d � blog�

	
SuSv

n��n� ��

��n � ���



� �c

For Su � Sv � �
 and n � 	� d � b	���c � 	� Now� to consider asymptotic behaviour� we �nd�

lim
n��

SuSv
n��n� ��

��n� ���
�

�

	
SuSv

Therefore� bilinear interpolation at a sampling rate of Su � Sv is of similar cost to recursive subdivision with �
�SuSv

subdivisions� or to a �xed depth of blog��
�
�SuSv���c� We �nd the corresponding value to be �


SuSv when compared
to bilinear interpolation with precomputed weights and �

�SuSv when compared to modi�ed de Casteljau evaluation�
Alternately� we can compute the number of polygons produced by recursive subdivision for the same time cost as

another method� The number of polygons produced by recursive subdivision is 	n� �� where n is the total number
of subdivisions as computed above� Therefore� for the same time cost as bilinear interpolation at a sampling rate of
Su�Sv� recursive subdivision can produce 	 � ��SuSv �� � SuSv �� polygons� In the time that bilinear interpolation
with precomputed weights takes for a sampling rate of Su � Sv� recursive subdivision can construct �

�SuSv � �
polygons� And in the time required for modi�ed de Casteljau evaluation to compute a sampling of Su�Sv � recursive
subdivision only constructs �

�SuSv � � polygons�
Note that while recursive subdivision computes fewer polygons than the de Castlejau methods for a �xed amount

of time� the quality of the recursive subdivision approximation may be better since it chooses its polygons more
wisely�

����� de Casteljau Methods vs Forward Di�erencing

If we choose a particular sampling rate amenable to the forward di�erencing algorithm� say Su � Sv � �� we �nd its
cost of evaluation becomes �
n� � ��n�� At the same sampling rate� bilinear interpolation costs ���n� � ���n�� ��n
and modi�ed de Casteljau evaluation ��n� � �
�n� � ��n� Cost for these techniques for n � �� � � � � � is shown
in Table 	����� We see that for patches of bi�degree higher than �� modi�ed de Casteljau is cheaper than bilinear
interpolation� and for bi�degree greater than �� it is cheaper than forward di�erencing� However� bilinear interpolation
with precomputed weights is cheaper than modi�ed de Casteljau for bi�degree up to ��

��� Other Techniques

Integer adaptive forward di�erencing �Chang��� is an integer implementation of the adaptive forward di�erencing
algorithm� While it promises speed improvements over the �oating point algorithm� the implementation is more
complicated� and error analysis is di�cult� Therefore� this technique was not implemented�

� M�dimensional Simplex Surfaces

A surface over an m�dimensional simplex is given by�

B�u� �
X

�i�j�ij�n

P�iB
n
�i

�u�

where

�i � �i�� � � � � id�� Bn
�i

�u� �

	
n
�i



ui�� � � � � � uidd � j�ij �

dX
j��

ij�

	
n
�i



�

n 

�i� � � � id �
�
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Bi�Degree Forward modi�ed Bilinear Bilin� interp�
di�erencing de Casteljau interpolation w!precomputed

weights
� ��� 	�� 	�� �
�
� �
�� ���� ���
 ���

	 	��� ���� 
	�� 	
��
� ���� ���� ��
�
 ���


 �	�

 ����
 ����
 ��
�

� ���
� �	��� 	���� �	���
� 	
��� 	���� 
	��
 	
��

� 
���� ����� ��		� 
����
� ���	� ����� �
���
 ����


Table �� Cost �in number of multiplications� of techniques for n � �� � � � � ��

and where u � �u�� u�� � � � � ud� are the barycentric coordinates of a point in our domain with respect to a particular
simplex� This generalization of the Bernstein polynomials to a d dimensional space gives us a mapping from a d
simplex onto a piece of a d dimensional manifold�

Here� we will concentrate on triangular patches �d � ��� where the domain is a triangle� and the manifold is a three
dimensional surface patch� The algorithms presented here assume a canonical domain triangle� "�
� 
��
� ����� 
��
Farin�s book provides a more detailed introduction to triangular B�ezier patches �Farin�	��

