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The subgraph isomorphism problem is known to be N P-complete for general graphs, but
can be solved in polynomial time for many restricted classes of graphs. We can phrase
the problem as that of trying to determine whether or not there is a subgraph of an input

graph H that is isomorphic to an input graph G. In this paper, we study this problem
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when G and H are both graphs of bounded tree-width with various connectivity and degree
conditions, and show that there is a clear division between those cases in which the problem
is polynomial time and those in which it is A"P-complete.

Polynomial-time algorithms for subgraph isomorphism have been devised for restricted
classes of graphs, including trees [Mat78], two-connected outerplanar graphs [Lin89], and
two-connected series-parallel graphs [LS88]. These are all graphs of bounded tree-width (as
defined formally in Section 2), for which the problem is AP-complete in general [Sys82].
More generally, it has been shown that for G and H partial k-trees, if G either has bounded
degree or is k-connected then there is a polynomial time algorithm for subgraph isomor-
phism [MT92, GN94].

One natural question is that of determining the complexity of this problem if the con-
straints on GG are further relaxed. In this paper we study two scenarios, namely allowing the
connectivity of G to be less than k£ and allowing a constant number of nodes of unbounded
degree. Such questions were also studied by Matousek and Thomas [MT92] who showed that
the problem is NP-complete when G is a tree with all but one node of degree at most three
and H is a graph of tree-width two with all but one node of degree at most three. However,
they left as an open problem the case where, for example, G has connectivity k%l and GG
and H are both partial k-trees, and hypothesized that this problem may in fact be solvable
in polynomial time. Our results directly show that the problem is, in fact, A"P-complete.

In this paper we examine a subset of the class of graphs of bounded tree-width, the graphs
of bounded path-width. We derive the complexity of the subgraph isomorphism problem for
G and H both graphs of path-width k& where GG is g-connected and H is h-connected, for
both g and h less than k. Since N P-completeness results obtained for graphs of bounded
path-width automatically apply to graphs of bounded tree-width, similar results are obtained
for this larger class. Furthermore, we show that when G and H have tree-width k with H
k-connected and G with connectivity less than k, the problem is again N P-complete. We
thus obtain sharp divisions for subgraph isomorphism on bounded tree-width graphs and
nearly sharp divisions for bounded path-width graphs.

In Section 2 we formally define the classes of graphs under consideration, and discuss
related work. Algorithms and reductions for various classes are presented in Sections 3
through 6. Finally, in Section 7 we summarize our results and suggest various directions for
further research.

2 Preliminaries

In this section, we formally define the classes of graphs under consideration and review
previous work on such graphs. We begin with some basic definitions.

2.1 Graphs and Graph Unions

All graphs in this paper will be simple. We denote the vertex and edge sets of a graph G
by V(G) and E(G) respectively. We will be working extensively with trees and paths; the
reader is expected to have a basic familiarity with these types of graphs (see Bondy and
Murty [BM76] for more background material). In addition, we will focus on the connectivity
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of graphs; when we say that a graph G is g-connected, we mean that G is g-connected but
not (g + 1)-connected.

For P a path on n vertices, we will often write P = vy,...,v, by which we mean V(P) =
{v1,...,v} and E(P) = {(vs,vi41) : 1 <1 < £} where all v;’s are distinct. We say that the
length of this path (denoted |P|) is /.

The graphs constructed in our reductions will consist of the joining together of a number
of different graphs; we next formally define the union of graphs.

Definition: Given two graphs G; = (V4, E1) and G5 = (Va, Es), the union of G and G, is
the graph G1 UG2 = (ViU Vo, E1 U E,). If a node u € V] is the same as the node v € Vj, we
say that u is identified with v in the union, or that the union is formed by identifying v and
v.

Notice that our unions preserve simple graphs, that is, when we take the union of the edge
set we do not allow multiple edges.

2.2 Tree-decompositions and tree-width

A tree-decomposition is a representation of a graph by a tree-like structure [RS86]; a more
formal definition follows.

Definition: Let G be a graph. A tree-decomposition for G is a pair (T%,x%) where T is a
tree and x¢ : V(T) — {subsets of V(G)} satisfying:

1. for every e = (u,v) € E(G), there is an = € V(T%) such that u,v € x%(z); and
2. for z,y,z € V(TC), if y is on the path from z to z in T¢ then x%(z) N x%(2) C x%(v).

