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INTRODUCTION

The ISO SGML standard for document markup has had a tremendous im-
pact on the electronic document community’s understandingof its data (ISO
SGML 86). The notion of a public, common representation for text sug-
gests a level of data sharing and systems interoperability that was previ-
ously unknown. By focusing attention on the structure of a document rather
than its appearance, SGML popularized a new approach to document man-
agement, one that treats documents as databases, rather than artifacts whose
sole function is to be displayed.

By shifting documents from display-centered media to database data,
however, SGML has raised new problems that the standard itself was not
intended to solve. These problems arise because a printed document is fun-
damentally different from a database. A printed document is essentially a
closed world with a single product. A database, on the other hand, is an
open world, with many potential products, and most importantly, with the
possibility of change.

Systems that manage change have several responsibilities. First, they
must define the operations that cause change, and specify the logical prop-
erties of those operations. Second, they must support the definition of con-
straints that identify valid changes. Third, they must provide techniques
for handling concurrent change—that is, change by more than one person
at the same time. Fourth, they must preserve the continuity of the data’s
essence while it changes. The ability to handle these responsibilities con-
stitutes the bulk of a database system’s capability to expresssemantics, or
the connection between data and the real world.

SGML provides very little functionality for managing change. SGML’s
basic contribution is the notion of adocument type definition: a formal, ex-
ternal description of a class of documents. A DTD provides descriptions of
static data, and so appears to be similar to a database schema. But where
databases treat a schema as part of a complete system for maintaining se-
mantics, SGML explicitly declaims semantics (Goldfarb 90). It is perhaps
not surprising, then, that SGML also has little to say about managing change.

There has been much interest in the possibility of providing semantics
for SGML and SGML-like systems (Sperberg-McQueen 92). Some of these
efforts include mechanisms for representing application semantics (Macleod
et al. 92) (Sacks-Daviset al. 94), standards for hypermedia structures (ISO
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HyTime 92), and various systems for transforming structured documents
(ISO DSSSL 94). Most of these efforts are much more concerned with
querying than with update. TheGuidelines for Electronic Text Encoding
and Interchange, for example, allot about 1% of its 1200 pages to the sub-
ject of modification (TEI 94).

In this paper we neither appraise the semantics of previous proposals,
nor introduce our own. Instead, we discuss some issues that are ‘meta-
semantic’: issues that lie behind every semantics, but that are peculiar to
none. We discuss three issues—equivalence, redundancy, and operations—
that are implicit in current systems and approaches. By making these issues
explicit, we hope to provide the beginnings of a framework for compari-
son of the semantics of existing systems, and the development of more ad-
vanced ones.

Before considering meta-semantic issues, it will be useful to briefly re-
count the differing experiences of the document and data processing com-
munities.

DATA MODEL OR DATA REPRESENTATION?

There is a long history of computer processing of both text and traditional
data. The communities interested in each type of data are largely disjoint;
traditional data has been the province of businesses, and textual data has
been the focus of the scholarly and typesetting communities.� Both groups
put their data online very early, and both suffered from the problem of hav-
ing that data trapped in proprietary and monolithic systems. What is inter-
esting is that the communities chose different ways to solve this problem.

The document community’s dissatisfaction with its early systems led
it to focus on two characteristics of the embedded markup used to struc-
ture the data (Coombset al. 87). The first characteristic was that in many
systems, markup was hidden or otherwise unavailable to the writer. Some
word processors, for example, used unprintable character codes to repre-
sent markup. Most systems had baroque markup interactions, often result-
ing from the limited properties of the macro processors that interpreted the
markup. Programming these macro processors was an arcane art, and such
programs were usually poorly documented and maintained.

� Even business document production has been generally independent of the database and
data processing departments.
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The second characteristic of existing systems was that markup was al-
most always employed to code presentational aspects of documents, rather
than structural aspects. Presentational markup was optimized for a specific
appearance and not for other purposes. As a result of these two problems,
documents tended to become chained to their display system, simply be-
cause it was the only environment that guaranteed consistent behaviour.