��� de Casteljau Evaluation

As with tensor product surfaces� the straightforward approach to evaluation of a triangular patch of this type is via
the de Casteljau algorithm� The algorithm for higher dimensional functions is a direct generalization of the algorithm
for curves� based on repeated linear interpolation� Beginning with a triangular control net P �

�i
� j�ij � n for a degree n

patch� we evaluate the surface at a point u � �u�� u�� u�� in the domain by computing�

P r
�i

�u� � u�P
r��
�i�������


�u� � u�P
r��
�i�������


�u� � u�P
r��
�i�������


�u�

for r � �� � � � � n and j�ij � n� r� �Farin�	�
A schematic of the evaluation for a quadratic patch is shown in Figure 
� Note that the triangle formed in the

last step of the algorithm spans the tangent plane at the evaluation point on the surface�

����� Pseudocode

Point Compute� MSimpBezier� msbezSurface�

double dP�� double dP��

Vector vecV�� vecV� � �

�� pointers for intermediate surfaces

MSimpBezier
 pmsbSurface 
 �msbezSurface	

MSimpBezier
 pmsbOld	

MSimpBezier
 pmsbPoint�	

MSimpBezier
 pmsbPoint�	

MSimpBezier
 pmsbOrig	

int i	

�� stop one from the end

for� i
�	 i � msbezSurface�GetDegree��	 i�� � �

pmsbOld 
 pmsbSurface	

pmsbSurface 
 deCasteljau� pmsbOld� dP�� dP� �	
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Figure 
� Schematic of a control net for a quadratic triangular patch�

if� �msbezSurface �
 pmsbOld � �

delete pmsbOld	

�

�

�� we now have a linear patch � evaluate it at the corners

�� of the domain and subtract the resulting surface points

�� to get directional derivatives suitable for normal

�� computation

pmsbPoint� 
 deCasteljau� pmsbSurface� ���� ��� �	

pmsbPoint� 
 deCasteljau� pmsbSurface� ���� ��� �	

pmsbOrig 
 deCasteljau� pmsbSurface� ���� ��� �	

vecV� 
 pmsbPoint���GetControlPoint� �� � � �

pmsbOrig��GetControlPoint� �� � �	

vecV� 
 pmsbPoint���GetControlPoint� �� � � �

pmsbOrig��GetControlPoint� �� � �	

delete pmsbPoint�	

delete pmsbPoint�	

delete pmsbOrig	

�� complete the evaluation

pmsbOld 
 pmsbSurface	

pmsbSurface 
 deCasteljau� pmsbOld� dP�� dP� �	

delete pmsbOld	
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return� pmsbSurface��GetControlPoint� �� � � �	

�

MSimpBezier
 deCasteljau� MSimpBezier
 pmsbezSurface�

double dP�� double dP� � �

int i� j� k	

int iDeg 
 pmsbezSurface��GetDegree��	

MSimpBezier
 pmsbReturn 
 new MSimpBezier� pmsbezSurface��GetDimension���

iDeg�� �	

�� for each multiindex I
�i� j� k� with �I� 
 iDeg

�� thus� can only really evaluate ��simplices

for� i
�	 i �
 iDeg��	 i�� � �

for� j
�	 j �
 iDeg��	 j�� � �

for� k
�	 k �
 iDeg��	 k�� � �

if� i�j�k �
 iDeg�� � �

continue	

�

Point ptPoint� ���� ���� ��� �	

ptPoint 
 pmsbezSurface��GetControlPoint� i��� j �
dP�

� pmsbezSurface��GetControlPoint� i� j�� �
dP�

� pmsbezSurface��GetControlPoint� i� j �
�����dP��dP��	

pmsbReturn��SetControlPoint� i� j� ptPoint �	

�

�

�

return� pmsbReturn �	

�

Here� the MSimpBezier class hides the details of the technique used for storage of the control net for triangular
patches� Na#ively� one could store the control points in a three�dimensional array� indexed by �i� However� we know
that i�� i� and i� are not independent� so we can store the net in a two�dimensional array� indexed by i� and i� �for
example�� This approach is fastest� but is not most space�e�cient� The most space�e�cient technique is to store the
control net in a linear array of size�

Dim�n� d� � Dim�n � �� d� � Dim�n� d� ��

where Dim�n� 
� � Dim�
� d� � � and Dim�n� d� � 
 for n or d negative� This approach derives from the observation
that one can represent a degree n� dimension d control net as two subnets� one for a degree n��� dimension d surface�
and one for a degree n� dimension d� � surface� Using this approach� one must convert the multiindex�i into a o�set
into the �simplicial� array�

�� accept multiindex of arbitrary size

int ConvertMI� int ai��� int iDimension� int iDegree � �

int iSum 
 iDegree	

int iOffset 
 �	

int j	

for� j
�	 j � iDimension	 j�� � �

iSum �
 aiI�j�	

iOffset �
 Dim� iSum��� iDimension�j �	

�
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return� iOffset �	

�

Using this storage technique� de Casteljau evaluation can actually be performed without explicitly converting
each multiindex into an o�set� e�ectively performing the conversions incrementally as the evaluation progresses�

MSimpBezier
 deCasteljau� MSimpBezier
 pmsbezSurface�

double dP�� double dP� � �

int i� j� k	

int iDeg 
 pmsbezSurface��GetDegree��	

MSimpBezier
 pmsbReturn 
 new MSimpBezier� pmsbezSurface��GetDimension���

iDeg�� �	

i 
 �	

j 
 �	

int iRow� iCol	

for� iRow 
 �	 iRow �
 iDeg��	 iRow�� � �

for� iCol 
 �	 iCol �
 iRow	 iCol�� � �

pmsbReturn��SetControlPoint� i�

pmsbezSurface��GetControlPoint� i �
dP�

� pmsbezSurface��GetControlPoint� j �
dP�

� pmsbezSurface��GetControlPoint� j�� �
�����dP��dP� � �	

i��	

j��	

�

j��	

�

return� pmsbReturn �	

�

Here� the GetControlPoint and SetControlPoint calls reference linearly into the simplicial array�

��� Recursive Subdivision

The motivation for recursively subdividing triangular B�ezier patches is identical to that for tensor product surfaces�
we wish to subdivide the control net into some number of subnets� each of which is a better approximation to a piece
of the surface� Ideally� one would perform this process recursively and halt when each subnet is su�ciently �at� This
would produce an approximation to the complete surface� to within a speci�ed tolerance� Problems concerning using
�atness as a termination condition are discussed below�

When subdividing tensor product surfaces� above� we subdivided in each parametric direction at the midpoint
of the domain �u � �

� � v � �
� �� When subdividing triangular patches� we must choose a point in the domain which

will de�ne the subpatches� The obvious choice is the centroid of the domain triangle� Figure � shows the subdivision
of a quadratic patch at at arbitrary point in the domain� Figure � �a� shows the de Casteljau evaluation of a point
on the surface� Figure � �b� shows the intermediate de Casteljau evaluation points and Figure � �c� shows how the
intermediate points form the control nets of the three subpatches� In this way� a single subdivision operation is in
some sense equivalent to a de Casteljau evaluation of a point on the surface�

In the algorithm below� the three subpatches are constructed from the intermediate de Casteljau points �computed
using the de Casteljau algorithm above� by manipulation of the multiindices� Each subpatch is constructed row by
row� one row for each de Casteljau step� Construction starts at the bottom row of the new patch �eg� for a quadratic�
the control points with multiindices �
�
���� �
����� and �
���
�� which is constructed from the outermost control
points of the original patch� and �nishes with the single point comprising the degree 
 patch� The algorithm assumes
that the control nets are stored in the simplicial array form discussed above�

����� Pseudocode

ComputeSurface� MSimpBezier� msbezSurface�
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Figure �� Subdivision of a quadratic triangular B�ezier patch�

double dTolerance � �

�� barycentric coordinates of domain centroid

double dP� 
 �������	

double dP� 
 �������	

�� three subpatches of same dimension and degree

MSimpBezier msbP� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbQ� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbR� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

if� Flat� msbezSurface� dTolerance � � � �

msbezSurface�DrawasTriangle��	

� else �

Subdivide� msbezSurface� dP�� dP�� msbP� msbQ� msbR �	

ComputeSurface� msbP� dTolerance �	

ComputeSurface� msbQ� dTolerance �	

ComputeSurface� msbR� dTolerance �	

�

�

Subdivide� MSimpBezier� msbezSurface�

double dP�� double dP��
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MSimpBezier� msbP�

MSimpBezier� msbQ�

MSimpBezier� msbR � �

int i� iRight� iLeft� j	

�� pointer to the current surface

MSimpBezier
 pmsbSurface 
 this	

MSimpBezier
 pmsbOld	

�� each time through the loop� points from the current

�� surface �initially the original surface� are placed

�� into appropriate places in the sub�control nets� then

�� a single de Casteljau step is performed on the surface

�� to reduce it�s degree

for� i
iDegree	 i �
 �	 i�� � �

int iMI���
�������	 �� multiindex

iRight 
 pmsbSurface��GetDimension��	

iLeft 
 iRight��	

iMI�iLeft� 
 pmsbSurface��GetDegree��	

�� first� place i points into the control net

�� of the first subsurface

�� eg� for a quadratic patch� first pass�

�� i
�� iRight
�� iLeft
�� so MI
��� �� ���

�� ��� �� ��� ��� �� �� and points are set

�� in the simplicial array at offsets �� �� �

�� second pass�

�� i
�� iRight
�� iLeft
�� so MI
��� �� ���

�� ��� �� �� and points are set in the

�� simplicial array at offsets �� �

�� last pass� MI
��� �� ��� offset � is set

for� j
�	 j � i��	 j�� � �

�� place points directly into simplicial array

msbP�SetControlPoint� i
�i������i�j�

pmsbSurface��GetControlPoint� iMI���� iMI��� � �	

if� iMI�iLeft� 

 � � �

iLeft 
 �iLeft � �� � �	

iRight 
 �iRight � �� � �	

break	

�

iMI�iLeft���	

iMI�iRight���	

�

�� now� place i points into the control net

�� of the second subsurface� as above

for� j
�	 j � i��	 j�� � �

msbQ�SetControlPoint� i
�i������i�j�

pmsbSurface��GetControlPoint� iMI���� iMI��� � �	

if� iMI�iLeft� 

 � � �

iLeft 
 �iLeft � �� � �	

iRight 
 �iRight � �� � �	
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break	

�

iMI�iLeft���	

iMI�iRight���	

�

�� now� place i points into the control net

�� of the third subsurface� as above

for� j
�	 j � i��	 j�� � �

msbR�SetControlPoint� i
�i������i�j�

pmsbSurface��GetControlPoint� iMI���� iMI��� � �	

if� iMI�iLeft� 

 � � �

iLeft 
 �iLeft � �� � �	

iRight 
 �iRight � �� � �	

break	

�

iMI�iLeft���	

iMI�iRight���	

�

�� reduce degree and continue

pmsbOld 
 pmsbSurface	

pmsbSurface 
 deCasteljau� pmsbSurface� dP�� dP� �	

if� pmsbOld �
 this � �

delete pmsbOld	

�

�

�

The �atness test for triangular B�ezier patches is analogous to that for tensor product patches� The DrawasTriangle
function can approximate derivatives and thereby normals based on control points adjacent to the corner control
points�

����� Limitations

Examining Figure �� which shows a subdivision to depth 	 of a domain triangle� we see that the resulting triangles have
poor aspect ratios� This problem will transfer to the range� and results in many long� thin triangles� This problem
appears because the algorithm never divides a domain triangle anywhere but in the interior � an edge is never
divided� Also� for the same reason� the planarity condition for termination of the subdivision can be problematic�
there is no guarantee that the subpatches will ever become planar to within the given tolerance� The problem is
ampli�ed if one or more boundary curves of the original patch are themselves non�planar� However� one bene�t in
never subdividing an edge is cracks will not develop in the �nal surface�

��� Binary Subdivision

Peters presents an algorithm for binary subdivision of triangular B�ezier patches� using a technique based exclusively
on curve subdivision� The algorithm discussed here performs the same subdivisions� but uses the general patch
subdivision function from above� The algorithm simply recursively subdivides the patch at the midpoint of one of
the domain edges�

����� Pseudocode

ComputeSurface� MSimpBezier� msbezSurface�
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Figure �� Centroid subdivision of a domain triangle�

double dTolerance � �

�� storage for three new patches of same dimension

�� and degree

MSimpBezier msbP� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbQ� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbR� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