The width of a tree-decomposition (T%,x%) is max{|x%(z)| —1:z € V(T%)} and the tree-
width of a graph G is the minimum width over all its tree-decompositions. We will drop the
superscripts when the graph G is clear from context.

An alternate characterization of graphs of tree-width &k can be given in terms of partial k-

trees [Ros74]. Recall that the complete graph on r nodes is called an r-cligue and is denoted
by K,.

Definition: A k-tree is defined inductively as follows:
1. Ky and Kj,, are k-trees.

2. Let G be a k-tree on n nodes and let K be a k-clique in G. Then the n + 1 node graph
G’ formed from G by adding a new node v adjacent to all nodes of K is a k-tree.

A partial k-tree is a subgraph of k-tree.
The following lemma is well-known:

Lemma 2.1. G 1s a partial k-tree if and only G has tree-width at most k.



2.3 Path-decompositions and path-width

We can view a path-decomposition of a graph in a variety of ways. Perhaps the simplest is
the following:

Definition: Let G be a graph. A path-decomposition of G is a tree-decomposition (P%, x%)
in which P® is a path; again we drop superscripts whenever the graph G is clear from
context.

The definitions of the width of a path-decomposition and the path-width of G are defined
analogously. We can also modify the definition of partial k-trees to yield a different charac-
terization of path-width k& graphs.

Definition: A k-path is defined inductively as follows:
1. Ky is a k-path.
2. Kpyq i1s a k-path with one node designated as the distinguished node.

3. Let G be a k-path on n > k nodes with distinguished node v. Let K be either the
k-clique to which v is adjacent or a k-clique involving v. Then the » + 1 node graph
G’ formed from G by adding a new node w adjacent to all nodes of K is a k-path with
w the distinguished node.

A partial k-path is a subgraph of a k-path.

We will be working extensively with the k-path definition; the following further definitions
will be useful. We can view the formation of a k-path as a step-by-step procedure, consisting
first of the creation of a clique of size k and then the addition, in steps 1 through /, of the
(k + 1)st through (k + £)th nodes in the k-path. The first k& nodes will be called the original
cliqgue. The distinguished node added at step z will be denoted u;, and the k-clique to which
it is attached will be called the attachment cligue, C;. Thus, C; will either be identical to
C;_1 or will contain u;_;.

Lemma 2.2. G s a partial k-path if and only if G has path-width at most k.

Proof: To show that a partial k-path G has path-width at most &k, we construct a width &
path-decomposition of a k-path G’ containing G as a subgraph. Without loss of generality,
we can assume that G' has more than k£ nodes. In the iterative construction of G', let
K, be the original clique of G’, let the sequence of distinguished nodes in the construction
of G’ be uy,...,u, and let C; be the attachment clique of u;. Let P = wq,wy,...,w, be
a path. We define x : V(P) — {subsets of V(G')} by x(wo) = V(Kj) and for ¢ > 0,
x(w;) = {u;} UV(C;). Tt can be verified that (P, x) is a width k& path-decomposition of G'.
Since G is a subgraph of &', it also has a width k& path-decomposition.

To prove the converse, we assume that GG is a graph of path-width at most k with a
path-decomposition (P, x) of width at most k. By altering (P, x), we will construct a k-path
H of which G is a subgraph. First, we create a path-decomposition (P’,x’) such that for
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every node w of P', |x'(w)| = k+ 1. It is not difficult to see that for P’ = P, x' can be
formed from y by adding nodes to the domains when needed.

We now form a path-decomposition (P”,x") from (P’,x’) such that for each pair of
adjacent nodes v and w of P”, |x"(v)Nx"(w)| = k. This can be achieved by adding new
nodes to P between each pair of nodes v and w of P’ for which the intersection is too small
such that for each successive new node z, x"(z) contains one new node of x'(w) and one
fewer node of x'(v).