The solution chosen by the document community was to generalize its
markup: to make it accessible to the writer and to encourage the markup of
more general properties of texts. The ISO SGML standard popularized the
following notions:

1. Markup should be standard and vendor-independent.

2. Markup should be visible and accessible.

3. Markup should be structural, rather than presentational.

The appropriate use of SGML makes significant progress towards achiev-
ing these goals (with some minor complications due to markup minimiza-
tion and other less-commonly employed features of SGML).

The traditional database community’s dissatisfaction with its early sys-
tems was due to unwanted dependencies embedded in applications (Date
1990). Applications often relied on detailed information about the physi-
cal layout of data records; in some cases, even to the extent of knowing the
number of bits used to represent data fields. With this kind of knowledge
exploited by applications, it was impossible to evolve the database, or even
to move it to a new architecture, without rewriting all affected applications.
Even the problem of determiningwhich applications relied on a given fact
about data layout was difficult.

Unwanted dependencies were also present in the use of machine point-
ers to represent relationships. Pointers provided fast access, but they also
embedded certain forms of data access in the system, and thus made it dif-
ficult to change the system to accommodate new requirements or to take
advantage of new data structures.

The solution developed by the database community was to generalize
the semantics of data, by developing data models that described the logi-
cal properties of data, independently of how it was stored. The relational
model, proposed by Codd, popularized the following notions:
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1. A standard data semantics, both static and operational.

2. No hidden access paths to data.

3. No special knowledge of data representation.

Appropriate use of the relational model (or any model with sufficiently well-
defined semantics) makes the evolution of a database much easier than does
an approach based on a specific data representation.

The document community and database community each suffered from
systems that did not provide a clean separation of implementation from ap-
plication. The two communities arrived at different solutions to this prob-
lem, because they had different ideas about what information their systems
should preserve.

For the document community, the factor of most permanence was the
document. Documents often lasted longer than the systems used to print
them. This was particularly true for scholarly documents. While it was im-
portant to put documents online, it was just as important to avoid extensive
processing each time a new use was contemplated, or each time there was a
machine or operating system upgrade. Settlingon a common representation
for documents was a natural way to avoid these problems, since if data was
transportable between systems, then one would have a clear route to leave
any given system. The document community thus chose to standardize the
representation of data.

For the database community, the factor of most permanence was the se-
mantics of applications. In traditional database applications, data changed
so quickly that any given datum was essentially ephemeral. Applications,
on the other hand, evolved only slowly. The actual values in bank accounts
are continually changing; what is constant is the requirement that the ac-
counts balance—in other words, the maintenance of consistent semantics
of the bank’s transactions. Focusing on data models was a natural way to
ensure these semantics, since data models dealt with semantics directly, and
without taking into account the machine, operating system, or data repre-
sentation. Thus, the database community chose to standardize the seman-
tics of data.

Data interchange was (until recently) largely irrelevant to the database
community, since the notion of transmitting (for example) bank account in-
formation elsewhere was simply considered too difficult. Too large a vol-
ume of data would have to be transmitted, and that data was often chang-
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ing quickly; in addition, there were problems of privacy and security. Only
recently have electronic data interchange standards become important for
traditional data.

Data semantics was not irrelevant to the document community, but the
definition of semantics did seem to be a difficult problem. Any attempt to
standardize semantics, such as that found in the ODA standard, was likely
to be criticized as being too limiting or too application-specific (ISO ODA
89). Attempts to define semantics in the scholarly community, most no-
tably the Text Encoding Initiative, similarly met with resistance. Thus, the
route proposed by SGML was a reasonable one: promote the notion of ap-
plication and machine independence, and provide a base on which seman-
tics could eventually be developed, but avoid actually specifying a seman-
tics.

The different solutions found by each community led to a difference
in their use of the word ‘data model’. For the database community, ‘data
model’ means a common language for describing constraints on data and
the effect of operations on that data (Kerschberget al. 76). For the doc-
ument community, ‘data model’ means a common language in which to
express the structure of data. To a database practitioner, SGML is not a
data model, since it defines no operators. To SGML practitioners, SGML
is a data model forany kind of data, since it is possible to express any data
structure as an SGML-conformant stream of markup and data.�

If documents are never updated, then a document interchange standard
may be a sufficient basis for a document database. But the very act of putting
documents online changes our concept of documents, and indeed challenges
existing ideas about what should be kept fixed and what changeable (Levy
94). Document data may never need to be updated as rapidly and fluidly as
financial or other traditional business data, but the need for any update at
all carries with it questions about consistency, redundancy, correctness, and
effectiveness. These are the issues that are not addressed by a document in-
terchange standard, and should be addressed by any document semantics.