�� domain coordinates for subdivision

double adP��
����� ���� ����	

if� Flat� msbezSurface� dTolerance � � �

msbezSurface�DrawasTriangle��	

� else �

Subdivide� msbezSurface� adP� msbP� msbQ� msbR �	

�� ignore one of three �P� � it�s degenerate

ComputeSurface� msbQ� dTolerance �	

ComputeSurface� msbR� dTolerance �	

�

�

����� Limitations

Binary subdivision� as Figure � shows� can improve dramatically the poor aspect ratio problem of centroid subdivision�
Further improvements to the algorithm� such as choosing the edge to subdivide based on criteria such as longest
surface edge or greatest curvature are also possible�

Because� unlike the centroid subdivision algorithm� this algorithm does divide domain edges� the �crack� problem
appears� Altering the algorithm to perform subdivision of edges globally would remove this problem� but a global
solution is di�cult to implement�

��� ��� Subdivision

��� subdivision is an alternate subdivision algorithm for triangular patches that divides the surface� at each step�
into four subpatches rather three� The approach presented here requires �ve subdivision operations �de Casteljau
evaluations�� A similar approach is discussed by B#ohm �B#ohm�	�� which requires only four subdivision operations�
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Figure �� Binary subdivision of a domain triangle�

point of subdivision
in previous domain

(1,0,0)

(0,1,0)

(1,0,0) (0,0,1)

to get Q

(0,0,1) (0,1,0)

Q

P
T

to get P(.5,.5,0) to get T

(1,0,0)

(0,1,0)(0,0,1)

to get S

(0,1,0)

(0,0,1)

(1,0,0)

to get R

(0,1,0)(1,0,0)

(0,0,1)

R S

1. subdivide original at 2. subdivide T at (0,.5,.5) 3. subdivide P at (1,-1,1)

4. subdivide Q at (1,1,-1) 5. subdivide Q at (1,-1,1)

Figure �� ��� subdivision of a domain triangle�
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Figure � shows a schematic diagram of a ��� subdivision of a domain triangle� As before� this process is performed
recursively until the patches �at to within a speci�ed tolerance� The pseudocode below uses the Subdivide function
from above�

����� Pseudocode

ComputeSurface� MSimpBezier� msbezSurface�

double dTolerance � �

�� domain coordinates for subdivision points�

�� one for each step

double adP��� 
 ����� ���� �����

adP��� 
 ����� ���� �����

adP��� 
 ����� ����� �����

adP��� 
 ����� ���� ������

adP��� 
 ����� ����� ����	

�� storage for four new patches of same dimension

�� and degree

MSimpBezier msbP� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbQ� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbR� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbS� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

�� storage for four temporaries

MSimpBezier msbT�� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbT�� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

MSimpBezier msbT�� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	

if� Flat� msbezSurface� dTolerance � � � � �

msbezSurface�DrawasTriangle��	

� else �

�� step �� subdivide the original patch at ����� ���� ����

Subdivide� msbezSurface� adP�� msbT�� msbT�� msbT� �	

�� step �� divide Q �T�� again to get one of the new

�� patches �P�

Subdivide� msbT�� adP�� msbT�� msbP� msbT� �	

�� step �� divide �flip� P to get one another of the

�� new patches �Q�

Subdivide� msbP� adP�� msbT�� msbQ� msbT� �	

�� remember� the new patch Q is oriented incorrectly

�� but� the rest of the patches are flips of Q� so they

�� end up oriented correctly

�� step �� divide �flip� Q to get another �R�

Subdivide� msbQ� adP�� msbT�� msbT�� msbR �	
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�� step �� again �S�

Subdivide� msbQ� adP�� msbT�� msbS� msbT� �	

ComputeSurface� msbR� dTolerance �	

ComputeSurface� msbS� dTolerance �	

ComputeSurface� msbP� dTolerance �	

�� now� mark Q as reversed and subdivide it

msbQ 
 Reverse� msbQ �	

ComputeSurface� msbQ� dTolerance �	

�

�

The function Reverse is used to �x the orientation of the new patch Q� This function simply reverses each row
of the control net by copying the control points directly into a new simplicial array�

����� Limitations

While ��� subdivision overcomes the poor aspect ratio problem of subdivision at the domain centroid� it still su�ers
from the �crack� problem of ��� subdivision�

��� SV
Nested Multiplication

SV�nested multiplication �Schumaker��� is an algorithm based on the e�cient evaluation of the Modi�ed Bernstein�

B�ezier �MBB� form� For d � �� we have�

B�u� �
X

�i�j�ij�n

n 

�n � i�� �n� i�� i� 
P�iB

n
�i

�u�

The conversion from standard Bernstein�B�ezier form to MBB form is thus very simple� Schumaker then observes
that evaluation can be performed e�ciently by writing B in nested form� For n � �� we may write�

B�u� � u��

�
u�
u�

	
u�
u�
P������
 �

u�
u�
P������
 � P������




�
u�
u�

	
u�
u�
P������
 � P������




� P������


�
���

Because this formula has a singularity when u� � 
� it is used only when u� � u� and u� � u�� One of the two
following formulae is used when u� or u� is largest�

B�u� � u��

�
u�
u�

	
u�
u�
P������
 �

u�
u�
P������
 � P������




�
u�
u�

	
u�
u�
P������
 � P������




� P������


�
���

B�u� � u��

�
u�
u�

	
u�
u�
P������
 �

u�
u�
P������
 � P������




�
u�
u�

	
u�
u�
P������
 � P������




� P������


�
�	�

The pseudocode below simply generalizes the above formula to arbitrary degree�

����� Pseudocode

Point Compute� MSimpBezier� msbezSurface�

double dP�� double dP� � �

int i� j	

int iDegree 
 msbezSurface�GetDegree��	

int iDegree�fact 
 Factorial� iDegree �	

double dP� 
 ��� � dP� � dP�	 �� barycentric coordinates

MSimpBezier msbNew� msbezSurface�GetDimension���

msbezSurface�GetDegree�� �	
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�� convert to MBB form

for� i
�	 i �
 iDegree	 i�� � �

for� j
�	 j �
 i	 j�� � �

double dCoeff 
 �double�iDegree�fact���double�Factorial� iDegree�i � 


�double�Factorial� i�j � 


�double�Factorial� j � �	

msbNew�SetControlPoint� iDegree�i� i�j�

msbezSurface�GetControlPoint� iDegree�i�

i�j �
dCoeff �	

�

�

if� �dP� �
 dP� �

�� �dP� �
 dP� � � �

�� region �

double dP�P� 
 dP��dP�� dP�P� 
 dP��dP�	

Point ptA 
 msaNew�GetPoint� �� iDegree �	

for� i
�	 i �
 iDegree	 i�� � �

Point ptB 
 msaNew�GetPoint� �� iDegree�i �	

for� j
�	 j �
 i	 j�� � �

ptB 
 ptB 
 dP�P� � msaNew�GetPoint� j� iDegree�i �	

�

ptA 
 ptA 
 dP�P� � ptB	

�

return� ptA
pow� dP�� �double�iDegree � �	

� else if� �dP� � dP��

�� �dP� �
 dP� � � �

�� region �

double dP�P� 
 dP��dP�� dP�P� 
 dP��dP�	

Point ptA 
 msaNew�GetPoint� iDegree� � �	

for� i
�	 i �
 iDegree	 i�� � �

Point ptB 
 msaNew�GetPoint� iDegree�i� � �	

for� j
�	 j �
 i	 j�� � �

ptB 
 ptB 
 dP�P� � msaNew�GetPoint� iDegree�i� j �	

�

ptA 
 ptA 
 dP�P� � ptB	

�

return� ptA
pow� dP�� �double�iDegree � �	

� else if� �dP� � dP��

�� �dP� � dP�� � �

�� region �

double dP�P� 
 dP��dP�� dP�P� 
 dP��dP�	

Point ptA 
 msaNew�GetPoint� iDegree� � �	

for� i
�	 i �
 iDegree	 i�� � �

Point ptB 
 msaNew�GetPoint� iDegree�i� i �	
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Figure �
� Domain subdivision for isoparametric evaluation�

for� j
�	 j �
 i	 j�� � �

ptB 
 ptB 
 dP�P� � msaNew�GetPoint� iDegree�i� i�j �	

�

ptA 
 ptA 
 dP�P� � ptB	

�

return� ptA
pow� dP�� �double�iDegree � �	

�

�

����� Limitations

The factorials that must be computed by this method may appear to be a problem as a 	� bit integer can only
represent up to �	 � However� the greatest factorial that is computed is n � where n is the degree of the polynomial�
and one rarely uses patches of such high degree� Also� in order to compute normals with this method� they must
be estimated using adjacent points� or computed using the two surfaces of one lower degree representing the partial
derivatives�

��	 Isoparametric Evaluation

Isoparametric evaluation is one of two algorithms presented by Peters �Peters���� both based on curve evaluation�
While the version discussed here only considers the two�dimensional simplex �d � �� case� the generalized algorithm
is applicable to �surfaces� over simplices of arbitrary dimension� Also� Peters observes that� when evaluating on the
edge of a domain simplex� one can subdivide a polynomial over an m�simplex using only the univariate de Casteljau
algorithm� For the purposes of this paper� the subdivision algorithm from above will be used instead� This change
will not make a signi�cant di�erence when evaluating surfaces of low degree�

In the two�simplex case� isoparametric evaluation evaluates a triangular B�ezier surface by computing curves that
lay on the surface and then evaluating the curves� Two subdivision operations are performed� followed by a restriction
of the domain to a single edge � thus producing a curve on the surface� See Figure �
� The curve is then evaluated
using the univariate de Casteljau algorithm�

��	�� Pseudocode

ComputeSurface� MSimpBezier� msbezSurface�

int iNum�steps��� int iNum�steps�� � �

int i� j	

MSimpBezier msbezCurve� �� msbezSurface�GetDegree�� �	

MSimpBezier msbezScratch� �� msbezSurface�GetDegree�� �	
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Point aaptComputed�points�iNum�steps������iNum�steps�����	

�� vary x to choose different curves on surface

for� i
�	 i �
 iNum�steps	 i�� � �

Slice� msbezSurface� �double�i��double�iNum�steps�

msbezCurve �	

�� sample the curve

for� j
�	 j �
 iNum�steps	 j�� � �

aaptComputed�points�i��j� 
 CurvedeCasteljau� msbezCurve�

�double�j��double�iNum�steps�

msbezScratch� msbezScratch �	

�

�

�

void Slice� MSimpBezier� msbezSurface�

double dX�

MSimpBezier� msbezOut � �

int iDegree 
 msbezSurface�GetDegree��	

�� two subsurfaces� d
�

MSimpBezier msbezSurface��� �� iDegree �	

MSimpBezier msbezSurface��� �� iDegree �	

MSimpBezier msbezScratch� �� iDegree �	

�� barycentric coordinates of subdivision point

double adP��� 
 ����� ���� ����	

�� first subdivision� take ��P��

adP��� 
 dX	 adP��� 
 ���	 adP��� 
 ����dX	

Subdivide� msbezSurface� adP� msbezSurface��� msbezScratch� msbezScratch �	

�� second subdivision� take ��R��

adP��� 
 ���	 adP��� 
 dX	 adP��� 
 ����dX	

Subdivide� msbezSurface��� adP� msbezScratch� msbezScratch� msbezSurface�� �	

�� now� extract the curve by taking the correct points

�� from the control net

int i
�� j
�� k	

for� k
�	 k � iDegree��	 k�� � �

msbezOut�SetControlPoint� k� msbezSurface���GetControlPoint� i � �	

i �
 j	

j��	

�

�

Point CurvedeCasteljau� MSimpBezier� msbezCurve�

double dX � �

�� assume msbezCurve is �really� a curve� ie� m
�

int i� j	
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Figure ��� Various evaluations of a torus�

int iDeg 
 msbezCurve�GetDegree��	

MSimpBezier msbezTemp 
 msbezCurve	 �� for intermediate curves

for� i
iDeg	 i �
 �	 i�� � �

for� j
�	 j � i	 j�� � �

msbezTemp�SetControlPoint� j�

msbezTemp�GetControlPoint� j �
dX

� msbezTemp�GetControlPoint� j�� �
� � � dX � �	

�

�

return� msbezTemp�GetControlPoint� � � �	

�

To complete the algorithm� one need only generate polygons by attaching adjacent points from aaptComputed points�

��	�� Limitations

The primary limitation with the isoparametric evaluation algorithm is the di�culty involved in computing normals
� the algorithm does not readily yield derivative information� Peters suggests two possible �xes� �evaluation with
di�erent choices of �xed parameters or storing and connecting the surface points to analyze the divided di�erences
of the piecewise linear approximant��

��
 Comparison

In order to compare the techniques described above� each was used to evaluate two data sets� a torus composed of
cubic patches and the same torus with the cubic patches degree raised to quartic� Figure �� shows the �at shaded
results and Table 	 describes the parameters used for evaluation along with the time �to the nearest tenth of a second�
taken by each technique�
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Scheme Cubic Quartic
Evaluation Parameters Tessellation Image Time Avg Polygons Time Avg Polygons
Technique Required� �s� Per Patch �s� Per Patch
de Casteljau iNum steps u � 
 yes �a� ��� �
 ��� �


iNum steps v � 

centroid dTolerance � �
� no �b� ��
 ���� 	�� �	
subdivision
��� dTolerance � �
� no �c� ��� ���	 ��� ����
subdivision
��� dTolerance � �
� no �d� ��� �� 	�� ��
subdivision
SV�nested iNum steps u � 
 yes �e� ��� �
 ��� �

multiplicationy iNum steps v � 

SV�nested iNum steps u � 
 yes � ��� �
 ��� �

multiplicationz iNum steps v � 

isoparametric iNum steps u � 
 no ��� �f� ��� �
 ��� �

evaluationy iNum steps v � 


Table 	� Comparison of evaluation techniques for cubic and quartic triangular B�ezier patches� �yno normals� zexact
normals�

The times shown in the these tables include only tessellation �if required� and evaluation� They do not include
time for computing normals from derivative vectors� The times for recursive subdivision techniques measure only
the cumulative time of the subdivision operations themselves�

As before� comparing times between evaluation techniques is di�cult since we have no metric for comparing the
resulting images� We can ignore the subdivision at the domain centroid algorithm as it produces a very poor �nal
result� SV�nested multiplication and de Casteljau evaluation appear to be comparable techniques in terms of speed�
with de Casteljau performing better for quartics and SV�nested multiplication performing better for cubics� However�
SV�nested multiplication does not by default compute normal information� Computing normals with SV�nested
multiplication by calculating two partial derivative surfaces increases its time by a factor of two �approximately��

Therefore� de Casteljau evaluation is the fastest technique� If an adaptive technique is desired� ��� subdivision is
the best choice� assuming cracks are acceptable�

The table also shows the average number of polygons produced per patch� These values are useful in comparing
the �nal tessellations produced by the adaptive versus the non�adaptive schemes� using this data one could adjust
the tolerances for the adaptive schemes so that they produce approximately the same number of polygons in the �nal
tessellation as the non�adaptive schemes �although the adaptive schemes will potentially need fewer polygons than
the non�adaptive schemes to produce the same quality surface�� Also� we notice that the average number of polygons
produced per patch is slightly lower when using the degree raised data� This should be expected as the quartic data
set approximates the surface better than the cubic data set� As a �nal note� the large number of polygons required
by centroid subdivision was due to the di�culties in �atness criteria discussed earlier�

��� Higher Degree

Peters gives a thorough treatment of the asymptotic behaviour of the algorithms discussed here �among others� in
�Peters���� As mentioned previously� Peters� implementation of the binary subdivision and isoparametric evaluation
techniques performs exclusively curve subdivisions� rather than the generalized subdivisions used in the implemen�
tations presented here� This implementation di�erence will play a role as degree is increased�

In summary� Peters shows binary subdivision subdivision to be the fastest technique by a large margin as degree
increases� Equilateral ����� subdivision is next fastest� followed by isoparametric evaluation�

��� Other Techniques

Techniques not discussed here include the Di�erence Interpolation Method �D�I�M��� presented in the univariate form
by Volk �Volk��� and a forward di�erencing method discussed by de Boor� �de Boor���� According to Peters� the
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forward di�erencing method becomes unstable at degree �� and the D�I�M� method experiences an over�ow condition
at degree ��
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