Finally, we let H be the graph with path-decomposition (P”,x") with edge set {(z,y) :
z,y € X"(w) for some w € P"}. By construction, H is a k-path; since G is a subgraph of H,
G is a partial k-path, as needed. =

2.3.1 Previous work on graphs of bounded path-width

Paralleling the work on tree-width, much of the work on path-width has focused on relating
path-width to other measures and on the problem of determining the path-width of various
classes of graphs. Korach and Solel relate tree-width and path-width by showing that for any
graph on n nodes, the path-width is in O(logn - tree-width) [KS93]. In addition, the notion
of path-width has been related to cut-width [KS93], node search number [BM90], interval
thickness [BM90], vertex separation number [Kin92], and the gate matrix layout problem in
VLSI [Moh90]. Bodlaender and Méhring show that the tree-width and path-width are equal
for cographs [BM90]. Although it is AP-complete in general to determine the path-width of
a graph [ACP89], there exist algorithms for computing exact path-width for restricted classes
of graphs, such as permutation graphs [BKK93], cographs [BM90], splitgraphs [KB92], and
interval graphs. In addition, there exist approximation algorithms for cotriangulated graphs,
permutation graphs, and cocomparability graphs [KB92], as well as efficient algorithms for
finding path-decompositions [BK91].

3 Algorithms

The subgraph isomorphism problem can be solved in polynomial time when the input graphs
G and H are both partial k-trees and when G is restricted to being either k-connected or
bounded degree [MT92, GN94]. In this section we give a brief outline of the techniques used
to solve the problem; such techniques have also been used to yield parallel algorithms for
both subgraph isomorphism and topological embedding.

In order to adapt the dynamic programming approach developed originally by Matula
for trees [Mat78], each graph is first represented by a tree-decomposition. Since these rep-
resentations are not necessarily unique, the tree-decomposition of H is put into a special
“normalized” form, and the corresponding tree-decomposition of G is determined in the
course of the algorithm. More specifically, we create a special structure known as a tree-
decomposition graph, containing all possible normalized tree-decompositions of G including
the one “matching” that of H. The algorithm proceeds by finding matchings between vertices
in the tree decomposition of H and nodes in the tree-decomposition graph of G, combining
results for children to find results for parents.



A key to the complexity of the algorithms is the difficulty in combining information about
children to obtain information about a parent. In Matula’s algorithm, a tree node represents
only a single node, so that the mappings for children can be combined in the obvious way.
When applied to a tree-decomposition, however, a single node of a tree-decomposition is
labeled by a “bag” corresponding to several nodes in the underlying graph; mappings for
children must be consistent with respect to these nodes. Moreover, whereas each child
subtree in Matula’s algorithm represents a single, connected child subtree, a subtree of a tree-
decomposition may correspond to many disjoint pieces of the underlying graph. Determining
which piece of the graph is represented by which subtree of the tree-decomposition can lead
to a combinatorial explosion.

To handle this problem, we rely on the restrictions to the input graph G. When G has
bounded degree, the number of possible subgraphs of G is bounded, as is the number of
subtrees to which they are assigned. In the case in which G is k-connected, each subgraph
of the tree-decomposition of G corresponds to a connected piece of G, again simplifying the
problem, yielding the following results:

Theorem 3.1. Let G and H be partial k-trees for k greater than zero, and let G be k-
connected. Letn = |V(G)|+|V(H)|. Then there is an O(n****) time algorithm to determine
whether or not G s isomorphic to a subgraph of H.

Theorem 3.2. Let G and H be partial k-trees for k greater than zero, and let G be of
degree at most d > 0. Let n = |[V(G)| + |V(H)|. Then there is an O(n**?) time algorithm

to determine whether or not G is isomorphic to a subgraph of H.

4 General properties of the reductions

In the remainder of this paper, we establish the complexity of subgraph isomorphism for GG
and H both partial k-paths of varying connectivities. We prove the following theorem:

Theorem 4.1. Let G and H be partial k-trees with G g-connected and H h-connected.
Then the problem of determining iof H contains a subgraph isomorphic to G can be solved in
polynomial-time when g = k and is N'P-complete otherwise.

The polynomial-time algorithm follows from the discussion in Section 3. The NP-
completeness results follow from Lemmas 5.7 and 6.3. As a byproduct of our constructions
in the proofs of these lemmas, we also obtain the following result.

Theorem 4.2. Let G and H be partial k-trees with G and H having all but k nodes of degree
at most k + 2. Then the problem of determining if H contains a subgraph isomorphic to G
is N'P-complete.

For the remainder of this section, we build appropriate machinery to prove Lemmas 5.7 and
6.3.