� This is true but unexciting. It is also possible to represent an SGML-conformant data
stream as a directed graphstored in a binary relation, and it is possible to represent anything
that we can compute as a stream of 0’s and 1’s on a Turing machine tape. What matters is
not possibility, but effectiveness.

6



NOTIONS OF EQUIVALENCE

Perhapsthe fundamental semantic issue is equivalence—when are two things
the same? Equivalence is important in many contexts:

� If two different forms of data are equivalent, then we may choose to
store the one that uses less space

� If two different data items describe the same object, then we should
try to ensure that they are consistent

� If two different queries produce the same result, we can query the
database with the more efficient one

� If two sets of updates produce the same result, we can modify the
database with the more efficient one

A sophisticated notion of equivalence partitions representations into equiv-
alence classes that have the same semantics. SGML’s concept of tag mini-
mization, for example, implicitly defines an equivalence class of represen-
tations that includes fully expanded markup, fully minimized markup, and
variants in between. The virtue of having a variety of representations is
that one can choose between them to optimize different tasks. Tag mini-
mization, for example, is designed to make input more efficient, while tag
expansion is designed to simplify writing processing routines.

In traditional databases, the equivalence of data is part of the definition
of data’s domain or type. A relational domain of typeinteger has certain
rules of equivalence that are independent of whether it is stored as binary
coded decimal, machine integers, text strings, or even a mixture of these.
The traditional database requires and expects that (hex) 000a, ‘ten’, and
0000000000001010 are the same number, and thus is indifferent to which
form the number actually takes. Most database models assume that data
equivalence is defined, and then build on that to define operational equiv-
alence. In document databases, we are still in the process of defining the
domain (the domain of ‘text’); thus, the issue of data equivalence is an im-
mediate problem.

The main components of an SGML document are a marked-up text and
a document type definition, or DTD. A notion of equivalence for such docu-
ments may require the equivalence of DTDs, the equivalence of marked-up
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texts, or both. In each case, there is a hierarchy of possibilities for equiva-
lence. Some of the levels in the hierarchy are:

� Identity

� Isomorphism

� Structural equivalence

� Equality-preserving operations

The simplest and most direct notion of equivalence isidentity. Two docu-
ments are equivalent under identity if they contain exactly the same charac-
ters in the same order, and two DTDs are equivalent under identity if they
contain exactly the same content models and identifiers. This type of equiv-
alence is easy to test for, and useful in some contexts (for example, in trans-
mitting documents), but is too strict for many purposes.

Identity may be defined in a slightly less restrictive fashion. Documents
that differ only in their use of white space, for example, are typicallyconsid-
ered ‘identical’. The difference between DOS and UNIX record separators
is a sufficiently minor transformation to be performed automatically. Simi-
larly, the substitutionof tabs for blanks in most documents should be benign
(if the use of tabs was actually indicative of some structure, then by proper
SGML usage, this structure should have been captured as an element).

A looser notion of equivalence isisomorphism. Isomorphism is iden-
tity up to relabelling; that is, all structure is identical except for labels, and
there is a one-to-one mapping between sets of labels. Two DTDs can be
said to be isomorphic if they are identical except for the choice of generic
identifiers. The Text Encoding Initiative uses parameter entities to antici-
pate the need for this type of isomorphism (TEI 94). Isomorphism is also
involved when transforming a DTD with long identifiers into one that sat-
isfies an eight character limit. SGML’s notion of variant tag syntaxes is an-
other kind of isomorphic equivalence. Isomorphism in content may take
various forms: any one-to-one character transliteration, and some uses of
entity references to abbreviate texts, can satisfy the conditions for isomor-
phism.

At the next level, non-isomorphicDTDs or text may be structurallyequiv-
alent. There are many potential forms of structural equivalence for DTDs.
We could speak of two DTDs havingelement equivalence if there is a one-
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to-one map between elements whose content models are equivalent (but not
necessarily identical). For example,x andy are element-equivalent:

<!ELEMENT x - - (a|b?)>

<!ELEMENT y - - (a|b)?>

More complex versions of equivalent content models are possible. DTDs
with element equivalence describe the same class of document structures,
but do so in different ways. Another type of structural equivalence for DTDs
is bisimulation; two DTDs are bisimulation-equivalent if we can find a map
(not necessarily one-to-one) between elements, such that mapped elements
have equivalent content models.

Structural equivalence can also be defined across marked-up texts. We
will say that two documents haveempty-tag identity if, when we discard the
generic identifiers and attributes of all the tags (preserving only their role as
start- or end-tag delimiters), then the two documents are identical. Because
SGML requires nested markup, such a set of ‘empty tags’ can denote only
one abstract document structure, and thus, it defines an equivalence class
of documents.

A still more general notion of equivalence allows variations of struc-
ture, so long as some underlying semantic constraints are maintained. Such
equivalences are defined byequivalence-preserving operations. Consider
an operation for replacing all instances of a given elementB in a DTD with
the content model for that element. The new DTD accepts all documents
accepted by the earlier DTD, if the tags<B> and</B> are stripped out. In
effect, we can think of the earlier document as a refinement of the new doc-
ument (or the new document as a kind of ‘base’ document, and the earlier
document as a ‘specialization’ of the base document). A related notion of
equivalence is involved in the CONCUR feature of SGML (where it is pos-
sible to ignore a given set of tags in one instance of processing, and ignore
the concurring set in another).

Equivalence-preserving operations may produce contraction or expan-
sion. An example of contraction is removing unreachable elements in a
DTD; that is, elements that could participate in no document, because they
are not part of any derivable sequence. An example of expansion is the
introduction of new elements in order to produce certain kinds of normal
forms (akin to the process of generating Chomsky normal form for context-
free grammars). Equivalence-preserving operations may also, in certain
circumstances, convert one kind of SGML structure into another. An exam-
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<!-- list types as attributes -->

<!ELEMENT list - - (item+) >

<!ATTLIST list
type (ordered, bullets, simple) >

<!-- list types as distinct elements -->

<!ELEMENT (ol, bl, sl) - - (item+) >

Figure 1: Equivalence of attributes and elements.

ple is the common practice of treating some problems with attributes and
others with elements.� The type of a list element, for example, may be
stored as an attribute on the element, or by having several different kinds
of lists, as in Figure 1. Note that this example also employs a second type
of equivalence, the isomorphism of generic identifiers.

Equivalence-preserving operations may be specialized to apply only to
certain types of data. Simple two-dimensional tables, for example, can be
represented as marked-up text, but we tend to require additional seman-
tics for tables, beyond what we would normally expect for running text.
Tables can be transposed, for example, while running text usually cannot;
thus, transpositionshould only be permitted for tables.� Since transposition
of tables is equivalence-preserving, the system should be indifferent to the
form (standard or transposed) in which a table is actually represented. Sim-
ilarly, if it is the case that rows or columns of the table can be interchanged
without affecting the table’s semantics, then row or column interchange be-
comes an equivalence-preserving operation (Wang and Wood 93).

To this point, we have only described equivalences between DTDs or
between marked-up texts. A fully elaborated notion of equivalence would
consider other features of SGML, including entities and attributes. The no-
tion of equivalence should also take into account currently unused possibil-
ities for information representation. ID/IDREF attributes, for example, can
be used to represent hierarchies, by having every element point to its parent

� Our thanks to C.M. Sperberg-McQueen for this point.
� Or for lists, which are a degenerate form of tables. Note that in the list example in Figure

1, both representations are transposable.
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element. Given such a hierarchy, should it be considered equivalent to the
conventional one, described by a collection of content models?

We do not insist on any one of these notions of equivalence, or even
that there should be only one: we only argue thatsome notion of equiva-
lence is fundamental to a semantics for SGML, and that making this notion
explicit and precise is an important step in defining a semantics. The lack of
a precise notion of equivalence is directly evident in some SGML problems
and in the evolution of related standards. One simple example is the debate
about whether documents should be kept in a ‘normalized’ (unminimized)
form, or exactly as they were entered. If a DTD permits tag minimization,
there should be no formal objection to storing the unminimized form, the
completely minimized form, or any form in between. Users, however, are
sometimes confused if the documents they enter are returned to them in a
modified form. This problem arises because the user’s notion of equiva-
lence differs from that of the system’s.