It is not difficult to see that the subgraph isomorphism problem is in NP; we only need
prove that the appropriate problems are A“P-hard. Our reductions will make use of the
NP-complete problem 3-Partition [GJ79]:



INSTANCE: A finite set Z = {11, I,..., I3, } of positive integers and a positive integer B
such that }°; I; = mB and for each j, B/4 < I; < B/2.

QUESTION: Can 7 be partitioned into m disjoint subsets {C1,Cs,...,Cp} (of 3 elements
each) such that for 1 <¢ <m, Y 7.0, I = B?

Recall that 3-Partition is strongly AP-complete so we can assume that the values I; for a
specific instance are specified in unary. This fact will be crucial to our reductions as the
graphs G and H we will construct will each have size O(mB). For the remainder of this
section, we will specify an instance of 3-Partition by a tuple (Iy,...,I3,; B). Without loss
of generality we will also assume that I; > 1 for all j.

We now delineate classes of graphs which will be used in our reductions.

Definition: A j-path spiral of length { is a graph consisting of the following:

1. a total of (j — 1)+ nodes, where ¢y, ...,cj_1 are center nodes and by, . .. by are exterior
nodes (in order), with b; and b, the first and last exterior nodes, respectively;

2. edges between each pair of center nodes, forming a clique of center edges;

3. edges between each exterior node and all the center nodes, forming the set of radial
edges; and

4. edges between b; and b;_; for ¢ > 1, forming the set of exterior edges.

We can consider the 3 — 1 center nodes to be j — 1 of the nodes in the original clique in the
construction of a j-path, and the exterior nodes the added nodes (with the j** node in the
original clique being either the first exterior node or a node removed later to form a partial

j-path).

Lemma 4.3. A j-path spiral § of length £ is a j-connected partial j-path with a width-j
path-decomposition (P, x) such that one endpoint of P is labeled by the center nodes of S.

Proof: Let S be a j-path spiral of length ¢ with center nodes ¢y,...,c;_1 and exterior nodes
bi,...,bs. To verify that G has width 7, we construct a width j path-decomposition (P, x) for
S. Let P = wo,wy,...,we and define x by x(wo) = {c1,...,¢j-1}, x(w1) = {e1,...,¢j-1,b1},
and for ¢ > 1, x(w;) = {c1,...,¢j-1,bi-1,b;}. It is straight-forward to verify that this is a
path-decomposition of width j satisfying the required properties.

For the connectivity condition, notice that the removal of any set of 7 — 1 nodes cannot
disconnect G: if some center node c is not in the set then all the remaining exterior nodes
are adjacent to c; if all j — 1 center nodes are in the set then the remaining exterior nodes
form a path. m

We will also be working with star-like objects:

Definition: A j-staris a graph consisting of the following:

1. a total of j+3 nodes where di,...,d; are the cligue nodes and p;, p,, ps are the pendant
nodes;



2. cliqgue edges between each pair of clique nodes forming a clique of size j;

3. pendant edges between each pendant node and all clique nodes.
The following lemma is straight-forward to verify:

Lemma 4.4. A j-star is a j-connected j-path with a width-j path-decomposition such that
the label of one endpoint contains the cligue nodes.

The constructions in our reductions will involve forming unions of ¢-stars and j-paths of

length ¢:

Definition: Let S1,...,S, be (5 + 1)-path spirals of varying lengths. Let K be an i-star for
t > j. Then, the star-union of K and &i,...,S, is the graph formed by taking the union of
S1,...,8, and K in which the center nodes of each S; are identified with the same j clique
nodes of K (these 7 nodes are called the identified nodes).

5 Reduction for H not k-connected

In this section we begin by focusing on the proof of Lemma 5.7 for the case in which G has
connectivity no greater than that of H. We then give a construction for handling the case
in which G has greater connectivity than H. We start with some technical lemmas.

5.1 Technical Lemmas

We first show that the appropriate union of a star and a spiral gives the right connectivity.

Lemma 5.1. Let G be the star-union of a (5 + 1)-path spiral S and an i-star K for i > j.
Then G is j-connected.

Proof: To see that (G is j-connected notice that the graph G’ obtained by the removal of
any 7 — 1 nodes from G leaves at least one center node ¢ in G’; all nodes in G’ are adjacent
toc. m

The next set of lemmas show that a star-union has the correct width.