The lack of a precise notion of equivalence is also directly responsible
for HyTime’s architectural forms (ISO HyTime 92) and TEI’s class exten-
sion and renaming mechanisms (TEI 94). Roughly speaking, an architec-
tural form is an abstract element definition that stands for a class of actual
element definitions that have a similar form—that is, an ‘equivalent’ con-
tent model. This type of element isomorphism was needed because SGML
defines none.� HyTime chose this kind of technique partly in order to min-
imize the number of changes one would make to an SGML document; that
constraint was itself driven by the fact that SGML has no way to specify or
control change.

REDUNDANCY CONTROL

Collections of data are usually interpreted as statements of fact about some
world. Most such collections are not minimal; they have data elements that
overlap in their statement of fact. When we have two data elements that
express the same fact, we have redundancy.

� There are several additional complexities. HyTime uses attribute values to express isomor-
phism, partly because of an inability to talk about equivalence between generic identifiers.
HyTime also only requires that a given instance of a documentconform to the architectural
form, not that the whole class of fragments that satisfy the element definition be equivalent
to the class that satisfies the architectural form.
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It is important to control redundancy if there is a possibility of data be-
ing updated. Changing only one copy of a fact leads to inconsistency, and
the possibility of contradictory results. Redundant data is also larger than
it needs to be, and so increases the cost of storage, indexing, searching,
backup, and many other kinds of processing.�

Redundancy cannot be controlled unless it is recognized. Recognizing
redundancy mean recognizing sameness, and therefore it depends on a no-
tion of equivalence. Conversely, a notion of equivalence brings with it the
possibility of sameness, and therefore of redundancy.

The most fully developed notion of redundancy control is found in the
work done on normalization of relational schemas (Dutka and Hanson 89).
Given a set of dependencies between different parts of the database, we
can determine whether a particular database structure will lead to redundant
data. Figure 2 shows an example of how to use dependencies to manage re-
dundancy. In 2 (a), we see a simple schema for a database of books stored in
various warehouses, and a set offunctional dependencies. The dependen-
cies tell us that a book with a given ISBN has only one title, and that there is
only one quantity of any given book in a single warehouse. With these de-
pendencies and the schema in 2 (a), there is the possibilityof redundancy; if
a book is stored in several warehouses, there will be several corresponding
rows in the table, and each row will have a (redundant) copy of the book’s
title. This is because the title is only dependent on the ISBN number, and
not on the warehouse or the quantity of the book. The schema in 2 (b) re-
moves the redundancy in titles by substituting two relation schemas for the
one in 2 (a). With two schemas, each book title will be represented only
once, no matter how many warehouses store copies of the books. The pro-
cess of generating new schemas to remove update anomalies is called nor-
malization. Anormal form is a schema that is guaranteed to be free of a
particular set of redundancies and other update anomalies.

Controllingredundancy does not necessarily mean eliminating it, or al-
ways attaining the highest possible normal form. Sometimes it is better to
keep, or even add, redundancy for improved performance, especially in dis-
tributed situations (Kirkwood 92). What is important is ensuring that ‘nat-
ural’ updates are possible, that redundant data is updated consistently, and

� In database parlance, removing redundancy and other update anomalies is the process of
normalization, and it involves finding a minimal statement of the data. This should not be
confused with SGML parlance, where a ‘normalized’ document is an unminimized one,
one with maximal redundancy of embedded markup.

12



ISBN title warehouse quantity
12345 Data Models Paris 10
12345 Data Models London 5
6789 Modelling Text London 5
6789 Modelling Text New York 15

ISBN� title
ISBN, warehouse� quantity

(a)

ISBN title
12345 Data Models
6789 Modelling Text

ISBN warehouse quantity
12345 Paris 10
12345 London 5
6789 London 5
6789 New York 15

(b)

Figure 2: Removing redundancy in a relational schema.

that the form of the stored data does not lead to gratuitous inefficiencies.
SGML’s main construct for removing redundancy is entities. If redun-

dant data occurs in a document, a single copy can be kept as an entity, and
entity references can be used in place of the redundant copies. One com-
mon use of entities is for ‘boilerplate’ text, such as corporate logos or other
common text fragments.

Entities are a technique for removing redundancy, but they are not a
technique for managing it. Entities may be defined and used, but they do
not guarantee that there are no redundant copies of data in the document.
Redundancy control requires more than just a method for removing redun-
dancy; it requires an independent specification of data dependency, that can
be used as a standard by which we check whether a given document has any
redundancies. Data dependency, in turn, requires a notion of equivalence.

The functional dependencies of the relational model use a value-based
notion of equivalence. Given a particular ISBN value in Figure 2, there can
be only one title value associated with it. In general, SGML is not used in
a way that promotes value-based dependencies. An element that appears

13



more than once in a document, even if it has identical content, is consid-
ered to be different simply by virtue of appearing more than once. Words
in the text, for example, are values that occur very redundantly. The docu-
ment community almost never removes this redundancy in order to main-
tain consistency; instead, it makes use of text editors that apply redundant
updates, via string substitution.�

SGML has other mechanisms that affect redundancy. Although the use
of ID/IDREF attributes is typically thought to be a technique for non-hierarchical
linking of data, it is also sometimes used to avoid redundancy. If the rea-
son for pointing to some other part of the text is to avoid copying that data
(and perhaps to ensure that updates to the referenced data will be accessi-
ble to all referring text), then the ID/IDREF is a means to remove redun-
dancy. This technique is greatly elaborated by HyTime. As with entity ref-
erences, we do not have an external statement of data dependency, so the
use of ID/IDREF to remove redundancy is not a complete solution to redun-
dancy control. Moreover, as with any hypertext system that does not em-
ploy typed links, the ID/IDREF facility may express arbitrary non-hierarchical
relationships, some that are examples of redundancy removal, and some
that are not. Redundancy control typically involves several IDREFs for a
given ID, but this is neither necessary nor required.

SGML has several other features whose main purpose is something other
than removing redundancy, but that do have an effect on the redundancy of
a document. CONCUR, SUBDOC, and marked sections, for example, fa-
cilitate the sharing of information. CONCUR allows the sharing of content
by two different sets of markup. SUBDOC allows the sharing of an exter-
nal document that has a different DTD. Marked sections are a method for
temporarily escaping certain parts of a document, and thus, in effect, gener-
ating a new document that shares all the unmarked sections. Sharing avoids
redundancy by reusing a single copy of the data.

Another set of features eliminates information that could otherwise be
deduced from the data: examples include RANK, SHORTTAG, and OMIT-
TAG. These features were designed to make the entry of markup less te-
dious, but they also have the effect of removing redundancy (in markup),
and of introducing(or emphasizing the extant) positional dependencies. By

� We can imagine non-redundant texts, in which every use of a word was an entity reference
to a single instance of the word. This technique would have the advantage of promoting
consistent spelling (Raymond and Tompa 92). It would also be easier to construct an in-
verted index, since the word list has already been extracted.
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relying on these dependencies instead of entering redundant data, the like-
lihood of consistent data is improved.

A third set of features creates default values that are implied if no other
information is specified: default attributevalues and reference concrete syn-
tax are two examples. Defaults are not normally thought of as redundancy
control, but they have a similar effect: they represent a shared value, and
hence establish a dependency between the parts of documents that employ
them. Updating default values transparently updates all those elements that
rely on the default values. This reliance on defaults means a reduction in
redundancy, and thus an increase in consistency.

OPERATORS

In traditional database usage, a data model is not just a data structure, but an
algebra that includes a set of operators for manipulating that data structure
(Brodieet al. 1984). The relational model, for example, defines both the
structure of relations and the relational algebra to manipulate them. The
purpose of operators is to provide well-defined methods for accessing and
changing data.

SGML defines no operators. Related standards, such as HyTime and
DSSSL, do define operators and operator-like capabilities. Since these two
standards are likely to be influential in the choice of operators in any future
document management system, we will use them as our primary sources of
potential operators for SGML.