Lemma 5.2. Let G be a partial k-path and vy,...,v; be nodes of G such that there is a
path-decomposition (P, x) of G of width k with one endpoint of P labeled by {vi,...,v,}. Let
S be a (j+1)-path spiral (k > j) and G’ be the union of G and S formed by identifying the j
center nodes with any j nodes from among v1,...,v, say v1,...,v;. Then G' has a width-k
path-decomposition such that the label of one endpoint contains {v1,...,v;}.

Proof: We show how the path decomposition (P, x) of G can be extended to a width & path-
decomposition (P’,x') of G'. Suppose S is a (5 + 1)-path spiral of length ¢ with exterior
nodes by,...,b,. We can assume without loss of generality that the union used to form G’
identifies the nodes {v,...,v;} with the center nodes of S.
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Suppose P = wy,...,w, such that x(w,) = {v1,...,v;}. By adjoining ¢ + 1 new nodes
to P, we construct from P a path P’ = wy,...,w,,&1,...,2441. As well, we define x'(w;) =
X(wi)7 1 << T, Xl(wl) = {vla---7vj7b1}7 Xl(wi) = {v17---7vj7bi—17bi} for 2 < < £7 and
X'(z¢41) = {v1,...,v;}. From this construction it is straight-forward to verify that (P’,x’)
forms a path-decomposition of G’ of width k. m

In the proof of Lemma 5.2, the path-decomposition constructed has the property that
the label of one endpoint of the path contains all the identified nodes {vi,...,v;} (and
consequently all of the center nodes of the spiral). Thus, by iterating this lemma with
Lemma 4.3, we obtain the following corollary:

Corollary 5.3. Let G be the star-union of a k-star and (j + 1)-path spirals S1,...,S,, for
k > 3. Then, G is a j-connected partial k-path.

In the reductions, each of G and H will consist of star-unions. We will show that the
clique nodes in G must map to the clique nodes in H, and that the ways in which the spirals
in G map to the spirals in H dictate the partition of the items. Here we make a general
observation which is the key to our reductions.

Lemma 5.4. Let (I1,...,Ism; B) be an instance of 3-Partition. Let K and K' be k-stars
with cliqgue nodes {di,...,dp} and {d,,...,d,} respectively. Let Si,...,S3m be a sequence
of (g + 1)-path spirals of lengths I,..., I3, respectively, for 0 < g < k. Let Ty,..., T, be a
sequence of (h+1)-path spirals all of length B, g < h < k. Let G be the star-union of K and
S1,..-,83m and let H be the star-union of K' and Ty,...,7,. Then, G is a subgraph of H

if and only if the instance of 3-Partition has a solution.

Proof: We first assume that the instance (Iy,...,Is,; B) of 3-Partition has a solution. It is
then possible to partition the lengths I3,..., s, (and hence the corresponding spirals) into
3-element sets, C1,...,C,,, such that the sum of the lengths in each set equals B. By the
construction of G and H, |V(G)| = |V(H)|. We illustrate a bijection f from V(G) to V(H)
such that for every edge (u,v) € E(G), the corresponding edge (f(u), f(v)) exists in E(H).
We assume without loss of generality that the identified nodes of G and H are d;,d,,...,d,
and d},d,,...,d,. For the nodes of K in G, we define f to map d; to d., so that the identified
nodes of G map to identified nodes of H. The pendant nodes of K are allowed to map to
the pendant nodes of X' in an arbitrary manner.

We need to show how f maps the spirals corresponding to elements in the set C; to the
spirals 7; for all 7. Since the description is the same for all the cases, we only present the
mapping for C; and 7;. By the construction of G and H, the center nodes of the spirals in
C; map to a subset of the center nodes of 7;. Since there are B exterior nodes in the spirals
in C; and B exterior nodes in 7y, it is not difficult to see that there are enough exterior
nodes to perform the mapping.

More specifically, assume without loss of generality that Cy = {I;,I,,I5}. Let the exterior
nodes of S; in order be a;;, 1 <¢ < 3,1 < 3 < I, and let the exterior nodes of 7; in order
be by,...,bp. Then, f(a1;) = bj, f(as;) = br,+; and f(as;) = by, +1,+. Clearly the exterior
edges in G map to the exterior edges in H. Finally, since each center node in H is connected
to each exterior node, the radial edges are preserved by the mapping.