We can define operators with object-oriented conventions or algebraic
conventions.� We will first explore object-oriented conventions. These are
sometimes referred to as ‘CRUD’ approaches, since they involve the def-
inition of Create-Read-Update-Delete operations for every object (Kilov
and Ross 94). These types of roles for operators are supported in object-
oriented languages: C++ classes, for example, have explicit constructors
and destructors, and user-supplied methods perform the read and update of
the object. Because of its C heritage, C++ does not make a clear distinction
between read and update operators, and operators will sometimes both re-
turn a value and change some part of an object. Eiffel, on the other hand,
makes a point of separating the two types of operator, so as to obtainrefer-
ential transparency: the universal ability to substitute expressions of equal

� It is also possible to use calculus-like conventions, but we do not investigate these here.
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value.
A ‘create’ operator for documents is an activity that is external to the

SGML standard. Though SGML does allow for the possibility that docu-
ments might be created with standard text editors, creation is more com-
monly handled by syntax-directed editors or programs that convert from
other formats. Construction is not problematic for the most part, because
the DTD provides sufficient information about what is required and per-
mitted in every element of the document. One possible problem area has
already been mentioned in the section on redundancy control: how do we
ensure that entities are used wherever they are appropriate? A construc-
tion function might suggest, whenever a datum that is input is equivalent
to some existing entity, that the existing entity be used instead. This can
only be a suggestion, because we cannot determine in advance whether the
author wishes to keep multiple copies of a data value (as might be done if
they are only coincidentally equivalent). Similarly, when entities are de-
fined, the construction function needs to scan the whole document for ex-
isting fragments that are equivalent, making the suggestion of replacement
for each occurrence.

A ‘read’ operator returns the value of some document element. HyTime
and DSSSL contain a vast range of techniques for identifyingparts of a doc-
ument, and not much need be said about them here.

An ‘update’ operator changes the value of some document element. Hy-
Time does not have update operators. DSSSL has, on the other hand, per-
haps too many operators for producing new document structures from ex-
isting structures, and the user can write arbitrarily complex programs to cre-
ate new operators. The main problem with supplying many operators is the
difficulty of understanding their interactions.

The definition of ‘delete’ operators is complicated byreferential integrity,
the requirement that all references have an existing target. Consider delet-
ing an element that has an ID attribute (or consider simply deleting the ID
attributealone). SGML requires that a document have an ID for every IDREF,
but it does not specify how to handle such a (potential) deletion. There are
at least three possibilities:

RESTRICT Do not delete the ID element if there is a corresponding IDREF
element (alternatively, move the ID attribute to a new object and then
delete the existing element)
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CASCADE Delete all elements with an IDREF corresponding to the ID,
and do so recursively if any of them also have an ID attribute

NULLIFY Remove the IDREF attribute from all elements that refer to the
deleted ID

The terminology of RESTRICT, CASCADE, and NULLIFY is taken from
the relational model. Any of these possibilities will satisfy the SGML re-
quirement; which of the possibilities is chosen depends upon the particular
semantics one wants to support. RESTRICT describes a situation in which
linked elements must exist; neither the elements nor their relationship are
mutable. NULLIFY describes a situation in which the link is optional; re-
moving the target element does not affect the existence of the source ele-
ment. CASCADE describes a situation in which the linked elements either
exist together or not at all. Thus, removing the target implies removing the
source. CASCADE is so named because the removal of the source may
cause a cascade of removals, if the source itself contains an ID.	

We now turn to looking at some of the issues that arise if we adopt alge-
braic conventions for operators. Algebraic conventions are an offshoot of
the mapping of data models to the mathematical notion of an algebra. Al-
gebraic notions are useful for studying the formal properties of operators;
they are not so useful for questions of update, because algebraic mathemat-
ics has, at best, weak notions of redundancy or resources.

A key algebraic property of any set of operators isclosure. An opera-
tor has the property of closure if its result is of the same type as its input;
for example, the integers are closed under multiplication, but not division.
Closure allows the results of operations to be further manipulated by the
same set of operators. Closure multiplies the power of operators by facili-
tating their composition, just as documents multiply the power of the finite
alphabet by allowing the composition of symbols instead of the definition
of new ones. Thus closure is an essential property of any well-defined set
of operators (Date 1995).

Another algebraic property isgeneration. We speak of an operator as
being agenerator if repeated applications of the operator can generate any
member of the class of objects on which it operates. Generators give us

	 Complications arise when each element of a document can have different update seman-
tics. If, for example, in a chain of deletions caused by a CASCADE, one or more of ele-
ments is marked RESTRICT, this causes the whole chain of deletions to be RESTRICTed.
Conversely, a chain of CASCADEs will always end at an element marked NULLIFY.
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the ability to ‘reach’ all members of the data space. Closure allows us to
construct only members of a given class of objects; generation allows us to
construct all members of that class.

DSSSL’s Structured Tree Transformation Process can generate any doc-
ument hierarchy, because it includes a Turing-complete language that can
generate, in theory, any object. DSSSL does provides constraints on the
output process; no transformation is acceptable unless it can be validated
by the output DTD. This is a semantic constraint on update rather than clo-
sure. It is worth noting that it is uncomputable to determine whether an
arbitrary transformation will satisfy an arbitrary DTD.�


The HyQ query language of HyTime, on the other hand, has closure—
the results of a HyTime query are always a sequence of HyTime objects—
but not generation, since we cannot produce arbitrary HyTime documents
as the result of a HyQ query. For example, HyQ does not have an oper-
ator that produces a hierarchy of results, as does thepartitioned-by

operator proposed for grammar-defined databases (Gonnet and Tompa 87).
It is both practically and theoretically useful to find abasis for a given

set of operators. A basis is a minimal and sufficient subset of operators to
which all other operators can be reduced. If we can find a basis, then we
need only implement the basis, and all other operators can be implemented
using combinations of the basis operators. A basis can also simplify proofs
of theorems about the operators.

What would constitutea basis for operators on SGML documents? Gen-
eral tree traversal operations, such as those provided by DSSSL, are a nat-
ural possibility. DSSSL does not aim for minimality; it would be interest-
ing to deduce a minimal set of operators from DSSSL’s tree transformation
package. HyTime’s addressing methods are not operators, but it is reason-
able to infer the operation of selection from them. It is clear that the set
of selection possibilities provided by HyTime is not minimal; thus again, it
would be interesting to extract a basis. In either case, it is also worth con-
sidering generating a basis for some wider class of operations that might
subsume either or both of HyTime and DSSSL, rather than trying to force
either standard to be an algebra.

Given a set of operators that have the property of closure, we compose
the operators intoexpressions that can be applied to objects to produce some
desired result. The natural question that arises is: when do two different ex-

�
 This observation was first made by Anne Br¨uggemann-Klein.
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pressions generate the same result? We are particularly interested in know-
ing when two expressions will generate equivalent results, independent of
the object they are processing. This particular notion of equivalence is of-
ten based on the concept ofidentities. An identity is a rule for rewriting of
an expression while preserving its result as, for example, when multiplying
by one or adding zero to a number will preserve the number. Given a set of
identities, we can develop a variety of equivalent operator expressions and
then choose between them based on some metric of efficiency. DSSSL and
HyTime do not define identities, though some may be inferred.

Neither the algebraic convention nor the object-oriented conventiondeal
with an issue that will become more important in future document systems:
the problem of concurrent update. How should a document behave when
more than one user is operating on it at the same time? Algebraic and object-
oriented approaches appear to be based on single-user notions of update.
Concurrent activities can be reduced to sequences of single-user activities,
through locking protocols, but these introduce new problems, such as the
possibilityof deadlock, and the difficultyof ensuring sufficient concurrency.
It may be that we will eventually need a definition of documents that in-
cludes a notion of versioning or parallel alternatives to capture the seman-
tics of concurrent update.

CONCLUSIONS

The SGML standard achieved generality not by proposinga syntax for doc-
ument representation, but by proposing a meta-syntax: a definition of po-
tential syntaxes. In this paper, we provide not a document semantics, but
instead, a collection of issues that are meta-semantic: issues involved in
the definition of any semantics. The DSSSL draft standard and the Hy-
Time ISO standard have given us some examples of how semantics can be
achieved for SGML documents. Now it is time to consider metrics for com-
paring them and evaluating their feasibility. It is not enough to simply pro-
vide operators that seem to have useful functionality. A reliable semantics
for SGML documents will have explicit notions of equivalence, effective
controls on redundancy, and operators with well-defined properties, such as
closure, minimality, and identities. We suggest that consideration of these
issues form part of the evaluation of current standards, and part of the de-
sign of future systems for managing documents as databases.
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