Now suppose that G is isomorphic to a subgraph of H and let f: V(G) — V(H) be the
subgraph isomorphism. Clearly f is a bijection since |V(G)| = |V(H)|; we first show that
f maps K to K’ such that identified nodes of K map to (a possible subset of the) identified
nodes of K'. All clique nodes in both G and H have degree at least k£ + 2 whereas all other
nodes have degree at most k + 1, so the clique nodes of G must map to the clique nodes of
H. As well, the identified nodes have degree kK — 1+ 3+ mB > k + 2 in both G and H, so
among the clique nodes, the identified nodes must map to identified nodes. Finally, consider
a pendant node p of G. If it maps to some exterior node v of H then an exterior neighbour
w of v must have a pre-image which is adjacent to p; such a neighbour exists since I; > 1
for all . But p only has neighbours that are clique nodes, not exterior nodes.

Thus, we have shown that the exterior nodes in the spirals of G must map into exterior
nodes in the spirals of H. We now show that the instance (I1,..., I3,; B) of 3-Partition has
a solution. Since exterior edges must map to exterior edges, the images of the exterior nodes
in a particular spiral in G must form a consecutive set of exterior nodes in H. Consequently,
each of the spirals S; must be contained entirely in some 7; for some j. Since f is a bijection,
this forms a partition of {Ii, ..., I3, } into sets of size B each specified by the 7}, as required.
[

5.2 G, H k-paths, G g-connected, H h-connected, g < h < k.

We are now ready to consider the case in which G has connectivity at most that of H.

Lemma 5.5. Let G and H partial k-paths with G g-connected and H h-connected, g < h <
k. Then the problem of determining if H contains a subgraph isomorphic to G is N'P-hard.

Proof: We begin by constructing G and H. Let G be the star-union of a k-star and (g + 1)-
path spirals Si,...,8s, of lengths I;,...,I5,, respectively. Let H be the star-union of a
k-star and (h + 1)-path spirals 71,...,7,, of length B.

By Corollary 5.3, G and H are g- and h-connected partial k-paths. It follows from
Lemma 5.4 that G is a subgraph of H if and only if the instance of 3-Partition has a
solution, completing the proof. m

From the construction of G and H it is clear that all but g nodes of G and h nodes of H
have degree at most k 4 2, as needed for Theorem 4.2. Figure 1 illustrates Lemma 5.5 for
the case in which £k =2,9 =0, and A = 1.

5.3 G, H k-paths, G g-connected, H h-connected, h < g < k.

We now show how our previous reductions can be modified to allow H to have lower con-
nectivity than G. Our result is the following.

Lemma 5.6. For G and H partial k-paths with G g-connected and H h-connected, h < g <
k, the problem of determining if G is a subgraph of H is N'P — hard.

Proof: For an instance Z = {Ii, ..., I3,,; B} of 3-Partition, we begin by constructing graphs
G and H' both having connectivity g as outlined in the proof of Lemma 5.5.
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Figure 1: G consists of a 3-star and 3m disjoint paths Py,..., Ps,, of lengths I;,...,I5,,. H
consists of a 3-star and m paths Q4,...,Q,, of length B emanating from one node. Pendant
vertices are not shown.

[ ]
[ ]

Figure 2: Dy, is created by attaching a new node to each node of a K;,. A Dg is illustrated.
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We form the graph Dj by attaching h nodes of degree one, wy,...,ws, to distinct nodes
of a complete graph K}, as illustrated in Figure 2. Notice that any h of the g identified
nodes {di,...,dy} in the star-union H' form an h-clique. We construct H to be the union
of H' and D;, formed by identifying any h nodes of {di,...,d,} with wy,...,wp.

Next, we prove that H is an h-connected partial k-path. The graph H has connectivity h
since each of H' and K} have connectivity at least A and {w;,...,ws} forms a cutset in H.
As well, since by Lemma 5.2 and Corollary 5.3 there is a width & path-decomposition (P, x)
of H' such that the label of one endpoint of P contains {di,...,d,}, this path-decomposition
can easily be extended to a width & path-decomposition of H. Clearly H is an h-connected
partial k-path.

Since H' is a subgraph of H, it follows immediately from Lemma 5.4 that if there is a
solution to Z, then H (or more specifically, H') contains a subgraph isomorphic to G. It
remains to be shown that if H contains a subgraph isomorphic to G then there is solution to
the instance Z. To use Lemma 5.4, it will suffice to show that no subgraph of H containing
unidentified nodes of D}, can be isomorphic to G. Suppose this was not the case and that G’
was a subgraph of H containing unidentified nodes of Dy, isomorphic to GG. Clearly G would
have connectivity at most h, which is less than g, yielding a contradiction. m

As a consequence of Lemmas 5.5 and 5.6, we can conclude that the following lemma

holds:

Lemma 5.7. Let G and H be partial k-paths with G g-connected and H h-connected, for g
and h both less than k. Then the problem of determining if H contains a subgraph isomorphic
to G is N'P-complete.

6 Reduction for H k-connected

To handle the case in which H is k-connected, we use constructions similar to those appearing
in the previous sections. However, when we form the union of a k-star with k-path spirals,
the resulting graph has tree-width %k, not path-width k.

We begin by stating a number of technical lemmas similar to those found in Section 5.1.
The following definition is a generalization of star-unions but yields slightly higher connec-
tivity.

Definition: Let K be a k-star with clique nodes dy,...,d;. Let Si,...,S, be j-path spirals
for j < k. Let b;; be the first exterior node of S;. Let G be the star-union of K and
S1,...,S,. Without loss of generality, assume the nodes d;,...,d;_; are identified with the
center nodes of the spirals in G. Then the enhanced star-union of K and Sy,...,S, is the
graph G with an additional edge from each b;; to the node d;.

Lemma 6.1. Let G be the enhanced star-union of a k-star K and a j-path spiral S of length
L for 3 < k. Then G is a j-connected k-path and there is a path-decomposition of G with
one endpoint labeled by the clique nodes of K.
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Proof: To see that the connectivity condition holds, consider the graph G’ obtained from G
by the deletion of any j — 1 nodes of G. If some identified node d is not among these nodes,
then since all other nodes of G' are adjacent to d, we can conclude that G’ is connected.
Now suppose instead that all j — 1 identified nodes are deleted to form G'. Then, d; is not
one of the j — 1 deleted nodes; to show that G’ is connected, it will suffice to show that all
nodes in G’ are connected to d;. Clearly there are edges from all pendant nodes and from
all remaining clique nodes to d;. The exterior nodes in § form a path, with the first exterior
node b; adjacent to d;. Therefore, G’ is connected.

To show that G is a k-path, we construct a path-decomposition (P, ). We define the path
P to be wq,wy,ws, ws, wi,...,we, and set x(wo) = {d1,...,dr}, x(w1) = {d1,...,dr,p1},
X(wIZ) = {d17 tee 7dk7p2}7 X(wé) = {d17 ce 7dk7p3}7 X(wl) = {d17 tee dk7 bl} and for ¢ > 17
x(w;) = {d1,...,dk—1,bi_1,b;}. It is straight-forward to verify that (P, x) is the required
path-decomposition. m

We can now join together path-decompositions of enhanced star-unions to obtain tree-
decompositions of enhanced star-unions when there are multiple spirals.

Lemma 6.2. Let G be the enhanced star-union of a k-star K and j-path spirals S1,...,S,,
J < k. Then, G is j-connected and has tree-width k.

Proof: Let d;,...,d; be the clique nodes in K. Let the graph GG; be the enhanced star-union
of K with k-path spiral $;, 1 < ¢ < r in which the identified nodes are d;,...,d;_1. Then,
by Lemma 6.1, we can form width-k path-decompositions (P, x1),.-.,(Pr,x+) of G1,...,G,
respectively such that one endpoint of each path is labeled by {d;,...,d;}. Now, consider the
graph G formed by taking the enhanced union of X with &;,...,S, such that the identified
nodes are di,...,d;_; and d; is adjacent to all first nodes of the spirals.

To see that GG is j-connected, we need only show that the removal of any 7 — 1 nodes
results in a connected graph G'. The argument here is similar to that in Lemma 6.1. If some
identified clique node remains in G’ then all nodes in G’ are adjacent to that node. If all
7 — 1 identified nodes are deleted then the exterior nodes form paths each with one endpoint
adjacent to d; which is then adjacent to the remaining pendant and clique nodes.

We can form a width k tree-decomposition (7', x) of G as follows: Let P; = w; g, ..., w;
such that y;(w;0) = {d1,...,dr}. Then, let T be the union of the P; formed by identifying
all w;o. As well, we define x to be the union of the x;’s. It is not difficult to verify that
(T,x) is a tree-decomposition with the appropriate properties. m

Lemma 6.3. Let G and H be partial k-trees with G g-connected and H k-connected, for g
less than k. Then the problem of determining if H contains a subgraph isomorphic to G is
NP-hard.

Proof: Let (Iy,...,Ism; B) be an instance of 3-Partition. Let G be the enhanced star-union
of a k-star K and g-spirals Sy,...,Ss, of length I, ..., Is,, respectively with d,,...,d,_; the
identified nodes and d; the clique node adjacent to all first nodes in all S;. By Lemma 6.2,
G is g-connected and has tree-width k. Let H be the enhanced star-union of a k-star X' and
k-spirals 7q,...,7,, all of length B with d},...,d}_, the identified nodes and dj, the clique
node adjacent to all first exterior nodes in all 7;. By Lemma 6.2, H is k-connected and has
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tree-width k. We claim that (Iy,...,I5,; B) has a solution if and only if G is a subgraph
of H; the argument is very similar to that in Lemma 5.4 except that there is an additional
edge from the first node of each spiral to the clique.

If there is a solution to ([y,...,I3,; B), then there is a partition C1,...,Cp of I1,..., I3y
each with three elements such that the sum of the elements in any C; is B. Notice that C;
corresponds to a set of spirals of total length B. Then the mapping from G to H is specified
as follows: f(d;) = d., pendant nodes in G map to pendant nodes in H in an arbitrary
manner, and the exterior nodes of G in spirals associated with C; appear as a contiguous set
of nodes in some spiral of H.

For the converse, suppose G is isomorphic to a subgraph of H and let f: V(G) — V(H)
be the subgraph isomorphism. Clearly f is a bijection since |V(G)| = |V(H)|; we wish to
conclude that exterior nodes of G map to exterior nodes of H.

Notice that identified nodes in G have degree k — 1 4+ 3 + mB, the node d, has degree
k — 14 3 + 3m, all other clique nodes have degree k 4 2, and all exterior nodes have degree
at most k 4+ 1. In H, identified nodes have degree k — 1 + 3 + mB, the node d has degree
k—1+3+m, and all exterior nodes have degree at most k+ 1. Therefore, simply because of
degree constraints, for 1 <13 < g, f(d;) € {d},...,d,_,}; without loss of generality assume
that f(d;) = d}. Then it follows, again from degree constraints, that for g < i < k, clique
nodes d; must map to clique nodes d’; for j > g. From this we conclude that clique nodes in
G map to clique nodes in H. As well, pendant nodes of G must map to pendant nodes of H;
if pendant node p of G maps to an exterior node w of H, then the pre-image of an exterior
neighbour v of w does not exist in G. Therefore, exterior nodes of G map to exterior nodes
of H.

Now, the image under f of the exterior nodes of a particular spiral in G must form a
consecutive set of exterior nodes in H. Consequently, each of the spirals §; must be contained
entirely in 7; for some j. Since f is a bijection, this forms a partition of {I1,...,I3,} into
sets of size B each specified by the 7;, as required. =

Again, we can notice that our constructions above entail at most k¥ nodes having un-

bounded degree; the remainder of the nodes have degree at most k + 2. Thus, in this case
also Theorem 4.2 holds.

7 Conclusions and directions for further research

In this paper we have shown that the subgraph isomorphism problem for partial k-trees is
NP-complete when either of the following occurs:

1. The source graph is not k-connected.
2. There are at least k vertices of unbounded degree.

Our proofs work by showing that when both input graphs have connectivity less than k, the
resulting problem is N P-complete even on partial k-paths. This leaves open the following
problem: Suppose G and H are graphs of path-width & with H k-connected. What is the

complexity of determining whether G is a subgraph of H?
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A second open problem is that of determining the minimum number of unbounded degree
nodes which makes these problems N P-complete. In particular, is it sufficient to have only
one unbounded degree node to ensure N P-completeness?

Since partial k-paths are a subclass of partial k-trees and since topological embedding and
minor containment are generalizations of subgraph isomorphism, our results immediately
imply the A P-completeness of these problems for these classes of graphs. It would be
interesting to know whether or not there are other problems for which the connectivity and
degree of k-paths or k-trees yields such a fine distinction in complexity, or for which other
possible restrictions produce duality results.
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